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BLOCK CONJUGATED COPOLYMERS: TOWARDS QUANTUM-WELL 
NANOSTRUCTURES FOR EXPLORING SPATIAL CONFINEMENT EFFECTS ON 

ELECTRONIC, OPTOELECTRONIC, AND OPTICAL PHENOMENA. 

X. Linda Chen and Samson A. Jenekhe* 
Department of Chemical Engineering and Center for Photoinduced Charge Transfer 

University of Rochester, Rochester, New York 14627-0166. 

ABSTRACT 

An ABA triblock conjugated copolymer, poly(2,5-benzoxazole)-6/ocyt- 

pöly(benzobisthiazole-l,4-phenylene)-6/oc^-poly(2,5-benzoxazole), 1, was synthesized, 

characterized, and used to demonstrate spatial confinement effects on the electronic structure and 

the optical and optoelectronic properties of block copolymers. Optical absorption, 

photoluminescence, and photoluminescence excitation spectra of thin films of the triblock copolymer 

evidence spatial confinement of excitons as well as microphase separation. Efficient energy transfer 

via interchain and intrachain mechanisms were observed in the triblock conjugated copolymer. The 

results suggest that microphase separation in bulk block conjugated copolymers can significantly 

modify the spatial modulation and confinement dimensionalities expected in isolated block 

copolymer chains. 



Block conjugated copolymers are expected to exhibit novel electronic, optoelectronic, and 

optical properties not found in conjugated homopolymers, random copolymers, and alternating 

copolymers1-8. The possible origin of the expected novel features of block conjugated copolymers 

is the quantum confinement phenomenon which arises in nanostructured semiconductor quantum- 

well structures6-9-10. If the conjugated homopolymers (-A-)n and (-B-)m are characterized by highest 

occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) or n-it* energy 

gaps Eg
A and E*, respectively, where Eg

A>Efe
B, the related ABA triblock copolymer chain would 

represent a quantum-well structure in which the B block forms a square potential well and the large 

gap A blocks form electron potential energy barriers of height AEg = Eg
A - Eg 

B. Similarly, an 

(AB)n multiblock conjugated copolymer chain would represent a quasi zero-dimensional quantum- 

well structure or superlattice structure with a periodic electron potential modulation AEg along the 

chain. There have been many theoretical studies predicting electronic localization phenomena and 

quantum size effects in block conjugated copolymers1"5 but very few experimental investigations 

have been reported6"8. In fact, the few experimental studies to date have been on copolymers 

(-AxBy-)n where the segment lengths are so short (x=2-3, y=2-6) that the materials are not really 

block copolymers and thus could not clearly test the predicted spatial confinement  effects6"8. 

In this communication, we report preliminary results of experimental studies exploring 

quantum-well structures in block conjugated copolymers and the associated spatial confinement 

effects on electronic, optoelectronic, and optical properties. An ABA triblock copolymer, poly(2,5- 

benzoxazole)-&/ocfc-poly(>enzobisttaa^ 

TBA-1),   1,   was   synthesized,   characterized,   and   investigated   by   optical   absorption, 

photoluminescence (PL), and photoluminescence excitation (PLE) spectroscopies as well as by time- 
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resolved PL decay dynamics. The results show clear evidence of spatial confinement of excitons in 

the different blocks However, we also show that microphase separation in the bulk block 

conjugated copolymer significantly modifies the modulation and confinement dimensionalities 

expected at the single chain level. 

Xxxy l   O' 

-K N 

PBZT 

r\ 
m 

0\ 
2,5-PBO 

The ABA triblock copolymer 1 consists of a poly(benzobisthiazole-l,4-phenylene) (PBZT) 

middle block and a poly(2,5-benzoxazole) (2,5-PBO) outer blocks. The electronic structure, redox, 

optical and nonlinear optical properties as well as photoluminescence (PL) and photoconductivity 

of the PBZT homopolymer have been extensively investigated in our laboratory11"13. The 

electroactive and photoactive properties of the 2,5-PBO homopolymer have not been reported. The 

optical absorption maxima in the homopolymers PBZT and 2,5-PBO are 438 and 467 nm, and 340 

and 355 run, respectively. The corresponding HOMO-LUMO energy gaps based on absorption band 

edges are: Eg
B = 2.48eV (PBZT) and Eg

A = 3.24eV (2,5-PBO). Thus, the PBZT segment of triblock 

1 chain is expected to form a quantum well while the 2,5-PBO blocks form electron potential barriers 

with AEg = 0.76eV. 

Triblock 1  was synthesized by combining the known literature methods for the 
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homopolymers1 lb-14. Carboxylic acid-terminated PBZT block (HOOC-Bm-COOH) was synthesized 

by reacting 2,5-diamino-l,4-benzenedithiol dihydrochloride (DABDT) with excess terephthalic acid 

(TA) in polyphosphoric acid (PPA). The Aß^ triblock was obtained by copolymerizing HOOC- 

Bm-COOH with 3-amino-4-hydroxybenzoic acid (AHBA) in PPA. The block lengths m and n were 

controlled through the stoichiometric ratios of TA to DABDT and AHBA to HOOC-Bm-COOH. The 

particular triblock investigated here has the average composition A20B9A20, where A and B are the 

2,5-PBO and PBZT repeat units respectively. From the known X-ray diffraction data for the 

homopolymers15'16, PBZT repeat unit length is 1.25 nm and 2,5-PBO repeat unit length is 1.16 nm. 

Thus, this symmetric triblock sample has a middle block of 11 nm and two outer blocks of about 23 

nm each. Thin films of the triblock and homopolymers were prepared by spin coating of solutions 

in formic acid/methane sulfonic acid or nitromethane/GaCl3"'12. The methods and equipment used 

in the photophysical characterization have previously been described1 U2-17. 

The synthetic approach outlined above ensured that the desired triblock copolymer structure 

was obtained. Various spectroscopic and other characterizations have confirmed the proposed 

triblock structure and composition. Thermogravimetric analysis (TGA) of the triblock showed a 

single onset of decomposition in N2 (665°C) that was different from either homopolymer, 650°C for 

2,5-PBO and ~700°C for PBZT. Intrinsic viscosity of 1 in methanesulfonic acid (MSA) at 30°C was 

2.3dL/g which is higher than either the starting HOOC-B9-COOH (0.8dL/g) or a 2,5-PBO 

homopolymer with a degree of polymerization of 60(1.7dL/g). 'H NMR of the triblock in deuterated 

nitromethane containing A1C13 gave four proton resonances in accord with the proposed structure 

and composition18. 

Figure la shows the optical absorption spectrum of a thin film of the triblock copolymer. A 
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highly structured electronic absorption in the UV-Visible region is observed: a vibrationally resolved 

absorption band in the 400-500 nm region with A,max of 440 and 470 ran which is characteristic of B 

block (PBZT) and a vibrationally resolved band in the 240-380 nm region with A.max of 270,344 and 

360 nm which is due to the A blocks (2,5-PBO). The optical absorption of a physical mixture of 2,5- 

PBO with PBZT (18.4 mol%) is shown in Figure lb, indicating that the absorption spectrum of the 

triblock is a superposition of those of the homopolymers. The main difference between the triblock 

and physical blend is the rather sharp vibronic structures of the triblock absorption spectrum. 

Observation of optical absorption bands characteristic of the homopolymers in the electronic 

absorption of the triblock is an important evidence that excitons produced on triblock chains are split 

and confined into two distinct spatial regions with different energy levels. Such a spatial 

confinement effect as evidenced by distinct segment absorption bands is similar in nature to the well- 

known phenomenon of two separate glass or melting temperatures in microphase separated block 

flexible-coil copolymers19. Also, we point out that spatial confinement of excitons as observed here 

(Figure 1) for a block conjugated copolymer has not been observed in numerous conjugated random 

or alternating copolymers that have been reported17. 

Figure 2a shows the PL emission spectrum of a thin film of the triblock when the absorption 

band of the 2,5-PBO block was excited at 340 nm. A broad PL emission band in the 460-640 nm 

region and centered at -510-544 nm is observed and assigned to the emission from the PBZT block. 

This assignment was made because similar PL emission spectra were obtained when the PBZT 

segment absorption band was excited at 440 and 460 nm where 2,5-PBO block does not absorb. The 

PL emission spectrum of the triblock is also very similar to that of the PBZT homopolymer (not 

shown) which is broad (460-640 nm), featureless, and centered at -560 nm. There is only a very 
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weak emission in the triblock PL spectrum near 400 nm where the 2,5-PBO block emits. The nearly 

complete quenching of emission from the higher energy 2,5-PBO blocks indicates that the lower 

energy PBZT block acts as a quantum well which traps excitons and acts as a radiative 

recombination center. This also means that there is efficient energy transfer from the 2,5-PBO blocks 

to the middle PBZT block. 

The similarity of the triblock emission spectrum to that of the PBZT homopolymer thin film 

which is known to luminesce via excimer-forming aggregates12 suggests that microphase separation 

has occurred in the triblock copolymer. Additional photophysical evidence of microphase separation 

in the block copolymer was obtained through comparisons with a physical 2,5-PBO/PBZT (18.4 

mol%) blend (Figure 2b) and with an isolated triblock chain (1 wt.%) in the matrix of inert 

poly(methyl methacrylate) (PMMA) (Figure 2c). The PL emission spectrum of the physical blend 

was slightly red shifted from that of the triblock but nearly identical with that of the PBZT 

homopolymer. This means that the PBZT/2,5-PBO blend is phase separated and that the emitting 

PBZT domains in the blend are larger or more like the PBZT homopolymer than in the copolymer. 

It is also noteworthy that quenching of the 2,5-PBO PL emission near 400 nm is not as complete as 

in the triblock. Hence, energy transfer in the blend is not as efficient as in the triblock. The PL 

spectrum of the isolated triblock chain shown in Figure 2c exhibits a band with vibronic structure 

at 451 and 480 nm which is due to the isolated PBZT block and a shoulder at -400 nm that is 

attributed to the 2,5-PBO blocks. The large blue shift of the PL spectrum of isolated triblock chains 

in PMMA compared to that of the pure triblock (Figure 2) means that the luminescence from the 

microphase separated triblock is from excimer-forming aggregates or microdomains. The relatively 

high intensity of the 400-nm band of the PL emission spectrum of the isolated triblock chains in 
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PMMA (Figure 2c) suggests that interchain energy transfer is an important mechanism of 2,5-PBO 

block PL quenching in the triblock thin film. 

Figure 3 shows the photoluminescence excitation (PLE) spectra (normalized at 470 nm) 

corresponding to the PL emission spectra of Figure 2. These excitation spectra were obtained by 

monitoring the emission of thin films of triblock, 2,5-PBO/PBZT blend, and triblock/PMMA blend 

at 540 nm where there is negligible emission from 2,5-PBO chromophore. The PLE spectrum of the 

triblock (Figure 3a) shows features similar to the absorption spectrum in Figure la. Most 

importantly, the presence of the large 340-360 nm band due to 2,5-PBO block absorption reveals that 

the 540-nm emission from PBZT block has a significant component in excitation energy transfer 

from the 2,5-PBO block. Due to the negligible emission of 2,5-PBO homopolymer at 540 nm and 

its lower PL quantum efficiency than PBZT homopolymer, the PLE spectrum of the blend (Figure 

3b) shows that the blend emission at 540 nm comes from PBZT. Comparison of the PLE spectra of 

the copolymer and blend suggests that intrachain energy migration from the 2,5-PBO blocks to the 

lower-energy PBZT block is a significant photophysical process in the triblock copolymer. Efficient 

intrachain energy migration in the block copolymer was further evidenced by the PLE spectrum of 

the isolated triblock chains (lwt.%) in PMMA (Figure 3c) where interchain energy transfer was 

ruled out. These excitation spectra and the previously discussed emission spectra provide additional 

evidence of the chemical connectivity of the segments of the triblock copolymer. 

The time-resolved PL decay dynamics of the triblock, 2,5-PBO/PBZT blend, and the tribiock 

dispersed in PMMA are shown in Figure 4. The PL of the isolated triblock chains in PMMA decays 

slowest, having biexponential lifetimes of 0.58 and 2.26 ns with amplitudes of 71 and 29% 

respectively. The biexponential lifetimes for the triblock copolymer (0.23 ns, 73%; 0.9 ns, 27%) and 
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blend (0.14 ns, 84%; 0.9 ns, 16%) were considerably shorter. The observed fast PL decay dynamics 

of the copolymer and blend are similar to the PBZT homopolymer12. These results further confirm 

the microphase separation of the triblock and phase separation of the physical blend. Figure 5 shows 

a schematic illustration of the microphase separated triblock conjugated copolymer 1 and our 

estimates of the relevant sizes of the nanostructures based on the X-ray diffraction data of the 

homopolymers. Possible deviation of the crystalline structure and morphology of the block 

copolymer from the homopolymers is unknown but will be investigated in the future. 

Although all the results presented here together show clear evidence of spatial confinement 

of excitons within the lower energy segment of a symmetric triblock conjugated copolymer, we have 

not yet observed any new energy levels in the absorption or emission spectra that could be attributed 

to quantum mechanical behavior6,9,10 of such confined nanostructures. Among the possible reasons 

for not observing such quantum size effects are the folio wings. Microphase separation of the triblock 

copolymer has the effect of changing the confinement dimensionality as illustrated in Figure 5. 

Theoretical studies to date1"5 have not taken account of the possibility and consequence of 

microphase separation on quantum size effects in block conjugated copolymer quantum-well and 

superlattice structures. It may also be that the composition of the triblock, the block length, and 

spread in block length of the lower energy segment that forms the quantum well are not optimum 

for observing the quantum well energy levels1. Quantum size effects in multiple quantum wells, of 

which the ABA triblock is a model, are generally more difficult to observe as optical transitions than 

superlattices9,10 of which multiblock copolymers would be models. Our ongoing work is aimed at 

addressing these issues as well as the synthesis and investigation of various block conjugated 

copolymer quantum-well structures. 
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In summary, an ABA triblock conjugated copolymer, poly(2,5-benzoxazole)-6/oc£- 

poly(benzobisthiazole-l ,4-phenylene)-6/oc£-poly(2,5-benzoxazole), was synthesized, characterized, 

and used to demonstrate spatial confinement effects on the electronic structure and the optical and 

optoelectronic properties of block copolymers. Optical absorption, photoluminescence, and 

photoluminescence excitation spectra of thin films of the triblock copolymer evidence spatial 

confinement of excitons as well as microphase separation. Efficient energy transfer via interchain 

and intrachain mechanisms were observed in the triblock conjugated copolymer. The results suggest 

that microphase separation in bulk block conjugated copolymers can significantly modify the spatial 

modulation and confinement dimensionalities expected in isolated block copolymer chains. 
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FIGURE CAPTIONS 

Figure 1. Optical absorption spectra of thin films of: (a) triblock 1 and (b) a physical blend of 

identical composition of 2,5-PBO (81.6 mol%)/PBZT. 

Figure 2. PL emission spectra of thin films excited at 340 nm: (a) triblock; (b) 2,5-PBO/PBZT 

(18.4 mol%) blend; ( c) triblock (1 wt.%)/PMMA blend. 

Figure 3. PL excitation spectra of thin films whose emission at 540 nm is monitored: (a) 

triblock; (b) 2,5-PBO/PBZT (18.4 mol%) blend; ( c) triblock (1 wt.%)/PMMA blend. 

Figure 4. PL decay dynamics of thin films excited at 350 nm and monitored at 540 nm: (a) 

triblock; (b) 2,5-PBO/PBZT (18.4 mol%) blend; and (c) triblock (1 wt.%)/PMMA 

blend (monitored at 480 nm). 

Figure 5. Schematic illustration of microphase separated triblock and estimated sizes. 

A:\9605715.SAJ 

11 



Pj-l 

p 

(D 
Ü 

o 
CO 

5 

200 300 400 500 

Wavelength (nm) 

600 700 



Ffr-Z. 

</2 

8      0.40 

300        350       400        450        500        550        600        650        700 

Wavelength (nm) 



fT 3 

1.2 

D 
0.80 ji 

% 
>. 0.60 
+-> 

•«—I 
on a 
a> *-> 0.40 
C 

HH 

w 
-I 0 70 
0^ 

250 300 350 400 450 

Wavelength (nm) 

500 550 



w 

h r ^ 

10" 

(Z> 
Ö 

H4 
AH 

i(r 

101    r 
-Ä* 

^W""k«V« 
■""•V*'*««** 

—■.. . ^._. . . . i . . . . ....[...,,,, 

o 
Time(ns) 



frV 5 

23nm llnm 23nm 

 4*—■+•  
3 

3 

An B m An 


