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Foreword 
It has been recognized by many persons engaged in the development of 

large-scale automatic digital computing equipment that the demands of such 
machines upon men will be very much greater than the demands of men upon 
the machines. In other words, skill in the analysis, formulation, and program- 
ing of problems will become the controlling factor in the proper use of the 
computing machines of the future. 

To attack this problem at its roots, the Institute for Numerical Analysis 
of the National Bureau of Standards was established early in 1948 as an in- 
tegral part of the Bureau's extensive applied mathematics and machine devel- 
opment program. The program of the research staff of the Institute consists 
in the examination of new, and the reexamination of old problems in mathe- 
matics with a view toward devising the numerical techniques most suitable 
for their solution on high-speed automatic computers. A computation labora- 
tory at the Institute, containing the most modern equipment available, is used 
part time to perform experimental calculations for the research staff. A new 
computational science, founded partly on the older hand-machine techniques 
and partly on theories radically new in numerical analysis, is now taking shape 
at the Institute and elsewhere. It will form a reservoir of knowledge that can 
be drawn upon for innumerable applications by the users of machines. 

Shortly after the Institute was established, a series of symposia on the 
development of high-speed automatic computing machinery and related 
numerical methods was held on the campus of the University of California, 
Los Angeles, where the Institute is located. The symposia served as dedicatory 
exercises for the Institute. The interest of the scientific public in these topics 
is indicated by the fact that approximately 500 persons registered for the 
meetings. Most of the papers given were in the nature of progress reports on 
the various machine development projects in the United States and in Great 
Britain. On the last day a series of mathematical papers dealing with the 
future of numerical analysis was given. 

Four of the papers given at the mathematical sessions are presented here. 
The first one gives the reader a glimpse into the workshop of one of the fore- 
most numerical analysts of our day. It concludes with some penetrating re- 
marks concerning the psychological difficulties involved in trying to harness a 
robot which can perform in a flash something which used to take a hundred 
hand computers a year to do. The other three papers deal with problems 
which have proved inaccessible to older numerical methods. Two deal with 
difficult, essentially classical problems in the field of differential equations. 
The third is concerned with a new and significant algebraic problem, whose 
successful solution may have a profound effect on military and economic plan- 
ning, and on administrative procedures affecting the national economy. 

These papers state problems; they do not give answers. They are unified 
by the fact that they all look forward hopefully to a new era in mathematics, 
in which the impossible will become an everyday occurrence. They are pre- 
sented here as a challenge to the builders of the new computational science and 
the manufacturers of its tools. 

J. H. CURTISS 

Chief, National Applied 
Mathematics Laboratories. 



1. Some Unsolved Problems in Numerical Analysis1 

Douglas R. Hartree 

Introduction 

Numerical analysis is the science and art of 
carrying out numerical calculations. Work in 
numerical analysis is not, however, only numerical. 
There is a substantial amount of development and 
study of general methods, and that will often be 
algebraic and analytical. But the purpose of 
such study must be to lead to a practical numeri- 
cal process; otherwise, that study may be elegant 
mathematics but it is not numerical analysis. 
The emphasis on practicable numerical processes 
may result in very substantial departures from the 
point of view of the conventional algebraical or 
analytical treatments of standard textbooks. 

Two examples will illustrate this. Consider 
first the differential equation 

y' + 2xy=l (1.1) 

with the boundary condition y=0 when a;=0. 
The standard method of solution is given in the 
first chapter or two of almost any elementary 
text on differential equations. In this case, 
application of the method gives 

y-- 
2     e^dw, 

and in the conventional treatment this would be 
regarded as a complete and final answer to the 
problem. But it is not a complete and final 
answer when you regard the problem as one of 
numerical process as distinct from an analytical 
formula. How far it is from a final answer can 
be seen from this consideration: if it is required 
to evaluate tb e integral 

r 1 dw, 

the easiest way is to solve the equation (1.1) nu- 
merically first and then obtain the value of that 
integral as ex y. 

Another example, also from the field of differ- 
ential equations, is provided by the equation 

v"=M. (1.2) 
1 Preparation of this paper was sponsored in part by the Office of Naval 

Research, United States Navy. 
> Cavendish Laboratory, Cambridge University, England. Acting Chief, 

NBS Institute for Numerical Analysis, July through October 1948. 

This also is an elementary form that is included in 
the first or second chapter of any book on differen- 
tial equations. The standard method of solution 
is to multiply by 2y' and integrate, obtaining 

and finally, 

2y'y"=2f(y)y', 

(y')2=2ff(y)dy, 

x = fdyIl2Sj(y)dy]*. (1.3) 

As in the first example above, this conventional 
formal approach is not the best for solution by 
numerical process. If we try to evaluate the 
solution from formula (1.3), we have to carry out 
the quadrature for x in terms of y and then to 
invert the results to give y in terms of x. All of 
this is troublesome to carry out numerically. The 
singularities in the integrand at the ends of the 
range are very awkward in numerical work, and 
almost always, if one wishes to solve the equation 
by numerical process, it is better to take the equa- 
tion in the original form (1.2). The second-order 
equation with first derivative absent is th e simplest 
of all kinds of differential equations to solve 
numerically, and in this example the equation in 
its original form (1.2) is already of this kind. If 
it is taken in that form, the process of integration 
goes quite easily. If the standard textbook 
method of reducing to quadratures is used, one 
obtains formulas that are usually numerically 
more awkward to handle than the original differ- 
ential equation. 

These two examples illustrate that it is often 
necessary to depart from the conventional text- 
book treatment of analytical or algebraic prob- 
lems when the emphasis is on the process for ob- 
taining numerical answers. 

It is, of course, rash to talk about "unsolved" 
problems in numerical analysis; what I really 
mean, of course, is problems to which I do not 
know the answers. What I propose to do is to 
present a series of questions, not concerning large, 
spectacular problems like the prediction of the 
weather by numerical integration of the equations 
of the motion of the atmosphere—which is a pos- 
sible problem in numerical analysis—but a num- 
ber of much smaller questions, ones that I have 
come across in the course of my own work; prob- 
lems to which the answers should be known, or 



at least for which the methods of finding the an- 
swers should be known, before the larger problems 
are tackled. Much of what I have to say is not 
specifically related to the large digital machines. 
Numerical analysis certainly will be considerably 
affected by such machines when they appear, but 
it is a subject that exists independently of those 
machines. Much of the experience that has been 
accumulated to date has necessarily been acquired 
without those machines, and many of the prob- 
lems that have arisen are not specifically related 
to them. 

Elimination  of approximately  known 
roots of polynomial equations 

The first problem to be considered is an ele- 
mentary one, to which an answer may well be 
known already, namely, this: Given a polynomial 
equation in one variable. 

P(x)=A0x
n+A1x

n~1+- • -M»=0 

and a number p, less than n, of approximate 
values of roots; let us say x=£i, £2, • • •, iv 

are 

approximate roots, where pKn. Then it is de- 
sired to eliminate these roots and thus obtain an 
equation of lower order to be solved for the re- 
maining roots. This is a particularly useful pro- 
cedure if some of the roots are real because after 
eliminating the real roots, which are compara- 
tively easy to find, the resulting equation, which 
has only complex roots and which is of lower, 
perhaps much lower, order, is easier to solve. 
The polynomial equation with the roots &, . . ., 
2Pis 

Pp(x)^(x-k) (a;-{„) = 0. 

Division of P(x) by Pp(x) gives a quotient, which 
is a polynomial of degree n—p, and a remainder 

P(x) 

PM' = <2(a0- 
R(x) 

~PM 

If the roots {&} were accurate, the remainder 
would be zero. Usually, however, the roots {&} 
will not be accurate, and, even if they were, there 
would be rounding-off errors in the coefficients of 
Pv when the factors are multiplied. Obviously, 
if the approximate roots {£*} were replaced by the 
correct roots of the equation, different coefficients 
in the quotient polynomial Q would be obtained. 
Thus, if it is desired to use that polynomial Q to 
find the other roots, it is necessary to correct the 
quotient Q gotten by dividing P by the product 
obtained from the approximate roots. Hence the 
problem is first to obtain, from the coefficients in 
the remainder, corrections to the approximate 
roots {£*} and second—perhaps even more im- 
portant—to obtain the corrections to the coeffi- 
cients in the quotient polynomial Q. 

Another related problem is how to eliminate a 
known solution or a set of known solutions from 
a set of simultaneous, nonlinear equations. Again 
there may be a known process for handling this 
problem. But remember that by a process, in 
this context, is meant one which is amenable to 
numerical calculation; it is not sufficient to give an 
algebraic process to ensure that the process sug- 
gested is one which can be used in a numerical 
form. Perhaps one can obtain some guidance 
from experiments on quite simple examples, say 
quartics of which two roots are known (because 
they were set up to have those two roots), which 
would be helpful in examining numerical methods 
of eliminating the roots approximately, then find- 
ing means of correcting the roots and the quotient 
polynomial. 

Solution of systems  of simultaneous 
nonlinear algebraic equations 

Another problem is the solution of algebraic 
simultaneous, nonlinear equations. The term 
"algebraic equation" is used here, for want of a 
better, as an antithesis to "differential equation"; 
in this sense the equation 

exv=xJry 

is "algebraic". There is one particularly im- 
portant problem of this kind; although the situa- 
tion expressed in algebraic terms is independent of 
the physical situation, the physical situation here 
is rather significant. In the analysis of crystal 
structures by means of X-rays, the observed 
results consist of a number of intensities of 
reflection of an X-ray beam from different crystal 
planes. The amplitude of the X-ray beam re- 
flected from the (h,k,l)-jAa,ne of the crystal is a 
sum over positions of atoms in the unit cell of this 
kind: 

F(h,k.l)=y^,fi(h,k,l) cos (hxj+kyj+hj), 

where jt is the scattering factor for a single atom, 
the jth atom in the unit cell, for the angle of 
scattering corresponding to reflection from the 
(A,£,Z)-plane, and x^y^Zj are the coordinates of the 
atom specified by the suffix j. Now if one could 
observe the amplitudes F, then one could find the 
atomic positions by a Fourier transform. Un- 
fortunately, one cannot observe the F's; all that 
can be observed are their magnitudes \F\. There- 
fore a Fourier transform cannot be used in this 
way. 

One way in which this problem is handled at 
present is to guess the values of xjt yh z} by means 
of all the indications one can obtain from the 
physical and chemical knowledge of the substance 
forming the crystal being studied, and to hope that 
the guess is good enough to determine the signs 
of the amplitudes F; then these signs are used 



in the Fourier synthesis to derive the distribution 
of the scattering electrons. This is equivalent to 
determining x},yhZj. However, as a process of 
numerical analysis, this method is not satisfactory 
because it may depend too much on the physical 
and chemical ideas one has about where the atoms 
are likely to be in the molecule or in the crystal 
cell. Also it has the following disadvantage. The 
measured values of the quantities \F\ are subject 
to experimental error, and the quantities fj(h,k,l) 
are not known exactly, so that an exact solution 
of the equations is not to be expected. It might 
then be possible to start with a wrong idea of the 
configuration of the molecules as a whole and 
obtain a "best" solution on this basis, and this 
might be accepted as an answer, though really 
spurious. This might be avoided if one could 
treat the solution of the equations simply as a 
problem of numerical analysis and obtain the 
values Xj,yhZj for a set of equations of that kind 
without using the step which depends on physical 
and chemical intuition. In this particular con- 
text the values of F and / are observed for a large 
number of values of h, k, and I,—perhaps even up 
to some hundreds and in the case of protein crystals 
even up to some thousands—so there are quite a 
large number of equations and quite a large 
number of unknowns. 

This is just one example of a general situation 
in which a solution or solutions of a large number 
of nonlinear equations 

fn\Xi, x%, . . ., Xj) = Q (1.4) 

are required. One possible way of solving such 
a set of equations is to form the sums of the squares 
of the/s: 

n 

and find the minima of the function S with 
respect to Xi . . . Xj. A minimum may be found 
by a trial-and-error method in which we take a 
set of trial values xx to Xj and attempt to deter- 
mine how to modify them in order to get nearer a 
set which minimizes 8. For short, let x be written 
for (xi, x2, . . .,Xj). At the point JC, let us find the 
direction of the negative gradient of S, i. e., the 
direction from x in which the quantity 8 decreases 
as fast as possible; the components of — (grad 8) 
are given by 

—=-s/»—• OXi n OXi 

We then modify the trial values of Xi . . . Xj in the 
direction indicated, and repeat the process. In 
this way we obtain an approximation to a "curve 
of steepest descent," i. e., a curve at each point of 
which S decreases as fast as possible, since its 
tangent at each point is in the direction of — (grad 
S) there. Now 8 is nonnegative, so it cannot 
decrease indefinitely; and speaking descriptively, 

if you are always going downhill, you must sooner 
or later reach the bottom. And the bottom is 
certainly a minimum of S. There may be minima 
which do not make S zero, but if a minimum of 8 
is not only a minimum but is also one at which £ 
is zero, then the x/s arrived at form a solution of 
equations (1.4). It is interesting to note that 
this method has been used on a differential 
analyzer to find solutions of simultaneous equa- 
tions. 

This is a process that can well be studied by 
what I have called [1]* "experimental arithmetic," 
and such a study may show features of the process 
which would hardly be suspected from a purely 
algebraic study. A simple pair of equations like 
the following may be tried: 

xy=Z 

2x+3y=8. 

By using the above process on such a simple system 
of equations, much may be learned about it and 
the possible practical difficulties which may arise in 
applying it to larger systems. Of course, in 
doing such experimental arithmetic for this 
purpose one must "play fair." One must not 
manipulate these equations in any of the ways 
that their simple form happens to permit but 
which could not be used on general equations. 
For example, neither algebraic nor numerical 
methods of elimination of the variables should 
be used. It must be kept in mind that this is a 
small-scale experiment for trying out a general 
method; one is interested not in the solution of 
this particular pair of equations, but in carrying 
out the arithmetic as a simple example of a process 
which later may be applied on a large scale using 
an automatic machine. 

A further point is that some estimate is needed 
of the relative numbers of operations involved in 
these small-scale experiments and in the large- 
scale work which might be done on an automatic 
machine when there are 50 or 100 equations of 
this kind. Whether a method practicable on a 
small scale will also be practicable on a large scale 
depends very much on the way in which the 
number of operations needed increases with the 
number n of equations; whether it increases as a 
power   of   n   (as   riz,n3,ni,...)   or   exponentially 

with n  (as 4",5",...)  or perhaps as 22 If n 
equals 1 or 2 or 3, n4, and 4" are not very different; 
in fact, if n is 2 they are just the sam'e. For 
large n, it matters very much if the number of 
operations increases as n4 or 4". 

Thus the relative numbers of steps used in 
two methods of solving two or three equations 
is no guide to the relative numbers of steps that 
will be used in the solution of, say, 50 equations 
unless the way in which the number of   steps 

•Figures in brackets indicate the literature references at the end of this 
paper. 



increases with n is known. One must be able 
at least to estimate the relative orders of magni- 
tude of the numbers of operations before it can 
be decided whether the small-scale numerical 
experiment will be useful as an indication of the 
methods that should be used on a large scale. 

Since there are only two equations in the par- 
ticular example under consideration, one can 
draw the contours of constant S in an (x,y)-pl&ne 
(fig. 1.1) and this figure can be used to illustrate the 

FIGURE 1.1. 

general process. If small steps in x are taken, a 
good approximation to a curve of steepest descent 
(shown broken in fig. 1.1) is obtained; but there is 
no purpose in obtaining such a curve exactly: 
it is only a means to an end, namely, to a mini- 
mum of S, and this might be reached more quickly 
by some modification of the process. It would 
be better, for example, not to have to evaluate the 
direction of — (grad S) very often because each 
evaluation of (grad S) involves the calculation 
of n quantities—its n components—and one would 
get as much information, and perhaps more, by 
calculating the values of S itself at n different 
points. Therefore, one might start from some 
initial point x such as P in figure 1.1; determine the 
direction PQ of — (grad S) there, i. e., the direction 
of the inward normal to the surface S=constant 
through P; proceed in that direction, not changing 
the direction but calculating a number of points 
on this normal until you identify an approximate 
location R of the minimum of S on it; and only 
then recalculate (grad S). 

In trying this process even on these simple 
equations, one finds indications of a possible prac- 
tical difficulty. In the neighborhood of a solu- 
tion, the contours S— const, will usually be ellipses, 
and often, perhaps usually, long, narrow ellipses. 
In such cases, the direction of the normal to the 
surface S=constant at R, which is going to be the 
direction in which next to proceed, swings round 
very rapidly in the neighborhood of the major 
axis, so that a point has to be determined rather 

accurately in order to get a good estimate of the 
direction in which to move next. If it were not 
well determined, then instead of going in the 
direction RT (fig. 1.1), you might move in the 
direction R'T or R"T". If you like to describe 
the situation topographically, what you have got 
is a valley along the major axis OB (fig. 1.2) with 
sides sloping very steeply upward and the floor 
of the valley sloping quite slowly upward along 
OB. Now, so long as you are well away from the 
floor of that valley, the "steepest descent" process 
rapidly brings you down into the floor of the 
valley, but after you get into the floor of the 
valley the result of approximations in the location 
of successive points R gives a path bouncing from 
side to side of the valley, as indicated, in figure 1.2, 
instead of going straight down the middle. What 
one wants then is some process of damping out that 
oscillation and making the numbers keep down 
on the floor of the valley instead of bouncing from 
side to side. 

FIGURE 1.2. 

This is another problem which one could explore 
in experimental small-scale form of a few equations 
in a few unknowns, and thereby possibly discover a 
valuable process for the solution of sets of non- 
linear simultaneous equations. A suitable set of 
equations with which to experiment is the 
following: 

xyz—6 

x2—y2jrz2=6 

x+2y+3z=10. 

(1.5) 

Again, remember to "play fair", and do not use any 
process of algebraic or numerical elimination that 
could not be used on a general set of equations. 
Much may be learned in trying numerical work on 
a simple set of equations such as this. 



Two ^Problems Concerning Relaxation 
Methods 

Two other problems are concerned with the 
relaxation method of handling differential equa- 
tions: ordinary differential equations with two- 
point boundary conditions or partial differential 
equations with boundary conditions all around 
the field of integration, such as one is likely to get 
with equations of elliptic type. 

The first of these arises in the theory of the 
laminar boundary layer in fluid dynamics in con- 
nection with the equation [2, 3] 

y"'+yy"-ß[(y')2-i]=o 

with boundary conditions, 

y=y' = 0, x=0 

(1.6) 

(1.7) 

(1.8) 

For a positive value of ß the solution of this 
equation is unique. For a negative value1 of ß the 
solution is not unique. When this nonuniqueness 
was found in the course of an evaluation of solu- 
tions of this equation by means of a differential 
analyzer, it was suggested, on physical grounds, 
that the boundary condition to be applied at 
infinity was not (1.8) but a rather more stringent 
one, namely, that y->l as fast as possible subject 
to 2/'<l for all x. 

In the solution of equation (1.6), y"(0) is not 
specified but has to be determined to satisfy the 
condition at infinity. If, for a negative value of 
ß, solutions are evaluated with different values of 
y"(0), there will be one for which y' tends to unity 
from below as a;—> °°, but does so faster than any 
other solution. 

The situation is represented diagrammatically 
in figure 1.3; each curve represents a solution of 

finds the interesting and curious result that even 
if one starts the relaxation process from a trial 
function which is a solution, but not one for which 
y'->l most quickly, such as the solution repre- 
sented by curve A in figure 1.3, the process con- 
verges to the solution for which y'-*l most 
quicldy, just as if it were insisting that the solu- 
tion you ought to want is precisely the one which 
has this property. Now why? There is some- 
thing here that deserves further investigation. 
It is probably concerned with the stability of the 
different members of this set of nonunique solu- 
tions. But it is the kind of problem to which we 
ought to know the answer before we start using 
automatic machines on relaxation or similar 
methods for equations of this kind. 

The other problem also relating to relaxation 
methods is concerned with their application to a 
common form of partial differential equations. 
The usual presentation of the application of relaxa- 
tion methods to partial differential equations leads 
one to feel that they cannot be expected to work 
for equations of hyperbolic type but that they 
should work for equations of elliptic type. How- 
ever, during the war, I was concerned with some 
work on attempting to calculate results such as 
reflection coefficients at corners in wave guides, 
and in this context I came across an elliptic equa- 
tion in conditions in which it seemed intractable 
by relaxation methods. 

A simple example is illustrated in figure 1.4. 
Here the heavy lines represent boundaries, and it 
is required to obtain solutions of the equation 

b2v . b2v_ 

bx2+by2= 
-k2 (1.9) 

with a given value of k, in the region between these 
boundaries, with »=0 on the boundaries. There 
will be one solution symmetrical about the diagonal 
PQ and one antisymmetrical. 

X—- 
FIGURE 1.3. 

(1.6) with the same value of ß but with different 
values of y"(0). The curve B represents that 
solution for which y'->l from below and most 
quickly. 

The treatment of this equation by relaxation 
methods has recently been studied by Fox [4], who 
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If the region in which the solution is required 
is covered by a square mesh of side a, of which 
figure 1.5 shows the neighborhood of a typical mesh 
point, the finite-difference form of equation (1.9) 
on this mesh is 

or 
(v1+v2+v3+vi—4«0)/a

2=— k\       (1.10) 

ei+ei+«8+»4- (4-Pa2) v0=0,       (1.11) 

and,  to  the  approximation represented  by  the 
replacement of the partial differential equation 

v2 

V4 

FIGURE 1.5. 

(1.10), we have an equation (1.11) for each mesh 
point and require the solution of this set of 
simultaneous equations. At first sight it would 
appear that the equations are very suitable for 
treatment by relaxation methods. In the case of 
Laplace's equation, k=0 m (1.11); and then there 
is no difficulty about evaluating a solution with 
given boundary conditions. 

Consider first the boundary conditions for the 
solution that is antisymmetrical about the diag- 
onal PQ. For this solution, v—0 on this diagonal, 
and v=0 on the boundaries. Also it is known that 
far enough from the corner the variation of v 
across the width of the guide is sinusoidal, so that 
on the coarse grid (illustrated in fig. 1.3) we can put 
71, 100, 71, at the grid points at some selected 
section. 

Now we have an elliptical equation with a 
closed boundary surrounding the field of itera- 
tion, and v given at all points of the boundary, 
and it looks as if the relaxation process should be 
an admirable technique to use for its solution in 
this context.    However, this is not so. 

That this is not so can be seen in a general way 
if one considers how the relaxation process might 
be started. Knowing nothing better, for the 
first approximation take s=0 on the line A and 
to the left of it.    Then the residuals on the line A 

are positive, and this leads one to insert positive 
values on line A. Similarly, working to the left 
from A in figure 1.4, one would try to get a better 
approximation by filling the whole region with 
positive final values of v, and there is no indica- 
tion that you ever have to put in any negative 
values. On the other hand, it is well known that 
the variation of v along the length of the guide is 
ultimately sinusoidal, and therefore you must get 
negative values somewhere. But the relaxation 
process gives no indication that any negative 
values ever have to be introduced anywhere or 
where to introduce them if at all. 

That was bad enough in this case, which is 
antisymmetrical about the diagonal PQ at the 
corner for which v has known (zero) values on the 
diagonal. The situation was much worse for the 
solution which is symmetrical and for which the 
values of v on the diagonal are not tied; for this 
case the process seemed highly unstable. This 
serves as a warning of the possible difficulties in 
trying to use this kind of approach, and probably 
other indirect methods for equations of this kind 
for which the required solutions have a standing 
wave character. 

Suppose one simplifies the situation by taking 
the corresponding one-dimensional case. The 
corresponding finite-difference problem in one 
dimension is 

yj+1— (2-k2a2)yj+y^=Q (1.12) 

which is to be served with y0, yn given and not 
both zero, and k also given.    Let 

cos /3 = 1—-Fa2; 

then the matrix of the coefficients, with signs 
arranged to make the diagonal elements all posi- 
tive, is 

'2 cos ß -1 0 0 

-1 2 cos ß -1 0 

0 -1 2 cos ß -1 

and its determinant is [sin (n^-l)ß] sin ß. This 
changes sign as n increases from the integer, next 
less than (7r//3) — 1 to the next higher, so that the 
equivalent quadratic form is not always positive- 
definite; and when it is not positive-definite the 
relaxation process may not be stable. 

It is of course possible to replace the equations 
(1.12) by a system derived from a positive-definite 
form, but this corresponds, in the two-dimensional 
case, to using the finite-difference form of the 
equation v4«=&4« instead of that of y2v=—k2v, 
and anyone who has used relaxation methods on 



the biharmonic equation knows that that is a 
thing to avoid if possible. How to adapt the 
relaxation process to form a practicable method of 
dealing with the situation is, as far as I know, one 
of the unsolved problems of numerical analysis. 

Characteristic value problems in ordi- 
nary differential equations 

Another problem is the best way of using auto- 
matic digital calculating machines for evaluating 
solutions of ordinary differential equations with 
two-point boundary conditions. In solving or- 
dinary differential equations numerically by al- 
most any process, either on a desk calculator or 
on a differential analyzer, what really matters is 
not what the equations are, nor their order, nor 
degree, but the boundary conditions. And in 
particular, not what the boundary conditions are 
but where they are. Are they all given at one 
point of the range of integration or are some given 
at one point of the range and others at another 
point of the range? Incidentally, in partial differ- 
ential equations one gets the same difference 
between equations for which the boundary condi- 
tions completely surround the field of integration 
and those for which the boundary condition is 
such that the field of integration is open on one 
or more directions. That difference is often very 
much more important than the detailed form of 
the equations themselves. 

In the case of ordinary differential equations 
with two-point boundary conditions, or with in- 
tegral conditions on the solution as a whole, there 
will be certain parameters which have to be de- 
termined so that the solution satisfies the condi- 
tions specified. These parameters may either be 
unspecified initial conditions, such as y" (0) in the 
case of equation (1.6) with boundary conditions (1.7) 
and (1.8), or constants in the equations themselves. 
The latter situation occurs, in particular, in char- 
acteristic problems in linear differential equations. 

Consider first a single homogeneous linear 
equation with a parameter for which the charac- 
teristic values, and corresponding solutions, are 
to be determined; for example, 

dx' 
+ [V(x) + A]y=0 (1.13) 

with boundary conditions 2/=0 at x=0, a, and per- 
haps a condition to insure that the trivial solution 
2/=0 is not obtained, such as 

/: 
y2dx=l. (1.14) 

Now I do not know the best way of programing 
that situation for automatic machines. One way 
of handling it—the way often adopted in work 
with desk machines—is simply to try a number of 
different solutions, satisfying the boundary condi- 

tion at x=0, with trial values of A until one ob- 
tains the solution which satisfies the condition at 
the far end x=a of the range of integration. 
That is one possibility, but it means doing a great 
many computations that have no value except as 
intermediate steps toward obtaining the solution 
desired. I have a very definite feeling that that 
is not the best way to try to do it on automatic 
machines, but I do not have a method which I 
regard as satisfactory to put in the place of it. 

In this case, when there is only one equation, 
the problem of normalizing the solution, that is, 
of satisfying the condition (1.14), can be handled 
after a solution satisfying the boundary condi- 
tions has been obtained, by multiplying this solu- 
tion through by a constant factor. But consider 
the corresponding problem with two simultaneous 
equations: 

j^+U^) + A}y+[g(x)+B}z = 0 

^+U2(x) + A]z + [g(x)+B]y=0 

»  (1.15) 

with conditions 

2/ = s = 0 at x = 0,a               (1.16) 
and 

y2dx =      z2dz—\; 
Jo              Jo 

(1.17) 

X" yzdx=0. (1.18) 

The normalization cannot now be postponed 
until after the solution satisfying the conditions 
(1.16) is obtained. It must be done in the course 
of determining the solution. For given values of 
y'(0), s'(0) there are two parameters, Ai and A2, 
adjustable to obtain solutions that behave them- 
selves as you want at both ends of the range of 
integration. And there are the values of y'(0) 
and z'{0) to adjust in order to satisfy the normal- 
izing conditions (1.17). The value of B must be 
adjusted so that the solutions satisfying the other 
conditions also satisfy the orthogonal condition 
(1.18). This is a simple example of the situation 
that arises in trying to evaluate atomic structures. 
But in this context there is a further complication 
in that the functions Jt and f2 and g are them- 
selves related in a nonlinear way to the solutions 
y and z of equations (1.15) so that there are two 
equations for y and z and three other equations, 
to specify the way/j,^, and g depend on the solu- 
tion y and z. With this degree of complication, I 
know at present of no other way of working than 
by trial. One method would be to start with 
estimates of the functions y and z; use these in 
the equations which determine the functions /i,/2, 
and  g;  then evaluate the solutions y and z of 



equations (1.15) with these functions for fu /s, 
and g; and repeat the process, taking these solu- 
tions of (1.15) as better estimates, until a final 
result is obtained in which this process repro- 
duces the estimated y and z functions. Such an 
iterative process, however, does not always con- 
verge, and a better method of improving the 
estimates of the y and z functions must be used. 
This is another class of problems in which pro- 
cedures and programs for solution on automatic 
digital machines are very much needed. 

Motion of a continuous distribution of 
charge under mutual forces between 
its parts 

In many if not all cases the solution of a set of 
equations can be handled without knowing the 
physical situation to which they refer. However, 
in many cases knowledge of the physical context 
of the equations is helpful both in discussing 
them and in suggesting means for their treatment. 
This is true, for instance, in the situation where a 
distribution of electrical charge, which can be 
treated as continuous, is moving under the in- 
fluence of the mutual forces between its parts so 
that the field acting on any one charge depends 
on the distribution on all other charges, which 
themselves are so moving. This involves two 
kinds of equations: the equations of motion of 
the individual charges and Poisson's equation for 
the field arising from the space-charge distribution. 

There may be some rather curious boundary 
conditions in the solution of Poisson's equation. 
Usually, the boundary condition is the value of 
the potential at the boundary and nothing is 
given about the potential gradient. However, 
if a bounding surface on which the potential is 
given can emit electrons and the velocity distri- 
bution of the electrons can be neglected, then 
there is an additional relation at the surface, 
namely, one between the emission current and 
the potential gradient. If the potential gradient 
is positive, there is no emission; and if the potential 
gradient is negative, there is the full temperature 
limited emission. Intermediately there is a con- 
dition in which the potential gradient at the surface 
is zero, and the emission current adjusts itself to 
give just this value of the potential gradient at the 
surface (space-charge limited emission). This 
gives rise to a rather unusual situation when you 
try to determine the solution of Poisson's equation 
because it is necessary to combine the problems 
of determining the solution of Poisson's equation 
and the emission current distribution. 

Some   psychological   problems   in 
numerical analysis 

There are several psychological problems in 
numerical analysis, some of which are directly 
relevant to the use of automatic digital machines 

and must be borne in mind when programing a 
problem. 

One of the unsolved problems of numerical 
analysis is how to overcome the attitude of the 
mathematical fraternity toward the subject—an 
attitude exemplified by the comment of a distin- 
guished mathematician, introducing a lecture of 
mine on the mechanical integration of differential 
equations, that he had always regarded the solu- 
tion of differential equations as "a very sordid 
subject." 

Another problem is that of getting what I have 
called a "machine's eye-view" of a problem as 
presented to an automatic machine. It must be 
remembered that the machine will carry out the in- 
structions given to it literally and blindly with no 
exercise of intelligence beyond these instructions. 
In doing a numerical calculation by hand process, 
one uses one's own intelligence, almost uncon- 
sciously, very much more than one really realizes. 
For example, suppose that in the course of a cal- 
culation a division has to be performed where the 
divisor turns out to be zero. In such a situation 
there are many things which a human computer 
might do. He might just knock off and go home 
to lunch and give himself time to think out what 
had gone wrong. What he would certainly 
not do would be to go on forever trying to divide 
by zero; but that is precisely what an automatic 
machine will do unless it is specifically told not to 
by instructions deliberately included in its program 
for the purpose. Therefore, in programing a 
problem, all the unusual situations that might 
arise in the course of the solution of the problem 
must be anticipated, and the machine must be 
given adequate instructions to identify each one 
and to take the appropriate action if any one or 
any combination of them occurs. They probably 
will not occur, but the instructions provided to 
the machine must prepare it for whatever may 
happen. Abstracting oneself from the intelli- 
gence that the human computer applies in the 
course of a calculation is a good deal harder than 
one realizes until one tries to do it. But it is 
important that one should try and cultivate what 
I call the "machine's-eye view" of the sequence 
of instructions that go into a machine. 

A third psychological problem is the problem 
of getting enough "feel" for how the calculation 
is going when it is being done by an automatic 
machine. If one is actually handling the numbers 
oneself, one has a feeling for how the work is 
going which is difficult to get from seeing the com- 
pleted results of the work of someone else and 
which seems almost impossible to get if the mech- 
anism does the details of the work and never 
even exhibits them. My own experience with the 
differential analyzer has been that even a solution 
on this machine is too automatic to permit one 
to get a real feel for the way the calculation is 
going; on a problem of a new kind it has almost 
always been worth while to carry out the evalua- 
tion of one solution by hand myself to get a feel 
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for the relative magnitudes of the variables, and 
the way in which they behave, before turning 
it over to the machine. In simple cases it 
might be possible, and advisable, to examine 
the problem analytically before doing numerical 
work. But in more complicated cases the analyti- 
cal treatment may be too difficult or long, and one 
would have to depend on the numerical results 
themselves to give one a feeling for the general 
way in which they are behaving and their general 
character as distinct from detailed numerical re- 
sults for special cases. It is the problem of getting 
that feeling and intuition for the way calculations 
are going when the details of the calculations are 
carried out by an automatic machine whicn, I 

think, is the third of these psychological problems 
of numerical analysis. 
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2. Numerical Calculations in Nonlinear Mechanics* 
S. Lefschetz 2 

Anyone scanning through the Minorsky report 
[1]* on nonlinear mechanics will convince himself 
that as a rule, on this subject, mathematics is 
only able to provide qualitative and very imper- 
fect information. This is where the numerical 
analyst may step in and complete the work. In 
particular, here, as in so may other cases, the 
computing machines may often guide mathemat- 
ical research by providing information on "the 
proper direction of motion" for the investigator. 
The following two simple examples will illustrate 
what we have in mind. 

The first example is the famous equation of 
van der Pol, which arises very naturally in the 
following manner. Consider first the standard 
so-called LRC equation 

Lx+Bx+~fxdt=E (2.1) 

for an electric circuit (fig. 2.1) with current   x, 
constant emf E, inductance L, resistance B, and 

C R 

—II ww  
L 

FIGURE 2.1. 

capacitance C.    By differentiating with respect 
to t, the relation (2.1) is replaced by 

Lx-\-Bx-\-j=, x = 0, (2.2) 

which is a linear homogeneous differential equa- 
tion with constant coefficients. The explicit solu- 
tion of (2.2) offers no difficulty and is found in 
every sophomore calculus text. 

In equation (2.1) the middle term Bx represents 
a dissipation proportional to the current x. This 
is the simplest assumption possible and well in 
agreement with observation for ordinary resistors 
and moderate variations of temperature. Under 
less simple circumstances one may have to replace 
Bx by more complicated expressions. This is no- 
tably the case when the circuit (fig. 2.2) contains 
a vacuum tube. Neglecting certain things and in 
particular the grid current, it turns out that in 
this case, when x is very small, the circuit behaves 

' The preparation of this paper was sponsored by the Office of Naval 
Research, United States Navy, Contract N6ori-105. 

> Princeton University, Princeton, N. J. 
•Figures in brackets indicate the literature reference at the end of this 

paper. 
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FIGURE 2.2. 

as if it contained a negative resistance. The sim- 
plest assumption that one can make, compatible 
with this fact and still having a dissipative term 
which is an odd function of x, is to take for this 
term a cubic polynomial ax3ß—ßx, a and ß positive. 
Instead of (2.2) we have now the equation 

Lx-\-(ax2— ß)x-{~~j x = 0. (2.3) 

By the familiar method of selecting suitable time 
and current units, (2.3) may be put in the "dimen- 
sionless" form 

xJrp{x2—l)xJrx=0, (2.4) 

which is van der Pol's equation. In this equation 
the only variable parameter is /x and it must be 
positive. By a familiar method, (2.4) is often 
replaced by a pair of equations of the first order of 
a type investigated at length about three quarters 
of a century ago by Poincare: 

%=y, y=—x+n(l—x2)y. (2.5) 

The solutions of (2.5) are pairs of functions of time 
x(t), y(t), which represent graphs covering the 
"phase-plane" xy. 

In systems such as (2.5) there are, according to 
Poincare, two all important elements: the critical 
points and the solutions which are closed curves 
or limit-cycles in Poincare's terminology. The 
critical points correspond to the positions of 
equilibrium or "static" steady states of the asso- 
ciated physical system, and the limit-cycles to its 
oscillatory steady states. Both may be stable or 
unstable, and it is usually the stable steady states 
that are important. A very remarkable result due 
to Poincare asserts that whatever the initial condi- 
tions of the physical system it will gravitate 
toward one of the steady states. It may thus 
acquire spontaneously a steady oscillation, referred 
to in general as a self-oscillation. This will not 
occur in the initial linear circuit with ohmic resist- 
ance. These self-oscillations turn out to be highly 
important in applications. 
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Now the amount of exact mathematical infor- 
mation available regarding van der Pol's equation 
(2.4) or the associated system (2.5) is rather 
meager and may be summarized as follows: 

(a) There is only one state of equilibrium, the 
origin x=0, y=0, in the phase plane (inactive cir- 
cuit), and it is unstable. 

(b) There is exactly one limit-cycle G(y) in the 
phase-plane; it is a unique oscillation for each ß. 
The limit-cycle surrounds the origin. The existence 
of this unique oscillation was established about 20 
years ago by the French physicist Lienard. 

(c) For {i very small C(JJ) is very close to the 
circle of radius 2, and the oscillation is practically 
the harmonic oscillation x=2 sin t, y—2 cos t. Here 
of course the time origin has been chosen to have 
zero phase. 

(d) The limiting position of the limit-cycle for ß 
very large is also known and there is information 
about the order of magnitude and the frequency of 
the oscillations for large ß [2]. These oscillations 
for large ß are of the well known relaxational type, 
a term introduced in this very connection by 
van der Pol. 

Properties (a) and (b) together imply that 
whatever the initial conditions the van der Pol 
system tends to become oscillatory and the oscilla- 
tion, represented by the limit-cycle, is absolutely 
well defined. 

y=Rx 
y-sf-ß* 

FIGURE 2.3. 

To sum up, then: There is ample information 
for ß very large or very small but nothing in be- 
tween. This is where numerical analysis might 
step in—to provide as ample information as de- 
sired on the amplitude a(ß) and the frequency 
f(ß) of the oscillations as functions of ß. It is in- 
teresting to point out that van der Pol obtained 
values of these functions for ^=0.1, 1, 10 by means 
of the graphical method of isoclines. That is to 
say, for each of these three values of ß he plotted 
a fairly large collection of solutions in the phase 
plane, observed the presence of a unique oscilla- 
tion in each case, and made reasonable estimates 
of what goes on in general. His graphs have been 
published in many articles of his and others on 
these questions. 

The situation becomes far more involved when 
the impressed emf in figure 2.2, instead of being 
constant, is itself oscillatory. In the simplest 
case—a simple sine wave—(2.1) becomes 

Lx+Bx+p   xdt=E sin («£+a), 

which yields instead of (2.4), the relation 

x+ß(x2—l)x+x = kßw cos (wt+a)      (2.6) 

much investigated by Littlewood [3], Cartwright 
[3, 4], and by Levinson [5]. The important prac- 
tical question is whether subharmonic resonance 
takes place—that is to say, whether there exist 
oscillatory solutions x(t) of (2.6) whose frequency 
is a fraction of the frequency w/2ir=f of the im- 
pressed oscillation. The authors in question have 
obtained some general qualitative information on 
this question. Much more accurate information 
may certainly be obtained by numerical analysis. 

Returning again to van der Pol's equation in 
the form (2.4): There is considerable evidence 
that the assumption that Rx in (2.1) is to be re- 
placed by a mere cubic is too simple. It is likely 
that in practice a higher degree polynomial, and 
one not necessarily odd, may be necessary, or con- 
ceivably some other function. We would then 
still have ample qualitative information, but would 
certainly find good use for modern computational 
methods to obtain accurate quantitative infor- 
mation. 

Before leaving van der Pol's equation it may 
be pointed out that Kayleigh's equation for the 
rectilinear motion of a mass particle under 
friction [6] 

my + (By2—A)y + ky=0, (2.7) 

A and B positive, is reducible to the van der Pol 
form by adopting a new variable ax=y, and 
making a suitable change of time scale. Thus 
van der Pol's equation is of practical interest 
even outside of circuit questions. However, in 
problems of the nature here considered, circuits 
are very convenient, in that they enable one to 
imitate most economically in the laboratory 
physical systems of very great complication. 

Whatever the reasons, consider another elec- 
trical problem on which a good deal has been 
written by physicists and electrical engineers: 
the phenomenon known as ferroresonance [7,8,9], 
Let the inductance in an LRC circuit consist of a 
coil with iron core and let there be impressed 
a sinusoidal emf, E sin ut. Let it be assumed 
that the resulting current is periodic with the same 
period as the voltage and has a Fourier series 
representation 

x=Ii sin (wf+ai)+/3 sin (3o)t+as) + •  •  •   . 

The effective emf is e=EI^2, and the effective 
current is 

1 = 
(11+11+■■■y» 

V2 

If one plots i against e there is obtained a curve 
such as the one in figure 2.4.    The observed facts 
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clear that there is here again a wide open field 
for numerical analysis. Some work along this 
line has already been done. However, much 
more could certainly be accomplished if the 
numerical analysis were to be paralleled by a 
theoretical investigation similar to what has been 
done for the van de Pol equation. 

We may conclude with a very general remark. 
In the past in dealing with nonlinear questions 
the tendency has always been to "linearize" the 
problem or to keep the situation within "linear" 
bounds. This is, for instance, the source of the 
vector diagrams encountered in the theory of 
alternating-current machinery. One endeavors 
not to reach saturation and hopes for the best. 
It may now be possible, with the higher technique 
of modern numerical analysis, to deal directly 
with the nonlinearized situations, thus coming 
much closer to understanding what actually goes on. 

are as follows: as e increases from zero, the 
effective current i(e) is given by the ordinates 
of the arc OA; when e passes the value a, i(e) 
jumps suddenly from the value aA to the larger 
value aA', and follows then the upper arc A'C. 
Similarly as e decreases from some position beyond 
a, i{e) is given by the ordinate of the upper arc 
until e reaches b when i(e) drops suddenly from 
the value bB to the value bB'. If e decreases 
still further below the value b, i(e) is given by 
the ordinates of the lower arc OB'. Of course 
this situation arises only when the core reaches 
saturation. Well below saturation the only signifi- 
cant arc is OA alone and there is no ferroresonance. 

The differential equations of the system are ob- 
tained as follows: Denoting by 4> the flux through 
the coil we will have 

^■+Rx+± tj xdt=E sin wt. (2.8) 

The saturation curve of the coil yields a relation 
<j>=j(x), where f(x) is odd and may be approxi- 
mated by a polynomial of odd degree, at least 
when the "hysteresis loop" is thin. Upon sub- 
stituting in (2.8) and differentiating, there re- 
sults the differential equation 

f(x)-x+(R+f'(x)x)x+^ x=Ew cos ut,    (2.9) 

where j'{x),j"(x) are the first and second deriva- 
tives with respect to x. Needless to say this 
equation is far more nonlinear than van der Pol's. 
About all that one can do with it mathematically 
is to prove the existence of a solution of frequency 
T=CO/27T, or fractions of/ [10, 11, 12] (subharmonic 
resonance), and to calculate the effective funda- 
mental harmonic i\(e). In point of fact, its graph 
is then found to be not too far—not more than 
10 percent—from the graph of i(e), and to have 
more or less the same general form [7].    It is 
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3. Wave Propagation in Hydrodynamics and Electrodynamics1 

Bernard Friedman2 

There are a number of problems concerning 
wave propagation which have been formulated 
mathematically and for which treatment by- 
numerical methods has been suggested. How- 
ever, these problems still require a good deal of 
work before they will be ready for solution with 
high-powered computing machines. A few such 
problems in applied mathematics will illustrate 
some of the typical difficulties that require further 
study. 

The difficulties are due to one or more of these 
four factors: (1) wave propagation in an inhomo- 
geneous medium, (2) existence of complicated 
boundary conditions, (3) nonlinearity of the 
appropriate equations, (4) the prescription of 
boundary conditions on a free boundary and 
therefore on an unknown boundary. Each of 
these four difficulties may be illustrated by a 
practical problem which is still unsolved. 

The first factor, wave propagation in an inhomo- 
geneous medium, is vitally important in geo- 
physics, in acoustics, and in electrodynamics. 
Consider one problem from electrodynamics: the 
transmission of electromagnetic waves through the 
atmosphere. Suppose an antenna is placed on 
some point above the earth's surface. How far do 
the radio waves travel? For the short wave- 
lengths under consideration, the Heaviside layer 
has no effect and, by analogy with optics, the rays 
should travel in a straight line until they reach the 
horizon. However, a study of the effect of the 
atmosphere reveals very different results. The 
variation of temperature with height and the 
change in the amount of water vapor in the air 
from point to point affect the index of refraction 
and therefore the speed of the electromagnetic 
waves. Because of this, the paths of the radio 
waves are no longer straight but become curved. 
In some cases the rays may be trapped, that is, 
the waves are refracted back so that all the energy 
is concentrated in a region a short distance above 
the earth. Consequently, a larger range may be 
obtained than under ordinary atmospheric con- 
ditions. An amusing illustration of this phenom- 
enon occurred last year. The police short-wave 
system in a Florida town was interrupted by 
mysterious calls in French. After some investi- 
gation it was found that police calls from a Mont- 
real station were being received. The only 
explanation for such a large range is the atmos- 
pheric refraction of the radio waves. 

1 Preparation of this paper was sponsored by the Office of Naval Research, 
United States Navy. 

> Institute for Applied Mathematics and Mechanics, New York University, 
New York City, N. Y. 

The practical problem is this: Given an antenna 
(fig. 3.1) emitting radio waves of a fixed frequency 
and the surrounding atmospheric conditions, 
determine the range of those waves. The mathe- 
matical formulation of the problem is very simple. 
Suppose the antenna (fig. 3.2) placed at a point 

LAYER 

FIGURE 3.1. 

-ANTENNA 

FIGURE 3.2. 

Sat a height h above the surface of the earth is 
sending out radio waves of frequency /. The 
problem is to find a function \f/ that satisfies the 
wave equation: 

vV- or (3.1) 

where k=2irflc, c is the velocity of light, and n 
the index of refraction of air. This equation 
should be solved subject to three conditions: (1) In 
the neighborhood of S, 

R 
(3.2) 

where B is the distance from the source S.  (2) ^=0 
at the surface of the earth     This implies that the 

13 



earth is a perfect conductor. Of course, this is 
not exactly correct, but it is accurate enough for 
most practical purposes. (3) At infinity ip must 
behave like an outgoing wave: 

Tjr (3.4) 

where r represents the distance from the center 
of the earth. Thus the mathematical problem is 
formulated. 

In the solution, the variation of the index of 
refraction is the quantity that causes all the diffi- 
culty. We know that n will vary from point to 
point, depending upon the temperature of the air, 
upon the partial pressure of water vapor, and also 
upon the atmospheric pressure. The question is, 
given the meteorological conditions as represented 
by the value of n from point to point, how can 
this problem be solved? Of course, in this general 
formulation, the solution would be possible only 
on a large computing machine. For many pur- 
poses, however, it would be sufficient to solve the 
problem if it is assumed that n varies as a function 
of r, the distance from the center of the earth; 
that is, if it is assumed that the atmosphere is 
arranged in spherical layers around the earth. 
This is so because under normal conditions the 
variation in atmospheric change due to height is 
much more important than the variations due to 
change in horizontal distances. If spherical polar 
coordinates with polar axis passing through S are 
used, we can write a solution for this problem: 

1>=2 CjP, (cos fl)Z7/r), (3.5) 

where Pj (cos 0) is the jth Legendre polynomial, 
6 is the angle from the pole, cs is a constant, and 
Uj(r) satisfies the differential equation: 

d2Uj 
dr2' 

2dUj 
r  dr 

-(fcV-^J^)^=0. (3.6) 

U](r) must satisfy certain conditions which can 
be obtained from the previously given conditions 
on yp, (3.3) and (3.4). The difficulty lies not only 
in solving this equation for arbitrary values of n, 
but also in evaluating the sum for f. In the case 
of n equal to a constant, this equation can be 
solved: U is then the Bessel function of order 
j+1/2. To solve the problem for the constant 
atmosphere, a series of the following kind has to be 
evaluated: 

^=S CjP, (cos 0) Jj+iika), 
o 

(3.7) 

where a is the radius of the earth, and k is as 
defined previously. Now, this series converges 
so slowly that more than a million terms would 
be required in order to get any practical results. 
The reason for this is that, for 10-cm waves, the 

number ka is of the order of 5X108. For such 
large values of the argument, the asymptotic form 
of Jj+i (ka) is the following: 

Jj+iika) 
V irka 

cos (ka—{j+1)T/2) 

as long as,/ is smaller than ka. Then (3.7) becomes 
a sum of cosines, which does not converge rapidly 
because the successive terms decrease too slowly. 
In order to obtain rapidly decreasing terms, j 
must be larger than ka. Of course, it would be 
possible for a large computing machine to handle 
the summation of a million terms or more, but it 
should be noticed that these terms oscillate very 
rapidly and very irregularly, so that to get any 
sort of accuracy, one would need to start with a 
large number of digits in each term to avoid the 
accumulation of errors. 

However, this particular problem need not be 
solved by machine. G. N. Watson, in a brilliant 
paper [1]* in 1919, showed how this sum could be 
expressed as a complex integral, and then, by use 
of a difficult analysis of the Bessel functions, he 
was able to evaluate the integral as a sum of 
residues. The difficulties of the analysis are such, 
however, that it seems hopeless to expect a result 
similar to that of Watson in the case of general 
values of n. 

During the war a great deal of attention was 
focused on this problem because of its importance 
for the Armed Services. After all, if the radar set 
does not "see" above a certain height, you have a 
blind spot, and airplanes would be out of view even 
though the radar is working perfectly. Of course, 
conversely, under certain atmospheric circum- 
stances, if the pilot knows that the radar has a 
blind spot, he would try to take advantage of it. 

An advance in this problem was made by M. H. 
L. Pryce [2] in England, who introduced a trans- 
formation whereby the surface of the earth became 
a plane, and the rays were curved. As a result 
the problem was transformed so that a somewhat 
simpler equation had to be solved. A modified 
index of refraction, N, is introduced as follows: 

N= 
r n(r) 
a n(a) 

(3.8) 

and then a function in rectangular coordinates, 
4>(x,y,z,t), must be found, which satisfies this 
equation: 

A^-kW- 
U2'' 

= 0- (3.9) 

The function (3.5) behaves like a source in the neigh- 
borhood of the antenna; it vanishes on the earth's 
surface (s=0); and at infinity it behaves like an 
outgoing  wave.    Next,   Professor  Furry   [3]   of 

•Figures in brackets indicate the literature references at the end of thi? 
paper. 
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Harvard showed that the solution of this partial 
differential equation depended upon the solution 
of the following eigenvalue problem: Given N, 
find the eigenvalues X such that the solutions 
U (S) of the equation. 

d2U 
dz2' -(&W2-X)Z7=0, (3.10) 

satisfy the following boundary conditions: £7=0 
at 2=0 and U is an outgoing wave at infinity. 
Here, it is assumed that N is a function only of 
the distance above the surface of the earth. 

Unfortunately, the solutions of this equation are 
known only for a few functions N{z). One such 
case is that_ of a constant atmosphere where N(z)2 

becomes a linear function of z and the solutions are 
Hankel's function of order 1/3. Surprisingly 
enough, these are identically the same functions 
that appear in Watson's exact solution of the con- 
stant atmosphere case. This equation (3.10) hap- 
pens to be an approximation to equation (3.6), 
which seems to be sufficiently correct for the prob- 
lems being treated here. It is important to notice 
that in this equation the eigenvalues are complex. 
The reason is that the boundary condition at in- 
finity is not a self-adjoint one, since it distinguishes 
between -\-i and —i. 

We have been able to go far enough in the ques- 
tion of atmospheric propagation to reduce the 
problem to an ordinary differential equation of the 
second order. Now, what is desired is a solution 
of (3.10) when N(z) is given as an arbitrary func- 
tion of z, the actual function to be determined by 
the atmospheric conditions. This would seem to 
be a simple computing task; yet it turns out to be 
extraordinarily difficult. First, since even in the 
simplest case the eigenvalues are complex, we have 
to deal with both complex values of X and complex 
eigenf unctions U(z). Second, the boundary con- 
dition at infinity is difficult-to handle. How can 
we recognize that a function is behaving like an 
outgoing wave, i. e., like e~ikz and not like Ae~ik'-\- 
Beikz, where A and B are constants? Unfortu- 
nately, if we start with a value of X that is not the 
exact one, we must always get a solution containing 
incoming waves. The only time a solution with- 
out incoming waves can be obtained is when the 
exact value of X is used, i. e., exact to an infinite 
number of decimals. Third, since the solutions 
oscillate very rapidly, we must work with many 
decimal places in the beginning in order to come 
out with a few at the end. Because of these 
difficulties, very little numerical work has been 
done even though there is a great need for it. 
The engineer's work would be simplified if this 
problem could be handled even for functions N{z) 
which are composed solely of straight-line segments. 

This differential equation offers an opportunity 
for mathematical investigation. We have here an 
eigenvalue problem which is not self-adjoint. What 
can be said about the eigenf unctions?   Are they 

complete? Are they orthogonal? Can an arbitrary 
function be expanded in terms of these eigenfunc- 
tions? All the results of the Sturm-Liouville theory 
are open to generalizations, but so far the work has 
been negligible, Yet the physicist, in his work in 
acoustics, electrodynamics and quantum theory, 
needs the answers to the preceding questions. 
Every time he considers wave propagation outside 
of a finite region, he introduces a condition that the 
function behave like an outgoing wave at infinity. 

Consider next a second type of problem which 
requires mathematical treatment. The difficulty 
here is in the complicated nature of the boundary. 
A practical illustration is the problem of the tides. 

Tides are forced oscillations of the ocean which 
result from the periodic disturbances of the earth's 
surface due to the varying gravitational attraction 
of the sun and moon produced by relative motion 
of these bodies. Mathematically we have a linear 
partial differential equation of hyperbolic type in 
two space variables and one time variable. As an 
illustration of the kind of equation, consider the 
following case. Assume symmetry on the polar 
axis and suppose the disturbing force varies as 
eiat.    Then we must solve the equation [4] 

bß\f-ß>  du) 9 9 
(3.11) 

J     2 

s=i-l 
where M=COS 6, the cosine of the colatitude; h 
represents the depth of the ocean, which is not 
assumed constant; U=2TT times the frequency of 
the disturbance of the earth's surface; a=radius of 
the earth; <7=the acceleration of gravity;/= tr/2co£'. 
The quantity we are solving for is f—|, where f is 
the elevation of the ocean and the height of the 
tide, £—| is the apparent elevation produced by 
the disturbing force. In practice, the mathemat- 
ical theory is used only to a very slight degree. It 
is assumed that tidal motions have gone on so long 
that all the free oscillations have been damped out 
so that only forced oscillations are present. The 
period of these forced oscillations is known from 
astronomy. Hence, a trigonometrical series having 
these periods with arbitrary amplitudes and phases 
can be set up, and this series can be fitted to the 
observed tides at any one particular point. After 
the amplitudes and phases are determined, this 
experimental series is used to extrapolate the 
tides at any given time. Thus, it is clear that the 
dynamic theory is not used at all in the computa- 
tion of the tides. 

Of course, there is considerable literature giving 
solutions of simpler equations for the tides— 
equations obtained by neglecting the Coriolis 
forces due to the rotation of the earth or by making 
unrealistic assumptions about the shape of the 
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boundary or the shapes of the oceans. The 
reason for making these simplifying assumptions is 
a natural one. We try to achieve a formulation 
which permits us to represent the solution in 
terms of tabulated functions. But here there 
seems to be a good opportunity to make use of 
modern calculating machines to handle this 
spectacular problem of solving the dynamical 
equations directly. In this way it would be pos- 
sible to obtain tides for points of the earth where 
the previously mentioned type of analysis has not 
been carried out. Also the tidal waves in mid- 
ocean could be studied. Questions unsolved to 
date, such as whether the tides in the open ocean 
behave like progressive waves or stationary waves, 
might be answered. 

Such a practical program for calculating tidal 
waves should be feasible since the differential 
equations are linear and are accurately known. 
The difficulty will appear at the boundary. Not 
only must the actual coast line of the ocean be 
approximated, but also the boundary conditions 
on it must be determined, since it is not known 
how much of the energy of the incoming wave is 
absorbed at the shore and how much is reflected 
back into the ocean. The extremes of perfect 
reflection and total absorption could be tried and 
the results compared with the actual observations. 
In fact, a knowledge of the energy losses at the 
shore would be in itself a worth-while byproduct 
of a successful attack on the problem. 

The third major difficulty which requires 
numerical analysis is that due to nonlinear differ- 
ential equations. In fact, part of the impetus 
given to the construction of calculating machines 
during the war was due to the hope that they could 
be used in the solution of nonlinear differential 
equations. One such problem whose solution 
would, be of immense practical importance is that 
of flood waves in rivers. 
Suppose a river with an arbitrary channel is 
represented as in figure 3.3. This might be a cross 
section of the channel at some distance x down- 

FlGUKE 3.3. 

stream. Let n(x,t) be the elevation of the water 
surface at some time t, and U(x,t) be the horizontal 
velocity. Then these functions satisfy the equa- 
tion 

bnt+(aU)x=0 

Ut+UUx+gnx=- 
-ca' (3.12) 

where b is the surface breadth and a is the cross 
section of the area. The term ca2/xa is added in 
order to take into account the resistance of the 
channel. These equations have been known since 
the time of Boussinesq in the 1880's._ Only in 
recent years has the theory been used in practice 
and then mostly by French hydraulic engineers. 
The main deterrent to the use of the theory is the 
enormous numerical calculation necessary to 
solve any but the simplest problems. It is 
interesting to note that the differential equations 
are of exactly the same type as those for the non- 
steady flow of compressible gas. Actually there 
is a perfect mathematical analogy between 
the two cases in which the depth of the water in 
the channel plays the same role as the density of 
the gas. J. J. Stoker has presented a complete 
exposition of this analogy [5]. 

However, in the case of flood waves, the problems 
are more complicated than in gas dynamics 
because of the resistance of the sides of the chan- 
nel and because the cross-sectional area of the 
water in the river changes with the depth of the 
water. Nevertheless, if the resistance coefficients 
and the cross-sectional shapes along a given river 
valley are known, it is possible to calculate nu- 
merically the progress of a flood wave downstream 
if we know the rate at which water flows into it 
at any point upstream. This latter figure, of 
course, depends upon the rainfall and many other 
things. 

Because of the mathematical connections be- 
tween these equations and those of gas dynamics, 
it would seem reasonable that the machines 
which could do one problem could do the other. 
A start might be made by determining the flood 
waves in a number of the larger and more im- 
portant rivers of the United States—the Colum- 
bia, the Missouri, and the Mississippi rivers. 
Probably it would be found that in most of these 
cases, the enormous. amount of data available 
for these rivers will still be insufficient for the 
purposes of a mathematical study such as is 
proposed. One of the fruitful effects of such a 
study would be to reveal the kind of data needed 
in order to make predictions. This in turn would 
help to separate the over-all problem into two 
parts: (1) the propagation problem itself and (2) 
the problem of predicting the river stage at some 
point upstream on the basis of the rainfall in the 
previous season. Another type of problem that 
could be studied is this: Supposing there were 
some dams on the river, how could we make best 
use of these dams in order to regulate the flow and 
flood waves in such rivers? Such studies could be 
used both in controlling flood waves and in 
deciding where dams should be placed. 

The last type of problem to be considered is 
that in which the boundary conditions must be 
met on a free surface or on an unknown surface, 
such as all problems dealing with a free water 
surface. For example, suppose that an elevation 
is produced in an infinite body of water.   How 
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does this elevation progress? There is some reason 
to believe that a progressive wave, even in mid- 
ocean, will break if it goes far enough. It would 
be desirable to carry out the mathematical calcu- 
lations and see if classical hydrodynamics agrees 
with this prediction. 

The problem I want to consider, however, is a 
different one and in some respects a simpler one. 
It is to find the impact force on a sphere that is 
entering water vertically. This force is a vital 
consideration in the construction of seaplanes and 
torpedoes. 

Suppose a sphere of radius A and vertical 
velocity B enters the water. Photographs of the 
entries show that the water surface behaves as in 
figure 3.4. Now the mathematical problem is to 
find a potential function (j>(x,y,z,t) such that v2<£=0 
everywhere in the water. The boundary conditions 

on the water surface, 
condition 

are 
d0 
^=-Scos0 

on the surface of the sphere where 9 is the angle 
from the center of the sphere to any point on the 
sph ere. Suppose that rj = rj (z,t) is the equation of 
the water surface. Then there is a condition of 
constant pressure on the water surface, which 
requires that 

1 b(j> 

wm; \\\\\\\\\\\ 

We also have the kinematic 

dF~ ~bz 

again on the surface. Now a complete knowledge 
of <j) is not needed here. We are interested only 
in the value of the following integral (which I 
shall call the induced mass given to the water by 
the motion of the sphere): 

M=Pff4>dxdy, 
w+s 

where p is the water density, W is the wetted 
portion of the sphere, and S is the water surface. 

The difficulty of this problem lies in the fact 
that the surfaces S and W are unknown. They 
must be determined from the conditions of the 
problem. Of course, it is true that at a reason- 
able distance from the sphere the water surface 
remains practically undisturbed, but ib is in the 
region of the sphere that the trouble occurs. 
From the diagram, it can be seen that there the 
water surface no longer has one value. As in all 
such problems there is a discontinuitv at the 
highest point on the sphere which the water 
reaches. Even a knowledge of the type of dis- 
continuity would be valuable. 

To summarize, four typical problems that re- 
quire numerical analysis have been presented. 
The first and last need a considerable amount of 
preliminary work before they are ready for solu- 
tion on the machines. The second and third 
problems, even though they are of a spectacular 
type, are still of considerable scientific interest and 
fortunately seem to be well adapted to our 
present-day   machines. 

FIGURE 3.4. 
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4. Linear Programing 
George B. Dantzig* 

A certain wide class of practical problems ap- 
pears to be just beyond the range of modern com- 
puting machinery. These problems occur in 
everyday life; they run the gamut from some very 
simple situations that confront an individual to 
those connected with the national economy as a 
whole. Typically, these problems involve a 
complex of different activities in which one wishes 
to know which activities to emphasize in order to 
carry out desired objectives under known limi- 
tations. 

.Consider, for example, the nutrition problem. 
This example apparently represents the simplest 
nondynamic program. Let us assume that one 
reason the housewife goes to the food store is to 
see to it that her family gets certain nutritive 
elements such as calories, calcium, etc. When 
she buys food, she does not buy a package of 
calcium, of calories, of vitamins, etc. What she 
does buy is a variety of foods, each of which con- 
tains some proportion of these elements. It is in 
this way that she tries to meet the daily nutritive 
requirements of her family [1].** There are 
several other considerations that also guide her 
selection. Thus she likes to make her choice in 
conformity with certain conventions and certain 
budgetary limitations. If the latter is important, 
then she may well try to minimize the cost. 
Mathematically we have a problem of minimiz- 
ing a linear form, subject to linear inequalities 
(which includes equalities as a special case). 
The form that has to be minimized in this example 
is the expression totaling the price times the un- 
known quantity of each food purchased. Because 
the diet must contain so much in the way of cal- 
ories, calcium, etc., one equation arises for each 
such nutirtive requirement. (If the requirement 
may be exceeded, then an inequality may arise.) 
One other important fact should be noted regard- 
ing the mathematical formulation of the problem: 
the amounts of various types of food purchased 
cannot be negative. It is this latter condition 
that makes the problem very interesting. 

I wish to say a few words now about dynamic 
programing in the Air Forces. Let us consider 
the situation in which the Air Force expanded 
very rapidly, as in the past war. The manifold of 
activities that goes on in the Air Force must share 
in the use of a great number of different kinds of 

* U. S. Air Force Comptroller, Washington, D. C. 
"Figures in brackets indicate the literature references at the end of this 

paper. 

things, which I will call "equipment items." 
This term includes both supply and personnel. 
In economics the term used is "commodities." 
There are well over a million different kinds of 
supplies alone in an Air Force program. In other 
words, the levels of various activities, such as 
training, maintenance, supply, and combat must 
be adjusted in such a manner as not to exceed the 
availability of various equipment items. Indeed, 
activities should be so carefully phased that the 
necessary amounts of these various equipment 
items are available when they are supposed to be 
available so that the activities can take place. 

Now, it is a legitimate question at this point to 
ask, "How is this to be done?" Let us consider 
how programing was done during the war. It 
took the staff well over seven months of very 
careful planning to come up with a program. 
The program thus developed was then used as a 
basis for action. Because of the time involved, 
it is clear that a careful balance was not reached 
on the million different items of equipment and 
different kinds of personnel previously mentioned. 
Overplanning in certain areas was necessary, and 
what happened, of course, was that a lot of the 
equipment was not used and was stored. Indeed, 
in any large organization there takes place a large 
amount of this "storage" activity that nobody 
cares to talk about. 

Project SCOOP (Scientific Computation of Op- 
timum Programs) is the official title of linear pro- 
graming work in the U. S. Air Force. Its objective 
is to reduce the time it takes to plan programs. 
Instead of many months, we should like the plan- 
ning to take a few days. Not only should we like 
to do the planning more quickly, but also better. 
This raises a question: Does there exist a general 
formalization of the programing problem? Per- 
haps human organization is such a complex web 
that it cannot possibly be reduced to mathe- 
matical form. It may be that programing is 
nothing more than a set of arbitrary decisions 
(I believe the usual term is "mature judgments"). 

On the other hand, if a systematic unified ap- 
proach can be found, there is a possibility that 
electronic computers may be of help in speeding 
up programing work. For example, a representa- 
tive of one of the large automobile manufacturers 
inquired whether the techniques being developed 
in the Comptroller's Office might help the auto- 
mobile manufacturers in their production schedul- 
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ing work. The question was turned around by 
asking him to determine for himself whether the 
scheduling procedures must involve judgment at 
every step. For if this is true, then one can 
imagine how efficient it would be to start an elec- 
tronic computer in operation; after about one- 
tenth of a second, it would have to stop, wait for 
some person in authority to make decisions be- 
fore it could operate again for one-tenth of a second. 
Thus, in general, it is evident that there is no hope 
of using electronic computers to do planning unless 
one can somehow get around the large number of 
judgments that are required in present techniques. 

Our research to date indicates that while pro- 
graming work is concerned with a great variety 
of subjects, the underlying techniques of computa- 
tions are essentially the same. It is this fact 
which permits the development of an orderly 
theory of programing that will now be discussed. 
I am going to present an extremely simple struc- 
ture. The structure depends on a set of basic 
assumptions which, I am sure, will appear to you 
(as they did once to me) as insufficient to provide 
an answer. In fact, my own first reaction was one 
of bewilderment because there appears such an 
infinity of choices of levels of activities that can 
take place in a large organization. 

If one views the general structure as a complex 
of activities which share in the use of items of 
equipment, then activities can be grouped in 
many ways consistent with the availability of 
equipment. It is clear that the particular group- 
ing over time of activities to form a program 
depends on the objectives of the organization or 
more generally the "economy" under discussion. 
Accordingly, the basic problem of programing is 
to construct a program of activities which is 
consistent within itself and which maximizes, in 
some sense, the objectives of the economy. We 
shall approach the problem of constructing a 
mathematical model by assuming that the amounts 
and kinds of equipment required to carry on the 
activities are known and that the objectives can 
be stated in quantitative terms. 

Notation.—Let 0 <t < T be the time span of the 
program. Each activity, if it takes place over 
several time periods 0<t<l, l<t<2, . . . , 
T—l<t<T, is broken down into a set of sub- 
activities, each assigned to one of these time 
periods. Let us denote the j'" type of activity in 
a typical time period by A}, where j=l, 2, . . . , 
n. (A superscript i will denote where necessary the 
t'h period, i—1, 2, . . . , T). Let the quantity 
of the ith type of equipment item required to be 
on hand at the beginning of the period to carry 
on the j'h activity be noted by Etj where ?'=1, 2, 
. . . , m. At the end of the period of time the 
amount of this equipment item will almost al- 
ways undergo change. In a sense, the activity 
Aj can be thought of as operating on Eijt trans- 
forming it to a quantity Et] by the end of the 
period.    In other words,  Etj becomes Etj when 

operated on by the j'" activity. For example, in 
the training activity in the Air Force one starts 
out with advanced student pilots; at the end of a 
period of say a month or 6 weeks, they will become 
full-fledged pilots; so that, if i=l represents stu- 
dents   and  i=2  pilots,   then  Eir*Eu=0   and 
E2,/=0—>.E,

2./. 
Basic Assumptions.—Next let us examine cer- 

tain assumptions underlying a linear structure. 
First, the assumption of additivity of certain sub- 
sets relative to an equipment item. This state- 
ment on additivity is simply a bookkeeping as- 
sumption. It states that if one takes the quan- 
tity of equipment and assigns it to two activities, 
the resultant quantity of equipment will be the 
sum of the quantity of equipment assigned to 
each of the activities. There is no overlapping: 
common equipment or common facilities are not 
used. On paper, at least, the equipment is 
broken up and part is assigned to each activity. 
The second assumption concerns completeness of 
activities: it states that the totality of equipment 
on hand at time i—1 is equal to the sum assigned 
to different activities during the /'* period,1 i. e., 

(i=l,2, ■ • •, m). 

Thus if one has a complete list of all of the activi- 
ties and totals the amounts of an equipment item 
assigned to each one, the sum equals the total 
amount of the equipment. The third assump- 
tion is also concerned with the completeness of 
activities; it states that the total amount of 
equipment on hand at the end of the tth period 
(time t) is equal to the total amount produced by 
the various activities during the t'h period, i. e., 

(i=l, 2, ■ ■ i, m). 

Now let us consider the more important as- 
sumptions on proportionality. Assumption four: 
the amount of equipment required to carry on 
the activity is proportional to the level of the 
activity. To illustrate, if the activity is build- 
ing an electronic computer, then the assumption 
states that the building of two electronic com- 
puters instead of one electronic computer will 
require twice as many tubes, twice as many mer- 
cury delay lines, etc. In theory, at least, if one 
has twice as many of these components at the 
beginning of the period, twice as many electronic 
computers will also be produced, This leads to 
assumption five: the amount of equipment pro- 
duced by an activity is proportional to the level 
of the activity. The equations expressing pro- 
portionality are given by 

E«-»=aiJ-xr 
Ev=äu-xr 

i The tth time period extends from t—1 to t. The superscript in Ejj' and 
"jilf refers to equipment assigned to or produced by the j«' activity in the 
( "> time period, whereas in Ef it refers to total equipment on hand at time t. 
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where Xp>0 represents the level or quantityof 
activity during the t'" period and ai} and a{j 
(called input and output coefficients, respectively) 
are the coefficients of proportionality referred to 
in assumptions four and five. 

Based on these five assumptions, the equations 
of the dynamic system may easily be derived. 
If Eim represents given initial conditions, then 
the levels of activities during the first time period 
must satisfy the set of equations: 

(i = l,2, • • • , m) 

The levels of activity during the first time period 
determine the amount of each equipment item 
available for operations during the second time 
period; thus 

n n 

Similarly, at the beginning of the (i+1) period, 

EP = S«« • XP = S«o • X? +l>, 
i=i i=i 

where i=l, 2, . . ., m. 
MATRIX NOTATION.—Let Xw represent the 

vector of activities that take place in the first 
time period, and let a—[a{j]_ be the matrix of in- 
put coefficients and 3=[ay] be the matrix of 
output coefficients, then 

0 = -äX(1)+äX<2> 

0= -äX^+aX® 

prising when one reflects that there are many 
possible programs (i. e. choices of X(t) consistent 
with initial status. Naturally, not all of these 
programs make much sense in terms of the "objec- 
tives" of the organization or composite activity. 
Thus in the case of the housewife, after imposition 
of additional restrictions that reflect conventions 
and preferences, there may be some degrees of 
freedom left. In this case her objective will be 
to minimize the cost of the diet. On the other 
hand, the objectives of the Air Force might be to 
fly as many sorties as possible in the event of war. 
If we think of certain of the X's as representing 
combat activities given in sortie units, the objec- 
tive might be to maximize a certain linear function 
of the Xf which evaluates the total sorties flown 
during the time span of the program. As a third 
example, in a large business organization making 
automobiles, many of the X's consist in the pro- 
duction of various types of automobiles, buying 
parts, etc. There are many alternative actions 
that may be taken, but that which yields maxi- 
mum profits to the enterprise is apt to be the 
most significant one. All activities of the enter- 
prise wül have costs associated with them. Those 
concerned, however, with the selling of cars will 
have a positive output of money. Again, the 
objective function can be expressed as linear 
function of various activities. The best program 
in this case is the one which maximizes profits. 

Let me say a few words about the techniques 
by which we plan to maximize a linear form sub- 
ject to linear restrictions. We shall discuss the 
techniques of maximization in terms of a more 
general mathematical problem: maximize a linear 
form of nonnegative variables Xu X2, . . ., Xn, 
l. e., 

X1.b1+X2.b2+ +Xn.bn=m.&x, (X,>0) 

where X} satisfy a system of m  equations,  in 
vector form 

The terms "input" and "output" are borrowed 
from similar terms used in a model constructed 
by W. W. Leontief for describing the structure of 
the American Economy [2]. The model described 
here was developed by the author as a generali- 
zation of the Leontief model to a dynamic situa- 
tion. However, in the generalized form it is more 
closely analogous to a dynamic set of equations 
developed by J. von Neumann in 1932 [3]. 

The Maximizing Function.—The system of equa- 
tions is subject to the side condition that the levels 
of activities, comprising the elements of the vec- 
tors Xm, are nonnegative, i. e. 

X/">0 

Usually, in spite of this restriction, there are many 
possible solutions to the system when X{t) are 
regarded as unknown vectors.    This is not sur- 

XvPi+Xl-Pi+ -\-Xn-Pn=Pa 

where Pj has coordinates (a:j, a2j, . . ., amj). 

In order to arrive at an intuitive geometrical 
picture, let us suppose that it is known that the 
sum of the X's is equal to unity. We could then 
think of the X's as nonnegative weights assigned 
to a set of points in say m dimensional space 2 

and form a linear combination of these points to 
produce a given point P0. In other words, the 
point P0 is a center of gravity of known points 
Pi, P2, . . ., Pm with unknown weights Xu X2, 
. . ., X„. If we now add a 6-coordinate to each 
of the points, P1, P2, . . . where bx, b2, . . . is 
taken from the maximizing form, then our prob- 
lem is to create a center of gravity lying on a 

Strictly speaking, the condition SXi=1 substitutes for one of the equations 
ice one of the coordinates can be dropped and the point Pi plotted in hence one of *»*, *,—i~. 

m—1 dimensional space 
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given line, P0, parallel to the ö-axis whose 6-coor- 
dinate is maximum. 

To illustrate, let us examine figure 4.1: If we 
think of these points as spanned by a convex, then 
we are looking for a point where this line pierces 
an "upper" face of the convex. In the diagram 
(Pi, P6, P6) represents the top face. 

FIGURE 4.1. 

It can be shown that the solution will embody 
the following characteristics: That all points 
(activities) will be given a weight of zero except 
m out of n of them, where m equals the number of 
equations. The remaining m will be given non- 
negative weights corresponding directly to the 
level of activity. One method of solving the 
problem might be as follows: Assume that we 
have some kind of a program that means we have 
found some combination of points that generates 
P0 with nonnegative weights, e. g., Pu P2, P3 in 
the diagram. Now we wish to improve the "pro- 
gram", i. e., find a triangle that cuts P0 in a higher 
point. To do this, we consider any point Pt that 
lies above the plane of the triangle Plt Pi, P3, for 
example, P4. We join such a point to Pu P2, P3 
forming a simplex in space. The line P0 pierces 
the simplex in two points. One point represents 
the b of the solution involving Pu P2, P3, the other 
point is higher, since all points in the simplex lie 
above   the  face  Plf  P2,   P3.   Thus  a  solution 

involving just P2, P3) Pi represents an improve- 
ment over Pu Pi, P3. It is clear that by iterating 
this procedure one will eventually obtain the best 
program in a finite number of iterations. This 
method of solution is known as the "simplex" 
technique. 

There have been several other techniques sug- 
gested by J. von Neumann and others. There is 
a very close relationship between this problem 
and the problem of determining the optimum 
mixed strategy in game theory. In fact, the 
problem here presented includes the game prob- 
lem as a special case. It is more difficult to show 
that the game problem is actually equivalent to 
the program problem. 

To date procedures that have been devised for 
maximizing a linear form subject to linear restric- 
tions involve, even for the simplest problems, a 
great number of computations. With the advent 
of high speed electronic computers many every- 
day programing problems which involve alterna- 
tive choices of action may be expected to be 
solved by techniques outlined here. Very large 
scale programing problems, however, may have 
to wait for electronic computers considerably 
faster than those currently contemplated. Be- 
search in the field may be said to hardly have 
started. Faster computational techniques are 
needed and these can only be arrived at by a better 
understanding of the problem. The linear struc- 
ture itself, of course, is only a starting point. 
Computational methods will have to be extended 
to nonlinear areas also. 
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