
ftd-oo<j-fe*6

bSTO-Gfc-Ooqo

r iMAPS: Collecting Data for
Software Costing

Gina Kingston, Martin Burke
and Peter Fisher

19961009 134
1

ff'TT?irli"ir-tlil4i'-'-i,.--i-l-"r.'n| - " ifT-1

%mr!?v«J tor wiEHs releössf

APPROVED FOR PUBLIC RELEASE

© Commonwealth of Australia

DEPARTMENTOF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

I : j

\ TECHNICAL ^FORMATION SERVICE f

1 IS AUTHORISED TO I
I &£pRODUC-; AND SELL THIS R>POR" i

iMAPS: Collecting Data for Software Costing

Gina Kingston, Martin Burke and Peter Fisher

Information Technology Division
Electronics and Surveillance Research Laboratory

DSTO-GD-0090

ABSTRACT

This paper discusses the iMAPS Software Costing conjectures, and documents the
data required to calibrate and validate the models. It discusses issues related to the
collection of the data, including the benefits to participants, and the significance of
this research to the Australian Defence Organisation.

DUC QUALITY nratiiCi*

APPROVED FOR PUBLIC RELEASE

DEPARTMENT OF DEFENCE

 +
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DSTO-GD-0090

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury. South Australia, Australia 5108

Telephone: (08)259 7053
Fax: (08)259 5619

© Commonwealth of Australia 1996
AR-009-686
April 1996

APPROVED FOR PUBLIC RELEASE

DSTO-GD-0090

iMAPS: Collecting Data for Software Costing

Executive Summary

Software is an increasingly important element in modern Defence systems. A large proportion of

the Australian Defence Organisation's (ADO) budget is currently committed to the procurement

and maintenance of software based systems. Despite this, the process of estimating and monitoring

Software Costs for ADO Projects is ad-hoc. This can result in project Costs exceeding the original

budget, or systems being delivered with sub-optimal functionality. Moreover, current approaches

to Software Costing have limited applicability to Defence systems.

The integrated Measurement, Assessment and Prediction of Software (iMAPS) task is motivated by

the need for a systematic approach to Software Costing at all stages of the Defence acquisition

process. This document describes the iMAPS Software Costing conjectures and the data collection

activities required to support the research.

A two-phased approach to Software Costing is proposed. The result of the first phase, Cost Slicing

(see Section 2.5), would be a coarse initial estimate which could be used early in the acquisition
process when comparing alternative methods of obtaining a specific Defence Capability, and as

input to Defence Force Capability Options or Capability Proposals. This phase would be followed

by an iterative process, Progressive Refinement (see Section 2.6), to refine the Cost estimates during

the remainder of the acquisition process, including both before and after contract negotiation.

In order to analyse and calibrate (see Section 4) this approach, software cost data will be collected

from the ADO. The quality and quantity of the data provided will directly effect the accuracy and

precision of the predictions made by the approach.

The confidentiality of the data is of utmost importance. Only aggregated results, which in no way
disclose the source of the data, will be published. Furthermore, the data will not be used to
evaluate or compare organisations or projects. The names of organisations and projects which
contributed information will only be released if express permission is given. Even in these
circumstances, the names of the organisations will not be associated with data they supplied.

The data will be collected with the assistance of a facilitator, who may use a combination of
interviews, questionnaires and collation of existing data to collect information from the Developers,
Clients and product Users. The Questionnaire in Appendix A provides a record of the information
to be collected. However, the data requested falls into two main categories (Group 1 and Group 2)
and it is possible that most of the information for the larger group will be already stored
electronically and will merely require copying. Automated support for the collection of Group 2
information should be available for on-going projects. It is anticipated that a person familiar with
the project will require about one hour to answer the questions for Group 1. A small reduction in
the effort required for data collection could be achieved by restricting the information collected to

the compulsory questions for each group.

All participants in the data collection activities should benefit through early and preferential access
to the Software Costing models developed using the data. Industrial participants who collect
related data for their own use should quickly be able to customise these models for their
organisation. Such customisation has already been shown to improve the accuracy and precision of
Software Costing models. Early benefits to the Australian Department of Defence should arise
from the creation of a database of Defence specific projects which could be used for informal

Costing of similar projects.

DSTO-GD-0090

DSTO-GD-0090

Contents
Page No.

1. Introduction 2

2. Background 4
2.1 Estimation, Explanation and Prediction 4

2.2 Current Sizing Techniques 6

2.3 Conjecture 1: Capacity 10

2.4 Conjecture 2: Difficulty H

2.5 Conjecture 3: Cost Slicing 13

2.6 Conjecture 4: Progressive Refinement 14

3. Data Requirements 18

3.1 Data Categories I8

3.2 Considerations for Participants 19

3.3 Collection Mechanisms 21

4. Analysis 24
4.1 Exploratory Analyses 24

5. Summing Up 27

6. Acknowledgments 28

7. References 29

Appendix A: Software Cost Estimation Data Collection Questionnaire 29

Appendix B: Guidelines for Facilitators ^

B.l Providing Processing Information 80
B.l.l Providing the Information for Part C 80
B.1.2 Providing the Operations Information for Part D 82
B.1.3 Providing the Characteristics Information for Part D 86

DSTO-GD-0090

DSTO-GD-0090

1. Introduction

Objective
This document describes the iMAPS Software Costing conjectures and the data collection

required to support the research. This document focuses on the kinds of information which will

be required in the short term, and indicates the provisions which should enable these early data

collection efforts to benefit longer term analyses as well. It identifies different types of data, and

the mechanisms by which each type of data could be collected.

Motivation
Software is an increasingly important and costly component of many Defence systems. Methods

for estimating the Development Costs of such systems tend to be inaccurate and imprecise. As a

consequence, the software acquisition process tends to be high risk for both the Australian

Defence Force (ADF) and the industries involved. The iMAPS Software Cost Prediction research

aims to reduce the risks for all parties. However, relevant data must be obtained to develop

Costing models suitable for Defence Projects. Organisations which choose to supply data should
benefit from early access to the results of this research and increased awareness of their

Software Development Process.

Context
This work forms part of the DSTO iMAPS task DST 93/349 [Burke, 1995], a 3 year DSTO task
which aims to provide an integrated approach to the description, measurement, assessment

and prediction of software attributes. A general introduction to the iMAPS approach is given in

[Burke, 1994].

Research on the Software Cost Prediction foci of the iMAPS task was started in mid-1994 and an
initial statistical investigation using public domain data has already been undertaken [Kingston

et al, 1995c] through a Co-operative Education Enterprise Development (CEED) agreement
[Kiermeier, 1994] with the University of Adelaide. Current work is focusing on the

development, evaluation and refinement of a new model for Software Development Cost

Prediction and will contribute towards Gina Kingston's PhD studies.

Assumptions
The Cost associated with a software product has many elements including: the cost of the

hardware it will be developed on, travel costs, and Software Development and Maintenance

costs. The iMAPS Cost Prediction thread will focus on just the Software Development Cost.

Development Cost is assumed to be primarily due to the cost of labour and may be thought of

as Development Effort multiplied by the average cost per unit Effort.

Intended Readership
This document has been prepared for use by the iMAPS team at DSTO and external parties,

such as TTCP partners, Science Policy Division (SP) and, specific ADF and industry project

managers, who may be able to assist in data acquisition. Sections of it may also be of use to

other members of the Software Engineering Group and ITD's executives.

DSTO-GD-0090

Layout
Potential data suppliers are advised to read at least Sections 3.1 and 3.2. They may also wish to

view the preliminary Costing questionnaire in Appendix A and the information on Collection

Mechanisms in Section 3.3.

Potential facilitators (see Appendix B) are advised to read at least Sections 2 and 3 and both

Appendices, although Section 2 is more technical. Readers wishing to familiarise themselves

with the conjectures should read Sections 2.3 to 2.6 and those requiring an appreciation of the

scientific context of the work should read Sections 2 and 4.

The iMAPS team are advised to read all sections of this paper.

Section 2 provides a brief background to Software Costing, with particular emphasis on those

established and new ideas on which data will, or may, be collected for the iMAPS task. The new

conjectures which will be investigated using this data are summarised at the end of the section.

Section 3 describes the data collection requirements and indicates how the data may be

captured. Section 3.1 should be read by anyone interested in the type of data being collected.

Section 3.2 describes some of the considerations for potential participants in the data collection.

Section 3.3 discusses mechanisms by which the data may be collected and constraints on the

data.

Section 4 describes the analyses which are to be performed on the data, and indicates how

various subsets of the data could be used during the different analyses.

Section 5 summarises the current status of the data collection work and the way ahead.

A preliminary Costing questionnaire and guidelines for data collection facilitators are included

as Appendices.

DSTO-GD-0090

2. Background

A substantial amount of literature is available on Software Cost Explanation techniques dating

from the 1960's. (See [Kemerer, 1991] for a summary of approaches commonly used.) Most of

this work relates some measure of Software Size with Effort. While the correlation between

Cost and Size is statistically significant [Kitchenham, 1992], it is not strong enough to provide

useful Cost Estimates. Therefore, adjustment factors are usually added and linear regression is

reapplied to try to improve the model. In addition, most of the work focuses on Effort

Explanation, rather than Effort Estimation or Prediction (See Section 2.1).

Literature surveys on Software Costing and Software Sizing Techniques are currently being

conducted and papers presenting the results are being prepared [Kingston et al, 1995a;

Kingston et al, 1995b]. The conclusions so far, are that the results given by the current state-of-

the-art techniques are still of limited accuracy and rarely attempt to quantify precision.

Correlation efforts [Kitchenham, 1992; Kingston et al, 1995c] have shown that, out of all

measures suspected to influence Software Cost, measures of Software Size have the greatest
correlation with Software Cost. They also show that most of the adjustment factors used in
current models have little or no correlation with Development Effort. The only adjustment

factors which appear to have statistical significance are the Development Environment and

language.

Section 2.1 explains some of the differences between the terms Estimation, Explanation and

Prediction. Section 2.2 reviews different established measures of Software Size. The measures
described here include the two most commonly used measures, Lines Of Code and Function

Points. These measures will be used in the evaluation of the new approach. A more complete
review is currently being prepared for publication [Kingston et al, 1995b]. Section 2.3 introduces
a new measure conjectured as part of the iMAPS task. Section 2.2 and 2.3 examine some of the

benefits and limitations of using the different Size measures for Predicting Software
Development Effort and Cost. Sections 2.3 to 2.5 examine the conjectures proposed by the

iMAPS Cost Prediction team.

2.1 Estimation, Explanation and Prediction
The terms Estimation, Explanation and Prediction are often used inconsistently and

incorrectly in the Software Costing field. This section provides definitions of these and
related terms as they are used throughout this and related iMAPS documents. Figure 1

depicts the relationships between the terms.

Definition: Costing
Costing is the generic term used to describe all work on developing models for Software

Development Costs, regardless of their use, testing, or how they were developed. In other

contexts it may also be used to refer to models of Software Maintenance Costs.

DSTO-GD-0090

Costing

X
I

Forecasting

Prediction
1

Estimation

Un
Corroborated

Weakly
Corroborated

Strongly
Corroborated

X

Reviewing
I

Explanation

Un
Corroborated

Weakly
Corroborated

1
Exposition

Un
Corroborated

Weakly
Corroborated

Un
Corroborated

Weakly
Corroborated

Strongly
Corroborated

Figure 1: Costing Terminology

Definition: Reviewing
The first stage in developing a Software Development Costing model is normally to

explore the potential model using historical data. Models which use data obtained after

project completion will be termed Review models.

There are two types of review models - Explanation and Exposition. Explanation models

are the simplest.

Definition: Explanation
Explanation models are the first (stage in) models developed to explain the behaviour of
past projects. They contain estimates of their accuracy; that is, they have been checked for
biases. Most models in the literature only deserve to be called Explanation models even

though they are often claimed to be useful for Estimation.

Definition: Exposition
An Exposition model is an Explanation model which has been enhanced by a mechanism

for determining the precision of the model, such as Prediction Intervals [Matson et al,

1994].

Definition: Forecasting
Unlike Review models, which are retrospective, those which are to be used for Costing a

project during its Development should be developed from data obtained before and/or

during the Development.

There are two types of such Forecast models- Estimation and Prediction models.

Estimation models are the simplest.

Definition: Estimation
A model is termed an Estimation model if it is a Forecast model whose accuracy has been

determined.

DSTO-GD-0090

Definition: Prediction
A model is termed a Prediction model if it is an Estimation model for which Prediction

Intervals [Matson et al., 1994] have been determined.

The validity of Software Costing models may be checked using a variety of techniques

and this method can be used to further classify the models.

Definition: Un-Corroborated
Un-corroborated models have their accuracy (and precision) checked for biases using

only the information used to develop the model. Checking techniques include statistical

checking such as statistical checks for differences between models, Mean Residual Error

checks and heteroscedastity checks (tests for changes in error with Size). All types of

Costing models may be Un-Corroborated.

Definition: Weakly Corroborated
When Weakly Corroborated models are developed, a randomly chosen subset of the
available data is set aside for testing. After the model has been developed from the

remaining data, from one or more projects, Effort estimates are obtained from the test
data and compared to the Actual Effort. Accuracy is measured by checking for biases in

these estimates. Precision can be determined from the absolute errors in the estimates. All

types of Costing models may be Weakly Corroborated.

Definition: Strongly Corroborated
Strongly Corroborated models are similar to Weakly Corroborated models, in that the

model is checked using data which was not used for the development of the model. The

difference is that Strongly Corroborated models are tested on new projects where the
estimates are used during the development process, not just on projects for which data

was initially collected. Therefore, only Forecast models can be Strongly Corroborated.
Models may be Strongly Corroborated to check against biases in the initial data

collection, and biases introduced by the estimation process. For example, the
development of many of the existing models only used data from successful projects.

2.2 Current Sizing Techniques
This section looks at several different measures of Size. The first two, Lines Of Code
(LOC) and Function Points, can be found in the Cost-Estimation literature [Kemerer,

1990]. The other measures are specific to large Ada projects. The Capacity measure being

developed by the iMAPS Software Cost Prediction team as an alternative measure of

Software Size is discussed in Section 2.3. A more detailed review of existing Software

sizing measures and their application to Software Costing is discussed in a paper

currently being prepared [Kingston et al, 1995b].

Lines Of Code
One of the most commonly used Size measures is Lines of Source Code. It can be readily

measured from the source code, provided a sensible definition of a line of source code is
used. This definition must account for the inconsistent use of "white space", including

DSTO-GD-0090

carriage returns, as most programming languages allow it to be arbitrarily included or

omitted at many locations within the code.

Benefits:

• Simple concept.

• Can be automated.

• Widely used.
• Contains no uncertainty when measured directly provided clear definitions (or

automated calculation methods) are used.
• May be useful for predicting maintenance and /or testing costs (although complexity

measures may also be necessary, or may be superior).

Limitations:
• Language dependent.

• Can only be measured after the completion of coding.

• Can be, and is, counted in many ways using different definitions. This introduces

uncertainty into comparisons between different systems.

• Does not consider the complexity of the code.

Function Points
Function Points are another widely used measure of Software Size. Function Points were
developed for Transaction Processing systems and have become established in this area.

Function Points were designed to:
• Be measured before coding commences (cf Lines of Code).

• Be measured after functional and data decomposition have been performed.

• Capture the transactions which occur at the interface between the software and both

the users of the software and other systems.

The Function Point count for a system is determined by calculating the raw function

point (or base) count and applying 14 adjustment factors. The base count is determined

by considering the user requirements according to five categories: Inputs, Enquiries,

Outputs, Internal Logical Files and External Logical Files.

Benefits:
• Can be measured earlier than Lines of Code.
• Language and technology independent.

Limitations:
• Original choice of components and weights in the definition was arbitrary.

• Best measured after system design.

• Does not handle uncertainty.

• Applicable to a limited range of applications or systems - in particular transaction

based systems. Most of the functionality of these systems is tied to the five categories

(often broken down into data and transaction categories) on which Function Points

are based. Function Points do not provide a suitable measure of Size for systems

where there are large amount of functionality which are not tied to transactions, such

as real-time, scientific, and other systems with a high degree of internal processing.

DSTO-GD-0090

Definitions are subject to different interpretations.

Counting cannot be fully automated.

Time consuming.

Function Points and Lines of Code have been correlated for a number of different

languages [Albrecht and Gaffney, 1993]. This suggests that conversions can be made

between Function Points and Lines of Code. This has two main purposes. The first is so

that Function Point Counts can (effectively) be used as the input to Cost Estimation tools

based on Lines of Code. (Correlation between different Size measures is seen as an

important issue by many researchers, although this may preclude measures which are

"better" in some sense which do not correlate with other Size measures.) The second is so

that historical data, based on both Function Points and Lines of Code, can be used to

calibrate tools. However, there are a number of problems with this approach including:

• Function Points were designed to capture Software Size for Transaction Processing

systems and are not always accurate for other types of systems. Lines of Code are a

valid measure of Software Size for all types of systems. Thus correlations between

them would only be valid for Transaction Processing Systems. This is only a problem

if the counts are misused, as in the example below.
If the correlation is used in inappropriate circumstances, a Function Point
count could be used to derive a meaningless Lines of Code count. If the
original Function Point count is then thrown away, the Lines of Code count

could be treated as an accurate estimate of Software Size.
• Different adjustment factors are generally used when correlating Function Points and

Lines of Code with Cost. It is difficult to see if and how these should be taken into

account when doing the correlation.
• Function Point counting is generally performed by decomposing the system into sub-

systems based on related (functional) areas. If Function Points are measured before

the system is designed, the designers may make use of this decomposition. This may

influence the design of the system and may affect the eventual number of lines of

code.
• Errors are introduced into estimating processes which use historical data obtained

using the correlation, as the process is not perfect.

Ada Specific Measures
A number of Ada specific measures are also described as they are relevant to the systems
of interest to the ADF. It is not intended to restrict our research on Software Costing to
Ada applications and alternative Size measures may be provided for applications in other

languages. In addition, it is our intention to collect information on any Size measures

which are currently being used.

Previous Cost Explanation models have tended to be developed using small to medium

sized applications typically written in Cobol, C or C++. By contrast, Defence projects are

typically large, Ada projects. Because these systems are large, they are generally broken

down into a hierarchy of sub-systems. The sub-systems themselves consist of a collection
of Ada library units, which are the smallest pieces of Ada code which can be separately

compiled and stored in the Ada library. The only mechanism of encapsulation within the

DSTO-GD-0090

library unit is the Ada package. These three constructs - sub-systems, Ada library units,

and Ada packages - are our Ada specific measures.

Sub-system Counts

Benefits of sub-system counts:

• Available before detailed design.

• Can be automatically obtained from some design tools and Development

Environments.

Limitations of sub-system counts:

• Not available before system design.

• Cannot be determined from the source code as there is no language construct to

support the sub-system abstraction.
• Subjective. They are determined by the system designers, sometimes in accordance

with loose guidelines. Therefore, they can be of arbitrary Size.

Ada Library Unit Counts

Benefits of Ada library unit counts:
• Can be automatically obtained from code and some design systems.

• Available before coding.

Limitations of Ada library unit counts:
• Design dependent. They are determined by the system designers, sometimes in

accordance with loose guidelines. Therefore, they can be of arbitrary Size.

• The concept of library units is specific to the Ada language.

• Ada "separate"s can be treated in two ways. (Ada "separate"s are files which contain
sections of code which are logically part of a library unit, but which can be re-

compiled separately [Barnes, 1993].) They may either be counted towards the library

unit count (as they may have been separated because they are large, complex or

volatile components) or they may be ignored as they are not actually a library unit.

Ada Package Counts
Benefits of Ada package counts:
• Can be automatically obtained from code and some design systems.

• Available before coding.

Limitations of Ada package counts:

• Design dependent.
• Language dependent although similar concepts exist for other languages.

• Only available after detailed design. They are determined by the system designers,

sometimes in accordance with loose guidelines. Therefore, they can be of arbitrary

Size.
• Variations can exist between the counts of a given system as special types of

packages, such as Generics, can be treated in several ways. A well defined counting
mechanism would eliminate this problem.

2.3 Conjecture 1: Capacity
Capacity is proposed as a new candidate Software Size measure. It was conjectured after

considering the benefits and limitations of existing measures of Software Size. Capacity

DSTOGD-0090

only captures what the software system does (will do) and does not consider how it does

(will do) it. It looks at what the software directs the computer to do. It is asserted that

computers can perform two main activities - communicating with external devices and

processing information (both symbolic and numeric). Software can make computers

appear "clever" by making them do many of these types of activities quickly. Capacity is

a measure of how much the software makes the computer do - that is, how much of

communicating and processing the software controls. Appendix A, Part C contains a

table which gives possible examples of Capacity levels and indicates the amount of

device control and processing which may be present at each level. An ITD report

describing the concept of Capacity in more detail is being prepared [Kingston and Burke,

1995d].

Definition (Preliminary): Capacity
The Capacity, C, of a Software System is a measure of its Size or Functionality.

It is defined as an increasing function of the number of Basic Manipulations

(BM) which must be performed by the Software System to deliver its

functionality.

A Basic Manipulation is a Basic Data Transfer or a Basic Data Transformation.

In practice, these Basic Manipulations are not measured directly, but are
combined into Basic Computing Functions which are easier to count.

Alternative methods of determining a system's Capacity are also being investigated.

Capacity is designed to have very different properties to the preceding three measures of

Size. Capacity's properties include:
• Capacity can be naturally quantised in broad categories.
• Capacity can be used without fine-grained knowledge of the project.
• Capacity can be measured very early in the Software Development - after the initial

requirements have been captured.
• Capacity is currently evaluated by comparison with reference systems which may be

local to the Development Environment or global standards. This tends to identify

bands of Capacity around the reference systems.

As the practice of making Capacity evaluations matures, it should be possible to define

increasingly precise bands of Capacity. Capacity measures of increasing precision could
then be used (with other measures) to refine Cost estimates during the Software

Development.

It is hoped to eventually develop a scale for Capacity. (In the same way as scales for

temperature were developed from the concepts of hotter and colder, the development of

a scale for Capacity first requires investigation into differences and similarities in the

Capacities of Software Systems.)

DSTO-GD-0090

Benefits of the initial concept are:

• Can be determined early in the Development.

• Uncertainty is handled by quantising levels.

• Quick.

Limitations of the initial concept are:

• Subjective.

• Cannot be automated.
• Currently only one very broad breakdown of Capacity is available (see Appendix A,

Part C).

Some of these limitations will be addressed during the first phase of the investigations

into Capacity.

The main hypothesis of the iMAPS Cost Estimation Team is that Software Capacity and

Difficulty (described later) will correlate well with Cost quanta.

2.4 Conjecture 2: Difficulty
A large number of fine grained adjustment factors have been proposed as modifiers for

Software Cost estimates. They are typically applied by giving a ranking to the influence

of the factor (eg on a scale of 1 to 5), combining the factors using a weighted arithmetic

sum, and multiplying the Size by the resultant number. This approach has several

problems including:
• Most of the factors are not statistically significant

(According to [Kitchenham, 1991] and [Kingston et al; 1995d] the only currently
considered adjustment factors which are significant, are Development Environment

and programming language.)
• The determination of the ranking is subjective.

• The factors are not independent but, by using a weighted arithmetic sum, they are

treated as if they are.

However, Software Size alone does not correlate well with Software Cost [Jeffery and

Low, 1990]. Boehm's Basic COCOMO relates Cost to Size using an exponential

relationship [Boehm, 1984]. However, when used on the 63 project data set on which it

was developed, it is said to be accurate to within a factor of 2 only 60% of the time

[Heemstra, 1992]. It is expected that the results could be significantly worse on other data

sets.

Difficulty
We have conjectured that there are two factors which can be determined early in the
Software Development, which can be used to predict the Development Cost. The first is
the measure of Software Size we call Capacity. The other factor, called Difficulty, is a
measure of the effect the Development Environment and product constraints have on the
Effort required to develop a software system. These factors would be used in the Cost

Slicing Method (see Section 2.5) to obtain a coarse Prediction of the Software

Development Effort which would then be refined (see Section 2.6) to obtain more precise

estimates later in the Software Development.

10

DSTO-GD-0090

Definition (Preliminary): Difficulty
The Difficulty, D, of a Software Development is defined by the
equation E = DC, where E is the Effort required for the Development and C is

the Capacity of the Software System developed.

One measure for the Difficulty concept is a function of the three factors: Process, Product

and Resource. (These are described below.) The following example (which uses the

terminology introduced below) shows that we cannot assume that the factors are

independent.

Example:
1. To develop a simple product (where errors are not very likely) costs less when

there are less "checks" in the process.
2. To develop a complex product costs more when there are less "checks" in the

process (because it tends to cost more to correct errors found late in the

development process).
Thus, an increase in the number of "checks" in the process may either increase or

decrease the Cost of the project depending on the complexity of the product.

Difficulty is a complex function, which, for the purpose of obtaining coarse Software
Development Cost Predictions, may never need to be investigated in detail. Therefore, an
approximation is needed. One commonly used approximation technique is to consider

functions as a weighted arithmetic sum of their inputs. From the example above, it can be

seen that this approach would not be sufficient for Difficulty. The initial approach to be

taken would involve two steps:
• Quantising Difficulty, so that it can only take a discrete range of values.
• Using a look-up table to define the mapping from Process, Product and Resource to

Difficulty.

This should be sufficient for these preliminary investigations and would also allow

Process, Product and Resource to be quantised.

Process
The Process attribute is a coarse measure which should capture the rigour of the method
used to develop the process. It is provisionally assumed that Process can take three

values:-

• Ad hoc: Poorly defined and controlled process.

• Controlled: Well defined process, with some control.

• Intensive: Well defined process, with strict controls.

Things which should be taken into account when considering how rigorous a process is
include: the method used to handle changes to the requirements, what information is

measured and how it is recorded and used, and the independence and nature of software

evaluations.

11

DSTO-GD-0090

Product
The Product attribute is a measure of the constraints placed on the product due to the

environment in which it is to be developed, maintained and operated. Constraints

include things such as: Availability, Reliability, Maintainability, Safety, Security, Storage

and Timing requirements. It is provisionally assumed that there would be three grades of

Product:
• Easy: No constraints or demands.

• Intermediate: A few compatible constraints or demands.

• Difficult: Many or conflicting constraints and demands.

Resource
The Resource attribute is a measure of the availability of human, financial, temporal, and

computing assets during the project Development. Resource is also a quantised attribute.

The definition given below gives the coarsest possible quantisation, which will be

assumed in this study.
• Ample: Majority of resources readily available at a suitable or better level.

• Constrained: Majority of resources at a low level of availability or suitability.

2.5 Conjecture 3: Cost Slicing
A two phase approach to Software Cost Prediction is proposed where a coarse-grained

prediction would be obtained early in the Software Development, such as at the feasibility

analysis stage, which could be refined as the Development proceeds (see Section 2.2.4). Cost

Slicing is conjectured as the method of determining a coarse-grained Cost Prediction. It should

have the following features:

• Quick and easy to use.
• Determines Cost estimates as intervals.

• Can be used early during Software Development.

• Can be used in several ways.
• The Cost component of interest is assumed to be correlated with the development Effort.

• Assumes that Capacity and Difficulty are the two main factors which determine Software

Development Costs.

Figure 2 shows one possible relationship between Cost (Effort), Capacity and Difficulty.

An alternative way of viewing this relationship is shown in Figure 3. In Figure 2 the

quantisation of Difficulty is clear, but it is not clear that Capacity is also quantised (as lines

connect the distinct capacity values). In Figure 3 the quantisation of both Capacity and

Difficulty is clear. In this figure Cost appears to be quantised. However, it is likely that the

Effort (or Cost) will not be quantised in the initial investigation. Quanta may be determined

from the investigation.

12

DSTO-GD-0090

Effort

Capacity

Figure 2: Effort Estimates Changing with Difficulty

The Cost Slices as shown in Figure 2 and Figure 3 could be used in a number of ways:

• To determine the local Difficulty given a project of known Cost and Capacity.
• To determine the Capacity which can be delivered for a fixed Cost given a particular

Difficulty.
• To determine how much improvement is required in the Difficulty to achieve a given

Capacity for a given Cost.
• To determine the Cost of Software Development with a given Capacity and a given

Difficulty.

Capacity

Difficulty

Figure 3: Cost Slicing Model

2.6 Conjecture 4: Progressive Refinement
Progressive Refinement is the conjectured method for refining Cost Predictions. It is the second
phase of a two phase approach to Cost Prediction which commences with Cost Slicing (see

Section 2.5). It incorporates:
• updated information (eg Effort estimates due to a change in the scope of the project),

• more detailed information of existing types (cf Effort estimates based on actual

rather than estimated KLOC),
• new types of Cost information (eg Effort estimates based on FP and KLOC) and

actual Costs for the Development stages completed.

It will use methods for:
• refining estimates,
• identifying patterns in changing estimates and,

13

DSTO-GD-0090

• identifying high-risk situations where refinements either:

• don't conform to an existing pattern, or

• conform to a pattern of escalating Costs etc,

• determining the precision of the estimates in all these circumstances.

The Cost of developing a software system cannot be determined precisely early in its

Development. However, as more information becomes available during the Development, the

Costs should be increasingly precisely and accurately determined. Fortunately, in most

circumstances, while a Cost estimate is required early during the Software Development, it is

not required to be precise.

This motivated the development of the notion of Progressive Refinement, where an initial

imprecise estimate would be made and then, during the Development of the software, this

estimate would be refined. While the details of the Progressive Refinement approach still need

to be developed, the data required to investigate the conjecture and the assumptions it relies on

have been determined.

One assumption which is useful when considering Progressive Refinement is: A stable process

exists which can be regarded as a series of stages, with the ratio of Effort in each stage being

approximately constant between projects.

Given this assumption, the estimate can be refined when:
• A Development phase is completed and the Cost for that phase is known. For example,

when the Requirements or Specification Phases are completed.
• When additional information becomes available. For example, when Function Point Counts

or Lines of Code counts become available.
• When different builds of the software are complete. For example, at the end of an iteration

for a product being developed using a Spiral Development Process.

The circumstances when the estimates could be refined depend on the process being used to

develop the software and the desired rate of refinement. If the assumption is violated, and the

process is ad-hoc, then the estimates could only be refined when new deliverables were

produced, or on a 'regular' basis.

When a well-defined and controlled process is in place, the ratio of the Costs (Effort) for each

stage of the Development should be similar between different Development projects. (A stage is

a combination of Development phases and builds.) An example, where the process has been

broken into five stages, is shown in Figure 4. It shows how the ratios a, b, c, d and e can be
obtained by normalising the total Effort. The curved line shown is the observed Effort
(normalised) over time. A step-wise approximation to this function is also shown. In practice,

the ratios would be determined from a number of historical projects.

Thus at the end of each phase or build, or both (depending on the process being used) the Cost

could be re-estimated using:
• The Cost of the Development to date, and

• New information uncovered during the previous stage.

14

DSTO-GD-0090

Process
5 Stage

Figure 4: Ratios of process phases.

Figure 5 shows an example of how the estimates could change over time using Progressive

Refinement.

CD5(3)
CD5(2)

CD5(0)

CD5(1)

1 2 3

o Actual Cost

Figure 5: Refining Cost Estimates

Process
5 Stage

The authors have determined a simple mechanism for constructing new estimates from the

actual Costs C{j for each stage :
C05(0) = Initial Estimate

c05(D = -
C01(l)-D01(l)

+ D01(1) + A5(1)

C05 (2) = C°2(2) f02(2) + D02 (2) + D25 (2)
a +b

15

DSTO-GD-0090

where

• Cr(k) is the Cost for the completion of phase j including only Costs from the completion of

phase i (i<j) and determined at the end of phase k. These are estimates where k < j and they

are observed values when k > j.
• D, is the deviation to the expected Cost for the period between phase i and phase j, which is

due to known or anticipated deviations from the standard process. These are estimates

where k < j and they are observed values when k > j.

More complicated mechanisms which detect trends in these changes and allow the integration

of new information, such as Function Point Counts are currently being developed. These will be

documented in [Kingston and Burke, 1995].

16

DSTO-GD-0090

3. Data Requirements

The next stage in the Software Cost Prediction component of the iMAPS task will involve the

statistical analysis of data to investigate the conjectures of Sections 2.3 to 2.5 to determine if

there are any correlations between the input factors and Development Effort, and therefore

Cost.

This Section discusses the data requirements for the iMAPS Software Cost Prediction research

and focuses on the requirements for the initial investigation of the conjectures as proposed in

Sections 2.3 to 2.6. Section 3.1 identifies the collections of input factors which may be separately

analysed and the data required for this analysis. Section 3.2 discusses how organisations

participating in this data collection exercise will be affected and Section 3.3 discusses alternative

mechanisms which may be used to collect the data.

3.1 Data Categories
The conjectures to be investigated were described in Section 2. However, these
correspond to a large set of factors which would require a substantial data set for its

analysis. These factors can be grouped according to the conjectures they help explore.

The first group contains information available early in the Software Development, the

second group contains information generated through the Software Development and the

third group contains miscellaneous information. It is likely that the data collection

mechanism (see Section 3.3) will be different for each group.

Each group contains a subgroup of information which is essential to the current
conjecture, and additional subgroups which provide more detailed information which

allow variants of the conjectures to be explored. Each subgroup corresponds to a section

of the Questionnaire in Appendix 1 and the labels of the subgroups indicate the

appropriate section of the Questionnaire.

Background information on the project (Part B of the Questionnaire), and the

organisation (Part A of the Questionnaire) which conducted the project, is desirable. This

allows duplicated projects to be identified and additional contact to be made. It could

also be used to obtain information on the definitions used by different organisations for

pre-existing measures, such as Lines-Of-Code and Function Points.

GROUP 1
Part C: Cost Slicing Information
This includes the minimum information needed to investigate the Capacity, Difficulty

and Cost Slicing conjectures.

17

DSTO-GD-0090

Part D: Capacity and Difficulty Information
This includes additional information which could be used to modify, tune or enhance the

definitions of Capacity and Difficulty measures and their relationship in the Cost Slicing

model.

GROUP 2
Part E: Progressive Refinement Information
This subgroup contains the minimum information required to investigate the Progressive

Refinement conjecture in its simplest form. That is a process description, and the Effort

for each of the phases in the process.

Part F: Alternative Size Measures
This subgroup contains information which can be used to investigate how estimates of

Effort based on measures of Size other than Capacity can be used in the Progressive

Refinement technique as they become available. In addition, this information can be used

in later analysis to compare the refined, conjectured techniques to other techniques for

Software Development Cost Prediction.

Part G: Detailed Size Measures
This subgroup contains more detailed Size information which can be used with that in

Group 2 Part H to further investigate the concept of Progressive Refinement.

Part H: Detailed Cost Breakdowns
This subgroup contains more detailed Cost information for finer analysis of the

Progressive Refinement conjecture. It includes Effort information on the basis of

individual modules, as well as process stages (builds or phases).

Part I: Alternative Cost Information
This subgroup contains the information necessary to perform calculations using currently

accepted Costing Models. While it will not be used for the current analysis, it can be used

with Group 1 Part C, and Group 2 Parts E and F to compare the refined, conjectured

techniques with other techniques for Software Development Cost Prediction.

GROUP 3
Part J: Other
This subgroup allows for the identification of information on possible causes of Cost

anomalies not covered by the other areas.

3.2 Considerations for Participants
The data obtained through the collection activities outlined in this document is intended

for use in the development and investigation of Software Cost Prediction models. It will

not be used for the evaluation of organisations or the individual projects from which data

is collected. The data will not be used for the purpose of evaluating the processes used by

the organisations. No information on the quality of the final products is being requested
and participating organisations are not expected to supply the source code for their

projects.

18

DSTO-GD-0090

Benefits
The participating organisations are assured of early access to the results of the iMAPS

Software Cost Prediction research. This has the potential to improve software cost

prediction and the risk management of software projects. In addition, organisations

which initiate a data collection program which captures all the information in the

questionnaire in Appendix A will be able to customise the model to their local

environment. Such customisation has already been shown to improve the precision and

accuracy of Software Costing models.

In addition, the organisations may benefit from tools, such as SEE-Ada, which may be

introduced to support the data collection process. SEE-Ada [Vernik et al, 1991] is a

Software visualisation tool which allows metrics information to be overlaid on a base

representation of the system structure. It provides facilities for incorporating information

from other tools and directly from the user. In addition to its role as a data collection tool,

SEE-Ada could be used to display more information about participants' software,

including quality aspects, than is necessary for Software Cost Prediction. This

information would not be requested for the iMAPS Software Cost Prediction research.

Effort
While the questionnaire in Appendix A may appear long, it is anticipated that where data

already exists in electronic form it could be easily extracted. It appears likely that most of

the information requested for Group 2 (See also Section 3.1 and Section 3.3) will either be

available electronically (or be able to be generated using automated tools), or not be

available at all. Therefore it is expected that only the questions for Group 1 will need to

be answered manually. It would be useful, although not essential, for the questions for
Group 1 to be answered by the Developers, Clients and the Users of the applications. It is

anticipated that this will only take about one hour per application, per person.

Participating organisations will be given more detailed information on the Effort required

after trials have been undertaken.

Confidentiality
The identity of organisations from which data is collected will be treated as Commercial-

In-Confidence. However, it is desirable for the iMAPS task that permission is given to

publish the aggregated data in a wide forum. Part of this work is also contributing

towards Gina Kingston's PhD studies and it is a requirement that data used in these

studies be made available to the University of New South Wales. This data would still

remain confidential. Under all circumstances the source of the data would not be
divulged. Confidentiality requirements in addition to these would need to be noted. The

contribution of participating organisations will be recognised in all documentation.

However, only those wishing to be identified will be named.

Flexibility
The current data collection is aimed at initial exploratory investigations of the conjectures

given in Section 2. While the nature of future investigations has been foreshadowed, and
an attempt has been made to include future requirements in this investigation, it is

19

DSTO-GD-0090

possible that additional data will be required for these analyses. It is hoped that the

organisations approached during this data collection exercise will be willing to provide

additional information, should the need arise. To reduce the impact of such changes in

data requirements on the sources, updates will request only the additional information

required. The initial data collection will allow for free-form information to be collected.

Where the sources have supplied additional information this information will not be

requested from them in any updates.

The Software Cost Prediction techniques which arise from this research will be of most

benefit to those organisations which, should the need arise, supply additional

information in requested updates.

3.3 Collection Mechanisms
It is hoped that wherever possible the data collection can be automated. It is unlikely that

full automation will be possible through general purpose tools. However tools, such as

spreadsheets, which have been customised for a particular organisation should serve the

purpose. It is likely that this approach will work for the data intensive groups (Parts E, G

and H), for information on code-based measures of Size (sections of Parts F and G), and

possibly for Part I. Collectively, these Parts form the second Group (Section 3.1) of

information collected. It may also be possible to automate the collection of information

for Groups 1 and 3 where large databases on past projects, which contain the required

information, exist. However, it is most likely that the information for Groups 1 and 3 will

be collected through interviews.

Accuracy
Because of the nature of this investigation, the researchers require an indication of any

potential anomalies in the information supplied. Without this information the results of

the research could be invalid. It would be useful to be able to approach the organisations

supplying data to determine the nature of possible errors in the supplied information and

means of correcting them.

For example, Effort information is often recorded inaccurately: overtime may not be

recorded or Effort may be attributed to the wrong task. A related concern is the extent to

which information from different organisations reflects the same attributes. For example,

there are various definitions of Function Points, and Effort information can be restricted

to certain types of people (managers or users may or may not be included) or it may be

restricted to certain phases (post-design or post-requirements). It would be useful to be
able to investigate these, and additional concerns which arise during the data analysis,
through interaction with the sources after the initial data collection.

Collection Mechanisms
The different nature of the data in the various groups given in Section 3.1 indicates that

more than one data collection mechanism is likely to be employed. Possible mechanisms

include tools like SEE-Ada [Vernik et al, 1991] for supporting Lines of Code

measurements and possibly other information for projects where data is collected

through the development of the project. It may be possible to extract Effort information

20

DSTO-GD-0090

on past projects from existing databases or spreadsheets. Much of the other information

will have to be entered by hand, however electronic mechanisms, such as spreadsheets or

email may be possible.

The data collection tools MERMAID Mark IP, M-Base DCSS and Metricate were

investigated but appear to offer little benefit for data collection over common

spreadsheets.

The annotated questionnaire provided in Appendix A is a preliminary paper-based

mechanism. It indicates the types of data required for Groups B and A, and provides

detailed questions for Groups A. Guidelines for the questionnaire, which include

descriptions of the information requested and definitions of some of the terms used in the

questionnaire, are also given in Appendix A. The Questionnaire and Guidelines will be

refined through two case studies into their effectiveness.

Amount of Data Required
This investigation requires data to be collected from a large number of projects so that
models developed will not be biased towards particular projects, organisations or

applications. It requires information from multiple projects developed by the same
organisation under the same Development Environment as well as information of

projects by different organisations so that models can be developed within and across

organisations. Information on individual projects from different organisations will also be

useful. It is hoped that data on at least 40 applications will be available for these initial

investigations. This number was derived by considering:
• The need for about 10 applications per organisation to develop models within

organisations to support the second phase of the approach.

• The desire for at least two application domains to be considered.
• The desire for data from at least two organisations to be available for each application

domain.

It should be noted that this data will probably be sufficient for statistically significant

results to be obtained if all of the collected information is to be included in the models. It

is likely that more data will be required to evaluate the refined models. However the

amount of data required will depend on the nature of the refined models and the number

of variables they contain. As the initial analyses will only be exploratory it is not
considered necessary to obtain sufficient data for a statistical analysis of the more

complicated models.

21

DSTO-GD-0090

4. Analysis

The analyses of the Software Costing data collected for this research will be broken into two

phases.

The first analysis is to identify the strengths and weaknesses of the approach to Software Cost

Prediction conjectured in Sections 2.3 to 2.6. This should be undertaken as soon as the initial

model is sufficiently well developed and the results should be used to further develop the

model. This analysis is likely to be a statistical analysis of the ability of the approach to explain

the actual observed Cost. This document is primarily concerned with the data required to

undertake this initial analysis.

The second analysis would evaluate the approach and allow comparisons to be made to other

approaches. It would be undertaken when the approach has been refined after the first analysis.

It is likely to be a statistical analysis of

a) The ability of the approach to explain the observed Costs.

b) The ability of the approach to predict Cost at different points in the Development.

c) The ability of other approaches to predict Cost at different points in the Development.

d) The ability of other approaches to explain the observed Costs.

e) Comparing the results from a) and b) with c) and d) respectively.

The first analysis will consist of ad-hoc analyses which will be determined once the data is
available and pre-determined analyses. Both of these analyses will use standard statistical

techniques such as linear regression [Moore and McCabe, 1987; Venables and Ripley, 1994]. An

outline of these pre-determined analyses is given in Section 4.1

4.1 Exploratory Analyses
The analyses in this section are discussed according the phase of the model they are

associated with. The two phases are labelled as the Initial Stage and the Refinement

Stage.

Initial Stage
This is the phase where an Effort Prediction is determined using the Slicing model from

Capacity and Difficulty measures. The later components in the analysis could identify

weaknesses in the initial components requiring several iterations of the early

components. The components of this analysis are to:
a) Investigate how Capacity should be determined from its components. Initially this

would be performed intuitively using a subjective measure of the project's Capacity

and the information on the conjectured components. If an intuitively appealing model

was found, it would be tested statistically. However, as the Capacity measure would

have been subjectively determined, the model would not necessarily be rejected if the

relationship was not statistically valid. Under these circumstances any differences

would be noted with a view to refining the Capacity concept and its components. The

data would also be analysed to determine if any of the components of Capacity were

22

DSTO-GD-0090

highly correlated, which would indicate redundancy in the components. This analysis

would be undertaken with the Group 1, Part C data.
b) Investigate how well Capacity correlates with Effort. This would be a statistical

analysis using both the subjective Capacity measure as well as that calculated using

the relationship derived in Part a). The components of Capacity would also be

compared with Effort to determine if another combination of the components would

provide a better correlation with Effort.
c) Investigate if Difficulty improves the correlation with Effort. The first step in this

component would be to determine potential Process, Product and Resource (PPR)

measures. This would involve comparing the subjective questions on Process, Product

and Resource to the objective questions. Once this had been determined, Effort models

would be developed for each possible PPR combination. Outlying points would be

identified to determine if they had any answers to the PPR questions which

distinguished them from other projects. This would then be used to refine the method

of determining PPR measures. The Effort correlations would then be adjusted

accordingly and the PPR combinations assigned a Difficulty value according to the

relationship. Once difficulty values had been assigned to each PPR component, a

combined analysis of Effort against Difficulty and Capacity could be investigated. If
this offered no improvement over the Capacity correlation then further investigation
would be required. Alternative combinations of the PPR measures and their

components would also be investigated.
d) Investigate if Capacity can be improved using additional information. This would

use the additional Capacity information in Group 1 Part D to determine if the
Capacity measure could be improved by including additional information. This

would involve analyses similar to parts a)-c) and would initially use the Difficulty
models determined in part c) to determine if a better Effort Explanation model could

be developed.
e) Investigate if Difficulty can be improved using additional information. This would

involve analyses similar to part c) and would initially use the Effort Explanation

model developed in part d).
f) Investigate the Cost Quanta concept. This would be an intuitive investigation of Cost

Quanta using the models developed in part e).
g) Determine if the desired properties of Capacity, Difficulty and Cost Slicing are still

present and identify any limitations in this area.

Refinement Stage
This is the phase where the model would be progressively refined based on new

information as it becomes available.
a) Investigate refinement based on phased Costs. The first step in this component

would be to determine if there is a ratio between the phases for each process used.

Where the phases of the process are based on builds, this may need to depend on the

modules in the builds. The average, and standard deviation of the ratios would be
determined. At some stage any projects which did not conform would be identified,

and the reason why determined where possible - eg one phase out, all out, different

language used etc. Analyses would consider all projects and the consequences of

leaving out outliers and/or the project of interest.

23

DSTO-GD-0090

b) Investigate refinement based on additional Size measures.
Two possible approaches exist, the first would be to develop alternative models for

software Effort for each of the Size measures obtained and to consider the use of an

Effort Prediction (an Effort value and the Prediction Interval around it) from any

models and to determine how they could be combined. This would effectively

determine how to combine different models for Effort. The second approach would be

to consider each Size estimate separately and consider how it may be directly

incorporated into the model. The statistical implications of these options would need

to be considered before the analysis approach could be confirmed. However, both

have different properties. The first would allow alternative Size measures to be used,

without redeveloping the model. The second would allow consideration of properties

of specific Size measures.
c) Investigate refinement based on phased Costs and additional Size measures.

This analysis would be similar to that of b), but would combine the information

obtained in a). Differences between the Effort Predictions available at different stages

of the development would be considered. If a) or b) are not successfully completed,

this would not be attempted.

d) Investigate refinement based on module Costs. This would be the same as a) but at a
lower level of granularity. If part a) was not successful, it is unlikely that this would

be successful either. A suitable measure of Size which could be used early in the

Development would eventually be necessary to use this work, but for this analysis

which is concerned with Effort Explanation, Lines Of Code or any other available

measures would be used.
e) Investigate refinement based on module Sizes. This would look at refinement based

on differences between the anticipated and actual Sizes on the modules and would be

closely related to d). This would require a method for Estimating the module Sizes
early on, but initial work might rely on an "average size" based on other projects

performed by the organisation.

24

DSTO-GD-0090

5. Summing Up

Software is an increasingly important element in modern Defence systems. A large proportion

of the Australian Defence Organisation's budget is currently committed to the procurement and

maintenance of software based systems. Examples which highlight this include the Submarine,

ANZAC Frigate, Jindalee and Nulka projects.

The process of estimating, monitoring and controlling Software Costs in Projects is ad-hoc,

which can result in project Costs exceeding the original budget or systems being delivered with
sub-optimal functionality. These shortfalls are generally met by both the ADO and the software
contractors. Current approaches to Software Costing tend to focus on Business, or Transaction-

based Applications and have limited applicability to Defence systems. Furthermore, no

concerted effort has been made to coordinate the collection and analysis of Software Cost data

from Defence Projects or to provide guidance to the Projects on best practice in this field.

This document describes the data collection requirements for a systematic approach to Software
Costing being developed by the iMAPS Software Cost Prediction team. The approach consists
of two phases and has the potential to support decision-making in a reasoned, risk-managed
way at all stages of system acquisition. The result of the first phase, Cost Slicing, would be a

coarse initial estimate which could be used early in the acquisition process when comparing
inputs to Defence Force Capability Options or Capability Proposals. This phase would be

followed by an iterative process, Progressive Refinement, which could be used to refine the Cost

estimates during the remainder of the acquisition process, including both before and after

contract negotiation.

25

DSTO-GD-0090

6. Acknowledgments

The authors thank DSP-FDI, Dave Saunders and SP-DI, Kevin Bly for their feedback on early

drafts of this document. The authors also thank HSE, Stefan Landherr and HIAP, Peter Calder

for their input in related discussions.

26

DSTO-GD-0090

7. References

A. J. Albrecht and J. E. Gaffney Jr, 1993 "Chapter 8: Software Function, Source
Lines of Code and Development Effort: A Software Science Validation",
Software Engineering Metrics, Volume 1, Measures and Validations. Ed: M.
Shepperd, McGraw Hill, pp 137-154.

J. G. P. Barnes, 1989 Programming in Ada, Third Edition, Addison-Wesley.

B. W. Boehm, 1984 "Software Engineering Economics", IEEE Transactions on
Software Engineering, Vol SE-10, No 1, pp 4-20.

M. M. Burke, 1995 iMAPS Task Plan, DST 93/949, Issue 2.

M. M. Burke, 1994 iMAPS General Introduction, ERL-0826-GD.

F. J. Heemstra, 1992 "Software Cost Estimation", Information and Software
Technology, Vol 34, No 10, pp 627-639.

D. R. Jeffery and G. Low, 1990 "Calibrating estimation tools for software
development" in Software Engineering Journal, July, pp 215-221.

C. F. Kemerer, 1991 "Chapter 28: Software Cost Estimation Models", Software
Engineer's Reference Book, Ed: J. A. McDermid. Butterworth-Heinemann, 1991.

A. Kiermeier, 1994 CEED Project: Project Proposal. Software Cost Prediction: A
Statistical Approach, Project Number 94705.

G. Kingston, M. Burke and R. Jeffery, 1995a iMAPS: A Review of Software Cost
Prediction Techniques. Report in progress.

G. Kingston, M. Burke and R. Jeffery, 1995b Software Sizing for Effort Estimation.
Report in progress.

G. Kingston, A. Kiermeier and M. Burke, 1995c "On the Statistical Significance of
Productivity Factors in Software Development Effort Explanation". To be
published in ACOSM'95.

G. Kingston, A. Kiermeier and M. Burke, 1995d "On the Statistical Significance of
Function Point Technology Factors in Software Development Effort
Explanation". In progress.

G. Kingston and M. Burke, 1995 iMAPS: A New Approach to Software Cost
Prediction. Report in progress.

B. A. Kitchenham, 1992 "Empirical Studies of assumptions that underlie software
cost-estimation models" in Information and Software Technology Journal, Vol
34, No 4.

J. E. Matson et al., 1994 "Software Development Cost Estimation Using Function
Points." IEEE Transactions on Software Engineering 20(4): pp 275-286.

D. S. Moore and G. P. McCabe, 1989 Introduction to the Practice of Statistics, W. H.
Freeman and Company.

27

DSTOGD-0090

W. N. Venables and B. D. Ripley, 1994 Modern Applied Statistics with S-Plus. New
York, Springer-Verlag.

R. J. Vernik et al, 1991 "Automated Support for Assessment of Large Ada Software
Systems". TRI-Ada'91.

28

DSTO-GD-0090

Appendix A: Preliminary Software Costing Data Collection Questionnaire

This questionnaire was designed for the collection of data for the development and refinement

of Software Costing techniques developed by the iMAPS team. The results of this research will

be available to participants.

Instructions
The chart below shows the relationship between the different Parts of the Questionnaire. A

given Part should only be answered if all the Parts above it in the chart are also answered.

One copy of Part A should be completed. This contains an organisation or source number which

also appears on the top of all other sheets and will be used to refer to your organisation in all

documentation of the research. The remaining information in Part A will only be used to contact

you if we require clarification of any of your answers, or if we require additional information

for further development of the models.

One copy of Part B should be completed for every
project and/or application (Software Configuration

Item) for which data is submitted. A number should be
assigned to each project and application. These

numbers should also appear at the top of all sheets

submitted for that project.

The remainder of the Questionnaire is broken into
three groups. The first two groups address the two
phases of the conjectured approach. While it is

preferred that the questions from both groups are

answered, the answers to only one of these groups are

necessary.

The groups are further broken down into parts and the

dependencies between the groups are shown in Figure
A-l. Where possible, all the questions of a Part should

be completed.

Part A
Organisational

PartB
Project Specific

 J.
I Group 1
! Initial Estimate

Group 2
Refinement

Group 3
i Miscellaneous

PartC

PartD

PartE Part J

X
PartF PartG PartH

Parti

Figure A-l: The Relationship
between different sections of the

Questionnaire

The questions in Group 1 should be completed as if the project had just commenced. Where a

project consists of multiple applications (or Software Configuration Items), information may be

given either for the entire project or for each application. It is preferable that the Group 1

questions are answered at both the project and the application levels.

Guidance on how to answer the questions and the terminology used is interwoven with the

questions and is given in Helvetica font. The questions always appear on even (left-hand) pages

and have the word 'Questionnaire' in the left-hand column. Some guidance also appears on

even pages, but without the word 'Questionnaire' in the left-hand column.

29

DSTO-GD-0090

It is anticipated that Group 1 with take 1 to 2 hours to complete and that much of the

information for Group 2 will already be available electronically.

Approximate answers, with an appropriate error margin, would be appreciated for any

questions for which detailed information is not known.

30

DSTO-GD-0090

QUESTIONNAIRE CONTENTS

Part A. Organisational Information 32

PartB. Project Information 34

Part C. Cost Slicing Information 38

Part D. Capacity and Difficulty Information 48

Part E. Progressive Refinement 62

Part F. Alternative Size Measures 64

Part G. Detailed Size Measures 68

Part H. Detailed Cost Breakdowns 70

Part I. Alternative Cost Information 72

Part J. Other 76

31

DSTO-GD-0090

Part A. Organisational Information

1. Organisation Number (Given)

2. Organisation Name

3. Address

%,
-v ^ 4. Coimtry

■1, 11 5. Contact name

6. Phone

7. Fax

,..% 8. Email
Äk

.^

■^ffe

9. Size of Organisation

Total Number of Staff
Total Number of Software Development and Related Support Staff

H " 10. Type of Organisation

% Government - Defence

^ Government - Other
Software Development (non-Government)

Other Commercial (Specify)

Other (Specify)

11. Number of Organisation Sites

12. Parent Organisation (if relevant)

If %tH
I W
% Jiff

| 1
% I

32

DSTO-GD-0090

9. The total number of staff should be indicated. Where both part-time and full-time staff
are employed, please indicate the number of full-time and of part-time staff separately.
Related support staff are all those staff who's main function is to support the software
development staff. This includes secretaries, typists and pay-clerks. Where such staff
also support other staff, their numbers should be averaged over the number of such
staff they support. Staff on help desks, or involved in software maintenance, should
not be included.

11 .Number of Organisation Sites
If the organisation is distributed over a number of sites, indicate the number of
geographically dispersed sites.

12. Parent Organisation
If the Organisation is part of a larger Organisation, give the name of the Parent

Organisation.

33

5

DSTO-GD-0090

Part B. Project Information

1. Organisation Number (Given)

2. Project Number

3. Project Title

4. Project Description

5. Year Commenced

6. Year Completed
7. Level of Completion

Completed on Time and on Budget

Completed

In Progress

Not completed

8. Team Leader's Name

9. Contact name (if different from 8)

10. Phone

11. Fax
12. Email
13. Address (if different from that of the organisation given in Part A)

14. Number and type of application(s) (Indicate all that apply)

Scientific

Real-Time

Information Processing System

Control System
Command and Control System

Embedded

Other (Specify)

15. Purpose of application (s)

34

DSTO-GD-0090

2. Project Number

This is a number which can be used to distinguish information on projects submitted

by the same organisation. Where the number of projects for which data is being

submitted by an organisation is known, these numbers will be supplied by the iMAPS

team. However, in order to allow the questionnaire to be filled in with the minimum

disruption, where numbers cannot be pre-allocated the number used may be allocated

by the organisation completing the questionnaire, or it may be the number used

internally to identify the project. Alternatively , the organisation may request a number

from the iMAPS team. (This may be necessary for geographically dispersed

organisations).

4. Project Description

A brief, high-level description of the project should be provided. (The purpose should

be described under question 15).

7. Level of Completion

Indicate if the project was

FULLY COMPLETED - that is on time, on budget and with the full functionality initially

proposed;

COMPLETED - that is a project was delivered, over time, over budget or with reduced

functionality (indicate which);

IN PROGRESS - that is the project is still undergoing development, or

NOT COMPLETE - that is the project was terminated before delivery.

8. Team Leader

The person in charge of the development of the software.

14.Type of application

Indicate if the application is scientific, real-time, information system etc. Where the

project consists of more than one application, indicate the number of applications of

each type.

15. Purpose of application(s)

Briefly describe the purpose of the project and each application in the project.

Associate a unique number with each application. (The combination of organisation,

project and application numbers while be used to uniquely identify applications within

the data set).

35

Al

DSTO-GD-0090

The next three questions are provided for cross-referencing questionnaires completed by

different organisations for the same project.

16. Client
a) Organisation Name

b) Address

c) Business Area

d) Contact Name

e) Contact Phone

17. Users
a) Organisation Name

b) Address
c) Business Area of the Prime Developer

d) Contact Name

e) Contact Phone

18. Developer and Sub-Contractors

a) Organisation Name

b) Address

c) Business Area

d) Contact Name

e) Contact Phone

19. Staffing

a, iiuuiuu ~* ^ di-

staff

Activity
Total

A M A M A M A M A M A M A M A M A M A M A M

Designers

Programmers

Testers

QA Personnel

Metrics Personnel

Software Engineers

Project Managers

Total
b) Number of Project Support Staff
c) Number of Project Management Staff

36

DSTO-GD-0090

16.Client
The client is the organisation or organisational representative who is paying for the

software.
17. Users

The end-users are the organisation or organisational section who will use the software.

18. Developer
The organisation who developed the software system.

19.The staff column indicates categories of staff. Several lines are left blank so that
additional categories can be entered. The activity columns are for the activities
performed at various stages of the development. For example, the following activities

are used in the example below.
Requirements
Design
Coding
Component Testing
Integration Testing
Documentation.

Please supply staff numbers for the entire project and where possible categorise them
as indicated in the table. If this information has not been collected in detail, then please
supply the Total values. The columns indicate the Average, or Maximum number of
staff of each category for each activity. Where possible, please supply both averages

and maximums.

Note that the Total Row contains the sum of the columns, and that people may
participate in activities other than those dictated by their roles. Averages less than 1
have not been given in the following example, and it is assumed that some averages

could not be determined.

Staff

Activity

R D C CT IT DO

Total

A M A M A M A M A M A M A M A M A M A M A M

Designers 2 3 1 3

Programmers 3 5 3 5 5

Testers 3 3 3

QA Personnel 1 1 1 1 1 1

Metrics Personnel 1 1 1 1 1 1

Software Engineers 1 1 1

Project Managers 1 1 1 1 1 1 1 1 1 1 1 1

Analyst/Programmer 1 1 1 1 1

Technical Writer 1 1 1

Total 2 4 4 7 5 9 4 8 4 6 1 1 - 17

37

Hi

DSTO-GD-0090

Part C. Cost Slicing Information

(Group 1 Information as described in Section 3.1)

1. Organisation Number (Given)

2. Project Number
3. Application Number (if applicable)

4. What is the Capacity level of the project or application? (See the table opposite)

A

B

C

D

E

F

G

H

I

J
K

38

DSTO-GD-0090

3. If this Part is being completed for the entire project then leave this blank. Otherwise
identify the application with an application number. Use this number consistently within

the questionnaire.
4. The capacity level of the project (or application) should be chosen using the following

table. Choose the Standard which is closest to your program in the amount of
functionality it provides and use the Usual Characteristics to check your choice. Note

that the scale is not linear.

Level Usual Characteristics Standards

Input Output Interfaces Processing

A None Basic, 1 Output None Write 5 to output

Fixed Device Write "Hello World"

B Basic, Basic 1 Output None Echo a number

Single 11nput Echo a message

type

C Basic, Basic 1 Output Basic, Single Unit Sum

Single 1 Input Hello 'X'

type

D Basic Basic 11nput Basic, Many Calculator

1 Output Units Line Editor

E Basic Detailed 11nput Basic, Many Graphical Calculator

1 Output Units Graphical Editor

F Basic Detailed 1 Input Medium - Scientific Calculator

1 Output Detailed Word Processor

Maybe Maybe Distributed Messages

higher higher

G Several Detailed Several I/O Medium - Navigation Aid

types Detailed Distributed Comms

H Several Detailed Several I/O Medium - Satellite Navigation

types
Maybe

Detailed Satellite - Ground

Comms

Maybe higher May be higher

higher

1 Many Detailed Many I/O Detailed Satellite Motion System

types Restricted

Types

Satellite

Communications

J Many

types

Detailed Many I/O

Diverse

Types

Detailed Satellite Control System

K Detailed Detailed Many Detailed -

extensive

"Star Wars"

39

DSTO-GD-0090

5. How many hardware interfaces does the project require?

6. How many software interfaces does the project require?

7. What is the processing level of the project?
A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R
S

40

DSTOGD-0090

How many hardware interfaces does the project require?
A hardware interface is a method which can be used to communicate with a (type of)
device. Input, output and sophisticated error streams are each counted separately.
• Different communications mechanisms for the same (type of) device have one

interface each. For example, a monitor may have a text-based and a windows-based

interface giving a count of two hardware interfaces.
• Multiple devices of the same type count only once, provided they are

communicated with in the same way. For example, two keyboards count only once.
• Similar devices, eg two types of monitors, count only once, provided they have

similar operating protocols. Conversely two types of CPU would normally count twice.
• If files are read or written by the program than the interface(s) to the disks

should be included. Operations performed by other software should not be included.

How many software interfaces does the project require?
Two software interfaces are required for each pair of software applications which
communicate with each other. Only one interface is required if the communication is
one-way. For example, if the application uses a (separate) database application to
store and retrieve data then two interfaces should be counted. If the database is only
used to store information (and there is no error checking) only one interface should be

counted.
The processing level of the project (application) should be chosen using these tables:

Level Usual Characteristics

Operations Objects Areas
Basic operations are

those which consist of

a few simple steps.

Complex operations,

consist of multiple

A No processing

B Basic Few 1

C Basic Few 2-6

D Basic Few 7-8 steps and may rely on

E Basic Similar 1 other such operations.

F Basic Similar 2-6

G Basic Similar 7-8 Acts involve the

H Basic Diverse 1 movement of external

1 Basic Diverse 2-6 system components.

J Basic Diverse 7-8
Areas of Processing

K Complex Few 1

L Complex Few 2-6 Calculation

M Complex Few 7-8 Manipulation

N Complex Similar 1 Obtain/Retrieve

0 Complex Similar 2-6 Store

Transfer
P Complex Similar 7-8

Q Complex Diverse 1 Present

R Complex Diverse 2-6 Monitor

S Complex Diverse 7-8 Act

41

DSTO-GD-0090

What is the impact rating of the development environment and product constraints on

the project or application?

1

2

3

4

5

6

7

8

9

10

42

DSTO-GD-0090

8. Rate the impact of the work environment and the product constraints on the project (or

application) (1-10)
This is a subjective measure of the impact of the environment (which may be dispersed
and involve many development processes) and the constraints (such as memory and
timing constraints). It may be used when considering how to determine a measure which
captures the impact of the work environment in an objective manner. It should indicate the
rating which would have been given PRIOR to project (application) development.
Intermediate values may be used where they can be justified. Those shown in grey are

not likely to be given for projects where development commenced.

Rating

10

Meaning
The development environment and constraints on the project (application)...

were likely to enable the product to be produced for minimal Effort.

were likely to enable the product to be produced for a relatively small Effort.

were likely to enable the product to be produced for a modest amount of Effort

were likely to enable the product to be produced for a reasonable amount of Effort.

were likely to (slightly) increase the Effort required for the project-

were likely to increase the Effort required for the project to a relatively high level.

were likely to increase the Effort required for the project and the likelihood of failure.

The development environment and constraints on the project (application) gave

the project a high likelihood of failure.

The project (application) appeared to be nearly impossible to complete given the

development environment and constraints on the project. (It may still not have

been completed if, for example, management intervened.)

The project (application) appeared to be impossible to complete given the

development environment and constraints on the project.

43

DSTO-GD-0090

9. a) Has a well-defined development method being used?

b) Has it been customised for local use?

c) Are these changes well-defined?

10. Is the development method stringent?

11. What programming language(s) is (are) being used?

Ada83

Ada95

APL

Pascal

Modula-2

Prolog

Lisp
Miranda

Forth

SQL

AWK

C

C++

Objective C

Eiffel

Smalltalk

Cobol 74

Cobol 85

Jovial

Mumps

Chill

Fortran 11

Fortran 66

Fortran 77

PL/1

PL/S

Algol 68

Algol W

ANSI Basic

Visual Basic

Pearl

Scripting Languages (Specify)

Other (Specify)

12. What level is the language(s)? (Indicate the number of languages used at each level.)

1GL Machine Language

2GL Assembly Language
3GL High Order Language
4GL Fourth Generation Language (eg Database Language)
5GL Fifth Generation Language (eg Spreadsheet or Graphical Language)

13. Is software reuse being attempted in the development of this project (application)?

Function Reuse

Object Reuse

Sub-system Reuse

System Reuse

14. Are there many constraints on the software? (Y/N)

15. Are the constraints conflicting? (Y/N)

16. Are there adequate resources available? (Y/N)
17. Is the project (application) novel for the development team? (Y/N)
18. Are suitable people available for all necessary software development activities? (Y/N)

19. Is the hardware available and mature? (Y/N)

44

DSTO-GD-0090

9. Development method.
A method is well-defined if it is documented or there are procedures to automate it.

10.1s the development method stringent?
That is, does the process include many checking steps, such as requirements tracking

or Independent Validation and Verification.
11. What programming language(s) is (are) being used?

Where more than one language is being used, all languages should be listed and their
approximate percentage usage. It should be noted how these percentages were

determined (ie based on LOC, functionality etc).

13. Is software reuse being attempted?
Reuse should be counted whether or not the components require modification.

14.Are there many constraints on the software?
A list of possible constraints in given in Part D, Q10.

15.Are the constraints conflicting?
For example, are time/space trade-offs or safety versus user friendliness trade-offs

required.

16. Are there adequate resources available?
This is a subjective question to be used to determine how well the questions below
map to the Resource concept. Time, Money, Personnel and Computing resources

should all be considered.
17.1s the project (application) novel?

Is the project (application) a new application type for the development team?

18.Are suitable people available?
That is, does the development team contain people with appropriate skills (through
training or past experience) for each of the activities in the development phase, and
are they going to be available at the appropriate stage in the development.

19. Is the hardware available and mature?
If the hardware is under development, or the hardware is being refined or it is the first
time the hardware is being used, answer no. If the target hardware will not be available
when the coding commences or access to the hardware will be limited, answer no.

Otherwise answer yes.

45

DSTO-GD-0090

hi 20. a) Are support tools being used? (Y/N)

b) Are they mature? (Y/N)
21. Was there pressure to complete the project (application) within a restricted time or

budget? (Y/N)
22. a) Is there a reuse library? (Y/N)

b) Is there a project library? (Y/N)

23. What was the total Effort required to develop the project (application)?

Development Effort ()

Support Effort

Overtime

Sub-Contractors

24. Phase at which Effort recording was commenced

25. Phase at which Effort recording was completed

46

DSTO-GD-0090

20.Support tools
Support tools include project planning and tracking aids, configuration management
tools, integrated development environments and automatic test generators.
Mature tools are stable and relatively error-free.

21 .Was there pressure to complete the project within a restricted time or budget?
A 'yes' answer to this question implies a fixed time or budget (or at least hard limits).

22.a) Is there a reuse library?
That is, is there a repository of reusable components which the development team will

have access to.
b) Is there a project library?
A project library should include design information and documentation of major
decisions as well as the source code for the system being developed. It may exist for

the project as a whole or for individual applications.

23.What was the total Effort (including overheads) required to develop the project

(application)?

In the brackets () indicate the units in which Effort (time spent by staff) was recorded.
The preferred units are staff-hours. If alternative units are used, please indicate the
conversion rate to obtain staff-hours.

Information should be recorded for the entire project, or the application, for which this
Part is being completed (see Question 3). The Development Effort (in the units stated)
is the Effort of the project staff from the organisation completing the questionnaire. The
Support Effort is the Effort of support and managerial staff whose time is not booked to

a particular task.

The Overtime label should be used to record if all time (including Effort outside normal
working hours, or Overtime) worked by the organisation's project staff was included in
the recorded Effort. If Overtime was not included, this label should be used to indicate
either the actual Overtime Effort or the estimated percentage of Overtime.

The Subcontractors label should be used to indicate the Effort from sub-contractors
and the % Overtime assumed if this is not included in the Effort.

If this questionnaire is being completed by the client or user indicate the Effort spent

by your organisation separately.

24. Phase at which Effort recording was commenced
In particular, indicate if Effort recording was commenced at project conception, at the
start of the project specification, after contract negotiations, or after delivery.

47

DSTO-GD-0090

Part D. Capacity and Difficulty Information

(Group 1 Information as described in Section 3.1)

1. Organisation Number (Given)

2. Project Number

3. Application Number (if applicable)

4. Mark the hardware interfaces required by the project (application):

Monitor - Graphics

Monitor - Text

Monitor - Windows

Another CPU - Output

Modem - Output

Printer - Text

Printer - Graphics

Plotter

Speaker

Hard Drive - Output

Floppy Drive - Output, 3 l/2in

Floppy Drive - Output, 5 l/4in

Keyboard

Mouse

Another CPU - Input

Another CPU - Error Stream

Modem - Input

Scanner

Microphone

Hard Drive - Input

Floppy Drive - Input 3 l/2in

Floppy Drive - Input 5 l/4in

CD-Rom

Other - list all devices and the type of interface
eg. Faxes - Error Handling, Outgoing and Incoming Fax Interfaces

Other Output Devices Other Sensors

5. Mark the software interfaces required by the project (application). Where interfaces to

more than one tool of the same type are required, or the communication is two-way,

indicate the number of interfaces required.

Database

Operating System

Spreadsheet
Geographical Information System

Word processor

Email

Graphics Tool

Network Software (List all types)

Other (List)

48

DSTO-GD-0090

3. If this Part is being completed for the entire project then leave this blank. Otherwise
identify the application with an application number. Use this number consistently within

the questionnaire.
4. Mark the hardware interfaces required by the project (application):

Other interfaces are combinations of the device, and the mechanism used to
interface to it. Devices which can be used as inputs and outputs count at least
twice. Devices which have complex error reporting mechanisms have an extra
count. Devices which may conceptually be controlled in more than one way (for
example monitors with text, graphics and windows interfaces) have multiple

counts.

5. Mark the software interfaces required by the project (application). Where interfaces to
more than one tool of the same type are required, indicate the number of interfaces
required. Indicate separately if the communication is one-way or two-way.

49

DSTO-GD-0090

Complete the following tables. The tables opposite describe the information

required for the first table. The second table should be used to describe the

required characterists of the software.

OPERATIONS:

(Maximum)
Operation

Level

Rank of
Operations

(of Max Level)

Rank of
Objects

(of Max Level)

Rank of
Domains

(of Max Level)

Calculation

Manipulation

Obtain/Retrieve

Store

Transfer

Present

Monitor

Act

CHARACTERISTICS:

c M O/R S T Pr Mo A Handles

Boundary conditions

Over/underflow

na na na na na na Round-off Errors

na na na na Device Errors

High or varying accuracy

na na na High or varying precision

(granularity)

Partial Solutions

na Uncertain information

Incomplete information

na na Back-tracking (eg undo)

Special cases (eg near singular

matrices)

Other Errors - Correction

Other Errors - Fail safe

50

DSTO-GD-0090

6. Operations

Operation Level Types of Operations

0 Not used

1 Single, isolated, operations

2 Simple combinations of operations performed on simple types

3 Operations performed on simple objects

4 Operations performed on complex objects

5 Operations performed on collections of very similar objects

6 Operations performed on collections of objects

The preceding table provides a generic description of the levels of operations. The maximum
level for a particular type of operation is the highest level at which operations exist for that type
of operation. The different types of operations, and the standard objects they operate on are
given in the following table. This should be used with the generic descriptions in the previous
table to determine the maximum level for each type of operation.

Operation Level 1 &2 3 4 5 6

Calculation Integers,

Reals

Vectors Matrices etc

(Fixed Size &

Dimension)

Matrices etc

(General,

Regular)

Other

Manipulation

Single

Values

Linear

Objects

Non-linear

Objects

(Common

Components)

Non-linear

Objects

(General

Components)

Non-linear

Objects

(Varied

Components)

Obtain/Retrieve

Store

Transfer

Present

Monitor

Act ("Movement") Switches Fixed moves "Linear" 2-D 3-D

The following table describes how to rank the number of operations, objects and (application)
domains the project, or application (see Question 3) crosses. An object is any type of entity
which may be manipulated by the system. For example, customers and accounts are entities of
banking finance systems. A domain is a unified collection of specialised information including
facts and procedures. For example in a banking system, loans, evaluations, credit checking, and
savings accounts would require specialised procedures and therefore would be separate
domains. Where the exact number is know, it should be placed in brackets after the rating.

Rank Operations (Objects, Domains)

0 None

1 Single operation/object/domain

2 Few operations/objects/domains (2-5)

3 Low number of operations/objects/domains (6-10)

4 Medium number of operations/objects/domains (10-15)

5 High number of operations/objects/domains (15-20)

6 Large number of operations/objects/domains (20-30)

7 Complete library of operations/objects/domains (specific)

8 Complete library of operations/objects/domains (generic)

51

DSTO-GD-0090

JSi 7. Mark the following criteria which apply to your software development process.

It is defined by:
Documented (internal source)

Documented (external source)

Supported by tools

Common practices passed on verbally

Other (Describe)

The process (standard) is:
Preferred (developers are encouraged to follow it)

Used (consistently by developers)
Checked for major discretions (by developers management)

Justification must be given for deviating from it

Enforced (by management)

Reviewed and Refined (regularly)

Other (List)

Mark the following activities which are included in your development process.

Defect Tracking

Metrics Tracking
Metrics Collection
Independent Quality Assurance

Requirements Tracking

Requirements Elicitation

Requirements Change Management

Prototyping

Risk Management
Independent Validation and Verification

Subcontracting

(Formal) Training

Other (List)

52

DSTO-GD-0090

8. Mark the following activities which are included in your development process.

Defect Tracking
Allows defects to be tracked as to their origin and resolution. It can

form a basis for estimating the remaining defects in a system.

Metrics Tracking
This includes schedule and budget tracking against product size or
development activities. Its objective is to determine how the
development of the product is progressing. It also includes tracking
software quality throughout the development.

Metrics Collection
Manual or automated methods for collecting software metrics.

Independent Quality Assurance
An independent team, not necessarily from a commercially
independent organisation is used to check the quality of the product
and determine limitations and their potential causes from the

development process.

Requirements Tracking
Allows requirements to be tracked from the requirements document to

the source code.

Requirements Elicitation
Methods used for determining and refining the user requirements.

Requirements Change Management
A mechanism for handling changes to requirements. This can vary
from not allowing changes to requirements, to producing new cost
estimates for each requirement change and updating any contracts

etc accordingly.

Prototyping
A development phase where a throw-away product is developed to
help determine the user requirements or the feasibility of the more
difficult or novel parts of the software development.

53

DSTO-GD-0090

54

DSTO-GD-0090

Independent Validation and Verification

A team from a commercially independent organisation which are used

to check the code, often for safety and security issues.

Risk Management

A mechanism for determining the risks associated with the project

(application) and means by which they can be eliminated, reduced, or

detected early should they arise. It is not just a mechanism for dealing

with problems after they arise.

Subcontracting

Are subcontractors used in the project development.

(Formal) Training

Is there a formal training process in place which identifies the training

needs of the staff, including training in new tools or techniques used in

the application/project or updating skills or which ensures that all staff

have a base level of competency in their required skills. (This does not

mean that all programming staff have a degree in Computer Science

since different degrees focus on different aspects of computing).

Other

It is not intended that all activities in the development process be listed

here. Those that relate to design/code/test type activities should not

be listed here. This section is meant to contain those activities which

relate to the management of the development, however other activities

can be included if it is felt they have a significant impact on the way

the software is developed (and/or if Part E is not answered).

55

DSTO-GD-0090

9. Indicate the following:

Management Overhead

Ratio of developers to managers

Percentage time developers spend on management activities

Documentation Requirements

DOD-STD-2167A (Y/N)

MIL-STD-498 (Y/N)

Users Manuals (Number of styles)

Training Documents (Number of styles)

Maintenance Guides (Number of styles)

Other
Management Approval Status (Mark one only)

Pushing the project

Top priority

Fully supported

Currently supported

Phased support

Interim Arrangement

Experimental

Other (Explain)
Project/ Application Security Measures (Mark those which apply)

Restricted access to the development site(s)
Restricted knowledge of components and purpose (Need to know)

Security Personnel required for the development site
Security alarms required for the development site
Staffing Restrictions for developers, or all staff (specify)

Other (Explain)
Attempted Reuse Level (% Reused code)
Coding Standards (Internal, External or Not used)

Other Standards Used

POSIX (Y/N)

X
Language Standards (List)

Other

56

DSTO-GD-0090

Management Overhead
Managers are considered to be full-time over the life of the project. Where this is
not appropriate, please indicate full-time and part-time numbers, as well as the
minimum and maximum number of managers used.
Management overheads include effort to supervise other staff and mangagement of
the project at a high level and does not include activities such as configuration
management or quality control.
Meetings with the clients for requirements elicitation do not count as management,
whereas meetings with the clients for contract negotiations etc do count.

Documentation Requirements
This should include requirements to follow standards such as 2167A as well as the
requirements for manuals (different user's guides, training manuals, etc).

Management Approval Status
This should indicate whether the management is:
a) PUSHING the project (application) to the extent that it may be difficult to

control their expectations of the project, particularly if problems arise
b) the project (application) is their top priority, but have realistic expectations
c) the project (application) is FULLY SUPPORTED
d) the project (application) is CURRENTLY SUPPORTED, but may be withdrawn
e) the first phase of the project (application) is supported, but later phases are

subject to review (PHASED SUPPORT)
f) the project (application) is considered an INTERIM arrangement until

something more suitable can be arranged
g) the management consider the project (application) as EXPERIMENTAL and

may think that it is likely to fail
h) OTHER

Project/Application Security Measures
The project (application) itself, rather than its end use, requires security measures
to be in place. This may be because it is commercially sensitive or requires
knowledge of classified material.

Attempted Reuse Level
While the actual amount of reused code cannot be known prior to the development,
historical information and expected improvements, are often used to predict the
amount of reused code, as a percentage of the size (normally in Lines of Code) of
the final source code

Other Standards Used
Indicate any other standards used, such as testing standards, user-interface
standards etc. Include both development and coding standards.

57

DSTO-GD-009Q

10. Mark the constraints which apply to the project's (applications) software. Indicate if

the constraints are general or have acceptance criteria and if the will be checked -

internally, by the client or user, by an external organisation or not at all.

High Useability

Real-Time

High Portability

High Throughput

Multiple (Specified) Hosts

Limited CPU time

High Maintainability

Interactive

High Reliability

Limited Memory

Security

Limited I/O Capacity

Safety

Limited Storage

Other (List)

11. Mark the resources available to the project (application development).

Reuse Librarian
Library of Reusable Components

Support Staff
Mature Hardware
Understanding Client

Easy Schedule

Stable team
Stable Support Tools

Appropriate team breakdown

Flexible Budget
Local team / customer

Timely Resources

Other (List)

58

DSTO-GD-0090

10. Mark the constraints which apply to the project's (application's) software and where
possible explain how it will be determined if the project (application) has met the

constraints.
This should indicate measures which will be used to determine if the constraints were

met. For example:
• The Useability might be determined by specific tests to be applied by the

User or require that certain style guides are followed.
• Real-time requirements might by tested experimentally, by simulators, or by

a theoretical analysis of the problem.
• Reliability may be determined as a measure of the code, based on tests, or

based on performance in the field - such as the average number of days

between failures.

59

DSTO-GD-0090

12. Indicate the areas in which, when the project commenced, your staff have :

(1) training,
(2) experience (more than 6 months), or

(3) training and experience.

Language Used

Process Used

Hardware Used

Development Environment

Type of Application

Support Tools

Client

Users

Other (List)

13. Indicate how novel the project (application) is

Nothing similar has ever been attempted

Nothing similar has been attempted by the organisation

Nothing similar has been attempted by the development team

Variation on a standard product

Other

14. Indicate other areas which may (have) effect(ed) staff productivity, and give details.

Negative Effect

Positive Effect

60

DSTO-GD-0090

12.Indicate the areas in which your staff have (1) training, (2) experience (more than 6
months), (3) training and experience

The PROCESS is the method by which software is developed and tested and
also includes house-keeping activities.
The DEVELOPMENT ENVIRONMENT is a combination of the Process and
Resources used to develop a project (application) and the working conditions
under which the project (application) is developed.
The TYPE OF APPLICATION is a combination of factors such as: Real-Time,
Embedded, Scientific, Information Processing and Control.
SUPPORT TOOLS include Communications Tools, Project Planning Tools and

Software Development Environments.
CLIENT and USER indicate if the client and user are available for answering

questions about the requirements.

61

DSTO-GD-0090

Part E. Progressive Refinement

(Group 2 Information as described in Section 3.1)
1. Organisation Number

2. Project Number
3. Complete the tables using the following guidelines:

a) If overtime was recorded separately in the Effort record, record the overtime

worked in the table below under the O/T columns.
b) If overtime was included in the Effort recorded for the project, record the Effort in

the table below under the E columns. Leave the O/T columns blank.

c) If the overtime was not recorded and was different for each phase build, identify

the approximate percentage under the O/T columns in the table below and write % at

the top of the appropriate columns.
d) If the overtime was not recorded and was approximately constant over the

different phases of the project, please indicate the approximate overtime (as a %) for

each staff category:

1. Development Overtime %

2. Support Overtime %

3. Sub-contractors Overtime %

Appli-

cation

Number

Phase /

Build

Effort () Size

(Capacity)

Builds

Only

Constraints

Met

Builds

Only

Develop-

ment

Support Sub-

Contractors

E i O/T E i O/T E i O/T

62

DSTO-GD-0090

Motivation
A build of a system may not add any new Capacity (i.e. additional functionality), but may
address other requirements such as time or memory constraints. Therefore, both the Capacity
(as defined in Part C) and the number of constraints (see Part D) met by the build need to be
recorded.

Example phases/builds are:
Requirements analysis
System design
Build 1 - Detailed design
Build 1 - Coding
Build 1 - Unit Testing
Build 1 - Integration Testing
Build 2 - (as for build 1)
Build 3 - Constraints test design
Build 3 - Constraints testing - Iteration 1 - n
Build 3 - Code adjustment - Iteration 1 - n-1

where n is determined by the test results but must be less than a specified value. Software
Development Activities can also be included as separate phase/builds.

For each build indicate the application(s) effected.

Effort
In the brackets () indicate the units in which Effort (time spent by all developers) in developing
the project) was recorded. It is preferable that the units used are staff-hours, so if alternative
units are used, also indicate the conversion rate to obtain staff-hours. Effort should be given as it
was recorded and not allow for unrecorded Overtime.
The Effort (in the units stated) of the organisation completing the questionnaire's project staff
should be included in the Development Effort column. The Support Effort should indicate the
Effort of support and managerial staff whose time is not booked to a particular project or activity.
The final column should be used to indicate the Effort from sub-contractors.

If this questionnaire is being completed by the client or user, indicate the Effort spent by your
organisation separately, and record information about the Contractors Development Effort in the
appropriate location in the table.

63

DSTO-GD-0090

Part F. Alternative Size Measures

(Group 2 Information as described in Section 3.1)

1. Organisation Number

2. Project Number

3. Application Number (if Applicable)

Size Measure (& Description)

LOC (Attach a description of how it was calculated).

FP - Inputs

FP - Outputs

FP - Enquiries

FP - Logical Internal Files

FP - External Interface Files

FP - Data Communications

FP - Distributed Data Processing

FP - Performance

FP - Configuration Usage

FP -Transaction Rates

FP - On-line Data Entry

FP - End-User Efficiency

FP - On-line Update

FP - Complex Processing

FP - Re-useability

FP - Installation Ease

FP - Operational Ease

FP - Multiple Sites

FP - Facilitate Change

FP - Unadjusted (If above info not available)

FP - Adjusted (If above info not available)

Sub-systems

Ada Library Units (or equivalent - give language)

Ada Packages (or equivalent - give language)

Size (Total App/Proj)

H

H

H:

H

H

64

DSTO-GD-0090

This part may be completed at the application or the project level. It is preferable that it is

complete at both levels wherever possible.

These measures are provided to allow estimates of software size, which can be determined
after the concept evaluation stage of the development, to be incorporated in the progressive
refinement model. It will also be used to compare the models from the literature with the

Slicing/Progressive Refinement model.

Any measures currently being calculated for the project should be included. In addition,
measures which can be determined from the code (such as Lines of Code), and those which are

easy to determine (such as the Function Point Technology Factors) should be recorded.

Where possible copies of the definitions used should be attached. Standard definitions of
Function Point components are given below. If alternative definitions are used, please attach

them.

Function Point Function Types
There are five function types: External Input, External Output and External Enquiry are the three
Transactional function types and Internal Logical File and External Interface File are the Data
Business function types. If functionality is duplicated, it should only be counted once.

Internal Logical files are logical collections of data from the user's perspective which are
maintained by transactions belonging to the application of interest. External Interface files are
logical collections of data from the user's perspective which are referenced by the application of
interest, but maintained by other applications. Temporary, backup, help, report and
implementation dependent files should not be included under either category. The complexity of
an Internal Logical File or and External Interface file is given by the table below.

External Inputs add, change or delete
information from one or more Internal
Logical files. External Enquiries extract
information from the system. External
Outputs are similar to External Enquiries
except that the information is processed
before being extracted.

The three Transactional function types
are also classified into one of three
complexity levels - (L)ow, (A)verage or
(H)igh. The table to the right can be
used to determine these
classifications. The number of File
Types Referenced is used to
determine the appropriate column and the number of Data Element Types is used to determine
the appropriate row. For Outputs, use the numbers in the shaded area and use the numbers in
the clear area for Inputs. The appropriate level for Enquiries is determined by considering the
input and the output side of the Enquiry separately and then choosing the higher complexity

level.

Data Element Types

1-19 29-50 >50

Normalised

Tables

(Record Types)

1 L L A

2-5 L A H

>5 A H H

File Ty pes Referenced

Output <2 2-3 >3

Input <2 2 >2

Data

Element

Types

1-5 1-4 L L A

6-19 5-15 L A H

>19 >15 A H H

65

DSTO-GD-0090

Function Point Technology Factors
The following table describes the factors to be considered when determining the appropriate
value for each Function Point Technology Factor. The following notes apply to the table.

* User Efficiency features are:
Navigational aids (function keys, dynamic menus)
Hard copy user documentation of on-line transactions
Menu System Automated cursor movement
Mouse interface Pre-assigned function keys

Scrolling Pop-up windows
Cursor selection of screen data Heavy formatting (eg reverse video, colour)
Minimal number of screens On-line help/documentation
Remote printing (on-line) On-line batch submission
Bilingual (counts as 4) Multi-lingual (counts as 6)

** Complex Processing features are:
Security or Sensitive Control (eg audit) processing

Extensive logical processing
Extensive mathematical processing
Extensive exception processing resulting in incomplete transactions

Multiple types of I/O processing (eg multi-media)

*** Operational Ease factors are:
Operator intervention required for start-up, back-up and recovery
Operator intervention not required for start-up, back-up and recovery (counts as 2)

Minimal need for tape mounts
Minimal need for paper handling

**** Facilitate change factors are:
Flexible query/report facility for requests which require access to one control file
Flexible query/report facility for requests which require access to multiple control

files (counts as 2)
Flexible query/report facility for complex requests which require access to multiple

control files (counts as 3)
Control data keep in user-maintained tables. Changes take place next business

day.
Control data keep in user-maintained tables. Changes take place immediately.

(counts as 2)

66

DSTO-GD-0090

0 1 2 3 4 5

Data Comm- Pure batch Remote data Remote data On-line data OneTP Multiple TP

unications or isolated entry or entry and collection or protocol protocols

printing printing teleprocessing supported supported

Distributed No aid to Prepares Preparation for, Uni-directional Distributed Processing

Data data data for use transfer to & distributed processing & functions are

Processing transfer or on another processing on processing & data transfer in dynamically

processing processor another CPU data transfer both directions allocated

Performance None No special Critical at peak Critical in bus. Performance Performance

, action times. hrs. Deadlines analysis tasks analysis tools

required Processing by

next day.

constrained by

interfaces

required in

design

required

Heavily Used No Less Security and Specific Requires Constraints on

Con- restriction restrictive timing Processor dedicated CPU distributed

figuration s than typical considerations requirements or constraints

on its use

components of

the system

Transaction No peak > Monthly Weekly peak Performance Performance Tools for whole

Rate periods peak periods periods analysis used analysis tools of life-cycle

On-line Data Batch <8% 8-15% 14-24% 24-39% >30%

Entry mode interactive interactive interactive interactive interactive

Design for 0 features 1 -3 features 4-5 features 6+ features Tools required Efficiency

End User to check demonstrated

Efficiency * efficiency to the user

On-line No on-line 1-3 Control 4+ Control Update of Protection Highly

Update updates files files. Small major control against data automated

volume. files. loss recovery

Complex None 1 factor 2 factors 3 factors 4 factors 5 factors

Processing
**

Re-useability None Within <10% More than 1 Source level Customised by

Application application user's needs customisation user

considered >1 considered planned and parameters

user's needs documented

Installation None Special set- Conversion (2) and (2) and (3) and

Ease up required and installation Impact of automated automated

guides conversion conversion and conversion and

required. important installation tool installation tool

Operational None 1 factor 2 factors 3 factors 4 factors Unattended

Ease *** operation

Multiple One site Identical Similar Different (1) or (2) and (3) and

Sites hardware hardware and hardware and / documentation documentation

and software software or software & support

plans

& support

plans

Facilitate None 1 factor 2 factors 3 factors 4 factors 5 factors

Change **"

67

DSTO-GD-0090

Part G. Detailed Size Measures

(Group 2 Information as described in Section 3.1)

1. Organisation Number

2. Project Number

Module Size (Capacity) Size(LOC) Size (FP) Size (Other - Specify)

68

DSTO-GD-0090

See Part F for a definition of Function Points and Part C for a table from which Capacity can be

determined.

69

DSTO-GD-0090

Part H. Detailed Cost Breakdowns

(Group 2 Information as described in Section 3.1)

1. Organisation Number

2. Project Number

Phase/Build Module Effort (Staff-Hours)

Development Sub-Contractor

70

DSTO-GD-0090

Effort
In the brackets () indicate the units in which Effort (time spent by all developers) in developing
the project) was recorded. It is preferable that the units used are staff-hours, so if alternative
units are used, also indicate the conversion rate to obtain staff-hours. Effort should be given as it

was recorded and not allow for unrecorded Overtime.
The Effort (in the units stated) of the organisation completing the questionnaire's project staff
should be included in the Development Effort column. The final column should be used to

indicate the Effort from sub-contractors.

Module
For these purposes a module is considered to be any part of the system which can be
separately compiled. If Effort was not tracked to this level of detail, but was associated with
collections of modules, associate the Effort with the relevant group of modules. You may identify
"Super-Modules" and use their names in the Module column.

Phase/Build
These should be the same as those given in Part E. Where Phase/Build information is not given,
it will be assumed that the Phase/Build is the same as that in the previous row.

71

DSTO-GD-0090

Part I. Alternative Cost Information

(Group 2 Information as described in Section 3.1)

1. Organisation Number

2. Project Number

3. Application Number (if applicable)

4. COCOMO
1. Is the project:

Organic

Semi-Detached

Embedded

2. Tick the appropriate box for the following attributes:

Driver Very
Low

Low Nominal High Very
High

Extra
High

Reliability

Data Base Size

Product Complexity

Execution Time Constraint

Main Storage Constraint

Virtual Machine Volatility

Computer Turn Around Time

Analyst Capability

Applications Experience

Programmer Capability

Virtual Machine Experience

Prog. Language Experience

Modern Programming Practices

Use of Software Tools

Required Development Schedule

5. Other
As used by your organisation.

72

DSTO-GD-0090

This part may be completed at the application or the project level. It is preferable that it is

complete at both levels wherever possible.

COCOMO
The COCOMO model is described in [Boehm, 1984]. Tables describing Boehm's Cost Drivers
are given on the next two pages. The terms Organic, Semi-Detached and Embedded refer to the

project's "Development Mode". The guidelines given by Boehm are:
Organic Developments are familiar, with stable requirements. They are relatively

unconstrained and forgiving. [Heemstra, 1992] says that the system being

developed is also relatively small.
Embedded Developments are unfamiliar, ambitious, unforgiving and tightly constrained.

[Heemstra, 1992] says they also have volatile requirements.
Semi-detached Developments fall between Organic and Embedded Developments.

Other
This should include the names of the approaches used in your organisation. For each approach,
the names and values of all the factors used should be given. A description of how the factors,
and how they are determined, should also be given, although references to publicly available
documents are sufficient. Where there is insufficient room, additional sheets should be attached.

73

DSTO-GD-0090

The following table which describe the attributes used in the COCOMO model is derived from

that given in [Boehm, 1984].

Driver Very Low Low Nominal High Very

High

Extra

High

Reliability Slight incon-

venience

Low, easily

recoverable

losses

Moderate,

recoverable

losses

High

financial

loss

Risk to

human

life

Data Base

Size*

D/P >

D/P<

0

10

10

100

100

1000

1000

Product

Complexity

See Separate Table

Execution

Time

< 50% of

available

< 70% < 85% < 95%

Main Storage

Constraint

< 50% of

available

< 70% < 85% < 95%

Virtual

Machine

Volatility

Major:

Minor:

(Change)

12 months

1 month

6 months

2 weeks

2 months

1 week

2 weeks

2 days

Computer

Turn Around

Time

Interactive Average

turnaround

<4 hours

4-12 hours >12

hours

Analyst

Capability **

15th 35th 55th 75th 90th

Applications

Exp.

< 4 months 1 year 3 years 6 years 12 years

Programmer

Capability **

15th 35th 55th 75th 90th

Virtual

Machine Exp.

< 1 month 4 months 1 year 3 years

Prog. Lang.

Exp.

< 1 month 4 months 1 year 3 years

Modern Prog.

Practices

No use Beginning

Use

Some Use General

Use

Routine

Use

Use of

Software

Tools

Basic micro-

processor

tools

Basic mini

tools

Basic

mid/maxi

tools

Strong,

maxi prog.,

test tools

Activity-

based

tools

Development

Schedule

75% of

nominal

85% 100% 130% 160%

* D stands for the size of the database in bytes and P stands for the program's delivered

source instructions.
** The numbers given reflect the percentiles with respect to analysis or programming ability,

efficiency, communication, cooperation.

74

DSTO-GD-0090

The following table describes the product complexity using in the COCOMO model as given in
[Boehm, 1984]. Note that SP stands for structured programming.

Control Computational Device- Data Management

Operations Operations Dependent
Operations

Operations

Very Low Straight-line code Evaluation of Simple read, write Simple arrays in

with non-nested simple statements with main memory

SP operators. expressions. simple formats

Simple predicates A = B + C * (D - E)

Low Straightforward Evaluation of No cognisance Single file

nesting of SP moderate-level needed of overlap subsetting with no

operators. Mostly expressions. or the particular data structure

simple predicates. D = SQRT(B**2 - processor or I/O changes, no edits,

4 * A * C) device. I/O done at
GET/PUT level.

no intermediate

files.

Nominal Mostly simple Use of standard I/O processing Multi-file input and

nesting. Some maths and includes device single file output.

inter-module statistical routines. selection, status Simple structural

control. Decision Basic matrix or checking and error changes, simple

tables. vector operations. processing. edits.

High Highly nested SP Basic numerical Operations at Special purpose

operators with analysis: (NA) physical I/O level subroutines

many compound multi-variate (storage address activated by data

predicates. Queue interpolation, translations, stream contents.

and stack control. ODEs. Basic seeks, reads, etc). Complex data

Considerable inter- truncation, round- Optimised I/O restructuring at

module control. off concerns. overlap. record level.

Very Re-entrant and Structured NA: Routines for A generalised,

High recursive coding. near-singular interrupt diagnosis, parameter-driven

Fixed-priority matrix equations, servicing, file structuring

interrupt handling. partial differential masking. routine. Search

equations (PDEs). Communication
line handling.

optimisation,
command
processing, file
building.

Extra Multiple resource Difficult and Device timing- Highly coupled,

High scheduling and unstructured NA dependent coding, dynamic relational

dynamic priorities. highly accurate micro-programmed structures. Natural

Micro-code-level analysis of noisy, operations. language data

control. stochastic data. management.

75

DSTO-GD-0090

Part J. Other

(Group 3 Information as described in Section 3.1)

1. Organisation Number

2. Project Number
3. Application Number (if applicable)

Please give details of any other factors which you feel effect the cost of developing software

systems. For example, indicate tools which effected productivity, hardware and staffing

problems, and requirements changes.

76

DSTO-GD-0090

Appendix B: Guidelines for Facilitators

FACILITATORS

Facilitators are the people who have agreed to assist in obtaining the data from the

organisations participating in these data collection activities. Their roles are to:

1. Identify and contact organisations which may be able to supply data

2. Supply these organisations with the information they require before entering a

data collection agreement

3. Ensure that these organisation understand that:
- the data will be treated as Commercial-In-Confidence

- the data will not be used to evaluate the organisations

- they will have early access to the results of all studies on the data

- supplementary information may be requested of them at a later data (if these

requests are not met, then the final models may be less applicable to their

organisation)
4. Prepare copies of the questionnaire for each organisation which agrees to supply

data, contacting the iMAPS team for organisation numbers when required
5. Interview the organisations or supply them with copies of the questionnaire

6. Assist the organisations to identify potential electronic sources of the requested

information
7. Collate cross-referencing information between the developers, sub-contractors,

clients and users for each project

8. Deliver the collected information to the iMAPS team

9. Identify (and contact) other potential facilitators
10. Ensure that other facilitators understand the importance of the conditions listed

in 3 and the nature of the data to be collected.

PROJECT SELECTION
Information should be collected for as many projects as possible and should not be

limited to successful projects. Data can be collected on past projects as well as from on-

going projects. While it may not be possible to complete the entire questionnaire for past

projects, any available information should be supplied. Where the only information

available is likely to be incomplete or inaccurate then no information should be collected

for that project. (For example, if there is no record of the actual Effort worked by software

development stage (build or phase) and no-one is able to answer the Group 1 questions

about the intended system.)

Where the number of projects identified exceeds the number from which data could

reasonably be collected, then priorities must be assigned to the projects and/or more

facilitators identified. Priority should be given to the most recent projects, and on-going

projects. Where further restrictions are required, the facilitators should concentrate on

collecting information from projects developed by a small number of organisations and

for a small number of application domains. Additional projects can then be considered, as

time permits.

77

DSTO-GD-0090

QUESTIONNAIRE
Once potential projects have been identified, the client's project leaders, the end users

and all contractors (see Contacts) should be contacted to determine if they are willing to

supply data.

All those who agree to supply data should "complete" the questionnaire, either through

an interview with the facilitator or directly.

The Questionnaire was designed to facilitate the collection of three Groups of

information. The first two groups address the two phases of the conjectured approach.

While it is preferred that the questions from both groups are answered, the answers to

only one of these groups are necessary. It is likely that Group 1 and Group 3 questions

will need to be answered manually. However, it is anticipated that most of the

information requested for the Group 2 questions will be available electronically.

Provision of electronic forms of the information, where available, is preferable to manual

completion of the questionnaire.

The copies of the questionnaire should include an appropriate Organisation, Project, and

possibly Application Number as described below. Cross reference information relating

the questionnaire to the project should be retained.

ORGANISATION NUMBERS
These are used to distinguish different organisations. They should be supplied by the
iMAPS team. However, facilitators may be given a range of numbers which they can

allocate to the organisations they contact.

PROJECT AND APPLICATION NUMBERS
These may be determined by the facilitator or the organisation. However, unique project

numbers should be used for each project in which a given organisation is involved and

unique application numbers should be used for each application in a project.

CONTACTS
Development Teams: Questions should be answered by team leader.

Sub-contractors: Questions should be answered by sub-contractor's team leader

for any applications they developed.

Clients: Questions should be answered by project leaders to the best of
their knowledge. They should be encouraged to answer the

Group 1 questions (Part C, Q 1-7 and Part D, Q 1-6) - in

particular.
Users: Where possible, the Group 1 questions (Part C, Q 1-7 and Part D,

Q 1-6) should be answered by a user which a deep knowledge of

the product being developed.

78

DSTO-GD-0090

Cross referencing information between these organisations and the projects should be

maintained.

RETURNING RESULTS

The collected information should be returned to the iMAPS Team by email or post C/o

one of the authors.

Gina Kingston email:Gina.Kingston@DSTO.defence.gov.au

Software Engineering (SE) Group ph : +618 259 6611

Information Technology Division (ITD) fax: +618 259 5589

Defence Science and Technology Organisation (DSTO)

PO Box 1500

Salisbury, SA 5108

AUSTRALIA

79

DSTO-GD-0090

B.l Providing Processing Information
The questions for the Processing component of the Capacity concept are those most likely to be

misinterpreted. For this reason this section describes how to determine the Processing for a

collection of related example projects. The generic example considers a Parser for either a

Programming Language, or a Natural Language, which is specialised into four more concrete

examples as the result of considering the information requested.

B.l.l Providing the Information for Part C
For Q7, Part C we need to determine the number of Operations, Objects and Areas the

processing spans.

Areas of Processing:
The following table lists the areas of processing and each area was considered in turn.

Calculation: While certain parsing algorithms may require limited

calculations to keep track of the number of entities etc, this is not

an essential part of the nature of parsing and no calculation is

recorded.
Manipulation: The main function of parsing is to determine the

structure of a sentence by identifying and classifying its

components. Therefore manipulation is one of the main areas of

processing.
Obtain/Retrieve: This is required to read data into the system.

Store, Transfer and Present: The system should do something with

the results it produces. They will need to be stored for later use,

transferred to another (parts of the) system, or presented to the user.
Monitor: If we assume that the amount of text to be parsed is fixed there is no need to monitor

for additional input etc.
Act: A parser does not control the movement of any physical (or pseudo-physical) activities.

Areas of Processing
X Calculation

V Manipulation

V Obtain/Retrieve

V
Store

Transfer

Present

X Monitor

X Act

Therefore the number of Areas falls into the 3-6 category.

Operations:
As discussed above, processing is the main area, so the operations in this area should be

considered. It was previously stated that the function of a parser was to:

determine the structure of a sentence by

• identifying and
• classifying its components.

We need to determine if these are Simple or Complex operations.

Consider the following situations:
1. The parser is for a simple assembly language with no ambiguities.

2. The parser is for a programming language, such as Ada, with ambiguities.

3. The parser is for the English language, with no ability to handle incorrect grammar,

partially completed sentences, or recognise special phrases, or the meaning of verbs.

4. The parser is for the English language and must handle all of the above.

80

DSTO-GD-0090

Obviously the operations in the first case are Simple and in the last case are Complex. The other

two require more consideration, but should be considered Simple operations. (Note that the

work to define these operations may be considerable, but the problem of defining the

operations is a consideration for Difficulty and not Capacity.)

Objects:
The objects need to be classified into one of three categories, Few, Similar or Diverse.

Consider again the four examples described above.

In the first example, operands, operators and possibly labels will need to be identified.

Therefore the classification should be Few.

In the second example, a variety of components will need to be identified: variables, sub-

programs, numbers, tasks etc. This means that the classification should be at least Similar. In

addition, anomalies will need to be identified. This example is a border-line case. However, as

there is only a small exception to the Similar rule and the types of objects are not very Diverse,

the system should be classified as Similar.

In the third example, a variety of components will need to be identified: verbs, nouns, articles,

pronouns, adjectives, adverbs, noun phrases etc. Therefore the classification should be Similar.

In the fourth example, the objects are similar to the third. Additional objects would be required

for slang, dialects, and to associate words or phases to their meanings. Again, this is a border-

line example. And while this system may seem even harder to classify it should again be

classified as Diverse. The main reason for this is the necessity to associate words and phrases to
their meanings. Without greater understanding of the purpose of this system or its

implementation, it should be considered as Diverse.

Summary:
Using Table B-2 the processing levels shown in Table B-l are obtained for the four examples of

parsing systems.

Table B-l: Calculated Processing Levels

Example Operations Objects Areas Level

1 Simple Few 3 (2-6) C

2 Simple Similar 3 (2-6) F

3 Simple Similar 3 (2-6) F

4 Complex Diverse 3 (2-6) R

81

DSTO-GD-0090

Table B-2: Processing Levels

Level Usual Characteristics

Operations Objects Areas

 A No processing

B Basic Few 1

C Basic Few 2-6

D Basic Few 7-8

E Basic Similar 1

F Basic Similar 2-6

G Basic Similar 7-8

H Basic Diverse 1

1 Basic Diverse 2-6

J Basic Diverse 7-8

K Complex Few 1

L Complex Few 2-6

M Complex Few 7-8

N Complex Similar 1

0 Complex Similar 2-6

P Complex Similar 7-8

Q Complex Diverse 1

R Complex Diverse 2-6

S Complex Diverse 7-8

B.1.2 Providing the Operations Information for Part D

For Q6, Part D we need to complete the Operations and Characteristics tables. The four

examples considered for Part C will also be considered for Part D.

As discussed in Part C, there is no Calculation, Monitoring or Acting so these rows may be

easily completed. For the purposes of this example, we will assume that the results will be

stored and that there will be no Transfer or Present components to the overall Processing.

Therefore the Calculation, Transfer, Present, Monitor and Act rows of the Table B-5 contain all

zeros (0).

Operation Level:
The generic description of Operation Levels is given in Table B-3. More detailed information on

the Levels for different Operations for operations from different processing areas is given in

Table B-4.

82

DSTO-GD-0090

Table B-3: Generic Classification of Operation Levels

Operation Level Types of Operations

0 Not used

1 Single, isolated, operations

2 Simple combinations of operations performed on simple types

3 Operations performed on simple objects

4 Operations performed on complex objects

5 Operations performed on collections of very similar objects

6 Operations performed on collections of objects

The Manipulation, Store and Obtain operations are all performed on data structures. In parsers

it is generally assumed that the input is a sequence of tokens which are processed one at a time,

in order. As at the time the tokens are obtained, they are considered identical by the system, the

obtain operational level is 1. The final result is generally a parse-tree, and it is unlikely that

more complex structures are used while parsing so the Store and Manipulate operations are of

the same Level. As the results are tree-structured, this must be at least level 5 and as the objects

stored in the tree are Similar (except for example 4, where they are considered Diverse) this is

the appropriate level. (Example 4 should be at level 6).

Table B-4: Operation Levels by Processing Area

1 &2 3 4 5 6

Calculation Integers,

Reals

Vectors Matrices etc

(Fixed Size &

Dimension)

Matrices etc

(General,

Regular)

Other

Manipulation

Single

Values

Linear

Objects

Non-linear

Objects

(Common

Components)

Non-linear

Objects

(General

Components)

Non-linear

Objects

(Varied

Components)

Obtain/Retrieve

Store

Transfer

Present

Monitor

Act ("Movement") Switches Fixed moves "Linear" 2-D 3-D

Operation Rates:
The Operation, Object and Application Domain Rates are given in Table B-6. Using this
information the Operation Rates can be obtained for the Processing areas, Manipulation, Obtain

and Store. For the purposes of this exercise we will assume that one Obtain and one Store
operation are required. In practice this is likely to vary from system to system and may only be

guessed at the early stages in the project. Thus the Obtain and Store areas have an Operation

Rate of 1.

The Operation Rate for the Manipulation area is different for the four examples given.

For examples 1 and 3, there will be one main operation to distinguish different types of objects,

so their Operation Rate will be 1.

83

DSTO-GD-0090

For example 2, there will be a few additional operations to process anomalies, so its Operation

Rate will be 2.

For example 4, a more detailed description is required to refine the number of operations.

However one or more operations will be required to handle each of:

• grammatically correct English

• incomplete sentences

• incorrect grammar

• slang

• dialects
• identifying phrases with particular meanings

• identifying the meanings of words.
Because of the nature of some of these requirements, it is likely that more than operation will be

required. Therefore the minimum number of operations required is 7 and the maximum is not

known. The Operation rate could be assumed to be in the 6-10 category, but as the number of

operations is somewhat vague, and it is likely that there will be more than one operation per

requirement rating 4, the 11-15 category is recommended.

Table B-5: Operations Details

Example =>

(Maximum)
Operation

Level

(Maximum)
Operation

Rate

Object Rate Application
Rate

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Calculation 0 0 0 0

Manipulation 5 5 5 6 1 2 1 4 2 6 4 7 1 1 1 2

Obtain/Retrieve 1 1 1 1

Store 5 5 5 6 1 1 1

Transfer 0 0 0 0

Present 0 0 0 0

Monitor 0 0 0 0

Act 0 0 0 0

Object Rate:
The Obtain and the Store will operate on single, although different, object types. While this is

almost certainly true for the first three examples, the fourth example is not detailed enough to

determine if different types of results will be stored. For the purposes of this example we will

consider that only one type of result is necessary. Therefore all four systems have an Object Rate

of 1 for the Obtain and Store areas.

Table B-6: Operation, Object and Application Rates

Operation/Object/Application Rate Operations (Objects, Application Domains)

None
Single operation/object/domain

Few operations/objects/domains (2-5)
Low number of operations/objects/domains (6-10)

84

DSTO-GD-0090

4 Medium number of operations/objects/domains (10-15)

5 High number of operations/objects/domains (16-20)

6 Large number of operations/objects/domains (21-30)

7 Complete library of operations/objects/domains (specific)

8 Complete library of operations/objects/domains (generic)

The Object Rate for the Manipulation area needs to be considered separately for each example.

This is a more complex rating than that used in Part C, which also captures the domains of the

objects . The ratings given on this scale for the four examples were:

1. Few
2. Similar

3. Similar (just)

4. Diverse (diverse)

Table B-7 shows the correlation between ratings used in Part C and the Object and Application

ratings used here for Part D. The values we obtain for the Object and Application Rates for Part

D can be checked against this table.

Table B-7: The Correlation between Part C and Part D ratings.

Part C Rating Object Rate Application Rate

Few 1-3 1

Similar 4-7 1

Diverse 8
1-8

1
2or3-8

As discussed previously, there are two or three types of objects for Example 1, so its object level

is 2.

For Example 2, an incomplete list of four or five objects was given. The actual structure is much
more complex, and while it will not be calculated at this stage it is likely that there are over
twenty types of objects, including anomalies. Therefore, the Object Rating for this example

should be 6.

For Example 3, an incomplete list of objects was again given. However, it is likely that less

objects would be needed that for the previous example. (As this is only a simple English
structure parser it is not likely that verbs of different tenses etc would be distinguished). Again

the actual number will not be determined at this stage, but it is likely to be slightly more than

10. The 11-15 category, or Rating 4 was chosen.

The final example attempts to give a complete classification for the English language, so is

Rating 7. Because the parser is meant to recognise different dialects, it might be thought that it

should be given a rating of 8. However, a rating of 8 should be used to indicate very different

objects. Even parsing of different Latin based languages would have similar objects which

would result in the Parser having an Object rate of 7.

85

DSTO-GD-0090

Application Rate
The Application Rate for the first three examples is 1 in all three areas, Obtain, Manipulate and

Store. The Application Rate is also 1 for the areas Obtain and Store in the fourth example. The

Application Rate for the Manipulation area of the fourth example is harder to determine.

In a banking system, loans, tax, and savings are all considered different areas. However, no

such fine lines exist for domains in language definition. (Although, the inclusion languages

which were not based on Latin would obviously involve multiple domains.) Considering the

nature of the different activities considered under the "Operation Rate" heading there appears

to be multiple domains. For example, the identification of the structure of the sentences and the

association of phrases with particular meanings appear to belong to different domains. (It is not

clear if the association of meanings to individual words belongs in one of these domains or is a

separate domain.) Thus the number of domains appears to lie in the 2-5 region, resulting in a

rating of 2.

Operations Table
The completed Operations table is given in Table B-5). The next step is to complete the

manipulations table.

B.1.3 Providing the Characteristics Information for Part D
This information is to be supplied in Table B-8. As stated previously, there is no Calculating,

Transferring, Presenting, Monitoring, or "Acf'ing performed by the four examples considered.

These areas are shaded in grey in the table.

Additional information is required to complete the remainder of the table for any of the

examples. For the first three examples, it is likely that only a few of the options, apart from

those associated with error checking, would be marked. However, very different systems could

result for the fourth example depending on the options checked.

86

DSTO-GD-0090

Table B-8: System characteristics

c M O S T Pr Mo A Handles

Boundary conditions

Over/underflow

na na na na na na Round-off Errors

na na na na Device Errors

High or varying accuracy

na na na High or varying precision (granularity)

Partial Solutions

na Uncertain information

Incomplete information

na na Back-tracking

Special cases (eg near singular

matrices)

Other Errors - Correction

Other Errors - Fail safe

87

DSTO-GD-0090

DSTO-GD-0090

iMAPS: Collecting Data for Software Costing

Gina Kingston, Martin Burke and Peter Fisher

(DSTO-GD-0090)

DISTRIBUTION LIST

AUSTRALIA

DEFENCE ORGANISATION

Number of Copies

S&T Program
Chief Defence Scientist)
FAS Science Policy)
AS Science Industry External Relations)
AS Science Corporate Management)
Counsellor, Defence Science, London
Counsellor, Defence Science, Washington
Senior Defence Scientific Adviser)
Scientific Adviser - Policy and Command)
Assistant Secretary Scientific and Technical Analysis
Navy Scientific Adviser

Scientific Adviser - Army

1 shared copy

Doc Control sheet
1

1 shared copy

3 copies of Doc Control sheet
and 1 distribution list

Doc Control sheet
and 1 distribution list

Air Force Scientific Adviser
Director Trials
Director, Science Policy - Force Development and Industry
Science Policy - Defence Industry
Director, Aeronautical & Maritime Research Laboratory

Electronics and Surveillance Research Laboratory
Chief Information Technology Division
Research Leader Command & Control and Intelligence Systems
Research Leader Military Computing Systems
Research Leader Command, Control and Communications
Executive Officer, Information Technology Division Doc
Head, Information Architectures Group Doc
Head, C3I Systems Engineering Group
Head, Information Warfare Studies Group Doc
Head, Software Engineering Group
Head, Trusted Computer Systems Group Doc
Head, Advanced Computer Capabilities Group Doc
Head, Computer Systems Architecture Group Doc
Head, Systems Simulation and Assessment Group Doc
Head, Intelligence Systems Group Doc
Head Command Support Systems Group

1
1
1
1

Control sheet
Control sheet

1
Control sheet

1
Control sheet
Control sheet
Control sheet
Control sheet
Control sheet

1

89

DSTO-GD-0090

Head, Exercise Analysis Group Doc Control sheet
Head Information Management and Fusion Group Doc Control sheet
Head Human Systems Integration Group Doc Control sheet
Publications and Publicity Officer, ITD 1
Gina Kingston 2
Martin Burke 2

Peter Fisher 2

DSTO Library
Library Fishermens Bend 1
Library Maribyrnong 1
Library DSTOS 2

Library, MOD, Pyrmont Doc Control sheet

Forces Executive
Director General Force Development (Sea), Doc Control sheet
Director General Force Development (Land), Doc Control sheet

Director General Force Development (Air), Doc Control sheet

Army
ABCA Office, G-l-34, Russell Offices, Canberra 4

S&I Program
Defence Intelligence Organisation 1
Library, Defence Signals Directorate Doc Control sheet

B&M Program (libraries!
OIC TRS, Defence Central Library 1
Officer in Charge, Document Exchange Centre (DEC), 1
US Defence Technical Information Center, 2
UK Defence Research Information Centre, 2
Canada Defence Scientific Information Service, 1
NZ Defence Information Centre, 1
National Library of Australia, 1

Universities and Colleges
Australian Defence Force Academy 1
Library
Head of Aerospace and Mechanical Engineering
Senior Librarian, Hargrave Library, Monash University
Librarian, Flinders University
Professor Ross Jeffery, University of New South Wales 1
Professor Ray Offen, JRCASE, Macquarie University 1
Professor Richard Jarret, University of Adelaide 1
Simon Timcke, University of Adelaide

Other Organisations
NASA (Canberra) 1
AGPS 1

State Library of South Australia 1
Parliamentary Library, South Australia 1

90

DSTO-GD-0090

1

OUTSIDE AUSTRALIA
TTCP

XTP-2 National Leaders 4

Abstracting and Information Organisations
INSPEC: Acquisitions Section Institution of Electrical Engineers 1
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US 1
American Society for Metals 1
Documents Librarian, The Center for Research Libraries, US 1

Information Exchange Agreement Partners
Acquisitions Unit, Science Reference and Information Service, UK 1
Library - Exchange Desk, National Institute of Standards and

Technology, US 1

SPARES 10

Total number of copies: 82

91

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY
ORGANISATION

DOCUMENT CONTROL DATA

2. TITLE

iMAPS: Collecting Data for Software Costing

4. AUTHOR(S)

Gina Kingston, Martin Burke and Peter Fisher

6a. DSTO NUMBER
DSTO-GD-0090

8. FILE NUMBER
N9505/10/80

6b. AR NUMBER
AR-009-686

9. TASK NUMBER
iMAPS

1. PRIVACY MARKING/CAVE AT (OF
DOCUMENT)

N/A
3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED
REPORTS THAT ARE LIMITED RELEASE USE (L) NEXT TO
DOCUMENT CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

5. CORPORATE AUTHOR

Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury SA 5108

6c. TYPE OF REPORT
General Document

10. TASK SPONSOR
DST

13. DOWNGRADING/DELIMITING INSTRUCTIONS

N/A

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

APPROVED FOR PUBLIC RELEASE

7. DOCUMENT DATE
April 1996

11. NO. OF PAGES
98

12. NO. OF
REFERENCES

19
14. RELEASE AUTHORITY

Chief, Information Technology Division

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK
OFFICE, DEFT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600 ___

16. DELIBERATE ANNOUNCEMENT

No limitation

17. CASUAL ANNOUNCEMENT Yes

18. DEFTEST DESCRIPTORS
Computer programs
Cost analysis
Department of Defence (Australia)
iMAPS

19. ABSTRACT

This paper discusses the iMAPS Software Costing conjectures, and documents the data required to
calibrate and validate the models. It discusses issues related to the collection of the data, including
the benefits to participants, and the significance of this research to the Australian Defence
Organisation.

Page classification: UNCLASSIFIED

