
University
of Southern
California

Induction as Knowledge Integration
Benjamin D. Smith and Paul S. Rosenbloom

USC/Information Sciences Institute

May 1996

ISI/RS-96-438

A»*wr*i tot puhoc mlttu* (
jDitiHliiiiiui UtJani»d i
" ' m .., aits'

19960930 116
INFORMATION

SCIENCES
INSTITUTE 'MI. 3101822-1511

4676 Admiralty Way/Marina del Rey I California 90292-6695

Induction as Knowledge Integration
Benjamin D. Smith and Paul S. Rosenbloom

USC/Information Sciences Institute

May 1996

ISI/RS-96-438

^■Öö&Ptt,

UuKX «-

ÄBBPdoved tor pusäis release

Also appears in R. S. Michalski & J. Wnek (eds.), Proceedings of the Third International
Workshop on Multistrategy Learning, Harpers Ferry, WV, 1996. In press.

REPORT DOCUMENTATION PAGE
FORM APPROVED
OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching exiting data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimated or any
other aspect of this collection of information, including suggestings for reducing this burden to Washington Headquarters Services, Directorate for Information Operations
and Reports, 1215 Jefferson Davis highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

May 1996
3. REPORT TYPE AND DATES COVERED

Research Report
4. TITLE AND SUBTITLE

Induction as Knowledge Integration

5. FUNDING NUMBERS

Cooperative agreement
number:
NCC 2-538

Contract number:
N66001-95-C-6013

6. AUTHOR(S)

Benjamin D. Smith and Paul S. Rosenbloom

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

8. PERFORMING ORGANIZATON
REPORT NUMBER

ISI/RS-96-438

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

ARPA/ ISO Nat' 1 Aeronautics and Space Administration NRaD / NCCOSC
3701 N. Fairfax Drive Ames Research Center 53560 Hull St.
Arlington, VA 22203 Moffett Field, CA 94035 San Diego, CA 92152

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Also appears in R. S. Michalski & J. Wnek (eds.), Proceedings of the Third International Workshop on Multistrategy
Learning, Harpers Ferry, WV, 1996. In press.

12A. DISTRIBUTION/AVAILABILITY STATEMENT

UNCLASSIFIED/UNLIMITED

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Two key issues for induction algorithms are the accuracy of the learned hypothesis and the computational resources consumed in inducing that
hypothesis. One of the most promising ways to improve performance along both dimensions is to make use of additional knowledge. Multi-
strategy learning algorithms tackle this problem by employing several strategies for handling different kinds of knowledge in different ways.
However, integrating knowledge into an induction algorithm can be difficult when the new knowledge differs significantly from the knowledge
the algorithm already uses. In many cases the algorithm must be rewritten.

This paper presents KII, a Knowledge Integration framework for Induction, that provides a uniform mechanism for integrating knowledge into
induction. In theory, arbitrary knowledge can be integrated with this mechanism, but in practice the knowledge representation language deter-
mines both the knowledge that can be integrated, and the costs of integration and induction. By instantiating KII with various set representa-
tions, algorithms can be generated at different trade-off points along these dimensions.

One instantiation of KII, called RS-KII, is presented that can implement hybrid induction algorithms, depending on which knowledge it uti-
lizes. RS-KII is demonstrated to implement AQ-11, as well as a hybrid algorithm that utilizes a domain theory and noisy examples. Other
algorithms are also possible.

14. SUBJECT TERMS

bias, constraints, grammars, induction, knowledge integration, learning,
preferences

15. NUMBER OF PAGES

16

16. PRICE CODE

17. SECURITY CLASSIFICTION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program

element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract
G - Grant
PE - Program

Element

PR - Project
TA -Task
WU -WorkUnit

Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)
and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD

DOE
NASA
NTIS

- See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

- See authorities.
- See Handbook NHB 2200.2.
- Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.
NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

Induction as Knowledge Integration

Benjamin D. Smith
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive M/S 525-3660

Pasadena, CA 91109-8099
smith@aig.jpl.nasa.gov

Paul S. Rosenbloom
Information Sciences Institute & Computer Science Dept.

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292
rosenbloom@isi.edu

Abstract

Two key issues for induction algorithms cure the accu-
racy of the learned hypothesis and the computational
resources consumed in inducing that hypothesis. One
of the most promising ways to improve performance
along both dimensions is to make use of additional
knowledge. Multi-strategy learning algorithms tackle
this problem by employing several strategies for han-
dling different kinds of knowledge in different ways.
However, integrating knowledge into an induction al-
gorithm can be difficult when the new knowledge dif-
fers significantly from the knowledge the algorithm
already uses. In many cases the algorithm must be
rewritten.
This paper presents KII, a Knowledge Integration
framework for Induction, that provides a uniform
mechanism for integrating knowledge into induction.
In theory, arbitrary knowledge can be integrated with
this mechanism, but in practice the knowledge rep-
resentation language determines both the knowledge
that can be integrated, and the costs of integration
and induction. By instantiating KII with various set
representations, algorithms can be generated at differ-
ent trade-off points along these dimensions.
One instantiation of KII, called RS-KII, is presented
that can implement hybrid induction algorithms, de-
pending on which knowledge it utilizes. RS-KII is
demonstrated to implement AQ-11 (Michalski 1978),
as well as a hybrid algorithm that utilizes a domain
theory and noisy examples. Other algorithms are also
possible.

Introduction
Two key criteria for evaluating induction algorithms
are the accuracy of the induced hypothesis and the
computational cost of inducing that hypothesis. One of
the most powerful ways to achieve improvements along
both of these dimensions is by integrating additional
knowledge into the induction process. Knowledge con-
sists of examples, domain theories, heuristics, and any
other information that affects which hypothesis is in-
duced—that is, knowledge is examples plus biases.

A given single-strategy learning algorithm can uti-
lize some knowledge very effectively, others less effec-
tively, and some knowledge not at all. By using multi-

ple strategies, an induction algorithm can make more
effective use of a wider range of knowledge, thereby im-
proving performance. However, even a multi-strategy
learning algorithm can only make use of knowledge for
which its strategies are designed.

In order to utilize new kinds of knowledge, the
knowledge must either be recast as a kind for which
the algorithm already has a strategy—for example, in-
tegrating type constraints into FOIL by casting them
as pseudo negative examples (Quinlan 1990)—or the
algorithm must be rewritten to take advantage of the
new knowledge by adding a new strategy or modifying
an existing one. The first approach—recasting knowl-
edge—is limited by the expressiveness of the knowledge
already used by the algorithm. If the new knowledge
cannot be expressed in terms of the existing kinds of
knowledge, then the new knowledge cannot be utilized.
The second approach—rewriting an algorithm to uti-
lize a new kind of knowledge—is difficult. It also fails
to solve the underlying problem—if yet another kind of
knowledge is made available, the algorithm may have
to be modified once again.

What is needed is an easier way to integrate knowl-
edge into induction. One approach for doing this ex-
ploits the observation that a knowledge fragment plus
a strategy for using that knowledge constitutes a bias,
since together they determine which hypothesis is in-
duced. These biases can be expressed uniformly in
terms of constraints and preferences on the hypothesis
space. The induced hypothesis is the most preferred
hypothesis among those that satisfy the constraints.
New knowledge and strategies are integrated into in-
duction by combining their constraints and preferences
with those previously integrated.

This approach is formalized in a framework called
KII. This framework represents constraints and pref-
erences as sets, and provides set-based operations for
integrating knowledge expressed in this way, and for
inducing hypotheses from the integrated knowledge.
Converting knowledge into constraints and preferences
is handled by translators (Cohen 1992), which are writ-
ten by the user for each knowledge fragment, or class
of related knowledge fragments.

Since KII is defined in terms of sets and set oper-
ations, some set representation must be specified in
order for KII to be operational. The set representa-
tion determines the kinds of knowledge that can be
expressed, and also determines the computational com-
plexity of integration and induction. Each set repre-
sentation yields an instantiation of KII at a different
trade-off point between expressiveness and computa-
tional complexity.

This approach is most similar to that of Russell and
Grosof (Russell & Grosof 1987), in which biases are
represented as determinations, and the hypothesis is
deduced from the determinations and examples by a
theorem prover. As in KII, the inductive leaps come
from biases, which may be grounded in supposition in-
stead of fact. A major difference between this system
and KII is KIFs ability to select different set represen-
tations, which allows different trade-offs to be made
between expressiveness and cost. Determinations, by
contrast, are at a fixed trade-off point, although one
could imagine using restricted logics.

One advantage of KII's formal relationship between
the set representation and the cost/expressiveness
trade-off is that it allows formal analysis of these trade-
offs. In particular, an upper limit can be established on
the expressiveness of the set representations for which
induction is even computable. This sets a practical
limit on the kinds of knowledge that can be utilized by
induction.

Among the set representations below this limit, there
are a number that generate useful instantiations of
KII. Most notably, Incremental Version Space Merg-
ing (Hirsh 1990) can be generated by using a boundary
set representation for constraints (i.e., version spaces),
and an empty representation for preferences; and an
algorithm similar to Grendel (Cohen 1992) can be in-
stantiated from KII by representing sets as antecedent
description grammars (essentially context free gram-
mars). These will be discussed briefly. A new algo-
rithm, RS-KII, is instantiated from KII by represent-
ing sets as regular grammars. This algorithm seems
to strike a good balance between expressiveness and
complexity.

RS-KII can use a wide range of knowledge, and com-
bine this knowledge in a number of ways. This makes
it a good multi-strategy algorithm. RS-KII can use
the knowledge and strategies of at least two exist-
ing algorithms, the Candidate Elimination Algorithm
(Mitchell 1982) and AQ-11 with a beam width of one
(Michalski 1978). It can also utilize additional knowl-
edge, such as a domain theory and noisy examples.
Although space limits us from discussing all of these
in detail, the translators needed to implement AQ-11
are demonstrated, as well as those for the domain the-
ory and noisy examples. When utilizing only the AQ-
11 knowledge, RS-KII induces the same hypotheses as
AQ-11 with a beam width of one, with a computational
complexity that is only a little worse. When RS-KII

utilizes the translators for the additional knowledge,
RS-KII induces a more accurate hypothesis than AQ-
11, and in much less time. RS-KII looks able to ex-
press and integrate other common knowledge sources
and strategies as well, though this is an area for future
research.

The Knowledge Integration Framework
This section formally describes KII, a Knowledge In-
tegration Framework for Induction. The combination
of a knowledge fragment and a strategy for using that
knowledge can be considered a bias, which is expressed
in terms of constraints and preferences over the hy-
pothesis space. For instance, a positive example and
a strategy that assumes the target concept is strictly
consistent with the examples, would be translated as
a constraint that is satisfied only by hypotheses that
cover the example. A strategy that assumed noisy ex-
amples might be expressed as a preference for hypothe-
ses that were most consistent with the example, but
does not reject inconsistent hypotheses outright.

The biases are integrated into a single composite bias
by combining their respective constraints and prefer-
ences. The composite bias, which includes the exam-
ples, wholly determines the selection of the induced
hypothesis. If there are several hypotheses which the
bias finds equally acceptable, any one may be selected
arbitrarily as the target concept. This set is called
the solution set. In this view, integration precedes in-
duction, rather than being part of it. This separation
makes it easier to integrate knowledge into induction,
since the effects of each process are clearer.

KII formalizes these ideas as follows. Each bias is
expressed as a triple of three sets, (H, C, P), where H
is the hypothesis space, C is the set of hypotheses that
satisfy the constraints of all the biases, and P is a set
of hypothesis pairs, {x, y), such that x is less preferred
than y by at least one of the biases. The solution set,
from which the induced hypothesis is selected arbitrar-
ily, is the set of most preferred hypothesis among those
that satisfy the constraints—namely, the hypotheses in
C for which no other hypothesis in C is preferable, ac-
cording to P. Formally, {x € C \Vy € C (x,y) & P}.

KII provides several operations on knowledge ex-
pressed in this representation: translation, integra-
tion, induction (selecting a hypothesis from the solu-
tion set), and solution set queries. These operations,
as well as the solution set itself, are defined in terms
of set operations on H, C, and P. These operators are
described in detail below.

Translation Knowledge is converted from the form
in which it occurs (its naturalistic representation
(Rosenbloom et al. 1993)) into (H,C,P) triples by
translators (Cohen 1992). Since knowledge is trans-
lated into constraints and preferences over the hypoth-
esis space, the implementation of each translator de-
pends on both the hypothesis space and the knowl-

edge. In the worst case, a different implementation is
required for each pair of knowledge fragment and hy-
pothesis space. Since there are a potentially infinite
number of translators, they are not provided as part of
the KII formalism, but must be provided by the user
as needed.

Fortunately, closely related pairs of hypothesis space
and knowledge often have similar translations, allow-
ing a single translator to be written for all of the pairs.
One such translator, which will be described in de-
tail later, takes as input an example and a hypothesis
space. The example can be any member of the instance
space, and the hypothesis space is selected from a fam-
ily of languages by specifying the set of features. The
same translator works for every pair of example and
hypothesis language in this space.

Integration Translated knowledge fragments are in-
tegrated by composing their {H, C, P) triples. A hy-
pothesis can only be the induced hypothesis if it is ac-
cepted by the constraints of all of the knowledge frag-
ments, and if the combined preferences of the knowl-
edge fragments do not prefer some other hypothesis.
That is, the induced hypothesis must satisfy the con-
junction of the constraints, and be preferred by the
disjunction of the preferences. This reasoning is cap-
tured in the following definition for the integration of
two tuples, (if,Ci,Pi) and (Ä",C2,P2>- The hypothe-
sis space is the same in both cases, since it is not clear
what it means to integrate knowledge about target hy-
potheses from different hypothesis spaces.

Integrated,d, Pi), {H,C2, P2» : (F,CinC2,PiUP2)
(1)

The integration operator assumes that the knowl-
edge is consistent. That is, C\ and C2 are not mutu-
ally exclusive, and that P1UP2 does not contain cycles
(e.g., a < b and b < a). Although such knowledge
can be integrated, the inconsistencies will not be dealt
with in any significant fashion. Mutually exclusive con-
straints will result in an empty solution set, and cycles
are broken arbitrarily by assuming every element of
the cycle is dominated. Developing more sophisticated
strategies for dealing with contradictions is an area for
future research.

Although KII does not deal with contradictory
knowledge, it can deal with uncertain knowledge. For
example, noisy examples and incomplete domain the-
ories can both be utilized in KII. Translators for these
knowledge sources are described later.

Induction and Solution Set Queries The inte-
grated knowledge is represented by a single tuple,
(H, C, P). The target concept is induced from the inte-
grated knowledge by selecting an arbitrary hypothesis
from the solution set of (H,C,P). KII also supports
queries about the solution set, such as whether it is
empty, a singleton, contains a given hypothesis, or is
a subset of some other set. These correspond to the
operations that have proven empirically useful for ver-

sion spaces (Hirsh 1992), which can be thought of as
solution sets for knowledge expressed as constraints.

It is conjectured that these four queries plus the abil-
ity to select a hypothesis from the solution set are suf-
ficient for the vast majority of induction tasks. Most
existing induction algorithms involve only the enumer-
ation operator and perhaps an Empty or Unique query.
The Candidate Elimination algorithm (Mitchell 1982)
and Incremental Version Space Merging (IVSM) (Hirsh
1990) use all four queries, but do not select a hypoth-
esis from the solution set (they return the entire set).

The queries and selection of a hypothesis from the
solution set can be implemented in terms of a single
enumeration operator. The enumeration operator re-
turns n elements of a set, S, where n is specified by
the user. It is denned formally as follows.

Enumerate(S,n) -> {hi,ft2, • • • hm}
where

m = min(n,\S\), {hi, h2,... hm} Q S

Normally, S is the solution set of (H,C,P). It can
sometimes be cheaper to compute the first few elements
of the solution set from (H, C, P) than to compute even
the intensional representation of the solution set from
(H, C, P). Therefore, the S argument to the enumera-
tion operator can be either a (H, C, P) tuple, or a set
expression involving an {H, C, P) tuple and other sets.
This allows the enumeration operator to use whatever
optimizations seem appropriate. A different implemen-
tation of the enumerate operator is needed for different
set representations of S, H, C, and P.

A hypothesis is induced by selecting a single hypoth-
esis from the solution set. This is done with a call to
Enumerate({H,C,P),l). The emptiness and unique-
ness queries are implemented as shown below, where
5 is the solution set of tuple (H, C,P), A is set of hy-
potheses in H, and h is a hypothesis in H.

• Empty(S) <£> Enumerate({H,C,P), 1) = 0

• Unique(S) ■& \Enumerate((H,C,P),2)\ = 1

• Member(h, S) ■& Enumerate{(H, C, P)n{h}, 1) # 0

• Subset(S, A) & Enumerate((H, C, P)nl, 1) = 0

An Example Induction Task

An example of how KII can solve a simple induction
task is given below. Sets have been represented exten-
sionally in this example. Although this is not the only
possible set representation, and is generally a poor one,
it is the simplest one for illustrative purposes.

The Hypothesis Space The target concept is a
member of a hypothesis space in which hypotheses
are described by conjunctive feature vectors. There
are three features size, color, and shape. The val-
ues for these features are size £ {small, large,
any-size}, color 6 {black, white, any-color}, and

• TranPosExample(H, (z,c,s)) -»• (C, {}) where
C = {x € H | x covers (z, c, s)}

= {z, any-size}x{c, any-color} x{s, any-shape}

• TranNegExample(H, (z, c, s)) —)• (C, {}) where
C = {x € H | z does not cover (2, c, s)}

= complement of

{z, any-size}x{c, any-color} x{s, any-shape}

• TranPreferGeneral(H) -* (H, P) where
P = {{x, y) 6 HxH I x is more specific than y}

— {{sbr, 7br), {sbr, s?r), {sbr, ??r), {swr, ?wr),...}

Figure 1: Translators.

shape G {circle, rectangle, any-shape}. Hypothe-
ses are described as 3-tuples from sizexcolorx shape.
For shorthand identification, a value is specified by the
first character of its name, except for the any values
which are represented by a "?". So the hypothesis
(any-size, white, circle) would be written as Iwc.

Instances are the "ground" hypotheses. An in-
stance is a tuple {size, color, shape) where color €
{black, white}, size € {small, large}, and shape €
{circle, rectangle}.

Available Knowledge The available knowledge
consists of three examples (classified instances), and
an assumption that accuracy increases with generality.
There are three examples, two positive and one neg-
ative. The two positive examples are ei = swc and
e2 = sbc. The negative example is ez = Iwr. The tar-
get concept is s??. That is, size = small, and color
and shape are irrelevant.

Translators The first step is to translate the knowl-
edge into constraints and preferences. Three trans-
lators are constructed, one for each type of knowl-
edge: the positive examples, negative examples, and
the generality preference. These translators are shown
in Figure 1. Since the hypothesis space is understood,
(H, C, P) tuples will generally be referred to as just
(C, P) tuples for the remainder of this illustration.

The examples are translated in this scenario under
the assumption that they are correct; that is, the tar-
get concept covers all of the positive examples and
none of the negatives. Positive examples are trans-
lated as constraints satisfied only by hypotheses that
cover the example. Negative examples are translated
similarly, except that hypotheses must not cover the
example. The bias for general hypotheses is translated
into a {C,P) pair where C is H (it rejects nothing),
and P = {{x,y) € HxH | x is more specific than y}.
Hypothesis x is more specific than hypothesis y if x
is equivalent to y, except that some of the values in
y have been replaced by "any" values. For example,
swr is more specific than Iwr, but there is no ordering
between Iwc and swr.

Integration and Induction Examples e\ and e%
are translated by TranPosExample into (H, C\, 0) and
{H,C2,9), respectively. Example ez is translated by
TranNegExample into (H,Cz,®)- The preference for
general hypotheses is translated into (H, H,Pi). These
tuples are integrated into a single tuple, (H, C, P) =
{H, C1r\C2nC3nH, 0U0U0UP4)- This tuple represents
the combined biases of the four knowledge fragments.

A hypothesis is induced by selecting one arbitrarily
from the solution set of {H, C, P). This is accomplished
by calling Enumerate((H,C,P),l). The solution set
consists of the undominated elements of C with re-
spect to the dominance relation P. C contains three
elements, s??, ??c and sic. P prefers both s?? and ??c
to sic, but there is no preference ordering between s??
and ??c. The undominated elements of C are therefore
s?? and ??c. One of these is selected arbitrarily as the
induced hypothesis.

Instantiating KII
In order to implement KII, specific set representations
for H, C, and P are necessary. These representations
can be as simple as an extensional set, or as powerful as
arbitrary Turing machines. However, some representa-
tion is needed. The representation determines which
knowledge can be expressed in terms of (H, C, P) tu-
ples and integrated. It also determines the computa-
tional complexity of the integration and enumeration
operations, which are defined in terms of set opera-
tions. By instantiating KII with different set represen-
tations, algorithms can be generated at different trade-
off points between cost and expressiveness.

The space of possible set representations maps onto
the space of grammars. Every computable set is the
language of some grammar. Similarly, every com-
putable set representation is equivalent to some class of
grammars. These classes include, but axe not limited
to, the classes of the Chomsky hierarchy (Chomsky
1959)—regular, context free, context sensitive, and re-
cursively enumerable (r.e.). The complexity of set op-
erations generally increases with the expressiveness of
the language class.

Allowing H, C, and P to be recursively enumerable
(i.e., arbitrary Turing machines), would certainly pro-
vide the most expressiveness. Although {H, C, P) tu-
ples with r.e. sets can be expressed and integrated, the
solution sets of some such tuples are uncomputable,
and there is no way to know which tuples have this
property. This will be discussed in more detail be-
low. Since it is impossible to enumerate even a single
element of an uncomputable set, it is impossible to in-
duce a hypothesis by selecting one from the solution
set. There is clearly a practical upper limit on the
expressiveness of the set representations.

It is possible to establish the most expressive lan-
guages for C and P that guarantee a computable so-
lution set. This establishes a practical limit on the
knowledge that can be integrated into induction.

By definition, the solution set is computable if and
only if it is recursively enumerable. The solution set
can always be constructed by applying a formula of set
operations to C and P, as will be shown below. The
most restrictive language in which the solution set can
be expressed can be derived from this formula and the
set representations for C and P by using the the clo-
sure properties of these set operations. Inverting this
function yields the most expressive C and P represen-
tations for which the solution set is guaranteed to be
at most recursively enumerable.

The solution set can be computed from C and P
according to the equation first((CxC)DP)nC. The
derivation is shown in Equation 2, below. In this defini-
tion, the function first({(xi,yi), (2:2,2/2), • • •}) is a pro-
jection returning the set of tuple first-elements, namely
{xi,x2,...}.

SolnSet({H, C, P)) = {x G C | V^c {x, y) $ P}

= {x G H I (a; G C and 3yeC(x,y) G P) or x £ C}

= {x G H I x G C and 3y€C(x,y) G P} U C

= first({{x,y) G CxC | (x,y) G P})nC

= first((CxC)r\P)r\C (2)

The least expressive representation in which the so-
lution set can be represented can be computed from
the closure of the above equation over the C and
P set representations. To do this, it helps to know
the closure properties for the individual set operations
in the equation: intersection, complement, Cartesian
product, and projection (first). The closure proper-
ties of intersection and complement are well known for
most language classes, although it is an open problem
whether the context sensitive languages are closed un-
der complementation (Hopcroft & Ullman 1979). The
closure properties of projection and Cartesian prod-
uct are not known as such, but these operations map
onto other operations for which closure properties are
known.

The Cartesian product of two grammars, AxB, can
be represented by their concatenation, AB. The tuple
{x, y) is represented by the string xy. The Cartesian
product can also be represented by interleaving the
strings in A and B so that (x,y) is represented by a
string in which the symbols in x and y alternate. Inter-
leaving can sometimes represent subsets of AxB that
concatenation cannot, depending on the language in
which the product is expressed. The closure proper-
ties of languages under Cartesian product depends on
which approach is used. The following discussion de-
rives limits on the languages for CxC and P. When
the language for C is closed under Cartesian product,
then the limits on CxC also apply to C, since both
can be expressed in the same language. Otherwise,
the limits on C have to be derived from those on CxC
using the closure properties of the given implementa-
tion of Cartesian product. However, when C is not

closed under Cartesian product, the language for C is
necessarily less expressive than that for CxC. The ex-
pressiveness limits on CxC therefore provide a good
upper bound on the expressiveness of C that is inde-
pendent of the Cartesian product implementation.

Regardless of the representation used for Cartesian
product, projection can be implemented as a homo-
morphism (Hopcroft & Ullman 1979), which is a map-
ping from symbols in one alphabet to strings in an-
other. Homomorphisms can be used to erase symbols
from strings in a language, which is exactly what pro-
jection does—it erases symbols from the second field of
a tuple, leaving only the symbols from the first field.
A more detailed derivation of the properties for pro-
jection and Cartesian product can be found in (Smith
1995).

The closure properties of languages under projec-
tion, intersection, intersection with a regular grammar,
and complement are summarized in Table 1. It should
be clear that the solution set, first((CxC)(~)P)r\C, is
r.e. when (CxC)nP is at most context free, and un-
computable when it is any more expressive than that.
For example, if (CxC)nP is context sensitive, then
first((CxC)r\P is r.e. The complement of a set that
is r.e. but not recursive is uncomputable (Hopcroft &:
Ullman 1979), so the solution set, first((CxC)nP, is
uncomputable. A complete proof appears in (Smith
1995).

There are several ways to select C, P, and the imple-
mentation of Cartesian product, such that (CxC)nP
is at most context free. The expressiveness of both C
and P can be maximized by choosing one of C and
P to be at most regular, and the other to be at most
context free. This is because CFLs are closed under in-
tersection with regular sets, but not with other CFLs.
Regular sets are closed under all implementations of
Cartesian product (both concatenation and arbitrary
interleaving), and context free sets are closed under
concatenation but only some interleavings. So if C is
regular, any implementation of Cartesian product can
be used, but if C is context free, then the choices are
more restricted.

As a practical matter, C should be closed under in-
tersection and P under union in order to support the
integration operator. This effectively restricts C to be
regular and P to be at most context free. This also
maximizes the choices of the Cartesian product imple-
mentation. However, it is possible for C to be context
free and P to be regular if the C set of at most one
of the {H, C, P) triples being integrated is context free
and the rest are regular. This follows from the clo-
sure of context free languages under intersection with
regular grammars.

Other ways of selecting C and P are summarized
in Table 2. This table assumes that C is closed un-
der Cartesian product. As one interesting case, if the
representation for P can express only the empty set,
then the solution set is just C, so C can be r.e. The

Operations Language
Regular DCFL CFL CSL recursive r.e.

n V V v/ V
nR V V y/ V A/ V
complement V V ? V
projection
(homomorphisms)

V V %/

Table 1: Closure Under Operations Needed to Compute the Solution Set.

restriction that (CxC)nP be at most context free is
still satisfied, since (CxC)nP is always the empty set,
and therefore well within the context free languages.

RS-KII
Instantiating KII with different set representations
produces algorithms with different computational com-
plexities and abilities to utilize knowledge. One instan-
tiation that seems to strike a good balance between
computational cost and expressiveness represents H,
C, and P as regular sets. This instantiation is called
RS-KII.

RS-KII is a good multi-strategy algorithm, in that it
can utilize various knowledge and strategies, depending
on what knowledge is integrated, and how it is trans-
lated. Existing algorithms can be emulated by creat-
ing translators for the knowledge and strategies of that
algorithm, and integrating the resulting (H, C, P) tu-
ples. Hybrid multi-strategy algorithms can be created
by translating and integrating additional knowledge,
or by integrating novel combinations of knowledge for
which translators already exist.

Creating algorithms by writing translators for indi-
vidual knowledge fragments and integrating them to-
gether can be easier than writing new induction al-
gorithms. Algorithms can be constructed modularly
from translators, which allows knowledge fragments to
be easily added or removed. By contrast, modifications
made to an algorithm in order to utilize one knowledge
fragment may have to be discarded in order to utilize
a second fragment.

The remainder of this section demonstrates how RS-
KII can emulate AQ-11 with a beam width of one
(Michalski 1978), and how RS-KII can integrate addi-
tional knowledge, namely an overgeneral domain the-
ory and noisy examples, to create a hybrid algorithm.
AQ-11 with higher order beam widths is not demon-
strated, since it is not clear how to express the corre-
sponding bias as a regular grammar. This bias may
require a more powerful set representation.

When using only the AQ-11 knowledge, RS-KII
induces the same hypotheses as AQ-11, albeit at a
slightly worse computational complexity. When utiliz-
ing the additional knowledge, RS-KII induces a more
accurate hypothesis than AQ-11, and does so more
quickly.

RS-KII translators can be written for other knowl-
edge as well, though space restrictions prevent any de-
tailed discussion. Of note, RS-KII translators can be
constructed for all biases expressible as version spaces
(for certain classes of hypothesis spaces) (Smith 1995).
It also looks likely that RS-KII translators can be con-
structed for the knowledge used by other induction al-
gorithms, though this is an area for future research.

Translators for AQ-11 Biases

The biases used by AQ-11 are strict consistency with
the examples, and an user-defined lexicographic evalu-
ation function (LEF). The LEF totally orders the hy-
potheses according to user-defined criteria. The in-
duced hypothesis is one that is consistent with all of
the examples, and is a (possibly local) maximum of the
LEF. A translator is demonstrated in which the LEF is
an information gain metric, as used in algorithms such
as ID3 (Quinlan 1986).

Hypotheses are sentences in the VL\ language
(Michalski 1974). There are k features, denoted /i
through fk, where feature fc can take values from the
set Vi. A hypothesis is a disjunction of terms, a term
is a conjunction of selectors, and a selector is of the
form [fi rel vi\, where v» is in Vi and rel is a relation
in {<,<,=, 7^, >,>}• A specific hypothesis space in
VL\ is specified by the fist of features and their values,
and is denoted VZi«/i, Vx),..., (fk, Vk)).

An instance is a vector of k values, (xi,£2>... ,Xk),
where Xi is a value in Vi. A selector [fi relvi] is satis-
fied by an example if and only if Xi rel Vi. A hypothesis
covers an example if the example satisfies the hypoth-
esis.

Strict Consistency with Examples A bias for
strict consistency with a positive example can be ex-
pressed as a constraint that the induced hypothesis
must cover the example. Similarly, strict consistency
with a negative example constrains the induced hy-
pothesis not to cover the example. Each of these con-
straints is expressed as a regular grammar that only
recognizes hypotheses that satisfy the constraint. The
regular expression for the set of VL\ hypotheses cov-
ering an example, Covers (H,e) is shown in Figure 2.
The sets of values in COVERING-SELECTOR are all reg-
ular sets. For example, the set of integers less than

c P (CxC)nP first((CxC)f\P)nC
< regular
< regular
<CFL

< regular
< CFL
< regular

< regular
< CFL
< CFL

< regular
< recursive
< recursive

>CFL > CFL >CSL
>CFL

uncomputable
uncomputable

Table 2: Summary of Expressiveness Bounds.

TranPosAQExampleiVLidh, Vi),..., {fk, Vk)),
{xux2,...,xk))-+{H,C,{})

where
H=VL1({f1,V1),...,{fk,Vk))
C=Covers(VL1((f1,V1),...,(fk,Vk)),

(xi,...,xk))

TranNegAQExample{ Via {{fu Vi),...,(fk, Vk)),
(xi,xa,...,xk)) -+ (H,C,{})

where
H=VL1((f1,V1),...,(fk,Vk))
C = ExcludesiVUUhM),..., {fk, Vk}),

(xi,...,xk))

Figure 3: Example Translators for VL\.

100 is (0 - 9)|((1 - 9)(0 - 9)). There is an algorithm
that generates each of these sets given the relation and
the bounding number, but it is omitted for brevity.
The complement of Covers (H, e) is Excludes (H, e), the
set of hypotheses in H that do not cover example e.
These two regular grammars implement the translators
for positive and examples in the VL\ hypothesis space
language, as shown in Figure 3. The translator takes
as input the list of features and their values, and the
example.

The LEF AQ-11 performs a beam search of the hy-
pothesis space to find a hypothesis that maximizes the
LEF, or is at least a good local approximation. AQ-11
returns the first hypothesis visited by this search that
is also consistent with the examples. This is a bias to-
wards hypotheses that come earner in the search order.

This bias can be expressed as an {H, C, P) tuple in
which C = H (i.e., no hypotheses are rejected), and
P is a partial ordering over the hypothesis space in
which {a, b) is in P if and only if hypothesis a comes
after hypothesis b in the search order (i.e., a is less
preferred than b).

The search order of a beam search is difficult, and
perhaps impossible, to express as a regular grammar.
However, with a beam width of one, beam search be-
comes hill climbing, which can be expressed as a regu-
lar grammar.

In hill climbing, single selector extensions of the cur-

rent best hypothesis are evaluated by some evaluation
function, /, and the extension with the best evaluation
becomes the next current best hypothesis. Given two
terms, t\ = 01O2 ... an and £2 = &1&2 • • • bm, where a,i
and bi are selectors, t\ is visited before £2 if the first
fc — 1 extensions of t\ and £2 are the same, but on the
kth extension, either ti has a better evaluation than £2,
or ij has no more selectors. Formally, there is either
some extension k < min(m, n) such that for all i < fc,
Oi = bi and f{a\ ...ak) > f(h ... bk), or m < n and
the first m selectors of t\ and <2 are the same.

This is equivalent to saying that the digit string
/(°i) ' /(ai<*2) • .. • • f{aio,2 .. .an) comes before the
digit string /(&i) • f(bib2) ■ ...■ /(&1&2 • • • b„) in dic-
tionary (lexicographic) order. This assumes that low
evaluations are best, and that the evaluation func-
tion returns a unique value for each term—that is,
f(ai... am) = /(&i... bm) if and only if at = 6j for
all i between one and m. This can be ensured by as-
signing a unique id to each selector, and appending
the id for the last selector in the term to the end of the
term's evaluation. The evaluations of two terms are
compared after each extension until one partial term
either has a better evaluation, or terminates.

A regular grammar can be constructed that recog-
nizes pairs of hypotheses, {hi, h2), if h\ is visited be-
fore /i2 in the search. This is done in two steps. First,
a grammar is constructed that maps each hypothesis
onto digit strings of the kind described above. The
digit strings are then passed to a regular grammar that
recognizes pairs of digit strings, (di,^), such that di
comes before cfe in dictionary order. This is equiv-
alent to substituting the mapping grammar into the
dictionary ordering grammar. Since regular grammar
are closed under substitution, the resulting grammar
is also regular (Hopcroft & Ullman 1979).

The digit string comparison grammar is the simpler
of the two, so it will be described first. This gram-
mar recognizes pairs of digit strings, {x,y), such that
x comes before y lexicographically. A special termina-
tion symbol, #, is appended to each string, and the re-
sulting strings are interleaved so that their symbols al-
ternate. The interleaved string is given as input to the
grammar specified by the regular expression EQUAL*
LESS-THAN ANY*, where EQUAL = (00|11|##), LESS-
THAN = (01|#0|#1) and ANY = (0|1|#). This expres-
sion assumes a binary digit string, but can be easily

Covers(VL!(</i, Vi>, </2l V2), ...,(/*, 14», fa,x2,...,xk)) -> G where
G = (ANY-TERM or)* COVERING-TERM (or ANY-TERM)*
ANY-TERM = SELECTOR4"
COVERING-TERM = COVERING-SELECTOR"*"
SELECTOR = "[" ft (< | < | = | 3* | > | >) Vi "]" |

i" h «i < i = ¥ i > i» v2 r |

"[" /* (< I < I = I ? | > | >) Vk "]"
COVERING-SELECTOR = {[/, # v] | X; # V and # € {<, <, =, ^, >, >}}

= TA<{v€V1|t;>xi}TI
"[" h<{veV1\v> Xl} "]" | .
1" h = xi "]" I
T h # M - {^i}) 1" I
T/i>{»eVi|t;<x1} T I ■
T/i>{«€ filt; <*!}«]» | .

"[" /fc < {v € Vfe 11; > xfc} "]" |
T/*<{»€n|«>xfc} Tl
"[" h = xfc "]" I
"[" fk ? {Vk - {xk}) "]" I
"[" fk>{vevk\v<xk} "]" |
"[" fk>{vEVk\v<xk} "]"

Figure 2: Regular Expression for the Set of VL\ Hypotheses Covering an Instance.

extended to handle base ten numbers.
The mapping of a hypothesis onto a digit string is

accomplished by a Moore machine—a DFA that has
an output string associated with each state. Recall
that the digit string for a term, a\a2 ■ • ■ om, is /(ai) •
f(aia2) • ... • f(aia2...am)). The machine takes a
hypothesis as input. After reading each selector, it
outputs the evaluation string for the current partial
term. So after seeing oi, it prints f(ai). After seeing
a2 it prints f{aia2), and so on until it has printed the
digit string for the term. When the end of the term
is encountered (i.e., an or symbol is seen), the DFA
returns to the initial state and repeats the process for
the next term. The evaluation function must return a
fixed-length string of digits.

A Moore machine can only have a finite number of
states. It needs at least one state for each selector.
It must also remember enough about the previous se-
lectors in the term to compute the term's evaluation.
Since terms can be arbitrarily long, no finite state ma-
chine can remember all of the previous selectors in the
term. However, the evaluation function can often get
by with much less information.

For example, when the evaluation function is an
information metric, the evaluation of a partial term,
aia2 ... ak, depends only on the number of positive and
negative examples covered by the term. This can be
represented by 2n states, where n is the number of ex-
amples. In this case, a state in the Moore machine
is an n digit binary number, where the ith digit in-
dicates whether or not the example is covered by the
term. In the initial state, all of the examples are cov-
ered. When a selector is seen, the digits corresponding
to examples that are not covered by the selector are
turned off. The binary vector for the state indicates
which examples are covered, and the output string for
the state is the information corresponding to that cov-

erage of the examples.1 When an or is seen, the DFA
prints a zero to indicate end-of-term, and returns to
the initial state.

This Moore machine is parameterized by the list of
examples and the evaluation function /. This machine
is substituted into the regular expression for comparing
digit strings. The resulting DFA takes recognizes a pair
of hypotheses, (hi,h2), if and only if hi comes before
h2 in the hill climbing search.

Although the machine has an exponential number
of states, they do not need to be represented exten-
sionally. All that must be maintained is the current
state (an n digit binary number). The next state can
be computed from the current state and a selector by
determining which examples are not covered by the
selector, and turning off those bits. This requires at
most 0(n) space and 0(mn) time to evaluate a hy-
pothesis, where n is the number of examples, and m is
the number of selectors in the hypothesis.

The translator for this knowledge source takes as
input the hypothesis space, the list of examples, and
an evaluation function, /. The function / takes as
input the number of covered and uncovered examples,
and outputs a fixed length non-negative integer. The
translator returns {H,H,P), where P is the grammar
described above. (H, H, P) prefers hypotheses that are
visited earlier by hill climbing with evaluation function
/. This kind of bias is used in a number of induction
algorithms, so this translator can be used for them as
well.

Although the logic behind the LEF translator is

Since information is a real between -1 and 1, and
the output must be a fixed-length non-negative integer,
the output string for a state is the integer portion of
{info + 1.0) * 106, where info is the information of the ex-
ample partitioning represented by the n digit number for
that state.

rather complex, the translator itself is fairly straight-
forward to write. The Moore machine requires only a
handful of code to implement the next-state and out-
put functions, and the digit-string comparison gram-
mar is a simple regular expression. The design effort
also transfers to other biases. The evaluation func-
tion can be changed, so long as it only needs to know
which examples are covered by the current term, and
the basic design can be reused for translators of similar
biases.

Some of the difficulty in designing the LEF transla-
tor may be because the bias is designed for use in a
hypothesis space search paradigm, and does not trans-
late well to RS-KII. Bear in mind that the beam-search
is an approximation of another bias, namely that the
induced hypothesis should maximize the LEF. Finding
a maximal hypothesis is intractable, so AQ-11 approx-
imates it with a beam search. This particular approx-
imation was chosen because it is easy to implement in
the hypothesis-space search paradigm. However, RS-
KII uses a different paradigm, so a different approxi-
mation of the "maximize the LEF" bias that is easier
to express in RS-KII may be more appropriate.

Translators for Novel Biases

The following translators are for biases that AQ-11
does not utilize, namely consistency with one class of
noisy examples, and an assumption that the target hy-
pothesis is a specialization of an overgeneral domain
theory.

Noisy Examples with Bounded Inconsistency
Bounded inconsistency (Hirsh 1990) is a kind of noise
in which each feature of the example can be wrong by
at most a fixed amount. For example, if the width
value for each instance is measured by an instrument
with a maximum error of ±0.3mm, then the width val-
ues for these instances have bounded inconsistency.

The idea for translating examples with bounded in-
consistency is to use the error margin to work back-
wards from the noisy example to compute the set of
possible noise-free examples. One of these examples
is the correct noise-free version of the observed exam-
ple, into which noise was introduced to produce the
observed noisy example. The target concept is strictly
consistent with this noise-free example.

Let e be the noisy observed example, E be the set
of noise-free examples from which e could have been
generated, and let e' be the correct noise-free example
from which e was in fact generated. Since it is unknown
which example in E is e', a noisy example is translated
as (H, C, 0), where C is the set of hypotheses that are
strictly consistent with one or more of the examples
in E. Hypotheses that are consistent with none of the
examples in E are not consistent with e', and therefore
not the target concept. This is the approach used by
Hirsh (Hirsh 1990) in IVSM to translate noisy exam-
ples with bounded inconsistency.

TranPosExampleBI (H, (Si, S2, • •., 4),
(x1,x2,...,Xk))-*{H,C,P)

E = [x1,±61]x[x2,±52]x...[xk,±6k]
where [xi, ±Si\ = {v | xt - Si < v < Xi + Si}

C = (J CiS.t.{Ci,<l))=TranPosAQExample(H,ei)

Figure 4: RS-KII Translator for Positive Examples
with Bounded Inconsistency.

This suggests the following RS-KII translator for
examples with bounded inconsistency. The set of
possible noise-free examples, E, is computed from
the noisy examples and the error margins for each
feature. Each example, ei, in this set is trans-
lated using one of the RS-KII translators for noise-
free examples—either TranPosAQExample(H,ei) or
TranNegAQExample{H,ei)—which translates exam-
ple ei into (H,Ci,0). d is the set of hypothe-
ses that are strictly consistent with e». The trans-
lator for the bounded inconsistent example returns
(C — Ui=i Ci»0)- C is the set of hypotheses consis-
tent with at least one of the examples in E.

The set E is computed from the observed example,
{xi, x2, ■ ■., Xk), and the error margins for each feature,
±Si through ±Sk, as follows. If the observed value
for feature fc is x», and the error margin is ±Si, then
the correct value for feature fi is in {v | xt — Si <
v < Xi + Si}. Call this set [x,,±6i] for short. Since
instances are ordered vectors of feature values, E is
[xi,±Si]x[x2,±Ö2]x...x[xk,±Sk].

A translator for examples with bounded inconsis-
tency based on this approach is shown in Figure 4.
It takes as input a VL\ hypothesis space (H), the er-
ror margin for each feature (±<5i through ±Sk) and an
instance. Negative examples are translated similarly,
except that TranNegAQExample(H,ei) is used.

Domain Theory A domain theory encodes back-
ground knowledge about the target concept as a collec-
tion of horn-clause inference rules that explain why an
instance is a member of the target concept. The way
in which this knowledge biases induction depends on
assumptions about the correctness and completeness of
the theory. Each of these assumptions requires a dif-
ferent translator, since the biases map onto different
constraints and preferences.

A translator for a particular overgeneral domain the-
ory is described below. The theory being translated is
derived from the classic "cup" theory (Mitchell, Keller,
& Kedar-Cabelli 1986; Winston et al. 1983), and is
shown in Figure 5. It expands into a set of sufficient
conditions for cup (X), as shown in Figure 6. The trans-
lator assumes that the target concept is a specialization
of the theory. In this case, the actual target concept

cup(X)

holdJiquid(X)
liftable(X)
graspable(X)

stable(X)
drmkfrom(X)

holdJiquid(X), liftable(X),
stable(X), drink£rom(X).
plastic(X) | china(X) | metal(X).
small(X), graspable(X).
small(X), cylindrical(X) |
small(X), hasJiandle(X).
flat-bottom(X).
open_top(X).

Figure 5: CUP Domain Theory.

1. cup(X) :- plastic(X), small(X), cylindrical(X),
flat-bottom(X), open.top(X).

2. cup(X) :- china(X), small(X), cylindrical(X),
flat_bottom(X), open.top(X).

3. cup(X) :- metal(X), small(X), cylindrical(X),
flat_bottom(X), open.top(X).

4. cup(X) :- plastic(X), small(X), has_handle(X),
flat.bottom(X), open.top(X).

5. cup(X) :- metal(X), small(X), has_handle(X),
flat_bottom(X), open.top(X).

6. cup(X) :- china(X), small(X), has_handle(X),
flat_bottom(X), open.top(X).

Figure 6: Sufficient Conditions of the CUP Theory.

plastic(x) -> [plastic = true]
china(x) -> [china = true]
metal(x) -> [metal = true]
has .handle (x) ->■ [has_handle = true]
cylindrical(x) -» [cylindrical = true]
small(x) -4 [size < 5]
flat_bottom(x) -> [flat-bottom = true]
open_top (x) ->• [open.top = true]

Figure 7: Selectors Corresponding to Predicates in CUP
Theory.

c -»■ TERM 1 C or TERM
TERM -}■ CONDITION
CONDITION -» CUP(X)

PLASTIC (X) -» [plastic = true]
CHINA (x) -»■ [china = true]
METAL(X) -» [metal = true]
HAS_HANDLE(X) -¥ [has-handle = true]
CYLINDRICAL(X) -> [cylindrical = true]
SMALL(X) -¥ [size < 5]
FLAT_BOTTOM(X) -» [flat-bottom = true]
OPEN.TOP(X) -> [open_top = true]

is "plastic cups without handles," which corresponds
to condition one, but this information is not provided
to the translator. All the translator knows is that the
target concept can be described by a disjunction of one
or more of the sufficient conditions in the cup theory.

The translator takes the theory and hypothesis space
as input, and generates the tuple (H, C, {}), where C is
satisfied by hypotheses equivalent to a disjunct of one
or more of the theory's sufficient conditions. In gen-
eral, the hypothesis space language may differ from
the language of the conditions, making it difficult to
determine equivalence. However, for the VL\ language
of AQ-11, the languages are similar enough that sim-
ple syntactic equivalence will suffice, modulo a few
cosmetic changes. Specifically, the predicates in the
sufficient conditions are replaced by corresponding se-
lectors. All disjuncts of the resulting conditions are
VL\ hypotheses. The mappings are shown in Figure 7.
In general, the predicates are Boolean valued, and
are replaced by Boolean valued selectors. To show
that other mappings are also possible, the predicate
small (x) is replaced by the selector [size < 5].

The grammar for C is essentially the grammar for
the cup theory, with a few additional rules. First,
the cup theory is written as a context free grammar
that generates the sufficient conditions. If the gram-
mar does not have certain kinds of recursion, as is the
case in the CUP theory, then it is in fact a regular
grammar. In this case, the grammar for C will also be
regular. Otherwise, the grammar for C will be context
free. This limits the theories that can be utilized by
RS-KII. However, RS-KII could be extended to utilize

Figure 8: Grammar for VLi Hypotheses Satisfying the
CUP Theory Bias.

a context free theory by allowing the C set of at most
one (H, C, P) tuple to be context free. This would be
a different instantiation of KII, but still within the ex-
pressiveness limits discussed in the previous section.

Once the theory has been written as a grammar,
rewrite rules are added that map each terminal pred-
icate (those that appear in the sufficient conditions)
onto the corresponding selector(s). This grammar gen-
erates VLi hypotheses equivalent to each of the suffi-
cient conditions. To get all possible disjuncts, rules
are added that correspond to the regular expression
CONDITION (or CONDITION)*, where CONDITION is the
head of the domain-theory grammar described above.

The grammar for C discussed above is shown in Fig-
ure 8. This grammar is a little less general than it could
be, since it does not allow all permutations of the se-
lectors within each term. However, the more general
grammar contains considerably more rules, and per-
muting the selectors does not change the semantics
of a hypothesis. In the following grammar, the non-
terminal CUP(x) is the head of the cup domain-theory
grammar, which has the same structure as the theory
shown in Figure 5.

Enumerating the Solution Set
The solution set is a regular grammar computed from
C and P, as was shown in Equation 2. A regular gram-
mar is equivalent to a deterministic finite automaton

(DFA). One straightforward way to enumerate a string
from the solution set is to search the DFA for a path
from the start state to an accept state. However, the
DFA computed by the solution-set equation from C
and P can contain dead states, from which there is no
path to an accept state. These dead states can cause
a large amount of expensive backtracking.

There is a second approach that can reduce back-
tracking by making better use of the dominance infor-
mation in P. The solution set consists of the undom-
inated strings in C, where P is the dominance rela-
tion. Strings in this set can be enumerated by search-
ing C with branch-and-bound (Kumar 1992). The ba-
sic branch-and-bound search must be modified to use
a partially ordered dominance relation rather than a
totally ordered one, and to return multiple solutions
instead of just one. These modifications are relatively
straightforward, and are described in (Smith 1995).

Although the worst-case complexity of branch-and-
bound is the same as a blind search of the solution-set
DFA, the complexity of enumerating the first few hy-
potheses with branch-and-bound can be significantly
less. Since for most applications only one or two hy-
potheses are ever needed, RS-KII uses branch-and-
bound.

Results
By combining biases, different induction algorithms
can be generated. AQ-11 uses the biases of strict con-
sistency with examples, and prefers hypotheses that
maximize the LEF. When using only these biases, both
RS-KII and AQ-11 with a beam width of one induce
the same hypotheses, though RS-KII is slightly more
computationally expensive. The complexity of AQ-11
with a beam-size of one is 0(eAk), where e is the num-
ber of examples and k is the number of features. The
complexity of RS-KII when using only AQ-11 biases
is 0(e5fc2). These derivations can be found in (Smith
1995), and generally follow the complexity derivations
for AQ-11 in (Clark & Niblett 1989). RS-KII is a little
more costly because it assumes that the LEF bias, en-
coded by P, is a partial order, where it is in fact a total
order. This causes RS-KII to make unnecessary com-
parisons that AQ-11 avoids. One could imagine a ver-
sion of RS-KII which used information about whether
P was a total order or a partial order.

RS-KII's strength lies in its ability to utilize addi-
tional knowledge, such as the domain theory and noisy
examples with bounded inconsistency. When the do-
main theory translator is added, RS-KII's complexity
drops considerably, since the hypothesis space is re-
duced to a relative handful of hypotheses by the strong
bias of the domain theory. The concept induced by RS-
KII is also more accurate than that learned by AQ-11,
which cannot utilize the domain theory. When given
the four examples of the concept "plastic cups with-
out handles," as shown in Table 3, AQ-11 learns the
overgeneral concept

ID class /i h h u h ft fr h
ei + t f f f t 5 t t
e2 + t f f f t 3 t t
e3 - f t f f t 4 t t
e4 - t f f t t 1 t t

/i plastic /5 hasJiandle
/2 china f§ size
fz metal f7 flat-bottom
fi cylindrical /g open_top

Table 3: Examples for the CUP Task.

[plastic = true] [cylindrical = true]

which includes many non-cups, whereas RS-KII learns
the correct concept:

[plastic = true] [cylindrical = true]
[size < 5] [f lat_bottom = true]
[open-top = true]

The additional bias from the domain theory makes this
the shortest concept consistent with the four examples.

RS-KII can also handle noisy examples with
bounded inconsistency. For the cup domain, assume
that the size can be off by at most one. Let the size
feature of example &v be six instead of five. AQ-11
would fail to induce a hypothesis at all, since there is
no hypothesis consistent with all four examples. When
using the bounded-inconsistency translator for exam-
ples, RS-KII can induce a hypothesis, namely the same
one learned above with noise-free examples. In gen-
eral, noisy examples introduce uncertainty, which can
increase the size of the solution set and decrease the
accuracy of the learned hypothesis. Additional knowl-
edge may be necessary to mitigate these effects. In this
case, however, the domain theory bias is sufficiently
strong, and the noise sufficiently weak, that no addi-
tional knowledge is needed.

The ability to utilize additional knowledge allows
RS-KII to induce hypotheses in situations where AQ-
11 cannot, and allows RS-KII to induce more accurate
hypotheses. RS-KII can also make use of knowledge
other than those shown here by writing appropriate
translators.

Precursors to KII
KII has its roots in two knowledge integration systems,
Incremental Version Space Merging (Hirsh 1990), and
Grendel (Cohen 1992). These systems can also be in-
stantiated from KII, given appropriate set represen-
tations. These systems and their relation to KII are
described below.

IVSM. Incremental Version Space Merging (IVSM)
(Hirsh 1990) was one of the first knowledge integration

Systems for induction, and provided much of the mo-
tivation for KII. IVSM integrates knowledge by trans-
lating each knowledge fragment into a version space
of hypotheses consistent with the knowledge, and then
intersecting these version spaces to obtain a version
space consistent with all of the knowledge. Version
spaces map onto (H, C, P) tuples in which C is a ver-
sion space in the traditional [S, G] representation, and
P is the empty set (i.e., no preference information).

KII expands on IVSM by extending the space of
set representations from the traditional [S,G] repre-
sentation—and a handful of alternative representa-
tions (e.g., (Hirsh 1992; Smith & Rosenbloom 1990;
Subramanian & Feigenbaum 1986))—to the space of
all possible set representations. KII also expands on
IVSM by allowing knowledge to be expressed in terms
of preferences as well as constraints, thereby increas-
ing the kinds of knowledge that can be utilized. KII
strictly subsumes IVSM, in that IVSM can be cast as
an instantiation of KII in which C is a version space
one of the possible representations, and P is expressed
in the null representation, which can only represent the
empty set.

Grendel. Grendel (Cohen 1992) is another cognitive
ancestor of KII. The motivation for Grendel is to ex-
press biases explicitly in order to understand their ef-
fect on induction. The biases are translated into a
context free grammar representing the biased hypothe-
sis space.2 This space is then searched for a hypothesis
that is strictly consistent with the examples, under the
guidance of an information gain metric. Some simple
information can also be encoded in the grammar.

Grendel cannot easily integrate new knowledge.
Context free grammars are not closed under intersec-
tion (Hopcroft & Ullman 1979), so it is not possible
to generate a grammar for the new knowledge and in-
tersect it with the existing grammar. Instead, a new
grammar must be constructed for all of the biases. KII
can use set representations that are closed under in-
tersection, which allows KII to add or omit knowledge
much more flexibly than Grendel. KII also has a richer
language for expressing preferences. Grendel-like be-
havior can be obtained by instantiating KII with a con-
text free grammar for C.

Future Work
One prime area for future work is constructing RS-
KII translators for other biases and knowledge sources,
especially those used by other induction algorithms.
This is both to extend the range of knowledge available
to RS-KII, and to test the limits of its expressiveness
with respect to existing algorithms.

A second area is investigating the naturalness of
the {H, C, P) representation. In RS-KII, some of the

2 More precisely, they are are expressed as an antecedent
description grammar.

knowledge in AQ-11 is easy to express as (H, C, P) tu-
ples, but some, such as the LEF, is more awkward.
Others, such as the beam search bias, cannot be ex-
pressed at all in RS-KII. One approach is to replace
this hard-to-express knowledge with knowledge that
achieves similar effects on induction, but is easier to
express. Similar approaches are used implicitly in ex-
isting algorithms for knowledge that cannot be easily
used by the search. For example, AQll approximates
a bias for the best hypothesis with a beam search that
finds a locally maximal hypothesis.

Finally, the space of set representations should be
investigated further to find representations that will
yield other useful instantiations of KII. In particular,
it would be worth identifying a set representation that
can integrate n knowledge fragments and enumerate
a hypothesis from the solution set in time polynomial
in n. This would provide a tractable knowledge inte-
gration algorithm. Additionally, the set representation
for the instantiation effectively defines a class of knowl-
edge from which hypotheses can be induced in polyno-
mial time. This would complement the results in the
PAC literature, which deal with polynomial-time learn-
ing from examples only (e.g.,(Vapnik & Chervonenkis
1971), (Valiant 1984), (Blummer et al. 1989)).

Conclusions
Integrating additional knowledge is one of the most
powerful ways to increase the accuracy and reduce the
cost of induction. KII provides a uniform mechanism
for doing so. KII also addresses an apparently inher-
ent trade-off between the breadth of knowledge utilized
and the cost of induction. KII can vary the trade-off
by changing the set representation. RS-KII is an in-
stantiation of KII with regular sets that shows promise
for being able to integrate a wide range of knowledge
and related strategies, thereby creating hybrid multi-
strategy algorithms that make better use of the avail-
able knowledge. One such hybridization of AQ-11 was
demonstrated. Other instantiations of KII may pro-
vide similarly useful algorithms, as demonstrated by
IVSM and Grendel.

Acknowledgments
Thanks to Haym Hirsh for many helpful discussions
during the formative stages of this work. This pa-
per describes work that was supported by the National
Aeronautics and Space Administration (NASA Ames
Research Center) under cooperative agreement number
NCC 2-538, and by the Information Systems Office of
the Advanced Research Projects Agency (ARPA/ISO)
and the Naval Command, Control and Ocean Surveil-
lance Center RDT&E Division (NRaD) under contract
number N66001-95-C-6013, and partially supported by
the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aero-
nautics and Space Administration.

References
Blummer, A.; Ehrenfect, A.; Haussler, D.; and War-
muth, M. 1989. Learnability and the Vapnik-
Chervonenkis dimension. Journal of the Association
for Computing Machinery 36(4):929-965.

Chomsky, N. 1959. On certain formal properties of
grammars. Information and Control 2.

Clark, P., and Niblett, T. 1989. The CN2 induction
algorithm. Machine Learning 3(?):261-283.

Cohen, W. W. 1992. Compiling prior knowledge into
an explicit bias. In Sleeman, D., and Edwards, P.,
eds., Machine Learning: Proceedings of the Ninth In-
ternational Workshop, 102-110.

Hirsh, H. 1990. Incremental Version Space Merging:
A General Framework for Concept Learning. Boston,
MA: Kluwer Academic Publishers.

Hirsh, H. 1992. Polynomial-time learning with ver-
sion spaces. In AAAI-92: Proceedings, Tenth Na-
tional Conference on Artificial Intelligence, 117-122.

Hopcroft, J. E., and Ullman, J. D. 1979. Introduction
to Automata Theory, Languages, and Computation.
Reading, MA: Addison-Wesley.

Kumar, V. 1992. Search, branch and bound. In
Encylopedia of Artificial Intelligence. John Wiley &
Sons, Inc., second edition. 1000-1004.

Michalski, R. 1974. Variable-valued logic: System
VLi. In Proeedings of the Fourth International Sym-
posium on Multiple- Valued Logic.

Michalski, R. 1978. Selection of most representa-
tive training examples and incremental generation of
VLi hypotheses: The underlying methodology and
the descriptions of programs ESEL and AQ11. Tech-
nical Report 877, Department of Computer Science,
University of Illinois, Urbana, Illinois.

Mitchell, T.; Keller, R.; and Kedar-Cabelli, S. 1986.
Explanation-based generalization: A unifying view.
Machine Learning 1:47-80.

Mitchell, T. 1982. Generalization as search. Artificial
Intelligence 18(2):203-226.

Quinlan, J. 1986. Induction of decision trees. Machine
Learning 1:81-106.

Quinlan, J. R. 1990. Learning logical definitions from
relations. Machine Learning 5:239-266.

Rosenbloom, P. S.; Hirsh, H.; Cohen, W. W.; and
Smith, B. D. 1993. Two frameworks for integrat-
ing knowledge in induction. In Krishen, K., ed., Sev-
enth Annual Workshop on Space Operations, Appli-
cations, and Research (SOAR '93), 226-233. Hous-
ton, TX: Space Technology Interdependency Group.
NASA Conference Publication 3240.

Russell, S., and Grosof, B. 1987. A declarative ap-
proach to bias in concept learning. In Sixth national
conference on artificial intelligence, 505-510. Seattle,
WA: AAAI.

Smith, B., and Rosenbloom, P. 1990. Incremental
non-backtracking focusing: A polynomially bounded
generalization algorithm for version spaces. In Pro-
ceedings of the Eighth Naional Conference on Artifi-
cial Intelligence, 848-853. Boston, MA: AAAI.

Smith, B. 1995. Induction as Knowledge Integration.
Ph.D. Dissertation, University of Southern California,
Los Angeles, CA.

Subramanian, D., and Feigenbaum, J. 1986. Fac-
torization in experiment generation. In Proceedings
of the National Conference on Artificial Intelligence,
518-522.

Valiant, L. 1984. A theory of the learnable. Commu-
nications of the ACM 27(11):1134-1142.
Vapnik, V., and Chervonenkis, A. 1971. On the uni-
form convergence of relative frequencies of events to
their probabilities. Theory of Probability and its Ap-
plications 16(2):264-280.

Winston, P.; Binford, T.; Katz, B.; and Lowry, M.
1983. Learning physical descriptions from functional
definitions, examples, and precedents. In Proceedings
of the National Conference on Artificial Intelligence,
433-439. Washington, D.C.: AAAI.

