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Abstract 

Two key issues for induction algorithms cure the accu- 
racy of the learned hypothesis and the computational 
resources consumed in inducing that hypothesis. One 
of the most promising ways to improve performance 
along both dimensions is to make use of additional 
knowledge. Multi-strategy learning algorithms tackle 
this problem by employing several strategies for han- 
dling different kinds of knowledge in different ways. 
However, integrating knowledge into an induction al- 
gorithm can be difficult when the new knowledge dif- 
fers significantly from the knowledge the algorithm 
already uses. In many cases the algorithm must be 
rewritten. 
This paper presents KII, a Knowledge Integration 
framework for Induction, that provides a uniform 
mechanism for integrating knowledge into induction. 
In theory, arbitrary knowledge can be integrated with 
this mechanism, but in practice the knowledge rep- 
resentation language determines both the knowledge 
that can be integrated, and the costs of integration 
and induction. By instantiating KII with various set 
representations, algorithms can be generated at differ- 
ent trade-off points along these dimensions. 
One instantiation of KII, called RS-KII, is presented 
that can implement hybrid induction algorithms, de- 
pending on which knowledge it utilizes. RS-KII is 
demonstrated to implement AQ-11 (Michalski 1978), 
as well as a hybrid algorithm that utilizes a domain 
theory and noisy examples. Other algorithms are also 
possible. 

Introduction 
Two key criteria for evaluating induction algorithms 
are the accuracy of the induced hypothesis and the 
computational cost of inducing that hypothesis. One of 
the most powerful ways to achieve improvements along 
both of these dimensions is by integrating additional 
knowledge into the induction process. Knowledge con- 
sists of examples, domain theories, heuristics, and any 
other information that affects which hypothesis is in- 
duced—that is, knowledge is examples plus biases. 

A given single-strategy learning algorithm can uti- 
lize some knowledge very effectively, others less effec- 
tively, and some knowledge not at all. By using multi- 

ple strategies, an induction algorithm can make more 
effective use of a wider range of knowledge, thereby im- 
proving performance. However, even a multi-strategy 
learning algorithm can only make use of knowledge for 
which its strategies are designed. 

In order to utilize new kinds of knowledge, the 
knowledge must either be recast as a kind for which 
the algorithm already has a strategy—for example, in- 
tegrating type constraints into FOIL by casting them 
as pseudo negative examples (Quinlan 1990)—or the 
algorithm must be rewritten to take advantage of the 
new knowledge by adding a new strategy or modifying 
an existing one. The first approach—recasting knowl- 
edge—is limited by the expressiveness of the knowledge 
already used by the algorithm. If the new knowledge 
cannot be expressed in terms of the existing kinds of 
knowledge, then the new knowledge cannot be utilized. 
The second approach—rewriting an algorithm to uti- 
lize a new kind of knowledge—is difficult. It also fails 
to solve the underlying problem—if yet another kind of 
knowledge is made available, the algorithm may have 
to be modified once again. 

What is needed is an easier way to integrate knowl- 
edge into induction. One approach for doing this ex- 
ploits the observation that a knowledge fragment plus 
a strategy for using that knowledge constitutes a bias, 
since together they determine which hypothesis is in- 
duced. These biases can be expressed uniformly in 
terms of constraints and preferences on the hypothesis 
space. The induced hypothesis is the most preferred 
hypothesis among those that satisfy the constraints. 
New knowledge and strategies are integrated into in- 
duction by combining their constraints and preferences 
with those previously integrated. 

This approach is formalized in a framework called 
KII. This framework represents constraints and pref- 
erences as sets, and provides set-based operations for 
integrating knowledge expressed in this way, and for 
inducing hypotheses from the integrated knowledge. 
Converting knowledge into constraints and preferences 
is handled by translators (Cohen 1992), which are writ- 
ten by the user for each knowledge fragment, or class 
of related knowledge fragments. 



Since KII is defined in terms of sets and set oper- 
ations, some set representation must be specified in 
order for KII to be operational. The set representa- 
tion determines the kinds of knowledge that can be 
expressed, and also determines the computational com- 
plexity of integration and induction. Each set repre- 
sentation yields an instantiation of KII at a different 
trade-off point between expressiveness and computa- 
tional complexity. 

This approach is most similar to that of Russell and 
Grosof (Russell & Grosof 1987), in which biases are 
represented as determinations, and the hypothesis is 
deduced from the determinations and examples by a 
theorem prover. As in KII, the inductive leaps come 
from biases, which may be grounded in supposition in- 
stead of fact. A major difference between this system 
and KII is KIFs ability to select different set represen- 
tations, which allows different trade-offs to be made 
between expressiveness and cost. Determinations, by 
contrast, are at a fixed trade-off point, although one 
could imagine using restricted logics. 

One advantage of KII's formal relationship between 
the set representation and the cost/expressiveness 
trade-off is that it allows formal analysis of these trade- 
offs. In particular, an upper limit can be established on 
the expressiveness of the set representations for which 
induction is even computable. This sets a practical 
limit on the kinds of knowledge that can be utilized by 
induction. 

Among the set representations below this limit, there 
are a number that generate useful instantiations of 
KII. Most notably, Incremental Version Space Merg- 
ing (Hirsh 1990) can be generated by using a boundary 
set representation for constraints (i.e., version spaces), 
and an empty representation for preferences; and an 
algorithm similar to Grendel (Cohen 1992) can be in- 
stantiated from KII by representing sets as antecedent 
description grammars (essentially context free gram- 
mars). These will be discussed briefly. A new algo- 
rithm, RS-KII, is instantiated from KII by represent- 
ing sets as regular grammars. This algorithm seems 
to strike a good balance between expressiveness and 
complexity. 

RS-KII can use a wide range of knowledge, and com- 
bine this knowledge in a number of ways. This makes 
it a good multi-strategy algorithm. RS-KII can use 
the knowledge and strategies of at least two exist- 
ing algorithms, the Candidate Elimination Algorithm 
(Mitchell 1982) and AQ-11 with a beam width of one 
(Michalski 1978). It can also utilize additional knowl- 
edge, such as a domain theory and noisy examples. 
Although space limits us from discussing all of these 
in detail, the translators needed to implement AQ-11 
are demonstrated, as well as those for the domain the- 
ory and noisy examples. When utilizing only the AQ- 
11 knowledge, RS-KII induces the same hypotheses as 
AQ-11 with a beam width of one, with a computational 
complexity that is only a little worse. When RS-KII 

utilizes the translators for the additional knowledge, 
RS-KII induces a more accurate hypothesis than AQ- 
11, and in much less time. RS-KII looks able to ex- 
press and integrate other common knowledge sources 
and strategies as well, though this is an area for future 
research. 

The Knowledge Integration Framework 
This section formally describes KII, a Knowledge In- 
tegration Framework for Induction. The combination 
of a knowledge fragment and a strategy for using that 
knowledge can be considered a bias, which is expressed 
in terms of constraints and preferences over the hy- 
pothesis space. For instance, a positive example and 
a strategy that assumes the target concept is strictly 
consistent with the examples, would be translated as 
a constraint that is satisfied only by hypotheses that 
cover the example. A strategy that assumed noisy ex- 
amples might be expressed as a preference for hypothe- 
ses that were most consistent with the example, but 
does not reject inconsistent hypotheses outright. 

The biases are integrated into a single composite bias 
by combining their respective constraints and prefer- 
ences. The composite bias, which includes the exam- 
ples, wholly determines the selection of the induced 
hypothesis. If there are several hypotheses which the 
bias finds equally acceptable, any one may be selected 
arbitrarily as the target concept. This set is called 
the solution set. In this view, integration precedes in- 
duction, rather than being part of it. This separation 
makes it easier to integrate knowledge into induction, 
since the effects of each process are clearer. 

KII formalizes these ideas as follows. Each bias is 
expressed as a triple of three sets, (H, C, P), where H 
is the hypothesis space, C is the set of hypotheses that 
satisfy the constraints of all the biases, and P is a set 
of hypothesis pairs, {x, y), such that x is less preferred 
than y by at least one of the biases. The solution set, 
from which the induced hypothesis is selected arbitrar- 
ily, is the set of most preferred hypothesis among those 
that satisfy the constraints—namely, the hypotheses in 
C for which no other hypothesis in C is preferable, ac- 
cording to P. Formally, {x € C \Vy € C (x,y) & P}. 

KII provides several operations on knowledge ex- 
pressed in this representation: translation, integra- 
tion, induction (selecting a hypothesis from the solu- 
tion set), and solution set queries. These operations, 
as well as the solution set itself, are defined in terms 
of set operations on H, C, and P. These operators are 
described in detail below. 

Translation Knowledge is converted from the form 
in which it occurs (its naturalistic representation 
(Rosenbloom et al. 1993)) into (H,C,P) triples by 
translators (Cohen 1992). Since knowledge is trans- 
lated into constraints and preferences over the hypoth- 
esis space, the implementation of each translator de- 
pends on both the hypothesis space and the knowl- 



edge. In the worst case, a different implementation is 
required for each pair of knowledge fragment and hy- 
pothesis space. Since there are a potentially infinite 
number of translators, they are not provided as part of 
the KII formalism, but must be provided by the user 
as needed. 

Fortunately, closely related pairs of hypothesis space 
and knowledge often have similar translations, allow- 
ing a single translator to be written for all of the pairs. 
One such translator, which will be described in de- 
tail later, takes as input an example and a hypothesis 
space. The example can be any member of the instance 
space, and the hypothesis space is selected from a fam- 
ily of languages by specifying the set of features. The 
same translator works for every pair of example and 
hypothesis language in this space. 

Integration Translated knowledge fragments are in- 
tegrated by composing their {H, C, P) triples. A hy- 
pothesis can only be the induced hypothesis if it is ac- 
cepted by the constraints of all of the knowledge frag- 
ments, and if the combined preferences of the knowl- 
edge fragments do not prefer some other hypothesis. 
That is, the induced hypothesis must satisfy the con- 
junction of the constraints, and be preferred by the 
disjunction of the preferences. This reasoning is cap- 
tured in the following definition for the integration of 
two tuples, (if,Ci,Pi) and (Ä",C2,P2>- The hypothe- 
sis space is the same in both cases, since it is not clear 
what it means to integrate knowledge about target hy- 
potheses from different hypothesis spaces. 

Integrated,d, Pi), {H,C2, P2» : (F,CinC2,PiUP2) 
(1) 

The integration operator assumes that the knowl- 
edge is consistent. That is, C\ and C2 are not mutu- 
ally exclusive, and that P1UP2 does not contain cycles 
(e.g., a < b and b < a). Although such knowledge 
can be integrated, the inconsistencies will not be dealt 
with in any significant fashion. Mutually exclusive con- 
straints will result in an empty solution set, and cycles 
are broken arbitrarily by assuming every element of 
the cycle is dominated. Developing more sophisticated 
strategies for dealing with contradictions is an area for 
future research. 

Although KII does not deal with contradictory 
knowledge, it can deal with uncertain knowledge. For 
example, noisy examples and incomplete domain the- 
ories can both be utilized in KII. Translators for these 
knowledge sources are described later. 

Induction and Solution Set Queries The inte- 
grated knowledge is represented by a single tuple, 
(H, C, P). The target concept is induced from the inte- 
grated knowledge by selecting an arbitrary hypothesis 
from the solution set of (H,C,P). KII also supports 
queries about the solution set, such as whether it is 
empty, a singleton, contains a given hypothesis, or is 
a subset of some other set. These correspond to the 
operations that have proven empirically useful for ver- 

sion spaces (Hirsh 1992), which can be thought of as 
solution sets for knowledge expressed as constraints. 

It is conjectured that these four queries plus the abil- 
ity to select a hypothesis from the solution set are suf- 
ficient for the vast majority of induction tasks. Most 
existing induction algorithms involve only the enumer- 
ation operator and perhaps an Empty or Unique query. 
The Candidate Elimination algorithm (Mitchell 1982) 
and Incremental Version Space Merging (IVSM) (Hirsh 
1990) use all four queries, but do not select a hypoth- 
esis from the solution set (they return the entire set). 

The queries and selection of a hypothesis from the 
solution set can be implemented in terms of a single 
enumeration operator. The enumeration operator re- 
turns n elements of a set, S, where n is specified by 
the user. It is denned formally as follows. 

Enumerate(S,n) -> {hi,ft2, • • • hm} 
where 

m = min(n,\S\), {hi, h2,... hm} Q S 

Normally, S is the solution set of (H,C,P). It can 
sometimes be cheaper to compute the first few elements 
of the solution set from (H, C, P) than to compute even 
the intensional representation of the solution set from 
(H, C, P). Therefore, the S argument to the enumera- 
tion operator can be either a (H, C, P) tuple, or a set 
expression involving an {H, C, P) tuple and other sets. 
This allows the enumeration operator to use whatever 
optimizations seem appropriate. A different implemen- 
tation of the enumerate operator is needed for different 
set representations of S, H, C, and P. 

A hypothesis is induced by selecting a single hypoth- 
esis from the solution set. This is done with a call to 
Enumerate({H,C,P),l). The emptiness and unique- 
ness queries are implemented as shown below, where 
5 is the solution set of tuple (H, C,P), A is set of hy- 
potheses in H, and h is a hypothesis in H. 

• Empty(S) <£> Enumerate({H,C,P), 1) = 0 

• Unique(S) ■& \Enumerate((H,C,P),2)\ = 1 

• Member(h, S) ■& Enumerate{(H, C, P)n{h}, 1) # 0 

• Subset(S, A) & Enumerate((H, C, P)nl, 1) = 0 

An Example Induction Task 

An example of how KII can solve a simple induction 
task is given below. Sets have been represented exten- 
sionally in this example. Although this is not the only 
possible set representation, and is generally a poor one, 
it is the simplest one for illustrative purposes. 

The Hypothesis Space The target concept is a 
member of a hypothesis space in which hypotheses 
are described by conjunctive feature vectors. There 
are three features size, color, and shape. The val- 
ues for these features are size £ {small, large, 
any-size}, color 6 {black, white, any-color}, and 



• TranPosExample(H, (z,c,s)) -»• (C, {}) where 
C    =    {x € H | x covers (z, c, s)} 

=    {z, any-size}x{c, any-color} x{s, any-shape} 

• TranNegExample(H, (z, c, s)) —)• (C, {}) where 
C    =    {x € H | z does not cover (2, c, s)} 

=    complement of 

{z, any-size}x{c, any-color} x{s, any-shape} 

• TranPreferGeneral(H) -* (H, P) where 
P    =    {{x, y) 6 HxH I x is more specific than y} 

—    {{sbr, 7br), {sbr, s?r), {sbr, ??r), {swr, ?wr),...} 

Figure 1: Translators. 

shape G {circle, rectangle, any-shape}. Hypothe- 
ses are described as 3-tuples from sizexcolorx shape. 
For shorthand identification, a value is specified by the 
first character of its name, except for the any values 
which are represented by a "?". So the hypothesis 
(any-size, white, circle) would be written as Iwc. 

Instances are the "ground" hypotheses. An in- 
stance is a tuple {size, color, shape) where color € 
{black, white}, size € {small, large}, and shape € 
{circle, rectangle}. 

Available Knowledge The available knowledge 
consists of three examples (classified instances), and 
an assumption that accuracy increases with generality. 
There are three examples, two positive and one neg- 
ative. The two positive examples are ei = swc and 
e2 = sbc. The negative example is ez = Iwr. The tar- 
get concept is s??. That is, size = small, and color 
and shape are irrelevant. 

Translators The first step is to translate the knowl- 
edge into constraints and preferences. Three trans- 
lators are constructed, one for each type of knowl- 
edge: the positive examples, negative examples, and 
the generality preference. These translators are shown 
in Figure 1. Since the hypothesis space is understood, 
(H, C, P) tuples will generally be referred to as just 
(C, P) tuples for the remainder of this illustration. 

The examples are translated in this scenario under 
the assumption that they are correct; that is, the tar- 
get concept covers all of the positive examples and 
none of the negatives. Positive examples are trans- 
lated as constraints satisfied only by hypotheses that 
cover the example. Negative examples are translated 
similarly, except that hypotheses must not cover the 
example. The bias for general hypotheses is translated 
into a {C,P) pair where C is H (it rejects nothing), 
and P = {{x,y) € HxH | x is more specific than y}. 
Hypothesis x is more specific than hypothesis y if x 
is equivalent to y, except that some of the values in 
y have been replaced by "any" values. For example, 
swr is more specific than Iwr, but there is no ordering 
between Iwc and swr. 

Integration and Induction Examples e\ and e% 
are translated by TranPosExample into (H, C\, 0) and 
{H,C2,9), respectively. Example ez is translated by 
TranNegExample into (H,Cz,®)- The preference for 
general hypotheses is translated into (H, H,Pi). These 
tuples are integrated into a single tuple, (H, C, P) = 
{H, C1r\C2nC3nH, 0U0U0UP4)- This tuple represents 
the combined biases of the four knowledge fragments. 

A hypothesis is induced by selecting one arbitrarily 
from the solution set of {H, C, P). This is accomplished 
by calling Enumerate((H,C,P),l). The solution set 
consists of the undominated elements of C with re- 
spect to the dominance relation P. C contains three 
elements, s??, ??c and sic. P prefers both s?? and ??c 
to sic, but there is no preference ordering between s?? 
and ??c. The undominated elements of C are therefore 
s?? and ??c. One of these is selected arbitrarily as the 
induced hypothesis. 

Instantiating KII 
In order to implement KII, specific set representations 
for H, C, and P are necessary. These representations 
can be as simple as an extensional set, or as powerful as 
arbitrary Turing machines. However, some representa- 
tion is needed. The representation determines which 
knowledge can be expressed in terms of (H, C, P) tu- 
ples and integrated. It also determines the computa- 
tional complexity of the integration and enumeration 
operations, which are defined in terms of set opera- 
tions. By instantiating KII with different set represen- 
tations, algorithms can be generated at different trade- 
off points between cost and expressiveness. 

The space of possible set representations maps onto 
the space of grammars. Every computable set is the 
language of some grammar. Similarly, every com- 
putable set representation is equivalent to some class of 
grammars. These classes include, but axe not limited 
to, the classes of the Chomsky hierarchy (Chomsky 
1959)—regular, context free, context sensitive, and re- 
cursively enumerable (r.e.). The complexity of set op- 
erations generally increases with the expressiveness of 
the language class. 

Allowing H, C, and P to be recursively enumerable 
(i.e., arbitrary Turing machines), would certainly pro- 
vide the most expressiveness. Although {H, C, P) tu- 
ples with r.e. sets can be expressed and integrated, the 
solution sets of some such tuples are uncomputable, 
and there is no way to know which tuples have this 
property. This will be discussed in more detail be- 
low. Since it is impossible to enumerate even a single 
element of an uncomputable set, it is impossible to in- 
duce a hypothesis by selecting one from the solution 
set. There is clearly a practical upper limit on the 
expressiveness of the set representations. 

It is possible to establish the most expressive lan- 
guages for C and P that guarantee a computable so- 
lution set. This establishes a practical limit on the 
knowledge that can be integrated into induction. 



By definition, the solution set is computable if and 
only if it is recursively enumerable. The solution set 
can always be constructed by applying a formula of set 
operations to C and P, as will be shown below. The 
most restrictive language in which the solution set can 
be expressed can be derived from this formula and the 
set representations for C and P by using the the clo- 
sure properties of these set operations. Inverting this 
function yields the most expressive C and P represen- 
tations for which the solution set is guaranteed to be 
at most recursively enumerable. 

The solution set can be computed from C and P 
according to the equation first((CxC)DP)nC. The 
derivation is shown in Equation 2, below. In this defini- 
tion, the function first({(xi,yi), (2:2,2/2), • • •}) is a pro- 
jection returning the set of tuple first-elements, namely 
{xi,x2,...}. 

SolnSet({H, C, P)) = {x G C | V^c {x, y) $ P} 

=    {x G H I (a; G C and 3yeC(x,y) G P) or x £ C} 

=   {x G H I x G C and 3y€C(x,y) G P} U C 

=   first({{x,y) G CxC | (x,y) G P})nC 

=   first((CxC)r\P)r\C (2) 

The least expressive representation in which the so- 
lution set can be represented can be computed from 
the closure of the above equation over the C and 
P set representations. To do this, it helps to know 
the closure properties for the individual set operations 
in the equation: intersection, complement, Cartesian 
product, and projection (first). The closure proper- 
ties of intersection and complement are well known for 
most language classes, although it is an open problem 
whether the context sensitive languages are closed un- 
der complementation (Hopcroft & Ullman 1979). The 
closure properties of projection and Cartesian prod- 
uct are not known as such, but these operations map 
onto other operations for which closure properties are 
known. 

The Cartesian product of two grammars, AxB, can 
be represented by their concatenation, AB. The tuple 
{x, y) is represented by the string xy. The Cartesian 
product can also be represented by interleaving the 
strings in A and B so that (x,y) is represented by a 
string in which the symbols in x and y alternate. Inter- 
leaving can sometimes represent subsets of AxB that 
concatenation cannot, depending on the language in 
which the product is expressed. The closure proper- 
ties of languages under Cartesian product depends on 
which approach is used. The following discussion de- 
rives limits on the languages for CxC and P. When 
the language for C is closed under Cartesian product, 
then the limits on CxC also apply to C, since both 
can be expressed in the same language. Otherwise, 
the limits on C have to be derived from those on CxC 
using the closure properties of the given implementa- 
tion of Cartesian product.   However, when C is not 

closed under Cartesian product, the language for C is 
necessarily less expressive than that for CxC. The ex- 
pressiveness limits on CxC therefore provide a good 
upper bound on the expressiveness of C that is inde- 
pendent of the Cartesian product implementation. 

Regardless of the representation used for Cartesian 
product, projection can be implemented as a homo- 
morphism (Hopcroft & Ullman 1979), which is a map- 
ping from symbols in one alphabet to strings in an- 
other. Homomorphisms can be used to erase symbols 
from strings in a language, which is exactly what pro- 
jection does—it erases symbols from the second field of 
a tuple, leaving only the symbols from the first field. 
A more detailed derivation of the properties for pro- 
jection and Cartesian product can be found in (Smith 
1995). 

The closure properties of languages under projec- 
tion, intersection, intersection with a regular grammar, 
and complement are summarized in Table 1. It should 
be clear that the solution set, first((CxC)(~)P)r\C, is 
r.e. when (CxC)nP is at most context free, and un- 
computable when it is any more expressive than that. 
For example, if (CxC)nP is context sensitive, then 
first((CxC)r\P is r.e. The complement of a set that 
is r.e. but not recursive is uncomputable (Hopcroft &: 
Ullman 1979), so the solution set, first((CxC)nP, is 
uncomputable. A complete proof appears in (Smith 
1995). 

There are several ways to select C, P, and the imple- 
mentation of Cartesian product, such that (CxC)nP 
is at most context free. The expressiveness of both C 
and P can be maximized by choosing one of C and 
P to be at most regular, and the other to be at most 
context free. This is because CFLs are closed under in- 
tersection with regular sets, but not with other CFLs. 
Regular sets are closed under all implementations of 
Cartesian product (both concatenation and arbitrary 
interleaving), and context free sets are closed under 
concatenation but only some interleavings. So if C is 
regular, any implementation of Cartesian product can 
be used, but if C is context free, then the choices are 
more restricted. 

As a practical matter, C should be closed under in- 
tersection and P under union in order to support the 
integration operator. This effectively restricts C to be 
regular and P to be at most context free. This also 
maximizes the choices of the Cartesian product imple- 
mentation. However, it is possible for C to be context 
free and P to be regular if the C set of at most one 
of the {H, C, P) triples being integrated is context free 
and the rest are regular. This follows from the clo- 
sure of context free languages under intersection with 
regular grammars. 

Other ways of selecting C and P are summarized 
in Table 2. This table assumes that C is closed un- 
der Cartesian product. As one interesting case, if the 
representation for P can express only the empty set, 
then the solution set is just C, so C can be r.e. The 



Operations Language 
Regular DCFL CFL CSL recursive r.e. 

n V V v/ V 
nR V V y/ V A/ V 
complement V V ? V 
projection 
(homomorphisms) 

V V %/ 

Table 1: Closure Under Operations Needed to Compute the Solution Set. 

restriction that (CxC)nP be at most context free is 
still satisfied, since (CxC)nP is always the empty set, 
and therefore well within the context free languages. 

RS-KII 
Instantiating KII with different set representations 
produces algorithms with different computational com- 
plexities and abilities to utilize knowledge. One instan- 
tiation that seems to strike a good balance between 
computational cost and expressiveness represents H, 
C, and P as regular sets. This instantiation is called 
RS-KII. 

RS-KII is a good multi-strategy algorithm, in that it 
can utilize various knowledge and strategies, depending 
on what knowledge is integrated, and how it is trans- 
lated. Existing algorithms can be emulated by creat- 
ing translators for the knowledge and strategies of that 
algorithm, and integrating the resulting (H, C, P) tu- 
ples. Hybrid multi-strategy algorithms can be created 
by translating and integrating additional knowledge, 
or by integrating novel combinations of knowledge for 
which translators already exist. 

Creating algorithms by writing translators for indi- 
vidual knowledge fragments and integrating them to- 
gether can be easier than writing new induction al- 
gorithms. Algorithms can be constructed modularly 
from translators, which allows knowledge fragments to 
be easily added or removed. By contrast, modifications 
made to an algorithm in order to utilize one knowledge 
fragment may have to be discarded in order to utilize 
a second fragment. 

The remainder of this section demonstrates how RS- 
KII can emulate AQ-11 with a beam width of one 
(Michalski 1978), and how RS-KII can integrate addi- 
tional knowledge, namely an overgeneral domain the- 
ory and noisy examples, to create a hybrid algorithm. 
AQ-11 with higher order beam widths is not demon- 
strated, since it is not clear how to express the corre- 
sponding bias as a regular grammar. This bias may 
require a more powerful set representation. 

When using only the AQ-11 knowledge, RS-KII 
induces the same hypotheses as AQ-11, albeit at a 
slightly worse computational complexity. When utiliz- 
ing the additional knowledge, RS-KII induces a more 
accurate hypothesis than AQ-11, and does so more 
quickly. 

RS-KII translators can be written for other knowl- 
edge as well, though space restrictions prevent any de- 
tailed discussion. Of note, RS-KII translators can be 
constructed for all biases expressible as version spaces 
(for certain classes of hypothesis spaces) (Smith 1995). 
It also looks likely that RS-KII translators can be con- 
structed for the knowledge used by other induction al- 
gorithms, though this is an area for future research. 

Translators for AQ-11 Biases 

The biases used by AQ-11 are strict consistency with 
the examples, and an user-defined lexicographic evalu- 
ation function (LEF). The LEF totally orders the hy- 
potheses according to user-defined criteria. The in- 
duced hypothesis is one that is consistent with all of 
the examples, and is a (possibly local) maximum of the 
LEF. A translator is demonstrated in which the LEF is 
an information gain metric, as used in algorithms such 
as ID3 (Quinlan 1986). 

Hypotheses are sentences in the VL\ language 
(Michalski 1974). There are k features, denoted /i 
through fk, where feature fc can take values from the 
set Vi. A hypothesis is a disjunction of terms, a term 
is a conjunction of selectors, and a selector is of the 
form [fi rel vi\, where v» is in Vi and rel is a relation 
in {<,<,=, 7^, >,>}• A specific hypothesis space in 
VL\ is specified by the fist of features and their values, 
and is denoted VZi«/i, Vx),..., (fk, Vk)). 

An instance is a vector of k values, (xi,£2>... ,Xk), 
where Xi is a value in Vi. A selector [fi relvi] is satis- 
fied by an example if and only if Xi rel Vi. A hypothesis 
covers an example if the example satisfies the hypoth- 
esis. 

Strict Consistency with Examples A bias for 
strict consistency with a positive example can be ex- 
pressed as a constraint that the induced hypothesis 
must cover the example. Similarly, strict consistency 
with a negative example constrains the induced hy- 
pothesis not to cover the example. Each of these con- 
straints is expressed as a regular grammar that only 
recognizes hypotheses that satisfy the constraint. The 
regular expression for the set of VL\ hypotheses cov- 
ering an example, Covers (H,e) is shown in Figure 2. 
The sets of values in COVERING-SELECTOR are all reg- 
ular sets.   For example, the set of integers less than 



c P (CxC)nP first((CxC)f\P)nC 
< regular 
< regular 
<CFL 

< regular 
< CFL 
< regular 

< regular 
< CFL 
< CFL 

< regular 
< recursive 
< recursive 

>CFL > CFL >CSL 
>CFL 

uncomputable 
uncomputable 

Table 2: Summary of Expressiveness Bounds. 

TranPosAQExampleiVLidh, Vi),..., {fk, Vk)), 
{xux2,...,xk))-+{H,C,{}) 

where 
H=VL1({f1,V1),...,{fk,Vk)) 
C=Covers(VL1((f1,V1),...,(fk,Vk)), 

(xi,...,xk)) 

TranNegAQExample{ Via {{fu Vi),...,(fk, Vk)), 
(xi,xa,...,xk)) -+ (H,C,{}) 

where 
H=VL1((f1,V1),...,(fk,Vk)) 
C = ExcludesiVUUhM),..., {fk, Vk}), 

(xi,...,xk)) 

Figure 3: Example Translators for VL\. 

100 is (0 - 9)|((1 - 9)(0 - 9)). There is an algorithm 
that generates each of these sets given the relation and 
the bounding number, but it is omitted for brevity. 
The complement of Covers (H, e) is Excludes (H, e), the 
set of hypotheses in H that do not cover example e. 
These two regular grammars implement the translators 
for positive and examples in the VL\ hypothesis space 
language, as shown in Figure 3. The translator takes 
as input the list of features and their values, and the 
example. 

The LEF AQ-11 performs a beam search of the hy- 
pothesis space to find a hypothesis that maximizes the 
LEF, or is at least a good local approximation. AQ-11 
returns the first hypothesis visited by this search that 
is also consistent with the examples. This is a bias to- 
wards hypotheses that come earner in the search order. 

This bias can be expressed as an {H, C, P) tuple in 
which C = H (i.e., no hypotheses are rejected), and 
P is a partial ordering over the hypothesis space in 
which {a, b) is in P if and only if hypothesis a comes 
after hypothesis b in the search order (i.e., a is less 
preferred than b). 

The search order of a beam search is difficult, and 
perhaps impossible, to express as a regular grammar. 
However, with a beam width of one, beam search be- 
comes hill climbing, which can be expressed as a regu- 
lar grammar. 

In hill climbing, single selector extensions of the cur- 

rent best hypothesis are evaluated by some evaluation 
function, /, and the extension with the best evaluation 
becomes the next current best hypothesis. Given two 
terms, t\ = 01O2 ... an and £2 = &1&2 • • • bm, where a,i 
and bi are selectors, t\ is visited before £2 if the first 
fc — 1 extensions of t\ and £2 are the same, but on the 
kth extension, either ti has a better evaluation than £2, 
or ij has no more selectors. Formally, there is either 
some extension k < min(m, n) such that for all i < fc, 
Oi = bi and f{a\ ...ak) > f(h ... bk), or m < n and 
the first m selectors of t\ and <2 are the same. 

This is equivalent to saying that the digit string 
/(°i) ' /(ai<*2) • .. • • f{aio,2 .. .an) comes before the 
digit string /(&i) • f(bib2) ■ ...■ /(&1&2 • • • b„) in dic- 
tionary (lexicographic) order. This assumes that low 
evaluations are best, and that the evaluation func- 
tion returns a unique value for each term—that is, 
f(ai... am) = /(&i... bm) if and only if at = 6j for 
all i between one and m. This can be ensured by as- 
signing a unique id to each selector, and appending 
the id for the last selector in the term to the end of the 
term's evaluation. The evaluations of two terms are 
compared after each extension until one partial term 
either has a better evaluation, or terminates. 

A regular grammar can be constructed that recog- 
nizes pairs of hypotheses, {hi, h2), if h\ is visited be- 
fore /i2 in the search. This is done in two steps. First, 
a grammar is constructed that maps each hypothesis 
onto digit strings of the kind described above. The 
digit strings are then passed to a regular grammar that 
recognizes pairs of digit strings, (di,^), such that di 
comes before cfe in dictionary order. This is equiv- 
alent to substituting the mapping grammar into the 
dictionary ordering grammar. Since regular grammar 
are closed under substitution, the resulting grammar 
is also regular (Hopcroft & Ullman 1979). 

The digit string comparison grammar is the simpler 
of the two, so it will be described first. This gram- 
mar recognizes pairs of digit strings, {x,y), such that 
x comes before y lexicographically. A special termina- 
tion symbol, #, is appended to each string, and the re- 
sulting strings are interleaved so that their symbols al- 
ternate. The interleaved string is given as input to the 
grammar specified by the regular expression EQUAL* 
LESS-THAN ANY*, where EQUAL = (00|11|##), LESS- 
THAN = (01|#0|#1) and ANY = (0|1|#). This expres- 
sion assumes a binary digit string, but can be easily 



Covers(VL!(</i, Vi>, </2l V2), ...,(/*, 14», fa,x2,...,xk)) -> G where 
G = (ANY-TERM or)* COVERING-TERM (or ANY-TERM)* 
ANY-TERM = SELECTOR4" 
COVERING-TERM = COVERING-SELECTOR"*" 
SELECTOR = "[" ft (< | < | = | 3* | > | >) Vi  "]"   | 

i" h «i < i = ¥ i > i» v2 r | 

"[" /* (< I < I = I ? | > | >) Vk "]" 
COVERING-SELECTOR = {[/, # v] | X; # V and # € {<, <, =, ^, >, >}} 

= TA<{v€V1|t;>xi}TI 
"[" h<{veV1\v> Xl} "]" | . 
1" h = xi "]" I 
T h # M - {^i}) 1" I 
T/i>{»eVi|t;<x1} T I ■ 
T/i>{«€ filt; <*!}«]» | . 

"[" /fc < {v € Vfe 11; > xfc} "]" | 
T/*<{»€n|«>xfc} Tl 
"[" h = xfc "]" I 
"[" fk ? {Vk - {xk}) "]" I 
"[" fk>{vevk\v<xk} "]" | 
"[" fk>{vEVk\v<xk} "]" 

Figure 2: Regular Expression for the Set of VL\ Hypotheses Covering an Instance. 

extended to handle base ten numbers. 
The mapping of a hypothesis onto a digit string is 

accomplished by a Moore machine—a DFA that has 
an output string associated with each state. Recall 
that the digit string for a term, a\a2 ■ • ■ om, is /(ai) • 
f(aia2) • ... • f(aia2...am)). The machine takes a 
hypothesis as input. After reading each selector, it 
outputs the evaluation string for the current partial 
term. So after seeing oi, it prints f(ai). After seeing 
a2 it prints f{aia2), and so on until it has printed the 
digit string for the term. When the end of the term 
is encountered (i.e., an or symbol is seen), the DFA 
returns to the initial state and repeats the process for 
the next term. The evaluation function must return a 
fixed-length string of digits. 

A Moore machine can only have a finite number of 
states. It needs at least one state for each selector. 
It must also remember enough about the previous se- 
lectors in the term to compute the term's evaluation. 
Since terms can be arbitrarily long, no finite state ma- 
chine can remember all of the previous selectors in the 
term. However, the evaluation function can often get 
by with much less information. 

For example, when the evaluation function is an 
information metric, the evaluation of a partial term, 
aia2 ... ak, depends only on the number of positive and 
negative examples covered by the term. This can be 
represented by 2n states, where n is the number of ex- 
amples. In this case, a state in the Moore machine 
is an n digit binary number, where the ith digit in- 
dicates whether or not the example is covered by the 
term. In the initial state, all of the examples are cov- 
ered. When a selector is seen, the digits corresponding 
to examples that are not covered by the selector are 
turned off. The binary vector for the state indicates 
which examples are covered, and the output string for 
the state is the information corresponding to that cov- 

erage of the examples.1 When an or is seen, the DFA 
prints a zero to indicate end-of-term, and returns to 
the initial state. 

This Moore machine is parameterized by the list of 
examples and the evaluation function /. This machine 
is substituted into the regular expression for comparing 
digit strings. The resulting DFA takes recognizes a pair 
of hypotheses, (hi,h2), if and only if hi comes before 
h2 in the hill climbing search. 

Although the machine has an exponential number 
of states, they do not need to be represented exten- 
sionally. All that must be maintained is the current 
state (an n digit binary number). The next state can 
be computed from the current state and a selector by 
determining which examples are not covered by the 
selector, and turning off those bits. This requires at 
most 0(n) space and 0(mn) time to evaluate a hy- 
pothesis, where n is the number of examples, and m is 
the number of selectors in the hypothesis. 

The translator for this knowledge source takes as 
input the hypothesis space, the list of examples, and 
an evaluation function, /. The function / takes as 
input the number of covered and uncovered examples, 
and outputs a fixed length non-negative integer. The 
translator returns {H,H,P), where P is the grammar 
described above. (H, H, P) prefers hypotheses that are 
visited earlier by hill climbing with evaluation function 
/. This kind of bias is used in a number of induction 
algorithms, so this translator can be used for them as 
well. 

Although the logic behind the LEF translator is 

Since information is a real between -1 and 1, and 
the output must be a fixed-length non-negative integer, 
the output string for a state is the integer portion of 
{info + 1.0) * 106, where info is the information of the ex- 
ample partitioning represented by the n digit number for 
that state. 



rather complex, the translator itself is fairly straight- 
forward to write. The Moore machine requires only a 
handful of code to implement the next-state and out- 
put functions, and the digit-string comparison gram- 
mar is a simple regular expression. The design effort 
also transfers to other biases. The evaluation func- 
tion can be changed, so long as it only needs to know 
which examples are covered by the current term, and 
the basic design can be reused for translators of similar 
biases. 

Some of the difficulty in designing the LEF transla- 
tor may be because the bias is designed for use in a 
hypothesis space search paradigm, and does not trans- 
late well to RS-KII. Bear in mind that the beam-search 
is an approximation of another bias, namely that the 
induced hypothesis should maximize the LEF. Finding 
a maximal hypothesis is intractable, so AQ-11 approx- 
imates it with a beam search. This particular approx- 
imation was chosen because it is easy to implement in 
the hypothesis-space search paradigm. However, RS- 
KII uses a different paradigm, so a different approxi- 
mation of the "maximize the LEF" bias that is easier 
to express in RS-KII may be more appropriate. 

Translators for Novel Biases 

The following translators are for biases that AQ-11 
does not utilize, namely consistency with one class of 
noisy examples, and an assumption that the target hy- 
pothesis is a specialization of an overgeneral domain 
theory. 

Noisy Examples with Bounded Inconsistency 
Bounded inconsistency (Hirsh 1990) is a kind of noise 
in which each feature of the example can be wrong by 
at most a fixed amount. For example, if the width 
value for each instance is measured by an instrument 
with a maximum error of ±0.3mm, then the width val- 
ues for these instances have bounded inconsistency. 

The idea for translating examples with bounded in- 
consistency is to use the error margin to work back- 
wards from the noisy example to compute the set of 
possible noise-free examples. One of these examples 
is the correct noise-free version of the observed exam- 
ple, into which noise was introduced to produce the 
observed noisy example. The target concept is strictly 
consistent with this noise-free example. 

Let e be the noisy observed example, E be the set 
of noise-free examples from which e could have been 
generated, and let e' be the correct noise-free example 
from which e was in fact generated. Since it is unknown 
which example in E is e', a noisy example is translated 
as (H, C, 0), where C is the set of hypotheses that are 
strictly consistent with one or more of the examples 
in E. Hypotheses that are consistent with none of the 
examples in E are not consistent with e', and therefore 
not the target concept. This is the approach used by 
Hirsh (Hirsh 1990) in IVSM to translate noisy exam- 
ples with bounded inconsistency. 

TranPosExampleBI (H, (Si, S2, • •., 4), 
(x1,x2,...,Xk))-*{H,C,P) 

E   =    [x1,±61]x[x2,±52]x...[xk,±6k] 
where [xi, ±Si\ = {v | xt - Si < v < Xi + Si} 

C    =      (J  CiS.t.{Ci,<l))=TranPosAQExample(H,ei) 

Figure 4:   RS-KII Translator for Positive Examples 
with Bounded Inconsistency. 

This suggests the following RS-KII translator for 
examples with bounded inconsistency. The set of 
possible noise-free examples, E, is computed from 
the noisy examples and the error margins for each 
feature. Each example, ei, in this set is trans- 
lated using one of the RS-KII translators for noise- 
free examples—either TranPosAQExample(H,ei) or 
TranNegAQExample{H,ei)—which translates exam- 
ple ei into (H,Ci,0). d is the set of hypothe- 
ses that are strictly consistent with e». The trans- 
lator for the bounded inconsistent example returns 
(C — Ui=i Ci»0)- C is the set of hypotheses consis- 
tent with at least one of the examples in E. 

The set E is computed from the observed example, 
{xi, x2, ■ ■., Xk), and the error margins for each feature, 
±Si through ±Sk, as follows. If the observed value 
for feature fc is x», and the error margin is ±Si, then 
the correct value for feature fi is in {v | xt — Si < 
v < Xi + Si}. Call this set [x,,±6i] for short. Since 
instances are ordered vectors of feature values, E is 
[xi,±Si]x[x2,±Ö2]x...x[xk,±Sk]. 

A translator for examples with bounded inconsis- 
tency based on this approach is shown in Figure 4. 
It takes as input a VL\ hypothesis space (H), the er- 
ror margin for each feature (±<5i through ±Sk) and an 
instance. Negative examples are translated similarly, 
except that TranNegAQExample(H,ei) is used. 

Domain Theory A domain theory encodes back- 
ground knowledge about the target concept as a collec- 
tion of horn-clause inference rules that explain why an 
instance is a member of the target concept. The way 
in which this knowledge biases induction depends on 
assumptions about the correctness and completeness of 
the theory. Each of these assumptions requires a dif- 
ferent translator, since the biases map onto different 
constraints and preferences. 

A translator for a particular overgeneral domain the- 
ory is described below. The theory being translated is 
derived from the classic "cup" theory (Mitchell, Keller, 
& Kedar-Cabelli 1986; Winston et al. 1983), and is 
shown in Figure 5. It expands into a set of sufficient 
conditions for cup (X), as shown in Figure 6. The trans- 
lator assumes that the target concept is a specialization 
of the theory. In this case, the actual target concept 



cup(X) 

holdJiquid(X) 
liftable(X) 
graspable(X) 

stable(X) 
drmkfrom(X) 

holdJiquid(X), liftable(X), 
stable(X), drink£rom(X). 
plastic(X) | china(X) | metal(X). 
small(X), graspable(X). 
small(X), cylindrical(X) | 
small(X), hasJiandle(X). 
flat-bottom(X). 
open_top(X). 

Figure 5: CUP Domain Theory. 

1. cup(X)     :-     plastic(X), small(X), cylindrical(X), 
flat-bottom(X), open.top(X). 

2. cup(X)     :-     china(X), small(X), cylindrical(X), 
flat_bottom(X), open.top(X). 

3. cup(X)     :-     metal(X), small(X), cylindrical(X), 
flat_bottom(X), open.top(X). 

4. cup(X)     :-    plastic(X), small(X), has_handle(X), 
flat.bottom(X), open.top(X). 

5. cup(X)     :-     metal(X), small(X), has_handle(X), 
flat_bottom(X), open.top(X). 

6. cup(X)     :-    china(X), small(X), has_handle(X), 
flat_bottom(X), open.top(X). 

Figure 6: Sufficient Conditions of the CUP Theory. 

plastic(x) -> [plastic = true] 
china(x) -> [china = true] 
metal(x) -> [metal = true] 
has .handle (x) ->■ [has_handle = true] 
cylindrical(x) -» [cylindrical = true] 
small(x) -4 [size < 5] 
flat_bottom(x) -> [flat-bottom = true] 
open_top (x) ->• [open.top = true] 

Figure 7: Selectors Corresponding to Predicates in CUP 
Theory. 

c -»■ TERM 1 C or TERM 
TERM -}■ CONDITION 
CONDITION -» CUP(X) 

PLASTIC (X) -» [plastic = true] 
CHINA (x) -»■ [china = true] 
METAL(X) -» [metal = true] 
HAS_HANDLE(X) -¥ [has-handle = true] 
CYLINDRICAL(X) -> [cylindrical = true] 
SMALL(X) -¥ [size < 5] 
FLAT_BOTTOM(X) -» [flat-bottom = true] 
OPEN.TOP(X) -> [open_top = true] 

is "plastic cups without handles," which corresponds 
to condition one, but this information is not provided 
to the translator. All the translator knows is that the 
target concept can be described by a disjunction of one 
or more of the sufficient conditions in the cup theory. 

The translator takes the theory and hypothesis space 
as input, and generates the tuple (H, C, {}), where C is 
satisfied by hypotheses equivalent to a disjunct of one 
or more of the theory's sufficient conditions. In gen- 
eral, the hypothesis space language may differ from 
the language of the conditions, making it difficult to 
determine equivalence. However, for the VL\ language 
of AQ-11, the languages are similar enough that sim- 
ple syntactic equivalence will suffice, modulo a few 
cosmetic changes. Specifically, the predicates in the 
sufficient conditions are replaced by corresponding se- 
lectors. All disjuncts of the resulting conditions are 
VL\ hypotheses. The mappings are shown in Figure 7. 
In general, the predicates are Boolean valued, and 
are replaced by Boolean valued selectors. To show 
that other mappings are also possible, the predicate 
small (x) is replaced by the selector [size < 5]. 

The grammar for C is essentially the grammar for 
the cup theory, with a few additional rules. First, 
the cup theory is written as a context free grammar 
that generates the sufficient conditions. If the gram- 
mar does not have certain kinds of recursion, as is the 
case in the CUP theory, then it is in fact a regular 
grammar. In this case, the grammar for C will also be 
regular. Otherwise, the grammar for C will be context 
free. This limits the theories that can be utilized by 
RS-KII. However, RS-KII could be extended to utilize 

Figure 8: Grammar for VLi Hypotheses Satisfying the 
CUP Theory Bias. 

a context free theory by allowing the C set of at most 
one (H, C, P) tuple to be context free. This would be 
a different instantiation of KII, but still within the ex- 
pressiveness limits discussed in the previous section. 

Once the theory has been written as a grammar, 
rewrite rules are added that map each terminal pred- 
icate (those that appear in the sufficient conditions) 
onto the corresponding selector(s). This grammar gen- 
erates VLi hypotheses equivalent to each of the suffi- 
cient conditions. To get all possible disjuncts, rules 
are added that correspond to the regular expression 
CONDITION (or CONDITION)*, where CONDITION is the 
head of the domain-theory grammar described above. 

The grammar for C discussed above is shown in Fig- 
ure 8. This grammar is a little less general than it could 
be, since it does not allow all permutations of the se- 
lectors within each term. However, the more general 
grammar contains considerably more rules, and per- 
muting the selectors does not change the semantics 
of a hypothesis. In the following grammar, the non- 
terminal CUP(x) is the head of the cup domain-theory 
grammar, which has the same structure as the theory 
shown in Figure 5. 

Enumerating the Solution Set 
The solution set is a regular grammar computed from 
C and P, as was shown in Equation 2. A regular gram- 
mar is equivalent to a deterministic finite automaton 



(DFA). One straightforward way to enumerate a string 
from the solution set is to search the DFA for a path 
from the start state to an accept state. However, the 
DFA computed by the solution-set equation from C 
and P can contain dead states, from which there is no 
path to an accept state. These dead states can cause 
a large amount of expensive backtracking. 

There is a second approach that can reduce back- 
tracking by making better use of the dominance infor- 
mation in P. The solution set consists of the undom- 
inated strings in C, where P is the dominance rela- 
tion. Strings in this set can be enumerated by search- 
ing C with branch-and-bound (Kumar 1992). The ba- 
sic branch-and-bound search must be modified to use 
a partially ordered dominance relation rather than a 
totally ordered one, and to return multiple solutions 
instead of just one. These modifications are relatively 
straightforward, and are described in (Smith 1995). 

Although the worst-case complexity of branch-and- 
bound is the same as a blind search of the solution-set 
DFA, the complexity of enumerating the first few hy- 
potheses with branch-and-bound can be significantly 
less. Since for most applications only one or two hy- 
potheses are ever needed, RS-KII uses branch-and- 
bound. 

Results 
By combining biases, different induction algorithms 
can be generated. AQ-11 uses the biases of strict con- 
sistency with examples, and prefers hypotheses that 
maximize the LEF. When using only these biases, both 
RS-KII and AQ-11 with a beam width of one induce 
the same hypotheses, though RS-KII is slightly more 
computationally expensive. The complexity of AQ-11 
with a beam-size of one is 0(eAk), where e is the num- 
ber of examples and k is the number of features. The 
complexity of RS-KII when using only AQ-11 biases 
is 0(e5fc2). These derivations can be found in (Smith 
1995), and generally follow the complexity derivations 
for AQ-11 in (Clark & Niblett 1989). RS-KII is a little 
more costly because it assumes that the LEF bias, en- 
coded by P, is a partial order, where it is in fact a total 
order. This causes RS-KII to make unnecessary com- 
parisons that AQ-11 avoids. One could imagine a ver- 
sion of RS-KII which used information about whether 
P was a total order or a partial order. 

RS-KII's strength lies in its ability to utilize addi- 
tional knowledge, such as the domain theory and noisy 
examples with bounded inconsistency. When the do- 
main theory translator is added, RS-KII's complexity 
drops considerably, since the hypothesis space is re- 
duced to a relative handful of hypotheses by the strong 
bias of the domain theory. The concept induced by RS- 
KII is also more accurate than that learned by AQ-11, 
which cannot utilize the domain theory. When given 
the four examples of the concept "plastic cups with- 
out handles," as shown in Table 3, AQ-11 learns the 
overgeneral concept 

ID class /i h h u h ft fr h 
ei + t f f f t 5 t t 
e2 + t f f f t 3 t t 
e3 - f t f f t 4 t t 
e4 - t f f t t 1 t t 

/i plastic /5 hasJiandle 
/2 china f§ size 
fz metal f7 flat-bottom 
fi cylindrical /g open_top 

Table 3: Examples for the CUP Task. 

[plastic = true]   [cylindrical = true] 

which includes many non-cups, whereas RS-KII learns 
the correct concept: 

[plastic = true]   [cylindrical = true] 
[size < 5]   [f lat_bottom = true] 
[open-top = true] 

The additional bias from the domain theory makes this 
the shortest concept consistent with the four examples. 

RS-KII can also handle noisy examples with 
bounded inconsistency. For the cup domain, assume 
that the size can be off by at most one. Let the size 
feature of example &v be six instead of five. AQ-11 
would fail to induce a hypothesis at all, since there is 
no hypothesis consistent with all four examples. When 
using the bounded-inconsistency translator for exam- 
ples, RS-KII can induce a hypothesis, namely the same 
one learned above with noise-free examples. In gen- 
eral, noisy examples introduce uncertainty, which can 
increase the size of the solution set and decrease the 
accuracy of the learned hypothesis. Additional knowl- 
edge may be necessary to mitigate these effects. In this 
case, however, the domain theory bias is sufficiently 
strong, and the noise sufficiently weak, that no addi- 
tional knowledge is needed. 

The ability to utilize additional knowledge allows 
RS-KII to induce hypotheses in situations where AQ- 
11 cannot, and allows RS-KII to induce more accurate 
hypotheses. RS-KII can also make use of knowledge 
other than those shown here by writing appropriate 
translators. 

Precursors to KII 
KII has its roots in two knowledge integration systems, 
Incremental Version Space Merging (Hirsh 1990), and 
Grendel (Cohen 1992). These systems can also be in- 
stantiated from KII, given appropriate set represen- 
tations. These systems and their relation to KII are 
described below. 

IVSM. Incremental Version Space Merging (IVSM) 
(Hirsh 1990) was one of the first knowledge integration 



Systems for induction, and provided much of the mo- 
tivation for KII. IVSM integrates knowledge by trans- 
lating each knowledge fragment into a version space 
of hypotheses consistent with the knowledge, and then 
intersecting these version spaces to obtain a version 
space consistent with all of the knowledge. Version 
spaces map onto (H, C, P) tuples in which C is a ver- 
sion space in the traditional [S, G] representation, and 
P is the empty set (i.e., no preference information). 

KII expands on IVSM by extending the space of 
set representations from the traditional [S,G] repre- 
sentation—and a handful of alternative representa- 
tions (e.g., (Hirsh 1992; Smith & Rosenbloom 1990; 
Subramanian & Feigenbaum 1986))—to the space of 
all possible set representations. KII also expands on 
IVSM by allowing knowledge to be expressed in terms 
of preferences as well as constraints, thereby increas- 
ing the kinds of knowledge that can be utilized. KII 
strictly subsumes IVSM, in that IVSM can be cast as 
an instantiation of KII in which C is a version space 
one of the possible representations, and P is expressed 
in the null representation, which can only represent the 
empty set. 

Grendel. Grendel (Cohen 1992) is another cognitive 
ancestor of KII. The motivation for Grendel is to ex- 
press biases explicitly in order to understand their ef- 
fect on induction. The biases are translated into a 
context free grammar representing the biased hypothe- 
sis space.2 This space is then searched for a hypothesis 
that is strictly consistent with the examples, under the 
guidance of an information gain metric. Some simple 
information can also be encoded in the grammar. 

Grendel cannot easily integrate new knowledge. 
Context free grammars are not closed under intersec- 
tion (Hopcroft & Ullman 1979), so it is not possible 
to generate a grammar for the new knowledge and in- 
tersect it with the existing grammar. Instead, a new 
grammar must be constructed for all of the biases. KII 
can use set representations that are closed under in- 
tersection, which allows KII to add or omit knowledge 
much more flexibly than Grendel. KII also has a richer 
language for expressing preferences. Grendel-like be- 
havior can be obtained by instantiating KII with a con- 
text free grammar for C. 

Future Work 
One prime area for future work is constructing RS- 
KII translators for other biases and knowledge sources, 
especially those used by other induction algorithms. 
This is both to extend the range of knowledge available 
to RS-KII, and to test the limits of its expressiveness 
with respect to existing algorithms. 

A second area is investigating the naturalness of 
the {H, C, P) representation. In RS-KII, some of the 

2 More precisely, they are are expressed as an antecedent 
description grammar. 

knowledge in AQ-11 is easy to express as (H, C, P) tu- 
ples, but some, such as the LEF, is more awkward. 
Others, such as the beam search bias, cannot be ex- 
pressed at all in RS-KII. One approach is to replace 
this hard-to-express knowledge with knowledge that 
achieves similar effects on induction, but is easier to 
express. Similar approaches are used implicitly in ex- 
isting algorithms for knowledge that cannot be easily 
used by the search. For example, AQll approximates 
a bias for the best hypothesis with a beam search that 
finds a locally maximal hypothesis. 

Finally, the space of set representations should be 
investigated further to find representations that will 
yield other useful instantiations of KII. In particular, 
it would be worth identifying a set representation that 
can integrate n knowledge fragments and enumerate 
a hypothesis from the solution set in time polynomial 
in n. This would provide a tractable knowledge inte- 
gration algorithm. Additionally, the set representation 
for the instantiation effectively defines a class of knowl- 
edge from which hypotheses can be induced in polyno- 
mial time. This would complement the results in the 
PAC literature, which deal with polynomial-time learn- 
ing from examples only (e.g.,(Vapnik & Chervonenkis 
1971), (Valiant 1984), (Blummer et al. 1989)). 

Conclusions 
Integrating additional knowledge is one of the most 
powerful ways to increase the accuracy and reduce the 
cost of induction. KII provides a uniform mechanism 
for doing so. KII also addresses an apparently inher- 
ent trade-off between the breadth of knowledge utilized 
and the cost of induction. KII can vary the trade-off 
by changing the set representation. RS-KII is an in- 
stantiation of KII with regular sets that shows promise 
for being able to integrate a wide range of knowledge 
and related strategies, thereby creating hybrid multi- 
strategy algorithms that make better use of the avail- 
able knowledge. One such hybridization of AQ-11 was 
demonstrated. Other instantiations of KII may pro- 
vide similarly useful algorithms, as demonstrated by 
IVSM and Grendel. 
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