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Executive Summary 

Secure and reliable information exchange is essential in military communi- 
cation systems. However, even in a spread spectrum (SS) system, commu- 
nications can be compromised when the total channel interference power 
becomes large with respect to that of the desired signal. To improve sys- 
tem performance, one technique that has received considerable attention is 
robust locally optimum (LO) detection in which statistical methods are used 
to estimate the detector nonlinearity. This report represents the culmination 
of a study concerning enhancement methods for these types of detectors. 

After a brief introduction to the concept of robust LO signal detection, 
two specific detectors are reviewed, namely, the histogram indirect implemen- 
tation and the Fourier series approximation (FSA) direct implementation. 
Given this background, three LO detector enhancement techniques are de- 
rived and examined: the least squares (LS), the characteristic function (CF), 
and the preamble enhancement methods. Based on simulation analyses of 
various robust LO detector and enhancement combinations, the enhanced LO 
detectors are shown to provide, in most cases, significantly lower probability 
of bit error (P&) than the corresponding large jammer-to-signal ratio (J/S) 
implementation. Moreover, the preamble technique is observed to be immune 
to the limitations associated with the LS and CF enhancement methods, at 
the expense of an increase in bandwidth overhead. Finally, a summary and 
discussion concerning the evolution of this research topic are provided at the 
conclusion of the report. 



Chapter 1 

Introduction 

Secure and reliable information exchange is essential in military communica- 
tion systems. However, even in a spread spectrum (SS) system, communica- 
tions can be compromised when the total channel interference power becomes 
large with respect to that of the desired signal. Furthermore, if the channel 
interference is non-Gaussian, standard linear receiver techniques may exhibit 
performance degradations since they may no longer be optimal for the given 
noise environment. In these situations a nonlinear receiver can be used to 
achieve acceptable and reliable communications. 

One method for improving system performance that has received consid- 
erable attention, particularly for applications in high jammer-to-signal ratio 
(J/S) environments, is locally optimum (LO) detection [l]-[4]. In its original 
form, the LO detector utilizes a nonlinearity derived as an approximation to 
the optimum maximum likelihood (ML) detector. In many scenarios, the LO 
detector is simpler to implement than the corresponding ML detector, and 
its performance asymptotically approaches that of the ML detector as the 
signal becomes small relative to the interference. 

One drawback to the original form of the LO detector is that, similar 
to the ML detector, it requires a priori knowledge of the noise probability 
density function (pdf) to implement the detector nonlinearity. Recent efforts 
have concentrated on the development of robust LO detectors that do not 
require prior knowledge of the interference statistics [5]-[10]. Instead, these 
detectors attempt to construct estimates of the interference statistics from 
the available observations. In standard robust LO detection, the required 
detector is implemented using the received signal samples to estimate the 



interference pdf and/or the LO nonlinearity. However, previous work sug- 
gests that even in large J/S environments, the noise samples cannot always 
be adequately approximated by the received signal samples. Thus, the goal 
of this research effort is to identify and develop techniques that will enhance 
the effectiveness of the various LO detector algorithms, particularly where 
performance degradation has been observed. 

The organization of this report is as follows. First, the theoretical LO 
detector for independent noise and the concept of robust LO detection are 
introduced in Chapter 2. Additionally, this chapter reviews two types of LO 
detectors: the histogram indirect implementation method and the Fourier 
series approximation (FSA) direct implementation method. Next, Chapter 3 
describes three robust LO detector enhancement techniques in detail. In 
Chapter 4, performance results for the various robust LO detector and en- 
hancement combinations are presented and compared. Finally, a summary of 
the research study is provided in Chapter 5, including a discussion concerning 
the projected evolution of this research topic. 

10 



Chapter 2 

Robust LO Detection 

Due to the complexity of the various enhancement algorithms examined, this 
study focuses on binary detection of real, discrete signals in additive noise. In 
binary signal detection the goal is to decide which of two possible information 
signals is present at the detector. For example, in a binary phased shift keyed 
(BPSK) communications system [11], the receiver must decide whether a 
value of +1 or —1 was sent by the transmitter. Stated more formally, the 
goal of the detector is to correctly choose one of the following two hypotheses: 

Hi : Signal Si present (2-1) 

H0 : Signal s0 present, 

where Si and So are vectors and the notation x = [xi • • • XN]
T
 denotes a 

vector of length N. The value of N is the number of signal samples in a 
given observation period. 

Let the received random signal vector, r, be given by 

r = sm + n, (2.2) 

where n is the random noise vector, and m = 0 or 1. If p is the actual real- 
ization of r, and the noise samples are independent and identically distributed 
(iid), then it can be shown [12] that the corresponding LO detector is given 

by 
choose    Hi 

N > 
KP) = £(ai»' ~ soi)g{Pi) < 7, (2-3) 

1=1 
choose    Ho 

11 



where 

g(Plp - ±Hfn(Pi)]  =  -^pl (2.4) 

and /n(-) is the noise pdf. The constant 7 is chosen depending on the type 
of hypothesis test being used [13], e.g., maximum likelihood (ML), maxi- 
mum a posteriori (MAP), Neyman-Pearson (NP), or general Bayesian. For 
example, for the case of ML detection of equally likely information signals, 
7 = 0. 

In the robust LO detection problem, the noise pdf, /„(•)) 1S unknown. 
As a result the LO nonlinearity, g(pi), must be estimated either directly or 
indirectly. Indirect methods involve constructing an estimate of the noise 
pdf, fn(-), and using the result to approximate g(pi) as 

9(P>) =-^-MMP*)} , (2.5) 

or 

$(*) = -y^- (2-6) 
fn(pi) 

An example of an indirect method is the histogram implementation of the 
robust LO detector [6]. Direct methods, on other hand, do not require an in- 
termediate pdf estimate. Rather, g(-) is estimated directly from the observed 
data. The direct Fourier series approximation (FSA) robust LO detector [14] 
is one such method. 

Whether an indirect or direct method is employed, the underlying LO 
nonlinearity is a function of the noise pdf. As a result, the various robust 
LO detection algorithms initially assume that uncorrupted observations of 
the noise samples are available for statistical estimation of the detector. How- 
ever, in many practical applications the only signal available at the detector 
is the received signal. Thus, the goal of this research effort is to identify 
enhancement techniques that allow use of the available received signal for 
detector estimation while still maintaining acceptable performance. 

2.1     The Histogram Robust LO Detector 

As mentioned previously, the histogram robust LO detector [6] utilizes an 
indirect approximation of the LO nonlinearity given by Eq. (2.5).   In this 

12 



method, the available noise observations are assigned to one of K intervals, 
and a sample probability is computed for each interval. The resulting his- 
togram pdf estimate is then used to implement the robust LO nonlinearity. 
More formally, given {77.,} as the set of Q observed samples of the noise 
random variable, n, the histogram pdf estimate is given by 

Uv)=  E h
P{Bk\   IBM- (2-7) 

In Eq. (2.7), {h0,..., hjc} are the histogram breakpoints, {Bf. — [hk, hk+i)} 
are the histogram bins, P{Bk} is the relative frequency of each bin, i.e., 

P\Bk) = ± £ IBM , (2.8) 

and IA(U) is the set indicator function, defined as 1 for y G A, and 0 other- 
wise. 

Given the histogram estimate /«(•)> the next step is to estimate the deriva- 
tive of ln[/n(/0,-)]. If it is assumed that the actual pdf, fn(pi), is continuous, 
then the impulses that arise from differentiating Eq. (2.7) do not accurately 
model ^—ln[fn(pi)]- To remedy this dilemma another way of viewing the 
histogram is utilized. One can think of the process of assigning samples to a 
bin as a form of quantization. In other words, all pi in the range [hk, hk+i) 
are quantized to hk- Then, a three-point numerical approximation of the 
derivative of In [/„(#)] evaluated at hk is used, i.e., 

£: HMpi)} \Pi=hk 
HMhk+1)} -ln[/»(fcfc-i)] 

hk+l -hk-i 

ln[P(Bfc+1)] -HHBh-i)] 
hk+l -hk-i 

Mhk+2 ~ hk+i] - M'1* - hk-i] 
hfc+i -hk-i 

(2.9) 

If the bins have equal width, Eq. (2.9) reduces to 

£ in[/„(ft)] L* « HPi*»}]-HPiB>.,}\ t (210) 

13 



where A is the width of a bin. Finally, assuming bins of equal width, the 
value of the approximation in Eq. (2.10) is extended from hk to all pi in the 
range [hk, hk+i), yielding the histogram implementation of the memoryless 
LO nonlinearity: 

9H(Pi) = "A" E   l^P{Bk+i} - InP {Sn}] IBk{pi). (2.11) 

As a result of the three-point approximation of the derivative, the expression 
in Eq. (2.11) requires values for P{5_i} and P{BK}, which are outside 
the support of the histogram pdf estimate. Instead, one can use a two- 
point approximation of the derivative in the first and last histogram bins. 

This modification is equivalent to defining P{f?_i} = P2{B0}/P{Bi} and 

PiBKy^p'iBK^y/PiBK^}. 
The estimation of a pdf using a histogram usually requires a large number 

of samples [15]. Thus Q, the total number of observed samples used to con- 
struct the histogram, may be much larger than N, the number of samples in 
each signal vector. To obtain the total number of required observed samples, 
the value of Q should be chosen such that Q = CN, where C is an integer 
chosen to yield enough samples to construct and accurate histogram. The 
C vectors can be stored and all the available samples used to compute the 
histogram. Detection can then be performed on each data vector using the 
resulting histogram to compute the approximate nonlinearity of Eq. (2.11). 

2.2     The Direct FSA Robust LO Detector 

Given a few simplifying assumptions, methods can be derived to directly 
approximate the LO nonlinearity of Eq. (2.4). One such method yields the 
direct PSA robust LO detector [14]. To derive this detector, let {77^} as the 
set of Q observed samples of the noise random variable, n. Furthermore, 
assume that fn(v) is even symmetric and has finite support with endpoints 
given by rjmax and f]min = ~Vmax- Then, the resulting FSA implementation 
of the robust LO nonlinearity has the form [14] 

p 

9F(Pt)   =   E  hk SHkuJ0Pi) I(r,min,r,max)(pi) , (2.12) 
Jfc=i 

14 



where T0=(?7ma:r — Vmin), a;0=27r/To, and p is the FSA order. The coeffi- 
cients b = [61 ... bp]T are determined by minimizing the mean squared error 
between g(pi) and gF(pi), written as 

00 

J   =    E{[g(r) - Mr)]2}Ln =   / W) " 9F(P)}
2
 UP) dp 

(2.13) 
*7max 

/ g(p) -  E h sm(ku0p) 
k=\ 

fn(p) dp. 

After some manipulation, it can be shown that the FSA coefficients are given 
by [14] 

b = 2w0T
_1c, 

where 

and 

c = [$n(wb) 2$n(2o;o) • • • p$n(puo)]T , 

(2.14) 

(2.15) 

1 - $n(2u0) 

$n(w0) 

-$„(3w0) 

*n[(p-2)ü*,] 
-*n[(p + 2)o;0] 

1 - K(2pu;o) 

(2.16) 

*„[(p-l)w0] 
-$„[(p+l)wo] 

In Eq. (2.15) and Eq. (2.16), $n(a;) = E{cos(um)} is the characteristic func- 
tion (CF) of /n(-)> and $n(Awo) is an estimate of $n(kuj0), given by 

*n(*W0)   =   —J2COS(kuj0Vj) 
V j=i 

(2.17) 

With a slight modification, the FSA nonlinearity of Eq. (2.12) can be 
used for the case when fn{v) nas infinite support, as in the case of the Gaus- 
sian and Cauchy pdfs. In these instances r}max can be chosen as r)max = 
Cmax(| pmax I, I pmin |), where pmax and pmin are the maximum and mini- 
mum observations of the received signal, and C > 1 is a constant. The result 
will be a truncated estimate of the actual unbounded LO nonlinearity, and 

15 



in most cases will provide a suitable approximation given that the range of 
observed signal values is bounded. 
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Chapter 3 

Enhancement Techniques 

The robust LO detector algorithms described in Chapter 2 require observa- 
tions, {rjj}, of the random noise variable, n. However, in most applications 
of interest, uncorrupted noise samples are not available at the detector. For 
low signal-to-noise ratio SNR environments, one method for removing this 
requirement is to use a small signal assumption, or an equivalent high J/S 
assumption. Thus, typical robust LO detectors use the received signal sam- 
ples to estimate the noise pdf, from which the required nonlinearity is formed. 
However, previous work by Ucci et al. [12], and the additional results pro- 
vided in the next chapter, suggest that the large interference assumption that 
the noise samples can be approximated by the received signal samples (or 
that the noise pdf can be approximated by the received signal pdf) is not al- 
ways sufficient, even in large J/S environments. Thus, this chapter presents 
three potential robust detector enhancement techniques for improving the ef- 
fectiveness of the various detector algorithms for the case of binary detection 
of real signals. As will be seen, these methods focus on obtaining an estimate 
of the noise pdf or characteristic function (CF) from an initial estimate of the 
received signal pdf or CF, along with knowledge of the information signal. 
Supporting examples are provided where applicable. 

3.1     The Least Squares Method 

The least squares (LS) enhancement technique focuses on obtaining an es- 
timate of the noise pdf from an initial estimate of the received signal pdf, 

17 



along with knowledge of the information signal. Since the various pdfs will 
ultimately be processed in a computer (or some digital processor), the LS 
technique operates on "discrete" versions of the original continuous pdfs, pos- 
sibly obtained by sampling at regular intervals. This assumption allows the 
use of well-known digital signal processing (DSP) techniques. Specifically, let 

/r[k] = fT[ki, ..., ICN] = fr(hTi, ..., AijvTjv) denote the "discrete" version 
of the N-dimensional received signal pdf, where N is the number of signal 
samples in a given symbol period and {Tj} are the "sampling" periods for 
each dimension. Similarly, let /s[k] and /n[k] be the "discrete" versions of 
the information signal and noise pdfs, respectively. Then, assuming that the 
information signal and noise are independent, 

/,[k] = /.[k]*/n[k]. (3.1) 

For the LS enhancement technique, the goal is to find a finite length, stable 
inverse filter, denoted as h[\s], such that 

A[k]*/r[k]»/„[k], (3.2) 

or equivalently, 

Ä[k]*/.[k]«$[k], (3.3) 

where £[k] is the multivariate discrete impulse function. To find such a filter, 
consider the least squares filtering problem shown in Fig. 3.1. In the case at 
hand the input signal is /s[k], and the desired output signal is d[k] = S[k]. 
The error at the output of the least squares filter is 

e[k] = d[k]-J>P]/.[k-i] (3.4) 
i 

where the range of summation depends on the length of the filter. The 
solution for h is found by minimizing the squared error 

J = E «2M. (3-5) 
k 

yielding the normal equations 

£MiMJ-i]=s[J], (3.6) 
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where r[m] = £k/s[k] /s[k + m] is the autocorrelation sequence of /s[k], 

g\0\ = X)k^[k] /s[k — j], and j varies over the same range as i.  Since d[k] = 
S[k], g[j] becomes 

5[J] = /sH], (3-7) 

resulting in the normal equations for the pdf deconvolution problem: 

EMiHJ-i] = /s[-J]- (3-8) 

fs[k] e[k] 

Figure 3.1: A typical least squares filtering problem. 

3.1.1     The LS Enhanced BPSK LO Detector for Inde- 
pendent Noise 

This research effort focuses on the straightforward problem of detecting a 
BPSK signal in iid additive noise. Let the "discrete" amplitude of the BPSK 
signal be a constant value, a. Since the noise is iid, the detector algorithms 
are based on the marginal pdf of the noise. The corresponding marginal pdf 
of the information signal has the form 

fs[k] = -{S[k + a] + S[k-a}) (3.9) 

For a two-sided filter having total length 1L — 1, the LS filter, h, is the 
solution to the normal equations in Eq. (3.8), which in this case are 

L-l 

X)     hW\J - *] = 9[J] (3.10) 
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where r[m] = £fc fs[k]fs[k + m], and g[j] = £fe d[k]fa[k - j] = f,[-j]. From 
Eq. (3.9), it can be shown that r[m] is given by 

1 11 
r[m] = -S[m + 2a] + -S[m] + -S[m- 2a]. (3.11) 

Writing Eq. (3.10) in matrix form, h is found as the solution to the equation 

where 

R 

1/2 0 

o ••• 

0 

1/4 ••- 

0 '•• 

0 ••• 

2a-3 

Rh = g 

0     1/4    0 

0     1/4     0 

2(L-a)-4 

0 

••• 1/4 

0 

0 
0        1/2 

(3.12) 

(3.13) 

K-L + l) 
h(-L + 2) 

h{L - 2) 
h{L - 1) 

(3.14) 
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and 
0 

: > 2L-3 

0 
1/2 

g=        0}2a-l        . (3.15) 
1/2 
0 

i>2L-3 

3.1.2     Sample Operation 

A simulation was developed using the software package Matlab™ by The 
MathWorks, Inc. to examine the LS enhanced robust LO detector in a 
direct sequence (DS) spread spectrum (SS) system. The resulting simulation 
algorithm can be divided into the following steps: 

1. The transmitted and noise signals are constructed, then added together 

to form the received signal. 

2. The received signal is soft-limited or noise-blanked to eliminate the 
large interference amplitudes, facilitating histogram construction. 

3. A K-b'm histogram of the modified received signal is constructed, with 
the number of bins specified by the user. The number of bins must be 
odd so that the histogram is centered about zero. 

4. The amplitude of the BPSK signal, a, is assigned to a histogram bin. 
This bin index, ka, determines the filter extension factor (see Step 6). 

5. The LS inverse filter, h1} is determined for the case when ka = 1. 

6. This filter is extended by inserting (ka - 1) zeros between each of the 
original filter coefficients.  The resulting filter is the LS inverse filter, 
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ha, for the general case where the transmitted signal amplitude falls 
into the kl

a
h bin.1 

7. The received signal histogram is convolved with ha to yield the estimate 
of the noise pdf, /„. The estimate is truncated to length K — 2ka. 

8. The LO nonlinearity, g, is estimated from fn. 

9. Finally, g is used to decode the received data. 

An example of the operation of the LS enhanced detector in Cauchy 
noise is shown in Fig. 3.2 to Fig. 3.8. Figure 3.2 illustrates a received signal 
histogram for the case when the number of bins is K = 99 and Ec/a = 8 dB, 
where Ec/a is the ratio of the chip energy to the Cauchy scale parameter. 
Two noise histograms, one estimated using actual noise samples, and the 
other an LS enhanced estimate using the received signal samples, are given 
in Fig. 3.3 and Fig. 3.4, respectively. As can be seen, the deconvolution 
operation yields a good approximation in the center of the pdf, but produces 
artifacts in the tails. Next, the LO nonlinearities constructed from these two 
noise histograms are shown in Fig. 3.5 to Fig. 3.7. The two nonlinearities are 
approximately equal in the region centered about zero, but the LS enhanced 
version has larger error in the tail regions, a result of the tail artifacts in 
the pdf estimate. However, if the majority of received signal samples lie in 
the region where the two approximations are similar (see Fig. 3.2), i.e., if 
the bin index ka is an accurate representation of the signal amplitude, a, 
thus causing A to be a good model of the true inverse filter, then these tail 
errors cause only minimal performance degradation in many situations (see 
Section 4.1.1). Finally, the LS deconvolution filter derived using the method 
discussed in Section 3.1.1 and Section 3.1.2, and used to implement the LS 

1This reduced computation method for determining ha can be understood by examining 
the following interpolation problem. Consider the case when the BPSK amplitude is such 

that ka = 1. Using Eq. (3.9), let /,[*] = \ (6[k + 1] + 6[k - l])=/i[Jfc]. Let hi be the 
LS inverse filter for fi[k], and the resulting mean squared error (MSE) be Ji. Next, 
consider the case when the BPSK amplitude is such that it falls into the fc*h bin, and let 

/«W = I (£[* + &a] + f>[k - ka]) =fa[k]. The function fa[k] can be constructed from fi[k] 
by interpolating /i [k] by a factor of ka, i.e., inserting (ka -1) zeros between each sample of 
fi[k]. Thus, if the LS inverse filter for fa[k], denoted as ha, is constructed by interpolating 
hi by a factor of ka, the resulting MSE is Ja = Ji, the minimum. 
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technique for this example, is provided in Fig. 3.8. For a more detailed 
performance analysis of the LS enhancement method, see Chapter 4 of this 

report. 

Histogram estimate of the received s gnal pdf - Equispaced bins 
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Figure 3.2: Histogram estimate of the received signal pdf, K = 99, T = 200, 
Ec/a = 8 dB. 

3.2    The Characteristic Function Method 

The CF enhancement technique also focuses on obtaining an estimate of the 
noise pdf from an initial estimate of the received signal pdf. Additionally, 
an estimate of the CF of the noise can be obtained from an initial estimate 
of the CF of the received signal, which can be used to enhance direct LO 
implementation methods, such as the direct FSA algorithm. The CF method 
is developed as follows. As in Section 3.1, let /r[k], /s[k] and /n[k] denote 
the discrete versions of the received signal, information signal and noise pdfs, 
respectively. Then, as before, /r[k] is related to /s[k] and /n[k] by the con- 

volution operation described by Eq. (3.1). 
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Histogram estimate of the noise pdf - Equispaced bins 
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Figure 3.3: Histogram estimate of the noise pdf, K = 99, T = 200, Ec/a 
8 dB. 
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Figure 3.4: LS enhanced histogram estimate of the noise signal pdf, K = 99, 
T = 200, Ec/a = 8dB,L = 50. 
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Histogram estimate of the LO nonlinearity - Noise samples 
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Figure 3.5: Histogram estimate of the LO nonlinearity using noise samples, 
K = 99,T = 200, Ec/a = 8 dB. 
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Figure 3.6: LS enhanced histogram estimate of the LO nonlinearity, K = 99, 
T = 200, Ecla = 8 dB, L = 50. 
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Figure 3.7: Comparison of the two LO nonlinearity estimates, K = 99, 
T — 200, Ec/a = 8dB, L = 50. Legend: — LS enhancement, .... Estimate 
using noise samples 
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Figure 3.8:  The LS deconvolution filter, K = 99, T = 200, Ec/a = 8 dB, 

£ = 50. 

Recall that the CF of /r[k], denoted as <&r(a;), is given by [16] 

*r(W) = Fr{e-*>) = J2/r[k] • e*»TV (3.16) 
k 

where FT{e
iu>) is the iV-dimensional Fourier transform (FT) of /r[k].  Sub- 

stituting Eq. (3.1) into Eq. (3.16), Fr(e
ju>) may be written as [16] 

Fr(e
jU}) = Fs(e

juJ)Fn(e
j") (3.17) 

where F3{e^) is the FT of /s[k], and Fn(e^) is the FT of /„[k]. As can 
be seen, given knowledge of Fs(e

ius), an estimate of FT{e
iu3), and using 

Eq. (3.17), the noise FT may be estimated as 

F(eju;) 
F (ejuJ) = -^ }- (3.18) 

Thus, the goal of the CF enhancement technique is to approximate the CF (or 
FT) of the noise pdf, and in the case of indirect LO detector implementation, 
invert the result to obtain an accurate estimate of the pdf. 
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3.2.1 The CF Enhanced BPSK LO Detector for In- 
dependent Noise 

For the case of a BPSK system in iid noise with information signal amplitude 
a, the information signal pdf is given by Eq. (3.9). Using Eq. (3.16), it can 
be shown that the FT of the transmitted signal pdf is 

F3(e
ju) = cos{coa). (3.19) 

Thus, given an estimate of the FT of the received signal pdf, the resulting 
expression for F^ei") is 

Fn(^) = ?*^-1. (3.20) 
cos(u;a) 

Note that it is possible that | Fn(e
ju) |—> oo when ua equals (2i + l)7r/2 for 

any integer i. Therefore, this method may prove unstable in practice, and 
further modifications may be required. 

3.2.2 Sample Operation 

A simulation of the CF enhanced histogram LO detector for BPSK signals in 
iid additive noise was developed using the Matlab™ software package. The 
simulation algorithm can be divided into the following steps: 

1. The transmitted and noise signals are constructed, then added together 
to form the received signal. 

2. The received signal is soft-limited or noise-blanked to eliminate the 
large interference amplitudes, facilitating histogram construction. 

3. A K-b'm histogram of the modified received signal is constructed, with 
the number of bins specified by the user. The number of bins must be 
odd so that the histogram is centered about zero. 

4. The amplitude of the BPSK signal, a, is assigned to a histogram bin, 
Ka. 

5. The discrete FT (DFT) of the received signal histogram is computed. 
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6. An estimate of the DFT of the noise histogram is constructed using the 
expression in Eq. (3.20), with a replaced by kaA, where A is the bin 
width of the received signal histogram. 

7. The DFT of the noise histogram is inverted to yield an estimate of the 
noise pdf, fn. The estimate is truncated to length K — 2ka. 

8. The LO nonlinearity, g, is estimated from /„. 

9. Finally, g is used to decode the received data. 

Figure 3.9 through Fig. 3.15 illustrate a sample operation of the CF en- 
hanced histogram robust LO detector in Cauchy noise. In particular, the 
resulting estimates of the noise CF, noise pdf, and LO nonlinearity are pro- 
vided for the case of K = 33, T = 50, and Eja = -1 dB. Figure 3.9 depicts 
a typical histogram estimate of the received signal pdf for this scenario. Two 
noise histograms, one estimated using uncorrupted noise samples, and the 
other estimated using the received signal samples in conjunction with the 
CF technique, are depicted in Fig. 3.10 and Fig. 3.11. Similar to the LS 
enhancement case, the CF technique provides a good estimate in the center 
region of the noise pdf, gut yields artifacts in the tail regions. The robust LO 
nonlinearities corresponding to these pdf estimates are shown in Fig. 3.12 to 
Fig. 3.14. By comparing the two nonlinearities, as in Fig. 3.14, it is read- 
ily evident that the CF technique produces a nonlinearity that is similar 
to the desired one in the region about zero, but has artifacts in the tail re- 
gions resulting from the artifacts in the noise pdf estimate. For completeness, 
Fig. 3.15 shows the DFT of the noise histogram estimated using the CF tech- 
nique. In this figure, the solid line represents the estimated DFT, and the 
dotted line represents the theoretical DFT obtained given knowledge of the 
mathematical expression for the noise pdf. As can be seen, the CF technique 
yields a relatively good estimate of the true DFT, with the largest error asso- 
ciated with those bins nearest the BPSK signal amplitude. See Chapter 4 for 
further investigation of the performance of the CF enhancement technique. 

3.3    The Preamble Method 
One limitation of the LS enhancement technique is that it yields an estimate 
of the noise pdf, and not estimates of the actual noise samples.  Thus, this 
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Figure 3.9: Histogram estimate of the received signal pdf, K = 33, T = 50, 
Ec/a = -ldB. 
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Figure 3.10: Histogram estimate of the noise pdf, K = 33, T = 50, Ec/a 

-l dB. 
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Histogram estimate of the noise pdf - CF enhancement 
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Figure 3.11: CF enhanced histogram estimate of the noise signal pdf, K = 33, 
T = 50, Ec/a = -ldB. 
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Figure 3.12: Histogram estimate of the LO nonlinearity using noise samples, 
K = 33, T = 50, Ecla = -1 dB. 
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Figure 3.13:  CF enhanced histogram estimate of the LO nonlinearity, K = 
33, T = 50, Ec/a = -1 dB. 

method is primarily suited to indirect methods of robust LO detector imple- 
mentation, and is not readily applicable to direct implementation methods. 
Also, the CF enhancement technique, while applicable to both indirect and 
direct methods (e.g., the direct FSA method [14]), suffers from limitations 
associated with estimating the information signal's amplitude and the CF of 
the received signal pdf (see Chapter 4 of this report). 

This section presents the preamble enhancement technique, a method 
that may be applied to direct and indirect LO detector implementation algo- 
rithms. In particular, this method yields an estimate of the CF of the noise 
pdf that does not require intermediate estimates of the information signal 
amplitude and CF of the received signal pdf. Thus, the preamble technique 
does not possess many of the limitations inherent to the CF and LS methods. 

To begin, consider a known training sequence of the form 

[sus2,...,sQ}T = [1,-1,1,-1,...]. 

Let the received signal at the input to the detector be given by 

ri = 9si + rii, i = l,...,Q, 

(3.21) 

(3.22) 
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Figure 3.14: Comparison of the two LO nonlinearity estimates, K = 33, 
T = 50, Ec/a = —ldB. Legend: — CF enhancement, .... Estimate using 
noise samples 
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Estimated DFT for the histogram estimate of the noise pdf - CF technique 

Figure 3.15: Estimate of the histogram DFT using the CF technique, K = 33, 
T = 50, Ec/a = —ldB. Legend: — CF enhancement, .... Theoretical 

where rii represents the iid noise samples and 9 is the unknown signal am- 
plitude. Given that the S{ are known (during training), one would like to 
subtract the information signal component from Eq. (3.22) to yield an uncor- 
rupted noise sample. However, this operation cannot be performed directly 
since in many cases the amplitude of the information signal is unknown at 
the detector. 

To derive the preamble technique, assume the following: 1) 6 is relatively 
constant over an extended period of time (slow fading); 2) the noise samples 
are iid with an even symmetric pdf, fn{z)', and 3) perfect synchronization 
is achieved prior to training. Then, given these assumptions, consider the 
sequences v = [vi,v2, ■ ■ ■ ,VQ^\ and w = [wi,w2, ■ ■ ■ ,WQ2], where 

and 

Wi 

(s2i-ir2i-i - s2{r2i) = n2;_i + n2i, i = 1,..., <5i, 

(-1)* x [(s3i_2r3i_2 - sa-ira-i) - (s3i-ir3i-i - s3ir3i)] 

n3i_2 + 2n3i_i + n3i, i = l,...,Q2 

(3.23) 

(3.24) 
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Since each Vi is a function of two adjacent samples, $1 = Q/2. Similarly, 
since each W{ is a function of three adjacent samples, Q2 = Q/3. Thus, for 
both relationships to be valid, Q must be divisible by 6. 

Continuing, it can be shown that the pdfs of Vi and W{ are [16] 

fv(x) = fn(x) * fn(x) (3.25) 

and 

f*(x) = -fn(x) * fn(x) * fn(x/2). (3.26) 

Furthermore, the CFs of fv(x) and fw(x) are [16] 

*W(W) = *»(«) (3.27) 

and 

*„,(<") = $»(w)*n(2w) = *w(w)*n(2a;). (3.28) 

Since fn{x) is even symmetric, both fv(x) and /„,(#) are even symmetric. 
Thus, $n(u;), $„(w), and $„,(ü;) can also be written as 

*n(w)    =   .B{cos(a;ni)} (3.29) 

$„(w)    =   £{cos(uw;)} (3.30) 

§w(w)   =   E{cos(uWi)}. (3.31) 

Given the samples {v{} and {w{}, and the relationships in Eq. (3.30) and 
Eq. (3.31), one technique for estimating 3>„(o;) and $W(UJ) is through the 
following expressions: 

I   Qi 

*»(<")   =   7rEcos(^0 (3-32) 

$»(<*>)   =   77- 2^ cos(ujWi). (3.33) 

Then, using Eq. (3.28), and given the estimates $u(a>) and $„,(u;) provided 
by Eq. (3.32) and Eq. (3.33), $„(<*;) can be estimated as 

. *w{u/2)       0. S,1'i cos(MMIi/2) 

*"M = i^viy " %E<LW-./2) • (3'34) 

Finally, Eq. (3.34) can be used to implement the robust LO detector di- 
rectly, e.g, through the direct FSA method [14]. Equation (3.34) can also be 
inverted to yield a pdf estimate, from which the robust LO detector can be 
implemented using one of the many indirect techniques. 
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3.3.1     The Preamble Method and the FSA LO Detec- 
tor 

After comparing Eq. (3.34) to Eq. (2.17), it is readily seen that the pream- 
ble enhancement method can be directly applied to the FSA LO detector 

described in Section 2.2. In particular, the CF estimate of Eq. (2.17) is 
replaced with the estimate in Eq. (3.34), i.e., 

A ,hl,s_Qi EJL'i cosjkujoWi/2) 
<Pn{ku0) - -^-—Q^ — ■ (3.35) 

Then, substituting Eq. (3.35) in Eq. (2.15) and Eq. (2.16), the FSA coeffi- 
cients are computed as before using the defining expression in Eq. (2.14), 

b = 2w0T~1c. (3.36) 

A sample operation of the preamble enhanced FSA LO detector is pro- 
vided in Fig. 3.16 through Fig. 3.19 for the case of Cauchy noise and system 
parameters p = 10, T = 50, Q = 20,000, and Ee/a = OdB. The desired 
FSA LO nonlinearity, estimated using uncorrupted noise samples, is shown 
in Fig. 3.16. Figure 3.17 illustrates the FSA LO nonlinearity estimated using 
the observed received signal samples, As can be seen from the figure, there 
is an undesired inflection of the nonlinearity in the region centered about 
the origin. However, by using the preamble technique, a close approximation 
of the desired LO nonlinearity can be obtained, as suggested by the FSA 
LO nonlinearity of Fig. 3.18 constructed using the CF estimates in Fig. 3.19. 
Note that in implementing the FSA LO nonlinearity using the preamble tech- 
nique, Q = 60, 000 samples were used so that Q2, the minimum number of 
samples forming a CF estimate in Eq. (3.34), had the value Q2 = 20,000. 
Figure 3.19 also illustrates an interesting characteristic of the CF estimator, 
namely, that for the case of Cauchy noise, the approximation error increases 
as the frequency, kuo, increases. This property, as well as the development 
of a metric for gauging the expected CF estimation error, are the subject of 
Section 3.3.3. See Chapter 4 for a more detailed analysis of the preamble 
technique for FSA LO detection. 
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FSA LO nonlinearity - Estimated using noise samples 
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Figure 3.16:   FSA LO nonlinearity estimated using noise samples, p = 10, 
T = 50, Q = 20,000, Ec/a = 0dB. 

FSA LO nonlinearity - Estimated using received signal samples 
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Figure 3.17: FSA LO nonlinearity estimated using received signal samples, 
p = 10, T = 50, Q = 20,000, Ec/a = OdB. 

37 



FSA LO nonlinearity - Estimated using the preamble technique 
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Figure 3.18: FSA LO nonlinearity estimated using the preamble technique, 
p = 10, T = 50, Q2 = 20,000, Ec/a = OdB. 

3.3.2     The Preamble Method and the Histogram LO 
Detector 

Contrary to the case of the FSA LO detector, additional development is 
required before the preamble method can be applied to histogram LO detec- 
tion. Recall that the preamble method can be used to obtain an estimate 
of the noise pdf, /„(?/), by inverting the CF estimate given by Eq. (3.34). 
However, in the case of histogram LO detection, a histogram estimate of the 
form 

Uv) = E hIBh{v) (3-37) 
Jfc=0 

is desired, where Ik is the value of the histogram in the bin Bk- For example, 
the histogram estimator described in Section 2.1 has levels 

k = P{Bk\ 
ifc+i hk ' 

(3.38) 
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Figure 3.19: Estimate of the noise CF using the preamble technique, p = 10, 
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where P{Bk} is the relative frequency of bin Bk, given by Eq. (2.8), and 
{hk} are the bin breakpoints. Once the histogram pdf estimate of Eq. (3.37) 
is obtained, the corresponding histogram LO nonlinearity can be computed 
using a method similar to the development of Eq. (2.9) and Eq. (2.10) in 
Section 2.1. 

Examining the histogram levels of Eq. (3.38) in more detail for the case 
of equal bin width, A, and for fn{v) even symmetric, it is evident that, on 
average, P{Bk} approaches P{Bk}, where 

Thus, the average histogram level, Ik, is 

P{Bk} = fKk+1 fn(V)dV. (3.39) 

h = ^ Jh
kJlMv)dv', (3.40) 

which is the mean value of fn(r]) on the interval [hk,hk+i) [17]. If it is 
assumed that A is sufficiently small that, for most cases, fn{r}) is either 
relatively constant, or monotonically increasing or decreasing in the interval 
[hk, hk+i), then 4 can be approximated as 

/*«/«((*- ^) A) =/„[*- ^i] , (3.41) 

for k = 0,..., K — 1 and K odd. As can be seen, the goal now is to estimate 
the sequence fn[k] obtained by sampling the pdf, /„(??). In terms of CFs, the 
goal is to estimate the CF, or equivalently, the discrete Fourier transform 
(DFT) of /„[•], namely 

(K-l)/2 

Um]=       £       fn[k}e-2™k'K, (3.42) 
k=-(K-l)/2 

for m = -(K — l)/2,... ,(K - l)/2. However, the preamble method as 
developed in Section 3.3 only provides an estimate of the CF of fn(-), i-e., 

/oo 
fn(r])e-^dri. (3.43) 

-oo 

Thus, additional development of the preamble technique is required to show 
how an estimate of $n(u;) can be used to construct an estimate of .Fn[m]. 
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To begin, consider the FT of the sequence fn[k] = /„(A;A) for k from -co 
to oo. The FT of this sequence is written as 

oo 

Fn(en=   E  /-I*]«-**- (3-44) 
fc=—oo 

Using the properties of the sampling theorem, it can be shown that [18] 

l=—oo \ ' 

which is the infinite sum of shifted values of $„(•)• Next> tne desired sequence, 
fn[k], can be obtained from fn[k] as 

fn[k] = /„[*] ■ h[k], (3.46) 

where h[k] is a window function given by 

m = {l'   ^kT-(K~l)l2 {K-1)/2 (3.47) L J      10,   elsewhere. 

Using the Fourier transform properties, Fn(e
ju), the FT of /„[&], can be 

written as 
Fn(e

j") = Fn(e
j»)*H(en, (3.48) 

where .       T,/rtx 
,       smfctf/2) (3.49) 

sm(o;/2j 

and * denotes convolution. Combining Eq. (3.45) with Eq. (3.48), Fn{e"*) is 

given by 

Finally, Fn(m), the DFT of fn[k], can be obtained from Fn(e
ju), the FT of 

fn[k], using the relationship [18] 

Fn[m] = Fn{J») \u=2im/K , (3-51) 

yielding the result, 

F M _ J_ y  r !^W $n (A _ ÜL (™ _ i\) dx.     (3.52) K[ml" 2^Al^ooJ-,   sm(\/2)     n\A      A U      )) K       J 
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To make the relationship between Fn[-] and $„(■) given in Eq. (3.52) 
more tractable, two simplifying approximations can be used. First, for the 
case when K is sufficiently large, the windowing effect of h[-] will become 
negligible, and 

1    [* sm(\K/2)      fX      2TT (m      \\ (   2TT (m      \\ 

*L ^in(X72TMä - A \K - l)) dX -+ M^Ä \K ~ ')) • 
c ,   r ■ (3-53) 

Second, for most CFs of interest that decay to zero as UJ increases, the infinite 
summation in Eq. (3.52) can be approximated by a finite summation. Given 
these two approximations, Eq. (3.52) becomes 

M 1 /       9-7T \ 
Fn[m] « -  Y:  *n (~(m - IK)) , (3.54) 

^ l=-M V      J ' 

for m = -(K-l)/2,..., (K-l)/2 and K odd, where T = KA is the support 
width of the histogram, and M is called the "aliasing factor." 

Recall that the preamble method was derived using the simplifying as- 
sumption that fn(rj) is an even symmetric pdf, causing fn[k] to be even 
symmetric as well. In this case, it is readily observed that 

$B(w) = *n(-w), (3.55) 

and 
Fn[m] = Fn[-m]. (3.56) 

As a result, for the case of even symmetric pdfs it is sufficient to estimate 
Fn[m] for m = 0,..., (K - l)/2. 

In conclusion, given the assumptions and approximations specified in this 
section and Section 3.3, the preamble method for enhancing the histogram 
LO detector can be summarized as follows: 

1. Determine values for the parameters K (number of histogram bins), T 
(the support width of the histogram), and M (the aliasing factor). 

2. Compute $n (w0(m - IK)) using Eq. (3.34) for m = 0, ..., (K - l)/2 
and / = -M, ..., M, where o»0 = 2-K/T. 
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3. Estimate Fn[m] as 

•,     M 

tH = i-  £  *»Mm - /ÜT)), (3-57) 

for m = 0,..., (K - l)/2. 

4. Determine the histogram levels, lk = fn[k - {K - l)/2], by computing 

the inverse DFT of the sequence 

{Fn[(K - l)/2], ..., F„[l], Fri[0], Fn[l], ..., &pT - l)/2]} . 

5. Form the histogram LO nonlinearity using the histogram found in 
Step 4 and the method discussed in Section 2.1. 

Figure 3.20 to Fig. 3.26 depict various stages of the histogram LO detec- 
tor algorithm for the case of Laplace noise and system parameters K = 15, 
T = 30, M = 1, Q = 20,000, and Ec/a = OdB. Laplace noise, rather than 
Cauchy noise, was chosen so as to illustrate the "robustness" of the robust 
LO detector. A typical histogram estimate of the received signal pdf for 
this scenario is provided in Fig. 3.20. Two histogram estimates of the noise 
pdf, one formed using uncorrupted noise samples, and the other constructed 
using the preamble technique, are given in Fig. 3.21 and Fig. 3.22, respec- 
tively. The desired histogram LO nonlinearity, implemented using uncor- 
rupted noise samples, is shown in Fig. 3.23, and the corresponding histogram 
LO nonlinearity estimated using the received signal samples is provided in 
Fig. 3.24. As can be seen from this figure, the nonlinearity estimated using 
the received signal samples possesses an undesired inflection in the region 
centered about the origin. The histogram LO nonlinearity estimated using 
the preamble technique, however, does not have this inflection, as illustrated 
in Fig. 3.25. Furthermore, this nonlinearity estimate is a close approximation 
of the desired nonlinearity in Fig. 3.23. Finally, Fig. 3.26 shows the pream- 
ble estimated DFT of the noise histogram that was used to construct the 
LO nonlinearity of Fig. 3.25. As can be seen, the estimate closely approx- 
imates the theoretical DFT obtained given knowledge of the mathematical 
expression for the noise pdf. For further analysis of the preamble technique 
for histogram LO detection, see Chapter 4 of this report. 
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Figure 3.20: Histogram estimate of the received signal pdf, K = 15, T = 30, 
(5 = 20,000, Ec/a = 0dB. 
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Figure 3.21:  Histogram estimate of the noise pdf, K = 15, T = 30, Q = 
20,000, Ec/a = 0 dB. 
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Figure 3.22: Preamble enhanced histogram estimate of the noise pdf, K — 15, 
T = 30, M = 1, Q = 20,000, Eja = 0 dB. 
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Figure 3.23: Histogram estimate of the LO nonlinearity using noise samples, 
K = 15, T = 30, Q = 20,000, Ec/a = OdB. 
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Figure 3.24: Histogram estimate of the LO nonlinearity using received signal 
samples, K = 15, T = 30, Q = 20,000, Eja = OdB. 
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Figure 3.25: Preamble enhanced histogram estimate of the LO nonlinearity, 
K = 15, T = 30, M = 1, Q = 20,000, Eja = 0 dB. 
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Figure 3.26: Estimate of the histogram DFT using the preamble technique, 
K = 15, T = 30, M = 1, Q = 20,000, Eja = OdB. Legend: — Preamble 

enhancement, .... Theoretical 
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3.3.3    The Variance of the Estimator &n(kw0) 

Of critical importance in attaining a reliable estimate of $„(jfeo;o) is deter- 
mining the number of observations, Q, used to compute the estimate 

1   Q 

§n(kuo) = 7^5] cos(ku}0r)j). (3.58) 
V 3=1 

One method is to choose Q such that the variance of $n(kcj0) is less than 
some fraction, a, of the quantity $n

2(kuj0). Denoting the expected value and 
variance of an estimator as E{-} and Var{-}, respectively, it is well known 
that [16] 

Var{$n{kuQ)} = E02
n(kcuo)} - [E{$n(kuj0)}} * . (3.59) 

The expected value of $n(kuj0) is 

1   Q 

3- 

for {r]j} iid. Next, E{$2
n(ku)0)} is given by 

E{$n(ku;0)} = — J2 Elcosikuorij)} = E{coa(kcjonj)} = <f>n(ku0) ,    (3.60) 

1     Q   Q 

E{$2
n(ktü0)} = — J2 E E{coB(kLJoni) cos(kajQnj)} . (3.61) 

^    i=l 3=1 

For the case when i ^ j, with {rij} iid, 

E{cos(kiü0rii) cos(kuj0nj)}   =   E{cos(kuj0ni)}E{cos(ku;onj)} 

(3.62) 
=     $n2(küJ0). 

When i = j, the expression in Eq. (3.62) becomes 

E{cos(kv0ni)cos(ku}0nj)}   =   E {cos2 (kw0nj)} = ^E{1 + cos(2k(v0nj)} 

=   § + i*B(2A**). 
(3.63) 
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(3.64) 

Substituting Eq. (3.62) and Eq. (3.63) into Eq. (3.61), E{&n(kuJo)} becomes 

E{*2
n{kLJo)}   =   $Q[i + |*»(2*wb)] + ^{Q2 ~ Q)$n2(ku;o) 

=   ^[l + $n(2^o)]+(l-j)$n2(A;a;o). 

Finally, substituting Eq. (3.60) and Eq. (3.64) in Eq. (3.59), it can be shown 

that 

Var{$n(kuJo)} = ^r[1 + *„(2fcwo) - 2*„a(fcw0)] • (3.65) 

As examples, consider the cases of LO detection in three different noise 
environments: Cauchy noise, Gaussian noise, and Laplace noise. For the case 

of Cauchy noise, 

UV) = 
1 

7T a2 + rj' 
,     <7>0, (3.66) 

and 
$n(ku0) = e-"*|fc|,   wo>0. (3.67) 

Substituting Eq. (3.67) in Eq. (3.65), it can be shown that, for Cauchy noise, 

1 
Var{$n(kuo)} 2Q L 

1   _ g-2<ru;o|fc| 

which is monotonically increasing for k > 0, with 

Var{$n(0)}   =   0 

lim Var{$n(kuo)} 
k—nx> 

In the case of Gaussian noise, 

Uv) = V2^ 
V/(2<r2) 

1 

2Q 

a >0 

and 

(3.68) 

(3.69) 

(3.70) 

(3.71) 

(3.72) §n{kuQ) = e-*k <a  ,   u;0 > 0. 

Substituting Eq. (3.72) in Eq. (3.65), it can be shown that, for Gaussian 

noise, 

Var{$n(ku)0)} = — 1 - e-"2^ 
l2 

(3.73) 
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which, is monotonically increasing for k > 0, with 

Var{$n{0)}   =   0 (3.74) 

lim Var{$n(ku0)}   =   —. (3.75) 

Finally, for the case of Laplace noise, 

fn{v) = vhe    '' CT>0> (3-76) 

and 

Again, substituting Eq. (3.77) in Eq. (3.65), it can be shown that, for Laplace 
noise, 

VariM^o)} = ^(2^p + i;(^;+4ff42+4) • (3-78) 

As before, it is readily seen that 

Var{$n(0)}   =   0 (3.79) 

lim Var{$n(kujo)}   =   ^ ■ (3-80) 

However, for the case of Laplace noise, Var{$n(ku)0)} is not a monotonically 
increasing function for k > 0. Rather, using Mathcad™ by MathSoft, Inc., 
the expression in Eq. (3.78) can be shown to have a maximum value at 

k =   r^/l3 + 3v^l)/(crwo).   For k equal to this value, Var{$n(ku;0)} m 

(1.008669985)/(2Q), a number slightly larger than 1/(2(5). 
To compare the number of samples required in the different noise envi- 

ronments, consider the criterion of choosing Q such that the variance of the 
CF estimator at ku)0 is less than some fraction of the square of the actual 
CF at kcoo, i.e., choose Q such that 

Var{$n(ku0)} < a$n
2(ku>0). (3.81) 
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Noting that for Cauchy, Gaussian, and Laplace noise, Var{$n(kv0)} ap- 
proaches 1/(2Q) as k approaches infinity, one can choose Q such that 

Q > 2a$n
2(kmaxcüo) ' 

(3.82) 

where kmax is the largest k for which $n(ku0) is to be computed. Substi- 
tuting the corresponding expressions for *„(•) into Eq. (3.82), the respective 
requirements on Q for the different noise types become: 

• For Cauchy noise: 

For Gaussian noise: 

For Laplace noise: 

Q > 

Q > 

02<TWo\kn 

2a 

g"'Tn.O!BU'0 

Q > 

2a 

[2 + (AWr^Qg)2]2 

8a 

(3.83) 

(3.84) 

(3.85) 

As a specific example, consider the implementation of the FSA LO detec- 
tor having order p and support T = 50. Thus, kmax = 2p and o»0 = (2K)/T = 
7I-/25. For the case when the noise parameters are all a - 1 and a = 1/8, 

Eq. (3.83) through Eq. (3.85) become 

• For Cauchy noise: 

• For Gaussian noise: 

• For Laplace noise: 

Up Q > 4e2B 

Q > 4e(26) P 

Q > 2 + (!)V 

(3.86) 

(3.87) 

(3.88) 
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Plots of Qmin relative to p are provided in Fig. 3.27 that indicate how the 
type of noise directly influences the number of samples required to provide 
a reliable estimate of the corresponding LO nonlinearity. Furthermore, this 
example, in conjunction with the material presented in this section, clearly 
illustrates how the variance of the estimator %n(kujQ) can be used to gauge 
the accuracy of a preamble enhanced robust LO nonlinearity in terms of the 
number of samples utilized in the estimation process. 

2500 

1000 

5 6 7 
FSA order, p 

Figure 3.27: Number of samples, Q, required relative to the FSA order, p, 
indicated by the preamble technique variance criterion. Legend: — Cauchy 
noise, - - Gaussian noise, .... Laplace noise 
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Chapter 4 

Performance Analysis 

One method that has proven useful in quantifying the performance of robust 
LO detectors is Monte Carlo simulation analysis. In this study, two Matlab™ 
computer simulations were implemented for examining the characteristics of 
the various enhancement algorithms presented in Chapter 3. One program 
simulates the histogram robust LO detector in a direct sequence (DS) spread 
spectrum (SS) BPSK system, while the other simulates a BPSK DSSS system 
employing an FSA robust LO detector. In both simulations, the system 
can be subjected to one of three types of channel interference: iid Cauchy 
noise, iid Laplace noise, or iid Gaussian noise. Furthermore, each simulation 
compares the enhanced robust LO detector in question to: 

• the theoretical LO detector (known pdf case) 

• the robust LO detector using noise samples for estimation (ideal case) 

• the robust LO detector using received signal samples for estimation 
(large J/S implementation) 

• the linear detector. 

Thus, the remainder of this chapter examines the probability of bit error (Pb) 
for the different detector/enhancement combinations, facilitating the com- 
parison of detector effectiveness for different interference and enhancement 

scenarios. 
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4.1    Results for the Histogram Robust LO 
Detector 

This section presents the simulation results for the histogram robust LO 
detector in conjunction with the following enhancement methods: 

• the LS enhancement technique 

• the CF enhancement technique 

• the preamble enhancement technique. 

As will be seen, both the LS and CF enhanced detectors, while typically- 
providing a lower Pb than the standard large J/S implementation of the 
LO detector, exhibit performance degradation caused by the "binning" (or 
quantization) of the information signal's amplitude. The preamble enhanced 
LO detector, on the other hand, does not exhibit this degradation in perfor- 
mance, and usually achieves a significantly lower Pb than does the large J/S 
implementation. However, as in all the enhancement algorithms, care must 
be taken in choosing appropriate values for the various system parameters. 

4.1.1     The LS Enhancement Technique 

To investigate the performance characteristics of the LS enhanced histogram 
LO detector, Pb curves for this detector in Cauchy noise are shown in Fig. 4.1 
to Fig. 4.5, with a legend provided in Fig. 4.6. After an examination of the 
figures, a number of observations can be made concerning the detector per- 
formance. First, the LS enhanced LO detector performs better, in general, 
than the robust LO detector using the received signal samples.1 Second, the 
performance of the LS enhanced detector for large Ec/<r improves as the his- 
togram width, T, increases. However, increasing T decreases performance for 
low Ec/a regions, illustrating an important performance trade-off. Finally, 
the Pb curves for the LS enhanced detector are not "smooth" functions of 
Ec/a, and in fact, exhibit severe performance fluctuations. 

xFor these and subsequent curves, Pj is calculated by dividing the number of observed 
errors by the total number of bits transmitted. Thus, values of zero often are computed 
for an actual Pj that is less than or approximately equal to the number of transmitted 
bits. Since Pj is plotted on a logarithmic scale in the figures, values of zero are indicated 
by a break in the appropriate curve. 

54 



Resulting average probability of error 

Figure 4.1: Pb curves for the LS enhanced histogram LO detector with 
N = 10 samples per bit, K — 33 histogram bins, filter length 2L - 1 = 99, 
truncation width of T = 100, and Q = 50,000 samples per pdf approxima- 

tion. 

Resulting average probability of error 

Figure 4.2: P& curves for the LS enhanced histogram LO detector with 
N = 10 samples per bit, K - 33 histogram bins, filter length 2L - 1 = 99, 
truncation width of T = 200, and Q = 50,000 samples per pdf approxima- 

tion. 
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Resulting average probability of error 

Figure 4.3: P& curves for the LS enhanced histogram LO detector with 
N = 10 samples per bit, K = 99 histogram bins, filter length 2L — 1 = 199, 
truncation width of T = 200, and Q = 50,000 samples per pdf approxima- 
tion. 

Resulting average probability of error 

-10-8 -6 -4 -2 0 2 4 6 8 10 
Ec/sigma (dB) 

Figure 4.4: P& curves for the LS enhanced histogram LO detector with 
N = 10 samples per bit, K = 99 histogram bins, filter length 2L — 1 = 199, 
truncation width of T = 400, and Q = 50,000 samples per pdf approxima- 
tion. 
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Resulting average probability of error 

Figure 4.5: Pb curves for the LS enhanced histogram LO detector with 
N = 10 samples per bit, K = 99 histogram bins, filter length 2L - 1 = 199, 
truncation width of T = 600, and Q = 50,000 samples per pdf approxima- 

tion. 

       Enhanced LO detector 

Robust LO detector - noise samples 

       Robust LO detector - rcvd. sig. samples 

x    x    x    x    x     Theoretical LO detector 

       Linear receiver - soft limiter 

 Linear receiver - no limiter 

10 2 4 6 8 10 12 14 16 18 20 

Figure 4.6: Legend for the probability of bit error figures. 
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Further analysis of the results for the LS enhanced detector revealed the 
cause of the performance fluctuations. Figure 4.7 shows a typical plot of Pb 

relative to the information signal amplitude, a. In addition, the bin endpoints 
for the received signal histogram are indicated by the "X" marks. As can 
be seen, local Pb minima occur when a lies in the center of a bin, and Pb 
increases for values of a close to the bin endpoints. The location of a in a 
histogram bin is critical for the following reasons. When a is located near 
the center of a bin, the bin index ka accurately represents a and the resulting 
deconvolution filter, h, is closely related to the true information signal pdf. 
However, when a lies near a bin endpoint, ka no longer accurately represents 
a, and the resulting deconvolution filter no longer corresponds to the true 
information signal pdf. Thus, an increase in pdf estimation error occurs when 
ka does not accurately represent a, and is an inherent limitation possessed 
by the LS enhancement technique. 

Effect of Bit Amplitude Position on Probability of Error - LS Enhamcement 
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Figure 4.7: Effect of bit amplitude position on Pb for the LS enhanced robust 
LO detector. 

4.1.2    The CF Enhancement Technique 

Representative Pb curves for the CF enhanced histogram LO detector sub- 
jected to iid Cauchy noise are provided in Fig. 4.8 and Fig. 4.9 (see Fig. 4.6 
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for a legend). Of particular interest is the fluctuations observed in the per- 
formance curves for the CF enhanced detector. As in the case of the LS 
enhanced LO detector, these fluctuations are directly related to the location 
of the BPSK signal amplitude, a, in a given histogram bin, indexed by ka. 
This phenomenon can be readily observed in Fig. 4.10, a typical plot of P& 
relative to a, and is a function of the relationship given in Eq. (3.20). 

Resulting average probability of error 

Ec/sigma (dB) 

Figure 4.8: Pb curves for the CF enhanced histogram LO detector with N = 
10 samples per bit, K = 99 histogram bins, truncation width of T = 200, 
and Q = 50,000 samples per pdf approximation. 

To understand the cause of the performance fluctuations, consider the 
following. Recall that the FT of the received signal pdf for a BPSK system 
is given by 

Fr(e
ju) = Fn{e>u)coa(cja). (4.1) 

Assume that FT(e?u) is known exactly, i.e., ignore the effects of histogram 
estimation error. Then, if the BPSK signal amplitude is approximated at 
the detector by &aA, where A is the histogram bin width, Eq. (3.20) gives 
the following estimate of Fn(e

3W): 

cos(u)a) 
Fn(e>») = Fn{e'")- (4.2) 

cos(o;Ä;aA) 

Equation (4.2) clearly indicates that if kaA is not approximately equal to a, 
then cos(u;a) does not cancel cos(ujkaA), which may lead to values of u for 
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Resulting average probability of error 

Figure 4.9: P& curves for the CF enhanced histogram LO detector with N = 
10 samples per bit, K = 99 histogram bins, truncation width of T = 400, 
and Q — 50,000 samples per pdf approximation. 

Effect of Bit Amplitude Posrtion on Probability of Error - CF Enhamcement 

Figure 4.10:   Effect of bit amplitude position on P& for the CF enhanced 
robust LO detector. 
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which I jPn(e
Ju;) |—> oo (or a very large number in computer simulations and 

applications). Thus, the performance of the CF enhancement technique is 
strongly dependent on the estimate of the information signal's amplitude at 
the detector. 

4.1.3    The Preamble Enhancement Technique 

To compare the performance of the preamble enhanced histogram LO detec- 
tor to the LS and CF enhanced detectors, first consider the results provided 
in Fig. 4.11 for the case of Cauchy noise (see Fig. 4.6 for a legend). Two obser- 
vations are immediately apparent after examining this figure and the figures 
in Section 4.1.1 and Section 4.1.2. First, the preamble enhanced LO detec- 
tor provides a lower P\, than the corresponding large J/S implementation. 
Second, the preamble enhanced detector does not exhibit the performance 
fluctuations that are inherent to the LS and CF enhanced detectors. Thus, 
the consistency in performance of the preamble technique is a useful attribute 
for predicting detector effectiveness in a given interference environment. 

Resulting average probability of error 

Figure 4.11: P& curves for the preamble enhanced histogram LO detector 
in Cauchy noise with N = 10 samples per bit, K = 33 histogram bins, 
truncation width of T = 100, aliasing factor M = 1, and Q = 50,000 samples 
per pdf approximation. 

Given the promising results indicated in Fig. 4.11, an additional analy- 
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sis was performed to investigate further the preamble enhancement method. 
Figure 4.12 and Fig. 4.13 depict Pb curves for the preamble enhanced his- 
togram LO detector subjected to Laplace noise, with aliasing factors M = 0 
and M = 1, respectively. For large values of Ec/a, these figures illustrate 
the superior performance of the preamble enhanced detector as compared 
to the large J/S implementation. Conversely, for small values of Ec/a, the 
preamble technique exhibits approximately a 1 dB degradation relative to the 
large J/S method. In many cases, however, this minor performance decrease 
may be a small price to pay given the increased range of reliable detection 
afforded by the preamble technique. 
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Figure 4.12: P& curves for the preamble enhanced histogram LO detector 
in Laplace noise with N = 10 samples per bit, K = 15 histogram bins, 
truncation width of T — 30, aliasing factor M = 0, and Q = 20,000 samples 
per pdf approximation. 

4.2    Results for the FSA Robust LO Detec- 
tor 

This section presents the simulation results for the FSA robust LO detector 
in conjunction with the following enhancement methods: 
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Resulting average probability of error 

Figure 4.13: Pb curves for the preamble enhanced histogram LO detector 
in Laplace noise with N = 10 samples per bit, K = 15 histogram bins, 
truncation width of T = 30, aliasing factor M = 1, and Q = 20,000 samples 
per pdf approximation. 

• the CF enhancement technique 

• the preamble enhancement technique. 

Similar to the case of histogram LO detection, it will be seen that the pream- 
ble enhanced FSA LO detector typically exhibits better performance than 
the CF enhanced detector for a given interference scenario. However, one 
must keep in mind that this performance improvement is achieved at the 
expense of an increase in bandwidth overhead, which may or may not be an 
issue in a specific system implementation. 

4.2.1     The CF Enhancement Technique 

Typical Pb curves for a CF enhanced FSA LO detector are given in Fig. 4.14 
to Fig. 4.16 for the case of Cauchy interference. As in the case of histogram 
detection, the CF enhanced FSA detector also exhibits performance fluctu- 
ations as Ec/a varies. This characteristic of the CF technique is directly 
related to the defining expression of Eq. (3.20), as was seen in the case of 
histogram detection discussed in Section 4.1.2. 
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Figure 4.14: Pb curves for the CF enhanced FSA LO detector in Cauchy 
noise with N — 10 samples per bit, FSA order of p = 10, truncation width 
of T = 50 and Q = 20,000 samples per nonlinearity approximation. 
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Figure 4.15: P\, curves for the CF enhanced FSA LO detector in Cauchy 
noise with N = 10 samples per bit, FSA order of p = 10, truncation width 
of T = 100 and Q = 20,000 samples per nonlinearity approximation. 
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Resulting average probability of error 
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Figure 4.16: Pb curves for the CF enhanced FSA LO detector in Cauchy 
noise with N = 10 samples per bit, FSA order of p = 15, truncation width 
of T = 100 and Q = 20,000 samples per nonlinearity approximation. 

To determine the cause of these fluctuations in Pb, recall that the FSA 
LO nonlinearity is implemented using $n(ku;o), an estimate of the noise CF 
at multiples of o;0. If uncorrupted noise samples are available at the detector, 
$n(kaj0) can be estimated using the expression in Eq. (2.17), i.e., 

$n(ku0) = —^2cos(kuJoVj), (4.3) 

where {q3} is the set of Q observations of the noise. In CF enhanced 
detection, however, uncorrupted noise samples are not available. Instead, 
Eq. (3.20) is used to estimate $n(ku}0), yielding the expression, 

*„(Aü;O) 
1   EjLl COs(fajbT7j) 

Q      cos(kuJoO') 
(4.4) 

The expression in the numerator of Eq. (4.4) is an approximation of the 

received signal CF, $r(kt>0), where 

§T(kvo) = $n(ku}0) cos(ku}0a), (4.5) 
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and the term in the denominator of Eq. (4.4) attempts to cancel the cos(Aiu;oa) 
component of the expression in Eq. (4.5). However, since an approximation 
of §T(ku)0) is used, this cancellation is incomplete and manifests itself as 
an estimation error that is amplified for values of a such that cos(ku0a) is 
small. This estimation error amplification produces a corresponding inaccu- 
racy in the FSA nonlinearity, causing the performance fluctuations observed 
in Fig. 4.14 to Fig. 4.16. 

4.2.2    The Preamble Enhancement Technique 

This section presents the performance results for preamble enhanced FSA LO 
detection in Cauchy and Laplace noise environments. For the case of Cauchy 
noise, Fig. 4.17 to Fig. 4.20 provide Pb curves for the cases of Q = 30,000 and 
Q = 60,000 training samples, and different values for the FSA order, p, and 
approximation width, T. (See Fig. 4.6 for a legend.) These plots indicate 
that an increase in the number of training samples yields a decrease in Pb, as 
expected. However, it must be remembered that an increase in the number 
of training samples necessitates an increase in the overhead bandwidth of 
the system. Also, comparing Fig. 4.18 to Fig. 4.20 shows that increasing 
p, with an appropriate increase in T, improves performance provided that 
a sufficient number of observations are available for estimating the desired 
number of FSA coefficients. 

Figure 4.21 shows example Pb curves for the case of FSA LO detection 
in Laplace noise (see Fig. 4.6 for a legend).2 As in previous examples, the 
preamble enhanced detector provides a lower Pb than the corresponding large 
J/S implementation. Carrying the analysis further, an interesting compari- 
son can be made between the FSA and histogram LO detectors. Comparing 
Fig. 4.21 with Fig. 4.12 and Fig. 4.13, it can be seen that the FSA detector 
provides better performance for low Ec/a, whereas the histogram detector 
performs better in high Ec/cr. The reason for this trend is that the FSA algo- 
rithm produces a smooth, accurate estimate of the true LO nonlinearity for 
small values of the received signal, and thus the majority of received signal 
observations for low Ec/a. On the other hand, for large values of the received 
signal, and thus the majority of received signal observations for high Ec/a, 

2 Note that the fluctuations in the performance curve for the preamble enhanced LO 
detector are caused by the relatively few samples used to compute Pj, and are not inherent 
to the preamble technique. 
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Figure 4.17: Pb curves for the preamble enhanced FSA LO detector in Cauchy 
noise with N = 10 samples per bit, FSA order of p = 10, truncation width 
of T = 50, 20,000 samples per nonlinearity approx. (except preamble), and 
Q = 30,000 training samples (corresponding to a = 0.00254). 
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Figure 4.18: Pb curves for the preamble enhanced FSA LO detector in Cauchy 
noise with N = 10 samples per bit, FSA order of p - 10, truncation width 
of T = 50, 20,000 samples per nonlinearity approx. (except preamble), and 
Q = 60,000 training samples (corresponding to a = 0.00127). 
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Figure 4.19: Pb curves for the preamble enhanced FSA LO detector in Cauchy 
noise with N = 10 samples per bit, FSA order of p = 15, truncation width 
of T = 100, 20, 000 samples per nonlinearity approx. (except preamble), and 
Q = 30, 000 training samples (corresponding to a = 0.000723). 
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Figure 4.20: Pb curves for the preamble enhanced FSA LO detector in Cauchy 
noise with N = 10 samples per bit, FSA order of p = 15, truncation width 
of T = 100, 20,000 samples per nonlinearity approx. (except preamble), and 
Q = 60,000 training samples (corresponding toa = 0.000361). 
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the estimated FSA LO nonlinearity exhibits the "ripples" inherent to the 
FSA algorithm, causing a decrease in nonlinearity approximation accuracy 
and a corresponding increase in P&. With the addition of error correction cod- 
ing, however, the difference in detector performance should become small. In 
this case, the choice of LO detector algorithm, e.g., histogram or FSA, will 
be determined by which is more amenable to a given system application. 

Resulting average probability of error 

Ec/sigma (dB) 

Figure 4.21: Pb curves for the preamble enhanced FSA LO detector in Laplace 
noise with N = 10 samples per bit, FSA order of p = 10, truncation width 
of T = 30, 20,000 samples per nonlinearity approx. (except preamble), and 
Q = 60,000 training samples (corresponding toa = 7.96 x 10-5). 
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Chapter 5 

Summary and Future Research 

The previous chapters identified and examined various enhancement tech- 
niques for use with indirect and direct robust LO detector algorithms. More- 
over, simulation results indicate that with enhancement, the performance of 
the robust LO detector can approach that of the ideal case in which uncor- 
rupted noise samples are used to estimate the LO nonlinearity. The methods 
developed herein, however, assume that the noise samples are independent 
and identically distributed (iid), which may not be indicative of the more 
correlated noise, e.g., narrowband interference, that is encountered in many 
applications. With this in mind, the remainder of the chapter summarizes 
the work presented in this report, and discusses the evolution of the research 
topic so as to address more complex noise environments. 

5.1     Summary 

This report represents the culmination of a study concerning enhancement 
methods for robust locally optimum (LO) signal detection. In Chapter 2, the 
LO detector for independent noise and the concept of robust LO detection 
were introduced. Also, two types of robust LO detectors, the histogram 
indirect implementation and the Fourier series approximation (FSA) direct 
implementation, were reviewed. With this framework in place, the focus of 
the research effort was discussed next in Chapter 3. 

Chapter 3 presented the derivations of three robust LO detector enhance- 
ments:   the least squares (LS), the characteristic function (CF), and the 
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preamble enhancement methods. In the LS method, a least squares decon- 
volution filter is used to obtain an estimate of the noise probability density 
function (pdf) from an estimate of the received signal pdf. The CF method 
utilizes the relationship between a pdf and its CF to obtain an estimate of 
the noise CF from an estimate of the received signal CF formed as a function 
of the received signal samples. One potential limitation that both the LS 
and CF enhancement techniques possess is that each requires an accurate 
estimate, at the receiver, of the transmitted information signal's amplitude. 
Since in many applications knowledge of this amplitude is unavailable at 
the receiver, another enhancement technique was developed, the preamble 
method. In the preamble method, training samples are used to compute an 
estimate of the noise CF (and the noise pdf, if necessary) from which an 
estimate of the LO nonlinearity is obtained. 

Using the methods described in Chapter 3, Chapter 4 presents the per- 
formance results for several robust LO detector algorithm and enhance- 
ment technique combinations. It was observed that, in most cases, the en- 
hanced LO detectors achieved lower probability of errors than the correspond- 
ing large jammer-to-signal ratio (J/S) implementation of the LO detector.1 

Moreover, due to the limitations imposed by the transmitted signal am- 
plitude estimation accuracy, the performance of the preamble enhanced LO 
detector was, in most cases, significantly better than corresponding LS or CF 
enhanced detector. However, it must be remembered that this performance 
improvement occurs at the expense of increasing the overhead bandwidth 
of the system, an important consideration in some applications. Table 5.1 
summarizes some of the performance trade-offs for the various LO detector 
and enhancement technique combinations. 

5.2     Future Research 

With the insight gained from this report, the logical evolution of this research 
topic can be ascertained. Recall that the results presented herein were ob- 
tained under the assumption that the noise samples were independent and 
identically distributed (iid).   However, in many scenarios of interest the in- 

1In the large J/S LO detector implementation, the received signal samples are assumed 
to be approximately equal to the noise samples. Thus, the received signal samples are used 
to estimate the desired LO nonlinearity. 
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Enhanced Robust LO Detector Characteristics 
Enhanced 

LO detector 
type 

Parameters 
to be 

determined 

Increased 
overhead 

bandwidth 

Signal 
amplitude 
required 

Performance 
fluctuations 

observed 
LS enhanced 

histogram 
LO detector 

K, T, Q, L X X 

CF enhanced 
histogram 

LO detector 
K,T,Q X X 

Preamble 
enhanced 
histogram 

LO detector 

K,T,Q X 

CF enhanced 
FSALO 
detector 

P,T,Q X X 

Preamble 
enhanced 
FSALO 
detector 

P,T,Q X 

Table 5.1: Performance characteristics and trade-offs for the various robust 
LO detector algorithm and enhancement technique combinations examined 
in this report. Parameters: K is the number of histogram bins, p is the 
FSA order, T is the LO nonlinearity approximation width (support), Q is 
the number of samples per nonlinearity approximation, and L is the length 
parameter for the LS method deconvolution filter. Note, an "X" indicates 
that the detector possesses the corresponding characteristic. 
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terference is not iid, and in fact, is highly correlated, e.g., as in the case of 
narrowband interference. Thus, means should be identified for applying the 
methods examined in this study to more general noise types. 

One method that may achieve this goal is to model the noise as an auto- 
regressive (AR) process. For a first-order AR process, the noise samples, 

{rii}, are modeled as 
ni - ani-i. +Wi, (5.1) 

where {wi} is an iid noise sequence, and a is a constant parameter related 
to the correlation of the noise. Given the expression in Eq. (5.1), it can be 
shown that the LO detector for first-order AR noise is [19] 

choose    Hi 
N 

l(p) = EC*"" '«)*(/>) I 7, (5-2) 
i=i 

< 
choose    Ho 

where 

for i = l, 

9i(p) = 9i{Pu P2) =—rj-T + a Yj- —r, (b.ö) 
Jw{pi) Jw{P2 - api) 

ft(p) = *(*-!,*,*») = -f^-ap^) + a fw{pi+1 - aPl) '       (5-4) 

for » = 2, ...,JV — 1, and 

t  \ ( \ &(pN ~~ apN~^ (* K\ 
9i{p) = 9N{PN-\,PN) = —f-r T~n S' ^     ' Jw{pN - apN-i) 

for i = N, where /„,(•) is the pdf of tOj. 
The expressions in Eq. (5.3), Eq. (5.4), and Eq. (5.5) illustrate how the 

use of the AR noise model reduces the LO nonlinearity from a function of 
an iV-dimensional pdf to functions of a 1-dimensional pdf, the pdf of the 
iid noise samples, {iu;}. Furthermore, the enhancement techniques derived 
and discussed in this report may prove useful as means for estimating the 
driving white noise pdf, /„,(•), reliably and accurately, thereby improving 
performance relative to standard large J/S implementations. Before a vi- 
able LO detector for AR noise can be implemented, however, a number of 
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issues must be addressed. These include: (1) deriving robust LO detector 
algorithms for AR noise, (2) identifying techniques, such as the Yule-Walker 
and Burg methods [20], for estimating the coefficients of the AR process, and 
(3) determining methods for estimating the driving white noise pdf, /„;(•), 
of the AR process. Once these issues are resolved, the use of AR modeling 
to specify the structure of the robust LO detector has the potential to sig- 
nificantly augment the existing detector methods for use in more complex 
interference environments. 

74 



Bibliography 

[1] J. Capon, "On the Asymptotic Efficiency of Locally Optimum Detec- 
tors," IRE Transactions on Information Theory, pp. 67-71, April 1961. 

[2] D. Middleton, "Canonically Optimum Threshold Detection," IEEE 
Transactions on Information Theory, Vol. IT -12, No. 2, pp. 230-243, 

April 1966. 

[3] W. Gardner, "Structural Characterization of Locally Optimum Detec- 
tors in Terms of Locally Optimum Estimators and Correlators," IEEE 
Transactions on Information Theory, Vol. IT-28, No. 6, pp. 924-932, 
November 1982. 

[4] S. A. Kassam, Signal Detection in Non-Gaussian Noise, New York: 
Springer-Verlag, 1988. 

[5] D. R. Ucci, W. E. Jacklin, and J. G. Grimm, Investigation and Sim- 
ulation of Nonlinear Processors for Spread Spectrum Receivers, Final 
Technical Report for Rome Laboratory, USAF, Report No. RL-TR-93- 
258, 1993. 

[6] W. E. Jacklin, J. H. Grimm, and D. R. Ucci, "The Simulation of a Two- 
Dimensional Spread Spectrum System with Locally Optimal Process- 
ing," Proceedings of the 1993 IEEE MILCOM Conference, pp. 288-292, 

1993. 

[7] J. H. Grimm, et. al, "Continuous Polynomial Approximation," Pro- 
ceedings of the 1993 IEEE MILCOM Conference, pp. 283-287, October 

1993. 

75 



[8] D. R. Ucci, W. E. Jacklin, and J. G. Grimm, A Spread Spectrum Receiver 
with Nonlinear Processing, Final Technical Report for Rome Laboratory, 
USAF, Report No. RL-TR-93-50, 1993. 

[9] Hazeltine Report No. 6662, Adaptive Nonlinear Coherent Processor De- 
sign, Final Technical Report for Rome Air Development Center, USAF, 

Report No. RADC-TR-89-387, 1990. * 

[10] J. H. Higbie, "Adaptive Nonlinear Suppression of Interference," Pro- 
ceedings of the 1988 IEEE MILCOM Conference, pp. 23.3.1-9, 1988. 

[11] J. G. Proakis, Digital Communications, Second Edition, New York: 
McGraw-Hill, 1989. 

[12] D. R. Ucci, W. E. Jacklin, and J. Tamas, Quasi-optimal Processing 
in Spread Spectrum Environments, Final Technical Report for Rome 
Laboratory, USAF, RL Contract No. F30602-93-C-0099, 1994. 

[13] Melsa, J. L. and Cohn, D. L., Decision and Estimation Theory, McGraw- 
Hill, Inc., 1978. 

[14] W. E. Jacklin and D. R. Ucci, "The Fourier Series Implementation of 
a Locally Optimum Detector," Proceedings of the 1994 IEEE MILCOM 
Conference, pp. 992-996, October 1994. 

[15] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and 
Visualization, New York: John Wiley and Sons, 1992. 

[16] H. Stark and J. Woods, Probability, Random Processes, and Estimation 
Theory for Engineers, Second Edition, Englewood Cliffs, NJ: Prentice- 
Hall, 1994. 

[17] M. A. Munem and D. J. Foulis, Calculus with Analytic Geometry, Second 
Edition, New York: Worth Publishers, Inc., 1984. 

[18] J. G. Proakis and D. G. Manolakis, Introduction to Digital Signal Pro- 
cessing, New York: Macmillan Publishing Company, 1988. 

[19] P. M. Clarkson and H. Stark, eds., Signal Processing Methods for Audio, 
Images and Telecommunications, London: Academic Press, 1995. 

*Although this report references the limited document noted above, no 
limited information has been extracted.  DOD and DOD contractors only; 
premature dissemination; to protect information on systems or hardware 
in the development or concept stage; Mar 90. 

76 



[20] Clarkson, P. M., Optimal and Adaptive Signal Processing, CRC Press, 
Inc., 1993. 

OU.S. GOVERNMENT PRINTING OFFICE:      1996-710-126-47019 

77 


