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Abstract 

Role-limiting approaches support knowledge acquisition (KA) by centering knowledge base 
construction on common types of tasks or domain-independent problem-solving strategies. Within 
a particular problem-solving strategy, domain-dependent knowledge plays specific roles. A KA tool 
then helps a user to fill these roles. Although role-limiting approaches are useful for guiding KA, 
they are limited because they only support users in filling knowledge roles that have been built in 
by the designers of the KA system. EXPECT takes a different approach to KA by representing 
problem-solving knowledge explicitly, and deriving from the current knowledge base the knowledge 
gaps that must be resolved by the user during KA. This paper contrasts role-limiting approaches 
and EXPECT's approach, using the propose-and-revise strategy as an example. EXPECT not only 
supports users in filling knowledge roles, but also provides support in 1) adapting the problem- 
solving strategy, 2) changing the types of information to be acquired about a knowledge role, 
3) adding new knowledge roles, and 4) acquiring additional background information about the 
domain needed by the knowledge-based system. EXPECT's guidance changes as the knowledge 
base changes, providing a more flexible approach to knowledge acquisition. This work provides 
evidence supporting the need for explicit representations in building knowledge-based systems. 



1     Introduction 

Role-limiting approaches have been the main focus of research in knowledge acquisition 
(KA) tools for knowledge-based systems construction for over a decade [Birmingham and 
Klinker, 1993]. Several researchers have identified commonly occurring, domain-independent 
problem-solving strategies or inference structures that are useful for describing the reason- 
ing behind knowledge-based systems [McDermott, 1988, Clancey, 1985, Chandrasekaran, 
1986]. These problem-solving strategies determine the roles that domain-dependent knowl- 
edge plays. The task of a KA tool, then, is to guide users in filling out those roles. Several 
such tools have been built to support KA for a specific problem-solving strategy: SALT 
for propose-and-revise [Marcus and McDermott, 1989], MOLE for cover-and-differentiate 
[Eshelman, 1988], PROTEGE for skeletal plan refinement [Musen, 1989], etc. Each tool 
was designed for a specific strategy and could be used in principle to acquire knowledge for 
any application whose problem-solving behavior could be cast in terms of that strategy. In 
role-limiting approaches to KA, knowledge roles strongly determine what kinds of knowl- 
edge need to be acquired, and the dialogue with the user is centered on the acquisition of 
domain-dependent knowledge to fill these roles. 

Although having a role-limiting strategy provides very strong guidance for knowledge 
acquisition, these tools lack the flexibility that knowledge-based system construction needs 
[Musen, 1992]. The problem-solving structure of an application cannot always be defined 
in domain-independent terms, as Musen explains was the case with Rl [McDermott, 1982]. 
Furthermore, one single problem-solving strategy may not address all of the particulars of 
an application, simply because it was designed with generality in mind. 

More recent approaches to KA overcome these limitations by offering the system builder 
a library of finer-grained problem-solving strategies whose components can be used to put 
together a knowledge-based system [Puerta et a/., 1992, Runkel and Birmingham, 1993, 
Klinker et ah, 1991]. Each problem-solving strategy is then associated with a KA tool 
specific to that strategy. The components of the library can be designed to be as small- 
grained as necessary to be useful in system construction. These frameworks provide more 
flexibility because the overall problem-solving strategy can be customized to the needs of 
the application. However, their support to the user is still limited to filling knowledge roles 
that have been identified beforehand by the designers of these components. The kinds of 
modifications to the problem-solving strategy are limited to exchanging one component for 
another in the library. Also, a KA tool needs to be built for every problem-solving strategy. 

EXPECT [Swartout and Gil, 1995, Gil, 1994, Gil and Paris, 1994] takes a different ap- 
proach to knowledge acquisition. The problem-solving strategy is represented explicitly, and 
the knowledge acquisition tool reasons about it and dynamically derives the knowledge roles 
that must be filled out, as well as any other information needed for problem solving. Be- 
cause the problem-solving strategy is explicitly represented, it can be modified, and as a 
result, the KA tool changes its interaction with the user to acquire knowledge for the new 
strategy. Only one KA tool needs to be built, because it can identify knowledge gaps for any 
problem-solving strategy that can be explicitly represented in EXPECT. EXPECT provides 
greater flexibility in adapting problem-solving strategies because their representations can 
be changed as much as needed.   Because the systems that have been built to date with 



EXPECT do not use a domain-independent problem-solving strategy1, it is hard to com- 
pare role-limiting approaches with EXPECT's approach of having explicit representations 
to guide knowledge acquisition. This paper illustrates how EXPECT's knowledge acquisi- 
tion tool works when the system is using a specific problem-solving strategy. This allows a 
more detailed comparison with role-limiting approaches and shows that EXPECT not only 
supports users in filling out knowledge roles, but extends the support to acquire additional 
knowledge needed for problem-solving—a process that role-limiting approaches to KA do 
not support. 

To show how EXPECT works with a role-limiting strategy we chose propose-and-revise, 
one that has been the focus of much recent work within the KA community. [Schreiber and 
Birmingham, 1994]. Propose-and-revise was first identified as the problem-solving strategy 
used in VT, a system for elevator configuration [Marcus et al, 1988]. Perhaps the main 
reason for the interest in propose-and-revise is that the VT domain has been used as a 
common domain for the Sisyphus effort within the KA community, where research groups 
are invited to show their solutions to a common problem to allow comparisons among the 
different frameworks [Schreiber and Birmingham, 1994]. The main sections of this paper 
compare EXPECT with SALT [Marcus and McDermott, 1989], the prototypical KA tool 
that uses a role-limiting approach for that problem-solving strategy. Contrasting EXPECT 
with SALT is useful to illustrate the main points of this work, but at the end of the paper 
we compare EXPECT with more recent approaches to building knowledge acquisition tools. 
Because the VT domain takes a significant amount of time to implement, we used instead 
a smaller domain for U-Haul® rentals—one that also uses propose-and-revise, designed by 
the PROTEGE group at Stanford University, and used in their own work [Gennari et al, 
1993]. This domain was sufficient to allow us to implement propose-and-revise in EXPECT 
and to enable a more direct comparison of its KA tool with other approaches. 

The paper begins by describing propose-and-revise and its use in a role-limiting tool for 
knowledge acquisition. Then we describe how propose-and-revise and the U-Haul domain 
were implemented in EXPECT. Section 4 describes EXPECT's knowledge acquisition tool. 
Section 5 shows several examples of how EXPECT can acquire knowledge for propose-and- 
revise and also support users in acquiring additional types of knowledge. We then compare 
EXPECT's approach with recent KA tools and approaches that have been used for propose- 
and-revise. 

2    Role-Limiting Methods: the Case of Propose-and- 
Revise 

This section reviews the basic propose-and-revise problem-solving strategy, and then briefly 
presents how SALT guides knowledge acquisition using propose-and-revise in a role-limiting 
approach. 

1The problem-solving strategies used in these systems are not domain-independent. [Gil, 1994] shows 
examples of EXPECT's knowledge acquisition tool in a domain for transportation planning to do plan 
evaluation, and [Gil and Tallis, 1995] shows examples of a molecular biology domain that uses a kind of 
skeletal plan refinement. 



2.1 Solving Configuration Design Tasks with Propose-and-Revise 

Propose-and-revise is a problem-solving strategy for configuration design tasks. A configura- 
tion problem is described as a set of parameters or variables (input parameters have values, 
output parameters do not), a set of constraints, and a set of fixes to resolve constraint vi- 
olations. A solution consists of a value assignment to the output parameters that does not 
violate any constraint. 

Propose-and-revise constructs a solution by iteratively extending and revising partial 
solutions. The extension phase consists of assigning values to parameters. In the revision 
phase, constraints are checked to verify whether they are violated by the current solution 
and, if so, the solution is revised to resolve the violation. Violated constraints are resolved 
by applying fixes to the solution. A fix produces a revision of the solution by changing the 
value of one of the parameters that are causing the constraint violation. 

Propose-and-revise was first defined as a problem-solving method for configuration in 
VT [Marcus et al, 1988] for designing elevator systems. Input parameters for VT included 
features of the building where the elevator was to be installed. Output parameters included 
the equipment selected and its layout in the hoistway. An example of a constraint is that a 
model 18 machine can only be used with a 15, 20, or 25 horsepower motor. An example of a 
fix for a violation of this constraint is to upgrade the motor if the current configuration was 
using one without enough horsepower. 

2.2 Knowledge Acquisition for Propose-and-Revise in a Role- 
Limiting Tool 

SALT [Marcus and McDermott, 1989] is a knowledge acquisition tool for propose-and-revise 
using a role-limiting approach. In this problem-solving strategy, there are three types of 
knowledge roles: 1) procedures to assign a value to a parameter, which would result in a 
design extension, 2) constraints that could be violated in a design extension, and 3) fixes for 
a constraint violation. Consequently, the user can enter one of the three types of knowledge: 
PROCEDURE, CONSTRAINT, and FIX. For each type of knowledge, a fixed menu (or 
schema) is presented to the user (in SALT's case a domain expert) to be filled out. An 
example of the information provided by a user for a constraint is as follows (from [Marcus 
and McDermott, 1989]): 

1 Constrained value: CAR-JAMB-RETURN 

2 Constraint type: MAXIMUM 
3 Constraint name: MAXIMUM-CAR-JAMB-RETURN 

4 Precondition: DOOR-OPENING = SIDE 

5 Procedure: CALCULATION 
6 Formula: PANEL-WIDTH * STRINGER-QUANTITY 

7 Justification: THIS PROCEDURE IS TAKEN FROM INSTALLATION MANUAL I, P. 12b. 

The fields to be filled in by the user include the value constrained (1), the nature of the 
limit that the constraint imposes on the value (2), and a procedure for specifying a value 
for the constraint (6). SALT includes special-purpose modules to support the user in filling 
up these schemas. For example, it checks that the formula is correct and that it references 
variables that have been defined by the user. 



One great advantage of role-limiting strategies is reuse. A tool like SALT can be used 
to acquire knowledge in other applications that use the propose-and-revise strategy. The 
problem-solving strategy would be the same, thus saving a lot of effort in building a new 
system. Only the domain-dependent knowledge roles would need to be acquired. Parts of 
the KA tool would have to be adapted in the way the knowledge roles are filled (such was the 
experience reported when using SALT for a flow-shop scheduler [Marcus and McDermott, 
1989]). 

But because role-limiting approaches to KA constrain so strongly the kind of knowledge 
that they can acquire, they are limited in that they can only do that form of knowledge ac- 
quisition. As a knowledge acquisition tool, SALT was specifically built for a type of problem 
solving strategy (i.e., propose-and-revise) that used certain types of knowledge (procedure, 
constraint, and fix). Its interaction with the user can never change unless, of course, SALT 
itself is reprogrammed. As a result, SALT is not very adaptable as a knowledge acquisition 
tool. For example, SALT could not be used in an application domain that required using 
domain knowledge to select a preferred fix, because such a knowledge role does not exist in 
SALT's propose-and-revise strategy. The Schemas cannot be changed either. For example, 
suppose that the user wanted to add numerical priorities to specify which constraints should 
be preferred over others when resolving violations. The schema for acquisition of constraints 
would have to be modified. Furthermore, this would require changing the implementation 
of propose-and-revise so that it would use this preference information in the revision phase. 

Special-purpose modules are needed to acquire some specific kinds of knowledge. For 
example, there is a consistency checker for the formulas in the constraint Schemas. The 
values of the input parameters are also acquired through an interface that was specifically 
designed for the elevator application. 

SALT does not provide support in updating or maintaining the knowledge about elevator 
components. This would be a very useful capability, since product knowledge changes at a 
high rate (40-50 percent per year is the rate reported for configuration systems such as Rl 
and PROSE [McDermott, 1982, Wright et al, 1983].) 

The essence of the argument made here about SALT applies to other role-limiting KA 
tools such as MOLE, [Eshelman, 1988], MORE [Kahn et a/., 1985], and PROTEGE [Musen, 
1989]. To summarize, the main limitations of role-limiting approaches to knowledge acqui- 
sition in terms of their lack of flexibility are: 

• Schemas cannot be changed to acquire new information about existing knowledge 
roles 

• the problem-solving strategy is fixed and cannot be adapted or augmented 
• new knowledge roles cannot be added 
• the input parameter values to be acquired are fixed 
• there is no support to change the domain-specific factual knowledge, e.g., about 

the equipment to be used in the configuration 
• special-purpose modules are needed to support the acquisition of certain kinds 

of knowledge, e.g., the constraint's formulas 

Section 5 shows how EXPECT supports the acquisition of these kinds of knowledge. 
We do not claim that EXPECT can support any kind of user in making these changes 
to the knowledge-based system.  For example, domain experts will not normally have the 



background knowledge to change a problem-solving strategy, which will normally require 
knowledge engineering skills. The focus of our work is to show that it can be done using a 
single KA tool that is independent of the problem-solving strategy used. 

3    Explicit Representations in EXPECT 

Before describing our implementation of propose-and-revise, we briefly present EXPECT's 
approach to representing knowledge. We will concentrate on presenting background that 
is directly relevant to the work presented here. More details about the architecture and 
knowledge acquisition tools can be found in [Gil, 1994, Swartout and Gil, 1995, Gil and 
Paris, 1994]. 

In EXPECT, both factual knowledge and problem-solving knowledge about a task are 
represented explicitly. This means that the system can access and reason about the repre- 
sentations of factual and problem-solving knowledge and about their interactions. Factual 
knowledge is represented in LOOM [MacGregor, 1991, MacGregor, 1988], a state-of-the-art 
knowledge representation system based on description logic. Every concept or class can 
have a definition that intensionally describes the set of objects that belong to that class. 
Concept descriptions can include type and number restrictions of the fillers for relations to 
other concepts. Relations can also have definitions. LOOM uses the definitions to produce a 
subsumption hierarchy that organizes all the concepts according to their class/subclass rela- 
tionship. Factual knowledge includes the concept base, the instance base, and the relations 
among them. 

Problem-solving knowledge is represented in a procedural-style language that is tightly 
integrated with the LOOM representations. Subgoals that arise during problem solving are 
solved by methods. Each method description specifies: 1) the goal that the method can 
achieve, 2) the type of result that the method returns, and 3) the method body containing 
the procedure that must be followed in order to achieve the method's goal. A method 
body can contain nested expressions, including subgoal expressions that need to be resolved 
by other methods; control expressions such as conditional statements and some forms of 
iteration; and relational expressions to retrieve the fillers of a relation over a concept. Some 
method bodies are calls to Lisp functions that are executed without further subgoaling. 

We will give examples of EXPECT's representations using propose-and-revise as a strat- 
egy for solving the following type of problems in the U-Haul domain: Given the total volume 
that the client needs to move, the system recommends which piece of equipment (e.g., a 
truck, a trailer, etc.) the client should rent. 

Figure 1 graphically shows parts of the factual domain model for propose-and-revise 
and for the U-Haul domain.2 The upper part of the picture shows factual knowledge that 
is domain independent and can be reused for any domain. Constraint satisfaction (CS) 
problems are specified with a set of constraints and a state. The state is described with 
a set of variables. Constraints can have fixes. In a configuration problem, the state is a 
configuration. Some of the state variables denote components, i.e., pieces of equipment that 
together form a configuration.   A component may have an upgrade, e.g., a more powerful 

2By convention, we denote relation names with the prefix r-. 



r-constraints 
LEGEND 

concepts 

relations 

CapacityConstraint UpgradeEquipmentFix 

Figure 1: EXPECT's representation of some of the factual knowledge needed for propose- 
and-revise problems, for configuration problems, and for the U-Haul domain. Notice that 
the relations across these subdomains are naturally captured in the subsumption hierarchy. 

model of that kind of equipment. 
The lower part of the picture shows factual knowledge that is relevant only to the U-Haul 

domain. One of the state variables denotes the equipment that the client can rent, which 
can be a trailer, a rooftop, or a truck. There are several kinds of trucks, ranging from the 
smallest EasyMover to the largest HeftyMover. 

There is a continuum between the representation of domain-dependent and domain- 
independent factual knowledge in EXPECT. They are represented in the same language, yet 
they can be defined and maintained separately. Once a U-Haul problem is specified as a 
kind of configuration problem, it inherits the fact that it has constraints and fixes. Trucks 
are not defined as having upgrades, since having upgrades is a way to look at components 
from the point of view of configuration problems. Instead, they are defined as configuration 
components, which have upgrades. 

Figure 2 shows three different problem-solving methods. REVISE-CS-STATE is one of the 
methods that specifies how propose-and-revise works. To revise a CS state, we apply the fixes 
that are found for the constraints violated in the state. The other two specify a constraint 
and a fix in the U-Haul domain respectively, CHECK-CAPACITY-CONSTRAINT specifies that the 
capacity of the equipment rented cannot exceed the volume that the client needs to move3. 
APPLY-UPGRADE-EQUIPMENT-FIX applies the fix of upgrading the equipment being rented. 

The representation of knowledge about constraints and fixes illustrates EXPECT's sep- 
3This constraint may not be realistic since the client can make several trips but is part of the specification 

of the U-Haul domain as it was given to us. 
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(defmethod REVISE-CS-STATE 
"To revise a CS state, apply the fixes found for the constraints 
violated in the state. The result is a CS state." 
:goal       (revise (obj (?state is (inst-of cs-state)))) 

:result      (inst-of cs-state) 
:method-body (apply 

(obj (find (obj (set-of (spec-of fix))) 
(for (find 

(obj (set-of (spec-of violated-constraint))) 

(in ?state))))) 
(to ?state))) 

(defmethod CHECK-CAPACITY-CONSTRAINT 
"To check the Capacity Constraint of a U-Haul configuration, check that the 
capacity of the rented equipment is smaller or equal than the volume to move." 

:goal       (check (obj CapacityConstraint) 
(in (?c is (inst-of uhaul-configuration)))) 

:result      (inst-of boolean) 
:method-body (is-smaller-or-equal 

(obj (r-capacity (r-rented-equipment ?c))) 

(than (r-volume-to-move ?c)))) 

(defmethod APPLY-ÜPGRADE-EQÜIPMENT-FIX 
"To apply the Upgrade Equiment Fix in a U-Haul configuration, upgrade 
the rented equipment variable. The result is a new configuration." 
:goal       (apply (obj UpgradeEquipmentFix) 

(to (?c is (inst-of uhaul-configuration)))) 

:result     (inst-of uhaul-configuration) 
:method-body (upgrade (obj (spec-of rented-equipment-variable)) 

(in ?c))) 

Figure 2: Problem-solving knowledge in EXPECT. 

arate representations for procedural and factual knowledge. UpgradeEquipmentFix is a fix for 
the CapacityConstraint regardless of how the constraint is checked or how the fix is applied. 
Thus, this is represented as factual knowledge as a relation between an instance of con- 
straint and an instance of fix, as shown in Figure 1. The procedures to check the constraint 
and to apply the fix are part of the problem-solving knowledge base, and are executed as 
part of the process to revise configurations. Factual knowledge and problem-solving knowl- 
edge about constraints and fixes are related because the methods refer to the instances 
CapacityConstraint and UpgradeEquipmentFix in their arguments. This separation of different 
kinds of knowledge is key in supporting knowledge acquisition in EXPECT, as will be shown 
in Section 5. 

Notice that, like factual knowledge, problem-solving knowledge can be domain dependent 
or domain independent. EXPECT uses the same language to represent both. 



4    Knowledge Acquisition in EXPECT 

This section briefly summarizes how EXPECT uses the explicit representations of factual 
and problem-solving knowledge to detect knowledge gaps and to guide knowledge acquisition. 
More details about EXPECT's knowledge acquisition tool can be found in [Gil, 1994, Gil 
and Paris, 1994]. Section 5 will illustrate how EXPECT's KA tool acquires knowledge for 
the propose-and-revise and the U-Haul knowledge bases. 

EXPECT guides KA by requesting users to resolve errors or knowledge gaps that it 
detects in the knowledge bases. EXPECT's problem-solver is designed to detect these errors 
and to report them to the KA tool together with detailed information about how they 
were detected. The KA tool uses this information to support the user in fixing them. 
Other modules that can detect and report errors are the parser (which detects syntax errors 
and undefined terms), the method analyzer (which detects errors within a problem-solving 
method), and the instance analyzer (which detects missing information about instances). 

EXPECT's problem-solver can analyze how the different pieces of knowledge in the 
knowledge-based system interact. For this analysis, it takes a generic top-level goal rep- 
resenting the kinds of goals that the system will be given for execution. In the U-Haul 
example, the top-level generic goal would be (solve (obj (inst-of uiiaul-problem))), and a 
specific goal for execution would be (solve (obj jones-uhaui-probiem)). EXPECT analyzes 
how to achieve this goal with the available knowledge. EXPECT expands the given top- 
level goal by matching it with a method and then expanding the subgoals in the method 
body. This process is iterated for each of the subgoals and is recorded as a search tree. 
Throughout this process, EXPECT propagates the types of the arguments of the top-level 
goal, performing an elaborate form of partial evaluation supported by LOOM'S reasoning 
capabilities. During this process, EXPECT derives the interdependencies between the dif- 
ferent components of its knowledge bases. This analysis is done every time the knowledge 
base changes, so that EXPECT can rederive these interdependencies. 

The design of each module of EXPECT takes into account the possibility that the knowl- 
edge base may contain errors or knowledge gaps. For example, EXPECT's problem solver 
is designed to detect goals that do not match any methods, and to detect relations that try 
to retrieve information about a type of instance that is not defined in the knowledge base 
(e.g., retrieving the upgrade of a fix when only components have upgrades). In addition to 
detecting an error, each module is able to recover from the error if possible, and to report 
the error's type and the context in which it occurred. For example, after detecting that a 
posted goal cannot match any available method, EXPECT's problem solver would mark the 
goal as unachievable and continue problem solving by expanding other goals. It would also 
report this error to the knowledge acquisition module, together with some context informa- 
tion (in this case, the unmatched goal with its parameters) and a pointer to the part of the 
problem-solving trace where the subgoal was left unsolved. 

Once the errors are detected, EXPECT can help users to fix them as follows. EXPECT 
has an explicit representation of types of errors, together with the kinds of corrections to 
the knowledge base that users can make in order to solve them. This representation is based 
on typical error situations that we identified by hand. Table 1 shows some of the errors 
that can currently be detected by two of the modules: the problem solver and the instance 



code error or potential problem source suggested corrections 

el no method found to achieve goal G 
in the body of method M 

problem solver modify method body 
modify another method's goal 
add a new method 
modify instance, concept, or relation 

e2 role R undefined for type C 
in method M 

problem solver modify method M 
add relation R for type C 

e3 expression E in method M 
has invalid arguments 

problem solver modify method M 
modify another method's goal 
modify instance, concept, or relation 

e4 expression E in method M 
has invalid result 

problem solver modify method M 
modify another method's goal 
modify instance, concept, or relation 

e5 missing filler of role R of instance I 
needed in method M 

instance analyzer add information about instance 
modify method body 
delete instance 

e6 type of instance I is not specific enough 
as needed in method M 

instance analyzer specialize instance type 
modify method body 
delete instance 

Table 1: Some of the potential problems in the knowledge bases detected by EXPECT. Each 
component of EXPECT is able to detect an error, recover from the error if possible, and 
report the error's type and context in which it occurred. EXPECT's knowledge acquisition 
tool uses this information to support users in resolving errors. Underlined error codes are 
used in the examples. 

analyzer. The error codes shown underlined will be used in the examples in the next section. 
When EXPECT detects an error, it presents the suggested corrections as possible choices 
to the user. Consider the case of error el, where a goal G in the body of method M cannot 
be achieved by any method. EXPECT suggests that the user either 1) modify the body of 
method M to change or delete the expression of the goal G, 2) modify the goal of some other 
method N so that it matches G, 3) create a new method L whose goal will match G, or 4) 
modify an instance, a concept, or a relation that is used in G. We will see in the next section 
that the user's choice of one suggestion over the others depends on the context. 

5    Knowledge Acquisition for Propose-and-Revise in 
EXPECT 

In Section 2.2, we pointed out some of SALT's limitations in terms of its lack of flexibil- 
ity as a knowledge acquisition tool. In this section, we illustrate how EXPECT's explicit 
representations support a more flexible approach to knowledge acquisition. 

5.1    Acquiring Domain-Specific Factual Knowledge 

Suppose that U-Haul decided to begin renting a new kind of truck called Mighty Mover. 
The user would add a new subclass of truck, and EXPECT would immediately request the 



following: 

El—I need to know the capacity of a MightyMover. 

The reason for this request is that EXPECT has detected that the capacity of rental 
equipment is a role that is used during the course of problem solving, specifically while 
achieving the goal of checking the CapacityConstraint with the method shown in Figure 2. 
This corresponds to errors of type eS in Table 1. While many roles may have been defined for 
the class truck (such as make and year), EXPECT will only request the information that is 
actually needed for problem solving. The next section illustrates that if any problem-solving 
method changes and other information is used, then EXPECT will request information 
according to the changes made. 

SALT does not provide support in acquiring this kind of domain-specific factual knowl- 
edge. As we mentioned in Section 2.2, this capability would be very useful to maintain 
product knowledge in configuration systems. 

5.2    Acquiring New Constraints and Fixes 

Section 2.2 showed that SALT needs to be given definitions of Schemas to enter constraints 
and fixes. EXPECT does not need to be given such Schemas. Instead, the information in 
the Schemas is naturally requested by EXPECT as constraints and fixes are defined by the 
user. 

Suppose for example that the user wants to add a new constraint that restricts the rental 
of trailers to clients with cars made after 1990 only. The user would add a new instance of 
constraint: TrailersForNewCarsOnly. EXPECT would analyze the implications of this change 
in its knowledge base and signal the following problem: 

E2—I do not know how to achieve the goal (check (obj TrailersForNewCarsOnly) 
(in (inst-of uhaul-configuration))). 

This is because during problem solving EXPECT calls a method that tries to find 
the violated constraints of a configuration by checking each of the instances of constraint 
of U-Haul problems. This is a case of an error of type el. Before denning this new 
instance of constraint, the only subgoal posted was (check (obj CapacityConstraint) (in 
(inst-of uhaul-configuration))) and now it also posts the subgoal (check (obj TrailersFor 
NewCarsOnly) (in (inst-of uhaul-configuration))). There is a method to achieve the former 
subgoal (shown in Figure 2), but there is no method to achieve the latter. 

Notice that with this error EXPECT detects that the addition of a new constraint to 
the factual knowledge base requires adding a new method to the problem-solving knowledge 
base. This illustrates how EXPECT understands the interdependencies between factual and 
problem-solving knowledge and uses this to guide knowledge acquisition. 

To resolve E2, the user chooses the third suggestion for errors of type el and defines the 
following method to check the constraint: 
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(defmethod CHECK-TRAILERSFORNEWCARSONLY-CONSTRAINT 
:goal       (check (obj TrailersForNewCarsOnly) 

(in (?c is (inst-of uhaul-configuration)))) 
:result      (inst-of boolean) 
:method-body (is-greater-or-equal 

(obj (r-year (r-car ?c))) 
(than 1990))) 

Once this method is defined, E2 is no longer a problem and disappears from the agenda. 
Notice that with this method EXPECT is acquiring information about a knowledge role. 

The new method corresponds to acquiring in SALT the field formula in the schema for the 
constraint knowledge role (shown in Section 2.2). 

EXPECT's error detection mechanism also notices possible problems in the formula used 
to check the constraint. In SALT, these problems are detected by special-purpose code that 
checked the validity of formulas. For example, if r-year had not been defined EXPECT 
would signal the following problem (of type e2): 

E3—I do not know what is the year of a car. 

When the user defines the role r-year for the concept car this error will go away. EXPECT 
can also detect other types of errors in the formulas to check constraints. For example, if 
r-year was defined to have a string as a range, then EXPECT would detect a problem. It 
would notice that there is no method to check if a string is greater or equal than a number, 
because the parameters of the method for calculating is-greater-or-equal must be numbers). 
EXPECT would then tell the user: 

E4—I do not know how to achieve the goal (is-greater-or-equal (obj  (inst-of 
string))   (than 1990)). 

Like E2, E4 is an error of type el. But in this case the user chooses a different way of 
resolving the error, namely to modify the definition of the relation r-year. 

If the user defined a fix associated with the new constraint, then EXPECT would follow 
a similar reasoning and signal the need to define a method to apply the new fix. 

We pointed out in Section 5.1 that EXPECT changes its requests for factual information 
according to changes in the problem-solving methods. This can be illustrated in this example 
of adding a new constraint. An effect of the fact that the user defined the new method to 
check the constraint is that new factual knowledge about the domain is needed. In particular, 
EXPECT detects that it is now important to know the year of the car that the client is using 
(and that is part of the configuration), because it is used in this new method. The following 
request will be generated for any client that, like in this case Mr. Jones, needs to rent U-Haul 
equipment: 

E5—I need to know the year of the car of Jones. 

This is really requiring that the information that is input to the system is complete in 
the sense that configuration problems can be solved. In SALT, as in many other systems, 
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the input information (such as client preferences or the building features) is predetermined 
at the time the system is defined. In EXPECT, the requirements for inputs change as the 
knowledge base is modified. Notice that E5 is an error of type e5, and is detected by the 
same mechanism that was used to detect El, even though they request conceptually different 
types of information: El requests information that is relevant to the U-Haul application and 
E5 requests information relevant to specific client cases. 

5.3    Changing the Propose-and-Revise Strategy 

We pointed out in Section 2.2 that SALT does not allow users to change the problem-solving 
strategy or to define new knowledge roles. This section shows how this can be done with 

EXPECT. 
Suppose that the user wants to change the revision process of propose-and-revise to 

introduce priorities on what constraint violations should be resolved first. The priorities will 
be based on which variable is associated with each constraint. 

The user would need to identify which of the problem-solving methods that express 
propose-and-revise in EXPECT needs to be modified. The change involves adding a new 
step in the method to revise CS states shown in Figure 2. The new step is a subgoal to 
select a constraint from the set of violated constraints. The modified method is as follows 
(the new step is indicated with stars on the right-hand side): 

(defmethod REVISE-CS-STATE 
:goal       (revise (obj (?state is (inst-of cs-state)))) 

:result      (inst-of cs-state) 

:method-body (apply 
(obj   (find (obj   (set-of  (spec-of fix))) 

(for 
(select 

****** 
(obj   (spec-of constraint)) 
(from 
(find 

(obj   (set-of  (spec-of violated-constraint))) 
(in ?state))))))) 

(to Tstate))) 

EXPECT would signal the following request: 

E6—I do not know how to achieve the goal (select (obj (spec-of constraint)) 
(from (set-of  (inst-of violated-constraint)))). 

This is an error of type e5, and it indicates that the user has not completed the modifi- 
cation. The user needs to create a new method to achieve this goal as follows: 

(defmethod SELECT-CONSTRAINT 
:goal       (select (obj (spec-of constraint)) 

(from (?vc is (set-of (inst-of violated-constraint))))) 

:result      (inst-of constraint) 
:method-body (take (obj ?vc) 

(with (spec-of maximum)) 
(of (r-preference 

(r-constrained-variable ?vc))))) 
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where r-pref erence is defined as a role of variables and has a numeric range, and r-constrained- 
variable is defined as a role of constraint and has variable as its range. The user may also 
need to define a new method for the take subgoal if there is no such method available. 

With these modifications to the knowledge base, the propose-and-revise strategy that 
EXPECT will follow has changed. Because the representation of the new strategy is ex- 
plicit, EXPECT can reason about it and detect new knowledge gaps in its knowledge base. 
As a result of the modification just made, there is additional factual information needed 
including new information about an existing knowledge role and a new kind of knowledge 
role. EXPECT would then signal the following requests (both of type e5): 

E7—I need to know the constrained variable of TrailersForNewCarsOnly. 

E8—I need to know the preference of equipment-variable. 

E7 is one of the fields in SALT's constraint schema shown in Section 2.2, which was 
called CONSTRAINED VALUE. E8 is a new knowledge role centered around the notion of variables. 
In SALT, making the change just described to the revise strategy would have required 
reprogramming the tool to change the problem-solving method and to add a new schema 
for the new knowledge role VARIABLE that would acquire preferences for each variable or 
parameter. 

E7 and E8 illustrate that EXPECT has noticed that the change in the problem-solving 
strategy requires the user to provide new kinds of information about the factual knowledge 
used by the strategy. This shows that in EXPECT the acquisition of problem-solving knowl- 
edge affects the acquisition of factual knowledge. Recall that E2 illustrated the converse. 

5.4    Discussion 

To summarize, we revisit SALT's limitations listed in Section 2.2 and point out which of the 
errors just discussed illustrate how EXPECT handles knowledge acquisition in those cases: 

• acquire information about existing knowledge roles according to the current 
problem-solving strategy: E2, E7 

• the problem-solving strategy can be adapted or augmented: E6 
• new knowledge roles can be added: E8 
• support the user in acquiring input parameter values: E5 
• changing the domain-specific factual knowledge: El 
• support the user in acquiring specific kinds of knowledge: E3, E4 

Notice that these errors are detecting conceptually different knowledge gaps, yet they 
may correspond to the same error type. Such is the case with E2 and E6 that correspond 
to error type el, and El and E8 that correspond to error type e5. 

Notice that SALT's schema for acquiring constraints (shown in Section 2.2) asks the user 
for more information than EXPECT does. For example, SALT requests information about 
the precondition, i.e., the situations under which the constraint should be used. SALT uses 
this information to determine efficiently the subset of the constraints that should be checked 
in each configuration.   Our current version of propose-and-revise does not use knowledge 
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about preconditions, so this information is not requested by EXPECT. If we changed the 
problem-solving methods so that they check the applicability of constraints according to the 
precondition, EXPECT would request this information from the user. Notice for example 
that another field in the schema for constraint acquisition is CONSTRAINED VALUE, which EX- 
PECT did not ask about (see E7) until the methods were changed to use this information. 

Throughout the examples, we have referred to a generic user wanting to make changes 
to the knowledge base. This is not necessarily one user, and not necessarily the end user 
or domain expert. For example, the end user may only enter knowledge about clients and 
new trucks to rent. A more technical user would be able to modify propose-and-revise. 
A domain expert who does not want to change the problem-solving methods can still use 
EXPECT to fill up knowledge roles and populate the domain-dependent factual knowledge 
base. Supporting a range of users would require adding a mechanism that associates with 
each type of user the kinds of changes that they can make to the knowledge base and limiting 
the users to make only those changes. The important point is that all the changes, no matter 
who ends up making them, are supported by the same core knowledge acquisition tool. 

6    Related Work 

The previous section compared EXPECT with SALT as a prototypical representative of 
role-limiting approaches to KA using the propose-and-revise strategy. This section compares 
EXPECT with more recent work in knowledge acquisition. 

Some recent approaches to KA support knowledge-based system construction by offering 
libraries of smaller-grained role-limiting strategies that can be composed to create the overall 
problem-solving strategy. Such is the approach taken in PROTEGE-II [Puerta et al, 1992], 
DIDS [Runkel and Birmingham, 1993], and SBF [Klinker et a/., 1991]. Modifying a problem- 
solving strategy involves changing one component for another one in the library. These 
frameworks allow a wider range of modifications to a system than tools that use a monolithic, 
unchangeable problem-solving structure. However, the kinds of modifications are still limited 
to what the compositions of different components allow. EXPECT allows even finer-grained 
modifications to the problem-solving methods, by adding new substeps and defining new 
methods to achieve them as we showed in Section 5. The composable role-limiting approaches 
provide very limited support if at all to a knowledge engineer who is trying to write a new 
problem solving component for the library. EXPECT represents the methods in a language 
that the KA tool understands, so it can support the user in making these changes. In 
addition, EXPECT's approach requires building only one single KA tool. In fact, in working 
out the examples shown in this paper we did not need to change the KA tool or to add new 
errors to those that were already defined in EXPECT. 

The PROTEGE-II and DIDS research groups participated in Sisyphus and have im- 
plemented the propose-and-revise strategy [Schreiber and Birmingham, 1994]. This allows 
making a more detailed comparison here. 

The DIDS framework supports several interesting features that we do not currently sup- 
port in EXPECT. DIDS uses the flow of control specified by the problem-solving strategy to 
determine in which order to acquire each type of knowledge. This order helps in coordinating 
the KA dialogue for each of the individual methods. We could extend EXPECT to impose 
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an order on the requests to the user based on the subgoal expansion sequence for a method. 
Another interesting feature of DIDS is that it allows incorporating special-purpose KA tools, 
such as CAD-based acquisition tools that allow users to specify knowledge through drawings. 
EXPECT does not have a mechanism to integrate such tools. 

PROTEGE-II includes a suite of tools for editing ontologies. Using the ontological def- 
initions, these tools can automatically generate customized editors that are accessible to 
domain experts. EXPECT currently has very limited capabilities to edit factual knowledge, 
and could benefit from tools that organized requests to the user using appropriate struc- 
tures. The library of PROTEGE-II includes not only the problem-solving strategies but also 
method ontologies that describe the kinds of domain-independent knowledge used in the 
strategies. These method ontologies are then linked by hand to the domain-specific ontology 
of the application through a specific language that is used to compile the ontology links. 
In EXPECT, the method ontology would correspond to the upper part of Figure 1 and the 
domain-specific ontology to the lower part of the figure. EXPECT uses the same language to 
represent both, and both ontologies are linked when the domain-dependent terms are made 
correspond to the domain-independent ones. The KA tool can detect missing links because 
it can reason about the way factual knowledge interacts with problem-solving knowledge and 
detect when the appropriate subgoals are not invoked. 

A strong emphasis in both of these approaches is knowledge reuse, i.e., using the same 
component of the library for different problem-solving strategies and in different applications. 
Reusing a component in the library would be equivalent in EXPECT to invoking a top-level 
goal that corresponds to a whole problem-solving strategy (for propose-and-revise that goal 
would be (solve (obj (inst-of cs-problem)) (using (spec-of propose-and-revise)))). EXPECT 
could benefit from representing the methods that are currently part of these system's libraries 
so that they could be used to bootstrap the creation of new knowledge-based systems. 

TAQL is a knowledge acquisition tool for weak search methods, i.e., problem-solving 
strategies that are more generic than something like propose-and-revise [Yost, 1993]. TAQL 
is not targeted for domain experts, but for users that have programming skills. TAQL 
provides a language that allows users to define different kinds of problem-solving strategies. 
The knowledge roles that need to be filled out for these strategies are generic roles that are not 
dependent on the specific strategy defined but on the search framework underlying TAQL. 
Like EXPECT, in TAQL the KA tool is strategy-independent and can provide guidance that 
is based on principles that have broader application than role-limiting approaches do. Some 
of the errors that TAQL detects correspond to errors detected by EXPECT. For example 
"forgetting to design a problem space" in TAQL corresponds to an error in EXPECT that 
a method cannot be found to achieve a goal. Unlike TAQL, we believe that the guidance 
provided by EXPECT is accessible to an end-user that is trying to fill out knowledge roles. 

Other work in KA that has studied problem-solving strategies (including propose-and- 
revise) concentrates on knowledge modeling issues [Wielinga et al, 1992, Domingue et al., 
1993]. EXPECT's KA tool is an implemented system to support users in knowledge base 
refinement and maintenance. 
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7    Conclusion 

Explicit representations of problem-solving strategies can be used to support flexible ap- 
proaches to knowledge acquisition. This paper shows how this is done in the EXPECT 
framework, using the propose-and-revise strategy as an example. We have also compared how 
EXPECT supports knowledge acquisition for this strategy with a well-known tool (SALT) 
that was built specifically for that method. EXPECT's KA tool is able to acquire the same 
kinds of knowledge that a tool like SALT can acquire, as well as additional kinds of knowl- 
edge that are useful in constructing a knowledge-based system. EXPECT uses the same KA 
mechanisms to acquire both domain-dependent and domain-independent knowledge, and can 
do so for any problem-solving strategy that the user defines. 

Acknowledgments 

We would like to thank Sheila Coyazo, Kevin Knight, Bill Swartout, Marcelo Tallis, Milind 
Tambe, and Andre Valente for their comments on this paper. We would also like to thank the 
PROTEGE group at Stanford University, and in particular John Gennari, for creating the 
U-Haul domain and for making it available to us. We gratefully acknowledge the support of 
Defense Advanced Research Projects Agency with the contract DABT63-95-C-0059 as part 
of the DARPA/Rome Laboratory Planning Initiative. 

References 

[Birmingham and Klinker, 1993] W. Birmingham and G. Klinker. Knowledge-acquisition 
tools with explicit problem-solving models. The Knowledge Engineering Review 8(1):5- 
25, 1993. 

[Chandrasekaran, 1986] B. Chandrasekaran. Generic tasks in knowledge-based reasoning: 
High-level building blocks for expert system design. IEEE Expert, l(3):23-30, 1986. 

[Clancey, 1985] W. J. Clancey. Heuristic classification. Artificial Intelligence 27:289-350, 
1985. 

[Domingue et al, 1993] J. B. Domingue, E. Motta, and S. Watt. The emerging VITAL 
Workbench. In N. Aussenac, et al. (eds.), Knowledge Acquisition for Knowledge-Based 
Systems: Proceedings of the 1993 European Knowledge Acquisition Workshop, Springer- 
Verlag, 1993. 

[Eshelman, 1988] L. Eshelman. MOLE: A knowledge-acquisition tool for cover-and- 
differentiate systems. In S. Marcus, ed., Automating Knowledge Acquisition for Expert 
Systems, pp. 37-80. Boston: Kluwer Academic Publishers, 1988. 

[Gennari et al, 1993] J. H. Gennari, S. W. Tu, T. E. Rothenfluh, and M. A. Musen. Mapping 
methods in support of reuse. In Proceedings of the Eighth Knowledge Acquisition for 
Knowledge-Based Systems Workshop, Banff, Alberta, Canada, 1994. 

16 



[Gil, 1994] Yolanda Gil. Knowledge refinement in a reflective architecture. In Proceedings 
of the Twelfth National Conference on Artificial Intelligence, Seattle, WA, 1994. 

[Gil and Paris, 1994] Y. Gil and C. Paris. Towards method-independent knowledge acquisi- 
tion. Knowledge acquisition, 6(2):163-178, 1994. 

[Gil and Tallis, 1995] Y. Gil and M. Tallis. Transaction-Based Knowledge Acquisition: Com- 
plex Modifications made Easier. In Proceedings of the Ninth Knowledge Acquisition for 
Knowledge-Based Systems Workshop, Banff, Alberta, Canada, 1995. 

[Kahn et al., 1985] G. Kahn, G. Nowlan, and J. McDermott. Strategies for knowledge acqui- 
sition. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-7:511-522, 
1985. 

[Klinker et ah, 1991] G. Klinker, C. Bhola, G. Dallemagne, D. Marques, and J McDermott. 
Usable and reusable programming constructs. Knowledge Acquisition, 3(2):117-135, 1991. 

[MacGregor, 1988] R. MacGregor. A deductive pattern matcher. In Proceedings of the 1988 
National Conference on Artificial Intelligence, St Paul, MN, August 1988. 

[MacGregor, 1991] R. MacGregor. The evolving technology of classification-based knowledge 
representation systems. In J. Sowa, editor, Principles of Semantic Networks: Explorations 
in the Representation of Knowledge. Morgan Kaufmann, San Mateo, CA, 1991. 

[Marcus and McDermott, 1989] S. Marcus and J. McDermott. SALT: A knowledge acqui- 
sition language for propose-and-revise systems. Artificial Intelligence, 39(1):1—37, May 
1989. 

[Marcus et ah, 1988] S. Marcus, J. Stout, and J. McDermott. VT: An expert elevator de- 
signer that uses knowledge-based backtracking. AI Magazine 9(1):95—112, 1988. 

[McDermott, 1982] J. McDermott. Rl: A rule-based configurer of computer systems. Arti- 
ficial Intelligence 19:39-88, 1982. 

[McDermott, 1988] J. McDermott. Preliminary steps towards a taxonomy of problem-solving 
methods. In S. Marcus, ed., Automating Knowledge Acquisition for Knowledge-Based 
Systems. Boston: Kluwer Academic Publishers, 1988. 

[Musen, 1989] M. A. Musen. Automated support for building and extending expert models. 
Machine Learning, 4(3/4):347-375, 1989. 

[Musen, 1992] M. A Musen. Editorial. Overcoming the limitations of role-limiting methods. 
Knowledge Acquisition, 4(2):165-170, 1992. 

[Puerta et al, 1992] A. R. Puerta, J. W. Egar, S. W. Tu, and M. A Musen. A multiple- 
method knowledge-acquisition shell for the automatic generation of knowledge-acquisition 
tools. Knowledge Acquisition, 4(2):171—196, 1992. 

17 



[Ruiikel and Birmingham, 1993] J. T. Runkel and W. P. Birmingham. Knowledge acquisi- 
tion in the small: Building knowledge-acquisition tools from pieces. Knowledge Acquisition, 
5(2):221-243, 1993. 

[Schreiber and Birmingham, 1994] G. Schreiber and B. Birmingham, eds. Proceedings of the 
Eighth Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Alberta, 
Canada, 1994. 

[Swartout and Gil, 1995] Bill Swartout and Yolanda Gil. EXPECT: Explicit Representa- 
tions for Flexible Acquisition. In Proceedings of the Ninth Knowledge Acquisition for 
Knowledge-Based Systems Workshop, Banff, Alberta, Canada, 1995. 

[Wielinga et al, 1992] B. J. Wielinga, A. Th. Schreiber, and A. Breuker. KADS: a modelling 
approach to knowledge acquisition. Knowledge Acquisition 4(l):5-54, 1992. 

[Wright et al, 1983] J. R. Wright, E. S. Thompson, G. T. Vesonder, K. E. Brown, 
S. R. Palmer, J. I. Berman, and H. H. Moore. A knowledge-based configurator that 
supports sales, engineering, and manufacturing at AT&T Network Systems. AI Magazine 
14(3):69-80, 1993. 

[Yost, 1993] G. R. Yost. Knowledge acquisition in Soar. IEEE Expert, 8(3):26-34, 1993. 

18 


