Miscellaneous Paper GL-96-23 August 1996

US Army Corps of Engineers Waterways Experiment

Station

Airfield Pavement Evaluation, Robert Gray Army Airfield, Fort Hood, Texas

by Patrick S. McCaffrey, Jr.

FULL CONTROL OF

Distribution is authorized to U.S. Government agencies only; test and evaluation; August 1996. Other requests for this document shall be referred to Headquarters, U.S. Army Corps of Engineers (CEMP-ET), Washington, DC 20314-1000.

19961008 111

 Saccolaria
 Approximative
 Saccolaria
 Sacc

Prepared for U.S. Army Center for Public Works

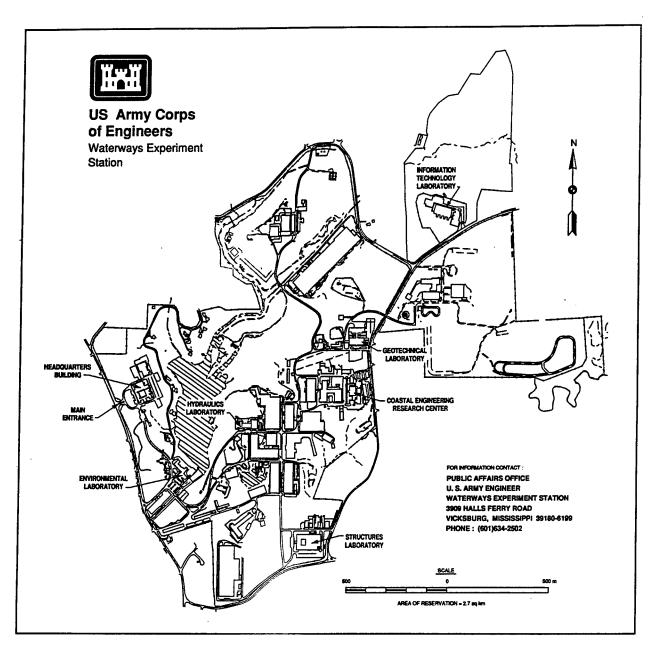
DESTRUCTION NOTICE—For classified documents, follow the procedures in DoD 5200,22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

PRINTED ON RECYCLED PAPER

Miscellaneous Paper GL-96-23 August 1996

Airfield Pavement Evaluation, Robert Gray Army Airfield, Fort Hood, Texas


by Patrick S. McCaffrey, Jr.

U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Distribution is authorized to U.S. Government agencies only; test and evaluation; August 1996. Other requests for this document shall be referred to Headquarters, U.S. Army Corps of Engineers (CEMP-ET), Washington, DC 20314-1000.

Prepared for U.S. Army Center for Public Works Alexandria, VA 22310-3862

Waterways Experiment Station Cataloging-in-Publication Data

McCaffrey, Patrick S.

Airfield pavement evaluation, Robert Gray Army Airfield, Fort Hood, Texas / by Patrick S. McCaffrey, Jr.; prepared for U.S. Army Center for Public Works.

154 p. : ill. ; 28 cm. -- (Miscellaneous paper ; GL-96-23)

Includes bibliographic references.

"Distribution authorized to U.S. Government agencies only ... "-- T.p.

1. Runways (Aeronautics) -- Texas -- Fort Hood -- Evaluation. 2. Pavements -- Texas --Fort Hood. 3. Air bases -- Texas -- Fort Hood. 4. Robert Gray Army Airfield (Tex.) I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Geotechnical Laboratory (U.S. Army Engineer Waterways Experiment Station) IV. US Army Center for Public Works. V. Title. VI. Series: Miscellaneous paper (U.S. Army Engineer Waterways Experiment Station) ; GL-96-23. TA7 W34m no.GL-96-23

Contents

Preface	v
Executive Summary	vii
1—Introduction	1
Background	1 1
2—Pavement Load-Carrying Capacity	3
General	3 4
3-Recommendations for Maintenance, Repair, and Structural	
Improvement	7
General	7 8
4—Conclusion	18
General	18 19
References	21
Appendix A: Background Data	A 1
Previous Reports	A1 A1 A3 A4
Appendix B: Tests and Results	B 1
Nondestructive Tests	B1 B1 B2 B3
Appendix C: Pavement Condition Survey and Results	C1
•	C1 C2

Appendix D: Structural Analysis	D1
General	D2
PCN Analysis	D3
Solution	D5
Appendix E: Micro PAVER Output Summary	E1
SF 298	

Preface

This report provides an assessment of load-carrying capacity and the current condition of airfield pavements at Robert Gray Army Airfield, Fort Hood, Texas. This report provides data for the following functional activities:

- a. Planning and programming pavement maintenance, repairs, and structural improvements.
- b. Designing maintenance, repair, and construction projects.
- c. Determining airfield operational capabilities.
- d. Assembling information for aviation flight publications and mission planning.

Users of information from this report include the installation Director of Public Works (DPW), engineering design agencies (DPW's, U.S. Army Corps of Engineers), installation Airfield Commander, U.S. Army Aeronautical Services Agency, and agencies assigned operations planning responsibilities. Information concerning aircraft inventory, passes, and operations shall not be released outside U.S. Government agencies. This report satisfies the requirements for condition inspection and structural evaluation established in Army Regulation AR 420-72 (Headquarters, Department of the Army 1991a) and supports airfield survey requirements identified in Army Regulation AR 95-2 (Headquarters, Department of the Army 1988).

The Army Airfield Pavement Evaluation Program is managed by the U.S. Army Center for Public Works (CECPW-ER) and is technically monitored by the U.S. Army Corps of Engineers Transportation Systems Center (CEMRO-ED-TX) located in Omaha, NE. Funding for this airfield evaluation was provided by the Center for Public Works (CECPW-ER), Fort Belvoir, VA.

This publication was prepared by the U.S. Army Engineer Waterways Experiment Station (WES) based upon pavement structural testing and condition survey work at Robert Gray Army Airfield, Fort Hood, Texas, on 2 through 6 November 1995. The survey team consisted of Messrs. Richard E. Bradley, Louis W. Mason, Patrick S. McCaffrey, Jr., and Jeb S. Tingle, Airfields and Pavements Division (APD), Geotechnical Laboratory (GL). The report was prepared by Mr. McCaffrey under the supervision of Dr. Albert J. Bush, III Chief, Technology Applications Branch, APD, Mr. Timothy W. Vollor, Acting Chief, PSD, and Dr. William F. Marcuson III, Director, GL, WES.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

Recommended changes for improving this publication in content and/or format should be submitted on DA Form 2028 (Recommended Changes to Publications and Blank Forms) and forwarded to Center for Public Works, ATTN: CECPW-ER, 7701 Telegraph Road, Alexandria, VA 22310-3860.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Executive Summary

The field testing at Robert Gray Army Airfield, Fort Hood, Texas, was conducted in November 1995 by personnel of the U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, MS. The structural capacity and physical properties of the pavement were determined from nondestructive tests using a heavy weight deflectometer (HWD), measurements taken in previous studies at selected locations on the airfield, and from dynamic cone penetrometer (DCP) tests. A surface inspection of the airfield was also conducted to establish the condition of the airfield surface which does not necessarily correspond to its load-carrying capacity.

The results of the tests and visual inspection reveal the following:

- a. The primary pavement fixed-wing facilities and their assigned PCN are: Runway 15-33, 56/R/C/W/T; Parallel Taxiway, 64/F/A/W/T; South Ramp, 34/F/A/W/T; and North Ramp, 59/R/B/W/T. The rotarywing airfield pavement facilities and their assigned PCN are: Taxiway 1 East, 21/F/B/W/T; Taxiway 2 East, 57/F/A/W/T; East Parallel Taxiway, 13/F/A/W/T; East Ramp Taxiway, 14/F/B/W/T; East Ramp Hoverlane, 11/F/C/W/T; and East Ramp, 8/R/C/W/T.
- b. The airfield is structurally adequate to support the day-to-day mission requirements (i.e., current peacetime use) for 20 years except for features R7A, T8B, A5B, and A6B.
- c. The heliport pavements used by rotary-wing aircraft are structurally adequate to support day-to-day mission requirements (i.e., peacetime use) for 20 years.
- d. The surface condition of the pavement indicates that maintenance and repair (M&R) will be required for various sections of the airfield. The M&R suggested in Chapter 3 should be planned now and accomplished within the next 2 years in order to prevent further deterioration. Due to the very-poor to poor condition of features R1A, R2C, R4C, R5C, R6C, A2B, A5B and A6B reconstruction should be considered.
- e. In planning structural improvements and/or reconstruction requirements, it should be noted that TM 5-825-1/AFM 32-8008 Vol. 1

(Headquarters, Departments of the Army and the Air Force 1994) specifies that Portland Cement Concrete (PCC) or composite pavements with a rigid overlay be used in numerous airfield pavements, such as ends of runways, primary taxiways, and primary parking aprons.

f. Overloading the pavement facilities may shorten the life expectancy.

Additional details on structural capacity, surface condition, and work required to maintain and strengthen the airfield are contained in Chapters 2 and 3 of this report.

1 Introduction

Background

In May 1982 the Department of the Army initiated a program to determine and evaluate the physical properties, the load-carrying capacity for various aircraft, and the general condition of the pavements at major U.S. Army airfields. The U.S. Army Center for Public Works (CECPW-ER) sponsors a program for periodic evaluation of Army Airfield facilities in accordance with Army Regulation AR 420-72 (Headquarters, Department of the Army 1991a). The evaluation of the airfield pavements was performed to determine the structural adequacy of the existing pavements to accommodate mission aircraft and to identify maintenance, repair, and construction work requirements.

Objective and Scope

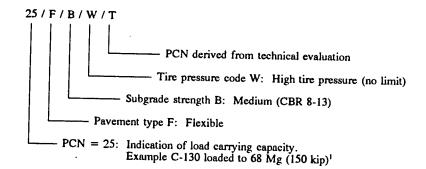
The primary objectives of this investigation were to determine the allowable aircraft loads and develop a critical aircraft, and to identify maintenance, repair and structural improvement needs for each airfield pavement feature. These objectives were accomplished by:

- a. Obtaining records of day-to-day traffic operations from the installation Airfield Commander.
- b. Structural evaluation of the airfield pavements in accordance with TM 5-826-1/AFJMAN 32-1036/DM 21.7 (Headquarters, Departments of the Army, the Air Force, and the Navy Draft) using the nondestructive testing device and selective sampling of pavement materials.
- c. Performing a condition survey to determine pavement distresses (type, severity, and magnitude) in accordance with ASTM 5340-93 and using analysis features of the Micro PAVER pavement management system.

The results of this study can be used to:

a. Provide preliminary engineering data for pavement design (Appendixes A and B).

- b. Assist in identifying and forecasting maintenance and repair work (Appendix C).
- c. Assist in preparation of long-range work plans and programming for maintenance, repair, and construction funds (Appendix C).
- d. Determine type and gross weights of aircraft that can operate on a given airfield feature without causing structural damage or shortening the life of the pavement structure (Appendix D.)
- e. Determine aircraft operational constraints as a function of pavement strength and surface condition (Appendix D).
- f. Determine the need for structural improvements to sustain current level of aircraft operations (Appendix D).
- g. Determine the need for structural improvements to accommodate increased use of the airfield (e.g., to accommodate mobilization outloading or new aircraft missions) (Appendix D).


Chapter 2 of this report includes the results of the aircraft classification number - pavement classification number (ACN-PCN) analysis for use by U.S. Army Aeronautical Services Agency (USAASA), Airfield Commanders, and Deputy Chief of Staff for Operations and Plans (DCSOPS) personnel. Chapter 3 contains maintenance, repair, and structural improvement recommendations for use by Directorate of Engineering and Housing (DEH) personnel and design agencies. Chapter 4 contains conclusions and recommendations in summary form. Detailed supporting data are provided in the appendixes.

2 Pavement Load-Carrying Capacity

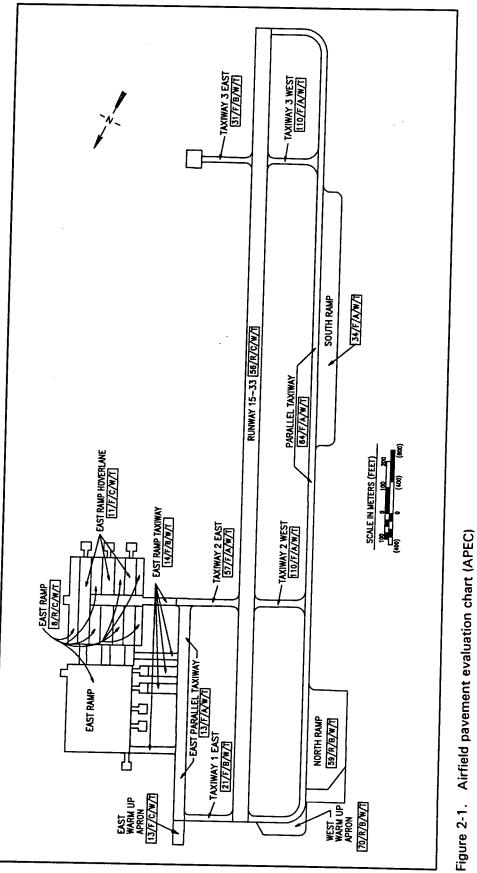
General

The load-carrying capacity is a function of the strength of the pavement, the weight of the aircraft loads, and the number of applications of the load. The method used to report pavement load-carrying capacity is the (ACN-PCN) system as adopted by the International Civil Aviation Organization (ICAO). The United States as a participating member of ICAO is required to report pavement strength in this format. The ACN-PCN format also provides the airfield evaluation information required by Army Regulation AR 95-2 (Headquarters, Department of the Army 1988).

The ACN and PCN are defined as follows: The ACN is a number which expresses the relative structural effect of an aircraft on both flexible and rigid pavements for specific standard subgrade strengths in terms of a standard single-wheel load. The PCN is a number which expresses the relative loadcarrying capacity of a pavement for a given pavement life in terms of a standard single-wheel load. An example of a PCN five-part code is as follows:

The system works by comparing the ACN to the PCN. If the ACN is equal to or less than that of the PCN, the pavement is expected to perform

¹ Most of the dimensions and measurements reported were obtained in non-SI units. All such values have been converted using the conversion factors given in ASTM E 380.


satisfactorily for the analysis period which is typically 20 years. If the ACN is slightly higher than the PCN the pavements may be able to carry the load of the aircraft but the pavement's life will be shortened. If the ACN is significantly higher than the PCN, only a few applications of that aircraft load may lead to a structural failure of the pavement.

Load-Carrying Capacity

The first step in determining the load-carrying capacity of the pavements at Robert Gray Army Airfield (RGAAF), Fort Hood, Texas, was to estimate the traffic to which the airfield will be subjected over the next 20 years. Traffic records of the number of operations on the pavements and types of aircraft were obtained from Robert Gray Airfield Operations Office. The traffic mix established for this airfield is shown in Table A4. Based on this mix the critical aircraft (see Table D1) operating on the fixed-wing pavements was determined to be the B-747 aircraft at a design pass level of 4,900 on Portland Cement Concrete (PCC), and 2,600 passes on asphalt concrete (AC). The AH-64 was determined to be the critical aircraft operating on the rotary-wing pavements. The equivalent 20-year traffic for the AH-64 aircraft operating on PCC and AC pavements is 17,600 passes. Using this traffic information, results of the data analysis, and information from previous reports, the ACN values for the critical aircraft operating on the RGAAF pavements were determined. These values are designated as the operational ACN. For the fixed wing facilities, the operational ACN is 65/R/C/W/T for rigid pavements and 52/F/A/W/T for flexible pavements (See Table D5 for description of the five component ACN or PCN code). For the rotary-wing facilities, the operational ACN for rigid and flexible pavements is 6/R/C/W/T and 6/F/A/W/T, respectively. The numerical ACN values calculated for the critical aircraft operating on AC and PCC pavements on each of the four subgrade categories are presented in Table D2.

The critical PCN value for each airfield facility is presented in the Airfield Pavement Evaluation Chart (APEC) which is presented in Figure 2-1. A summary of allowable loads and overlay requirements determined for the critical aircraft and its design pass level is shown in Table D3. This table shows that the load-carrying capacities of the primary fixed-wing features and the primary rotary-wing features are not capable of sustaining the mission traffic over the 20 year analysis period.

The number of passes of mobilization and contingency aircraft loadings that could be sustained by each facility is dependent on the ACN of the aircraft and the critical PCN of the facility. During wartime, many aircraft are allowed to carry heavier loads than during peacetime. This means that the aircraft would have a higher ACN because of the higher loading and would cause more damage per pass than in peacetime. Also under some contingency plans or during emergencies, heavier aircraft than those in the traffic table (Table A4) could be considered for using the airfield pavements. These aircraft would generally have higher ACN values and cause more damage than those normally using the airfield. The operational life of the pavement will be reduced if it is subjected to aircraft loadings having higher ACN values than the PCN of the facility. Appendix D contains an example of a procedure to determine the impact of mobilization and contingency aircraft operations.

3 Recommendations for Maintenance, Repair, and Structural Improvement

General

Recommendations for maintenance, repair, and structural improvements are based on results from both the structural evaluation (Appendix D) and the pavement condition survey (Appendix C). Either or both the evaluation or the survey may indicate a particular feature needs repair and/or improvement. If the pavement condition index (PCI) is below the required values contained in AR 470-72 (Headquarters, Department of the Army 1991a), the pavement needs maintenance to improve its surface condition. If the ACN/PCN determined for the critical aircraft is greater than one, the pavement needs structural improvement. Where both evaluations indicate improvements are needed, the recommendations are made such that the repairs to the surface are those needed until the structural improvements can be made. If the structural improvements are made first, the surface repairs may not be necessary. The PCI, ACN/PCN and recommended general maintenance alternatives for each feature are shown in Table 3-1. Specific recommendations are identified in Table 3-2.

Recommendations for structural improvements have been defined in terms of overlays in this report. In some instances overlays may not be the most cost effective or best engineering alternative for pavement strengthening. It should be noted that the overlay requirements shown in Table 3-2 were determined based on representative conditions at the time of testing and should be considered minimum values until verified by further investigation. These overlays should be used as a guide when programming funds for design projects. Prior to advertising an improvement project, a thorough pavement analysis and design should be completed to select the most cost effective improvement technique. All designs should be reviewed by CEMRO-ED-TX to ensure that they are in accordance with current design criteria.

Recommended overlay thicknesses follow the criteria for minimum thicknesses contained in TM 5-825-3/AFM 88-6, Chap. 3 (Headquarters, Departments of the Army and the Air Force, 1988). Where calculated thicknesses are greater than the minimum thicknesses, the values were rounded up to the next 12.7 mm (0.5 in.).

Maintenance and repair recommendations are based on the changes needed to provide the minimum required PCI. Army Regulation AR 420-72 (Head-quarters, Department of the Army 1991a) establishes those requirements at 65 to 75 for all runways and primary taxiways and 40 to 55 for aprons and secondary taxiways.

Recommendations

Steps 1 through 5 of the flowchart shown in Figure 3-1 were used in determining the recommendations suggested in Table 3-2. The maintenance and rehabilitation (M&R) alternatives suggested for the existing surfaces were selected from those listed for various distresses in rigid and flexible pavements shown in Tables 3-3 and 3-4, respectively. In many instances, the performance of a specific alternative depends upon the geographical location and expertise of local contractors. Therefore, it is suggested that the local DPW personnel review all recommendations. Local costs for the approved alternatives can then be used with the Micro PAVER program to obtain a reasonable cost estimate. All overlay, repair, or construction should be in accordance with TM 5-825-1/AFM 32-8008, Vol 1 (Headquarters, Department of the Army and the Air Force 1994) which required PCC at runway ends and for the primary taxiway and parking apron systems. The features in Table 3-2 marked with " ³ " require a PCC surface.

The PCI was developed to determine maintenance and repair needs. If the PCI is low, maintenance or repair is needed to increase the PCI. If the PCI is low and the PCN is greater than the ACN, localized maintenance or repair will generally be an acceptable solution. Although these maintenance activities and repairs will improve the PCI to acceptable levels, they may not be the most cost-effective alternative. An overlay or other overall improvement may be more cost-effective than considerable localized maintenance or repairs. Certainly, if the current PCI is less 25, overall improvements should be investigated. When an overlay is recommended, the maintenance recommended is that needed to keep the pavement serviceable until the overlay is applied. Although these recommendations will raise the PCI, the improved PCI may not remain above the minimum levels for the analysis period. The PCN and the ACN were developed to determine the capability of an airfield pavement to safely support different aircraft. If an improvement is needed to increase the PCN to the ACN and only repairs to improve the PCI are applied, the pavement will probably deteriorate quite rapidly. If the PCN is lower than the ACN, the pavement needs an improvement to increase the load carrying capacity so that the PCN will be greater than or equal to the ACN. In some cases, the PCI may be high while the PCN is lower than the ACN. In this case, the pavement needs an improvement to increase the load-carrying capacity of the pavement.

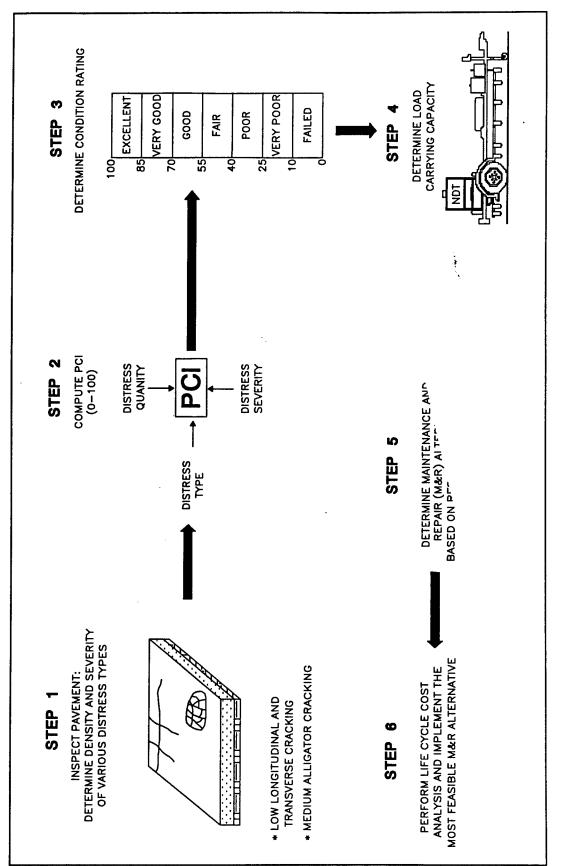


Figure 3-1. Flowchart for the determination of maintenance and repair recommendations

Pavement Feature R1A R2C	PCI			Recomme	ndations	
		ACN/PCN ²	Do Nothing	Maintenance	Repair	Constru
R2C	20	0.58				x
	31	0.44			x	
R3C	45	0.44			X	
R4C	28	0.40			x	
R5C	26	0.62			x	
R6C	34	0.51			x	
R7A	83	1.16			x	
R8A	91	0.92		x		
T1A	58	0.44			x	
T2A	76	0.61		x		
ТЗА	59	0.64			x	
T4A	64	0.20			x	
T5A	44	0.81	-		x	
T6C	63	0.31			x	
T7C	67	0.13			x	
T8B	62	1.87			x	
Т9В	63	0.29			x	
Т10В	65	0.11			x	
T11B Sec 1	64	0.21			x	
T11B Sec 2	59	0.46			x	
T12B	53	0.30			x	
Т13В	60	0.43			x	
T14B	56	0.43		·	x	
T15B Sec 1	60	0.29			x	
T15B Sec 2	56	0.46			x	
Т16В	61	0.30			x	
Т17В	61	0.55			x	
T18B	65	0.24			x	
1100		0.24			x	

_

Pavement				Recommen	dations	
Feature	PCI	ACN/PCN ²	Do Nothing	Maintenance	Repair	Construction
A2B	17	0.46				X
АЗВ	79	0.77		x		
A4B Sec 1	79	0.92		x		
A4B Sec 2	65	0.97			x	
A5B	25	1.53		,		x
A6B	30	1.02			x	
A7B	80	0.67		x		
A8B	83	0.75		x	1	

,

.

.

Chapter 3 Recommendations for Maintenance, Repair, and Structural Improvement

.

Tahla 2-2	2-2				
Summ	ary of Ove	rlay and	Maintenan	ce Require	Summary of Overlay and Maintenance Requirements for Day-to-Day Traffic Operations
		Overlay	Overlay Requirements,	mm (in.) ¹	
Feature	Area sq m (sq yd)	AC	PCC (Partial Bond)	PCC (Unbonded)	PCC (Unbonded) Maintenance and Repair Alternatives for Existing Surfaces
					Fixed-Wing Runway 15-33
R1Å ³	18,578 (22,222)	0 (0.0)	-		Surface recycling or reconstruction should be considered on this feature due to the PCI of 20. Other alternatives are to clean and seal low-severity cracks with asphalt emulsion or cut back asphalt. Clean and seal medium- and high-severity cracks with asphalt emulsion or cut back asphalt mixed with sand. Repair areas of alligator and/or slippage cracking with full depth patches.
R2C	7,430 (8,888)	0 (0.0)	:	1	Surface recycling or reconstruction should be considered for this feature due to the PCI of 31. Other alternatives are to clean and seal low-severity cracks with asphalt emulsion or cut back asphalt. Clean and seal medium- and high-severity cracks with asphalt emulsion or cut back asphalt mixed with send. Repair areas of alligator cracking with full depth patches.
R3C	66,880 (80,000)	0 (0.0)	1	1	Surface recycling should be considered on this feature due to the PCI of 45. Other alternatives are to clean and seal low-severity cracks with asphalt emulsion or cut back asphalt. Clean and seal medium- and high-severity cracks with asphalt emulsion or cut back asphalt mixed with sand. Repair areas of alligator cracking and rutting with full depth patches.
R4C	35,298 (42,222)	0 (0.0)	-	:	Same as for R2C except the PCI is 28.
R5C	27,867 (13,333)	0 (0.0)	-	:	Same as for R2C except the PCI is 26.
R6C	11,147 (13,333)	0 (0.0)	-		Same as for R1A except the PCI is 34.
R7A ³	9,289 (11,111)	102 (4.0)	102 (4.0)	178 (7.0)	Replace joint sealant with a high-quality joint sealant ² . Clean low-severity spalls and seal with a high- quality joint sealant ² . Repair medium- and high-severity spalls with epoxy concrete or a full depth patch. Structural improvement is required to withstand the projected traffic.
R8A ³	9,289 (11,111)	0 (0.0)	0 (0.0)	0 (0.0)	Replace joint sealant with a high-quality joint sealant ² . Clean low-severity spalls and seal with a high- quality joint sealant ² .
					(Sheet 1 of 4)
¹ For plai ² See TV ³ TM 5-82	¹ For planning purposes only. 2 See TM 5-822-11, (Headquarter ³ TM 5-825-1/AFM 32-8008, Vol.	s only. Ieadquarte 8008, Vol.	<u></u>	s of the Army rs, Departmen	For planning purposes only. See TM 5-822-11, (Headquarters, Departments of the Army and the Air Force 1993) for guidance. TM 5-825-1/AFM 32-8008, Vol. 1 (Headquarters, Departments of the Army and the Air Force 1994) requires that the surface be PCC.

Table :	3-2 (Continued)	nued)			
		Overla	Overlay Requirements.	, mm (in.) ¹	
Feature	Area sq m (sq yd)	AC	PCC (Partial Bond)	PCC (Unbonded)	Maintenance and Repair Alternatives for Existing Surfaces
					Fixed-Wing Taxiways
T1A ³	6,200 (7,417)	0.0)	I	1	Clean and seal low-severity cracks with asphalt emulsion or cut back asphalt. Clean and seal medium- and high-severity cracks with asphalt emulsion or cut back asphalt mixed with sand. Repair areas of alligator cracking with full depth patches.
T2A	9,057 (10,833)	0 (0.0)	0 (0.0)	0 (0.0)	Clean cracks and low-severity spalls and seal with a high-quality joint sealant ² . Repair medium- and high-severity spalls with epoxy concrete or full depth patch. Replace joint sealant with a high-quality joint sealant ² .
T3A ³	43,263 (51,750)	0 (0.0)	-	1	Same as T1A
T4A ³	4,180 (5,000)	0 (0.0)	1		Clean and seal low-severity cracks with asphalt emulsion or cut back asphalt.
T5A ³	13,933 (16,667)	0 (0.0)	1	:	Surface recycling should be considered on this feature due to the PCI of 44. Other alternatives are to clean and seal low-severity cracks with asphalt emulsion or cut back asphalt. Clean and seal medium- and high-severity cracks with asphalt emulsion or cut back asphalt mixed with sand. Repair areas of alligator cracking and rutting with full depth patches.
T6C	4,528 (5,416)	0 (0.0)	-		Clean and seal low-severity cracks with asphalt emulsion or cut back asphalt. Clean and seal medium-severity cracks with asphalt emulsion or cut back asphalt mixed with sand.
т7С	4,528 (5,416)	0 (0.0)	-		Same as T6C.
T8B	5,922 (7,083)	178 (7.0)	1	-	Clean and seal low-severity cracks with asphalt emulsion or cut back asphalt. Clean and seal medium-severity cracks with asphalt emulsion or cut back asphalt mixed with sand. Structural improvement is required to withstand the projected traffic.
					Fixed-Wing Aprons
A3B	9,753 (11,667)	0 (0.0)	0 (0.0)	0.0)	Same as T2A.
A4B Sec 1	5,573 (66,667)	0 (0.0)	0 (0.0)	0 (0.0)	Clean cracks and low-severity spalls and seal with a high-quality joint sealant ² . Repair medium- and high-severity spalls with epoxy concrete or full depth patch. Replace joint sealant with a high-quality joint sealant ² .
					(Sheet 2 of 4)
⁴ See TM ³ TM 5-82	See TM 5-822-11, (Headquarters, TM 5-825-1/AFM 32-8008, Vol. 1	l, (Headquarter 32-8008, Vol.		s of the Army s, Departmen	Departments of the Army and the Air Force 1993) for guidance. (Headquarters, Departments of the Army and the Air Force 1994) requires that the surface be PCC.

Table 3	3-2 (Continued)	nued)			
		OVELIA	uveriay requirements,	mm (in.)'	
Feature	Area sq m (sq yd)	AC	PCC (Partial Bond)	PCC (Unbonded)	Maintenance and Repair Alternatives for Existing Surfaces
					Fixed-Wing Aprons (Continued)
A4B Sec 2	18,578 (22,222)	(0 0) 0 0	0 (0.0)	0.0)	Same as A4B, Sec 1.
A5B ³	58,520 (70,000)	127 (5.0)	:		Reconstruction should be considered for this feature due to the PCI of 25. Other alternatives are to clean and seal low-severity cracks with asphalt emulsion or cut back asphalt. Clean and seal medium- and high-severity cracks with asphalt emulsion or cut back asphalt mixed with sand. Repair depres- sions with full depth patches. Structural improvement is remined to withbard the procession.
A6B ³	26,473 (31,667)	51 (2.0)		1	Reconstruction should be considered for this feature due to the PCI of 30. Other alternatives are to clean and seal low-severity cracks with asphalt emulsion or cut back asphalt. Clean and seal medium- and high-severity cracks with asphalt emulsion or cut back asphalt mixed with send. Structural improvement is required to withstand the proincated traffic
					Taxiwav 1 East
T9B	4,521 (5,408)	0 (0.0)	1		Clean and seal low-severity cracks with asphalt emulsion or cut back asphalt. Clean and seal medium- and high-severity cracks with asphalt emulsion or cut hark aschalt mixed with seal
					Taxiway 2 East
T10B	5,574 (6,667)	0 (0.0)		1	Same as for T6C.
					East Parallel Taxiway
T11B Sec 1	21,318 (25,500)	0.0) (0.0)	1		Same as for T6C.
					East Ramp Taxiways and Hoverlanes
T11B Sec 2	3,994 (4,778)	0 (0.0)			Same as for T9B.
T12B	2,787 (3,333)	0 (0.0)	•	:	Same as for T9B.
T13B	1,858 (2,222)	0 (0.0)	:	;	Same as for T9B.
³ TM 5-82	5-1/AFM 32-8	3008, Vol.	TM 5-825-1/AFM 32-8008. Vol. 1 (Headouarters	s Denartman	s of the Army and the Ar Free 10041
					or operationality of the Army and the Air Force 1994) requires that the surface be PCC.

.

interiorities repair, and construction Alternatives for Airfield Pavements, Rigid		Const	ructio	in Alte	ernative	9S TOF .	AINIEIC	T Pavem	ents, ni	Dio							
		Meintenenen															
												Repair				Cor	Construction
Distress Type	Seal Minor Cracks	Joint Seal	Partiat Epoxy Patch Patch		Seal Major Cracks	Full- Depth Patch	Under Sealing	Slab Grinding	Surface Milling	AC Overlay	PCC Overlav	Stab Replacement	Crack & Seat with AC Structural Dvarlav ³	AC Overlay	Repair/Install Surface/Subsurface	D D D	
Blowup			L,M			H,M									Dramage System	Recycling	Reconstruct
Corner break				н'w	M,H	H,M						: <u> </u>					
Longitudinal/transverse/ diagonal cracking	L,M				М,Н					т	I	I	H,M	r	L,M,H	Ŧ	Ŧ
D cracking	L		H,M		H,M	I						5					
Joint seal damage		H,M										:				Ŧ	Ŧ
Patching (small) <5 ft ²	L,M		Σ	Υ	H,M	H,M						I					
Patching/utility cut	۲,M		Σ	Ľ,M	Н,М	H,M						: 1					
Popouts ²				4													т
Pumping	A	4			4		•										
Scaling/map cracking			Η̈́Σ					M.H		Ч	E V				×		
Fault/settlement		Ň					H,M	N	H								
Shattered slab					Z	T									L,M,H		
Shrinkage crack ³						T						L'M		Ŧ	L.M.H	Ŧ	I
Spalling (joints)			L, M	L,M,H	H,M	H,M											
Spalling (corner)		_	L, M	L,M	H,H	H,M											
Note: L = low severity level; M = medium severity level; H = high severity level; A = no severity levels for this distress. Dreinage facilities to be repaired as needed. 2 Popouts normally do not require maintenance. 3 Shrinkage cracks normally do not require maintenance.	vel; M = repaired a t require m Ily do not	medium is neede reintenai require r	severity d. nce. naintene	r level; H ance.	t = high	severity	level; A	DO SOV	rity levels	or this di	strøss.						

.

Table 3-4		-																	
	'updau	and C	Maintenance		latives	TOF AIL	tor Aimeig Pavements, Flexible	ement	s, riexit	016	Repair						Const	Construction	
Distress Type	Seel Minor Cracke	Repair Potholes	Partial- Depth Patching	Partial- Repair Depth Apply Potholes Patching Rejuvenators	Seel Mejor Cracks	Full- Depth Patching	Surface Treatment ²	Slurry Seaf ³	Thin AC Overlays ⁴	Surface Milling	Grooving	Porous Friction Course	Repair Drainage Facilities	Surface Recycling	AC Structural Overlay ⁴	PCC Structural Overlay	Remove Existing Surface and Reconstruct		Cold Recycle
Alligator cracking	L	H,M	¥			М,Н	_	_					L,M,H		H,M				
Bleeding										L,M				H,M			н	H,M	H,M
Block cracking	L,M			L	M,H		L,M	Ľ						Σ	M,H			H,M	H,M
Corrugation			L,M			L,M,H			H,M	L,M							M,H		
Depression			L,M,H			H.M			M,H				L,M,H				Ŧ		
Jet blast				A		A			A										
Reflection cracking	L,M				M,H		L,M	L							M,H			н	
Longitudinal and transverse cracking	L,M				М,Н		N,N	Ļ							H,H			Ŧ	
Oil spillage			A			A			A	A				۷			A	A	
Patching	L,M		W		Μ	M,H									M,H		Ŧ	н	
Polished aggregate							A	۷	A	A	A	A		A					
Reveling/weathering		H,M		L,M		Σ	L,M		M,H	¥				М,H		н	н	M,H	
Rutting			L,M			L,M,H							L,M,H		M,H	н	Н	M,H	
Shoving			_			L,M				L,M							M,H	M,H	
Slippage cracking	L		L,M		L,M	H,H									M,H		M,H	M,H	
Swell			Ľ,M			H,H				L,M			L,M,H				н		
Note: L = low severity level: M = medium severity level; H = high severity level; A Not to be used on high speed areas due to increased skid potential. 2 Not to be used on high-type airfields due to FOD potential. 3 Not to be used on heavy traffic areas. 4 Patch distressed areas prior to overlay. 5 Drainage facilities to be repaired as needed.	rity level high spt high-typ heavy ti reas pric be repai	l; M = mé eed areas se airfieids raffic area sr to overle red as neu	edium sev due to in s due to F is. eded.	erity level; H . creased skid pc OD potential.	= high sı otential.	iverity lev		severity	= no severity levels for this distress	his distres	Ś								

4 Conclusions

Based on the results of this investigation it is concluded that:

General

The overlay requirements shown in Table 3-2 were determined based on representative conditions at the time of testing. It should be noted that the backcalculated modulus values determined for the various pavement layers can deviate throughout the year. Therefore, it is recommended that before specific improvements are programmed, a thorough pavement analysis and design be completed to select the most cost-effective improvement technique. In planning structural improvements and/or reconstruction, it should be recognized that TM 5-825-1/AFM 32-8008 Vol. 1 (Headquarters, Departments of the Army and the Air Force 1994) specifies that PCC (or composite pavement with a rigid overlay) be used at numerous locations including runway ends, primary taxiways, and aircraft parking and/or warm-up aprons.

The maintenance and rehabilitation (M&R) alternatives discussed in Chapter 3 and summarized Table 3-2 should be performed as soon as possible to retain the full benefit of the structural capacity of the existing pavement. The M&R alternatives suggested for the existing surfaces were selected from those listed for the various distresses shown in Tables 3-3 and 3-4. In many instances the performance of a specific alternative is dependent upon local condition and contractors.

The operational ACN's for the fixed-wing facilities are 52/F/A/W/T and 65/R/C/W/T for the flexible and rigid pavement features, respectively.

Structural Capacity and Condition Ratings

Runway 15-33 (Features R1A through R8A)

All features of Runway 15-33 with the exception of R7A will withstand 20 years of projected day-to-day operations. Feature R7A requires structural improvement to withstand 20 years of projected day-to-day operations. The ends of all runways are now required to be PCC as opposed to the existing AC type construction on R1A. The PCN for Runway 15-33 is 56/R/C/W/T. The general condition ratings of Runway 15-33 ranged from very poor to excellent. Due to the low condition ratings on the AC portion of the runway, surface recycling or reconstruction should be considered for features R1A, R2C, R3C, R4C, R5C and R6C.

Parallel Taxiway (Features T1A through T5A)

All features of this taxiway will withstand 20 years of projected day-to-day operations. Features T1A, T3A, T4A and T5A are AC pavement types and are now required to be PCC.

The PCN for this taxiway is 64/F/A/W/T. The general condition ratings for Features T1A through T5A are good, very good, good, good and fair, respectively. Due to the low condition ratings on Feature T5A, surface recycling should be considered.

Taxiways 3 West, 2 West, and Taxiway 3 East (Features T6C through T8B)

Features T6C and T7C will withstand 20 years of projected day-to-day operations. Feature T8B will require structural improvement to withstand 20 years of projected day-to-day operations. The PCN's for these taxiways are 169/F/A/W/T, 401/F/A/W/T and 31/F/B/W/T, respectively. The general condition ratings for these features are good.

Taxiway 1 East, Taxiway 2 East, and the East Parallel Taxiway, (Features T9B through T11B)

Taxiway 1 East, Taxiway 2 East, and the East Parallel Taxiway will withstand 20 years of projected day-to-day helicopter operations. The PCN's for these taxiways range from a low of 13/F/A/W/T on T11B section 2 to a high of 57/F/A/W/T on T10B. The general condition ratings for these features are good.

East Ramp Taxiways and East Ramp Hoverlanes (Features T12B through T19B)

The east ramp taxiways and hoverlanes will withstand 20 years of projected day-to-day helicopter operations. The PCN's for these taxiways range from a low of 11/F/C/W/T on T17B to a high of 25/F/A/W/T on T19B. The general condition ratings for these features are good.

West Warm-up Apron, North Ramp, and South Ramp (Features A3B through A6B)

The fixed-wing parking aprons will withstand 20 years of projected day-today operations with the exception of A5B and A6B. Features A5B and A6B require structural improvement to support 20 years of projected day-to-day operations. Features A5B and A6B are now required to be PCC type construction. PCN's are 70/R/B/W/T (A3B), 59/R/B/W/T (A4B Sec 1), 67/R/C/W/T (A4B Sec 2), 34/F/A/W/T (A5B), and 51/F/A/W/T (A6B). The general condition ratings ranged from very good to very poor on A5B.

East Warm-up Apron and East Ramp (A2B, A7B and A8B)

The rotary-wing aprons will withstand 20 years of projected day-to-day rotary-wing operations. PCN's are 13/F/C/W/T (A2B), 9/R/C/W/T (A7B), and 8/R/C/W/T (A8B). The general condition rating of A2B is very poor, and A7B and A8B are very good.

References

- American Society of Testing and Materials. (1994). "Standard test method for airport condition index surveys," Designation: D 5340-93, Philadelphia, PA.
- Bush, A. J., III. (1986). "Performance prediction of low volume airfield pavements," Miscellaneous Paper GL-86-14, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Headquarters, Department of the Army. (1988). "Air traffic control airspace, airfield flight activities, and navigational aids," Army Regulation 95-2, Washington, DC.
 - _____. (1991a). "Surface areas, bridges, railroad track and associated appurtenances," Army Regulation 420-72, Washington, DC.
 - . (1991b). "Engineering and design, aircraft characteristics for airfield-heliport design and evaluation," Engineering Technical Letter ETL 1110-3-394, U.S. Army Corps of Engineers, Washington, DC.
- Headquarters, Departments of the Army and the Air Force. (1988). "Rigid pavements for airfields," Technical Manual TM 5-825-3/AFM 88-6, Chap. 3, Washington, DC.
 - ______. (1993). "Standard practice for sealing joints and cracks in rigid and flexible pavements," Technical Manual TM 5-822-11/AFM 88-6 Chap. 7, Washington, DC.

_____. (1994). "General provisions for airfield/heliport pavements," Technical Manual TM 5-825-1/AFM 32-8008 Vol. 1, Washington, DC.

Headquarters, Departments of the Army, the Navy, and the Air Force. (1978). "Flexible pavement design for airfields," Technical Manual TM 5-825-2/DM 21.3/AFM 88-6, Chap. 2, Washington, DC.

_____. (Draft). "Airfield pavement evaluation," Technical Manual TM 5-826-1/AFJMAN 32-1036/DM 21.7, Washington, DC.

Webster, S. L., Grau, R. H., Williams, T. P. (1992). "Description and application of dual mass dynamic cone penetrometer," Instruction Report GL-92-3, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Appendix A Background Data

Description of the Airfield

In November 1995 the facility consisted of Runway 15-33, 61 m (200 ft) wide and 3048 m (10,000 ft) long, a parallel taxiway on the west side of the runway, cross taxiways, north and south parking aprons west of the runway, north and south parking aprons east of the runway, an alert apron with connecting taxiway to the runway, and a warm-up apron. A layout of the airfield pavements is shown in Figure A-1.

The airfield is located in an area of rolling to hilly topography. Geologically, the airfield is located in outcrops of the Fredericksburg group of Cretaceous Age. The Walnut, Comanche Peak, and Edwards formations comprise this group. The Edwards limestone outcrops and forms the cap rock of a hill (el 335 m - 1,100 ft msl) just east of the Runway. The topsoil consists chiefly of gray-to-brown calcareous sandy clay varying in thickness from a few inches to 1.5 m (5 ft). The underlying materials are generally weathered and disintegrated and consist of modular pieces of limestone with clay binder and a mixture of shell, limestone, and clay. The climate in the vicinity of RGAAF is mild with an average monthly temperature of approximately 20 degrees C (68 degrees F). The annual rainfall in the area is about 76 to 101 cm (30 to 40 in.) and is fairly evenly distributed throughout the year. The maximum and minimum temperatures were 43 and -14°C (109° and 7°F), respectively, from data recorded over a period of 36 years. The period December through February has freezing temperatures, but the duration is short causing no pavement frost-weakened periods. Temperature and precipitation data are summarized in Table A-1.

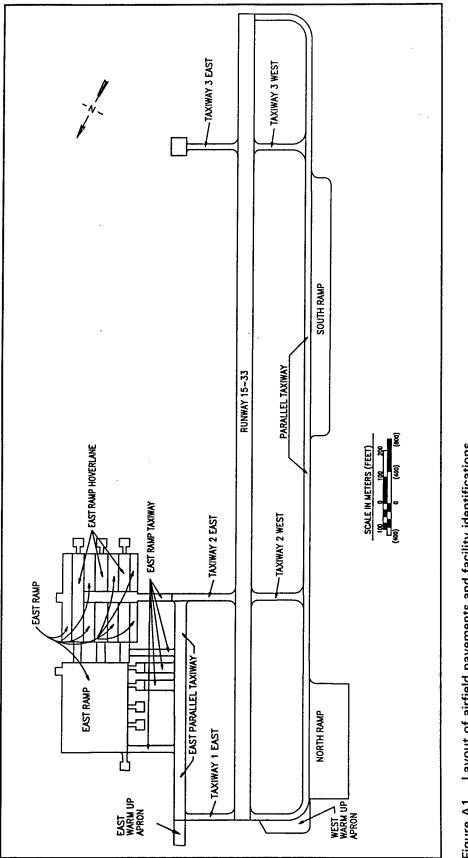
Previous Reports

Pertinent data for this airfield were extracted from a previous evaluation and condition survey reports for use in this report:

- U.S. Army Engineer Waterways Experiment Station. (1994).
 "Airfield Pavement Evaluation, Robert Gray Army Airfield, Fort Hood, Texas," Miscellaneous Paper GL-94-8, Vicksburg, MS.
- U.S. Army Engineer Waterways Experiment Station. (1988).
 "Condition Survey, Robert Gray Army Airfield, Fort Hood, Texas," Miscellaneous Paper GL-88-31, Vicksburg, MS.
- U.S. Army Engineer Waterways Experiment Station. (1985).
 "Airfield Pavement Evaluation, Robert Gray Army Airfield, Fort Hood, Texas," Miscellaneous Paper GL-85-11, Vicksburg, MS.
- d. U.S. Army Engineer Waterways Experiment Station. (1983). "Inspection of Robert Gray Army Airfield," Vicksburg, MS.
- e. U.S. Army Engineer Waterways Experiment Station. (1979). "Nondestructive Pavement Investigation, Robert Gray Army Airfield, Fort Hood, Texas," Vicksburg, MS.
- f. U.S. Army Engineer Waterways Experiment Station. (1973).
 "Condition Survey, Robert Gray Army Airfield, Fort Hood, Texas", Miscellaneous Paper No. 5-73-16, Vicksburg, MS.
- g. U.S. Army Engineer Waterways Experiment Station. (1970).
 "Airfield Pavement Evaluation, Robert Gray Army Airfield, Fort Hood, Texas," Miscellaneous Paper No. 5069-38, Vicksburg, MS.
- h. U.S. Army Engineer Waterways Experiment Station. (1968).
 "Airfield Pavement Evaluation, Robert Gray Army Airfield, Fort Hood, Texas," Miscellaneous Paper No. 5-69-38, Vicksburg, MS.
- U.S. Army Engineer Waterways Experiment Station. (1968).
 "Condition Survey, Robert Gray Army Airfield, Fort Hood, Texas," Miscellaneous Paper No. 4-989, Vicksburg, MS.
- j. U.S. Army Engineer Waterways Experiment Station. (1965). "Army Airfield Pavement Evaluation, Robert Gray Army Airfield, Fort Hood, Texas," Miscellaneous Paper No. 4-697, Vicksburg, MS.
- k. U.S. Army Engineer Waterways Experiment Station. (1958).
 "Airfield Pavement Evaluation Report, Gray Air Force Base, Killeen, Texas," Miscellaneous Paper No. 4-313, June 1958, Vicksburg, MS.
- 1. U.S. Army Engineer District, Fort Worth. (1956). "Pavement Evaluation Report," Fort Worth, TX.
- m. U.S. Army Engineer District, Galveston. (1948). "Pavement Evaluation, Camp Hood Landing Strip, Killeen, Texas," Galveston, TX.

Design and Construction History

The pavements at RGAAF were constructed during five major construction periods with subsequent periods of reconstruction and/or structural improvements.


- a. Facilities constructed during 1946 and 1947 included Runway 15-33 (current Features R1A thru R5C), the parallel taxiway (current Features T1A thru T3A), connecting taxiways (current Features T6C, T8B and T9B), the north parking apron (current Feature A4B), and the alert aprons (current Feature A2B). These pavements were designed to support operations of the B-29 aircraft (gross loading of 63503 kg (140,000 lbs).
- b. The South Parking Apron (A5B) was constructed (designed to support B-29 aircraft) in 1951.
- c. Construction in 1952 and 1953 included extensions to Runway 15-33 (Features R6C, R7A, and R8A), the parallel taxiway (Features T4A and T5A), and the south parking apron (Feature A6B). These pavements were designed to support a landing gear load of 38556 kg (85,000 lbs) on dual wheels spaced 950 mm (37.5 in) center-to-center, with each wheel having a contact area of 678 sq cm (267 sq in).
- d. A PCC warm-up apron (Feature A3B) was constructed at the north end of the taxiway in 1956. The pavement was designed to support a landing gear load of 45360 kg (100,000 lbs) on dual wheels spaced 950 mm (37.5 in) center-to-center with each wheel having a contact area of 678 sq cm (267 sq in).
- e. A 457 m (1,500 ft) section of Runway 15-33 (R5C, sta 77+00 to 90+00) was reconstructed in 1963 because of failures.
- f. A 579 m (1,900 ft) section of the Runway 15-33 (R4C, sta 56+00 to 75+00) was reconstructed in 1965 because of distress.
- g. Sections of the Runway 15-33 (R1A, station 6+00 to 20+00) and (R3C, sta 20+00 to 56+00) were reconstructed in 1968 and 1969 because of pavement failures. Taxiway 3 (T7C) was also reconstructed.
- h. Taxiway 3 (T6C) and Runway 15-33 from sta 90+00 to 106+00 (R6C, R7A and R8A) were reconstructed in 1970.
- i. The North Ramp (A4B) and a section of the Parallel Taxiway (T2A) adjacent to it were reconstructed in 1971 and 1972.
- j. A section of Runway 15-33 (R4C) was reconstructed in 1981.

- k. Most of the runway (R1A, R2C, R3C, R4C, R5C and R6C) was overlaid with 2.5 cm (1 in) of AC in 1983.
- Taxiway 2 (T7C) was reconstructed in 1986. Part of the parallel taxiway was overlaid with AC (T1A and T5A with 51 mm (2 in.) and T3A and T4A with 38 mm (1.5 in.) of AC. The North Ramp (A4B, Sec 2) was enlarged with 152 mm (6 in.) of stabilized subgrade and 330 mm (13 in.) of PCC pavement.
- m. New parking ramps (A7B, and A8B) and Taxiways (T10B through T19B) were constructed in 1987 and Taxiway (T9B) was overlaid with 38 mm (1.5 in.) of AC. Taxiway Features T10B and T11B were designed to support C-130 aircraft. The new parking ramps were designed to support rotary-wing traffic.

Table A2 shows the construction history of the individual pavement features which includes the pavement type, thickness, and approximate date of construction. Figure A1 presents a layout of the airfield facilities, showing the surface material types. Figure A2 presents a layout of the airfield pavements, showing the locations of the various pavement features. A summary of the physical property data for the various pavement features including pavement and foundation materials is shown in Table A3. Figures A3 through A6 shows typical pavement and foundation sections.

Traffic History

Traffic records were provided by the Robert Gray Airfield Operations Office. Both fixed- and rotary-wing aircraft are currently using the facilities. Frequencies of operation for the various aircraft are presented in Table A4 for the period 1 January 1994 to 31 October 1995. Touch-and-go operations are not considered in this evaluation.

٠

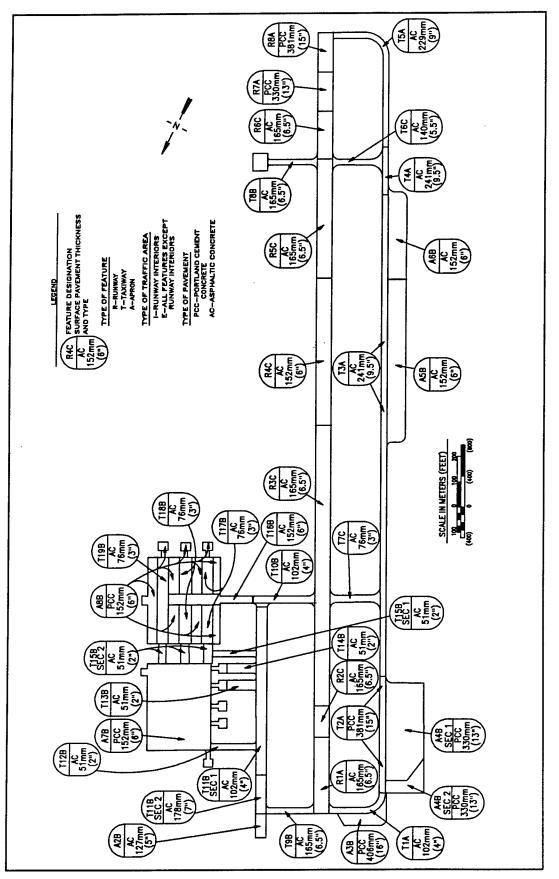
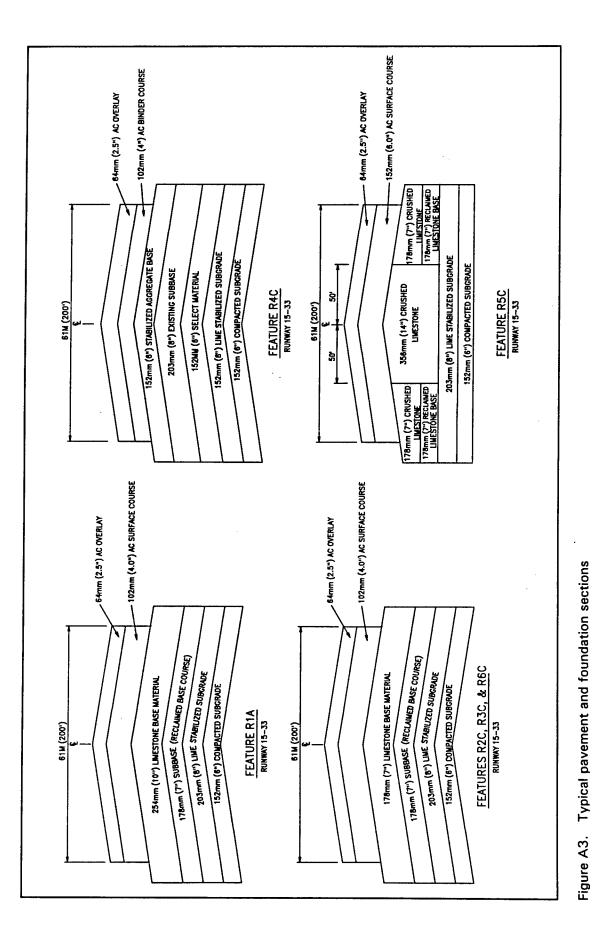
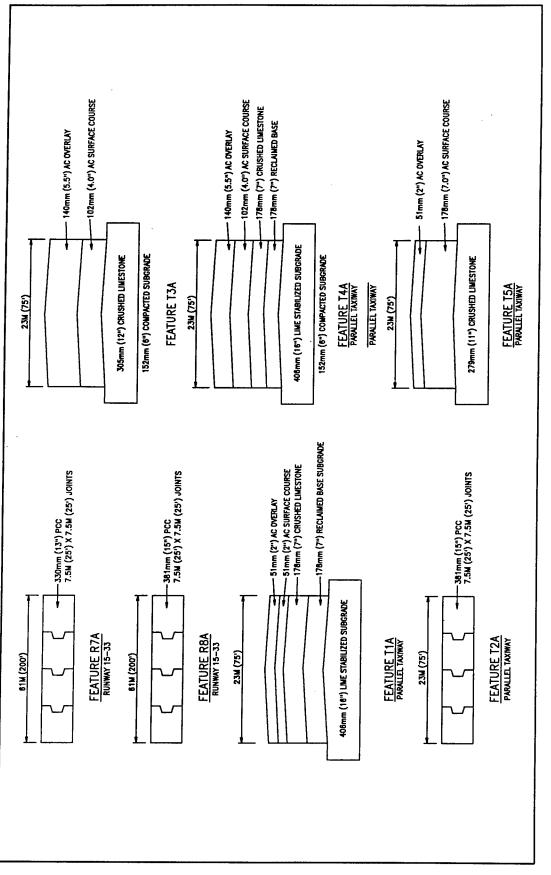
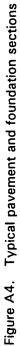
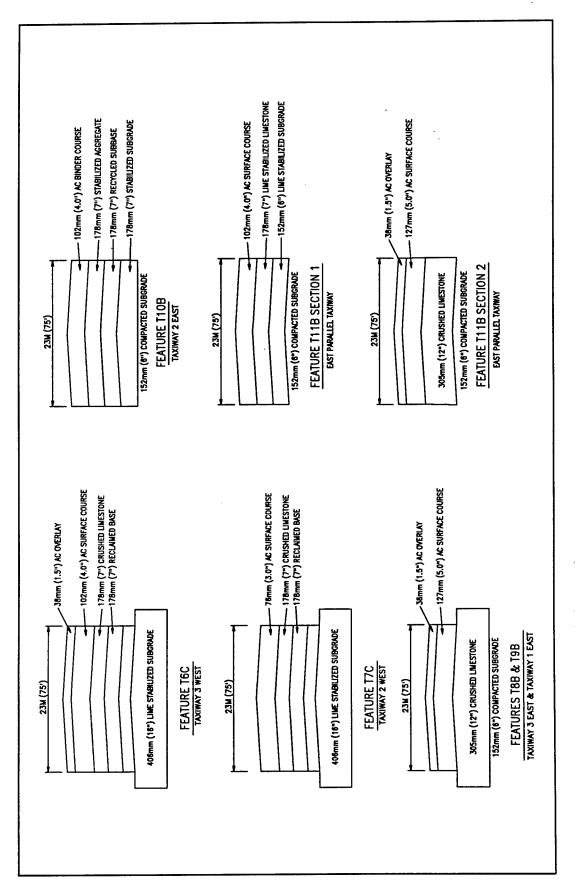






Figure A2. Pavement feature identification and location

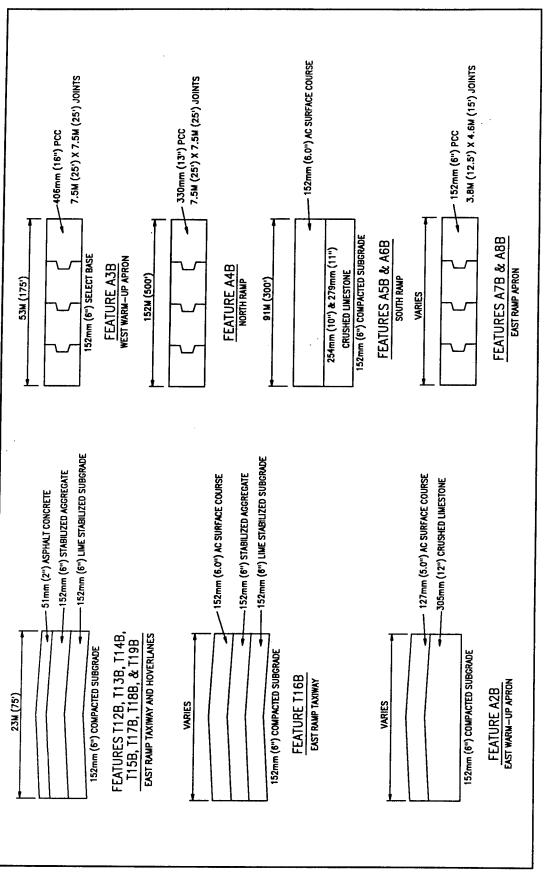


Figure A6. Typical pavement and foundation sections

Table A1 Climatological Data														
	Г	L.	v	۲	Σ	-		⋖	s	0	z		ANN	YRS REC
					Tempe	Temperature °C/(°F)	(°F)							
Highest	30/86	34/93	38/101	37/98	38/100	42/107	43/109	42/106	41/105	39/101	33/91	32/89	43/100	36
Mean Daily Max	14/57	16/61	21/69	25/77	28/83	32/90	34/94	34/94	31/88		19/67		25/77	3 8
Mean Daily Min	3/37	5/41	9/48	14/57	17/64	22/71	23/73	23/73	20/68	14/58	8/47	Τ	14/57	3 %
Lowest	-14/7	-14/7	-9/16	0/32	6/42	11/51	16/61	16/61	6/42	0/31			-14/7	3 %
					Pr	Precipitation					1	1		
Mean cm (in.)	3.6/1.4	5.8/2.3	5.1/2.0	7.8/3.1	10.9/4.3	8.1/3.2	4.3/1.7	6.4/2.5	7.6/3.0	8.6/3.4	5.6/2.2	3.8/1.6	780/30.7	36
Mean No. of Days > 1.3 cm (0.01 in.)	7	7	7	ω	ω	9	4	۰ÿ	7	Q				36
						Snowfall								
Mean cm (in.)	2.5/1	2.5/1	Т	T	0	0	0	0	0	0	0	- -	c	Å
Source of Data: T Denotes less than 0.13 cm (0.05 in.). • Denotes less than 0.5 day.	5 in.).													3

Pavement Facility (Feature) Thickness mm (in.) Type Completion Date Runway 15-33 R1A 775 (30.5) ¹ AC 1969 1969 1969 R3C 699 (27.5) ¹ AC 1969 1969 1969 R3C 699 (27.5) ¹ AC 1969 1969 1969 R4C 699 (27.5) ¹ AC 1963 1970 R5C 749 (29.5) ¹ AC 1963 1970 R6C 699 (27.5) ¹ AC 1981 1970 R6A 330 (13.0) PCC 1970 1970 R8A 381 (15.0) T1A PCC 1970 R8A 381 (15.0) T2A PCC 1970 R5A 381 (15.0) T3A PCC 1970 T4A 508 (20.0) ¹ AC 1970 1970 T5A 455 (12.0) AC 1986 1970 T5A 455 (12.0) AC 1986 1986 T3A and T4A 38 (1.5) AC 1986 1986 rakiway 3 West 76 (3.0) ² AC AC 1986 rakiway 3 East		Paver	ment	
R1A 775 (30.5)' AC 1969 R2C 699 (27.5)' AC 1969 R4C 699 (27.5)' AC 1968-1969 R4C 648 (25.5)' AC 1963 R5C 749 (29.5)' AC 1963 R6C 699 (27.5)' AC 1970 R7A 330 (13.0) PCC 1970 R8A 381 (15.0) PCC 1970 R7A 330 (13.0) PCC 1970 R8A 381 (15.0) PCC 1970 R1A R13 (32.0)' AC 1983 Parallel Taxiway T AC 1965 T2A 381 (15.0) PCC 1971-1972 T3A 508 (20.0)' AC 1970 T4A 965 (38.0)' AC 1970 T5A 457 (18.0)' AC 1970 T6C 864 (34.0)' AC 1986 raxiway 3 West TC 76 (3.0)2' AC 1986 raxiway 3 West T7C 76 (3.0)2' AC 1986 <tr< th=""><th>Pavement Facility (Feature)</th><th></th><th>Туре</th><th>Completion Date</th></tr<>	Pavement Facility (Feature)		Туре	Completion Date
R2C 699 (27.5)' AC 1969 R3C 699 (27.5)' AC 1968-1969 R4C 648 (25.5)' AC 1981 R5C 749 (29.5)' AC 1963 R6C 699 (27.5)' AC 1970 R7A 330 (13.0) PCC 1970 R8A 330 (13.0) PCC 1970 R8A 330 (13.0) PCC 1970 R8A 331 (15.0) PCC 1970 R1A, RCI, R3C, R4C, R5C, and R6C 25 (1.0) AC 1983 Parallel Taxiway 813 (32.0)' AC 1969 T2A 381 (15.0) PCC 1970 T3A 508 (20.0)' AC 1970 T5A 51 (2.0) AC 1970 T1A and T5A 51 (2.0) AC 1970 T6C 38 (1.5) AC 1986 raxiway 3 West 76 (3.0)2 AC 1986 raxiway 2 West 76 (3.0)2 AC 1986 raxiway 3 East 788 (1.5) AC 1986 raxiway 1 East 798 38 (1.5) AC 1987 raxiway 2 East 584 (23.0)' AC 1987 rask Paralle	Runway 15-33	1		
R3C 699 (27.5)' AC 1968-1969 R4C 648 (25.5)' AC 1981 R5C 749 (29.5)' AC 1963 R6C 699 (27.5)' AC 1963 R7A 330 (13.0) PCC 1970 R7A 330 (13.0) PCC 1970 R8A R1A, RCI, R3C, R4C, R5C, and R6C 25 (1.0) AC 1983 Parallel Taxiway 114 813 (32.0)' AC 1969 T1A 813 (32.0)' AC 1970 T3A 508 (20.0)' AC 1970 T4A 965 (38.0)' AC 1970 T5A 457 (18.0)' AC 1970 TA 38 (1.5) AC 1970 T6C 864 (34.0)' AC 1970 T6C 864 (34.0)' AC 1986 raxiway 3 West 76 (3.0)^2 AC 1986 T7C 76 (3.0)^2 AC 1986 raxiway 1 East 38 (1.5) AC 1986 raxiway 2 East 38 (1.5) AC 1987 T10B 584 (23.0)' AC 1987 raxiway 2 East 76 (3.0)2' AC 1987 T198 <td></td> <td>775 (30.5)1</td> <td>AC</td> <td>1969</td>		775 (30.5)1	AC	1969
R4C 648 (25.5)' AC 1981 R5C 749 (29.5)' AC 1983 R6C 699 (27.5)' AC 1970 R7A 330 (13.0) PCC 1970 R8A 381 (15.0) PCC 1970 R1A, RCI, R3C, R4C, R5C, and R6C 25 (1.0) AC 1983 Parallel Taxiway 114 115.0) PCC 1970 T1A 813 (32.0)' AC 1983 1970 T3A 508 (20.0)' AC 1970 1970 T4A 965 (38.0)' AC 1970 1970 T5A 457 (18.0)' AC 1970 1970 T5A and T4A 38 (1.5) AC 1986 1986 raxiway 3 West T6C 38 (1.5) AC 1986 raxiway 3 East 776 30.0' AC 1986 raxiway 3 East 778 38 (1.5) AC 1987 raxiway 1 East 779 38 (1.5) AC 1987		699 (27.5) ¹	AC	1969
R5C 749 (29.5)' AC 1963 R6C 699 (27.5)' AC 1970 R7A 330 (13.0) PCC 1970 R8A 381 (15.0) AC 1983 Parallel Taxiway 813 (32.0)' AC 1970 T3A 508 (20.0)' AC 1970 T4A 965 (38.0)' AC 1970 T5A 15.0 AC 1970 1886 T3A and T4A 38 (1.5) AC 1986 raxiway 3 West 56 (38.0)' AC 1986 raxiway 3 East 76 (3.0)2 AC 1986 raxiway 3 East 78 432 (17.0)' AC 1946-1947 T8B 38 (1.5) AC 1986 raxiway 1 East 78 432 (17.0)' AC 1987 raxiway 2 East 710 AC 1987 T18B 584 (23.0)' AC 1987 raxiway 2 E		699 (27.5) ¹	AC	1968-1969
R6C 699 (27.5)' AC 1970 R7A 330 (13.0) PCC 1970 R8A 330 (13.0) PCC 1970 R8A 330 (13.0) PCC 1970 R1A, RCI, R3C, R4C, R5C, and R6C 25 (1.0) AC 1983 Parallel Taxiway 11 AC 1969 T1A 813 (32.0)' AC 1970 T3A 508 (20.0)' AC 1970 T4A 965 (38.0)' AC 1970 T5A 457 (18.0)' AC 1970 TA and T5A 51 (2.0) AC 1986 T6C 38 (1.5) AC 1986 T7C 965 (38.0)' AC 1986 T7C 38 (1.5) AC 1986 axiway 3 West 76 (3.0)2' AC 1986 T7C 76 (3.0)2' AC 1986 axiway 3 East 738 (1.5) AC 1986 axiway 1 East 798 38 (1.5) AC 1987 T18B Sco 2 51 (2.0) AC 1987 198		648 (25.5) ¹	AC	1981
R7A 330 (13.0) PCC 1970 R8A 381 (15.0) PCC 1970 R1A, RCI, R3C, R4C, R5C, and R6C 25 (1.0) AC 1983 Parallel Taxiway 813 (32.0) ¹ AC 1983 Parallel Taxiway 813 (32.0) ¹ AC 1969 T1A 9813 (32.0) ¹ AC 1970 T3A 508 (20.0) ¹ AC 1970 T4A 965 (38.0) ¹ AC 1970 T5A 457 (18.0) ¹ AC 1970 T4A and T5A 51 (2.0) AC 1986 Taxiway 3 West 56 (38.0) ¹ AC 1986 T6C 38 (1.5) AC 1986 T7C 965 (38.0) ¹ AC 1986 T7C 965 (38.0) ¹ AC 1986 axiway 2 West 76 (3.0) ² AC 1986 T7C 76 (3.0) ² AC 1986 axiway 1 East 78 432 (17.0) ¹ AC 1946-1947 T9B 38 (1.5) AC 1987 T11B Sec 2 51 (2.0) </td <td></td> <td>749 (29.5)¹</td> <td>AC</td> <td>1963</td>		749 (29.5) ¹	AC	1963
R8A 381 (15.0) PCC 1970 R1A, RCI, R3C, R4C, R5C, and R6C 25 (1.0) AC 1983 Parallel Taxiway 813 (32.0) ¹ AC 1969 T1A 813 (32.0) ¹ AC 1969 T2A 381 (15.0) PCC 1971-1972 T3A 508 (20.0) ¹ AC 1970 T4A 965 (38.0) ¹ AC 1970 T5A 457 (18.0) ¹ AC 1970 TA and T5A 51 (2.0) AC 1986 T6C 38 (1.5) AC 1986 axiway 3 West 76 (3.0) ² AC 1986 raxiway 2 West 76 (3.0) ² AC 1986 row and a stat 76 (3.0) ² AC 1986 axiway 3 East 432 (17.0) ¹ AC 1946-1947 T8B 432 (17.0) ¹ AC 1987 axiway 1 East 788 432 (17.0) ¹ AC 1987 ast Parallel Taxiway 711B Sec 2 51 (2.0) AC 1987 ribb Se 2 51 (699 (27.5) ¹	AC	1970
R1A, RCI, R3C, R4C, R5C, and R6C 25 (1.0) AC 1983 Parallel Taxiway 813 (32.0) ¹ AC 1969 T2A 381 (15.0) PCC 1971-1972 T3A 508 (20.0) ¹ AC 1970 T5A 457 (18.0) ¹ AC 1970 T1A and T5A 51 (2.0) AC 1970 TA and T5A 51 (2.0) AC 1986 raxiway 3 West 51 (2.0) AC 1986 raxiway 3 West 76 38 (1.5) AC 1986 raxiway 2 West 776 (3.0) ² AC 1986 1986 raxiway 3 East 432 (17.0) ¹ AC 1946-1947 1986 raxiway 1 East 738 (1.5) AC 1987 1986 raxiway 1 East 584 (23.0) ¹ AC 1946-1947 1986 rast Parallel Taxiway 432 (17.0) ¹ AC 1987 1987 rast Parallel Taxiway 738 (1.5) AC 1987 1987 rilb Sec 2 532 (17.0) ¹ AC 1987 1987 rilb Sec 2		330 (13.0)	PCC	1970
Parallel Taxiway No.		381 (15.0)	PCC	1970
T1A $813 (32.0)^1$ AC 1969 T2A $381 (15.0)$ PCC $1971-1972$ T3A $508 (20.0)^1$ AC $-$ T4A $965 (38.0)^1$ AC 1970 T5A $457 (18.0)^1$ AC 1970 T1A and T5A $51 (2.0)$ AC 1986 raxiway 3 West $51 (2.0)$ AC 1986 raxiway 3 West 76 $38 (1.5)$ AC 1986 raxiway 2 West $76 (3.0)^2$ AC 1986 1986 raxiway 2 West $76 (3.0)^2$ AC 1986 1986 raxiway 3 East $76 (3.0)^2$ AC $1946-1947$ 1886 raxiway 1 East $38 (1.5)$ AC $1946-1947$ 1886 raxiway 2 East 798 $432 (17.0)^1$ AC $1946-1947$ rbs $432 (17.0)^1$ AC 1987 1987 raxiway 2 East 790 790^1 AC 1987 rbs $711B$ Sec 1 $432 (17.0)^1$ AC 1987 rbs	R1A, RCI, R3C, R4C, R5C, and R6C	25 (1.0)	AC	1983
T1A $813 (32.0)^1$ AC 1969 T2A $381 (15.0)$ PCC $1971-1972$ T3A $965 (38.0)^1$ AC 1970 T5A $965 (38.0)^1$ AC 1970 T1A and T5A $457 (18.0)^1$ AC 1970 TAA $38 (1.5)$ AC 1986 axiway 3 West $51 (2.0)$ AC 1986 axiway 3 West $76C$ $38 (1.5)$ AC 1986 axiway 2 West $76 (3.0)^2$ AC 1986 1986 axiway 2 West $76 (3.0)^2$ AC 1986 1986 axiway 3 East $76 (3.0)^2$ AC $1946-1947$ 1986 axiway 1 East 798 $432 (17.0)^1$ AC $1946-1947$ T9B $432 (17.0)^1$ AC 1987 1987 ast Parallel Taxiway $584 (23.0)^1$ AC 1987 T11B Sec 1 $712 (2.0)$ AC 1987 1987 ast Parallel Taxiway $51 (2.0)$ AC 1987 1987 T11B Sec 2 <td>arallel Taxiway</td> <td></td> <td></td> <td></td>	arallel Taxiway			
T2A 381 (15.0) PCC 1971-1972 T3A 508 (20.0) ¹ AC T4A 965 (38.0) ¹ AC 1970 T5A 457 (18.0) ¹ AC 1970 T1A and T5A 51 (2.0) AC 1986 T6C 38 (1.5) AC 1986 axiway 3 West 76 38 (1.5) AC 1986 axiway 2 West 76 38 (1.5) AC 1986 axiway 2 West 76 (3.0) ² AC 1986 T7C 76 (3.0) ² AC 1986 axiway 3 East 76 (3.0) ² AC 1986 T8B 432 (17.0) ¹ AC 1946-1947 T8B 432 (17.0) ¹ AC 1946-1947 ast Parallel Taxiway 432 (17.0) ¹ AC 1987 axiway 2 East 584 (23.0) ¹ AC 1987 10B 584 (23.0) ¹ AC 1987 ast Parallel Taxiway 71 AC 1987 T11B Sec 1 432 (17.0) ¹ AC 1987 118 Sec 1	•	813 (32.0)1	AC	1969
T3A $508 (20.0)^1$ AC T4A $965 (38.0)^1$ AC 1970 T5A T5A $457 (18.0)^1$ AC 1970 T1A and T5A $51 (2.0)$ AC 1986 Tax and T4A 38 (1.5) AC 1986 Taxiway 3 West T6C $864 (34.0)^1$ AC 1970 T6C $38 (1.5)$ AC 1986 T7C $38 (1.5)$ AC 1986 axiway 2 West $76 (3.0)^2$ AC 1986 axiway 3 East $432 (17.0)^1$ AC $1946-1947$ T8B $432 (17.0)^1$ AC $1946-1947$ T9B $38 (1.5)$ AC 1986 axiway 1 East 798 $432 (17.0)^1$ AC $1946-1947$ T1B Sec 1 $432 (17.0)^1$ AC 1987 1987 axiway 2 East $584 (23.0)^1$ AC 1987 1987 T1B Sec 2 $432 (17.0)^1$ AC 1987 1987 T1B Sec 2 $51 (2.0)$ AC 1987 198	T2A			
T4A 965 (38.0) ¹ AC 1970 T5A 457 (18.0) ¹ AC 1970 T1A and T5A 51 (2.0) AC 1986 Tax and T4A 38 (1.5) AC 1986 axiway 3 West T6C 864 (34.0) ¹ AC 1970 T6C 38 (1.5) AC 1986 axiway 2 West 76 38 (1.5) AC 1986 axiway 2 West 76 38 (1.5) AC 1986 axiway 3 East 76 (3.0) ² AC 1986 axiway 1 East 432 (17.0) ¹ AC 1946-1947 T9B 432 (17.0) ¹ AC 1946-1947 T9B 432 (17.0) ¹ AC 1987 axiway 1 East 788 1987 1987 ast Parallel Taxiway 711B Sec 1 432 (17.0) ¹ AC 1987 10B 584 (23.0) ¹ AC 1987 1987 ast Parallel Taxiway 71 AC 1987 1987 T1B Sec 1 432 (17.0) ¹ AC 1987 1987 118 Sec 2	ТЗА			
T5A $457 (18.0)^1$ AC 1970 T1A and T5A $51 (2.0)$ AC 1986 Tax and T4A 38 (1.5) AC 1986 Tax and T4A 38 (1.5) AC 1986 Taxiway 3 West 76 $38 (1.5)$ AC 1970 T6C $38 (1.5)$ AC 1970 $76 (3.0)^2$ raxiway 2 West $76 (3.0)^2$ AC 1986 raxiway 3 East $76 (3.0)^2$ AC 1986 raxiway 3 East $432 (17.0)^1$ AC $1946-1947$ T9B $38 (1.5)$ AC $1946-1947$ rask $38 (1.5)$ AC 1986 axiway 1 East 798 $38 (1.5)$ AC $1946-1947$ r9B $432 (17.0)^1$ AC 1987 1987 axiway 2 East 7108 $584 (23.0)^1$ AC 1987 r11B Sec 1 $432 (17.0)^1$ AC 1987 1987 r11B Sec 2 $51 (2.0)$ AC 1987 1987 r12B St Ramp Taxiway $75 (14.0)^1$	T4A			
T1A and T5A 51 (2.0) AC 1986 T3A and T4A 38 (1.5) AC 1986 axiway 3 West 864 (34.0)1 AC 1970 T6C 864 (34.0)1 AC 1970 T6C 38 (1.5) AC 1986 axiway 2 West 965 (38.0)1 AC 1969 T7C 965 (38.0)1 AC 1986 axiway 3 East 432 (17.0)1 AC 1946-1947 T8B 432 (17.0)1 AC 1946-1947 axiway 1 East 78 1986 1986 axiway 2 East 432 (17.0)1 AC 1946-1947 T9B 432 (17.0)1 AC 1946-1947 axiway 2 East 700 AC 1987 ast Parallel Taxiway 584 (23.0)1 AC 1987 T1B Sec 1 432 (17.0)1 AC 1987 rilb Sec 2 51 (2.0) AC 1987 rilb Sec 2 51 (2.0) AC 1987 rilb Sec 1 432 (17.0)1 AC 1987 rilb Sec 2 51 (2.0) A	T5A			
T3A and T4A 38 (1.5) AC 1986 faxiway 3 West 864 (34.0)1 AC 1970 T6C 38 (1.5) AC 1986 raxiway 2 West 76 (3.0)1 AC 1986 raxiway 2 West 965 (38.0)1 AC 1969 T7C 965 (38.0)1 AC 1969 T7C 76 (3.0)2 AC 1986 axiway 3 East 432 (17.0)1 AC 1946-1947 T8B 432 (17.0)1 AC 1946-1947 rask 432 (17.0)1 AC 1946-1947 rask 788 (1.5) AC 1987 rask 788 (1.5) AC 1987 rask 784 (23.0)1 AC 1987 <td>T1A and T5A</td> <td></td> <td></td> <td></td>	T1A and T5A			
T6C 864 (34.0) ¹ AC 1970 T6C 38 (1.5) AC 1986 axiway 2 West 965 (38.0) ¹ AC 1969 T7C 965 (30.0) ² AC 1986 axiway 3 East 76 (3.0) ² AC 1986 axiway 3 East 432 (17.0) ¹ AC 1946-1947 T8B 432 (17.0) ¹ AC 1946-1947 T9B 38 (1.5) AC 1986 axiway 1 East 798 76 (3.0) ² AC 1946-1947 T9B 38 (1.5) AC 1946-1947 1986 axiway 2 East 700 76 (3.0) ² AC 1987 10B 584 (23.0) ¹ AC 1987 1987 ast Parallel Taxiway 7118 Sec 1 432 (17.0) ¹ AC 1987 T11B Sec 2 51 (2.0) AC 1987 1987 st Ramp Taxiway 71 AC 1987 1987 T13B 356 (14.0) ¹ AC 1987 1987 T14B 356 (14.0) ¹ AC 1987 1987	T3A and T4A			
T6C 864 (34.0) ¹ AC 1970 T6C 38 (1.5) AC 1986 axiway 2 West 965 (38.0) ¹ AC 1969 T7C 965 (38.0) ¹ AC 1969 T7C 76 (3.0) ² AC 1986 axiway 3 East 432 (17.0) ¹ AC 1946-1947 T8B 432 (17.0) ¹ AC 1946-1947 T9B 38 (1.5) AC 1986 axiway 1 East 788 1987 1987 axiway 2 East 788 108 1987 1987 axiway 2 East 798 7432 (17.0) ¹ AC 1987 10B 584 (23.0) ¹ AC 1987 1987 ast Parallel Taxiway 432 (17.0) ¹ AC 1987 1987 T11B Sec 1 432 (17.0) ¹ AC 1987 1987 st Ramp Taxiway 7128 356 (14.0) ¹ AC 1987 13B 356 (14.0) ¹ AC 1987 1987 14B 356 (14.0) ¹ AC 1987 1987 15B	axiway 3 West			
T6C 38 (1.5) AC 1986 axiway 2 West 76 965 $(38.0)^1$ AC 1969 T7C 76 $(3.0)^2$ AC 1986 axiway 3 East 76 $(3.0)^2$ AC 1946-1947 T8B $432 (17.0)^1$ AC 1946-1947 T8B $432 (17.0)^1$ AC 1946-1947 axiway 1 East 798 $432 (17.0)^1$ AC 1946-1947 T9B $432 (17.0)^1$ AC 1946-1947 1986 axiway 2 East $788 (1.5)$ AC 1987 1987 ast Parallel Taxiway $584 (23.0)^1$ AC 1987 T11B Sec 1 $432 (17.0)^1$ AC 1987 T11B Sec 2 $51 (2.0)$ AC 1987 T12B Sec 2 $51 (2.0)$ AC 1987 T138 $356 (14.0)^1$ AC 1987 T14B $356 (14.0)^1$ AC 1987 T15B Sec 1 and 2 $356 (14.0)^1$ AC 1987 T16B $381 (15.0)^1$ AC 1987 <		864 (34 0)1	AC	1970
axiway 2 West965 $(38.0)^1$ AC1969T7C76 $(3.0)^2$ AC1986axiway 3 East432 $(17.0)^1$ AC1946-1947T8B432 $(17.0)^1$ AC1946-1947T8B432 $(17.0)^1$ AC1946-1947axiway 1 East432 $(17.0)^1$ AC1946-1947T9B432 $(17.0)^1$ AC1946-1947axiway 2 East38 (1.5) AC198710B584 $(23.0)^1$ AC1987axiway 2 East584 $(23.0)^1$ AC198710B584 $(23.0)^1$ AC1987ast Parallel Taxiway432 $(17.0)^1$ AC198711B Sec 1432 $(17.0)^1$ AC198711B Sec 251 (2.0) AC198711B Sec 251 (2.0) AC198713B356 $(14.0)^1$ AC198714B356 $(14.0)^1$ AC198715B Sec 1 and 2356 $(14.0)^1$ AC198716B381 $(15.0)^1$ AC1987st Ramp Hoverlanest Ramp Hoverlanest Ramp Hoverlanest Ramp Hoverlane	тес		1	1
T7C T7C965 $(38.0)^1$ 76 $(3.0)^2$ AC1969 1986axiway 3 East T8B432 $(17.0)^1$ 38 (1.5) AC1946-1947 1986axiway 1 East T9B432 $(17.0)^1$ 38 (1.5) AC1946-1947 1986axiway 1 East T9B432 $(17.0)^1$ 38 (1.5) AC1946-1947 1986axiway 2 East 10B584 $(23.0)^1$ AC1947 1987ast Parallel Taxiway T1B Sec 1432 $(17.0)^1$ 432 $(17.0)^1$ AC1987 1987ast Parallel Taxiway T1B Sec 2432 $(17.0)^1$ 432 $(17.0)^1$ ACAC1987 1987st Ramp Taxiway T13B356 $(14.0)^1$ 356 $(14.0)^1$ ACAC1987 198713B 14B356 $(14.0)^1$ 356 $(14.0)^1$ ACAC1987 198715B Sec 1 and 2356 $(14.0)^1$ 381 $(15.0)^1$ AC1987 198716B381 $(15.0)^1$ AC1987 1987	axiway 2 West			
T7C76 $(3.0)^2$ AC1986axiway 3 East432 $(17.0)^1$ AC1946-1947T8B432 $(17.0)^1$ AC1946-1947T8B432 $(17.0)^1$ AC1946-1947axiway 1 East432 $(17.0)^1$ AC1946-1947T9B432 $(17.0)^1$ AC1946-1947axiway 2 East38 (1.5) AC198710B584 $(23.0)^1$ AC1987axiway 2 East584 $(23.0)^1$ AC198711B Sec 1432 $(17.0)^1$ AC1987T11B Sec 2432 $(17.0)^1$ AC1987T11B Sec 251 (2.0) AC1987T11B Sec 251 (2.0) AC1987T12B356 $(14.0)^1$ AC1987T13B356 $(14.0)^1$ AC1987T14B356 $(14.0)^1$ AC1987T15B Sec 1 and 2356 $(14.0)^1$ AC1987T6B381 $(15.0)^1$ AC1987	•	965 /29 01	1.00	10.00
axiway 3 East 432 (17.0) ¹ AC 1946-1947 T8B 38 (1.5) AC 1986 axiway 1 East 432 (17.0) ¹ AC 1946-1947 T9B 432 (17.0) ¹ AC 1946-1947 T9B 432 (17.0) ¹ AC 1946-1947 T9B 38 (1.5) AC 1987 axiway 2 East 584 (23.0) ¹ AC 1987 ast Parallel Taxiway 432 (17.0) ¹ AC 1987 T11B Sec 1 432 (17.0) ¹ AC 1987 T11B Sec 2 51 (2.0) AC 1987 st Ramp Taxiway 356 (14.0) ¹ AC 1987 T12B 356 (14.0) ¹ AC 1987 T14B 356 (14.0) ¹ AC 1987 T15B Sec 1 and 2 356 (14.0) ¹ AC 1987				
T8B T8B $432 (17.0)^1$ $38 (1.5)$ AC AC $1946-1947$ 1986 axiway 1 East T9B $432 (17.0)^1$ $38 (1.5)$ AC $1946-1947$ 1987 axiway 2 East 10B $38 (1.5)$ AC $1946-1947$ 1987 axiway 2 East 10B $584 (23.0)^1$ AC 1987 axiway 2 East 10B $584 (23.0)^1$ AC 1987 axiway 2 East 10B $584 (23.0)^1$ AC 1987 aximay 2 East 10B $584 (23.0)^1$ AC 1987 ast Parallel Taxiway T11B Sec 1 T11B Sec 2 $432 (17.0)^1$ $432 (17.0)^1$ AC 1987 st Ramp Taxiway T12B $356 (14.0)^1$ $356 (14.0)^1$ AC 1987 13B 13B $356 (14.0)^1$ $356 (14.0)^1$ AC 1987 14B 15B Sec 1 and 2 $356 (14.0)^1$ $381 (15.0)^1$ AC 1987 15B Sec 1 and 2 $356 (14.0)^1$ $381 (15.0)^1$ AC 1987 16B $381 (15.0)^1$ AC 1987	eviwor 2 Fact			
T8B $38 (1.5)$ AC $1946 \cdot 1947$ axiway 1 East $432 (17.0)^1$ AC $1946 \cdot 1947$ T9B $432 (17.0)^1$ AC $1946 \cdot 1947$ T9B $38 (1.5)$ AC $1946 \cdot 1947$ T9B $38 (1.5)$ AC 1987 axiway 2 East $584 (23.0)^1$ AC 1987 ast Parallel Taxiway $584 (23.0)^1$ AC 1987 r11B Sec 1 $432 (17.0)^1$ AC 1987 r11B Sec 2 $432 (17.0)^1$ AC 1987 r11B Sec 2 $432 (17.0)^1$ AC 1987 r11B Sec 2 $51 (2.0)$ AC 1987 r11B Sec 2 $51 (2.0)$ AC 1987 rst Ramp Taxiway $356 (14.0)^1$ AC 1987 r12B $356 (14.0)^1$ AC 1987 r14B $356 (14.0)^1$ AC 1987 r15B Sec 1 and 2 $356 (14.0)^1$ AC 1987 r16B $381 (15.0)^1$ AC 1987 r16B $381 (15.0)^1$ AC	•	432 (17 0)	1.00	1046 1047
axiway 1 East T9B $432 (17.0)^1$ $38 (1.5)$ AC $1946-1947$ 1987 axiway 2 East 10B $584 (23.0)^1$ AC 1987 axiway 2 East 10B $584 (23.0)^1$ AC 1987 ast Parallel Taxiway T11B Sec 1 $432 (17.0)^1$ $432 (17.0)^1$ AC 1987 T1B Sec 2 $432 (17.0)^1$ $432 (17.0)^1$ AC 1987 T1B Sec 2 $51 (2.0)$ AC 1987 T1B Sec 2 $51 (4.0)^1$ AC 1987 T1B Sec 2 $356 (14.0)^1$ AC 1987 T1B Sec 2 $356 (14.0)^1$ AC 1987 T1B Sec 3 $356 (14.0)^1$ AC 1987 T1B Sec 4 $356 (14.0)^1$ AC 1987 T1B Sec 1 and 2 $356 (14.0)^1$ AC 1987 T1B Sec 1 and 2 $356 (14.0)^1$ AC 1987 T1B Sec 1 and 2 $356 (14.0)^1$ AC 1987 T1B Sec 1 and 2 $356 (14.0)^1$ AC 1987 T1B Sec 1 and 2 $356 (14.0)^1$ AC 1987 T1B Sec 1 and 2 $356 (14.0)^1$ AC 1987 T1B Sec 1 and 2 $356 (14.0)^1$ AC 1987 T1B Sec 1 and 2 $356 (14.0)^1$ AC 1987 T1B Sec 1 and 2 $356 (14.0)^1$ AC 1987 T1B Sec 1 and 2 $356 (14.0)^1$ <td></td> <td></td> <td></td> <td></td>				
T9B T9B $432 (17.0)^1$ $38 (1.5)$ AC $1946-1947$ 1987 axiway 2 East 10B $584 (23.0)^1$ AC 1987 axiway 2 East 10B $584 (23.0)^1$ AC 1987 ast Parallel Taxiway F11B Sec 1 $432 (17.0)^1$ AC 1987 ast Parallel Taxiway F11B Sec 2 $432 (17.0)^1$ AC 1987 ast Parallel Taxiway F11B Sec 2 $432 (17.0)^1$ AC 1987 T1B Sec 2 $432 (17.0)^1$ AC 1987 st Ramp Taxiway T12B $356 (14.0)^1$ AC 1987 T3B $356 (14.0)^1$ AC 1987 T4B $356 (14.0)^1$ AC 1987 T5B Sec 1 and 2 $356 (14.0)^1$ AC 1987 T6B $381 (15.0)^1$ AC 1987	aviway 1 East			
T9B $38 (1.5)$ AC $1945 \cdot 1947$ axiway 2 East $38 (1.5)$ AC 1987 f10B $584 (23.0)^1$ AC 1987 iast Parallel Taxiway $584 (23.0)^1$ AC 1987 iast Parallel Taxiway $432 (17.0)^1$ AC 1987 iast Parallel Taxiway $432 (17.0)^1$ AC 1987 iast Parallel Taxiway $432 (17.0)^1$ AC 1987 i11B Sec 2 $432 (17.0)^1$ AC 1987 ast Ramp Taxiway $51 (2.0)$ AC 1987 i12B $356 (14.0)^1$ AC 1987 i13B $356 (14.0)^1$ AC 1987 i14B $356 (14.0)^1$ AC 1987 i14B $356 (14.0)^1$ AC 1987 i15B Sec 1 and 2 $356 (14.0)^1$ AC 1987 i16B $381 (15.0)^1$ AC 1987 ist Ramp Hoverlane 11000^1 1100^1 1100^1	•	432 (17 0)		1046 1047
axiway 2 East 584 (23.0) ¹ AC 1987 T10B 584 (23.0) ¹ AC 1987 iast Parallel Taxiway 432 (17.0) ¹ AC 1987 T11B Sec 1 432 (17.0) ¹ AC 1987 T11B Sec 2 432 (17.0) ¹ AC 1987 T11B Sec 2 51 (2.0) AC 1987 ast Ramp Taxiway 51 (2.0) AC 1987 T12B 356 (14.0) ¹ AC 1987 T13B 356 (14.0) ¹ AC 1987 T14B 356 (14.0) ¹ AC 1987 T15B Sec 1 and 2 356 (14.0) ¹ AC 1987 T16B 381 (15.0) ¹ AC 1987 st Ramp Hoverlane 54 (15.0) ¹ AC 1987			1	
10B 584 (23.0) ¹ AC 1987 ast Parallel Taxiway 432 (17.0) ¹ AC 1987 11B Sec 1 432 (17.0) ¹ AC 1987 11B Sec 2 432 (17.0) ¹ AC 1987 11B Sec 2 51 (2.0) AC 1987 st Ramp Taxiway 356 (14.0) ¹ AC 1987 13B 356 (14.0) ¹ AC 1987 13B 356 (14.0) ¹ AC 1987 14B 356 (14.0) ¹ AC 1987 15B Sec 1 and 2 356 (14.0) ¹ AC 1987 16B 381 (15.0) ¹ AC 1987 st Ramp Hoverlane 381 (15.0) ¹ AC 1987	nyiwov 2 East			
ast Parallel Taxiway 432 (17.0) ¹ AC 1987 T11B Sec 1 432 (17.0) ¹ AC 1987 T11B Sec 2 432 (17.0) ¹ AC 1987 T11B Sec 2 51 (2.0) AC 1987 ast Ramp Taxiway 51 (2.0) AC 1987 T12B 356 (14.0) ¹ AC 1987 T13B 356 (14.0) ¹ AC 1987 T14B 356 (14.0) ¹ AC 1987 T15B Sec 1 and 2 356 (14.0) ¹ AC 1987 T16B 381 (15.0) ¹ AC 1987 T16B 381 (15.0) ¹ AC 1987	-	594 (22 0)1		1007
T11B Sec 1 $432 (17.0)^1$ AC 1987 T11B Sec 2 $432 (17.0)^1$ AC 1947 T11B Sec 2 $51 (2.0)$ AC 1987 Inst Ramp Taxiway Image: Acc and the second sec		564 (23.0)		1987
111B Sec 2 $432 (17.0)^1$ AC 1947 111B Sec 2 51 (2.0) AC 1947 st Ramp Taxiway 356 (14.0)^1 AC 1987 12B 356 (14.0)^1 AC 1987 13B 356 (14.0)^1 AC 1987 14B 356 (14.0)^1 AC 1987 15B Sec 1 and 2 356 (14.0)^1 AC 1987 16B 381 (15.0)^1 AC 1987 st Ramp Hoverlane 356 (14.0) 1 AC 1987				
T11B Sec 2 51 (2.0) AC 1987 Ist Ramp Taxiway 356 (14.0) ¹ AC 1987 T12B 356 (14.0) ¹ AC 1987 T13B 356 (14.0) ¹ AC 1987 T4B 356 (14.0) ¹ AC 1987 T5B Sec 1 and 2 356 (14.0) ¹ AC 1987 T6B 381 (15.0) ¹ AC 1987				1987
ast Ramp Taxiway 356 (14.0)' AC 1987 F12B 356 (14.0)' AC 1987 F13B 356 (14.0)' AC 1987 F14B 356 (14.0)' AC 1987 F15B Sec 1 and 2 356 (14.0)' AC 1987 F16B 381 (15.0)' AC 1987 st Ramp Hoverlane 1 1 1			r	
T12B 356 (14.0) ¹ AC 1987 T13B 356 (14.0) ¹ AC 1987 T4B 356 (14.0) ¹ AC 1987 T5B Sec 1 and 2 356 (14.0) ¹ AC 1987 T6B 381 (15.0) ¹ AC 1987 St Ramp Hoverlane 1000 1000 1000		51 (2.0)	AC	1987
113B 356 (14.0)1 AC 1987 14B 356 (14.0)1 AC 1987 15B Sec 1 and 2 356 (14.0)1 AC 1987 16B 381 (15.0)1 AC 1987 st Ramp Hoverlane 356 (14.0)1 AC 1987				
14B 356 (14.0) ¹ AC 1987 15B Sec 1 and 2 356 (14.0) ¹ AC 1987 16B 381 (15.0) ¹ AC 1987 st Ramp Hoverlane 320 320 1987			AC	1987
15B Sec 1 and 2 356 (14.0) ¹ AC 1987 16B 381 (15.0) ¹ AC 1987 st Ramp Hoverlane 381 (15.0) ¹ AC 1987				1987
16B 381 (15.0) ¹ AC 1987 st Ramp Hoverlane			AC	1987
st Ramp Hoverlane				1987
	108	381 (15.0)'	AC	1987
	st Ramp Hoverlane			
		203(8.0) ¹	AC	1987

	Paven	nent	
Pavement Facility (Feature)	Thickness mm (in.)	Туре	Completion Date
East Warm-up Apron A2B	432 (17.0) ¹	AC	1946-1947
West Warm-up Apron A3B	406 (16.0) ¹	PCC	1956
North Ramp A4B Section 1 A4B Section 2	330 (13.0) 330 (13.0)	PCC PCC	1971-1972 1986
South Ramp A5B A6B	406 (16.0) ¹ 406 (16.0) ¹	AC AC	1951 1951
East Ramp A7B A8B	152 (6.0) 152 (6.0)	PCC PCC	1987 1987

•

Table A3 Summary	Table A3 Summary of Physical Property Data	l Propert	ly Data														
	FACILITY	`			OVERLAY												
Lui								PAVEMENT			BASE			SUBBASE		SUBGRADE	ĐE
<u>4 - 5</u>												cBR %					CBR
œш	z	LENGTH M (FT)	WIDTH M (FT)	THICKNESS mm (IN.)	DESCRIPTION	FLEX. STR. (PSI)	THICKNESS mm (IN.)	DESCRIPTION	RLEX. STR. PSI	THICKNESS mm (IN.)	DESCRIPTION	K KPa/cm IDCIAN	THICKNESS		CBR		K KPe/cm
RIA	Runway 15-33	305	61	25 (1.0)	AC		102 (4)	AC				-1-	1.N.) mm	DESCRIPTION		DESCRIPTION	(PSI/IN.)
		(000'11	(2002)	38 (1.5)							Limestone	80	178 (7) 203 (8)	Reclaimed Base	30	Lean Clay (CL)	10
R2C	Runway 15-33	122	61	_		╎								Lime stab. Subgrade	8		
		(400)	(200)	38 (1.5)	2		102.(4)	AC		178 (7)	Crushed Limestone	80	178 (7) 203 (8)	Reclaimed Base	30	Lean Clay	10
Bac	9			_		+								Lime Stab. Subgrade	80	(cr)	
		(3, 600)	(200)	25 (1.0) 38 (1.5)	AC		102 (4)	AC		178 (7)	Crushed Limestone	80	178 (7) 203 (8)	Reclaimed	30	Lean Clay	₽
R4C	Runway 15-33	579	19			$\neg \uparrow$								Lime Stab. Subgrade	80	ונרו	
		(1,900)	(200)	38 (1.5)		<u> </u>	102 (4)	AC		152 (6)	Stabilized Aggregate	80	203 (8) 152 (6)	Existing 30 Subbase Select Material 80		6-in. Lime Stabilized Subgrade CBR = 80 Leen	
RSC	Runway 15-33	457	19	_		+										Clay (CL) CBR =	
		(1,500)	(200)	38 (1.5)	2		152 (6)	AC		356 (14)	Crushed Limestone	80	203 (8)	Lime Stabilized 80 Subgrade		Lean Clay (CL)	ē
R6C	Runway 15-33	183 (600)	61 (200)	25 (1.0) A 38 (1.5)	AC		102 (4) /	AC		178 (7)	Crushed Limestone	80	178 (7) 203 (8)	Reclaimed Base			0
														Lime Stab. Subgrade	8	. .	
Values	¹ Values from original data.															18)	(Sheet 1 of 5)

Table	Table A3 (Continued)	(þ															
					OVERLAV												
	FACILITY	Σ		-	PAVEMENT		-	PAVEMENT			DACT						
<u>u u</u>														SUBBASE	╡	SUBGRADE	BE
												cBR %					CBR *
	IDENTIFICATION	LENGTH M (FT)	WIDTH M (FT)	THICKNESS mm (IN.)	DESCRIPTION	FLEX. STR. 1 (PSI) 1	THICKNESS mm (IN.)	DESCRIPTION	FLEX. STR. Ipen	THICKNESS		K KPa/cm	THICKNESS		CBR		K K
R7A	Runway 15-33	152 (500)	61 (200)					PCC			ULESCRIPTION	(PSI/IN.)	mm (IN.)	DESCRIPTION		DESCRIPTION Lean Clav	(PSI/N.)
RBA	Rinway 15.23		:				Τ								õ	(CL)	678 (250)
	SC-CI ABMIIN	(200)	(200)				381 (15)	DCC DCC							29	Lean Clay	
TIA	Parallal Taviwav	126	;	1		+	Т								<u></u>	5	678 (250)
		(068)	(22)	(0.2) I.e	AC		51 (2) ²	AC		178 (7)	Crushed Limestone	80	178 (7) 406 (16)	Reclaimed Base	<u>90</u>	Leen Clay (CL)	10
Tak	E T					╈								Lime Stab. Subgrade			
5		(11,300)	(75)				381 (15)	PCC		51 (2)	Sand				<u>د ا</u>		0
13						╈					• .	678 (250)			Ū	(cr)	
5		(6,210)	(75)	38 (1.5) 102 (4.0)	AC		102 (4)	AC		305 (12)	Crushed Limestone	80			<u> </u>	Lean Clay	10
T4A	Perellel Taxiway	183	23		AC	+	101 001		T						1		
		(600)	(75)	102 (4.0)	2			AC		178 (7)	Crushed Limestone	80	178 (7) 406 (16)	Reclaimed 30		Lean Clay	10
		_												Lime Stab. 80 Subarada		 	
Aci	Perallel Taxiway	610 (2,000)	23 (75)	51 (2.0)	AC		178 (² 3) A	AC	F.1	279 (11)	Crushed					T	
											Limestone				<u></u>	(cr)	2
³ Origina	⁴ Original pavement 102 mm (4 in.) 51 mm (2 in.) milled in 1986. ³ Original Pavement 9 in. 2-in. milled in 1986.	m (4 in.) 51 in. milled in	mm (2 in.) 1986.	milled in 1986.													191001 Z 01 5/
															• .		

	FACILITY			PA	OVERLAY PAVEMENT		ď	PAVEMENT			BASE			SUBBASE		SUBGRADE	DE
<u>ה ה א</u> לו												CBR %	• • • • • • • • •				CBR %
L R E IDENTIFIC	LE DENTIFICATION M	LENGTH N	WIDTH 1 M (FT)	THICKNESS mm (IN.)	DESCRIPTION	FLEX. STR. T (PSI) n	THICKNESS mm (IN.)	DESCRIPTION	FLEX. STR. (PSI)	THICKNESS mm (IN.)	DESCRIPTION	K KPa/cm (PSI/N.)	THICKNESS mm (IN.)	DESCRIPTION	cBR %	DESCRIPTION	K KPa/cm (PSI/IN.)
TGC Texiway 3 West	3 West	198 (650)	23 (75)	1.5)	AC		102 (4)	AC			Crushed Limestone	C a	178 (7) 406 (16)	Rectaimed Base Lime Steb. Subrande	30	Leen Clay (CL)	10
T7C Taxiway 2 West	2 West	198 (650)	23 (75)			1	76 (3)*	AC		305 (12)	Crushed Limestone	08	178 (7) 406 (16)		30	Lean Clay (CL)	0
T8B Taxiwey 3 East	. 3 East	259 (850)	23 (75)	38 (1.5)	AC		127 (5)	AC		305 (12)	Crushed Limestone	80				Lean Clay (CL)	2
T9B Taxiway 1 East	r 1 East	198 (649)	23 (75)	38 (1.5)	AC		127 (5)	AC		305 (12)	Crushed Limestone	80				Lean Clay (CL)	2
T10B Taxiway 2 East	/ 2 East	244 (800)	23 (75)				102 (4)	AC		178 (7) 152 (6)	Stabilized Aggregate Recycled Subbase	80 81 (30)	152 (6)	Lime Stab. Subgrade	30	Lean Clay (CL)	2
T11B East Paraliel Sec 1 Taxiway		700 (2,295)	30 (100)				102 (4)	AC		178 (7)	Steb. Limestone	80	152 (6)	Lime Stabilized 30 Subgrade	30	Lean Clay (CL)	10
T11B Eest Parallel Sec 2 Taxiway	altel	131 (430)	30 (100)	51 (2.0)	AC		127 (5)	AC		305 (12)	Crushed Limestone	80				Lean Clay (CL)	0
 4 Original 4 in. Pavament replaced in 1986 	wement repl	aced in 19(86														(Sheet 3 of 5)

Appendix A Background Data

.

Table	Table A3 (Continued)																
	FACIUTY			74	OVERLAY PAVEMENT			PAVEMENT			BASE			SUBBASE		SUBGRADE	
F m4+	<u> </u>											CBR %					* CB
Экш	IDENTIFICATION	LENGTH M (FT)	WIDTH M (FT)	THICKNESS mm (IN.)	DESCRIPTION	FLEX. STR. (PSI)	THICKNESS mm (IN.)	DESCRIPTION	FLEX. STR. (PSI)	THICKNESS mm (IN.)	DESCRIPTION	K KPa/cm (PSI/N.)	THICKNESS mm (IN.)	CB DESCRIPTION %	~	DESCRIPTION	K KPa/cm (PSI/IN.)
T12B	East Ramp Taxiwey	183 (600)	15 (50)				51 (2)	AC		152 (6)	Stabilized Aggregate	80	152 (6)	Lime Stabilized 30 Subgrade			2
T138	East Ramp Taxiway	121 (400)	15 (50)				51 (2)	AC		152 (6)	Stabilized Aggregate	80	152 (6)	Lime Stabilized 30 Subgrade		Lean Cley (CL)	0
T14B	East Ramp Taxiway	121 (400)	15 (50)				51 (2)	AC		152 (6)	Stabilized Aggregate	80	152 (6)	Lime Stabilized 30 Subgrade		Lean Clay (CL)	2
T158 Sec 1	East Ramp Taxiway	183 (600)	15 (50)				51 (2)	AC		152 (6)	Stabilized Aggregate	80	152 (6)	Lime Stebilized 30 Subgrade		Lean Clay (CL)	0
T158 Sec 2	East Ramp Taxiway	256 (840)	12 (40)				51 (2)	AC		152 (6)	Stabilized Aggregate	80	152 (6)	Lime Stabilized 30 Subgrade		Lean Clay (CL)	5
T16B	East Ramp Taxiway	527 (1,730)	43 (140)				73 (6)	AC		152 (6)	Stabilized Aggregate	80	(152) (6)	Lime Stabilized 30 Subgrade		Lean Clay (CL)	10
T178	East Ramp Hoverlane	337 (1,106)	40 (130)				51 (2)	AC		152 (6)	Stabilized Aggregate	80	152 (6)	Lime Stabilized 30 Subgrade		Lean Clay (CL)	2
T18B	East Ramp Hoverlane	337 (1,106)	40 (130)				51 (2)	AC		152 (6)	Stabilized Aggregate	8	152 (6)	Lime Stabilized 30 Subgrade		Lean Clay (CL)	0
T198	East Ramp Hoverlane	337 (1,106)	40 (130)				51 (2)	AC		152 (6)	Stabilized Aggregate	80	152 (6)	Lime Stabilized 30 Subgrade		Lean Clay (CL)	2
																(2)	(Sheet 4 of 5)

٠

.

.

Table.	Table A3 (Concluded)	_														
	FACILITY	,		Ĩ.	OVERLAY PAVEMENT			PAVEMENT		BASE			SUBBASE		SUBGRADE	Je la
<u></u>											cBR %					CBR SBR
∍∝ш	IDENTIFICATION	LENGTH M (FT)	WIDTH M (FT)	THICKNESS mm (IN.)	DESCRIPTION	FLEX. STR. (PSI)	THICKNESS mm (IN.)	FLEX STR. DESCRIPTION (PSI)	 THICKNESS mm (IN.)	DESCRIPTION	K KPa/cm (PSI/IN.)	THICKNESS mm (IN.)	DESCRIPTION 9	<u>م</u> ۲۳	DESCRIPTION	K KPa/cm (PSI/N.)
A2B	Warm-up Apron	85 (280)	58 (190)				127 (5)	AC	305 (12)	Crushed Limestone	80					10
A3B	Warm-up Apron	183 (600)	53 (175)				406 (16)	PCC	 152 (6)	Select Base					Lean Clay (CL)	10
											407 (150)					
A4B Sec 1	North Ramp	366 (1.200)	152				330 (13)	PCC							Leen Clay	10
														<u>-</u>	CL)	
A4B Sec 2	North Ramp	Varies	152 (500)				330 (13)	PCC		•		152 (6)	Lime Stabilized 30		Lean Clay	10
													annanana	<u>.</u>		
A5B	South Ramp sta 0 + 00 to 21 + 00	640 (2,100)	91 (300)				152 (6)	AC	254 (10)	Crushed Limestone	80				Lean Clay (CL)	10
A6B	South Ramp sta 21 + 00 to 30 + 50	290 (950)	91 (300)				152 (6)	AC	279 (11)	Crushed Limestone	80			<u> </u>	Leen Clay (CL)	10
A7B	East Ramp	334 (1,095)	249 (818)				152 (6)	PCC				152 (6)	Lime Stabilized 30 Subgrade		Lean Clay (CL)	10
A8B	East Ramp	338 (1,110)	259 (850)				152 (6)	224				152 (6)	Lime Stabilized 30 Subgrade		Lean Clay (CL)	10
															S	(Sheet 5 of 5)

		Number of Operations
Aircraft	Weight kg (lb)	Total
1	Fraffic Data for Period 1 Jan 1994 to	o 31 Oct 1995
A-10	22,680 (50,000)	111
AB-300	165,149 (363,765)	3
B-737	61,236 (135,000)	57
B-727	72,576 (160,000)	35
B-747	377,849 (833,000)	145
B-757	108,864 (240,000)	6
C-5	381,022 (840,000)	233
C-141	147,419 (325,000)	119
C-130	68,100 (150,000)	185
C-9	48,988(108,000)	100
C-17	263,320 (580,000)	5
C-20	31,644 (69,700)	12
CH-47	21,338 (47,000)	63
DC-8	161,170 (355,000)	5
F-16	15,740 (34,700)	26
KC-10	267,620 (590,000)	76
-1011	195,048 (430,000)	36
(C-135	146,059 (322,000)	21
MD-11	276,940 (610,000)	6
P-3	63,451(139,760)	3
NH-64	7,893 (17,400)	1,607
Viscellaneous	<9,072 <(20,000)	3,836

Appendix B Tests and Results

Tests Conducted

The pavements were evaluated based on the results from the following physical tests: (a) nondestructive testing utilizing a heavy weight deflectometer (HWD) and (b) dynamic cone penetrometer (DCP) tests. The test procedures and results are discussed below.

Nondestructive Tests

Test equipment

Nondestructive tests were performed on the pavements with the Dynatest model 8081 heavy weight deflectometer (HWD). The HWD is an impact load device that applies a single-impulse transient load of approximately 25-30 millisecond duration. With this trailer-mounted device, a dynamic force is applied to the pavement surface by dropping a weight onto a set of rubber cushions which results in an impulse loading on an underlying circular plate 300 mm (11.8 in.) in diameter in contact with the pavement. The applied force and the pavement deflections are respectively measured with load cells and velocity transducers. The drop height of the weights can be varied from 0 to 399 mm (15.7 in.) to produce a force from 0 to approximately 224 kN (50,000 lb). The system is controlled with a micro computer which also records the output data. Velocities were measured and deflections computed at the center of the load plate (D1) and at distances of 305 (12), 610 (24), 914 (36), 1219 (48), 1524 (60), and 1829 mm (72 in.) (D2 - D7) from the center of the load plate in order to obtain deflection basin measurements.

Test procedure

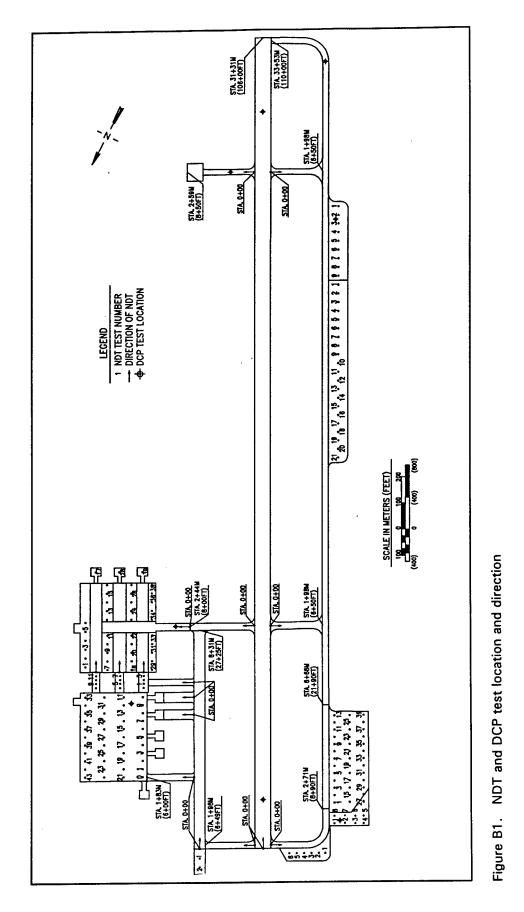
On runways and taxiways deflection basin measurements were made at 30 m (100 ft) intervals on alternate sides of the centerline along the main gear

wheel paths. For flexible pavements, the tests were performed on a 3.0 to 3.7 m (10 to 12 ft) offset from the centerline. For rigid pavements, the tests were conducted at the center of the slab or largest unbroken piece. The parking aprons, warm-up aprons, and engine run-up area were tested in a grid pattern of approximately 30 m (100-ft) intervals or at locations that were selected to ensure that adequate NDT were performed per feature for evaluation purposes. Lines along which the NDT were conducted, or locations tested (specified by number), on each pavement facility are indicated in Figure B1. At each test location pavement deflection measurements were recorded at force levels of approximately 58 (13), 111 (25), and 156 (35) kN (kips). Impulse stiffness modulus (ISM) values were then calculated based on the slope (load/deflection) of the plot of impulse load versus the deflection at the first sensor (DO) for the maximum force level.

The ability of the joints in the PCC slabs to transfer load is measured with the FWD device. The ratio of deflections measured on each side of the joint (deflection of unloaded side /deflection of loaded side) is related to joint efficiency or load transfer. Joint test were conducted at select locations on the PCC pavements. Table B1 shows the summary of joint ratio test on PCC pavements.

NDT Analysis

The NDT test results or ISM data for each facility were grouped according to different pavement features. The ISM data within a feature were grouped according to differences in magnitude of the ISM values and are called sections. Visual inspection of the ISM data indicated that only one section per feature was needed. Figures B2 through B23 show graphically the ISM test results. A representative basin for each feature was determined using a layered elastic evaluation program (LEEP). Table B2 shows the representative basins for each feature as determined from the NDT.


Representative basins were used to determine section modulus values of the various layers within the pavement structure in each section. Deflections basins were input to a layered elastic multi-layered backcalculation program to determine the surface, base, and subgrade modulus values. The program determines a set of modulus values which provide the best fit between a measured deflection basin (NDT) and a computed (theoretical) deflection basin. Table B3 presents a summary of the backcalculated modulus values based on the representative basins for each pavement section.

Modulus values for AC pavements can be determined using three methods: (a) use the surface temperature at the time of testing and the previous five day mean air temperature, (b) backcalculate the modulus values using the FWD deflection basins, or (c) determine the design modulus from past temperature data. In an evaluation, pavements are evaluated for a design life of 20-years. Modulus of AC is temperature dependent; therefore the seasonal variation in temperature is accounted for by using the design modulus from past temperature data. From the climatological table (Table A1), an average daily maximum temperature of $34 \text{ C} (94^{\circ}\text{F})$ and an average daily mean of $29^{\circ}\text{C} (84^{\circ}\text{F})$ were used in determining the design AC modulus. At a frequency level of 2 Hz for the taxiways and aprons, the design AC modulus was 444 MPA (64,346 psi) and at a frequency level of 10 Hz for the runways, the design AC modulus was 853 MPA (123,795 psi). The design AC modulus along with the backcalculated values for the base, subbase, and subgrade layers were used to determine the structural capacity of the AC pavement features.

Modulus values for PCC pavements can be backcalculated using the HWD deflection basins or a design modulus for the PCC can be used. In the evaluation of a rigid pavement, the design modulus should be used for the PCC layer along with the backcalculated modulus values for the base, subbase, and subgrade layers and the joint ratio test results. Backcalculated PCC modulus values are shown in Table B2. Value of 34474 MPA (5,000,000 psi) is recommended for a PCC layer in good condition.

Dynamic Cone Penetrometer Tests

A DCP soil test device was used to obtain subsurface soil data at representative locations. The DCP is a steel cone attached to the end of a metal rod on the other end of which is located an 8.2 kg (18-lb) sliding drop-hammer. For this investigation a small hole was cored through the AC or PCC material. The cone of the DCP was then placed on top or near the top of the base and the hammer was then dropped repeatedly to drive the cone through the underlying pavement layers. The material resistance to penetration was recorded in terms of inches penetrated per hammer blow. California Bearing Ratio (CBR) was then determined based on a correlation and procedure recommended in (Webster, Grau, and Williams 1992). DCP tests were performed at 8 locations on the runway, taxiways, and parking aprons. The results of the DCP tests are best illustrated on a plot of CBR versus depth for each test location. Figures B24 through B31 show these data for the tests performed on the facilities.

Appendix B Tests and Results

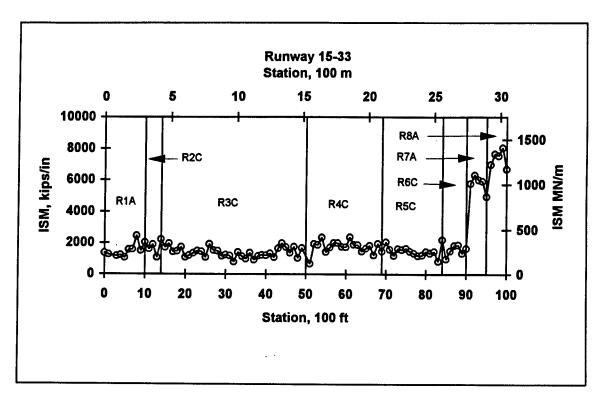


Figure B2. ISM profile, Runway 15-33, (R1A, R2C, R3C, R4C, R5C, R6C, R7A, and R8A)

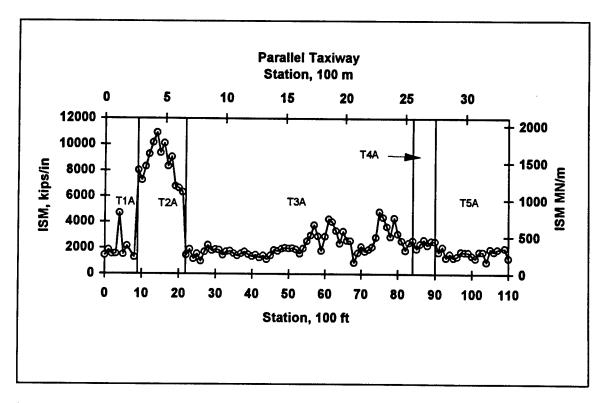


Figure B3. ISM profile, Parallel Taxiway, (T1A through T5A)

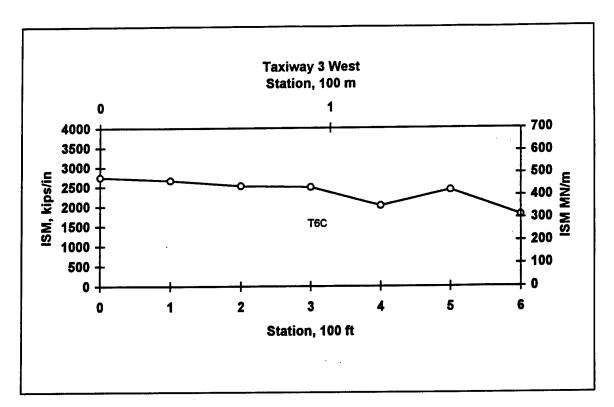


Figure B4. ISM profile, Taxiway 3 West , (T6C)

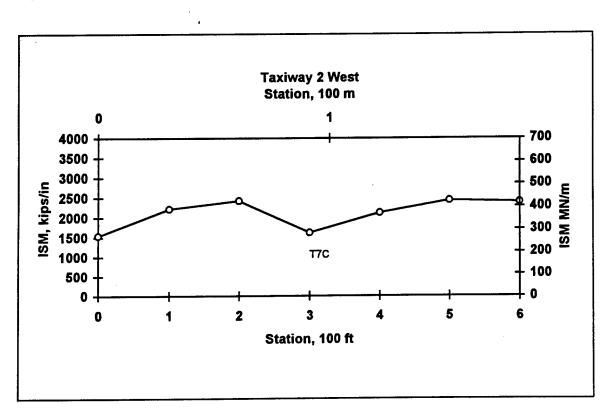


Figure B5. ISM profile, Taxiway 2 West, (T7C)

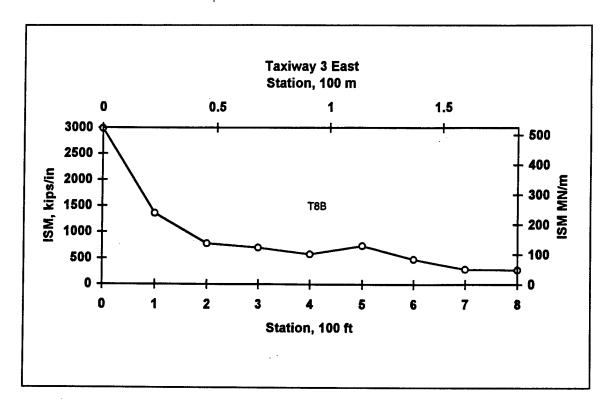


Figure B6. ISM profile, Taxiway 3 East, (T8B)

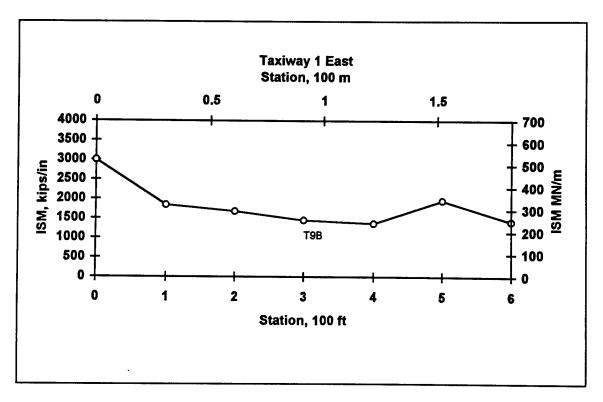


Figure B7. ISM profile, Taxiway 1 East (T9B)

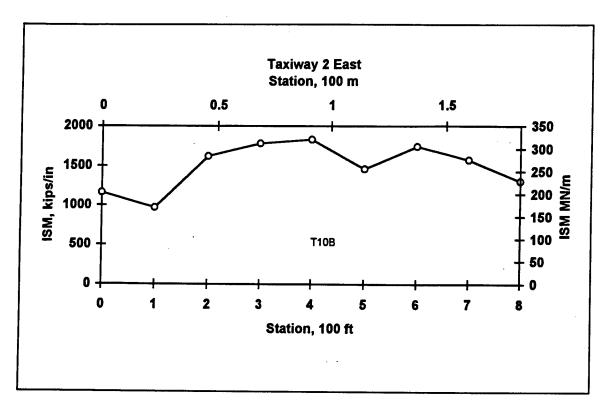


Figure B8. ISM profile, Taxiway 2 East, (T10B)

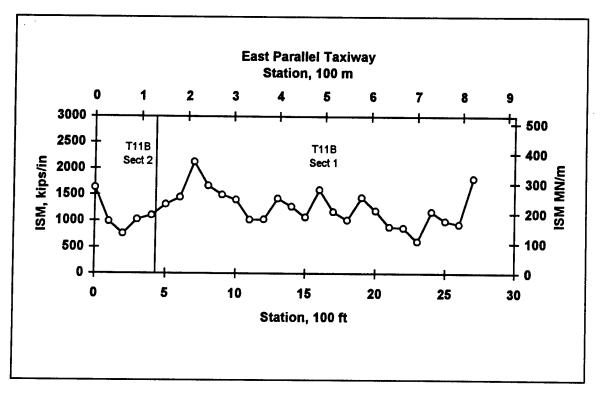


Figure B9. ISM profile, East Parallel Taxiway (T11B Sections 1 and 2)

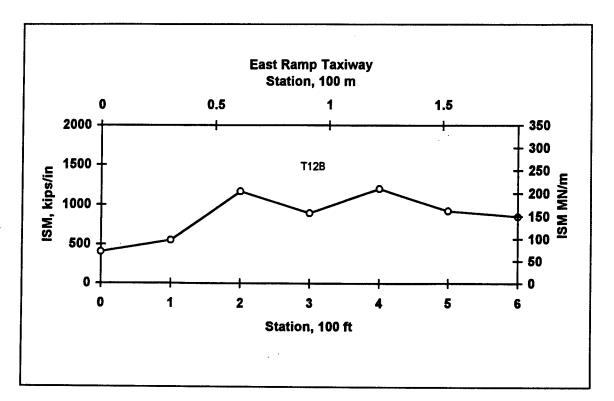


Figure B10. ISM profile, East Ramp Taxiway, (T12B)

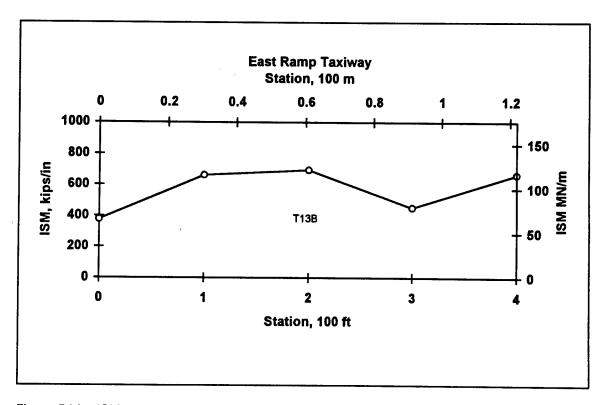


Figure B11. ISM profile, East Ramp Taxiway, (T13B)

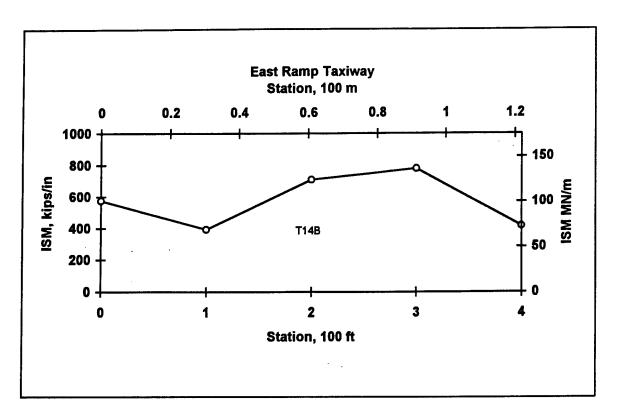


Figure B12. ISM profile, East Ramp Taxiway, (T14B)

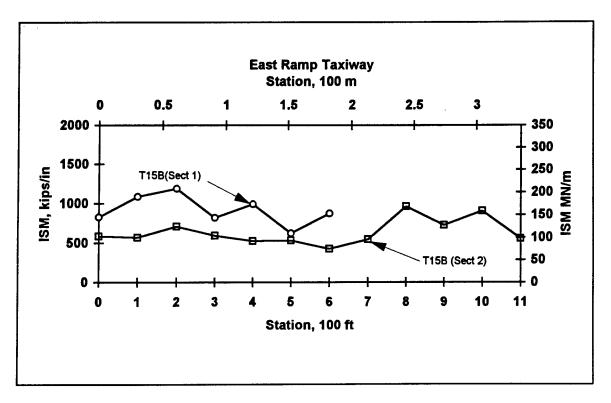


Figure B13. ISM profile, East Ramp Taxiway, (T15B Sections 1 and 2)

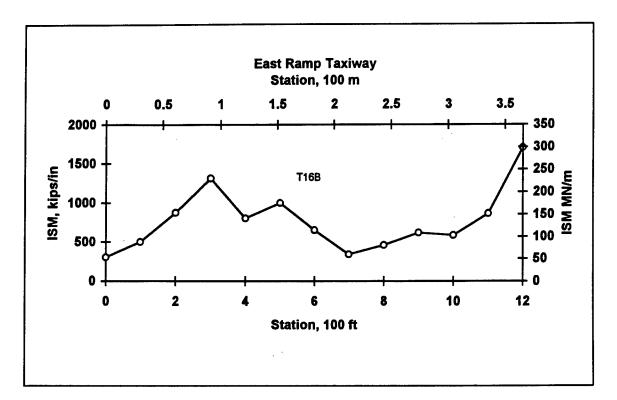


Figure B14. ISM profile, East Ramp Taxiway, (T16B)

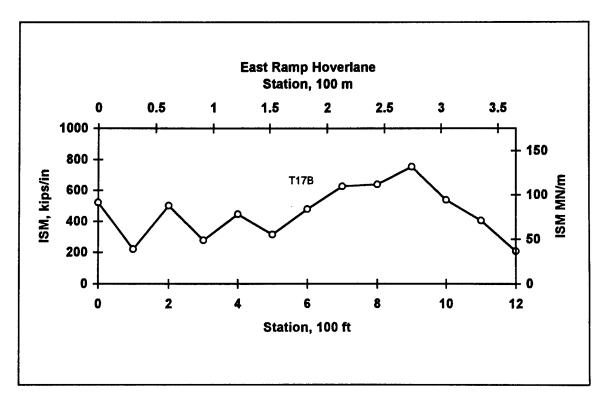


Figure B15. ISM profile, East Ramp Hoverlane, (T17B)

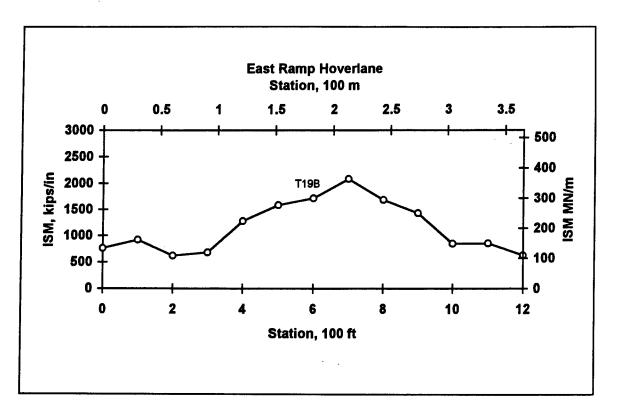


Figure B16. ISM profile, East Ramp Hoverlane, (T19B)

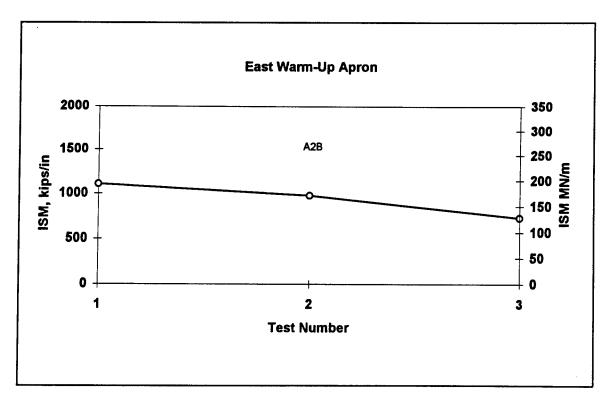


Figure B17. East Warm-up Apron, (A2B)

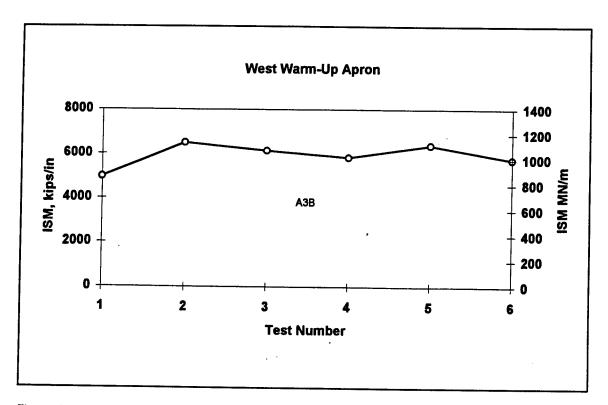


Figure B18. ISM profile, West Warm-up Apron, (A3B)

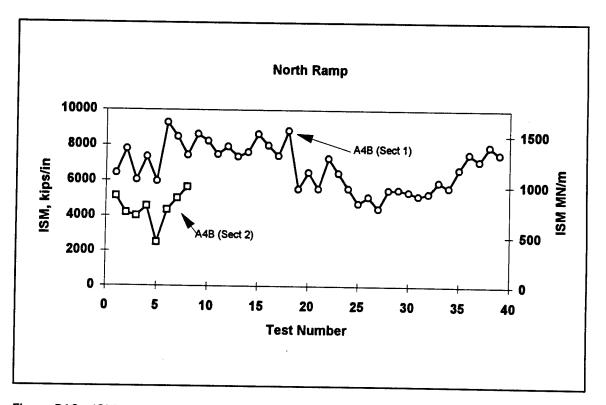


Figure B19. ISM profile, North Ramp, (A4B Sections 1 and 2)

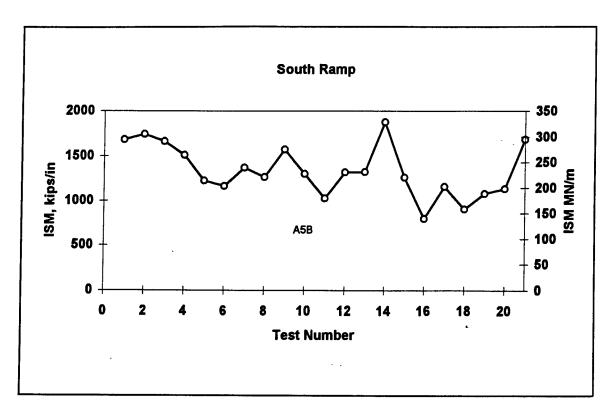


Figure B20. ISM profile, South Ramp, (A5B)

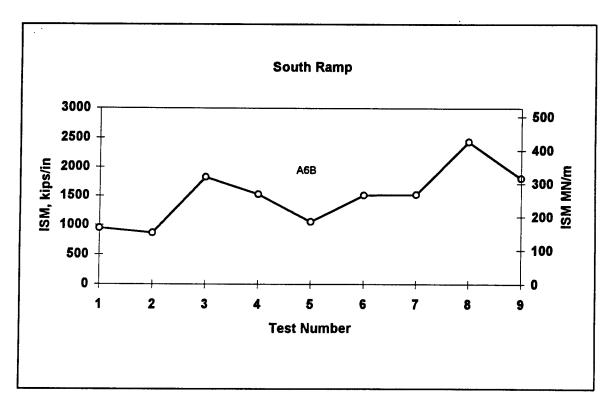


Figure B21. ISM profile, South Ramp, (A6B)

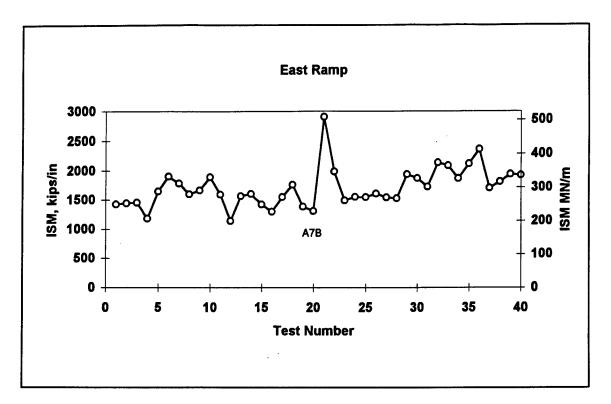


Figure B22. ISM profile, East Ramp, (A7B)

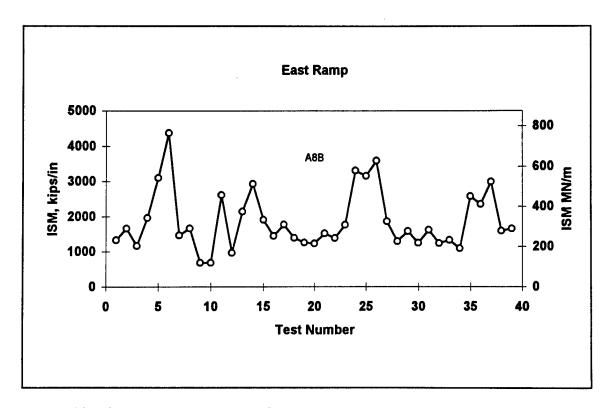


Figure B23. ISM profile, East Ramp, (A8B)

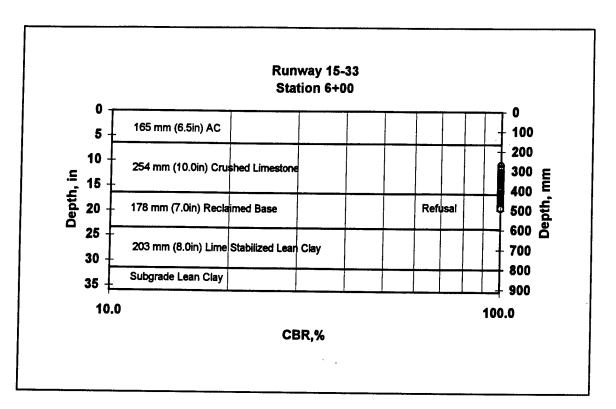


Figure B24. DCP test results, Runway 15-33, R1A, station 6+00

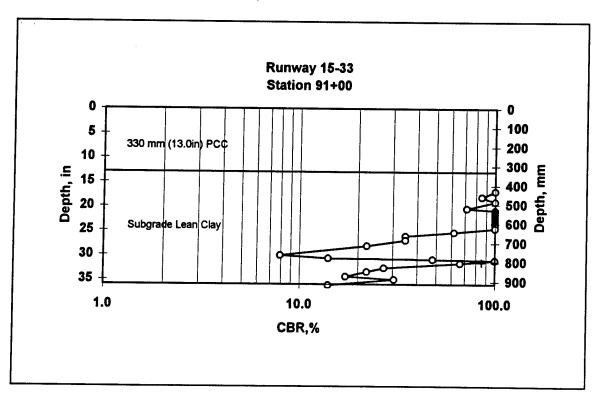


Figure B25. DCP test results, Runway 15-33, R7A, station 91+00

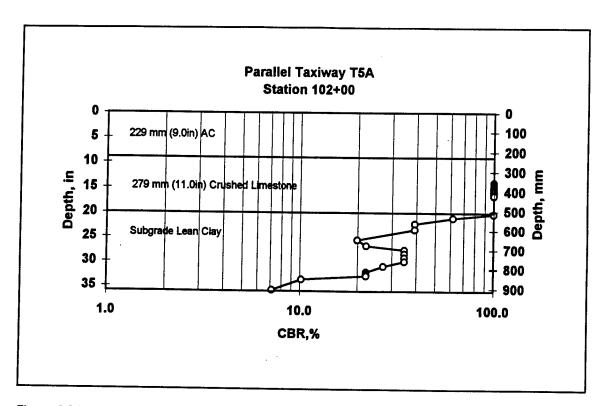


Figure B26. DCP test results, Parallel Taxiway, T5A, station 102+00

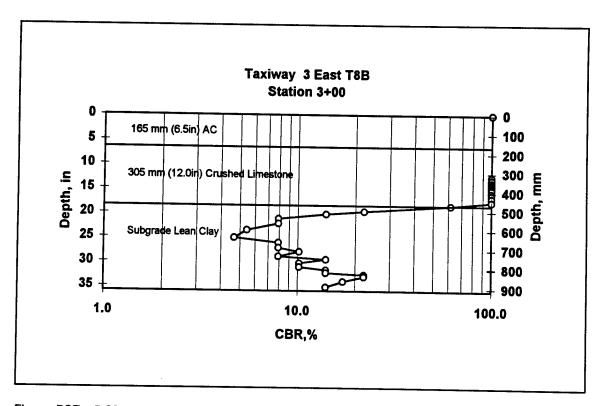


Figure B27. DCP test results, taxiway 3 east, T8B, station 3+00

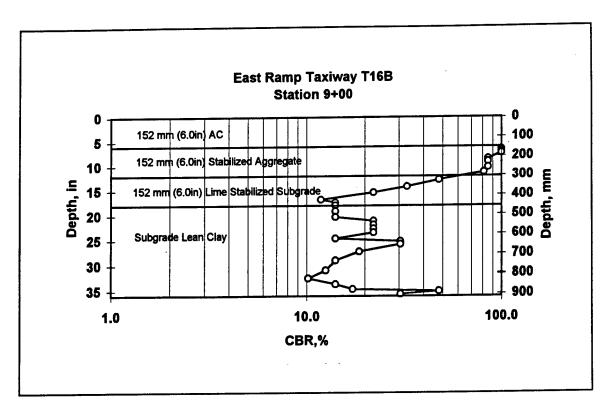


Figure B28. DCP test results, East Ramp Taxiway, T16B, station 9+00

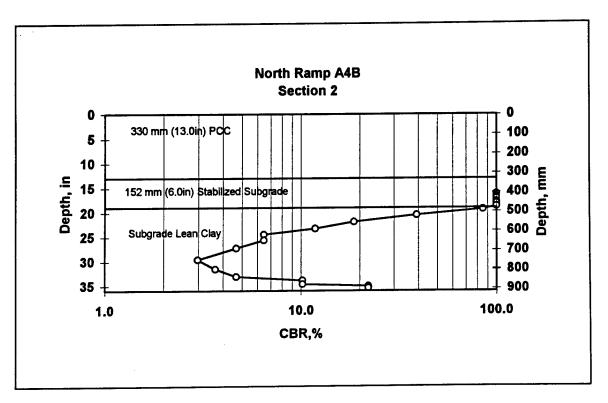


Figure B29. DCP test results, North Ramp, A4B Section 2

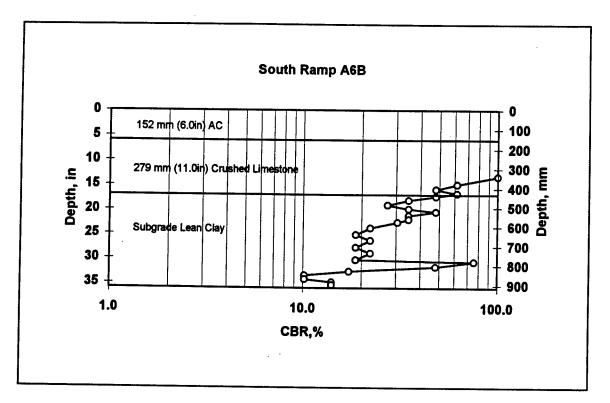


Figure B30. DCP test results, South Ramp, A6B

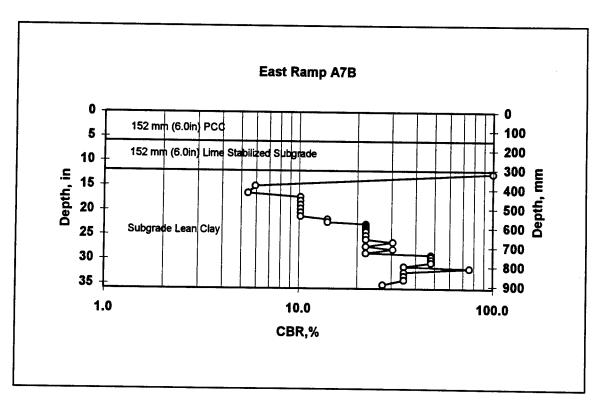


Figure B31. DCP test results, East Ramp, A7B

Feature	Test Number	Load kN (lbs)	D0 µm (mils)	D12 µm (mils)	Joint Ratio,% D12/D0X100	
R7A	91	233 (52,410)	427 (16.8)	86 (3.4)	20	
R7A	94	229 (51,448)	445 (17.5)	137 (5.4)	31	
R8A	98	232 (52,100)	363 (14.3)	114 (4.5)	31	
				Average	27	
A3B	2	231 (51,941)	460 (18.1)	152 (6.0)	33	
A3B	4	230 (51,687)	452 (17.8)	150 (5.9)	33	
				Average	33	
A4B-1	10	229 (51,397)	378 (14.9)	140 (5.5)	37	
A4B-1	5	230 (51,643)	257 (10.1)	76 (3.0)	30	
A4B-1	18	225 (50,558)	257 (10.1)	81 (3.2)	32	
A4B-1	23	225 (50,674)	307 (12.1)	175 (6.9)	57	
A4B-1	29	225 (50,630)	.325 (12.8)	246 (9.7)	76	
A4B-1	34	227 (51,039)	254 (10.0)	109 (4.3)	43	
			· · · · · · · · · · · · · · · · · · ·	Average	46	
A4B-2	3	226 (50,797)	307 (12.1)	279 (11.0)	91	
A4B-2	6	221 (49,637)	523 (20.6)	257 (10.1)	49	
				Average	70	
A7B	504	213 (47,937)	1494 (58.8)	729 (28.7)	49	
А7В	508 218 (48,918) 1732 (68.2) 1069 (42.1) 62 512 217 (48,755) 1087 (42.8) 678 (26.7) 62 518 218 (48,902) 828 (32.6) 754 (29.7) 91 524 220 (49,410) 978 (38.5) 831 (32.7) 85					
A7B	512 217 (48,755) 1087 (42.8) 678 (26.7) 62 518 218 (48,902) 828 (32.6) 754 (29.7) 91					
А7В	512 217 (48,755) 1087 (42.8) 678 (26.7) 62 518 218 (48,902) 828 (32.6) 754 (29.7) 91 524 220 (49,410) 978 (38.5) 831 (32.7) 85					
А7В	512 217 (48,755) 1087 (42.8) 678 (26.7) 62 518 218 (48,902) 828 (32.6) 754 (29.7) 91 524 220 (49,410) 978 (38.5) 831 (32.7) 85					
А7В	518 218 (48,902) 828 (32.6) 754 (29.7) 91 524 220 (49,410) 978 (38.5) 831 (32.7) 85					
А7В	B 528 218 (49,065) 945 (37.2) 851 (33.5)					
	Average	74				
A8B	538	217 (48,751)	818 (32.2)	660 (26.0)	81	
A8B	1036 (40.8)	58				
A8B	514	226 (50,761)	610 (24.0)	406 (16.0)	67	
A8B	520	222 (49,812)	1473 (58.0)	897 (35.3)	61	
A8B	525	227 (51,055)	599 (23.6)	272 (10.7)	45	
A8B	531	219 (49,180)	899 (35.4)	772 (30.4)	86	
A8B	536	223 (50,217)	653 (25.7)	318 (12.5)	49	
				Average	64	

	Station or Test	ISM MN/m				Deflect	ion, µm (mils)	1	T
Feature	Number m (ft)		Load kN (lb)	D1	D2	D3	D4	D5	D6	D7
				Runway 1	5-33					
R1A	1+83	275	224	815	523	244	112	53	33	28
	(6+00)	(1,569)	(50,371)	(32.1)	(20.6)	(9.6)	(4.4)	(2.1)	(1.3)	(1.1)
R2C	4+27	390	231	592	467	272	173	114	79	58
	(14+00)	(2,225)	(51,849)	(23.3)	(18.4)	(10.7)	(6.8)	(4.5)	(3.1)	(2.3)
R3C	12+50	232	228	983	592	335	201	132	94	69
	(41+00)	(1,324)	(51,245)	(38.7)	(23.3)	(13.2)	(7.9)	(5.2)	(3.7)	(2.7)
R4C	19+51	257	235	912	516	284	183	132	99	76
	(64+00)	(1,468)	(52,722)	(35.9)	(20.3)	(11.2)	(7.2)	(5.2)	(3.9)	(3.0)
R5C	22 + 56	275	223	810	587	335	188	107	69	48
	(74 + 00)	(1,573)	(50,181)	(31.9)	(23.1)	(13.2)	(7.4)	(4.2)	(2.7)	(1.9)
R6C	26+82	330	227	688	488	241	117	61	33	23
	(88+00)	(1,883)	(51,054)	(27.1)	(19.2)	(9.5)	(4.6)	(2.4)	(1.3)	(0.9)
R7A	27 + 74	1010	234	231	198	173	147	122	99	79
	(91 + 00)	(5,769)	(52,500)	(9.1)	(7.8)	(6.8)	(5.8)	(4.8)	(3.9)	(3.1)
R8A	29 + 87	1322	232	175	155	137	117	99	84	71
	(98 + 00)	(7,548)	(52,087)	(6.9)	(6.1)	(5.4)	(4.6)	(3.9)	(3.3)	(2.8)
			P	arallel Ta	kiway					
T1A	0+61	267	223	833	488	282	178	122	89	69
	(2+00)	(1,526)	(50,070)	(32.8)	(19.2)	(11.1)	(7.0)	(4.8)	(3.5)	(2.7)
T2A	3+35	1456	226	155	119	99	84	66	51	41
	(11+00)	(8,317)	(50,737)	(6.1)	(4.7)	(3.9)	(3.3)	(2.6)	(2.0)	(1.6)
ТЗА	22 + 25	368	224	607	427	272	173	112	76	56
	(73 + 00)	(2,102)	(50,244)	(23.9)	(16.8)	(10.7)	(6.8)	(4.4)	(3.0)	(2.2)
T4A	26+21	407	226	554	307	160	91	64	46	36
	(86+00)	(2,322)	(50,641)	(21.8)	(12.1)	(6.3)	(3.6)	(2.5)	(1.8)	(1.4)
T5A	28 + 65	271	218	805	546	343	221	147	104	76
	(94 + 00)	(1,547)	(49,053)	(31.7)	(21.5)	(13.5)	(8.7)	(5.8)	(4.1)	(3.0)
			Т	axiway 3	West					
T6C	0+91	436	235	538	358	203	127	89	66	53
	(3+00)	(2,491)	(52,818)	(21.2)	(14.1)	(8.0)	(5.0)	(3.5)	(2.6)	(2.1)
			T	'axiway 2	West					
T7C	1 + 22	371	238	640	320	196	152	127	109	94
	(4 + 00)	(2,120)	(53,437)	(25.2)	(12.6)	(7.7)	(6.0)	(5.0)	(4.3)	(3.7)
			1	Faxiway 3	East					
T8B	0+61	137	81	582	401	231	140	89	58	41
	(2+00)	(2+00)	(18,206)	(23.3)	(15.8)	(9.1)	(5.5)	(3.5)	(2.3)	(1.6)
			1	Faxiway 1						
Т9В	0+91	254	227	894	599	330	160	66	28	15
	(3+00)	(1,449)	(51,007)	(35.2)	(23.6)	(13.0)	(6.3)	(2.6)	(1.1)	(0.6)
		1	1	Faxiway 2	East					
т10В	1+52 (5+00)	257 (1,465)	222 (49,974)	866 (34.1)	490 (19.3)	259 (10.2)	173 (6.8)	127 (5.0)	104	84

	Station or Test	ISM				Deflec	tion, µm	(mils)					
Feature	Number m (ft)	MN/m (kips/in.)	Load kN (ib)	D1	D2	D3	D4	D5	D6	D7			
r ediure	1 (10)			t Parallel		03	04		106	יטן			
T11B, Sec 1	3+35	180	225	1,247	711	386	236	170	137	109			
	(11+00)	(1,026)	(50,419)	(49.1)	(28.0)	(15.2)	(9.3)	(6.7)	(5.4)	(4.3			
T11B, Sec 2	0+91 (3+00)	179 (1,025)	224 (50,371)	1,247 (49.1)	810 (31.9)	452 (17.8)	234 (9.2)	117 (4.6)	69 (2.7)	43 (1.7			
East Ramp Taxiways													
T12B	1+83	150	124	828	429	175	97	71	56	48			
	(6+00)	(854)	(27,846)	(32.6)	(16.9)	(6.9)	(3.8)	(2.8)	(2.2)	(1.9			
T13B	0+30	116	124	1,069	528	239	127	76	56	41			
	(1+00)	(661)	(27,840)	(42.1)	(20.8)	(9.4)	(5.0)	(3.0)	(2.2)	(1.6			
T14B	0+00	101	120	1,209	480	196	127	91	66	51			
		(576)	(27,438)	(47.6)	(18.9)	(7.7)	(5.0)	(3.6)	(2.6)	(2.0			
T15B, Sec 1	0+00	145	127	879	399	170	99	71	51	41			
		(827)	(28,622)	(34.6)	(15.7)	(6.7)	(3.9)	(2.8)	(2.0)	(1.6			
T15B, Sec 2	0+91	104	120	1,156	564	226	107	66	53	46			
	(3+00)	(594)	(27,041)	(45.5)	(22.2)	(8.9)	(4.2)	(2.6)	(2.1)	(1.8			
Г16В	1+83	114	75	658	305	130	71	43	30	23			
	(6+00)	(653)	(16,933)	(25.9)	(12.0)	(5.1)	(2.8)	(1.7)	(1.2)	(0.9)			
East Ramp Hoverlane													
Г17В	1+83	84	80	945	503	226	107	58	41	33			
	(6+00)	(480)	(17,872)	(37.2)	(19.8)	(8.9)	(4.2)	(2.3)	(1.6)	(1.3)			
19B	3+05	148	171	1,151	561	234	117	74	56	48			
	(10+00)	(847)	(38,399)	(45.3)	(22.1)	(9.2)	(4.6)	(2.9)	(2.2)	(1.9)			
			W	arm-up A	orons				<u>. </u>				
2B East	0+91	128	163	1273	866	465	234	132	81	56			
	(3+00)	(730)	(36,607)	(50.1)	(34.1)	(18.3)	(9.2)	(5.2)	(3.2)	(2.2)			
3B West	4	1,021	246	241	216	193	170	147	130	109			
		(5,828)	(55,375)	(9.5)	(8.5)	(7.6)	(6.7)	(5.8)	(5.1)	(4.3)			
				North Rai	np								
4B, Sec 1	35	1169	229	196	160	137	114	94	76	61			
		(6,675)	(51,404)	(7.7)	(6.3)	(5.4)	(4.5)	(3.7)	(3.0)	(2.4)			
4B, Sec 2	6	759	234	305	274	251	226	198	173	147			
		(4,333)	(52,007)	(12.0)	(10.8)	(9.9)	(8.9)	(7.8)	(6.8)	(5.8)			
				South Rar	np								
5B	12	230	227	983	566	292	150	79	48	33			
		(1,316)	(50,943)	(38.7)	(22.3)	(11.5)	(5.9)	(3.1)	(1.9)	(1.3)			
6B	7	267	228	853	457	226	117	66	46	30			
		(1,526)	(51,293)	(33.6)	(18.0)	(8.9)	(4.6)	(2.6)	(1.8)	(1.2)			
				East Ram	p								
7B	25	270	225	833	671	493	356	251	178	124			
	[(1,542)	(50,586)	(32.8)	(26.4)	(19.4)	(14.0)	(9.9)	(7.0)	(4.9)			
8B	8	291		597	498		269		130	86			
	-	(1,659)	(39,002)	(23.5)	(19.6)	(14.7)	(10.6)	(7.4)	(5.1)	(3.4)			

Feature	Surface Modulus MPa (psi ¹)	Base Modulus MPA (psi ¹)	Subgrade Modulus MPA (psi ¹)	Estimated Depth to Rigid Boundar mm (in.)
		AC Pavemen	ts	
R1A	4,809 (697,451)	382 (55,353)	177 (25,682)	1,651 (65)
R2C	12,080 (1,752,038)	599 (86,935)	174 (25,283)	2,489 (98)
R3C	3,732 (541,313)	427 (61,948)	194 (28,209)	3,277 (129)
R4C	3,253 (471,840)	532 (77,153)	231 (33,458)	3,937
R5C	7,188 (1,042,522)	403 (58,419)	127	(155)
R6C	7,334 (1,063,769)	447	(18,466)	(78)
T1A	11,292	(64,886) 568	(22,951) 297	(63) 6,096
ТЗА	(1,637,759) 4,864	(82,358) 840	(43,048) 191	(240) 2,515
T4A	(705,523) 3,199	(121,883) 726	(27,667) 265	(99) 2,438
T5A	(463,932) 3,414	(105,306) 709	(38,426)	(96) 3,353
T6C	(495,123)	(102,813) 790	(24,981)	(132)
	(1,718,439)	(114,553)	(32,933)	2,769 (109)
T7C	8,291 (1,202,478)	1,179 (185,508)	253 (36,666)	6,096 (240)
T8B	2,760 (400,263)	318 (46,175)	100 (14,562)	2,946 (116)
Г9В	6,075 (881,154)	463 (67,168)	111 (16,146)	1,295
Г10В	7,224 (1,047,840)	658 (95,379)	284 (41,230)	(51) 6,096
11B, Sec 1	5,318 (771,372)	497 (72,091)	215	(240) 6,096
11B, Sec 2	3,304 (479,243)	302	(31,181) 134 (10,407)	(240) 2,134
12B	9,191 (1,333,114) ²	518	(19,487) 215	(84) 3,429
13B	9,261	436	(31,117) 130	(135) 2,210
	(1,343,299) ²	(63,224)	(18,920)	(87)

Feature	Surface Modulus MPa (psi ¹)	Base Modulus MPA (psi ¹)	Subgrade Modulus MPA (psi ¹)	Estimated Depth to Rigid Boundary mm (in.)
	A	C Pavements (Co	ntinued)	
T14B	9,261 (1,343,299) ²	322 (46,681)	154 (22,358)	2,438 (96)
T15B, Sec 1	8,604 (1,247,918) ²	475 (68,908)	240 (34,788)	3,759 (148)
T15B, Sec 2	8,672 (1,257,809) ²	311 (45,101)	154 (22,334)	2,565 (101)
T16B	813 (117,920)	421 (61,084)	120 (17,419)	2,235 (88)
T17B	987 (143,143)	241 (35,070)	64 (9,289)	1,575 (62)
T19B	1,283 (186,091)	448 (65,043)	159 (23,100)	1,930 (76)
A2B	3,572 (518,090)	407 (59,030)	67 (9,787)	1,701 (67)
A5B	2,660 (385,847)	914 (132,537)	168 (24,356)	1,778 (70)
A6B	3,151 (457,031)	723 (104,835)	279 (40,479)	2,261 (89)
		PCC Pavement	ts	
R7A	55,430 (8,039,484)		144 (20,927)	2,438 (96)
R8A	60,016 (8,704,568)		147 (21,293)	2,438 (96)
T2A	42,332 (6,139,754)		320 (46,489)	2,515 (99)
A3B	41,587 (6,031,740)		224 (32,486)	6,096 (240)
A4B, Sec 1	58,101 (8,426,889)		305 (58,101)	2,515 (99)
A4B, Sec 2	60,089 (8,715,151)		153 (22,203)	6,096 (240)
А7В	52,713 (7,645,404)		101 (14,626)	2,489 (98)
48B	55,386 (8,033,164)		105 (15,183)	2,489 (98)

Appendix C Pavement Condition Survey and Results

Pavement Condition Survey

A pavement condition survey is a visual inspection of the airfield pavements to determine the present surface condition. The condition survey consists of inspecting the pavement surface for the various types of distresses, determining the severity of each distress, and measuring the quantity of each distress. The condition survey provides estimated quantities of each distress type and severity with the PCI for each feature. The PCI is a numerical indicator based on a scale from 0 to 100 and is determined by measuring pavement surface distress that reflects the surface condition of the pavement. Pavement condition ratings (from excellent to failed) are assigned to different levels of PCI values. These ratings and their respective PCI value definitions are shown in Figure C1. The distress types, distress severities, methods of survey, and PCI calculation are described in ASTM D 5340-93.

Condition survey procedure

The PCI and estimated distress quantities are determined for each feature. The information is based on inspection of a selected number of sample units. Sample units are subdivisions of a feature used exclusively to facilitate the inspection process and reduce the effort needed to determine distress quantities and the PCI. Each feature was divided into sample units. The sample units for AC pavement features were approximately 465 sq m (5,000 sq ft), and the sample units for the PCC pavement features contained approximately 20 slabs. The statistical sampling technique was used to determine the number of sample units were chosen along the center line of the runway and taxiways and were chosen randomly on aprons. The stationing and direction of survey for the runway and taxiways are shown in Figure C2. The locations of the sample units on the apron features are shown in Figures C3 through C5. After the sample units were inspected, the mean PCI of all sample units within a feature

was calculated and the feature was rated as to its condition: excellent, very good, good, fair, poor, very poor, and failed.

Analysis of PCI Data

The distress information collected during the survey was used with the Micro Paver program to estimate the quantities of distress types for each feature. This information is presented along with the PCI, general rating, and distress mechanism (load, climate, or other) in Appendix E. The major distress types observed on the PCC pavements were corner breaks, linear cracking, patching, shattered slabs, joint spalls, and corner spalls. The major distress types found on the AC pavements were alligator cracking, block cracking, longitudinal and transverse cracking, slippage cracks, and rutting. Photographs C1 through C8 show various types of distresses observed during the survey.

AR 420-72 (Headquarters, Department of the Army 1991a) requires that all airfield pavements be maintained at or above the following PCI ranges:

All runways and primary taxiways, 65 to 75. All aprons and secondary taxiways, 40 to 55.

Recommendations to apply maintenance or repair to improve existing PCI values are presented in Table 3-2. These were developed based on a decision process by which the pavement engineer can select from multiple alternatives after giving consideration to the surface condition and structural capacity of the pavement feature. In this process, both the PCI condition rating and the NDT structural rating are required. The results of these two ratings are used to follow a flowchart that allows the determination of the most appropriate work classification category (maintenance, repair, or construction). The recommendations shown in Table 3-2 were selected from maintenance, repair, and construction alternatives suggested for various distresses. The alternatives are shown in Tables 3-3 and 3-4. In many instances, the performance of a specific alternative depends upon the geographical location and expertise of local contractors. Therefore, it is suggested that the local DPW personnel review all recommendations. Local costs for the approved alternatives can then be used with the Micro PAVER program to obtain a reasonable cost estimate. All structural improvements or construction should be in accordance with TM 5-825-1/AFM 32-8008 Vol. 1 (Headquarters, Departments of the Army and the Air Force 1994) which requires PCC, or composite pavements with PCC overlay, at runway ends and for the primary taxiway and parking apron systems.

Condition survey results

A summary of the pavement condition survey results is shown in tabular form in Table C1. Table C1 lists the sample unit number, location, PCI, and rating of each sample unit inspected. The mean PCI for each feature was then calculated to determine the general condition or rating of the feature as shown in Figure C6. A comparison of the 1988, 1993 and 1995 PCI results is summarized in Table C2. The largest change in PCI occurred in feature R2C on the runway which had a PCI decrease from 71 to about 31.

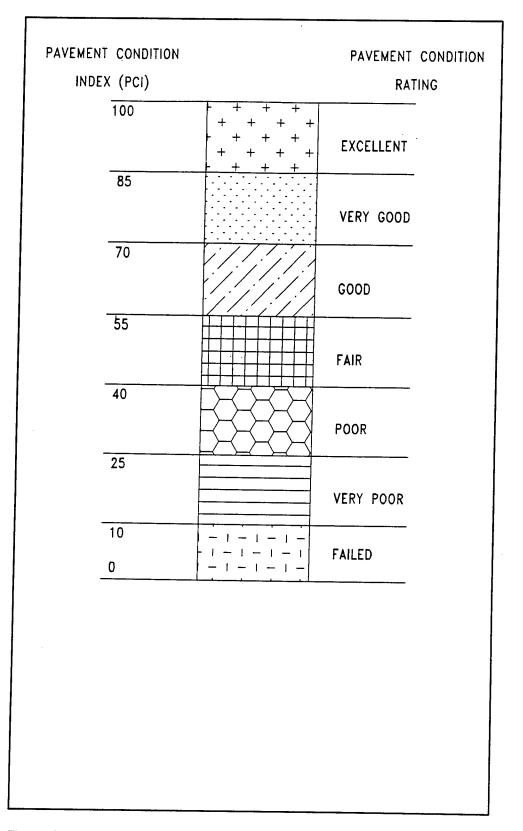
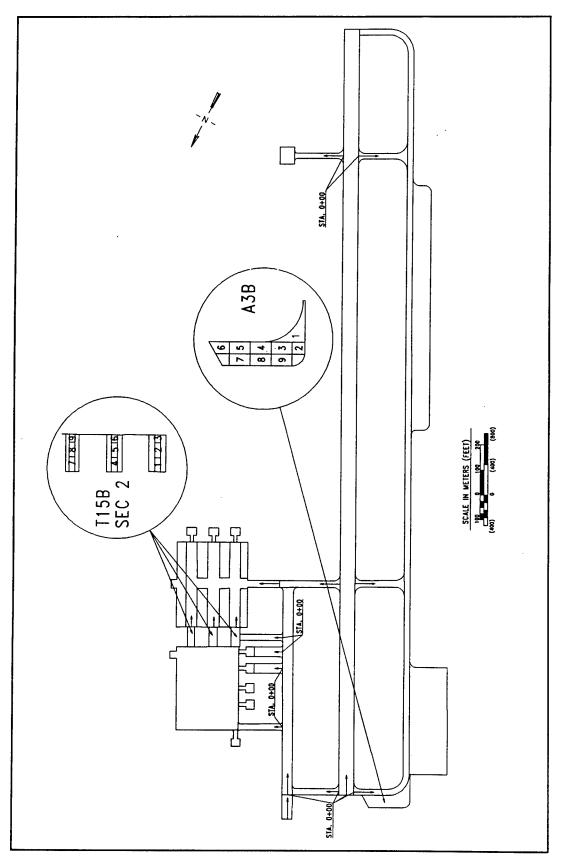
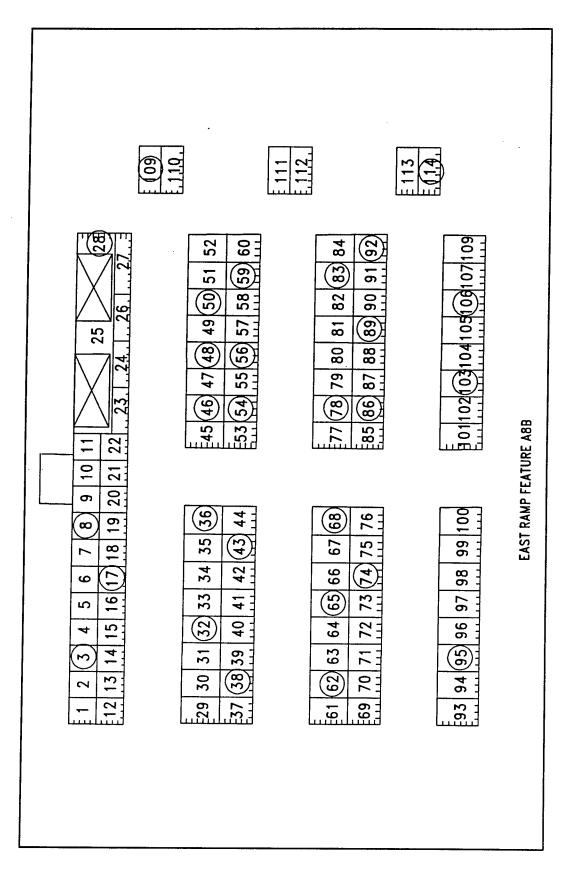
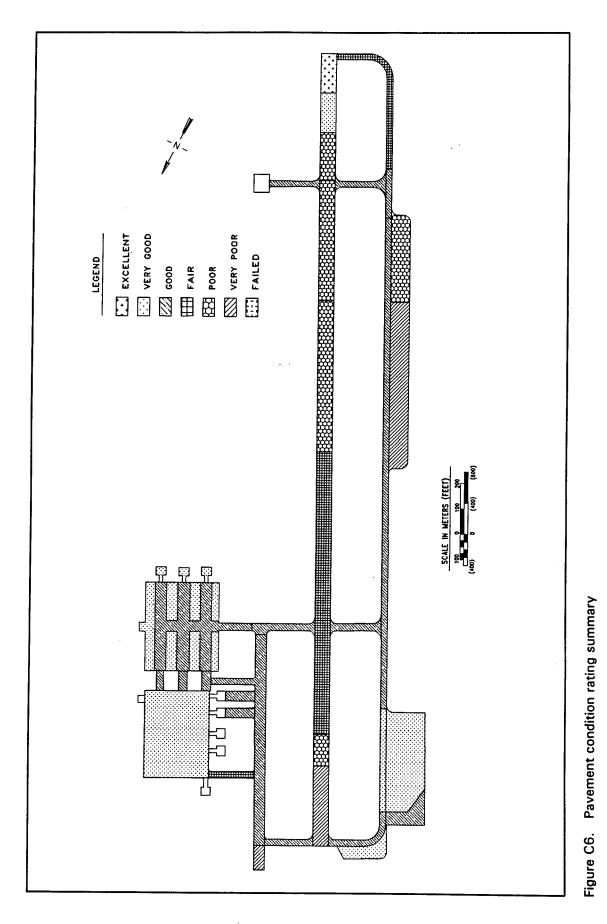


Figure C1. Scale for pavement condition rating




Figure C2. PCI location and direction of survey

NORTH RAMP	Ma SECTION 1 And SECTION 1 I
------------	--


Appendix C Pavement Condition Survey and Results

			r			T	1- <u>-</u> -		.	r			-
	217	216	181	180	145	144	109	108	73	72	37	36	
	218	215	182	179	146	143	110	(0)	74	7	38	35	2
	219	214	183	178	147	142	=	106	75	70	39	34	N
	220	213	184	177	148	141	112	105	76	69	40	33	4-
	221	212	185	176	149	(1)	4113	(10)	77	68	41	32)	5
	222	211	186	175	150	139	114	103	78	67	(7)	31 (6
	223	210	187	174	151	138	115	102	62	(99 99	43	30	2
ν7B	224	209	188	173	152	13)	116	01	80	65 (44	29)	∞
MP A	225	208	189	172	153	136	117	- 100	81	64	45	28 (6
RAI	226	207	190	171	$\left(\frac{15}{4}\right)$	135	(1)	66	82	63)	46	27	2
EAST RAMP A7B	227	206	191	170	155	134	119	98	83)	62 (47 (26	
ш	228	205	192	169	156	133(120	97	84	61	48	25	12
	229	204	193	168	157	132	121	96	85	60	49	24	13
	230	203	194	167	158	131	122	95	(98)	59	50	23	14
	231	202	195	166	159	130	123	(8)	87	58	<u></u>	22	15
	232	201	196	165	160	129	124	93 (88	(21)	52	21	16
/	M	200	197	164	-	128		92	89	56	53	20	17
;	234 23	11 11 11	98	63	<u> </u> 6216	<u></u>	<u> </u> 326125		0 6	ابل تۍ	54	6	8
L						<u>. 1 FT </u>			4.4.4.4	1111		IJŢŢĹ	

Figure C4. Sample unit layout, feature A7B

Figure C5. Sample unit layout, feature A8B

	Sample	Static	on m (ft)			1	Overall
Feature		From	То	PCI	Rating	PCI	Rating
			Runway 15-33				
R1A	1	0+00	0+30 (1+00)	40	Poor	20	Very poo
	3	0+61 (2+00)			Failed		
	5	0+91 (3+00) 1+22 (4+00)	1+22 (4+00) 1+52 (5+00)		Very poor Very poor		
	6	1+52 (5+00)	1+83 (6+00)	15	Very poor		
	79	1+83 (6+00) 2+44 (8+00)	2+13 (7+00) 2+74 (9+00)		Very poor		
	10	2+74 (9+00)	3+05 (10+00)		Poor Very poor		
R2C	11	3+05 (10+00)	3+35 (11+00)		Very poor		Poor
	12	3+35 (11+00) 3+66 (12+00)	3+66 (12+00)		Very poor		
	14	3+96 (12+00)	3+96 (13+00) 4+27 (14+00)	37	Poor Fair		
3 3C	15	4+27 (14+00)	4+57 (15+00)	45	Fair	45	
	16	4+57 (15+00)	4+88 (16+00)	28	Poor	45	Fair
	17 18	4+88 (16+00) 5+18 (17+00)	5+18 (17+00)	55	Fair		ł
	20	5+79 (19+00)	5+48 (18+00) 6+10 (20+00)	59 47	Good Fair		
	21	6+10 (20+00)	6+40 (21+00)	49	Fair		
	25 26	7 + 32 (24 + 00) 7 + 62 (25 + 00)	7 + 62 (25 + 00) 7 + 92 (26 + 00)	64	Good	[
	30	8+84 (29+00)	9+14 (30+00)	54 64	Fair Good		1
	31 33	9 + 14 (30 + 00) 9 + 75 (32 + 00)	9+45 (31+00)	59	Good		
	34	10+06 (33+00)	10+06 (33+00) 10+36 (34+00)	44 31	Fair Poor		
1	35	10+36 (34+00)	10+67 (35+00)	22	Very poor	1	
	40 42	11 + 89 (39 + 00) 12 + 50 (41 + 00)	12 + 19 (40 + 00) 12 + 80 (42 + 00)	36 35	Poor Poor	j	
	43	12+80 (42+00)	13 + 11 (43 + 00)	59	Good		1
	46 49	16 + 72 (45 + 00) 14 + 63 (48 + 00)	14+02 (46+00) 14+94 (49+00)	43	Fair	ļ	ļ
4C	51	15+24 (50+00)		39	Poor		
	52	15+54 (51+00)	15 + 54 (51 + 00) 15 + 85 (52 + 00)	17 33	Very poor Poor	28	Poor
	53	15+85 (52+00)	16+15 (53+00)	32	Poor		
	57 60	17 + 07 (56 + 00) 17 + 98 (59 + 00)	17 + 37 (57 + 00)	31	Poor		
	66	19+81 (65+00)	18 + 29 (60 + 00) 20 + 12 (66 + 00)	34 28	Poor Poor		
	68	20+42 (67+00)	20+73 (68+00)	21	Very poor		
5C	70 73	21+03 (69+00)	21+34 (70+00)		Poor	26	Poor
	76	21 + 95 (72 + 00) 22 + 86 (75 + 00)		27 25	Poor Very poor		
	78	23 + 47 (77 + 00)	23+77 (78+00)		Poor		
	81 83	24 + 38 (80 + 00) 24 + 99 (82 + 00)		23 20	Very poor Very poor		
c	84	25+30 (83+00)			Poor	34	Poor
	86	25+91 (85+00)	26+21 (86+00)		Failed	34	Poor
	87 88	26 + 21 (86 + 00) 26 + 52 (87 + 00)			Poor		
	89	26+82 (88+00)	AB A A A A A A A A A A		Poor Good		
A	91	27 + 54 (90 + 35)	27 + 91 (91 + 60)		Good	83	Very good
	92 93	27 + 91 (91 + 60) 28 + 30 (92 + 85)	28 + 30 (92 + 85)	86	Excellent		.,
	94	28 + 68 (94 + 10)			Excellent Excellent		

.

	Sample	Statio	n m (ft)				Overall
Feature	Unit	From	То	PCI	Rating	PCI	Rating
			Runway 15-33				
R8A	95 96 97 99	29+06 (95+35) 29+44 (96+60) 29+82 (97+85) 30+21 (99+10)	29+44 (96+60) 29+82 (97+85) 30+21 (99+10) 30+59 (100+35)	89 93 90 93	Excellent Excellent Excellent Excellent	91	Excellent
	L		Parallel Taxiway		1	1	1
TIA	1 2 3 5 6	0+00 (0+00) 0+30 (1+00) 0+61 (2+00) 1+22 (4+00) 1+52 (5+00)	0+30(1+00) 0+61(2+00) 0+31(3+00) 1+52(5+00) 1+83(6+00)	61 64 55 57 54	Good Good Fair Good Fair	58	Good
T2A	12 13 14 16 20 22	3+35 (11+00) 3+73 (12+25) 4+11 (13+50) 4+50 (14+75) 5+79 (19+00) 6+17 (20+25)	3+73 (12+25) 4+11 (13+50) 4+50 (14+75) 4+88 (16+00) 6+17 (20+25) 6+71 (22+00)	75 85 85 74 71 71	Very good Very good Very good Excellent Very good Very good	76	Very good
T3A	23 24 28 31 33 36 39 45 50 52 59 67 73 78 82	$\begin{array}{c} 6+71 \ (22+00)\\ 7+01 \ (23+00)\\ 8+23 \ (27+00)\\ 9+14 \ (30+00)\\ 9+75 \ (32+00)\\ 10+67 \ (35+00)\\ 11+58 \ (38+00)\\ 13+41 \ (44+00)\\ 13+41 \ (44+00)\\ 13+41 \ (44+00)\\ 15+54 \ (51+00)\\ 15+54 \ (51+00)\\ 17+68 \ (58+00)\\ 20+12 \ (66+00)\\ 21+95 \ (72+00)\\ 23+47 \ (77+00)\\ 24+69 \ (81+00)\\ \end{array}$	$\begin{array}{c} 7+01 \ (23+00)\\ 7+32 \ (24+00)\\ 8+53 \ (28+00)\\ 9+45 \ (31+00)\\ 10+06 \ (33+00)\\ 10+97 \ (36+00)\\ 11+89 \ (39+00)\\ 13+72 \ (45+00)\\ 15+24 \ (50+00)\\ 15+85 \ (52+00)\\ 17+98 \ (59+00)\\ 20+42 \ (67+00)\\ 22+25 \ (73+00)\\ 23+77 \ (78+00)\\ 24+99 \ (82+00) \end{array}$	52 64 61 64 64 64 53 64 55 64 47 64 60	Fair Good Good Good Good Good Fair Good Fair Good Fair Good Good Good Good	59	Good
Τ4Α	85 86 87 88 89	25+60 (84+00) 25+91 (85+00) 26+21 (86+00) 26+52 (87+00) 26+82 (88+00)	25+91 (85+00) 26+21 (86+00) 26+52 (87+00) 26+82 (88+00) 27+13 (89+00)	64 64 64 64 64	Good Good Good Good Good	64	Good
T5A	92 93 94 96 98 102 104 109	27 + 74 (91 + 00) 28 + 04 (92 + 00) 28 + 35 (93 + 00) 28 + 96 (95 + 00) 29 + 57 (97 + 00) 30 + 78 (101 + 00) 31 + 39 (103 + 00) 32 + 92 (108 + 00)	$\begin{array}{c} 28 + 04 & (92 + 00) \\ 28 + 35 & (93 + 00) \\ 28 + 65 & (94 + 00) \\ 29 + 26 & (96 + 00) \\ 29 + 87 & (98 + 00) \\ 31 + 09 & (102 + 00) \\ 31 + 70 & (104 + 00) \\ 33 + 22 & (109 + 00) \end{array}$	35 26 41 38 49 53 65 51	Poor Poor Fair Poor Fair Fair Good Fair	44	Fair
			Taxiway 3 West		· · · · · · · · · · · · · · · · · · ·		
Г6С	1 2 3 4	0+00 (0+00) 0+30 (1+00) 0+61 (2+00) 0+91 (3+00)	0+30 (1+00) 0+61 (2+00) 0+91 (3+00) 1+22 (4+00)	64 64 64 63	Good Good Good Good	63	Good
			Taxiway 2 West				
r7C	1 2 3 4 5	0+00 (0+00) 0+30 (1+00) 0+61 (2+00) 0+91 (3+00) 1+22 (4+00)	0+30 (1+00) 0+61 (2+00) 0+91 (3+00) 1+22 (4+00) 1+52 (5+00)	64 64 69 69 69	Good Good Good Good Good	67	Good

	Sample	Statio	n m (ft)				Overali
Feature	Unit	From	То	PCI	Rating	PCI	Rating
			Taxiway 3 East				
T8B	1	0+00 (0+00)	0+30 (1+00)	64	Good	62	Good
	2	0+30 (1+00)	0+61 (2+00)	64	Good		
	3	0+61 (2+00)	0+91 (3+00)	59	Good		
	4	0+91 (3+00)	1+22 (4+00)	59	Good		
	5	1+22 (4+00)	1+52 (5+00)	65	Good		<u> </u>
			Taxiway 1 East				-
Т9В		0+00 (0+00)	0+30 (1+00)	64	Good	63	Good
	2 3	0+30(1+00)	0+61 (2+00) 0+91 (3+00)	63 64	Good Good		
	4	0+61 (2+00) 0+91 (3+00)	1+22 (4+00)	64	Good		
	5	1+22 (4+00)	1+52 (5+00)	61	Good		· ·
		·····	Taxiway 2 East				•
T10B	1	0+00 (0+00)	0+30 (1+00)	69	Good	65	Good
_	2	0+30 (1+00)	0+61 (2+00)	65	Good		
	3	0+61 (2+00)	0+91 (3+00)	59	Good		
	4	0+91 (3+00)	1+22 (4+00)	65	Good		1
	5	1+22 (4+00)	1+52 (5+00)	70	Good	<u> </u>	[
			st Parallel Taxiway				T
T11B	5	1+22 (4+00)	1+52 (5+00)	64	Good	64	Good
Sec 1	6 7	1 + 52 (5 + 00) 1 + 83 (6 + 00)	1 + 83 (6 + 00) 2 + 13 (7 + 00)	64 64	Good Good		
	10	2+74 (9+00)	3+05 (10+00)	64	Good		
	14	3+96 (13+00)	4+27 (14+00)	64	Good	1	I
	16	4+57 (15+00)	4+88 (16+00)	64	Good		l
	21	6+10 (20+00	6+40 (21+00)	64	Good		
T11B	1	0+30 (0+00)	0+30 (1+00)	53	Fair	59	Good
Sec 2	2	0+30 (1+00)	0+61 (2+00)	56	Good	1	1
	3 4	0+61 (2+00) 0+91 (3+00)	0+91 (3+00) 1+22 (4+00)	62 66	Good Good		
	-		ast Ramp Taxiway	-	1		L
T12B	1	0+00 (0+00)	0+30 (1+00)	48	Fair	53	Fair
	2	0+30 (1+00)	0+61 (2+00)	53	Fair		
	3	0+61 (2+00)	0+91 (3+00)	62	Good		
	4	0+91 (3+00)	1 + 22 (4 + 00)	51	Good		ļ
F13B	1	0+00 (0+00)	0 + 30 (1 + 00)	64	Good	60	Good
	2	0+30 (1+00)	0+61 (2+00)	60	Good		
	3 4	0+61(2+00) 0+91(3+00)	0+91 (3+00) 1+22 (4+00)	59 59	Good Good		
T140		0+91 (3+00)				=	Good
г14В	1 2	0 + 00 (0 + 00) 0 + 30 (1 + 00)	0+30 (1+00) 0+61 (2+00)	47 59	Fair Good	56	Good
	3	0 + 30 (1 + 00) 0 + 61 (2 + 00)	0+91 (3+00)	59	Good		
	4	0+91 (3+00)	1+22 (4+00)	60	Good		
158	1	0+00 (0+00)	0+30 (1+00)	57	Good	60	Good
Sec 1	2	0+30 (1+00)	0+61 (2+00)	60	Good	1	
	3	0+61 (2+00) 0+91 (3+00)	0+91 (3+00) 1+22 (4+00)	64 59	Good Good		
		0+31(3+00)					Court
15B	2			48 52	Fair	56	Good
Sec 2	5			52 64	Fair Good		
	6 7			53	Fair		
							1

٠

	Comple	Station	n m (ft)				Overall
Feature	Sample Unit	From	То	PCI	Rating	PCI	Rating
		East Ra	mp Taxiway (Contin	ued)			
T16B	9	2+44 (8+00)	2+74 (9+00)	64	Good	61	Good
	10	2 + 74 (9 + 00)	3+05(10+00)	70	Good		
	12	3+35 (11+00)	3+66 (12+00)	66	Good		
	14	3+96 (13+00)	4+27 (14+00) 5+18 (17+00)	54 55	Fair Fair		
	17 18	4+88 (16+00) 5+18 (17+00)	5+49(18+00)	62	Good		
		Ea	st Ramp Hoverlane		<u> </u>		
Г17В	2	0+30 (1+00)	0+61 (2+00)	64	Good	61	Good
	4	0+91 (3+00)	1 + 22 (4 + 00)	59	Good	-	
	5	1 + 22 (4 + 00)	1+52 (5+00)	64	Good		
	8	2+13(7+00)	2+44 (8+00)	61	Good		
	10	2+74 (9+00)	3+05(10+00)	61	Good		
Г18B	1	0+00	0+30 (1+00)	65	Good	65	Good
	3	0+61 (2+00)	0+91 (3+00)	65	Good		
	5	1+22 (4+00)	1+52 (5+00)	65	Good	l	
	8	2+13(7+00)	2+44 (8+00)	61	Good		
	10	2+74 (9+00)	3+05(10+00)	73	Very good		ļ
Г19В	1	0+00	0+30 (1+00)	63	Good	62	Good
	3	0+61 (2+00)	0+91 (3+00)	59	Good		
	4	0+91 (3+00)	1+22 (4+00)	64	Good		
	6	1+52 (5+00)	1+83 (6+00)	65	Good		1
	8	2+13(7+00)	2+44 (8+00)	64	Good	-	1
	11	3+05(10+00)	3+35 (11+00)	62	Good	L	<u> </u>
		·	Warm-up Aprons				
A2B				16	Very poor	17	Very poo
	2 3			19 18	Very poor		
				10	Very poor		
43B	3			83	Very good	79	Very goo
	4			79	Very good		
	5			93	Excellent		
	7			83	Very good		
	8 9			85 51	Very good Fair		
	L	I	North Ramp				L
4B	1			71	Very good	79	Very goo
Sec 1	3			89	Excellent	ļ	1
	7			88	Excellent		1
	11			76	Very good		1
	15			88	Excellent	1	1
	17			82	Very good	1	
	19			88	Excellent	1	1
	21			84	Very good		
	24 30			84	Very good	I	1
	30			73 79	Very good Very good	1	
	39			63	Good		
	42			81	Very good		
	45			70	Good		
4B	1			78	Very good	65	Good
Sec 2	3			44	Fair	ł	
	4			43	Fair		
	6			73	Very good	1	1
	9			90	Excellent		1
	11			47	Fair	1	
	12			80	Very good	1	
	16			79 52	Very good Fair	1	
	17						

	T ^{ine}	ntinued) Statior	n m (ft)			J	Overall
Feature	Sample Unit	From	То	PCI	Rating	PCI	Rating
			South Ramp	<u> </u>			
450				11	Very poor	25	Very poo
A5B	26			41	Fair		
	10			21	Very poor	.	1
	12			37	Poor		
	17			29	Poor		
	19			62	Good		
	27			47	Fair		
	29			18 21	Very poor Very poor		
	35 38		-	11	Very poor		
	46			23	Very poor		
	52			19	Very poor		
	60			32	Poor		
	63			41	Fair		
	69			19	Very poor		
	78			19	Very poor		
	82	. 		40	Poor		
	89			10	Failed		
	93 96			28 43	Poor Fair		
	90 98		·	42	Fair		
	101		· · •	31	Poor		
	103			46	Fair		
4.00				49	Fair	30	Poor
A6B	1 3			51	Fair	30	1001
	5			11	Very poor		
	8			28	Poor		
	11			43	Fair		
	13			44	Fair		
	15			36	Poor		
	17			37 59	Poor Good		
	19 21			21	Very poor		
	23	- 		19	Very poor		
	25			28	Poor		
	27		••	13	Very poor		
	28			28	Poor		
	33			21	Very poor		
	35			29	Poor		
	38		••	43	Fair Very peer		
	42 44			21 10	Very poor Failed		
	52				Fair		
					1		
			East Ramp				
47B	26			84	Very good	80	Very good
	29 22			89 94	Excellent Excellent		
	32 39			94 89	Excellent		
	42			47	Fair		
	46			76	Very good		
	51			67	Good		ĺ
	57			82	Very good		
	63			92	Excellent		
	66			62	Good		
	68			76	Very good		
	79 83			79 85	Very good Very good		
	83			82	Very good Very good		
	94			92	Excellent		
				L	L	L	1

	Sample	Statio	n m (ft)				Overail
Feature	Unit	From	То	PCI	Rating	PCI	Rating
		Ea	st Ramp (Continued)				
47B	100			95	Excellent		
	104 ·			75	Very good		
	107			91	Excellent		- ·
	113			65	Good		
	118		-	89	Excellent		
	121			81	Very good		
	134 137			80 78	Very good		·
	140			53	Very good Fair		
	140			84	Very good		
	148			80	Very good		
	154		-	93	Excellent		
	159			75	Very good		
	174			87	Excellent		
	193		-	92	Excellent	Į	
8 B	3			90	Excellent	83	Very goo
	8			98	Excellent		
	12			89	Excellent		
	17			84	Very good		
	28			78	Very good		
	32			83	Very good		
	36			85	Very good		
	38 43			79	Very good		1
	43 46	-		57	Good		
	48			91 85	Excellent		
	50			89	Very good Excellent		
	54			89	Excellent		1
	56			90	Excellent		
	59			61	Good		
	62			87	Excellent		
	65			89	Excellent		
	68			67	Good		
	74			70	Good		1
	78			86	Excellent		[
	83			88	Excellent		
	86			85	Very good		
	89			83	Very good		
	92			83	Very good		
	95			76	Very good		
	97			90	Excellent		1
	103			72	Very good		
i	106			74	Very good		
	109			96	Excellent		
	114	••	1	98	Excellent		

,

.

Feature	1995 PCI	1995 Rating	1993 PCI	1993 Rating	Change in PCI (+ or -) 1993-1995	1988 PCI	1988 Rating	Change in PCI (+ or -) 1988-1993	Pavement Type
R1A	20	Very poor	51	Fair	-31	78	Very good	-27	AC
R2C	31	Poor	71	Very good	-40	75	Very good	-4	AC
R3C	45	Fair	62	Good	-17	78	Very good	-16	AC
R4C	28	Poor	55	Fair	-27	82	Very good	-27	AC
R5C	26	Poor	62	Good	-36	76	Very good	-14	AC
R6C	34	Poor	56	Good	-22	65	Good	-9	AC
R7A	83	Very good	98	Excellent	-15	97	Excellent	+1	PCC
R8A	91	Excellent	98	Excellent	-7	98	Excellent	0	PCC
T1A	58	Good	68	Good	-10	81	Very good	-13	AC
T2A	76	Very good	86	Excellent	-10	90	Excellent	-4	PCC
ТЗА	59	Good	68	Good	-9	84	Very good	-16	AC
T4A	64	Good	72	Very good	-8	82	Very good	-10	AC
T5A	44	Fair	65	Good	-11	83	Very good	-18	AC
тес	63	Good	72	Very good	-9	83	Very good	-11	AC
T7C	67	Good	72	Very good	-5	79	Very good	-7	AC
T8B	62	Good	72	Very good	-10	76	Very good	-4	AC
Т9В	63	Good	73	Very good	-10	79	Very good	-6	AC
T10B	65	Good	72	Very good	-7	100	Excellent	-28	AC
T11B, Sec 1	64	Good	73	Very good	-9	100	Excellent	-27	AC
T11B, Sec 2	59	Good	73	Very good	-14	100	Excellent	-27	AC
T12B	53	Fair	71	Very good	-18	100	Excellent	-29	AC
T13B	60	Good	69	Good	-9	100	Excellent	-31	AC
T14B	56	Good	73	Very good	-17	100	Excellent	-27	AC
T15B, Sec 1	60	Good	71	Very good	-11	100	Excellent	-29	AC
T15B, Sec 2	56	Good	72	Very good	-12	100	Excellent	-28	AC
T16B	61	Good	72	Very good	-11	100	Excellent	-28	AC
T17B	61	Good	72	Very good	-11	100	Excellent	-28	AC
F18B	65	Good	72	Very good	-7	100	Excellent	-28	AC
T19B	62	Good	72	Very good	-10	100	Excellent	-28	AC
A2B	17	Very poor	46	Fair	-29	45	Fair	+1	AC
A3B	79	Very good	90	Excellent	-11	97	Excellent	-7	PCC
A4B, Sec 1	79	Very good	84	Very good	-6	90	Excellent	-6	PCC
A4B, Sec 2	65	Good	76	Very good	-11	78	Very good	-2	PCC
45B	25	Very poor	50	Fair	-25	63	Good	-13	AC
A6B	30	Fair	50	Fair	-20	44	Fair	+6	AC
7B	80	Excellent	89	Excellent	-9	92	Excellent	-3	PCC
\8B	83	Excellent	90	Excellent	-7	94	Excellent	-4	PCC

Photo C1. Close-up of slippage crack, Runway 15-33 (R1A)

Photo C2. Typical alligator cracking, Runway 15-33 (R1A)

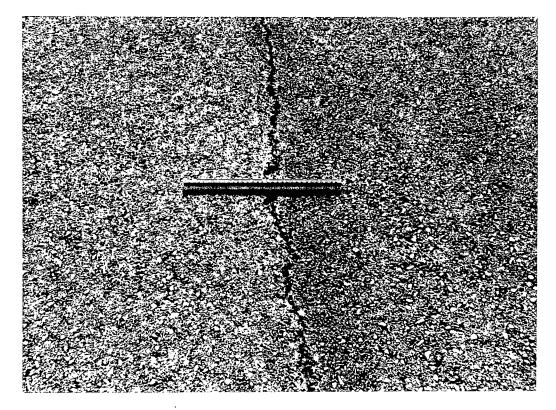


Photo C3. Typical longitudinal cracking, Runway 15-33 (R3C)

Photo C4. Overall view of PCC, Runway 15-33 (R7A)

in the second second

Photo C5. Typical oil spillage, South Ramp (A5B)

Photo C6. Medium-severity depression, South Ramp (A5B)

Photo C7. Block cracking, South Ramp (A6B)

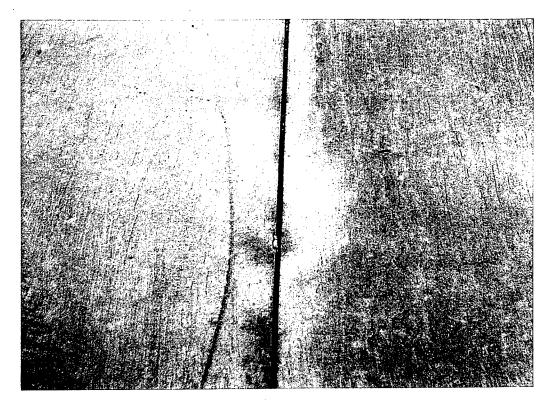


Photo C8. Pumping, East Ramp (A7B)

Appendix D Structural Analysis

General

The projected performance of the airfield pavement facilities was analyzed for a 20-year analysis period. The traffic for this period was based on the information provided by the installation. These data (which are expected peace time traffic) are shown in Table A4.

The mixture of individual aircraft traffic listed in Table A4 was converted to equivalent traffic of the critical aircraft based on the procedure outlined in TM 5-825-2/DM 21.3/AFM 88-6, Chap 2 (Headquarters, Departments of the Army, the Navy, and the Air Force 1978). The critical aircraft is defined as that aircraft within a mixture of various aircraft operating at a facility which will impose a more severe combination of gear load and tire pressure than the other assigned aircraft based on the gross loads, tire pressure, type of landing gear, and number of repetitions of each of the assigned aircraft. The critical aircraft procedure will, for any projected aircraft traffic mixture, determine the critical aircraft within the mixture and compute the number of passes of the critical aircraft required to produce an equivalent effect on the pavement as the total mixture of traffic. The current Corps of Engineer design criteria is utilized to analyze and equate the various aircraft loadings. PCC and AC pavements have different design criteria and, thus, a different number of equivalent operations of the design aircraft. The critical aircraft operating on the PCC and AC fixed-wing pavements was determined to be the B-747. On the rotary-wing pavements the AH-64 aircraft was determined to be the critical aircraft. Table D1 presents the critical aircraft computation results for the fixed- and rotary-wing pavements, respectively.

The operational ACN was determined based on the critical aircraft; the 379 Mg (833-kip) B-747 aircraft on PCC and AC fixed-wing pavements, respectively; and the 7.8 Mg (17.4-kip) AH-64 aircraft on the rotary-wing pavements. The results showing the ACN values for each pavement type and subgrade strength are shown in Table D2.

During wartime, many aircraft are allowed to carry heavier loads than during peacetime. These heavier loads means that the aircraft would have a higher ACN because of the higher loading and would cause more damage than in peacetime. This damage would reduce the life of the pavement. A mobilization ACN can be determined from the appropriate ACN-PCN curve presented in the ETL 1110-3-394 (Headquarters, Department of the Army 1991b). B-747 ACN-PCN curves are shown in Figure D1. During contingency planning, there is often the need to determine the largest possible aircraft that can safely land on the airfield. Generally the length of the runway controls the type of aircraft which can land on the airfield. Minimum take-off distances for maximum take-off weights of aircraft are also given in ETL 1110-3-394. Once the aircraft is known, the ACN of that aircraft can be determined from the ACN-PCN curve and then the effect of the higher loads on the airfield can be determined from the ACN/PCN ratio and pavement life utilized or passes until failure curves. Specific aircraft mobilization traffic requirements are contained in classified mobilization plans and are not included in this report.

ACN-PCN Method of Reporting Pavement Condition

The ACN-PCN method is used to provide a means of reporting the structural evaluation of a pavement and is a standardized International Civil Aviation Organization (ICAO) method. The ACN is used to express the effect of individual aircraft on different pavements by a single unique number which varies according to pavement type and subgrade strength without specifying a particular pavement thickness. Conversely, the PCN of a pavement can be expressed by a single unique number without specifying a particular aircraft. The ACN and PCN values are defined as follows:

- a. ACN is a number which expresses the relative structural effect of an aircraft on different pavement types for specified standard subgrade strengths in terms of a standard single-wheel load.
- b. PCN is a number which expresses the relative load-carrying capacity of a pavement for a given pavement life in terms of a standard single-wheel load.

The ACN-PCN method is structured so that the structural evaluation of a pavement for a particular aircraft can be accomplished by using the ratio of the aircraft ACN to the pavement PCN. For a given pavement life and a given number of operations for a particular aircraft there is a relationship between the ACN/PCN ratio and the percent of pavement life used by the applied traffic. For a given ACN/PCN ratio a relationship exists for the number of operations that will produce failure of the pavement. These relationships provide a method for evaluating a pavement for allowable load depending on acceptable degree of damage to the pavement or an allowable number of operations of a particular aircraft to cause failure of a pavement. For aircraft having an ACN equal to the PCN, the predicted failure of the

pavement would equal the design life of the pavement. Aircraft having ACN's higher than the pavement PCN would overload the pavement and decrease the life of the pavement. Likewise if the ACN of the operational aircraft is less than the pavement PCN, the life of the pavement would be greater than the design life. If the operational ACN is greater than the pavement PCN and a decrease in pavement life is not acceptable, then an overlay of the pavement is required to bring the pavement PCN up to or greater than the operational ACN.

PCN Analysis

Modulus values were input into the computer program to compute the loadcarrying capacity of the pavements (PCN) and the overlay thickness requirements. The PCN for each pavement feature was determined in accordance with TM 5-826-1/AFJMAN 32-1036/DM 21.7 (Headquarters, Departments of the Army, the Air Force, and the Navy Draft). Using the design aircraft and traffic levels for normal operations, the PCN was determined for each pavement feature. The PCN is determined using the allowable gross aircraft load and the subgrade strength category determined from the CBR and k-values obtained through correlations with backcalculated subgrade modulus values. Typical ACN-PCN curves are shown in Figures D1 and D2. Table D3 presents a summary of the evaluation of each pavement feature in terms of allowable gross aircraft loadings, PCN, and overlays required to bring the PCN up to the required PCN (ACN of the design aircraft). The APEC presented in Figure 2-1 shows a layout of the airfield pavements and corresponding PCN for each facility.

An analysis was completed to determine additional strengthening requirements to increase the PCN to equal the current ACN. This increase is based on the traffic presented in Table D1. Although the increase in strength is presented as overlay thickness, several other approaches could be used to increase the strength. A detailed analysis will be required to select and design the most cost-effective repair or improvement alternative. It should be noted that although less than 10.2 cm (4-in.)-thick AC and 15.2 cm (6-in.)-thick PCC overlay requirements are indicated in Table D3, the following minimum thicknesses are recommended in TM 5-825-3/AFM 88-6, Chap. 3 (Headquarters, Departments of the Army and the Air Force 1988):

- a. 51 mm (2-in.)-thick minimum AC overlay over AC pavements.
- b. 102 mm (4-in.)-thick minimum AC overlay over PCC pavements.
- c. 152 mm (6-in.)-thick minimum PCC partially or nonbonded overlay.
- d. 51 mm (2-in.)-thick minimum PCC fully bonded overlay over PCC pavements.

These minimum overlay requirements are required to control the degree of cracking which will occur in the base pavement (existing pavement) due to the application of the design traffic. If those features needing structural improvements do not receive the required strengthening, the rate of deterioration can be quite rapid leading to damage in all pavement layers. Damage in the pavement layers will generally cause dramatic increases in the cost of later treatments after failure has occurred. Damage may also cause the pavement to be closed for operation for a considerable period of time.

The PCN codes for the weakest feature within each pavement facility during normal operations are shown in Table D4. The PCN codes include the PCN numerical value, pavement type, subgrade category, allowable tire pressure, and method used to determine the PCN. An example of a PCN code is: 30/F/A/X/T, with 30 expressing the numerical PCN value, F indicating a flexible pavement, A indicating high strength subgrade, X indicating mediumallowable tire pressure, and T indicating that the PCN value was obtained by a technical evaluation. Table D5 presents a description of all the letter codes comprising the PCN code. Each PCN assumes that only the design aircraft will be used for the stated number of passes. Once the PCN's were determined, relationships were developed for pavement life and allowable traffic as a function of the ratio of ACN to PCN. Theoretically, if the PCN is equal to the ACN, the pavement should perform with only routine maintenance through the length of the analysis period. There may be situations when operators have to overload a pavement, i.e., the ACN is greater than the PCN. Pavements can usually support some overload; however, pavement life is reduced. If the PCN equals the ACN, the ratio of the ACN to the PCN (ACN/PCN) equals 1, and the pavement is expected to perform satisfactorily until the end of the analysis period. If the PCN is less than the ACN, ACN/ PCN would be greater than 1.0, and the pavement would be expected to fail before reaching the end of the analysis period. Thus if the ACN for mobilization or the ACN for contingency planning divided by the current PCN is 1.5, failure would be expected to occur at about 175 applications for fixed-wing aircraft on rigid pavements, based on Figure D3. Figures D3 and D4 show the relationships for the allowable passes to failure if the ACN/PCN is known. Figures D5 and D6 show the relationships for pavement life utilized in percent if the ACN/PCN is know. Another example of how the ACN/PCN figures are used is shown.

Example Problem

A heavy cargo mission has been assigned to the fixed-wing facility. Aircraft traffic is projected to be 500 passes of a 156-Mg (345-kip) C-141.

- a. Is Runway 15-33 long enough?
- b. What is the ACN for the aircraft?

- c. Will the runway be overloaded?
- d. If Runway 15-33 is overloaded, how much of the pavement life will be utilized during this mission?

Solution

From Table D3, the controlling feature on Runway 15-33 is R7A. Feature R7A has a PCN code of 56/R/C/W/T.

- a. From ETL 1110-3-394 the minimum take-off distance at maximum take-off weight wartime is 1798 m (5,900 ft). Therefore, Runway 15-33 has the required length for this aircraft.
- b. From ETL 1110-3-394 the ACN of a 156-Mg (345-kip) C-141 on a rigid pavement over a low strength subgrade is 63/R/C/W/T.
- c. The ACN/PCN is 63/56 or 1.125. Therefore, the runway pavement will be overloaded.
- d. From Figure D5, the percent life utilized for an ACN/PCN of 1.125 and 500 passes is about 20 percent.

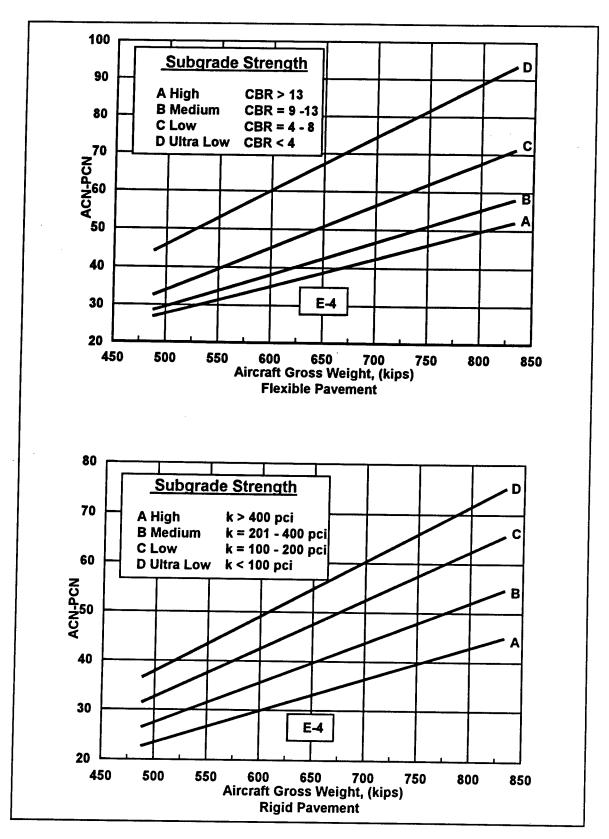


Figure D1. ACN-PCN curves for B-747/E4 aircraft

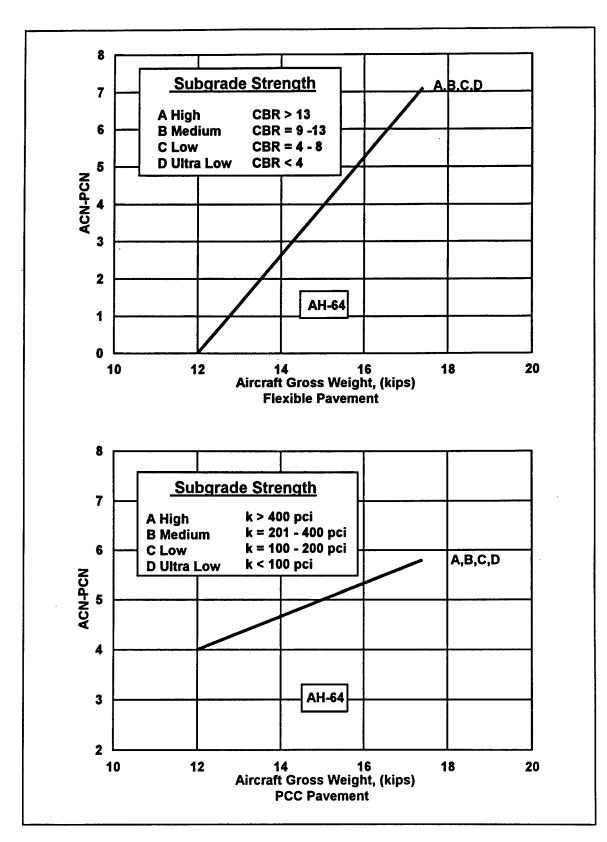


Figure D2. ACN-PCN curves for the AH-64 aircraft

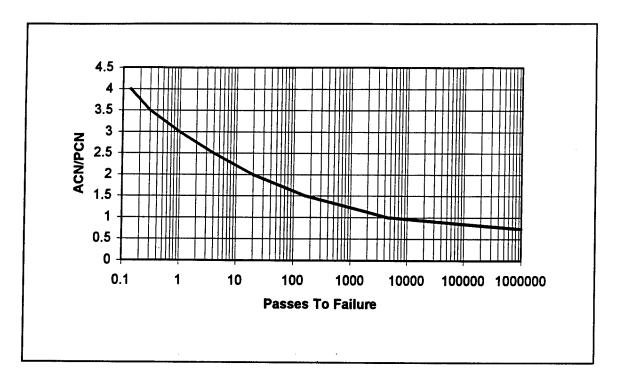


Figure D3. Passes until failure (fixed-wing rigid)

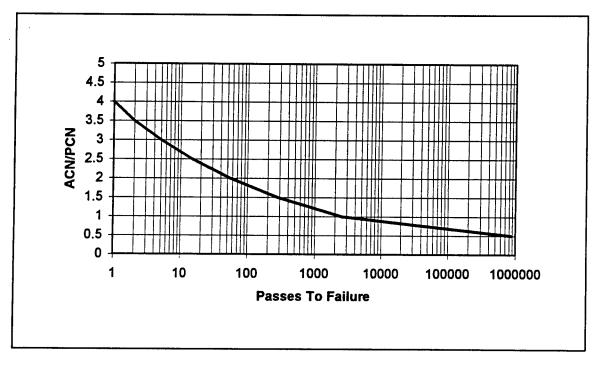


Figure D4. Passes until failure (fixed-wing flexible)

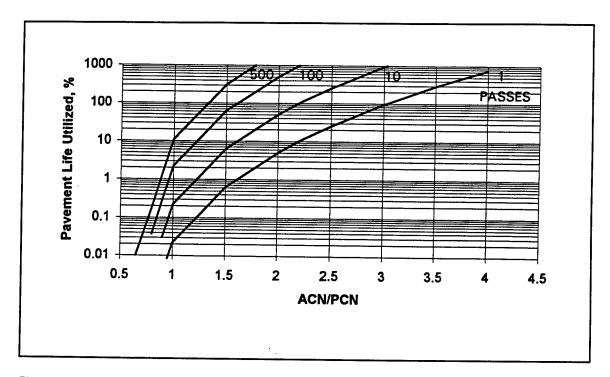


Figure D5. Pavement life utilized (fixed-wing rigid)

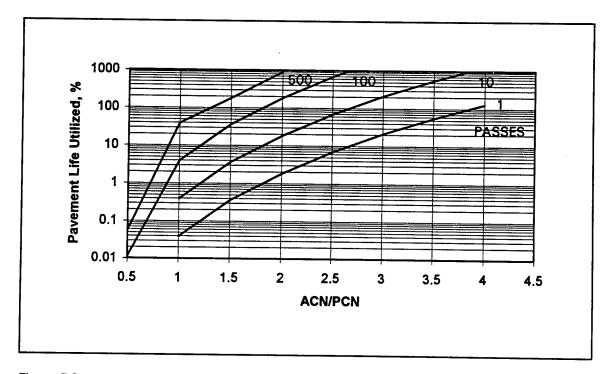


Figure D6. Pavement life utilized (fixed-wing flexible)

Fixed-Wing Aircraft	Gross Weight kg (lb)	20-year Projected	
		Aircraft Passes	B-747 Passes
A-10	22,680 (50,000		
AB-300	165,149 (363,765		1
B-727	72,576 (160,000		10
B-737	61,236 (135,000)		68
B-747	377,849 (833,000)		3
B-757	108,864 (240,000)		1,582
C-5A			1
C-17	381,022 (840,000)		22
C-141	263,320 (580,000)		40
C-130	147,418 (325,000)		241
C-130	68,100 (150,000)	2,018	4
C-9	31,644 (69,700)	131	1
CH-47	48,988 (108,000)	1,091	2
DC-8	21,338 (47,000)	1,484	1
F-16	161,170 (355,000)	55	14
KC-10	15,740 (34,700)	284	1
KC-10 KC-135	267,620 (590,000)	829	495
L-1011	146,059 (322,000)	229	23
MD-11	195,048 (430,000)	393	9
P-3	276,940 (610,000)	65	52
Miscellaneous	63,451 (17,400)	33	1
	7,258 (20,000)	3,836	0
20 year 10	al Equivalent B-747 Passes ((833,000 9 377,849 (833,000 9 Use	= 2,571 2,600
	PCC Fixed-Win		
ixed-Wing	Gross Weight	20-year Projected	20-year Equivalent
Aircraft	kg (lb)	Aircraft Passes	B-747 Passes
-10	22,680 (50,000)	1,211	0
B-300	165,149 (363,765)	33	22
-727	72,576 (160,000)	382	1,582
-737	61,236 (135,000)	622	61
-747	377,849 (833,000)	1,582	1,582
-757	108,864 (240,000)	65	1
-5A	381,022 (840,000)	2,542	276
-17	263,320 (580,000)	55	17
-141	147,418 (325,000)	1,298	564
130	68,100 (150,000)	2,018	1
20	31,644 (69,700)	131	1
9	48,988 (108,000)	1,091	8
1-47	21,338 (47,000)	1,484	0

Rotary-Wing Aircraft	Weight kg (lb)	20-year Projected Aircraft Passes	20-year Equivalent B-747 Passes
	PCC Fixed-Wing Pav	ements(Continued)	
F-16	15,740 (34,700)	284	0
KC-10	267,620 (590,000)	829	585
KC-135	146,059 (322,000)	229	40
L-1011	195,048 (430,000)	393	5
MD-11	276,940 (610,000)	65	66
P-3	63,451 (17,400)	33	11
Miscellaneous	7,258 (20,000)	3,836	0
20 year Tota	al Equivalent B-747 Passes @	0 377,849 (833,000) Use	= 4,849 4,900
Rotary-Wing Aircraft	Weight kg (lb)	20-year Projected Aircraft Passes	20-year Equivalent AH-64 Passes
	PCC Rotary-Wir	ng Pavements	
AH-64	7,893 (17,400)	17,600	17,600
20 year T	otal Equivalent AH-64 passe	s @ 7,893(17,400) = Use	17,600 17,600
	AC Rotary-Win	g Pavements	
AH-64	7,893 (17,400)	17,600	17,600
4H-04			17,000

.

Table D2 Determinatio	n of ACN Values f	or Critical Aircraft	
Design Fixed- Wing Aircraft	Weight kg (lb)	Subgrade Category ¹	ACN or Required PCN
	PCC	Pavements	
B-747	377,849 (833,000)	A B C D	45 54 65 75
	AC	Pavements	
B-747	377,849 (833,000)	A B C D	52 58 71 93
Design Rotary- Wing Aircraft	Weight kg (lb)	Subgrade Category ¹	ACN or Required PCN
	PCC	Pavements	
AH-64	7,893 (17,400)	A, B, C and D	6
	AC	Pavements	
AH-64	7,893 (17,400)	A, B, C and D	6
¹ See Table D-4 1	for subgrade category.		

X.

Table D3 Allowable Gro	oss Airc	Table D3 Allowable Gross Aircraft Loads and Ov)verlay	Requiremen	erlay Requirements for Design Aircraft Traffic ¹	gn Aircraft	Traffic ¹			
			Type	Calculated		Allowable		Theoretic	al Overlay Re	Theoretical Overlay Requirements, mm (in.)
Pavement Facility	Feature	Test Number or Station m (ft)	Traffic Area	Subgrade CBR Percent ²	Operational ACN ³	Gross Load Mg (kips)	PCN	AC	PCC	PCC with Bond Breaker
Runway 15-33	R1A	0 + 00-3 + 05 (0 + 00-10 + 00)	A	17	52/F/A/W/T	378 (833) ⁴	89/F/A/W/T	0(0.0)	:	
Runway 15-33	R2C	3 + 05-4 + 27 (10 + 00-14 + 00)	U	17	52/F/A/W/T	378 (833) ⁴	110/F/A/W/T	0.0)0	1	1
Runway 15-33	R3C	4 + 27-15 + 24 (14 + 00-50 + 00)	U	19	52/F/A/W/T	378 (833) ⁴	110/F/A/W/T	0(0.0)	:	I
Runway 15-33	R4C	15+24-21+03 (50+00-69+00)	U	22	52/F/A/W/T	378 (833) ⁴	110/F/A/W/T	0(0.0)	:	
Runway 15-33	R5C	21+03-25+60 (69+00-84+00)	U	12	58/F/B/W/T	378 (833) ⁴	94/F/B/W/T	0(0.0)	:	1
Runway 15-33	R6C	25+60-27+43 (84+00-90+00)	U	15	52/F/A/W/T	378 (833) ⁴	101/F/A/W/T	0(0.0)	-	\$
Runway 15-33	R7A	27 + 43-28 + 96 (90 + 00-95 + 00)	A	k = 50 (k = 183)	65/R/C/W/T	334 (736)	56/R/C/W/T	0(0.0)	84(3.3)	155(6.1)
Runway 15-33	R8A	28 + 96-30 + 48 (95 + 00-100 + 00)	۲	k = 50 (k = 186)	65/R/C/W/T	378 (833) ⁴	71/R/C/W/T	0(0.0)	0.0)0	0(0.0)
Parallel Taxiway	TIA	0 + 00-2 + 71 (0 + 00-8 + 90)	A	29	52/F/A/W/T	378 (833) ⁴	110/F/A/W/T	0(0.0)	ł	-
Parallel Taxiway	T2A	2 + 71-6 + 68 (8 + 90-21 + 90)	A	k = 92 (k = 341)	54/R/B/W/T	378 (833) ⁴	89/R/B/W/T	0(0.0)	0.0)0	0.0)0
Parallel Taxiway	T3A	6+68-25+60 (21+90-84+00)	A	18	52/F/A/W/T	378 (833)⁴	81/F/A/W/T	0(0.0)	:	-
¹ The day-to-day traffic is equivalent (833,000 lb) B-747 for rigid fixed-wi 2 CBR and k value were calculated u 3 Determined for the critical aircraft. ⁴ The allowable load is greater than t	traffic is ec 7 for rigid 1 were calc he critical. id is greate	¹ The day-to-day traffic is equivalent to 2,600 passes (833,000 lb) B-747 for rigid fixed-wing pavements. Th ² CBR and k value were calculated using the backcalc ³ Determined for the critical aircraft. ⁴ The allowable load is greater than the design aircraft	ses of a 3 . The day-1 :alculated .aft load.	78,825 kg (83: to-day traffic is subgrade modu	of a 378,825 kg (833,000 lb) B-747 for flexible fixed-wing pav te day-to-day traffic is equivalent to 17,600 passes of a 7,892 h ulated subgrade modulus. k values are in MN/m ³ (PSI/in.) units. load.	for flexible fix. 7,600 passes (e in MN/m ³ (P;	of a 378,825 kg (833,000 lb) B-747 for flexible fixed-wing pavements, and 4,900 passes of a 378,825 kg e day-to-day traffic is equivalent to 17,600 passes of a 7,892 kg (17,400 lb) AH-64 for rotary-wing pavem ulated subgrade modulus. k values are in MN/m³ (PSI/in.) units. load.	ts, and 4,90 ,400 lb) AH	00 passes of -64 for rotar	of a 378,825 kg (833,000 lb) B-747 for flexible fixed-wing pavements, and 4,900 passes of a 378,825 kg le day-to-day traffic is equivalent to 17,600 passes of a 7,892 kg (17,400 lb) AH-64 for rotary-wing pavements. ulated subgrade modulus. k values are in MN/m ³ (PSI/in.) units. load.
										(Sheet 1 of 3)

Table D3 (Continued)	itinued)									
								Theoretics	l Overlay Re	Theoretical Overlay Requirements, mm (in.)
Pavement Facility	Feature	Test Number or Station m (ft)	Type Traffic Area	Calculated Subgrade CBR Percent ²	Operational ACN ³	Allowable Gross Load Mg (kips)	PCN	AC	PCC	PCC with Bond Breaker
Parallel Taxiway	T4A	25+60-27+43 (84+00-90+00)	4	21	52/F/A/W/T	378 (833) ⁴	110/F/A/W/T	0(0.0)	:	ţ
Parallel Taxiway	T5A	27 + 4333 + 53 (90 + 00-110 + 00)	A	17	52/F/A/W/T	378 (833) ⁴	64/F/A/W/T	0(0.0)	1	•
Taxiway 3 West	T6C	0 + 00-1 + 98 (0 + 00-6 + 50)	U	22	52/F/A/W/T	378 (833) ⁴	110/F/A/W/T	0(0.0)	1	1
Taxiway 2 West	T7C	0 + 00-1 + 98 (0 + 00-6 + 50)	U	24	52/F/A/W/T	378 (833) ⁴	110/F/A/W/T	0.0)0	:	:
Taxiway 3 East	T8B	0 + 00-2 + 59 (0 + 00-08 + 50)	8	10	58/F/B/W/T	235 (518)	31/F/B/W/T	168(6.6)	1	1
Taxiway 1 East	T9B	0 + 00-1 + 98 (0 + 00-6 + 49)	8	11	6/F/B/W/T	7.9 (17.4)*	21/F/B/W/T	0.0)0	:	:
Taxiway 2 East	T10B	0 + 00-2 + 44 (0 + 00-8 + 00)	8	28	6/F/A/W/T	7.9 (17.4)*	57/F/A/W/T	0(0.0)	1	:
East Parallel Taxiway	T11B Sect 1	1 + 31-8 + 31 (4 + 30-27 + 25)	8	21	6/F/A/W/T	7.9 (17.4) ⁴	29/F/A/W/T	0.0)0	:	:
East Parallel Taxiway	T11B Sect 2	0+00-1+31 (0+00-4+30)	8	15	6/F/A/W/T	7.9 (17.4)*	13/F/A/W/T	0(0.0)	1	•
East Ramp Taxiway	T12B	0 + 00-2 + 44 (0 + 00-8 + 00)	æ	21	6/F/A/W/T	7.9 (17.4)*	20/F/A/W/T	0(0.0)	•	:
East Ramp Taxiway	T13B	0 + 00-1 + 22 (0 + 00-4 + 00)	8	13	6/F/B/W/T	7.9 (17.4) ⁴	14/F/B/W/T	0.0)0	1	;
East Ramp Taxiway	T14B	0+00-1+22 (0+00-4+00)	8	15	6/F/A/W/T	7.9 (17.4) ⁴	14/F/A/W/T	0(0.0)	1	:
East Ramp Taxiway	T15B Sect 1	0 + 00-1 + 83 (0 + 00-6 + 00)	8	23	6/F/A/W/T	7.9 (17.4) ⁴	21/F/A/W/T	0.0)0	1	1
East Ramp Taxiway	T15B Sect 2	0 to 11	8	20	6/F/A/W/T	7.9 (17.4) ⁴	13/F/A/W/T	0.0)0	:	:
										(Sheet 2 of 3)

Table D3 (Concluded)	oncluded									
			Tvpe	Calculated		Allowette		Theoretic	al Overlay Re	Theoretical Overlay Requirements, mm (in.)
Pavement Facility	Feature	Test Number or Station m (ft)	Traffic Area	Subgrade CBR Percent ²	Operational ACN ³	Gross Load Mg (kips)	PCN	AC	bcc	PCC with
East Ramp Taxiway	T168	2+43-5+84 (8+00-19+15)	æ	12	6/F/B/W/T	7.9 (17.4)*	20/F/B/W/T	0(0.0)		
East Ramp Hoverlane	T17B	0 + 00-3 + 37 (0 + 00-11 + 06)	۵	9	6/F/C/W/T	7.9 (17.4)*	11/F/C/W/T	0.0)0	1	-
East Ramp Hoverlane	T18B	0 + 00-3 + 37 (0 + 00-11 + 06)	8	15	6/F/A/W/T	7.9 (17.4)*	25/F/A/W/T	(0.0)0	1	
East Ramp Hoverlane	T19B	0 + 00-3 + 37 (0 + 00-11 + 06)	۵	15	6/F/A/W/T	7.9 (17.4)*	25/F/A/W/T	0(0.0)	:	:
East Warm-up Apron	A2B	1 to 3	۵	7	6/F/C/W/T	7.9 (17.4) ⁴	13/F/C/W/T	0(0.0)	ł	;
West Warm-up Apron	A3B	1 to 5	œ	k = 70 (k = 258)	54/R/B/W/T	378 (833) ⁴	70/R/B/W/T	0(0.0)	0(0.0)	(0.0)0
North Ramp	A4B Sect 1	1 to 39	۵	k = 66 (k = 243)	54/R/B/W/T	378 (833) ⁴	59/R/B/W/T	0.0)0	0(0.0)	0.0)0
North Ramp	A4B Sect 2	1 to 8	۵	k = 67 (k = 248)	65/R/C/W/T	378 (833) ⁴	67/R/C/W/T	0(0.0)0	0(0.0)	0(0:0)
South Ramp	A5B	1 to 21	۵	16	52/F/A/W/T	266 (587)	34/F/A/W/T	127(5.0)		:
South Ramp	A6B	1 to 9	۵	27	52/F/A/W/T	372 (803)	51/F/A/W/T	5(0.2)	:	
East Ramp	A7B	1 to 40	۵	k = 38 (k = 139)	6/R/C/W/T	7.9 (17.4) ⁴	9/R/C/W/T	0.0)0	0(0.0)	0.0)0
East Ramp	A8B	1 to 39	ω	k = 39 (k = 143)	6/R/C/W/T	7.9 (17.4)*	8/R/C/W/T	0(0.0)	0(0.0)0	0.0)0
										(Sheet 3 of 3)

Pavement Facility	Controlling Feature	PCN ¹
Runway 15-33 Ends Interior	R7A R3C	56/R/C/W/T 94/F/B/W/T
Parallel Taxiway	T5A	64/F/B/W/T
Taxiway 3 West	тес	110/F/A/W/T
Taxiway 2 West	тлс	110/F/A/W/T
Taxiway 3 East	T8B	31/F/B/W/T
Taxiway 1 East	ТЭВ	21/F/A/W/T
Taxiway 2 East	Т10В	57/F/A/W/T
East Parallel Taxiway	T11B	13/F/A/W/T
East Ramp Taxiways	T13B	14/F/B/W/T
East Ramp Hoverlane	Т17В	11/F/C/W/T
East Warm-up Apron	A2B	13/F/C/W/T
West Warm-up Apron	A3B	70/R/B/W/T
North Ramp	A4B, Sec 1 A4B, Sec 2	59/R/B/W/T 67/R/C/W/T
South Ramp	A5B	34/F/A/W/T
East Ramp	A8B	8/R/C/W/T

Table D5 PCN Five-Pa	rt Code		······································	
PCN	Pavement Type	Subgrade Strength ¹	Tire Pressure ²	Method of PCN Determination
Numerical value	R - rigid	A	w	T - technical evaluation
	F - flexible	в	x	U - using aircraft
		с	Y	
		D	z	
¹ <u>Code</u>	<u>Category</u>	Flexible Pavement C	BR, percent	Rigid Pavement <u>k, kPa/cm (PSI/in.)</u>
A B C D	High Medium Low Ultralow	Over 13 8 - 13 4 - 8 < 4		Over 108 (400) 55-108 (201-400) 27-55 (100-200) < 27 (100)
² <u>Code</u>	<u>Category</u>	Tire Pressure	e, kPa (psi)	
W X Y Z	High Medium Low Ultralow	No limit 1.0-1.5 (146 0.5-1.0 (74- 0-0.5 (0-73)	145)	

Appendix E Micro PAVER Output Summary

.

INSPECTION REPORT Network ID - RGRAY 15-33Section Length - 1000.00 LFSection Width - 200.00 LFFamily - DEFAULTSection Area- 199998.00 SF - RUNWAY 15-33 Branch Name Branch Number - R1A Section Number - 1 _____ Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: ----------------RATING = V. POOR PCI OF SECTION = 20 TOTAL NUMBER OF SAMPLE UNITS = 10 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 5 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 3 RECOMMENDED MINIMUM OF 9 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 11.7% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DENSITY % DEDUCT VALUE DISTRESS-TYPE SEVERITY QUANTITY

 41 ALLIGATOR CR
 LOW
 9/1/.su (sr)

 41 ALLIGATOR CR
 MEDIUM
 10932.89 (SF)

 43 BLOCK CR
 LOW
 4883.95 (SF)

 48 L & T CR
 LOW
 3324.77 (LF)

 48 L & T CR
 MEDIUM
 1850.38 (LF)

 259.00 (LF)

 35.9 4.89 5.47 48.3

 41
 ALLIGATOR CR
 MEDIUM
 10932.89 (SF)

 43
 BLOCK CR
 LOW
 4883.95 (SF)

 48
 L & T CR
 LOW
 3324.77 (LF)

 48
 L & T CR
 MEDIUM
 1850.38 (LF)

 48
 L & T CR
 MEDIUM
 1850.38 (LF)

 48
 L & T CR
 HIGH
 259.00 (LF)

 50
 PATCHING
 LOW
 16279.82 (SF)

 52
 WEATH/RAVEL
 LOW
 162998.40 (SF)

 55
 SLIPPAGE CR
 N/A
 19638.21 (SF)

 2.44 10.7 1.66 6.5 .93 10.9 .13 8.6 8.14 13.0 81.50 24.5 50.3 9.82 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** RELATED DISTRESSES = 40.39 PERCENT DEDUCT VALUES. LOAD CLIMATE/DURABILITY RELATED DISTRESSES = 35.53 PERCENT DEDUCT VALUES. RELATED DISTRESSES = 24.08 PERCENT DEDUCT VALUES. OTHER

INSPECTION REPORT Network ID - RGRAY - RUNWAY 15-33 Section Length -400.00 LF Branch Name
 Section Number
 - R2C
 Section Width
 - 200.00 LF

 Section Number
 - 1
 Family
 DEFAULT
 Section Area
 - 80000.00 SF
 _____ Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: ----------_____ PCI OF SECTION = 31 RATING = POOR TOTAL NUMBER OF SAMPLE UNITS = 4 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 4 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMEND EVERY SAMPLE UNIT BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 9.9% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** QUANTITY DEDUCT VALUE DISTRESS-TYPE SEVERITY DENSITY % 41 ALLIGATOR CR LOW .47 376.00 (SF) 14.0 5992.00 (SF) 41 ALLIGATOR CR MEDIUM 7.49 52.4 43 BLOCK CR LOW LOW 8976.00 (SF) 11.22 17.6 2380.00 (LF) 648.00 (LF) 2.98 48 L & T CR 10.0 48 L & T CR 10.2 MEDIUM .81 80000.00 (SF) 100.00 52 WEATH/RAVEL LOW 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** RELATED DISTRESSES = 50.83 PERCENT DEDUCT VALUES. LOAD CLIMATE/DURABILITY RELATED DISTRESSES = 49.17 PERCENT DEDUCT VALUES. RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. OTHER

<u></u>		INSPECTION	REPOR	Г	
Network ID - RC Branch Name - RL Branch Number - R3 Section Number - 1	SRAY INWAY 15-33 SC Family	V - DEFAULT	5	Section Length Section Width Section Area	- 3600.00 LF - 200.00 LF - 720000.00 SF
	10011(=============			
Inspection Date: A Riding Quality : Shoulder Cond. :	10V/02/1995 Overall	Safety: Cond.:	Drai	inage Cond.: F.O.D.:	······································
PCI OF SECTION =	45			RATING = FAI	
TOTAL NUMBER OF S/ NUMBER OF RANDOM S NUMBER OF ADDITION RECOMMENDED MINIMU STANDARD DEVIATION	SAMPLE UNITS NAL SAMPLE UN IM OF 18 1	SURVEYED NITS SURVEYE RANDOM SAMPL	E UNI	3 IS TO BE SURVEYE	ED. .5%
*** E	XTRAPOLATED	DISTRESS QU	ANTITI	ES FOR SECTION	***
DISTRESS-TYPE 41 ALLIGATOR CR 43 BLOCK CR 43 BLOCK CR 48 L & T CR 49 OIL SPILLAGE 52 WEATH/RAVEL 53 RUTTING	SEVERITY	QUANTI1 7487.80	Y (SF)	DENSITY %	DEDUCT VALUE 20.8 34.4
41 ALLIGATOR CR 43 BLOCK CR	MED I UM LOW	12052.00	(SF) (SF)	1.67 2.19 .59 3.74	10.3
43 BLOCK CR	MEDIUM	4230.00	(SF)	.59	10.4 11.9
48 L & T CR 48 L & T CR	LOW	26908.20	(LF) (LF)	2.18	16.4
48 L & T CR	HIGH	1381.80	(LF)	.19	10.1
49 OIL SPILLAGE	N/A	2.00	(SF)	.00	2.0 26.3
52 WEATH/RAVEL		1250 00	(SF) (SF)	.17	4.5
52 WEATH/RAVEL	LOW	5329.80	(SF)	.74	14.1
53 RUTTING	LOW MEDIUM	5329.80 376.00	(SF)	.05	13.0
*** PERCE	INT OF DEDUCT	T VALUES BAS	ED ON	DISTRESS MECHAN	IISM ***
LOAD CLIMATE/DURABILIT OTHER	Y RELATED DI	STRESSES =	51.58	PERCENT DEDUCT PERCENT DEDUCT PERCENT DEDUCT	VALUES.

INSPECTION REPORT Network ID - RGRAY Branch Name- RUNWAY 15-33Section Length- 1900.00 LFBranch Number- R4CSection Width- 200.00 LFSection Number- 1FamilyDEFAULTSection Area- 379998.00 SF -----Inspection Date: NOV/02/1995 Riding Quality : Safety: Shoulder Cond. : Overall Cond.: Drainage Cond.: F.O.D.: -----_____ PCI OF SECTION = 28 RATING = POOR TOTAL NUMBER OF SAMPLE UNITS = 19 NUMBER OF RANDOM SAMPLE UNITS SURVEYED 7 . = NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 7 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 6.5% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DEDUCT VALUE QUANTITY DENSITY % DISTRESS-TYPE SEVERITY 5808.54 (SF) 1.53 24.5 41 ALLIGATOR CR LOW MEDIUM .97 41 ALLIGATOR CR 3691.41 (SF) 28.9 N/A LOW 42 BLEEDING 65.14 (SF) .02 .0 LOW 2171.42 (SF) MEDIUM 33385.54 (SF) HIGH 325.71 (SF) LOW 9717 00 4151 43 BLOCK CR .57 6.5 8.79 43 BLOCK CR 22.5 43 BLOCK CR .09 9.9 2.56 48 L & T CR 8.9 MEDIUM 11182.80 (LF) 2.94 48 L & T CR 19.3 HIGH .28 1074.85 (LF) 11.6 48 L & T CR 248084.40 (SF) 65.29 52 WEATH/RAVEL 22.5 MEDIUM 122142.20 (SF) 52 WEATH/RAVEL 32.14 34.8 52 WEATH/RAVEL 9771.38 (SF) 2.57 HIGH 30.2 3039.98 (SF) 53 RUTTING 14.4 LOW .80 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = 28.98 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 71.02 PERCENT DEDUCT VALUES. RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. OTHER

INSPECTION REPORT Network ID - RGRAY Branch Name - RUNWAY 15-33 15-33Section Length-1500.00 LFSection Width-200.00 LFFamily - DEFAULTSection Area-299997.00 SF Branch Number - R5C Section Number - 1 -----Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: ••••• ----------PCI OF SECTION = 26 RATING = POORTOTAL NUMBER OF SAMPLE UNITS = 15 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 6 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 4.8% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** SEVERITY QUANTITY DENSITY % DEDUCT VALUE DISTRESS-TYPE

 41
 ALLIGATOR CR
 LOW
 7449.93 (SF)
 2.48

 41
 ALLIGATOR CR
 MEDIUM
 9149.91 (SF)
 3.05

 43
 BLOCK CR
 LOW
 14999.85 (SF)
 5.00

 43
 BLOCK CR
 LOW
 14999.85 (SF)
 5.00

 43
 BLOCK CR
 LOW
 14999.85 (SF)
 7.08

 48
 L & T CR
 LOW
 3279.97 (LF)
 1.09

 48
 L & T CR
 MEDIUM
 15969.84 (LF)
 5.32

 48
 L & T CR
 HIGH
 6429.94 (LF)
 2.14

 52
 WEATH/RAVEL
 LOW
 299997.00 (SF)
 100.00

 3700 07 (SF)
 1.13

 2.48 29.2 3.05 41.2 13.6 21.0 5.1 26.6 HIGH LOW LOW 28.1 26.4 1.13 3399.97 (SF) 15.9 53 RUTTING *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD **RELATED DISTRESSES = 41.67 PERCENT DEDUCT VALUES.** CLIMATE/DURABILITY RELATED DISTRESSES = 58.33 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT _____ Network ID - RGRAY Branch Name - RUNWAY 15-33 Section Length -600.00 LF Section Width - 200.00 LF Family - DEFAULT Section Area - 119997.00 SF Branch Number - R6C Section Number - 1 Inspection Date: NOV/02/1995 Riding Quality : Safety: Shoulder Cond. : Overall Cond.: Drainage Cond.: F.O.D.: _____ PCI OF SECTION = 34 RATING = POOR TOTAL NUMBER OF SAMPLE UNITS = 6 NUMBER OF RANDOM SAMPLE UNITS SURVEYED 5 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMEND EVERY SAMPLE UNIT BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 20.1% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERALIT 41 ALLIGATOR CR MEDIUM 3383.92 (SF) 43 BLOCK CR LOW 2399.94 (SF) 43 BLOCK CR MEDIUM 34319.14 (SF) 49 L & T CR LOW 547.19 (LF) DENSITY % DEDUCT VALUE 2.82 40.3 2.00 10.0 28.60 33.4 .46 3.26 4.0 MEDIUM 3916.70 (LF) 20.4 48 L & T CR 95997.60 (SF) 17999.55 (SF) 52 WEATH/RAVEL LOW 80.00 24.3 52 WEATH/RAVEL MEDIUM 15.00 24.8 52 WEATH/RAVEL 41.2 HIGH 5999.85 (SF) 5.00 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** RELATED DISTRESSES = 20.30 PERCENT DEDUCT VALUES. LOAD CLIMATE/DURABILITY RELATED DISTRESSES = 79.70 PERCENT DEDUCT VALUES. RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. OTHER

INSPECTION REPORT Network ID - RGRAY 25.00 LF - RUNWAY 15-33 Slab Length Branch Name -Branch Number - R7A Slab Width -Section Number - 1 Family - DEFAULT Number of Slabs -25.00 LF 160 Inspection Date: NOV/02/1995 Riding Quality : Safety: Shoulder Cond. : Overall Cond.: Drainage Cond.: F.O.D.: -----RATING = V. GOOD PCI OF SECTION = 83 TOTAL NUMBER OF SAMPLE UNITS = 12 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 4 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 10 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 9.6% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** SEVERITY QUANTITY DENSITY % DEDUCT VALUE DISTRESS-TYPE 50.00 80 (SLABS) MEDIUM 7.0 65 JT SEAL DMG HIGH 12.0 65 JT SEAL DMG 80 (SLABS) 50.00 1.25 1.0 74 JOINT SPALL 2 (SLABS) 6 (SLABS) 74 JOINT SPALL MEDIUM 3.75 3.6 HIGH 74 JOINT SPALL 4 (SLABS) 2.50 7.9 LOW 1.25 .5 75 CORNER SPALL 2 (SLABS) *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 59.16 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = 40.84 PERCENT DEDUCT VALUES.

INSPECTION REPORT ______ Network ID - RGRAY Branch Name - RUNWAY 15-33 Slab Length - 25.00 LF Branch Number - R8A Slab Width - 25.00 LF Section Number - 1 Family - DEFAULT Number of Slabs - 160 ------Inspection Date: NOV/02/1995 Riding Quality: Safety: Drainage Cond.: Shoulder Cond.: 0verall Cond.: F.O.D.: RATING = EXCELLENT PCI OF SECTION = 91 TOTAL NUMBER OF SAMPLE UNITS = 12 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = - 4 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 2.0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** QUANTITY DENSITY % DEDUCT VALUE DISTRESS-TYPE SEVERITY
 160 (SLABS)
 100.00
 7.0

 4 (SLABS)
 2.50
 1.6

 2 (SLABS)
 1.25
 .5
 65 JT SEAL DMG MEDIUM 74 JOINT SPALL LOW 75 CORNER SPALL LOW LOW 75 CORNER SPALL *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 76.44 PERCENT DEDUCT VALUES. RELATED DISTRESSES = 23.56 PERCENT DEDUCT VALUES. OTHER

INSPECTION REPORT Network ID - RGRAY Branch Name - PARALLEL TAXIWAY L TAXIWAY Section Length - 890.00 LF Section Width - 75.00 LF Family - DEFAULT Section Area - 66744.00 SF Branch Number - T1A Section Number - 1 Inspection Date: NOV/02/1995 Riding Quality : Safety: Shoulder Cond. : Overall Cond.: Safety: Drainage Cond.: F.O.D.: -----------_____ PCI OF SECTION = 58 RATING = GOODTOTAL NUMBER OF SAMPLE UNITS = 10 NUMBER OF RANDOM SAMPLE UNITS SURVEYED 5 = NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 4.1% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 41 ALLIGATOR CR LOW 85.43 (SF) . 13 7.2 2.25 43 BLOCK CR LOW 1503.07 (SF) 10.4 4653.39 (LF) 2157.17 (LF) LOW 6.97 48 L & T CR 18.6 48 L & T CR 4o L&TCR MEDIUM 52 WEATH/RAVEL LOW 3.23 20.3 66744.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = 8.68 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 91.32 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT

Network ID - RGRAY Branch Name - PARALLEL TAXIWAY Slab Length -Slab Width -EL FAXIWAT Stab Length - 25.00 LF Slab Width - 25.00 LF Family - DEFAULT Number of Slabs - 156 25.00 LF Branch Number - T2A Section Number - 1 Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: F.O.D.: ----------PCI OF SECTION = 76 RATING = V. GOOD TOTAL NUMBER OF SAMPLE UNITS = 10 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 6 RECOMMENDED MINIMUM OF 6 RANDOM SAMPLE UNITS TO BE SURVEYED. 0 STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 6.5% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY 63 LINEAR CR LOW 65 JT SEAL DMG MEDIUM 65 JT SEAL DMG HIGH 66 SMALL PATCH MEDIUM 74 JOINT SPALL LOW 74 JOINT SPALL HEDIUM 74 JOINT SPALL HEDIUM
 QUANTITY
 DENSITY %
 DEDUCT
 VA

 3 (SLABS)
 2.08
 2.2

 24 (SLABS)
 15.63
 7.0

 12.0
 12.0
 DENSITY % DEDUCT VALUE 131 (SLABS) 3 (SLABS) 84.38 2.08 12.0 1.2 1 (SLABS) 1.04 .7 4 (SLABS) 4 (SLABS) 14 (SLABS) 74 JOINT SPALL HIGH 75 CORNER SPALL LOW 75 CORNER SPALL MEDIUM 3.13 3.3 3.13 9.5 9.38 3.5 3 (SLABS) 2.08 1.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = 5.40 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 46.63 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = 47.97 PERCENT DEDUCT VALUES.

INSPECTION REPORT Network ID - RGRAY Wetwork isFormationBranch Name- PARALLEL TAXIWAYSection Length - 6210.00 LFBranch Number- T3ASection Width - 75.00 LFSection Number- 1Family - DEFAULTSection Area- 465750.00 SF Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: F.O.D.: ------..... PCI OF SECTION = 59 RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 62 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 15 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = n RECOMMENDED MINIMUM OF 6 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 5.5% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** AT ALLIGATOR CR LOW 248.40 (SF) LOW 24790.32 (LF) DISTRESS-TYPE SEVERITY DENSITY % DEDUCT VALUE .05 5.32 7.0 15.4 48 L & T CR MEDIUM 18791.46 (LF) 4.03 22.9 52 WEATH/RAVEL LOW 465750.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = 9.76 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 90.24 PERCENT DEDUCT VALUES. RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. OTHER

INSPECTIC		
Network ID - RGRAY Branch Name - PARALLEL TAXIWAY Branch Number - T4A Section Number - 1 Family - DEFAUL	Section Length Section Width T Section Area	- 600.00 LF - 75.00 LF - 45000.00 SF
Shoulder Cond. : Overall Cond.:	Drainage Cond.: F.O.D.:	
PCI OF SECTION = 64 TOTAL NUMBER OF SAMPLE UNITS = 6 NUMBER OF RANDOM SAMPLE UNITS SURVEYED NUMBER OF ADDITIONAL SAMPLE UNITS SURVEY RECOMMENDED MINIMUM OF 5 RANDOM SAM STANDARD DEVIATION OF PCI BETWEEN RANDOM	YED = 0 PLE UNITS TO BE SURVEY	
*** EXTRAPOLATED DISTRESS G	QUANTITIES FOR SECTION	***
DISTRESS-TYPE SEVERITY QUANTIT 48 L & T CR LOW 1002.60 48 L & T CR MEDIUM 1468.80 52 WEATH/RAVEL LOW 45000.00	(LF) 2.23	DEDUCT VALUE 8.0 20.4 26.4
*** PERCENT OF DEDUCT VALUES BA	ASED ON DISTRESS MECHA	NISM ***
CLIMATE/DURABILITY RELATED DISTRESSES =	.00 PERCENT DEDUCT 100.00 PERCENT DEDUCT .00 PERCENT DEDUCT	VALUES.

INSPECTION REPORT Network ID - RGRAY - PARALLEL TAXIWAY Section Length - 2000.00 LF - T5A Section Width - 75.00 LF - 1 Family - DEFAULT Section Area - 150003.00 SF Branch Name Branch Number - T5A Section Number - 1 Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: F.O.D.: -----------------PCI OF SECTION = 44 RATING = FAIRTOTAL NUMBER OF SAMPLE UNITS = 12 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 8 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 9 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 12.2% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY
 SEVERITY
 QUANTITY
 DENSITY

 LOW
 555.01 (SF)
 .37

 MEDIUM
 1158.77 (SF)
 .77

 MEDIUM
 468.76 (SF)
 .31

 LOW
 8501.42 (LF)
 5.67

 MEDIUM
 3573.82 (LF)
 2.38

 HIGH
 1027.52 (LF)
 .68

 LOW
 135940.20 (SF)
 90.63

 MEDIUM
 11718.98 (SF)
 7.81

 MEDIUM
 2363.80 (SE)
 1.56
 QUANTITY DENSITY % DEDUCT VALUE 41 ALLIGATOR CR 12.2 41 ALLIGATOR CR 26.7 43 BLOCK CR 8.9 48 L & T CR 16.2 48 L & T CR 17.2 48 L & T CR 16.5 52 WEATH/RAVEL 25.4 52 WEATH/RAVEL 18.5 53 RUTTING MEDIUM 2343.80 (SF) 1.56 27.3 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** RELATED DISTRESSES = 39.20 PERCENT DEDUCT VALUES. LOAD CLIMATE/DURABILITY RELATED DISTRESSES = 60.80 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT Network ID - RGRAY Branch Name- TAXIWAY 3 WESTSection Length- 650.00 LFBranch Number- T6CSection Width- 75.00 LFSection Number- 1FamilyDEFAULTSection Area- 48744.00 SF Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: PCI OF SECTION = 63RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 6 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 4 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 48 L & T CR LOW 48 L & T CR MEDIL LOW 1318.53 (LF) MEDIUM 1537.87 (LF) 2.70 9.3 3.15 20.0 20.0 3.15 52 WEATH/RAVEL LOW 48744.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** 1040 RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT Network ID - RGRAY Branch Name - TAXIWAY 2 EAST Section Length -650.00 LF Branch Number - T7C Section Number - 1 Section Width - 75.00 LF Family - DEFAULT Section Area - 48744.00 SF ------Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: PCI OF SECTION = 67 RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 6 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 5 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 2.6% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY 48 L & T CR LOW 48 L & T CR MEDIUM SEVERITY DENSITY % DEDUCT VALUE QUANTITY 1834.72 (LF) 187.18 (LF) 3.76 12.0 MEDIUM .38 7.3 52 WEATH/RAVEL LOW 48744.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT

Network ID - RGRAY - TAXIWAY 3 EAST Section Length - 850.00 LF - T8B Section Width - 75.00 LF - 1 Family - DEFAULT Section Area - 63747.00 SF Branch Name Branch Number - T8B Section Number - 1 Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: -----------PCI OF SECTION = 62RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 8 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 5 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 2.8% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** QUANTITY DISTRESS-TYPE SEVERITY DENSITY % DEDUCT VALUE
 48 L & T CR
 LOW
 392.68 (LF)
 .62
 4.2

 48 L & T CR
 MEDIUM
 1657.42 (LF)
 2.60
 18.0

 48 L & T CR
 HIGH
 232.04 (LF)
 3.6
 12.7
 48 L & T CR HIGH 52 WEATH/RAVEL LOW 232.04 (LF) .36 12.7 63747.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT Network ID - RGRAY Branch Name - TAXIWAY 1 EAST Y 1 EAST Section Length - 649.00 LF Section Width - 75.00 LF Family - DEFAULT Section Area - 48672.00 SF Branch Number - T9B Section Number - 1 _____ Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: _____ PCI OF SECTION = 63RATING = GOODTOTAL NUMBER OF SAMPLE UNITS = 6 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 5 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = n RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 1.0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** QUANTITY DISTRESS-TYPE SEVERITY DENSITY % DEDUCT VALUE 471.14 (LF) 4.9 48 L & T CR LOW .97 48 L & T CR MEDIUM 1271.31 (LF) 18.1 2.61 HIGH .22 107.08 (LF) 48 L & T CR 10.6 52 WEATH/RAVEL LOW 48672.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT Network ID - RGRAY Branch Name - EAST RAMP TAXIWAY Section Length - 800.00 LF Branch Number - T10B Section Width - 75.00 LF Section Number - 1 Family - DEFAULT Section Area - 60000.00 SF -------Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: ------PCI OF SECTION = 65 RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 8 NUMBER OF RANDOM SAMPLE UNITS SURVEYED 5 Ŧ NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 4.4% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 48 L & T CR LOW 48 L & T CR MEDIUM 302.40 (LF) .50 4.1 770.40 (LF) 1.28 12.6
 49 OIL SPILLAGE
 N/A
 302.40 (SF)

 52 WEATH/RAVEL
 LOW
 60000.00 (SF)
 .50 3.1 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 93.30 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = 6.70 PERCENT DEDUCT VALUES.

work ID - RGRAY nch Name - EAST PARALLEL TAXIWAY Section Length - 2295.00 L nch Number - 111B Section Width - 100.00 L Section Width - 100.00 L Section Number - 1 Family - DEFAULT Section Area - 229500.00 S Inspection Date: NOV/02/1995 iding Quality : Safety: Drainage Cond.: houlder Cond. : Overall Cond.: F.O.D.: CI OF SECTION = 64 RATING = GOOD OTAL NUMBER OF SAMPLE UNITS = 23 UMBER OF RANDOM SAMPLE UNITS SURVEYED = 0 ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE. SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. LIMATE/DURABILITY RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. THER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. INATE/DURABILITY RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. THER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.
tion Number - 1 Family - DEFAULT SECTION Area - 22930300 - nspection Date: NOV/02/1995 iding Quality : Safety: Drainage Cond.: houlder Cond. : Overall Cond.: F.O.D.: CI OF SECTION = 64 RATING = GOOD OTAL NUMBER OF SAMPLE UNITS = 23 UMBER OF RANDOM SAMPLE UNITS SURVEYED = 7 UMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. IMATE/DUBARILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
nspection Date: NOV/02/1995 iding Quality : Safety: Drainage Cond.: houlder Cond. : Overall Cond.: F.O.D.: CI OF SECTION = 64 RATING = GOOD OTAL NUMBER OF SAMPLE UNITS = 23 UMBER OF RANDOM SAMPLE UNITS SURVEYED = 7 UMBER OF RANDOM SAMPLE UNITS SURVEYED = 0 ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. IMATE/DURABLILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
nspection Date: NOV/02/1995 iding Quality: Safety: Drainage Cond.: houlder Cond.: Overall Cond.: F.O.D.: CI OF SECTION = 64 RATING = GOOD OTAL NUMBER OF SAMPLE UNITS = 23 UMBER OF RANDOM SAMPLE UNITS SURVEYED = 7 UMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% **** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. IMATE/DURABLILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
iding Quality : Safety: Drainage Cond.: houlder Cond. : Overall Cond.: F.O.D.: CI OF SECTION = 64 RATING = GOOD OTAL NUMBER OF SAMPLE UNITS = 23 UMBER OF RANDOM SAMPLE UNITS SURVEYED = 7 UMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% **** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE. SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 **** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. IMATE/DURBRILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
iding Quality : Safety: Drainage Cond.: houlder Cond. : Overall Cond.: F.O.D.: CI OF SECTION = 64 RATING = GOOD OTAL NUMBER OF SAMPLE UNITS = 23 UMBER OF RANDOM SAMPLE UNITS SURVEYED = 7 UMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% **** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE. SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 **** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. IMATE/DURBRILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
CI OF SECTION = 64 CI OF SECTION = 64 CI OF SECTION = 64 COTAL NUMBER OF SAMPLE UNITS = 23 UMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 7 UMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE SEVERITY QUANTITY DENSITY & DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. IMATE/DURBRILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
OTAL NUMBER OF SAMPLE UNITS = 23 UMBER OF RANDOM SAMPLE UNITS SURVEYED = 7 UMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE. SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. I MATE/DURBRILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
OTAL NUMBER OF SAMPLE UNITS = 23 UMBER OF RANDOM SAMPLE UNITS SURVEYED = 7 UMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE. SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. I MATE/DURBRILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
OTAL NUMBER OF SAMPLE UNITS = 23 UMBER OF RANDOM SAMPLE UNITS SURVEYED = 7 UMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE. SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. I MATE/DURBRILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
UMBER OF RANDOM SAMPLE UNITS SURVEYED = 7 UMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE. SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. I MATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
UMBER OF RANDOM SAMPLE UNITS SURVEYED = 7 UMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE. SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. I MATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE. SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. I MATE/DURABLLITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
ECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. TANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = .0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE. SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. I MATE/DURABLLITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
*** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** ISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. I MATE/DURARILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
ISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. I MATE/DURARILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
ISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 8 L & T CR LOW 4104.77 (LF) 1.79 6.9 8 L & T CR MEDIUM 5901.43 (LF) 2.57 17.9 2 WEATH/RAVEL LOW 229500.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. I MATE/DURARILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
*** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.
*** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.
*** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.
*** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.
OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.
OAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.
I MATE/DURABLE LTY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES.
LIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. THER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.
THER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

Appendix E Micro PAVER Output Summary

INSPECTION REPORT

 Network ID
 - RGRAY

 Branch Name
 - EAST PARALLEL TAXIWAY
 Section Length - 430.00 LF

 Branch Number
 - T11B
 Section Width - 100.00 LF

 Section Number
 - 2
 Family - DEFAULT

 Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: -----------PCI OF SECTION = 59 RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 4 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 4 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMEND EVERY SAMPLE UNIT BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 5.8% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY 268.75 (LF) .63 4.3 1548.00 (LF) 3.60 21 5 QUANTITY DENSITY % DEDUCT VALUE 48 L & T CR LOW 48 L & T CR MEDIUM 408.50 (LF) .95 43000.00 (SF) 100.00 48 L & T CR HIGH 52 WEATH/RAVEL LOW 19.1 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. LOAD CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT Network ID - RGRAY Branch Name - EAST RAMP TAXIWAY Section Length - 600.00 LF Branch Number - T12B Section Width - 100.00 LF Section Number - 1 Family - DEFAULT Section Area - 60000.00 SF Inspection Date: NOV/02/1995 Riding Quality: Safety: Drainage Cond.: Shoulder Cond.: F.O.D.: -----PCI OF SECTION = 53 RATING = FAIRTOTAL NUMBER OF SAMPLE UNITS = 6 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = - 4 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 6.0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DENSITY % DEDUCT VALUE DISTRESS-TYPE SEVERITY QUANTITY 43 BLOCK CR LOW 48 L & T CR LOW 48 L & T CR MEDIUM 48 L & T CR HIGH 52 WEATH/RAVEL LOW 16.5 9.06 5437.50 (SF) 1.66 6.00 .25 993.75 (LF) 6.5 3600.00 (LF) 150.00 (LF) 28.3 11.1 60000.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. OTHER

INSPECTION REPORT Network ID - RGRAY - EAST RAMP TAXIWAY Section Length - 400.00 LF - T13B Section Width - 50.00 LF - 1 Family - DEFAULT Section Area - 20000.00 SF Branch Name Branch Number - T138 Section Number - 1 Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: -----PCI OF SECTION = 60 RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 4 NUMBER OF RANDOM SAMPLE UNITS SURVEYED 4 = NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMEND EVERY SAMPLE UNIT BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 2.2% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY DENSITY % DEDUCT VALUE QUANTITY
 48 L & T CR
 LOW
 207.50 (LF)
 1.04
 5.0

 48 L & T CR
 MEDIUM
 451.25 (LF)
 2.26
 16.7
 48 L & T CR HIGH 52 WEATH/RAVEL LOW .68 135.00 (LF) 16.4 20000.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT Network ID - RGRAY Branch Name - EAST APRON TAXIWAY RON TAXIWAY Section Length - 400.00 LF Section Width - 50.00 LF Family - DEFAULT Section Area - 20000.00 SF Branch Number - T14B Section Number - 1 Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: F.O.D.: -----PCI OF SECTION = 56 RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 4 NUMBER OF RANDOM SAMPLE UNITS SURVEYED 4 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMEND EVERY SAMPLE UNIT BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 6.2% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 43 BLOCK CR LOW LOW 2431.25 (SF) 12.16 18.1 190.00 (LF) 48 L & T CR .95 4.8 48 L & T CR MEDIUM 787.50 (LF) 3.94 22.6 52 WEATH/RAVEL LOW 20000.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT Network ID - RGRAY Branch Name- EAST APRON TAXIWAYSection Length- 600.00 LFBranch Number- T15BSection Width- 50.00 LFSection Number- 1FamilyDEFAULTSection Area Inspection Date: NOV/02/1995 Riding Quality: Safety: Drainage Cond.: Shoulder Cond.: F.O.D.: -----..... PCI OF SECTION = 60 RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 6 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 4 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 2.8% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE
 43
 BLOCK
 CR
 LOW
 3843.75
 (SF)

 48
 L
 T
 CR
 LOW
 298.13
 (LF)

 48
 L
 X
 T
 CR
 MEDITIM
 573
 75
 (LF)
 12.81 18.4 .99 4.9 1.91 15.4 48 L & T CR MEDIUM 573.75 (LF) 15.4 52 WEATH/RAVEL LOW 30000.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. LOAD CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

				**************	:===
letwork ID -	RGRAY				
Franch Name -	EAST APRON 1	TAXIWAY	Section L	ength - 840.0	00 L
ranch Number	T158		Section W	idth - 40.0 rea - 33600.0	10 L
ection Number -	2 Fami	LY - DEFAULT	Section A	rea - 33600.0 =======================	10 S
				· · ·	
					•
Inspection Date	: NOV/02/1995	,			
Riding Quality	:	Safety:	Drainage Con	d.:	
Riding Quality Shoulder Cond.	: Overal	l Cond.:	F.O.	D.:	
PCI OF SECTION =	= 5 6		RATIN	G = GOOD	
TOTAL NUMBER OF		- 0			
NUMBER OF RANDON			= 5		
NUMBER OF ADDITI					
RECOMMENDED MINI				SURVEYED.	
STANDARD DEVIATI					
***	EXTRAPOLATE	DISTRESS QUA	NTITIES FOR SE	CTION ***	
DISTRESS-TYPE	SEVERITY	QUANTITY	DENSITY		
43 BLOCK CR	LOW	5113.04 (S	F) 15.22	19.5	
48 L & T CR	LOW	5113.04 (S 642.78 (L		7.2	
48 L & T CR	MEDIUM	1106.61 (L	F) 3.2 9	20.5	
48 L & T CR	MEDIUM HIGH	36.52 (L	F) .11	7.9	
50 PATCHING 52 WEATH/RAVEL	LOW	730.43 (S	F) 2.17	5.9	
52 WEATH/RAVEL	LOW	33600.00 (S	5 100.00	26.4	
			D ON DISTRESS		
LOAD			.00 PERCENT D		
CLIMATE/DURABILI OTHER			.00 PERCENT D		
UTILK	RECAILD D	131KL33L3 -	.00 PERCENT D	EDUCT VALUES.	

INSPECTION REPORT Network ID - RGRAY Branch Name- EAST APRON TAXIWAYSection Length- 1115.00 LFBranch Number- T16BSection Width- 130.00 LFSection Number- 1FamilyDEFAULTSection Area- 109850.00 SF - EAST APRON TAXIWAY Branch Name -----Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond. : F.O.D.: -----_____ PCI OF SECTION = 61 RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 11 NUMBER OF RANDOM SAMPLE UNITS SURVEYED õ = NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = RECOMMENDED MINIMUM OF 6 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 6.2% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 48 L & T CR LOW 516.70 (LF) .47 4.0 48 L & T CR MEDIUM 3083.94 (LF) 3214.13 (SF) 2.81 18.8 50 PATCHING LOW 2.93 7.1 50 PATCHING MEDIUM 1301.93 (SF) 52 WEATH/RAVEL LOW 1.19 10.0 105333.90 (SF) 95.89 26.0 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT Network ID - RGRAY - HOVERLANE (WEST) Branch Name Section Length -976.00 LF ANE (WEST) Section Length - 976.00 LF Section Width - 130.00 LF Family - DEFAULT Section Area - 126880.00 SF Branch Number - T17B Section Number - 1 Inspection Date: NOV/02/1995 Riding Quality : Safety: Shoulder Cond. : Overall Cond.: Drainage Cond.: F.O.D.: -----PCI OF SECTION = 61RATING = GOODTOTAL NUMBER OF SAMPLE UNITS = 10 NUMBER OF RANDOM SAMPLE UNITS SURVEYED 5 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = Ω RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 2.0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** SEVERITY DISTRESS-TYPE QUANTITY DENSITY % DEDUCT VALUE .20 45 DEPRESSION LOW .8 253.76 (SF) 48 L & T CR LOW 9.2 3375.01 (LF) 2.66 4.20 48 L & T CR 50 PATCHING MEDIUM 5328.96 (LF) 23.4 50 PATCHING LOW 52 WEATH/RAVEL LOW 715.60 (SF) .56 2.6 101504.00 (SF) 80.00 24.3 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 98.70 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = 1.30 PERCENT DEDUCT VALUES.

INSPECTION REPORT _______ Network ID - RGRAY ANE (CENTER) Section Length - 976.00 LF Section Width - 130.00 LF Family - DEFAULT Section Area - 126880.00 SF Branch Name - HOVERLANE (CENTER) Branch Number - T18B Section Number - 1 Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: ------PCI OF SECTION = 65RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 10 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 5 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 4.4% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 48 L & T CR LOW 48 L & T CR MEDIUM 50 PATCHING LOW LOW 5293.43 (LF) MEDIUM 2040.23 (LF) 5293.43 (LF) 4.17 12.9 1.61 14.1
 50 PATCHING
 LOW
 923.69 (SF)
 52 WEATH/RAVEL
 LOW
 101504.00 (SF)
 .73 3.0 80.00 24.3 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT Network ID - RGRAY Branch Name - HOVERLANE 3 Branch Name- HOVERLANE 3Section Length - 1106.00 LFBranch Number- T19BSection Width - 130.00 LFSection Number- 1Family - DEFAULTSection Area- 143780.00 SF -----Inspection Date: NOV/02/1995 Riding Quality : Safety: Shoulder Cond. : Overall Cond.: Drainage Cond.: F.O.D.: -----PCI OF SECTION = 62 RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 11 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 6 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 5 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 2.0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DENSITY % DEDUCT VALUE DISTRESS-TYPE SEVERITY QUANTITY .16 48 L & T CR 48 L & T CR 50 PATCHING 230.05 (LF) 2.8 LOW 6939.78 (LF) 25.2 4.83 MEDIUM 50 PATCHING LOW 52 WEATH/RAVEL LOW 1159.83 (SF) .81 3.1 143780.00 (SF) 100.00 26.4 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. LOAD CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. OTHER

INSPECTION REPORT

 Network ID
 - RGRAY

 Branch Name
 - EAST WARM-UP APRON
 Section Length - 280.00 LF

 Branch Number
 - A2B
 Section Width - 190.00 LF

 Section Number
 - 1
 Family - DEFAULT

 Inspection Date: NOV/02/1995 Riding Quality : Safety: Shoulder Cond. : Overall Cond.: Drainage Cond.: F.O.D.: -----PCI OF SECTION = 17 RATING = V. POOR TOTAL NUMBER OF SAMPLE UNITS = 3 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 3 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMEND EVERY SAMPLE UNIT BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 1.4% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 43 BLOCK CR HIGH 50 PATCHING LOW 23052.90 (SF) 43.33 62.9 50 PATCHING LOW 52 WEATH/RAVEL LOW 127.68 (SF) .24 2.0 14186.40 (SF) 26.67 15.6 52 WEATH/RAVEL HIGH 35466.00 (SF) 66.67 68.0 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. LOAD CLIMATE/DURABILITY RELATED DISTRESSES = 100.00 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES.

INSPECTION REPORT Network ID - RGRAY Branch Name - WEST WARM-UP APRON JARM-UP APRON Slab Length -Slab Width -Family - DEFAULT Number of Slabs -25.00 LF 25.00 LF 168 Branch Number - A38 Section Number - 1 Inspection Date: NOV/02/1995 Riding Quality : Safety: Shoulder Cond. : Overall Cond.: Drainage Cond.: F.O.D.: ------_____ PCI OF SECTION = 79 RATING = V. GOOD TOTAL NUMBER OF SAMPLE UNITS = 9 = NUMBER OF RANDOM SAMPLE UNITS SURVEYED 6 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 8 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 14.5% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE .95 .7 .95 10 62 CORNER BREAK LOW 63 LINEAR CR LOW 1 (SLABS) 1 (SLABS) LOW LOW 24 (SLABS) MEDIUM 64 (SLABS) 14.29 38.10 47.62 .95 65 JT SEAL DMG 2.0 65 JI SEAL DAG 7.0 65 JT SEAL DMG HIGH 80 (SLABS) 12.0 67 LARGE PATCH LOW 1 (SLABS) .7 1.90 1.90 67 LARGE PATCH MEDIUM 3 (SLABS) 5.6 69 PUMPING N/A 71 FAULTING HIGH 74 JOINT SPALL LOW 3 (SLABS) 2.2 3 (SLABS) 1.90 6.6 .95 1 (SLABS) .6 .95 75 CORNER SPALL HIGH 1 (SLABS) 1.2 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** RELATED DISTRESSES = 4.29 PERCENT DEDUCT VALUES. LOAD CLIMATE/DURABILITY RELATED DISTRESSES = 53.03 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = 42.67 PERCENT DEDUCT VALUES.

INSPECTION REPORT

_____ Network ID - RGRAY Branch Name - NORTH -- NORTH RAMP Slab Length 25.00 LF -25.00 LF 1002 Branch Number - A4B Slab Width -Section Number - 1 Family - DEFAULT Number of Slabs -Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: -----................... PCI OF SECTION = 79 RATING = V. GOOD TOTAL NUMBER OF SAMPLE UNITS = 46 14 NUMBER OF RANDOM SAMPLE UNITS SURVEYED NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = n RECOMMENDED MINIMUM OF 10 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 8.1% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** QUANTITY DENSITY % DEDUCT VALUE DISTRESS-TYPE SEVERITY
 DISTRESS-ITPE
 SLEREN

 62 CORNER BREAK
 LOW
 3 (SLABS)

 63 LINEAR CR
 MEDIUM
 10 (SLABS)

 65 JT SEAL DMG
 MEDIUM
 143 (SLABS)

 65 JT SEAL DMG
 HIGH
 787 (SLABS)

 66 SMALL PATCH
 LOW
 10 (SLABS)

 7
 (SLABS)
 3 (SLABS)
 3 (SLABS) .36 .7 10 (SLABS) 1.07 1.5 14.29 7.0 78.57 12.0 1.07 787 (SLABS) 10 (SLABS) 3 (SLABS) 7 (SLABS) 3 (SLABS) 14 (SLABS) 66 SMALL PATCH LOW 66 SMALL PATCH HIGH 67 LARGE PATCH LOW .2 2.0 O/LARGEPATCHLOW67LARGEPATCHMEDIUM69PUMPINGN/A74JOINT SPALLLOW74JOINT SPALLLOW74JOINT SPALLMEDIUM74JOINT SPALLHIGH75CORNERSPALL75CORNERSPALLMEDIUM .71 .7 .36 2.5 1.43 2.1 14 (SLABS) 1.43 1.2 10 (SLABS) 1.07 1.3 14 (SLABS) 1.43 4.6 .3 7 (SLABS) .71 17 (SLABS) 75 CORNER SPALL MEDIUM 75 CORNER SPALL HIGH 1.79 1.2 75 CORNER SPALL 3 (SLABS) .36 1.2 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = 5.73 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 49.36 PERCENT DEDUCT VALUES. RELATED DISTRESSES = 44.90 PERCENT DEDUCT VALUES. OTHER

INSPECTION REPORT Network ID - RGRAY AMP Slab Length - 20.00 LF Slab Width - 20.00 LF Family - DEFAULT Number of Slabs - 250 - NORTH RAMP Branch Name Branch Number - A4B Section Number - 2 Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: uverall Cond.: F.O.D.: ••••• PCI OF SECTION = 65RATING = GOOD TOTAL NUMBER OF SAMPLE UNITS = 19 NUMBER OF RANDOM SAMPLE UNITS SURVEYED = 0 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 9 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 16 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 18.4% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPESEVERITYQUANTITYDENSITY %DEDUCT VALUE62CORNER BREAKLOW1 (SLABS).56.762CORNER BREAKMEDIUM2 (SLABS)1.111.563LINEAR CRLOW2 (SLABS)1.111.263LINEAR CRMEDIUM6 (SLABS)2.787.465JT SEAL DMGMEDIUM250 (SLABS)100.007.066SMALL PATCHLOW8 (SLABS)3.33.466SMALL PATCHMEDIUM1 (SLABS).56.667LARGE PATCHLOW6 (SLARS)2.782.0
 66
 SMALL
 PATCH
 MEDIUM
 1 (SLABS)
 .56

 67
 LARGE
 PATCH
 LOW
 6 (SLABS)
 2.78

 67
 LARGE
 PATCH
 LOW
 6 (SLABS)
 2.78

 67
 LARGE
 PATCH
 MEDIUM
 1 (SLABS)
 .56

 67
 LARGE
 PATCH
 MEDIUM
 1 (SLABS)
 .56

 69
 PUMPING
 N/A
 13 (SLABS)
 5.56

 71
 FAULTING
 LOW
 1 (SLABS)
 .56

 72
 SHAT.
 SLAB
 LOW
 1 (SLABS)
 .56

 74
 JOINT SPALL
 LOW
 2 (SLABS)
 1.11

 74
 JOINT SPALL
 MEDIUM
 8 (SLABS)
 3.33

 74
 JOINT SPALL
 HIGH
 11 (SLABS)
 4.44

 75
 CORNER SPALL
 LOW
 4 (SLABS)
 1.67

 75
 CORNER SPALL
 MEDIUM
 8 (SLABS)
 3.33

 75
 CORNER SPALL
 HIGH
 2 (SLABS)
 1.11

< 2.0 2.5 5.5 1.0 2.5 .8 3.4 12.4 .7 2.3 75 CORNER SPALL HIGH 2 (SLABS) 1.11 1.6 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = 24.78 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 13.04 PERCENT DEDUCT VALUES. RELATED DISTRESSES = 62.19 PERCENT DEDUCT VALUES. OTHER

INSPECTION REPORT

Network ID - RGRAY AMP Section Length - 2100.00 LF Section Width - 300.00 LF Family - DEFAULT Section Area - 630000.00 SF Branch Name - SOUTH RAMP Branch Number - A5B Section Number - 1 Inspection Date: NOV/02/1995 Riding Quality: Safety: Drainage Cond.: Shoulder Cond.: F.O.D.: -----PCI OF SECTION = 25 RATING = V, POOR TOTAL NUMBER OF SAMPLE UNITS = 126 NUMBER OF RANDOM SAMPLE UNITS SURVEYED 15 = NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 8 RECOMMENDED MINIMUM OF 23 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 12.2% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE
 ALLIGATOR CR
 LOW
 100.00 (SF)
 .02

 41 ALLIGATOR CR
 LOW
 1773.33 (SF)
 .28

 41 ALLIGATOR CR
 MEDIUM
 1773.33 (SF)
 .28

 41 ALLIGATOR CR
 HIGH
 3146.67 (SF)
 .50

 42 BLEEDING
 N/A
 86536.66 (SF)
 13.74

 43 BLOCK CR
 MEDIUM
 175582.80 (SF)
 27.87

 43 BLOCK CR
 HIGH
 10033.33 (SF)
 1.59
 7.0 18.1 29.7
 43
 BLOCK CR
 MEDIUM
 175582.80 (SF)

 43
 BLOCK CR
 HIGH
 10033.33 (SF)

 43
 BLOCK CR
 HIGH
 10033.33 (SF)

 43
 L & T CR
 LOW
 9954.07 (LF)

 48
 L & T CR
 MEDIUM
 21398.87 (LF)

 48
 L & T CR
 HIGH
 11066.67 (LF)

 49
 OIL SPILLAGE
 N/A
 717.00 (SF)

 50
 PATCHING
 LOW
 11154.93 (SF)

 52
 WEATH/RAVEL
 LOW
 281400.00 (SF)
 43.7 33.1 1.59 22.9 1.58 6.3 3.40 20.8 1.76 25.6 .11 2.0
 LOW
 11154.93 (SF)
 1.77

 LOW
 281400.00 (SF)
 44.67

 MEDIUM
 248333.30 (SF)
 39.42
 5.1 19.4 52 WEATH/RAVEL 38.0 52 WEATH/RAVEL HIGH. 4720.00 (SF) .75 14.0 53 RUTTING 13.0 MEDIUM 114.00 (SF) .02 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = 22.70 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 62.00 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = 15.30 PERCENT DEDUCT VALUES.

INSPECTION REPORT

		INSPECTION R	EPUKI	
etwork ID -	RGRAY			22292822228532222
ranch Name -	SOUTH RAMP		Section Len	gth - 450.00 L Ith - 300.00 L
ranch Number -	A6B		Section Wid	th - 300.00 L
ection Number -	1 Fam	ily - DEFAULT	Section Are	a - 135000.00 S
Inspection Date:	NOV/02/199	 5		
Riding Quality : Shoulder Cond. :		Safety:	Drainage Cond.	:
Shoulder Cond. :	: Overa	ll Cond.:	F.O.D.	:
PCI OF SECTION =	= 30		RATING	= POOR
TOTAL NUMBER OF	SAMPLE UNIT	s = 54		
NUMBER OF RANDOM				
NUMBER OF ADDITI				
RECOMMENDED MINI				
STANDARD DEVIATI	ON OF PCI B	ETWEEN RANDOM UN	ITS SURVEYED =	16.8%
		D DISTRESS QUAN		ION ***
DISTRESS-TYPE	SEVERITY		DENSITY %	DEDUCT VALUE
43 BLOCK CR	LOW MEDIUM	456.00 (SF) 29188.00 (SF)	.34 21.62	5.5
		29188.00 (SF)	21.62	30.3
43 BLOCK CR 45 DEPRESSION	HIGH			48.8
45 DEPRESSION	LOW	256.20 (SF)	.19	.7
48 L & T CR	LOW	1430.30 (LF)	1.06	5.1
48 L & T CR	MEDIUM	3544.30 (LF)	2.63	18.1
48 L & T CR	HIGH	868.00 (LF)	.64	16.1
49 OIL SPILLAGE	N/A	153.00 (SF)	.11	2.0
50 PATCHING	LOW	2156.50 (SF)	1.60	4.8
50 PATCHING	MEDIUM	2780.00 (SF)	2.06	12.6
52 WEATH/RAVEL	LOW	115672.00 (SF)	85.68	24.9
52 WEATH/RAVEL	MEDIUM	8500.00 (SF)	6.30	16.9
45 DEPRESSION 48 L & T CR 48 L & T CR 48 L & T CR 49 OIL SPILLAGE 50 PATCHING 50 PATCHING 52 WEATH/RAVEL 52 WEATH/RAVEL 52 WEATH/RAVEL	HIGH	1000.00 (SF)	.74	13.9
52 WEATH/RAVEL 53 RUTTING	MEDIUM	23407.50 (SF) 256.20 (SF) 1430.30 (LF) 3544.30 (LF) 868.00 (LF) 153.00 (SF) 2156.50 (SF) 2780.00 (SF) 115672.00 (SF) 8500.00 (SF) 1000.00 (SF) 9076.00 (SF)	6.72	39.2
PERI		CT VALUES BASED		
		ISTRESSES = 16		
LOAD CLIMATE/DURABILI OTHER	TY RELATED D		.47 PERCENT DEC	OUCT VALUES.

INSPECTION REPORT Network ID - RGRAY Branch Name- EAST RAMPSlab Length-20.00 LFBranch Number- A7BSlab Width-20.00 LFSection Number- 1FamilyDEFAULTNumber of Slabs-Inspection Date: NOV/02/1995 Riding Quality : Safety: Drainage Cond.: Shoulder Cond. : Overall Cond.: F.O.D.: F.O.D.: PCI OF SECTION = 80 RATING = V. GOOD TOTAL NUMBER OF SAMPLE UNITS = 234 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 30 RECOMMENDED MINIMUM OF RECOMMENDED MINIMUM OF 22 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 11.9% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DISTRESS-TYPE SEVERITY QUANTITY DENSITY % DEDUCT VALUE 65 JT SEAL DMG LOW
 LOW
 2164 (SLABS)
 90.07

 MEDIUM
 74 (SLABS)
 3.33

 LOW
 59 (SLABS)
 2.67

 N/A
 238 (SLABS)
 10.67

 LOW
 22 (SLABS)
 1.00

 LOW
 7 (SLABS)
 .33

 N/A
 14 (SLABS)
 .67

 LOW
 216 (SLABS)
 9.67
 2164 (SLABS) 96.67 2.0 65 JT SEAL DMG 67 LARGE PATCH 7.0 2.0 69 PUMPING 10.4 70 SCALING .5
 7
 (SLABS)
 .33

 N/A
 14
 (SLABS)
 .67

 LOW
 216
 (SLABS)
 9.67

 MEDIUM
 29
 (SLABS)
 1.33

 HIGH
 7
 (SLABS)
 .33

 LOW
 52
 (SLABS)
 2.33

 MEDIUM
 14
 (SLABS)
 .33
 71 FAULTING 1.0 73 SHRINKAGE CR N/A 74 JOINT SPALL LOW .6 3.4 74 JOINT SPALL 1.9 74 JOINT SPALL 3.0 75 CORNER SPALL LOW 75 CORNER SPALL MEDIUM 2.33 .9 .8 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** LOAD RELATED DISTRESSES = .00 PERCENT DEDUCT VALUES. CLIMATE/DURABILITY RELATED DISTRESSES = 26.93 PERCENT DEDUCT VALUES. OTHER RELATED DISTRESSES = 73.07 PERCENT DEDUCT VALUES.

INSPECTION REPORT ______ Network ID - RGRAY Branch Name - EAST RAMP 15.00 LF Slab Length -Branch Name 12.50 LF 2960 Slab Width -Family - DEFAULT Number of Slabs -Branch Number - A8B Section Number - 1 ______ Inspection Date: NOV/02/1995 Riding Quality : Safety: Shoulder Cond. : Overall Cond.: Safety: Drainage Cond.: F.O.D.: -----..................... -----RATING = V. GOOD PCI OF SECTION = 83 TOTAL NUMBER OF SAMPLE UNITS = 114 NUMBER OF RANDOM SAMPLE UNITS SURVEYED 30 NUMBER OF ADDITIONAL SAMPLE UNITS SURVEYED = 0 RECOMMENDED MINIMUM OF 15 RANDOM SAMPLE UNITS TO BE SURVEYED. STANDARD DEVIATION OF PCI BETWEEN RANDOM UNITS SURVEYED = 10.0% *** EXTRAPOLATED DISTRESS QUANTITIES FOR SECTION *** DENSITY % DEDUCT VALUE SEVERITY QUANTITY DISTRESS-TYPE .78 2.09 27 (SLABS) .92 928 (SLABS) 31.37 1845 (SLABS) 62.35 92 (SLABS) 3 (SLAPS) 62 CORNER BREAK LOW 63 LINEAR CR LOW .78 .7 2.2 63 LINEAR CR 1.0 MEDIUM 65 JT SEAL DMG LOW 65 JT SEAL DMG MEDIUM 2.0 62.35 MEDIUM 7.0 HIGH LOW LOW 12.0 65 JT SEAL DMG .2 66 SMALL PATCH 143 (SLABS) 4.84 3.0 67 LARGE PATCH .26 .78 MEDIUM 2.5 67 LARGE PATCH 7 (SLABS) LOW 1.0 71 FAULTING 23 (SLABS)

 71
 FAULTING
 LOW
 23 (SLABS)

 71
 FAULTING
 MEDIUM
 23 (SLABS)

 72
 SHAT. SLAB
 LOW
 7 (SLABS)

 72
 SHAT. SLAB
 MEDIUM
 3 (SLABS)

 73
 SHRINKAGE CR
 N/A
 38 (SLABS)

 74
 JOINT SPALL
 LOW
 73 (SLABS)

 .78 2.0 .26 2.5 5.0 .13 .8 1.31 2.48 1.6 7 (SLABS) 3 (SLABS) .26 MEDIUM 1.0 74 JOINT SPALL .13 3.0 74 JOINT SPALL HIGH 75 CORNER SPALL LOW 34 (SLABS) 1.18 .5 .13 3 (SLABS) .8 75 CORNER SPALL MEDIUM 75 CORNER SPALL HIGH 3 (SLABS) .13 1.2 *** PERCENT OF DEDUCT VALUES BASED ON DISTRESS MECHANISM *** RELATED DISTRESSES = 22.84 PERCENT DEDUCT VALUES. LOAD CLIMATE/DURABILITY RELATED DISTRESSES = 42.04 PERCENT DEDUCT VALUES. RELATED DISTRESSES = 35.12 PERCENT DEDUCT VALUES. OTHER

REPORT	DOCUMENTATION	I PAGE	Form Approved OMB No. 0704-0188	
the data needed, and completing and reviewin for reducing this burden, to Washington Head	g the collection of information. Send comments	regarding this burden estimate or any operations and Reports, 1215 Jeffersor	Luctions, searching existing data sources, gathering other aspect of this collection of information, inclu I Davis Highway, Suite 1204, Arlington, VA22202-	ting suggestions
1.AGENCY USE ONLY (Leave bla	nk) 2.REPORT DATE	3.REPORT TYPE AN	D DATES COVERED	
	August 1996	Final report		
4.TITLE AND SUBTITLE Airfield Pavement Evaluation Fort Hood, Texas	on, Robert Gray Army Airfield,	L	5.FUNDING NUMBERS	
6.AUTHOR(S)				
Patrick S. McCaffrey, Jr.				
7.PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		8.PERFORMING ORGANIZATIO	N
U.S. Army Engineer Waterv 3909 Halls Ferry Road Vicksburg, MS 39180-619			REPORT NUMBER Miscellaneous Paper GL-96-23	
9.SPONSORING/MONITORING AC	ENCY NAME(S) AND ADDRESS((ES)	10.SPONSORING/MONITORING	
Program Manager: U.S. Arn 7701 Telegraph Road Alexandria, VA 22310-386	ny Center for Public Works (Cl 52	ECPW-ER)	AGENCY REPORT NUMBER	
11.SUPPLEMENTARY NOTES				
August 1996. Other requests	STATEMENT U.S. Government agencies only for this document shall be referred rs (CEMP-ET), Washington, D	erred to Headquarters,	12b.DISTRIBUTION CODE	
13.ABSTRACT (Maximum 200 wo	rds)			
develop information pertain and upgrading of the pavem condition index (PCI) condi load-carrying capability of t missions. Results of the eva of the nondestructive tests p pavement feature, (d) a strue 2,600 passes of the B-747 ai	ing to the structural adequacy o ents for mission changes. The tion survey procedure, and a no he pavements and overlay requi luation are presented including erformed using a falling weight ctural evaluation and overlay re	of the airfield pavements f pavement surface condition ondestructive evaluation p irements for continued us (: (a) a tabulation of the e t deflectometer, (c) the PC quirements for rigid and f yement classification num	aray Army Airfield, Fort Hood, To for continued use under current m on was evaluated by use of the par rocedure was used to determine to e of the pavements under current xisting pavement features, (b) the CI and rating of the surface of eac lexible pavement (4,900 passes a ber for each pavement facility, ar condition survey.	ission vement he results h nd
4.SUBJECT TERMS			15.NUMBER OF PAGE	5
See reverse.			154	
			16.PRICE CODE	
17.SECURITY CLASSIFICATION OF REPORT	18.SECURITY CLASSIFICATION OF THIS PAGE	19.SECURITY CLASSIF OF ABSTRACT	ICATION 20.LIMITATION OF AB	STRACT
UNCLASSIFIED	UNCLASSIFIED			
ISN 7540-01-280-5500	· · · · · · · · · · · · · · · · · · ·		Standard Form 298 (Rev. 2-8	9)

14. (Concluded).

Aircraft classification number Allowable gross aircraft load Nondestructive testing Overlay requirements Pavement classification number Pavement condition index Robert Gray Army Airfield