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Abstract 

One of the most efficient approaches known for finding an optimal tour 
of the asymmetric traveling salesman problem (ATSP) is branch-and-bound 
(BnB) subtour elimination. For two decades, expert opinion has been di- 
vided over whether the expected complexity of the ATSP under BnB subtour 
elimination is polynomial or exponential in the number of cities. We show 
that the argument for polynomial expected complexity does not hold. 
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1    Introduction 

Given n cities {1,2, • • •, n] and a cost matrix (QJ) which defines the cost between 
each pair of cities, the traveling salesman problem (TSP) [8] is to find a minimum- 
cost tour that visits each city once and returns to the starting city. When the 
cost Qj from city i to city j is not necessarily equal to that from city j to city i, 
the problem is the asymmetric TSP (ATSP). It is well known that the ATSP is 
iVP-hard [5]. 

One of the most efficient approaches for optimally solving the ATSP is branch- 
and-bound subtour elimination [2, 3] using the assignment problem as a lower- 
bound function. The solution of an assignment problem (AP) [11] is either a 
complete tour or a collection of disjoint subtours, which is a relaxation of the 
ATSP and can be solved in 0{n3) time. Branch-and-bound (BnB) [2, 9] is one of 
the most general and efficient algorithms for finding the exact solutions of most 
combinatorial optimization problems. The algorithm first solves the AP for the n 
cities. If the solution is not a tour, then the problem is decomposed or expanded 
into subproblems by eliminating one of the subtours in the solution. A subproblem 
is then selected and the above process is repeated until each subproblem is solved, 
i.e., its AP solution is a tour, or until the costs of the AP solutions of the unsolved 
subproblems are greater than or equal to the cost of the best tour obtained so far. 

Bellmore and Malone [3] argued that the ATSP can be solved in polynomial ex- 
pected time using BnB subtour elimination. Their argument treated the process of 
BnB subtour elimination as a statistical experiment, with the i-th. trial correspond- 
ing to the exploration of the i-th. selected subproblem, and success corresponding 
to the i-th selected subproblem producing a tour of minimum cost. Let the se- 
quence of subproblems selected by BnB subtour elimination bel0,^i,^2,^3,"-) 
and pi be the probability that the AP solution of X{ is a tour, for i = 0,1,2, • • •. 
They began with an observation that the probability p0 of the AP solution to 
the original problem being a complete tour is approximately e/n, where n is the 
number of cities. They then assumed that the event that the AP of X{ is a tour 
is independent of whether the AP of Xj is a tour for i ^ j, and that pi > p0 for 
i > 1. Under these assumptions, the expected number of expanded subproblems 
is 

oo i—1 oo 

£ «A IK1 " Pi) < £ *>o(l - PoY-1 = l/po = 0(n) 

for large n. Thus the expected running time is 0(n4), as the APs can be solved 
in no more than 0(n3) time [11]. Their experiments show an 0(n3A6) expected 
running time for 10 < n < 80. Additional experiments reported by Smith et al. [14] 
show that the expected running time is 0(n3-2) for 30 < n < 200. Smith [13] also 
argued, under many assumptions, that the expected complexity is 0(n3ln(n)). 



Lenstra and Rinnooy Kan [10] pointed out that Bellmore and Malone's assump- 
tions may not be valid. In particular, two trials may not be independent of each 
other, and pi may not be greater than p0, for i > 1. They also pointed out that 
to have an expected complexity of 0(nc), for some constant c > 0, the following 
two conditions must hold. First, the AP solution of X0, the original problem, 
must have a probability p0 = 0(n~c) of being a tour. Second, the number of ex- 
panded subproblems whose probability of yielding a tour is less than pQ, must be 
a constant. In addition, Balas et al. [1, 2] carried out statistical analysis on the 
experimental data obtained from three efficient implementations of BnB subtour 
elimination. Their study concluded that over the range of 40 < n < 325, the 
performance of BnB subtour elimination on randomly generated ATSPs can be 
described almost equally well by a polynomial function (anß), a superpolynomial 
function (cm^logn), or an exponential function (aeßn). 

In short, whether the expected complexity of the ATSP under BnB subtour 
elimination is a polynomial or an exponential function of the number of cities is 
an open question, on which the opinion of experts is divided [7]. 

In this paper, we disprove Bellmore and Malone's polynomial argument. We 
show that their critical assumption that p,- > p0, for i > 1, does not hold under 
random ATSPs. In particular, we show that, even if the subproblems selected 
by BnB subtour elimination are assumed to be independent of each other, the 
algorithm expands more than ln(n) number of subproblems X, for which pi < p0. 
This result supports and finalizes Lenstra and Rinnooy Kan's argument. 

In Section 2, we briefly discuss the BnB subtour elimination algorithm and the 
analytic model we use. In Section 3, we disprove the polynomial argument. Our 
conclusion appears in Section 4. 

2    Preliminaries 

Let V be the set of n cities, and C = (c,j) be a cost matrix that specifies costs 
between all city pairs. Let Iln be the set of all permutations of V, which defines 
all possible solutions to the assignment problem [11] on V. A permutation 7r G II„ 
specifies an assignment of the cities, in which city w(i) is assigned to city i, or ir(i) is 
the successor of city i. Thus, under 7r, a chain 1 —7r(l) — 7r(7r(l)) ir---ir(l) - 1 

forms a subtour if k < ra, or a complete tour if k = n. When k = n, it is called a 
cyclic permutation. Let II* C IIn be the set of all cyclic permutations of V. For ir G 
II, define f(ir, C) = £?=1 ct>(i) to be the cost of 7r under cost matrix C. The ATSP 
is to find a cyclic permutation 7r* € II*, such that /(7r*, C) = min{/(7r, C)\ir G II*}. 
Similarly, the assignment problem (AP) seeks a permutation ir' G IIn, such that 
/(7r',C) = min{/(x,C)|7r G IIn}.   In other words, the solution to the AP is a 



collection of disjoint subtours. If the AP solution happens to be a complete tour, 
it is the solution to the ATSP as well. 

BnB subtour elimination first solves the AP for all n cities, in time 0(n3) [11]. 
If the solution is not a complete tour, then the problem is decomposed into sub- 
problems by excluding some of the arcs in a subtour, which eliminates that subtour. 
Which subtour to choose, and how to eliminate a subtour, constitute the branching 
rules. One heuristic is to select a subtour with a minimum number of arcs that 
are not in the included arc set [4], so that the number of subproblems generated 
from a problem is minimized, as excluding one arc that is not included is suffi- 
cient for breaking a subtour. After a subtour is chosen, the subproblem should 
be decomposed such that no duplicate subproblems are generated, minimizing the 
total number of subproblems generated. One such branching rule was contributed 
by Carpaneto and Toth [4]. Their rule selects a subtour with the minimum num- 
ber of arcs that are not in the included arc set, and decomposes the subproblem 
as follows. Let E be the excluded arc set, and / be the included arc set of the 
problem to be decomposed. Assume that there are t arcs of the selected subtour, 
{x\,x2, ■ • • ,xt}, that are not in /. The rule decomposes the problem into t chil- 
dren, with the k-ih one having excluded arc set Ek and included arc set Ik, such 
that 

f  =fn/X4,> ^ }* = 1.V".«- (1) Ik     =IU{x1,---,xk-i}, J 

Since Xk is an excluded arc of the k-ih subproblem generated, Xk £ Ek, and it is 
an included arc of the k + 1-st subproblem, xk G h+i, a tour obtained from the 
k-ih subproblem does not contain arc Xk, but a tour obtained from the k + 1-st 
subproblem must have arc Xk- Thus a tour from the k-ih. subproblem cannot be 
generated from the k + 1-st one, and vice versa. Therefore, the state space of the 
ATSP under BnB subtour elimination can be represented by a search tree without 
duplicates. This state-space tree can be explored by best-first search or depth-first 
search. 

Following previous research [6, 7], in the following analysis we use a random 
cost matrix (QJ) whose elements are independently and uniformly chosen from the 
unit interval [0,1], and we do not enforce the symmetry (c,j = c,,;) or the triangle 
inequality (QJ + Cj,k > citk). Since we are interested in finding a cyclic permutation 
of the cities, we can set ciyi = oo without loss of generality, for i = 1,2, • • •, n. The 
AP of a cost matrix with c,,; = oo is called a modified AP, and a permutation with 
Citi = oo is called a, feasible permutation [3]. 

Lemma 2.1 [3] Given n cities, there are asymptotically [n!/e + 0.5J feasible 
permutations of the cities. Ü 



Lemma 2.2 [3, 7] Given annxn random matrix, the probability that a modified 
AP solution is a cyclic permutation is asymptotically e/n. □ 

Lemma 2.3 Given an n x n random matrix, the expected number of subtours in 
a modified AP solution is asymptotically less than ln(n), and the expected number 
of arcs in a subtour of the solution is greater than n/ln(rc). 

Proof. Solving the modified AP of a random cost matrix is equivalent to ran- 
domly selecting a feasible permutation. This is proved as follows. We first show 
that all feasible permutations are equally likely to have the minimum cost. Let IIn 

be the set of all feasible permutations of n cities. Arbitrarily partition IIn into two 
subsets n« and II«, i.e., IIn = II« U II« and II« n 11« = 0. Then arbitrarily 
select one permutation 7Ti from II« and another one 7r2 from II«. Without loss 
of generality, assume that 7rx and 7r2 have k arcs (city pairs) not in common, and 
n - k arcs in common, where k = 1,2, • • •, n. For a given cost matrix C, the cost 
f(TTi) of TTI and the cost /(7r2) of 7r2 can be written as 

k n k n 

f(*l) = J2£i+    J2   £i     and     /('r2) = X)e'+    2   £i 
t'=l t"=fc+l i=l i=k+l 

where e,- and ej- are different arc costs in Ti and 7r2. Obviously, whether /(^i) < 
/(7r2) or f{it\) > f(%2) depends only on the different arc costs, YA=\ £»' and J2i=i £;• 
Since et- and e^ are independent and identically distributed (i.i.d.) random vari- 
ables, then the probability of £*=1 e,- > X)f=i e(- is the same as the probability of 
J2i=1 £i < Efci s'i- In other words, each of the two permutations xx € II« and 
7r2 € I!« has the same probability of being smaller. Consequently, with respect to 
the permutations in II«, all permutations in II« are equally likely to have smaller 
costs. Because the subsets II« and II« were chosen arbitrarily, all feasible per- 
mutations are thus equally likely to have the minimum cost. 

Furthermore, it is known that the expected number of subtours in a permuta- 
tion asymptotically approaches ln(n) [12]. Thus the expected number of arcs in a 
subtour of an AP solution is 0(rc/ln(n)). □ 

3    On the Polynomial Argument 

Let us assume the validity of Bellmore and Malone's assumption that two sub- 
problems chosen by BnB subtour elimination are independent of each other. Then 
their polynomial argument critically depends on the assumption that a constant 
number of subproblems Xi are expanded whose probabilities pi are less than p0. 
In this section, we show that this argument does not hold even if the independence 
assumption is granted. We first prove the following lemma. 
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Figure 1: Probability q(n,s,t) that the AP solution is a tour 

Lemma 3.1 Given an n x n random cost matrix, let q(n,s,t) be the probability 
that the solution of a modified AP, which has s < n excluded arcs and t included 
arcs, is a tour. Then q(n,s,t) is asymptotically 

e/n — o(l/n) < q(n, s, t) < e/n + o(l/n),      when t = 0 

q(n,s,t) = -—- + o(l/n),      when t > 0 
n t 

(2) 

(3) 

where X, 1 < A < e, is a constant. 

Proof. See Appendix. 
Since Lemma 3.1 is important to our analysis, we verified its correctness by ex- 

perimentally solving 10,000 randomly generated APs for each n € {10,20,30, • • •, 100}. 
Our results are presented in Figure 1. Figure 1(a) shows that the experiments sup- 
port (2) when s = n/2 excluded arcs and t = 0 included arcs are used. Figure 1(b) 
shows that the experiments support (3) when s = n/5 excluded arcs and t = n/2 
included arcs are employed. 

A subproblem Xi, which is selected by BnB subtour elimination and which 
generates an optimal tour, must be a minimum-cost leaf node in the search tree. 
Thus, the probability of Xi generating an optimal tour cannot be greater than the 
probability of Xi being a leaf node. Note that Xi can generate a complete tour and 
become a leaf node only when all its ancestors in the search tree do not generate 
complete tours but Xi does. 

Lemma 3.2 Suppose that two nodes chosen by BnB subtour elimination are in- 
dependent of each other. Let p be the probability that a non-root node in the search 



tree is a leaf, and in particular let p0 be the probability that the root is a leaf. For 
a non-root node with t included arcs, there exists a constant 0 < S < 1 — 1/e such 
that, ift< 8n, then p < po, where n is the number of cities. 

Proof. Consider a node Y of a search tree which is generated by equation 
(1). Let the number of included arcs of Y be t and the number of excluded arcs 
of F be 5, which is also the depth of the node in the search tree. Denote the 
nodes on the path from the root to the node Y as Y0,Yi,Y2,- • • ,Y3-i,Y, where 
Yo is the root. From equation (1), Yi has i excluded arcs. In addition, let Y{ 
have t{ included arcs. By equation (1), 0 = to < ti < t2 < • • ■ < is_i < t. 
It is only when none of io, Fx, • • •, Ys_i is a leaf node that Y exists in the tree. 
Therefore, the probability q(n,s,t) of F's AP solution yielding a complete tour is 
equal to the probability that all its ancestors do not generate complete tours and 
Y produces a complete tour. The probability that F's parent Ys-t does not yield 
a complete tour is (1 — q{n, s — 1,2s-i)), and that F's grandparent Ys-2 does not is 
(1 — q(n,s — 2,ts-2)), and so on. Consequently, by the independence assumption, 
the probability p that Y exists and is a leaf is then 

s-l 
p = q(n,s,t)l[(l -q(n,i,ti)). 

By Lemma 3.1, we have 

'■(^Hst'-ä-rjl'-sÄ)^ 
where A0 > Ai > • • • > As_! > A > 1 are constants. It can be shown by induction 
that 

;=o "     H      n     i L i=0 L,i=o Ai 

Obviously, 

0 < t' < t. (4) 

The probability p can be further written as 

n — t \       n — t'j 

We now show the lemma by contradiction. Assume that the lemma does not hold, 
namely p > p0, where p0 = e/n by Lemma 2.2. Let 8 = (e — A)/e. Since 1 < A < e, 

6 



we know that 0 < S < 1 - 1/e.   Then by ignoring the o(l/n) term and some 
algebra, it can be shown from (5) that when t < Sn, p > p0 is equivalent to 

, XX'sn 
t >n +  > n. 

(e — X)n — et 

Since n > t, we have t' > t, which is in contradiction with (4). D 
In a search tree with nodes generated according to equation (1), only one 

node on the first depth of the tree has no included arcs. When a subtour with the 
minimum number of arcs is chosen, the number of children generated is 0(n/ ln(n)) 
on average by Lemma 2.3. Thus, the nodes at the first depth have t = 0(n/\n(n)) 
included arcs. Asymptotically t < Sn, where 0 < S < 1 — 1/e is a constant. Thus, 
all nodes except one without included arcs on the first depth asymptotically satisfy 
t < Sn. Similarly, all nodes except one on the i-th depth satisfy t < Sn when i is 
no bigger than 0(ln(n)). Now consider a node that has no included arcs. Notice 
that none of the ancestors of the node have included arcs either. By Lemma 3.1, 
the probability of the AP solution of the node or one of its ancestors being a tour 
can be asymptotically approximated as e/n by ignoring the o(l/ra) term. Thus, 
the probability p that a node with no included arcs exists and is a leaf node on the 
d-ih depth of the search tree can be approximated by p = (e/n)(l — e/n)d, which 
is less than e/n, the probability p0 that the root node is a leaf. Overall, for nodes 
at depth i < no bigger than 0(ln(n)), the probabilities that they are leaf nodes 
are asymptotically less than the probability of the root being a leaf. 

Recall that the probability that the AP solution of a subproblem selected by 
BnB subtour elimination will yield an optimal tour is less than the probability 
that the node in the search tree will become a leaf node. If the depth of the node 
that generates the optimal tour is greater than ln(n), or a node with depth greater 
than ln(n) is expanded, then ln(ra) nodes must be expanded whose probabilities of 
generating an optimal tour are less than p0. Consider the case when the depth of 
the node generating an optimal tour is less than ln(n), and no node at depth greater 
than ln(n) is generated. Assume further that Bellmore and Malone's argument 
holds, i.e., only a polynomial number of nodes need to be expanded, which is 
greater than ln(rc). Then the probabilities that all these expanded nodes generate 
the optimal tour are asymptotically less than p0, which contradicts the assumption 
used in the polynomial argument. Therefore, we have the following result, which 
disproves Bellmore and Malone's polynomial argument. 

Theorem 3.1 Let X0,Xi,X2,--- be the subproblems expanded by BnB subtour 
elimination on a random ATSP, and pi be the probability that the modified AP 
solution of Xi is a complete tour, for i = 0,1,2, •••. BnB subtour elimination 
expands more than ln(n) number of subproblems Xi with probabilities pi < p0 for 
i> 1. D 



4    Conclusion 

For two decades, the question of whether the expected complexity of the ATSP 
under BnB subtour elimination is polynomial or exponential has remained open. 
We have shown in this paper that the polynomial argument is not valid. 

The polynomial argument critically depends on the assumptions that for a 
random ATSP, the subproblems considered by BnB subtour elimination are inde- 
pendent of each other, and pi > p0, for i > 1, where pi is the probability that the 
solution of the assignment problem to the i-th subproblem selected by the algo- 
rithm is a complete tour. We have proved that, even if the subproblems selected 
by BnB subtour elimination are assumed to be independent of each other, the 
algorithm expands more than ln(n) number of subproblems X{ for which pi < p0. 

Appendix 

Lemma 3.1 Given an n x n random cost matrix, let q(n,s:t) be the probability 
that the solution of a modified AP, which has s < n excluded arcs and t included 
arcs, is a tour. Then q(n,s,t) is asymptotically 

e/n — o(l/n) < q(n, s, t) < e/n + o(l/n),      when t = 0 (6) 

q(n, s,t) = h o(l/n),      when t > 0 (7) 
n — t 

where X, 1 < A < e, is a constant. 

Proof. Denote by E and I the excluded and included sets. Following the same 
argument used in the proof of Lemma 2.3, it can be easily shown that solving 
the AP with constraints E and / is equivalent to arbitrarily selecting a feasible 
permutation from all feasible ones among which there are some cyclic permuta- 
tions. In other words, the probability q(n,s,t) of the AP solution being a cyclic 
permutation is equal to the ratio of the total number of cyclic permutations to the 
total number of feasible permutations under the constraints. Let R(n, s, t) be the 
number of cyclic permutations and Q{n, s, t) the number of feasible permutations 
with constraints E and /, then 

(a) First consider <?(ra,0, t), the case when there exist some included arcs, but 
no excluded arcs. Assume initially that no two arcs of / share a common vertex. 
Consequently, the number of included arcs must be less than half of n, the number 
of cities, i.e., t < [n/2\. For an included arc (i,j), since i must be assigned to j, 
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all out-going arcs from i and in-coming arcs to j except (i,j) can be ignored. Thus 
the AP with (i, j) included can be solved by treating cities i and j as one vertex. If 
all arcs in 7" are thus considered as cities, by Lemma 2.1 there are (n — t)\/e feasible 
permutations that have no self loops, which also exclude the feasible assignments 
of j to i for included arcs (i, j) € I. We count the number of permutations with 
this type of legal 'self loop', namely i to j and j to i for all (i,j) e /, as follows. 
For (i,j) e I, assign j to i, and considering the other t — 1 included arcs as cities, 
there are (n — 2 — (t — l))!/e permutations, and the total number of choices for 

(i,j) is f       j.  Similarly, for two arcs (i,j) and (i',j'), assign j and / to i and 

i' respectively. There are (n - 4 - (t - 2))!/e feasible solutions, and the number 

of combinations of these two arcs is I       J.   Thus, the total number of feasible 

permutations with included set / is 

Q(nM = ±(l)t^l. (9) 

Obviously, 

Q(n,0,t)>{n-t)\/e. (10) 

When t < [n/2j, it can be simply shown that 

(;)(B_t_t)I<fe^. (11) 

Thus, by substituting (11) into (9) we have 

c       k=o"" e       fc=0 K- 

Now consider the case when there are r cities which are shared by two arcs in 
/. Two arcs sharing a common vertex can be treated as one arc connecting three 
cities, and the shared vertex can be simply ignored. The problem is then equivalent 
to one with n — r cities and t — r included arcs. Following the previous reasoning, 
we have 

<?(n,0,0 = E^     k    J' L- (13) 

Obviously, inequality (10) is still valid in this case, and the proof of (12) follows. 
When there are t included arcs and r cities commonly shared by the included arcs, 



the number of distinct cities supporting the included arcs is It — r which must not 
be larger than n, i.e., 

2t - r < n. (14) 

With inequality (14), it can be shown that 

('r)<-'-*>'^ ^ 
Then the upper bound in (12) follows by substituting (15) into (9). Overall, for a 
given included set I with t arcs, we have 

(n-t)\/e<Q(n,0,t)<(n-t)l (16) 

The number of cyclic permutations is simply 

R(n,0,t) = (n-t-l)l (17) 

Finally, by (8), (16) and (17), we write 

1 e 
<q(n,0,t)< . (18) 

n—t n — t 

(b) Now consider q(n,s,0), the case when there are some excluded arcs, and 
there is no included arc. For this case, we have 

Q(n,s,0) = n\/e-Q(n,0,s). (19) 

This is the difference between the number of feasible solutions without any con- 
straints, which is n!/e, and the number of feasible solutions if we include the 
excluded arcs in the solutions. Combining (19) with (16), we obtain 

n\/e - (n - s)! < Q{n, s, 0) < nl/e - (n - s)\/e. (20) 

To compute R(n, s, 0), we first assume that no two arcs in E have a common ver- 
tex. R(n, s, 0) is the number of cyclic permutations under the constraints of the 
excluded set E. There are R(n, 0,0) cyclic permutations without the constraints 
of E. In other words, we over-counted the number of feasible cyclic permutations 
by including those arcs that were excluded before. The number of cyclic permu- 
tations with one particular excluded arc included is i2(n, 0,1), and the number of 

choices for this arc is f       ]. Similarly, the number of cyclic permutations with two 
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particular excluded arcs included is R(n, 0,2), and the number of combinations of 

these two arcs is I   _   I. By the principle of inclusion and exclusion [12], we have 

R(n,s,0)   =   J2(-l)k[S
k^jR(n,0,k). 

Obviously, R(n, s, 0) is bounded by 

R(n, 0,0) - sR(n, 0,1) < R(n, s, 0) < R(n, 0,0). (21) 

Now we show that (21) still holds when E contains r cities shared by two arcs. The 
upper bound holds since R(n, 0,0) is the number of cyclic permutations without 
any constraints posed by E. The lower bound is valid because, by the same reason 
as used in (13), we have 

JR(n,5,0) = g(-l)fc(5^r)Ä(n,0,fc) 

when there are r common cities shared by arcs of E. Furthermore, when s < n, 

(S~k
r) AM,*) < (* ) R(n,0,k) < ( J \ R(n, 0,1). 

Using (17), (20) and (21), we write 

e((n-l)!-s(n-2)!) e(n - 1)! 
 < q{n,s,[)) < 

nl — e(n — s)\ '  ' n\ — (n — s)Y 

By some algebra, we obtain the following, 

— es (        (\\      e es 

n ~ n(n - 1) < ?^M) < - + n(n(n _ 1}... (n _ s + j) _ !)• 

When s < n, we can write 

e/n - o(l/n) < q(n, s, 0) < e/n + o(l/n), (22) 

which is (6). 
(c) By Lemma 2.1, q(n, 0,0) = e/n. Thus (22) means that asymptotically, the 

arcs of E have only secondary influence on the probability that a modified AP 
solution is a tour when s < n. Combining (18) and (22), and the fact that the 
excluded and included sets are disjoint, we obtain 

1 e 
^—--o(l/n)<q(n,s,t)<—- + o(l/n). (23) 

Therefore, there must exist a constant A G (l,e) such that 

q(n,s,t) = —-j + o(l/n), (24) 

which is (7). □ 
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