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ABSTRACT 

Recently an efficient technique was proposed for 
performing a Fourier transformation on integrands that are 
composed of aliased factors. In this report the proposed 
technique is utilized to perform Fourier transformations on 
quantities that pertain to the response of a regularly ribbed 
cylinder. The computations relate to Fourier transformations 
from the axial wavenumber domain to the axial spatial 
domain. The phenomena of aliasing and pass and stop bands 
are of particular interest. It is argued that the 
complementarity of the data, when presented in the two 
Fourier conjugate domains, may be a useful analytical (and 
experimental) tool. 



I.  INTRODUCTION 

In a recent report the authors proposed a novel computational technique to 

perform a certain class of Fourier transformations [1]. The class pertains to Fourier 

transformations in which the integrands are completely or partially composed of terms 

and factors that are aliased with respect to a specific scale factor in the domain in which 

the integrand is expressed. This class harbors a number of phenomena in structural 

acoustics. A few of these phenomena are employed in this report to exemplify the use of 

the double-sum technique for computing Fourier transforms [1]. In particular, the 

circumferential modal response of a regularly ribbed cylinder is transformed from the 

k-domain into the x -domain. These Fourier conjugate domains he in the axial 

direction of the cylinder. The phenomena of special concern in the present report are 

those relating to aliasing and pass and stop bands in that modal response [2-6]. Hybrid 

and natural cylinders are exemplified. A hybrid cylinder is defined by analytically 

removing the membrane free waves from the cylinder. In this sense, the mechanical 

response of a hybrid cylinder is akin to that of a panel that is enjoying the same 

plating [2]. This report assumes that the descriptions of these phenomena and the 

analytical models of the cylindrical structures are familiar to the reader; nonetheless a 

cursory analytical development is included. A more detailed analytical development can 

be found in References 2-6. However, the analytical development of the double-sum 

technique that is presented in Reference 1 is not repeated here; Reference 1 is 

considered an essential companion to this report and the reference to equations in 

Reference 1 are prefaced by unity. Thus, Eq. (6) in Reference 1 is designated Eq. (1-6) in 

the present report. The physical construction of the externally driven ribbed cylinder 

and the chosen coordinate system are sketched and depicted in Fig. 1, respectively. 

In Section II the response and the external drive that generate it are expanded in 

terms of circumferential eigenfunctions [7]. The coefficients in these expansions are the 

modal responses and modal external drives. The modal properties of the cylindrical shell 



that relate the modal response to the corresponding modal external drive are defined; 

this relationship defines the modal impulse response function. It is argued that for a 

regularly ribbed cylinder, the expressions for the impulse response function and its terms 

and factors are readily stated and interpreted in the {k, n, co} -domain, where (co) is the 

frequency variable, (n) is the mode index and (k) is the axial wavenumber variable [8]. 

Indeed, in this domain the relationship between the modal response Vn (k, co) and the 

modal external drive Pen (k, co) may be expressed in the form 

Vn(k,co)  =  G^Kco) [Pen(k,co) - Psn(k,co)] , 

where Pm{k,co) is the drive in lieu of the ribs and Gmn(k,co) is the modal admittance of 

the uniform (unribbed) cylinder. The external drive is adequately defined in the simple 

form 

Pen(k,co) = Pe°n(co) exp(ikxa) , 

where (xa) is the position, in the x -domain, to which the external drive is applied and 

it is assumed that the modal strength P°n(co) is independent of (k). The uniform 

cylinder modal admittance G^ik,^) comprises two distinct terms; the modal 

mechanical surface impedance Zpn(k,co) and the modal fluid surface impedance 

Z{ (k, co) on the outside surface of the cylinder 

Gxn(k,co) = [Zpn(k,co)+ zf(k,co)]~l   . 



On the inside of the cylinder vacuum is assumed to prevail.   The modal mechanical 

surface impedance Zpn(k, co), in turn, also comprises two terms 

Zpn{k,co) =  Z?(k,co) + Z?(k,a>) , 

where Z%(k,co) is the modal flexural surface impedance and Z™(k,co) is the 

membrane surface impedance [8-10]. When the membrane surface impedance is 

analytically removed; Z„(k, co)  = 0, the admittance G^ik, co), given now by 

GL»(*,fl>)  = [Zp
n(k,co) + Zfn(k,co)Tl , 

describes the fluid loaded modal admittance of a uniform (unribbed) hybrid cylinder. 

The drive Pm(k, co) in lieu of the ribs is not only a functional of the properties of 

the uniform cylinder; defined by G^i^co), but is naturally also a functional of the 

properties of the ribs. In a regularly ribbed cylinder the properties of the ribs are defined 

in terms of the modal line impedance Zsn (co) and the separation distance (b) between 

adjacent ribs. This line impedance can be either mass, resistance or stiffness controlled; 

the change from one characteristic to another is frequency dependent [11]. The modal 

drive Psn (k, co), in addition, is a functional of the external drive. In the definition of the 

external drive here proposed, the dependence on the position of application (xa) is of 

particular significance. 

It is convenient to normalize the modal response in the form 

Vn(k,co)  =  Vmn(k,co) - Vsn(k,co)  =  Gsn(k,co) [Pen(k,co) - Psn(k,co)] ; 

V^(k,a>) =  G^iKco) Pen(k,co) ; Vsn(k,co)  =  G„n{k,co) Psn(k,co) . 



This normalization of the modal response is achieved by the appropriate normalization of 

its constituent terms and factors, namely 

Vn(k,co)  = [Vn(k,co)/Von(co)] ; VM{a>) = [Pe°n(co)/(icom)] ; 

G„n(k,<o) = [(iam) G„n(k,co)] ; Pm(k,co)  = [Pm(k,co)/ Pe°n(co)] , 

where (ico m) is the surface mass impedance of the plating of the cylinder and Pfn(co), as 

already mentioned, is the strength of the modal external drive. 

The absolute values of ^„(£,6?), or equivalently Goon(^,ft)), of Psn(k,co) and of 

Vn(k,oo) are computed and displayed as functions of (ak) in a frequency waterfall 

format, where (a) is the radius of the cylinder [12]. The frequency (co) is normalized by 

the critical frequency (coc) of the flexural free waves with respect to the speed of sound 

(c) in the fluid. The discussions of these and other presentations in this report are 

limited to the frequency range defined by 

(2cor l(Oc) <(col(Oc) < 0.6 ; cor   =(ci/a), 

and to the wavenumber range defined by 

0 <c (ak) < 75 , 

where cor is the ring frequency of the cylinder. The speed ct = [Yh/m)/Q.-v2))in, 

where Y, v, m and h are the Young's modulus, the Poisson's ratio, the surface mass and 

the thickness of the plating of the cylinder, respectively, is the longitudinal speed in that 

plating. One may find it convenient to list a set of standard parametric values to define 

standard displays. When variations in the parametric values are instituted, it is necessary 



to report only those parameters that are varied. The remaining parameters are assumed 

to maintain standard values. 

The normalized modal response V^ (k, co) of a uniform (unribbed) cylinder under 

standard parametric values, and a few specific variations on these parametric values, are 

presented in Figs. 2 and 3. The first set; i.e., Fig. 2, pertains to a hybrid cylinder and the 

second set; i.e., Fig. 3, pertains to a natural cylinder. The footprints of fluid loading and 

membrane free waves are of particular interest in these two sets of figures. 

The normalized modal drive Pm (k, co) in lieu of the ribs under standard parametric 

values, and a few specific variations on these parametric values, are presented in Figs. 4 

and 5. The third set; i.e., Fig. 4, pertains to a hybrid cylinder and the fourth set; i.e., 

Fig. 5, pertains to a natural cylinder. The footprints of aliasing and stop and pass bands 

are of particular interest in these two figures. 

The normalized modal response Vn(k,co) of the regularly ribbed cylinder under 

standard parametric values, and a few specific variations on these parametric values, are 

presented in Figs. 6 and 7. The fifth set; i.e., Fig. 6, pertains to a hybrid cylinder and the 

sixth set; i.e., Fig. 7, pertains to a natural cylinder. The footprints of the normalized drive 

Psn(k,co), as depicted in Figs. 4 and 5, are clearly discernible in the normalized response 

Vn(k,co). However, the strict aliasing in the drive is impaired in the response. This 

defect is perpetrated by the term that describes the normalized modal response 

V««(£>flO i11 tne absence of ribs and by the factor G^ik,®) that multiplies the 

normalized aliased modal drive Psn(k,co); neither the term nor the factor are aliased 

quantities. Does the impairment of the aliasing in Vn (k, co) imply a corresponding defect 

in the pass and stop bands of the modal response as compared with that exhibited by 

the modal drive in lieu of the ribs? The answer to this question is sought, in part, by 

using complementarity to Figs. 2 through 7. This complementarity is derived by a 

Fourier transformation of V^k,®) = [G^k,®) Pen(k,co)], Psn(k,co) and Vn(k,co) 

into v^C*,co), psn(x,co) and vn(x,co), respectively.   The Fourier transformation of 



these quantities is carried out in terms of the double-sum technique developed in 

Reference 1. 

In Section III the procedure for computing v^x, co), by a Fourier transformation 

of VL,„(£,6)),is explained and the results are displayed in Figs. 8 through 10. Several 

variations in the parametric values are investigated and comparisons between Figs. 2 

and 3 that feature V^ik,®) and the corresponding Figs. 8 through 10 that feature 

Voenix,®) are conducted and discussed. Interferences between flexural, fluid and 

membrane free waves at regions where their amplitudes are of comparable strengths are 

of particular interest. Such interferences are revealed when the dominant flexural free 

waves are subdued by selectively increasing the damping that is assigned to them. It is 

thus found that a complemental investigation of V^i^co) and v^(X6)) is an 

analytical tool of value. 

In Section IV the procedure for computing psn (x, co) by a Fourier transformation 

of Psn(k, co), is explained and the results are displayed in Figs. 4, 5, 11 and 12. In Figs. 4 

and 5 computations of psn(x,co) are superimposed, frequency-wise, on the 

corresponding figures that display Psn(k,co). Figures 4 and 5 exhibit clearly the 

phenomena of aliasing and pass and stop bands. The complementarity between the 

Fourier conjugate pairs, Psn(k,co), on the one hand, and psn(x,co), on the other, are 

more directly and simultaneously contrasted in these figures. The value of 

complementarity as an analytical tool is thus supported in Figs. 4 and 5. The influence 

of fluid loading on the phenomenon of pass and stop bands is investigated in Figs. 11 

and 12. Moreover, the bottoming of the flexural stop bands by the fluid and membrane 

free waves are discernible in these figures. 

In Section V the procedure for computing vn (x, co) by a Fourier transformation of 

Vn(k, co), is explained and the results are displayed in Figs. 13 through 15. Of particular 

interest is the bottoming of the response in a flexural stop band by the fluid and 

membrane free waves. The similarity of this bottoming to the corresponding bottoming 

7 



induced by damping the flexural free waves, is striking, [cf. Figs. 8 through 10 and 13 

through 15.] The complementarity between Figs. 6 and 7 and the corresponding 

Figs. 13 through 15, again shows the value of its employment. Of particular interest in 

this final section are the comparisons between Figs. 4 and 5 and 11 and 12, on the one 

hand, and Figs. 6 and 7 and 13 through 15, on the other. These comparisons reveal that 

the impairment of the aliasing patterns in Vn(k, co), as compared with those in Psn(k, co), 

is not duplicated in the pass and stop bands in vn(x,co), as compared with those in 

psn(x,co). Indeed, if at all, the phenomenon of pass and stop bands in vn(x,co) is 

sharper than it is in psn (x, co). 



n. MODAL RESPONSE OF A RIBBED CYLINDER 

The circumferential uniformity and finiteness of the cylinder, unribbed and ribbed, 

allow quantities to be expanded in terms of circumferential eigenfunctions Ort(0), where 

<j) is the circumferential variable as shown in Fig. 1. Thus, the response v(x,(j),co) and the 

external drive pe(x,(j),a)) can be modalized in the x-domain 

v(x,(p,co) =  X <Dn((ö) vn(x,(D) ; 
n 

pe(x,(j),(0)  =  J 0)nW pen(x,co) , (la) 
n 

and in the k -domain 

V(k,<t>,co) =  2 *„(*) VH(k,a>) ; 
n 

Pe(k,(t>,CO)    =    2*»W   PenfcO»   ■ (lb) 
n 

Quantities in Eq. (1) are related Fourier transforms; in particular 

v„(jc,fi>) = (2K)~m j dk exp(-ixk) Vn(k,co) , (2a) 

pen{x,co)  = (27iy1/2   J dk exp(-ixk) Pen(k,co) . (2b) 



The circumferential eigenfunctions O„(0), are assumed to be orthogonal and complete 

J o„(0 d<t> <(# = 8^ ■        5>„(0) <W) = *<*-*'); 

0 < (0-f) < In , (3) 

where 8^ and 8 are the Kronecker delta and the delta function, respectively [8]. The 

modal response vn(x,co) of the cylinder to the modal external drive pen(x,co) in the 

x -domain can be formally expressed in the form 

sn(x,<o) = )gn(x\x',a>) dx' pen(x',co) , (4a) 

and in the k -domain in the form 

Vn(k,co)  =  JGn(k\k',co) dk' Pen(k',co), (4b) 

where, in addition to Eq. (2), the impulse response functions in these equations are 

related Fourier transforms; e.g., 

gn(x,\x',co) = (2/r)-1 j dk j  dk' exp[-i(xk-x'k')] Gn(k\k', co) .        (5) 

10 



It is convenient to normalize the modal impulse response function by the surface mass 

impedance (icom) of the plating of the cylinder and the modal drive by the modal ring 

drive P°n(co); namely 

Gn{k\k',co) = (icom) Gn(k\k',co) ; 

Pen(k,co)  = [Pen(k,co)/Pe°n(co)]  =  exp(ixak) , (6a) 

where (w) is the surface mass of the plating and (xa) is the position of the ring to which 

the modal external drive is applied. The normalization of the modal response Vn(k,co) 

follows 

Vn(k,co)  = [Vn(£,«)/1^(0))] ;        V^Cfl»  = [Pe°n(co)/(icom)] . (6b) 

The modal impulse response function Gn(k\k',(D) for a regularly ribbed cylinder is 

readily derived in the k -domain in the simple operator form 

Gn(k\k',co)  =  G^iKa)) [l-Sb(k) [Ibn(k,co) Q„n{k,(o)} 8(k-k') ,        (7) 

where 

Q-n(k,(0)  = [Zsn(co)/b] G„n(k,co) , (8a) 

Ibn(k,(o)  = [l + Sb(k) {Q„n(k,co)}Tl , (8b) 

the wavenumber operator Sb(k) is defined in Eq. (1-3), (b) is the separation distance 

between adjacent ribs, Zsn(co) is the modal ring impedance of the ribs, and Gmn(k, co) is 

11 



the normalized modal surface admittance of the uniform (unribbed) cylinder. The 

incomplete curly brackets preceded by the wavenumber operator Sb (k) in Eq. (7) 

merely indicates that the wavenumber operation to be performed is yet to be completed; 

indeed, Gn{k\k',co) is a wavenumber operator and not just an algebraic factor. The 

normalized quantity GMn (k, co) is the inverse of three terms 

GLB(*.<»)  = (itom) Gxn{k,co) = 

[ZP(k,co) + Z *(*,<») + Z/Ofc,©)]-1 , (9a) 

where Z„(k,co), Z™(k,co) and Zf(k,co) are the normalized flexural, membrane and 

fluid modal surface impedances, respectively, of the uniform cylinder. A hybrid cylinder 

is defined by a (natural) cylinder from which the membrane free waves are analytically 

removed by setting Z™ (k, co) equal to zero in Eq. (9a). A hybrid cylinder is defined by 

a normalized modal surface admittance 

G~n«,co) = [ZP(k,co) + Z/C*,®)]-1 ; Z?(k,co)  =  0 . (9b) 

Recognizing that the mechanical surface impedance Zp (k, ky, co) for a uniform panel 

relates to Z£ (k, co) in the form 

Zp(k,(n/a),co) SE  ZP(k,co) , (10) 

and that the fluid surface impedance Zf(k,(n/ a),co) on a panel qualitatively relates to 

Z/ (k,co), it is inferred that a hybrid cylinder is akin to a panel, and in some cases, the 

results obtained on a hybrid cylinder can be inferentially translated to those on a panel 

[2].   The quantity Q^,, (&,&)) is the ratio of the equivalent modal surface impedance 

12 



[ZOT(ö))/£] of a rib to the modal surface impedance [Goon(/:,ö))] 1 of the uniform 

cylinder. It is convenient to express Zsn(co) in the form 

Zm(co)  = (icoM) An(co/(On) , (11) 

and hence from Eq. (8a) one derives 

Qsn(k,co)  = (M/mb) An{(ol(on) , (8c) 

where M is a line mass and An(coIcon) is a resonance bearing factor. In this report 

An(co/con) is equivalently set either to unity or to -[l + (ana>I6)n)
2]-1, the ring 

impedance of the ribs in the former setting is mass controlled and in the latter stiffness 

controlled [2]. Substituting Eq. (7) in Eq. (4b) one derives 

Vn(k,co)  =  V„n(k,co) - Vsn(k,(o) , (12) 

Vxn{k,co) =  G^i^co) exp(ixak) , (13a) 

Vsn(k,co)  =  G^iKco) Psn(k,co) , (13b) 

where 

Psn{k,CO)    =   [Psn(k,CO)/Pe°n(CO)]    = 

Sb(k) {Ibn(k,co) Q„n(k,(o) exp(ixak)} , (14a) 

is the normalized modal drive in lieu of the ribs. Clearly, Psn(k,co) is an aliased quantity 

in (k) with respect to (/q); KX   = (Inlb), [cf. Eq. (l-17a).] Moreover, one recognizes 

13 



that Ibn(k,(o) as stated in Eq. (8b) is similarly aliased in (k) with respect (jq). 

[cf. Eq. (l-19a).] In consequence POT(£,cö) can be factorized in the form 

Psn(k,(0) = Ibn(k,(o) Sb(k) [Q„n(k,a>) exp(ixak)} . (14b) 

[cf. Eq. (l-18a).] It is apparent from Eqs. (12) through (14) that the behavior of the 

modal response Vn(k,co) and a number of terms and factors in its composition; e.g., the 

modal response V^fao)) in the absence of ribs and the drive Psn(k,co) in lieu of the 

ribs, are merely functional of the properties of the fluid loaded uniform cylinder, the ribs 

and the external drive. These properties are described by the modal surface admittance 

GLM(£,fi)) of the uniform cylinder, the modal line impedance Zsn(co) and the separation 

distance (b) of the ribs and the ring position (xa) of the external drive. The absolute 

values of the quantities V^i^co) or equivalently G^ik,^), Psn(k,co) and Vn(k,a>), as 

functions of (ak), are computed and presented in typical frequency waterfall displays in 

Figs. 2 and 3, 4 and 5, and 6 and 7, respectively [12]. The even numbered figures in each 

set; e.g., Fig. 2, relate to a hybrid cylinder and the odd numbered; e.g., Fig. 3, relate to a 

natural cylinder. A typical case is defined by standard parametric values. These 

standard values may also serve to define other cases by merely selecting changes in 

specific standard values. The standard parametric values and their definitions 

follow: the flexural free waves are defined by a wavenumber k , 

kp   = kpo(\-iT]p) ; k2
po   =(cococ/c2); 

(h/a)  =  1(T2: 77     =  1(T3 , (15a) 

14 



the longitudinal free waves are defined by a wavenumber k£, 

kt   =  ki0(l-i7]e); klo   =(0)/c£); c]   = (YIps){\-v2yl ; 

m = hps ; (cjc)  =  3.5 ; r\t   =  5 x 10"4 , (15b) 

the shear free waves are defined by a wavenumber ks, 

ks   =  kso(l-iris); kso   = (ü)/cs) ; (c,/c^)2   = [(l-v)/2] ; 

v  = (1/3) ; T]s   =  5 x 1(T4 , (15c) 

the fluid loading is defined by a fluid loading parameter ec, 

ec   =(pc/cocm); (acojc) =  97.53; ec   =  10-2 ,       (15d) 

the ring frequency (Or and the critical frequency coc are defined 

cor   = (cja) ; coc   =  Vl2 (c2 /hce) ; 

(wr/0)c)  = 3.6 x 10-2 , (15e) 

and the definition of the ribs and mode index (n) are specified 

(bid)  =  0.3 ; (M/mb)  =  0.2 ; (xjb)  =  0.5 ; 

An((0l(0n)  =  1 ; n  =  1 , (15f) 

15 



where (a) is the radius, Y is Young's modulus, (v) is the Poisson's ratio and (ps) is the 

density of the plating of the cylinder and (p) and (c) are the density and sound speed in 

the fluid. The interest in this report is confined to the spectral range 

{0 , (2cor lcoc)} < {(ak) , {(ol(oc)} < {75 , 0.6} , (15g) 

notwithstanding that some displays are extended, but not discussed, into the frequency 

range (co/coc) <(2cor /coc). Computations and their representations in this low 

frequency are discussed under a separate cover [2]. The first sub-figures in the first and 

second sets; i.e., Figs. 2a and 3a, are computed under standard parametric values. The 

flexural free waves and the fluid free waves are clearly discernible in Fig. 2a. In Fig. 3a, 

in addition to the flexural and fluid free waves, membrane free waves are clearly 

discernible. The membrane free waves comprise the longitudinal and shear free waves. 

"Curvature free waves" that supersede the flexural free waves and the origins and the 

higher surface impedances of the membrane free waves are found largely to reside, in 

Fig. 3a, in the low frequency range; (co/coc) < (2cor I coc). Again, discussion of these 

features are not conducted in this report [2]. Figures 2a and 3a are repeated in Figs. 2b 

and c and 3b and c, respectively, except that the fluid loading parameter (ec) is changed 

from the standard value of 10~2 to 10~4 and 10-1, respectively. In this connection it is 

observed that a fluid loading with ec = 10-4 is light, with ec = 10~2 is moderate and 

with ec = 10-1 is heavy. The change of (sc) from 10~2 to 10"4 renders the fluid free 

waves hardly discernible in Figs. 2b and 3b, little else is different between these figures 

and Figs. 2a and 3a, respectively. The change of (ec) from 10~2 to 10_1 intensifies the 

fluid free waves in Figs. 2c and 3c. Moreover, this change in fluid loading shifts the free 

waves, especially the subsonic flexural waves, to a higher wavenumber range and 

weakens the strengths of the supersonic membrane free waves. The shifts are due to the 

"added surface mass" and the weakening is due to the "radiation damping" effects 
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associated with the fluid loading. Figures 2d and 3d repeat Figs. 2a and 3a, respectively, 

except that the flexural loss factor (77 ) is changed from the standard value of 10 to 

3 x 10~2; a substantial increase in the damping of the flexural free waves. Indeed, the 

flexural free waves in Figs. 2d and 3d are substantially subdued compared with those in 

Figs. 2a and 3a. Figures 2a and 3a are repeated in Figs. 2e and 3e, respectively, except 

that the mode index (n) is changed from the standard value of unity to zero. This 

change hardly induces any change in the flexural free waves; however, a drastic change 

is induced in the membrane free waves. The membrane free waves in Fig. 3a are 

comprised of longitudinal and shear free waves, in Fig. 3e of longitudinal free waves 

only. The shear free waves join the longitudinal when the mode index (n) equals to or 

exceeds unity. Thus, in Fig. 3f, which repeats Fig. 3a except that the mode index (n) is 

set equal to (2), the membrane free waves are composed of both, the longitudinal and 

shear free waves. Finally, the first set is completed by Fig. 3g. This figure repeats 

Fig. 3e, except that the flexural loss factor (77 p) is changed from the standard value of 

10 to 3 x 10 . Again, the flexural free waves are substantially subdued by this 

change, [cf. Figs. 2d and 3d.] 

The first sub-figures in the third and fourth sets; i.e., Figs. 4a and 5a, are computed 

under standard parametric values. The aliasing of the normalized modal drive Psn(k,co) 

in lieu of the ribs is apparent in these figures; the dominant patterns are those associated 

with the flexural free waves. Nonetheless, aliasing in the membrane free waves are 

discernible in Fig. 5a. Aliasing is basically a scattering phenomenon and although the 

aliasing patterns of the membrane free waves are scant, the scattering of the membrane 

free waves by "simple" ribs are clearly established in Fig. 5a. In part, the visibility of the 

membrane free waves in Fig. 5a is aided by the locus minima in Psn(k,co). These locus 

minima occur in Psn(k,co), in both Figs. 4a and 5a, whenever 

(ak) = ± (aK^ [(2y +1) / 2] and is due to the symmetry in this quantity. The 

symmetry results from the standard position of the external drive at (xa lb)  =  0.5. 
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This symmetry is removed in Figs. 4b and 5b. These figures repeat Figs. 4a and 5a, 

respectively, except that (xa lb) is changed from 0.5 to 0.3. The locus of minima are 

absent in the patterns of Figs. 4b and 5b. Moreover, the patterns relating to the 

membrane free waves in Fig. 5b are weakened. The fluid free waves are hardly 

discernible in Figs. 4a and b and 5a and b. A major feature in the patterns of these 

figures is the cancellations between the peaks of a pair of flexural aliasing orders in the 

region in which they cross. Regions of these kind lie regularly in certain frequency 

bands. The cancellations are made possible by the interactions of the ribs among 

themselves via the cylindrical shells; in the absence of such interactions the cancellations 

are also absent [2,13]. Figures 4a and 5a are repeated in Figs. 4c and 5c respectively, 

except that the fluid loading parameter is increased from the standard value of 10~2 to 

10_1. The influence of this increase is largely discernible in the shifts in the frequency 

bands at which pairs of various flexural aliasing orders cross; the shifts are to lower 

frequencies and are consistent with the wavenumber shifts observed between Figs. 2a 

and 3a and Figs. 2c and 3c. In addition, the flexural free waves in both figures and the 

membrane free waves in Fig. 5c are subdued by this increase in the fluid loading. 

Remembering that under the influence of ribs the subsonic flexural free waves can 

become reasonable radiators, the subdued flexural and, again, the membrane free waves 

can be attributed to the increase in radiation damping with the increase in fluid loading. 

However, the fluid free waves, as such, are still hardly discernible in Figs. 4c and 5c. 

[cf. Figs. 4a and b and 5a and b, respectively.] Figures 4d and 5d repeat Figs. 4a and 5a, 

except that the standard mass controlled ring impedance of the ribs; i.e., with 

An{(ol(On) = 1, is changed to that of stiffness controlled; i.e., with 

An((o/con) = -[l + (5co/coc) ] . The change is largely discernible in the shifts in the 

frequency bands at which pairs of various flexural aliasing orders cross; the shifts are to 

higher frequencies. Otherwise the influence of the change on patterns of the aliased 

modal drive Pm(k,co) is insignificant, notwithstanding that the cancellations are weaker 
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and narrower at the crossings of pairs of various flexural aliasing orders as the ring 

impedance of the ribs is diminished, by definition, at the higher frequency ranges. 

Figure 5a is repeated in Fig. 5e, except that the mode index (ri) is changed from the 

standard value of unity to zero. The absence of the shear free waves in Fig. 5e is 

consistent with Fig. 3e. 

The first sub-figures in the fifth and sixth sets; i.e., Figs. 6a and 7a, are computed 

under standard parametric values. The patterns in the normalized modal response 

Vn(k,co) manifest footprints of the aliasing in the normalized drive Psn(k,co). However, 

since neither the term Pm(k, co) [= exp(ixak)] nor the factor G^^co), in Eqs. (13) and 

(14), are aliased in (k) with respect to (jq), the aliasing in Psn{k,co) is spoiled in 

Vn{k,co)\ the quantity Vn(k,co) is not strictly aliased. The "ribs' free term" 7^^,(0) in 

this quantity accentuates and reemphasizes the zeroth order patterns and the factor 

G^ikjCO) in the "ribs' term" Vsn(k,a>) subdues the aliased patterns in Psn(k,co) once 

[(ak)2 + (n/a)2] > (kpo)
2 is satisfied. The subduing increases the more this 

inequality is satisfied. The first of these effects is manifested in that the patterns in 

Figs. 2a and 3a, are, respectively, overlaid in Figs. 4a and 5a. The second is manifested in 

that the patterns in Figs. 4a and 5a are suppressed in Figs. 6a and 7a in spectral ranges 

that he beyond the flexural free waves. The second effect is made clearer in Figs. 6a. 1 

and 7a. 1. These figures are the clipped version of Figs. 6a and 7a, respectively; values 

that lie below a given threshold in Figs. 6a and 7a are removed in Figs. 6a. 1 and 7a. 1 

[2,3]. For the sake of completeness Figs. 6a and 7a are repeated in Figs. 6b-d and 7b-e, 

with changes that correspond to those made in Figs. 4b-d and 5b-e with respect to 

Figs. 4a and 5a, respectively. The features in the patterns of Figs. 6a and 7a drawn from 

the patterns in Figs. 2a and 4a and 3a and 5a, respectively, can be generalized to the 

other sub-figures in these categories; e.g., the patterns in Fig. 7c are overlaid of patterns 

in Fig. 3c and of patterns in Fig. 5c. The patterns in the latter figure are, however, 

subdued in spectral ranges that lie beyond the flexural free waves. Thus, changes in the 
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parametric values and accompanied influences in Figs. 2 through 5, if correspondingly 

selected, impose similar influences in Figs. 6 and 7. 

The derivation and manipulation of the modal response Vn(k,co) and its 

composition are found to be relatively simple in the k -domain. The algebraic nature of 

the modal response V^kjCo) induced by the normalized modal external drive Pen{k,(o) 

in the absence of the ribs, the harmonic nature of the drive Psn(k,co) in lieu of the ribs 

and, again, the algebraic nature of the modal response Vsn{k,co) induced by this drive, 

render efficacious the £-domain for formulating the modal response Vn(k, co). The 

descriptions of this quantity and terms and factors in its composition are presented in 

Figs. 2 through 7. These descriptions demonstrate that the flexural free waves are the 

dominant response contributors, that the fluid free waves are weak contributors even 

when fluid loading is heavy and, finally, although the membrane free waves are 

discernible and they are evidently scattered by the ribs, the membrane free waves are 

nonetheless weak contributors to the response, especially at the higher frequency range, 

where (2cor lmc) <(a>/coc). In Figs. 2f and 3f and g the flexural free waves are 

substantially weakened by increasing the flexural loss factor (j] ) by more than an 

order of magnitude. The other free waves remain substantially unaltered so that they are 

relatively accentuated. The quantitative assessments of the weakening of the flexural 

free waves and the accentuation, thereby, of the other free waves are not readily 

afforded by Figs. 2 and 3 which include Figs. 2f and 3f and g. In this light, can a Fourier 

transformation of K„n(£,cö) into the x- domain assist in these assessments? 
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m. MODAL RESPONSE OF A UNIFORM CYLINDER IN THE SPATIAL DOMAIN 

The expression for the normalized modal response V^i^co) of a uniform cylinder 

is stated in Eq. (13a). As already observed, neither the term exp(ixak) nor the factor 

G^iktCo) are aliased and, therefore, the modal response VL,„(£,<») in the k -domain is 

not aliased. The Fourier transformation of VL,n(&,6)) into the spatial x- domain affords 

no factorial saving performing the transformation either via Eq. (l-10b) or via Eq. (1-14); 

indeed, computations of this kind are relatively simple. Nonetheless, to obtain 

compatibility and in preparation for performing computations that are more 

compounded, the technique described in Eq. (1-14) is utilized to Fourier transform 

V^iKco) to v^^co). From Eqs. (1-14) and (13a), and after an appropriate 

normalization, one obtains 

v^C*,©) ~ 

R 

en(co) [K^l + Ry1]   ^   SJ
b(kr) {G^(*r,fi>) exp[-i(x-xa)kr]} ; 

en(co)  = [(2/7i2k2
po) {(n/akpo)*-l}]1/2 ; (-1)1'2   = (-/) .      (16) 

The normalization adopted in Eq. (16) yields for a hybrid cylinder in the absence of fluid 

loading, at the position of the external ring drive; i.e., at (\x-xa\/b) = 0, a unit 

amplitude. In Fig. 8a the normalized modal response v^*,©) is displayed as a function 

of (x/b) for the normalized frequency (co/coc) = 0.175. The computations in this 

figure are performed under standard parametric values for a hybrid cylinder. 

Computations pertaining to changes in the fluid loading parameter (ec) from the 

standard value of 10~2 to 10"4 and 10"1 are superposed on the original Fig. 8a. 

[cf. Figs. 2a-c] The influence of the fluid surface mass loading is revealed in this figure; 
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the curves pertaining to ec = 10~2 and 10~4 substantially overlap, whereas the curve 

for ec = 10"1 lies just below, but consistently adjacent. There is, however, no evidence 

of fluid free waves in Fig. 8a; the dominance of the flexural free waves appear 

overwhelming. This figure is repeated in Figs. 9a and 10a, except that a natural cylinder 

is substituted for the hybrid cylinder and the mode index (n) is selected to be unity and 

zero; respectively. Figures 9a and 10a are identical to Fig. 8a and, therefore, it appears 

that the dominance of the flexural free waves overwhelms not only the fluid free waves, 

but also the membrane free waves. To emphasize this identity, Fig. 8a is jointly 

designated Figs. 9a and 10a. Can the flexural free waves be rendered weak enough so 

that those other types of free waves, which are faintly, but clearly discernible in Fig. 2 

and 3, may be boldly exposed and investigated? Figures 2f and 3f and g suggest that 

damping the flexural free waves may induce the desired weakening in these free waves. 

Figures 8a, 9a and 10a are repeated in Figs. 8b, 9b and 10b, respectively, except that the 

flexural loss factor (r\p) is changed from the standard value of 10"3 to 3 x 10"2, a 

substantial increase in damping. This increase in damping of the flexural free waves 

appears more dramatic and revealing in Figs. 8b, 9b and 10b than in the corresponding 

Figs. 2d, 3d and 3g in the k -domain. In Figs. 8b, 9b and 10b the increase spatial decay 

of the flexural free waves is bottomed; this bottoming is not due to lack of 

computational accuracy, but, rather, due to the existence and presence of other types of 

free waves. In part, to help substantiate this statement Figs. 8c, 9c and 10c are added. In 

these figures the fluid loading parameter (ec) is set equal to 10~6 and, in conformity, the 

flexural loss factor (r]p) is retained equal to 3 x 10~2. Figures 8c, 9c and 10c are also 

superposed on Figs. 8b, 9b and 10b. The presence of fluid free waves emerges in Fig. 8b 

and the presence of fluid and membrane free waves emerge in Figs. 9b and 10b. 

Moreover, manifestation of interferences among the various types of free waves are 

discernible in these figures. Interferences occur in "regions" in which more than one 

type of free waves are present with strengths within an order of magnitude.   Thus, in 
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Figs. 8b and c interference occurs in the region of the bottoming knee; this interference 

is between the flexural and fluid free waves. In this region the strengths of these two 

types of free waves are within an order of magnitude. Increasing the spatial distance 

(I x - xa I / b) beyond the knee, leaves the fluid free waves alone; the flexural free waves 

are weakened out by the high damping. Changes in the strength of the fluid free waves 

are then exhibited in Fig. 8b; the knees appropriately adjust to these changes over 

several orders of magnitude. In passing it is recalled that in Fig. 8a the fluid loading 

significantly influences the surface impedance of the cylinder only when ec > 10~2. 

Indeed, this influence causes the saturation and reversal in the strength of fluid free 

waves as the fluid loading parameter (ec) is increased through 10~2 on to 10-1. The 

apparent anomaly is associated with Le Chartlier's principle [2]. In Figs. 9b and c and 

10b and c, the membrane free waves join in; in Figs. 9b and c the membrane free waves 

are comprised of two components; longitudinal and shear free waves and in Figs. 10b 

and c of one component; longitudinal free waves only. These differences in the two sets 

of figures help decipher the free waves that are involved in the interferences. For 

example, it is clear from Figs. 9c and 10c that the strengths of the longitudinal and shear 

free waves, at (co/coc) = 0.175, are within an order of magnitude and, therefore they 

significantly interfere in Fig. 9c, whereas this interference is absent in Fig. 10c. In these 

two figures the fluid free waves do not participate in the interference; the fluid free 

waves are rendered weak by selecting the fluid loading parameter (ec) equal to 10"6 in 

these figures. Clearly the fluid free waves participate in the interferences depicted in 

Figs. 9b and 10b for a fluid loading parameter ec > 10~2; in particular with the 

membrane free waves at distances (\x-xa\/b) beyond the bottoming knees. The 

details that are captured in the interferences in these figures attest to the accuracy 

attained in the computations via Eq. (1-14). The simplicity of the summand and, 

therefore, the simplicity of the computations performed to generate Figs. 8 through 10, 

may not  convincingly   constitute   a  critical  proof  of the   viability  of Eq. (1-14). 
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Nonetheless, the kind of figures just presented are of intrinsic value, especially as they 

relate and assist in deciphering figures displaying more compounded computations; 

those that account for the attachment of ribs on the cylinder. 
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IV. MODAL DRIVE IN LIEU OF THE RIBS IN THE SPATIAL DOMAIN 

The normalized modal drive Pm{k,(o) in lieu of the ribs is typically depicted in the 

k -domain for a hybrid and a natural cylinder in Figs. 4 and 5, respectively. These 

figures are computed under standard parametric values and for a selected variety in 

these values. These figures demonstrate that this quantity is aliased in (k) with respect 

to (iq); the expression for this quantity in Eq. (14) confirms this aliasing. Moreover, the 

expression for Psn(k,co) indicates that Eq. (1-21) suitability befits the formula for 

performing the Fourier transformation for this quantity. Designating pm(x,co) the 

Fourier transform of P^i^co), Eqs. (1-14), (1-21) - (1-23) and (14) are used to derive 

psn{x,(0) = sb(x) {S(x) p^(x,co)} ; 

psn(x,co) = [ps(x,co)/P°n(o))] , (17) 

where 

Psn(x,co) ~ 

R 

(l + R)-1   2   exp(-ixkr) IJbn(kr,co) SJ
b(kr) [Q„n(kr,co) exp(ixakr)} ,     (18a) 

IJbn(k,co) = [1 + SJ
b(k) Q„n(k,(o)Tl , (18b) 

and it is recognized that in Eqs. (17) and (18) there exist a factorial saving of (2/ +1)2 in 

computational steps as compared with estimating pm(x,co) from Psn(k,co) employing 

the discrete Fourier transform procedure, as stated in Eq. (l-2c). The absolute values of 

25 



p°n(x,co) as a function of the normalized frequency (co/coc) for a hybrid and a natural 

cylinder are presented in Figs. 11 and 12, respectively. The computations are performed 

for (x lb) => {Xj lb) = 7,14, 21 and 35 and for a mode index (n) equal to unity. 

Each of these figures is composited of three values of the fluid loading parameter; 

namely, ec = lO^lO-2 and 10_1. The presence of the phenomenon of pass and stop 

bands with respect to the flexural free waves emerges in these figures. The influence of 

fluid loading on this phenomenon is also distinguished in these figures. In particular 

there is a shift to lower frequencies of the stop bands with increase in fluid loading; the 

shift is more pronounced the higher the fluid loading is. This shift in frequencies is 

related to the added surface mass component in the fluid surface impedance as already 

discussed with respect to Figs. 2-5. This and other complemental features in Psn(k,co) 

and p°n(x,CQ) are facilitated by superimposing the corresponding computations 

performed on each quantity in the same figure. Thus, Figs. 4 and 5 simultaneously 

exhibit both quantities. It is observed in these figures that the high spatial decay in the 

modal drive p°n(x,a>) in a (flexural) stop band in the x -domain, is appropriately 

commensurate with the uniformity in the drive Psn(k,co) in a stop band in the 

&-domain. This uniformity is derived from cancellations between pairs of flexural 

dispersive aliasing orders in those spectral regions in which they cross. In the absence 

of these cancellations, as is the case in a first order model in which interactions among 

the ribs via the cylindrical shell are neglected, pass and stop bands are also absent [2,13]. 

The pass and stop bands are largely dominated by the flexural free waves; the other 

types of free waves are poorly manifested by a few minor kinks in the curves depicting 

p°n(x,(o) and a few corresponding kinks in the curves depicting Psn(k,0)). Other 

features in these quantities can be similarly related from the k -domain to the x -domain 

and vice versa; e.g., the shifts in frequencies of the stop bands due to a change in the 

character of the ring impedance of the ribs from mass to stiffness controlled correctly 

track in the complemental representations in Figs. 4d and 5d.   There are, of course, 
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features that are more indigenous to one domain than another. The aliasing in Pm(k,co) 

are clearly a £-domain phenomenon. On the other hand, in a stop band, when the 

distance (I Xj -xa\/b) exceeds a specific value, the decay in p°n(x,(ö) is bottomed. The 

bottomings in the (flexural) stop bands are clearly a x- domain phenomenon. The 

bottoming phenomenon in a stop band is reminiscent of the same named phenomenon 

induced by the increase in damping of the flexural free waves in the absence of ribs. Is 

there a commonality in these two phenomena? 
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V. RESPONSE OF A REGULARLY RIBBED CYLINDER IN THE 

SPATIAL DOMAIN 

The normalized modal response Vn(k,co) is composed of two terms, V^lcco) 

and Vsn(k,co),as stated in Eqs. (12) and (13). Formally, from Eqs.(l-la), (12) and (13) 

one obtains 

vn(x,co) = v„n(x,o)) - vOT(x,<ö) , (19) 

v„nix,co)  =  en(co) {2K)~
111

  j dk exp(-ixk) vLn (£,<») , (20a) 

vm(x,a>) = en(co) (2ny111  J dk exp(-ixk) Vsn(k,co) , (20b) 

where en(co) is the normalization factor defined in Eq. (16). The Fourier transform of the 

first term is dealt with in Section HI; in this section the second term is added to the 

computational task. As already discussed in the k -domain, neither V^n(£,ä)) nor 

Vsn(k,co) are strictly aliased. In the first term neither of its two factors are aliased and, 

therefore, no factorial saving can be accrued from the form of its evaluation. In the 

second term the factor G^k,^) is not aliased; however, the second factor, being the 

modal drive Psn(k,a>) in lieu of the ribs, is aliased. Identifying G{k,(o) as Gmn(k,co) and 

K(k,co) as Psn(k,co) in Eq.(l-14), and with Eqs. (l-16b) and (14a) in tow, a factorial 

saving of (2/ + 1), and with Eqs. (l-19b) and (14b) in tow, a factorial saving of (2/ + 1)2 

of computational steps may be accrued in the evaluation of vsn(x, (o) in Eq. (20b). [This 

kind of saving is not afforded using Eq. (l-2c).] From Eqs. (1-14), (l-19b), (14b) and 

(20b) one obtains 
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vm(x,co) ~ 

en{co) [KX(\ +RTl]  £  li(k,,a>) SJ
b(kr) {ßL^,©) exp(ixakr)} 

SJ
b(kr) [exp(-ixkr) G^ik^co)} ; 

en(co)  = [(2/7t2k2
po) {(n/akpo)

4-l}]m ; (-1)1/2   = (-/) . (21) 

The normalization and evaluation of the second term in Eq. (19) are rendered compatible, 

in Eq. (21), with those of the first term in Eq. (16). A question may be raised: Since the 

aliasings phenomenon in POT(£,6)) is spoiled in Vn(k,a>) and the pass and stop bands 

phenomenon is revealed in the modal drive psn(x,co), is the pass and stop bands 

phenomenon spoiled in the modal response vn(x,co)l In other words, how akin are 

these two phenomena? The absolute value of the normalized modal response vn(x,co) is 

displayed as a function of (x/b), for a hybrid cylinder in Fig. 13 and a natural cylinder in 

Figs. 14 and 15; in Figs. 14 and 15 the mode index is set equal to unity and zero, 

respectively. In Figs. 13a, 14a and 15a the frequency is set at (co/coc) = 0.175 with 

the fluid loading parameter ec = 10"6, 1(T4, 10~2 and 10"1 and at (co/coc) = 0.158 

with ec = 10"1. It is observed that data pertaining to the frequency (co/a>c) = 0.175 

with ec = lO^lO"4, and 10~2 and the frequency ((o/coc) = 0.158 with ec = 10"1 

lie in a (flexural) stop band. The data pertaining to a frequency (co/coc) = 0.175 with 

ec = 10"1 substantially lie in a pass band; the shift in the frequencies of the stop bands 

under the influence of heavy fluid loading accounts for this feature in the data with 

respect to ec = 10"1. [cf. Figs. 11 and 12.] Figures 13a, 14a and 15a convincingly 

indicate that the pass and stop bands phenomenon is not closely akin to the 

phenomenon of aliasing; the spoiling of the aliasing in Vn(k,co) does not entail the 
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spoiling of the pass and stop bands in vn{x,(0). It emerges, however, that data in 

Figs. 13a, 14a and 15a that lie in the stop band at (o)/coc) = 0.175 with ec = 10"6, 

10"4 and 10~2 and at (co/coc) = 0.158 with ec = 10_1, are reminiscent of the 

corresponding data in Figs. 8b, 9b and 10b, respectively. This reminiscence holds even 

with respect to the reversal of strength between the fluid free waves with ec = 10 

and 10_1; the anomaly is particularly discernible in Figs. 8b and 13a. In the vein of 

Figs. 8c, 9c and 10c, the curves in Figs. 13a, 14a and 15a that pertain to a fluid loading 

parameter ec = 10~6 are, in isolation, displayed in Figs. 13b, 14b and 15b, respectively. 

Notwithstanding that there exist minor and accountable differences in levels, the 

resemblance between Figs. 13a and b, 14a and b, and 15a and b and Figs. 8b and c, 9b 

and c, and 10b and c, respectively, is striking. The resemblance even matches the 

bottoming and interference phenomena described earlier. Indeed, comparison among 

the correspond figures in the two sets leads one to conclude that the regularly attached 

ribs in a stop band play a role that is commensurate with the role played by the increase 

in flexural damping in the absence of ribs. This conclusion does not take account of the 

undulations in level within a bay that exist in the former set, but are absent in the latter 

set of figures [14]. The undulations are avoided in the former set of figures by an 

appropriate selection of the position (xa / b) of the external drive and the regularity of 

the sampling positions (x/b) along the axis of the cylinder [14]. These undulations are 

not significant enough, however, to altercate the striking resemblance between these 

two sets of figures. 

Figures 13a and b, 14a and b, and 15a and b are made possible only with an 

accuracy and a reproductive details that transcend several orders of magnitude. In the 

computations that underlie these figures the overall wavenumber span (kM) and the 

sampling wavenumber span (K^) are related largely by a / = 50, yielding a factorial 

saving of 102 and, in some cases, of 104 of computational steps in computations 

performed  with  the  double-sum  technique   versus  computations   performed   with 
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techniques that are directly akin to the discrete Fourier transform procedures. Whether 

this kind of factorial savings is crucial to the generation of the figures presented in this 

report is a matter of memory and patience. The former can be bought and the latter can 

be acquired by practice, notwithstanding that shortages on both accounts are thinning 

out. Nonetheless, that the double-sum technique has been successfully employed to 

furnish the figures just presented is by now a fact. 
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Fluid (p,c) (r,0,<|>) (r,jc,(|)) 

Ribs- 

= -2b x = -b 

(x = xa) 

(r, xa, §) 

Fig. 1. A sketch of a regularly ribbed cylinder and coordinate system. 
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N.1, Wo_Wc-10, ZmnBir.N, EPSc.1 .E-2, Xa/b..5, Flsor.nona 

Fig. 6.   Normalized response Vn {k, a>) of a 

regularly ribbed hybrid cylinder as a 

function of the normalized axial 

wavenumber (ak.) in a frequency 

waterfall format. 

a. 

a.l. 

b. 

c. 

d. 

e. 

Under standard values, [cf. Eq. (15).] 

Clipping of Fig. 6.a. 

e,  = 10"4. 

ec  = 10" 

Ribs' ring impedance stiffness controlled. 

n = 0. 
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N.I, Wo_Wc.10, ZmnBtr.Y, EPSc-LE-2, Xa/b-.5, Floor-non« 

Fig. 7.   As Fig. 6 but for a natural cylinder. 

a. Under standard values, [cf. Eq. (15).] 

a. 1. Cupping of Fig. 7 .a. 

b. ec  = 10"4. 

c. ec  = It)"1. 

d. Ribs' ring impedance stiffness controlled. 

e. n = 0. 

Fig. 7a 
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Fig. 8.   Normalized modal response v„„(x, a) of 

a uniform hybrid cylinder as a function of 

the normalized axial distance (x/b) at the 

normalized frequency (co/coc) = 0.175. 

a. Under standard values and for 

ec  = KT4, 10~2andl0_1. 

b. t\p  = 3 x 10~2and£c  =  10"6, 

1CT4, 10_2andl0_1. 

c. r\p = 3 x 10~2andec  = 10"*. 
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Fig. 9.   As Fig. 8 but for a natural cylinder. 

Under standard values and for 

ec = KT4, 10~2andl0_1. 

T]p = 3 x KT2andec  =  10"6, 

c. 

10"4, 10_2andl0_1. 

t]p  = 3 x 10~2and£c  =  KT6. 
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Fig. 10. As Fig. 9 except («) is changed from the 

standard value of unity to zero. 

a. 

b. 

c. 

-l ec = 10   , 10~z and 10 

r]p = 3 x 10~2and£c  =  10-6, 

10"4, 10~2andl0_1. 

n„ = 3 x 10~2ander  =  10"*. 
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Fig. 13. Normalized modal response vn(x,a>) of a regularly ribbed hybrid cylinder as a function of the normalized 

axial distance (x/b). 

a. ißl(Oc) = 0.175 with ec =  10-6, 10~4, 10~2 and 10-1 and (co/coc) = 0.158 with ec   = 10"1. 

b. (col(oc) = 0.175 with ec =  10-6. 
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Fig. 14. As Fig. 13 but for a natural cylinder. 

a. (®/fl)c) = 0.175 with ec  =  HT6, 1(T4, 1(T2 and 1CT1 and (co/coc) = 0.158 with ec 

b. {(0l(0c) = 0.175 with ec   =  10"6. 
=  10 -l 
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Fig. 15. As Fig. 14 except (n) is changed from the standard value of unity to zero. 

a. ((o/coc) = 0.175 with ec  =  HT6, 10~4, 10"2 and 10-1 and (co/a>c) = 0.158 with ec  = 10"1. 

b. (<o/coc) = 0.175 with ec  =  10"6. 
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