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Abstract 

In this dissertation, we investigate the minimum-time orbital transfer problem for 

spacecraft with steerable, continuous thrust of constant magnitude. The optimal control 

problem is developed using Euler-Lagrange theory, which leads to the optimal control law 

in terms of the Lagrange multipliers or costates, and provides the differential equations 

governing these costates. Determination of the costates as functions of time through nu- 

merical solution of the differential equations requires initial values for the costates which 

determine the initial steering angle of the thruster. It is well known that finding the initial 

values of the costates is the most difficult part of solving optimal control problems of this 

type. The standard solution technique is to use the shooting method to solve a boundary 

value problem in which the initial and final values of the states are specified, but the initial 

and final values of the costates are unknown. This iterative procedure is sensitively depen- 

dent on the initial conditions provided for the costates. This research has developed reliable 

approximate models for the initial values of the costates, such that the shooting method 

will always converge over a given range of problem parameters. Employing a combination 

of analytical and empirical results, the optimal initial costates are modeled as functions 

of the problem parameters which are the initial thrust acceleration, A, and the final orbit 

radius, R, in canonical units. For circle-to-circle, coplanar orbit transfers, these approx- 

imate initial costate models lead to convergence in the shooting method for all practical 

values of A and R. In addition, the models lead to convergence for a wide range of other 

problems, including circle-to-hyperbola transfers and non-coplanar transfers. To counter 

the extreme sensitivity to small changes in the initial costate conditions, a dynamic step 

limiter is introduced which improves convergence properties. The minimum-time prob- 

lem is also modeled using the Kustaanheimo-Stiefel (KS) transformation, and the optimal 

initial costates are shown for comparison. Several numerical examples are provided for 

coplanar and non-coplanar orbital transfers with various end conditions. 

XI 



OPTIMAL CONTINUOUS-THRUST ORBIT TRANSFERS 

/.   Introduction 

1.1    Background 

The fascinating possibilities of space flight in fact and fiction have inspired many 

people to pursue careers in the astronautical sciences. As a result, continual advances 

are being made in the science of spacecraft design. Propulsion systems in particular have 

improved dramatically since the first black powder rockets of antiquity. Robert Goddard, 

also inspired by the potential of space flight, is considered the father of modern rocketry for 

his successful experiments using liquid fuels. Today, propulsion research continues with the 

development of high efficiency non-chemical thrust devices. Thus, there are three common 

approaches to space propulsion: solid fuel, liquid fuel, and non-chemical. 

Goddard [13] recognized that to launch his rockets in the most fuel-efficient manner 

possible, he would need to solve the optimal control problem using the calculus of varia- 

tions. For Goddard's experiments, an approximation to the optimal control law was used 

instead. Since the boost phase of a chemical rocket is typically of short duration, an ap- 

proximation is usually considered to be good enough. However, a full-scale booster rocket 

has a much longer thrusting phase than Goddard's experiments. Also, the thrust duration 

of a non-chemical propulsion system can become quite lengthy. In either case, the need 

for optimal control solutions becomes much greater as the duration of the thrusting phase 

grows large compared to the total flight time, since the usual approximations become less 

valid. 

Normally, the goal of the optimization problem is to minimize either the fuel used or 

the time taken to complete a mission. The problem has been solved [13] for both quantities 

if one considers the velocity changes to occur instantaneously. However, there is still no 

closed form solution available for the finite duration thrust case. Numerical methods are 

typically used to determine an optimal thrust program to meet boundary conditions for 

position and velocity. 
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Non-chemical thrust devices are appealing because they typically have high propul- 

sive efficiencies, measured by the specific impulse. A highly efficient propulsive system is 

very desirable for an orbiting spacecraft, simply because there is rarely, if ever, an opportu- 

nity to refuel on orbit. Although finite thrust devices such as electrical arcjets use less fuel 

than chemical thrusters for a given change in spacecraft velocity, they normally produce 

very small thrust levels. For this reason, finite thrust propulsion systems need to operate 

continuously for extended periods to accomplish orbital maneuvers. 

1.2 Problem Statement 

When a spacecraft is being accelerated by a thruster for significant portions of the 

planned trajectory, the effect can not be considered instantaneous, or "impulsive." Thus, 

the orbital path will not be Keplerian. The optimal magnitude and direction of the thrust 

must then be found as a function of time to meet mission objectives. It is possible to 

find this function, the optimal control law, by using Euler-Lagrange theory, which will be 

discussed in Chapter 4. However, knowledge of the optimal control law is not sufficient to 

solve the problem of meeting desired end conditions, because Euler-Lagrange theory intro- 

duces adjoint variables which must be initialized. These variables, also known as Lagrange 

multipliers or costates, are difficult to initialize because there is insufficient information 

from the boundary conditions to specify their initial values. Without this information, it is 

not possible to propagate the differential equations that govern the behavior of the states 

and costates. Typically, the initial values of the costates are guessed, then an attempt is 

made to solve the boundary value problem by refining the guesses in some automated way. 

Due to the sensitivity of the costates to errors in the initial conditions, poor guesses may 

preclude any hope of convergence to the desired end conditions. Thus, the problem is to 

find the initial values of the costates that will lead to the desired final orbital conditions, 

in the minimum time. 

1.3 Research Goal 

The goal of this research is to provide insight into the selection of initial values for 

the Lagrange multipliers, leading to reasonable certainty of convergence for the boundary 
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value problem of a spacecraft under continuous thrust with fixed end conditions. To gain 

this insight, both analytical and empirical means will be used to model the optimal initial 

costates as functions of the problem parameters. 

1.4    Thesis Outline 

Chapter 2 provides a literature review related to the problem of optimal control 

for impulsive and continuous-thrust orbital maneuvers. In Chapter 3, the equations of 

motion for a spacecraft influenced by gravity and continuous thrust are derived in several 

coordinate systems. Chapter 4 starts with a presentation of Euler-Lagrange theory, which 

is then used to develop the optimal control law and costate equations in each of the 

coordinate systems. The shooting method is also discussed in Chapter 4. Chapter 5 

contains an analysis of the optimal initial costate locus, which is used to initialize the 

shooting method. Numerical examples of optimal continuous-thrust transfers using the 

costate locus analysis are presented in Chapter 6. Finally, a summary of this research is 

presented and conclusions are discussed in Chapter 7. 
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II.   Literature Review 

There are hundreds, if not thousands, of papers to be found in the literature on 

optimal space maneuvers. For example, Bell [5] cites 160 articles in his survey of pub- 

lished work on optimal space trajectories. The two most commonly addressed issues are 

minimum-fuel transfers and minimum-time transfers. For a spacecraft under continuous 

thrust with no throttling, the resulting solutions will be the same. Without throttling, the 

mass flow rate of propellant is constant, so if time is minimized then the fuel consumed 

will be minimized as well. 

Depending on the design of the propulsion system, the velocity change may occur in 

a very short time, or in a very long time compared to the period of the desired final orbit. 

Short thrusts are treated as impulsive, and long thrusts are modeled as continuous effects 

for finite durations. 

2.1 Optimal Impulsive Maneuvers 

One of the earliest definitive works on optimized impulsive maneuvers is by Law- 

den [13]. He posed the minimum-fuel space trajectory as a Mayer problem [13], and 

sought solutions using variational calculus methods and Lagrange multipliers. Lawden 

treated the Lagrange multipliers as components of a vector, which he called the "primer 

vector." The behavior of the primer vector gave the optimal directions for impulsive ma- 

neuvers, and thus solved the optimization problem for impulsive thrust. This work also 

verified Hohmann's result for a minimum-fuel impulsive orbital transfer. Lawden's book 

is commonly referenced in contemporary literature and serves as a starting point for much 

of the work that follows. 

2.2 Optimal Continuous Thrust Maneuvers 

Although the optimization of impulsive transfers yielded a direct solution [13], none 

has been found for the continuous-thrust case. This problem may be solved numeri- 

cally, and many examples of this are to be found in the literature [5]. Optimization of 

a continuous-thrust trajectory involves the simultaneous solution of an optimal control 
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problem and a boundary value problem. The initial and final states are normally given, 

but there is usually no information available for the initial values of the Lagrange multipli- 

ers. This presents quite a problem, since the optimal control law is often a function of the 

Lagrange multipliers which must be initialized for numerical integration. The usual ap- 

proach is to make an educated guess for the initial values, then update them by solving the 

boundary value problem. Prussing [17], Broucke [6] and others have recast the boundary 

value problem in terms of other variables, but the initial values of these must be guessed 

and refined as well. Prussing [17] incorporates the second derivative of the primer vector 

into a fourth order dynamics equation, thus eliminating the control variables. Once this 

is accomplished, four constants of integration must be iterated to find the correct optimal 

trajectory. Broucke [6] expresses the Lagrange multipliers as functions of new auxiliary 

variables, and graphically examines the behavior of the new variables. Pines [15] and Red- 

ding and Breakwell [18] have suggested using the results of optimal impulsive maneuvers 

to serve as an initial guess for the continuous-thrust case. However, this method produces 

poor results for small values of continuous thrust, particularly if there are no coasting arcs 

used. Thus, there are no models or techniques in the literature to provide good estimates 

for the initial Lagrange multiplier values for the continuous-thrust, minimum-time orbit 

transfer problem. 

Closed form non-optimal solutions have been found for spacecraft trajectories where 

special assumptions are made about the control law. If the thrust vector is directed either 

radially from the attracting center or tangentially to the orbital path, it is possible to inte- 

grate the equations of motion analytically. Battin [4] (section 8.8) presents results for the 

time to reach escape velocity and the number of revolutions for both thrust assumptions. 

Assumptions about the thrust magnitude will also allow closed form non-optimal 

solutions through the method of averaging [1, 26]. If the thrust level is small enough, there 

is only a small change in semi-major axis or eccentricity for a single orbital revolution. 

Then, a correction is made to the semi-major axis at the completion of each revolution. 

These approximations are reasonable for orbital transfers that require roughly ten or more 

revolutions to complete [1, 26].   Using these assumptions, it is possible to solve for the 
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trajectory analytically. The thrust is directed tangentially, which is also perpendicular to 

the orbit radius since the eccentricity is assumed to be zero for individual revolutions. 

In another approach [11], finite difference equations are used in place of the exact 

differential equations of motion. Then, a choice must be made for a step or mesh size in the 

search space. By refining the mesh, the solution may approach the optimal trajectory. A 

method known as "differential inclusion" [19, 8] also uses finite difference equations. These 

methods can be very efficient. However, it is difficult to guarantee that the converged 

solution is the desired optimal path since the differential equations governing the costates 

are not used. These methods have gained in popularity because of their inherent robustness 

and the increasing power of digital computers. 

Another numerical method that has been used with success for the minimum-fuel 

problem is hybrid non-linear programming, or HNLP [27]. In this case, the cost function 

is evaluated directly while the transversality conditions are satisfied implicitly. HNLP 

combines the advantages of using costate equations and the simplicity of directly evaluating 

the cost function. This method can be made more robust than propagating the exact state 

and costate equations, but the performance depends on an optimal choice of additional 

variables and constraints. 

For circle-to-circle coplanar orbital transfers, the minimum time of flight may be 

derived from the accumulated velocity change on the trajectory [2]. It is possible to display 

the optimal accumulated velocity change in graphical form as a function of constant thrust 

level, ratio of final to initial orbit radius, and mass propellant fraction [2]. In this way, a 

wide range of possible cases may be represented through the use of universal variables. To 

produce the graphical results, many different cases must be solved numerically to allow for 

interpolation. Although linear interpolation from a graph will not provide great precision, 

it does show general trends for mission design. In particular, a graph of the number of 

revolutions for the optimal path versus the logarithm of thrust magnitude shows a distinct 

change in trajectory characteristics at integer values of revolutions [2]. 

2-3 



2.3    Summary 

Many different approaches have been used to solve the optimal continuous-thrust 

orbit transfer problem. While methods that propagate the exact equations of the states 

and costates will guarantee optimality, they are not robust due to sensitivity to initial 

conditions. Direct methods that simply evaluate the cost function with approximate finite 

difference equations are typically robust, but are not optimal. Finally, exact solutions to 

approximations of the equations of motion or control law also sacrifice optimality. An ideal 

solution technique would have both guaranteed optimality and robustness, but none exists 

in the literature for a wide range of spacecraft design parameters and orbital boundary 

conditions. In particular, there are no models or techniques in the literature to provide good 

estimates for the initial Lagrange multiplier values for the continuous-thrust, minimum- 

time orbit transfer problem, based on problem parameters. 
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III.   Continuous-Thrust Spacecraft Dynamics 

In this chapter, the equations of motion for a spacecraft under the influence of grav- 

ity and continuous thrust are derived for a variety of coordinate systems. The resulting 

differential equations will be used for the optimal control formulations of Chapter 4. The 

acceleration due to constant, non-throttleable thrust is A, the gravitational parameter is 

ß. The length of the position vector is r, and the final desired value of r will be given by R. 

The spacecraft's initial mass is m0, and the mass flow rate is m. The thrust acceleration 

A may or may not be a function of time, depending on the value of m, as will be shown in 

the next section. In canonical units [3], the gravitational constant \x is unity regardless of 

the system under consideration as long as the initial radius is defined to be one distance 

unit, (DU), and the initial circular velocity at that radius is one distance unit per time 

unit, (DU/TU). Also, the initial spacecraft mass is one mass unit (MU). 

3.1    Equations of Motion in Three Dimensions 

Thrust 

Figure 3.1    Problem Geometry in Three Dimensions 

The equations of motion are most easily expressed using an inertially fixed, right- 

handed Cartesian system of x, y, and z coordinates as shown in Figure 3.1. The x' and y' 

axes shown in Figure 3.1 are parallel to the x and y axes, respectively. The initial circular 

orbit lies in the x, y plane, and the initial position is at x = 1, y = 0, z = 0. The thrust 

direction must be defined with (at least) two angles.  The angle a lies in the x, y plane, 
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and is measured from the x axis in the positive direction. The angle ß is measured "up" 

from the x, y plane, and lies in the plane containing the thrust vector and the z axis. The 

magnitude of the position vector is r = \/x2 + y2 + z2. 

The equation of motion for a rocket [25] is as follows: 

T,Fext + mVe = mr (3.1) 

where T<Fext is the sum of the external forces acting on the spacecraft, Ve is the exhaust 

velocity of the propellant, f is the position vector, and f is the spacecraft total acceleration. 

The second term of Equation (3.1) represents the thrust, and the magnitude of the thrust 

acceleration is A = T/(m0+iht) where T is the constant thrust magnitude of the propulsion 

system, and t is the time. If rh = 0, then A is equal to a constant. The only external 

force we will consider is that of gravity from a single point source, and Newton's Law of 

Gravitation may be used to express this as follows: 

F, = -£r (3.2) 

The two-body assumption is used to simplify the equations of motion enough to allow 

closed form solutions which are presented in Chapter 5. Other gravitational models may be 

considered, but the majority of missions of interest are primarily influenced by two-body 

effects and thrust. Therefore, any results obtained with the two-body assumption may 

be used as a starting point for a great number of more complex orbital problems. It may 

even be possible to approach the restricted three-body problem by treating the mass of the 

third body as a parameter, and using two-body results as initial estimates for small values 

of the mass parameter. However, that subject is beyond the scope of this research. The 

equations of motion are as follows, where the thrust terms are the components of rhVe: 

x    =    — (fj,/r3)x + A cos ß cos a (3-3) 

y    =    —(fi/r3)y + A cos ßsm a (3-4) 

z   =    -(ii/r3)z + Asmß (3.5) 
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3.2    Equations of Motion in Two Dimensions 

Figure 3.2    Problem Geometry in Two Dimensions 

For the case where the motion remains in the initial orbital plane, the geometry 

simplifies to that of Figure 3.2. Since ß = 0 = z, Equations (3.4)-(3.5) reduce to: 

x    —    — (fj,/r3)x + A cos a 

y    =    — (fi/r3)y + A sin a 

(3.6) 

(3.7) 

The two-dimensional equations of motion may also be expressed in polar coordinates 

which include r as the scalar distance from the attracting center, u as the time rate 

of change of r, and v as the velocity component perpendicular to u directed along the 

spacecraft horizon. The polar thrust angle, <f>, is measured clockwise ("up") from the 

spacecraft local horizontal, as shown in Figure 3.2. This results in the following differential 

equations: 

r    =    u 

  + A sin <f> 

(3.8) 

(3.9) 
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UV 
v   = + Acos<f> (3.10) 

r 

3.3    Equations of Motion under the KS Transformation 

The Kustaanheimo-Stiefel (KS) transformation is intended to regularize the equa- 

tions of motion in the problem of two bodies [21]. The purpose of the regularization is to 

reduce numerical integration difficulties when r is small, by placing the inverse of r into 

a term that represents the constant angular momentum magnitude of a two-body orbit. 

This term premultiplies the state variables Ui and u2 in Equations (3.15) and (3.16), but it 

will not remain constant with the influence of thrust. When this transformation is used in 

conjunction with a change of independent variable, the equation of motion in two dimen- 

sions has the form of a harmonic oscillator [20]. This allows for simple analytical solutions, 

which may be perturbed by other forces such as a third body or a propulsion system. In 

Chapter 4, we will apply Euler-Lagrange theory to the two-dimensional regularized equa- 

tions of motion to solve the minimum-time problem for a coplanar orbital transfer under 

continuous thrust. The purpose of this development is to compare the costate behavior 

with the Cartesian case in Chapters 5 and 6. 

The equations of motion for a two-dimensional orbit are as follows: 

x    =    -4* (3-11) 

T3y (3-12) 

Using the KS transformation for two dimensions, the coordinates x and y are replaced 

by Ui and u2 through the following relationship: 

(«x + iu2)   = x + iy (3.13) 

The independent variable t is replaced by the fictitious time s with the following differential 

equation: 
dt 
- = r (3.14) 
ds 
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These transformations lead to the regularized equations of motion [20]: 

u,    = 

un    = 

2(ü'TÜ') - // 
IT 

2{u'Tu') - n 
2r 

u2 

(3.15) 

(3.16) 

The primes indicate differentiation with respect to s, u — (ui,u2), and r = u\ + u\. The 

symbol (u'Tu') indicates an inner product. A thrust model may be added as follows: 

u0 

Ui + -Ar312 cos 7 

u2 + -Ar3/2sm~/ 

(3.17) 

(3.18) 

where A is the magnitude of the thrust acceleration. This is an original thrust model which 

is consistent with the transformation given in Reference [20], Equation (9.26), but here the 

thrust angle 7 has been defined in the u coordinate system for simplification with no loss 

of generality. The relationship between the inertial Cartesian thrust angle, a, and the KS 

thrust angle, 7, is as follows: 

cos 7    =    r  1'2(ti1 cos a + u2 sin a) 

sin 7    =    r    ' («1 sin a — u2 cos a) 

(3.19) 

(3.20) 

At the initial time, ux = 1 and u2 = 0, and r — 1. Therefore, 7(0) = a(0). Defining vt = u't, 

the equations of motion and differential constraints may be expressed as five first-order 

differential equations: 

*'    =    r 

u,     =     Vi 

u'2    =    v2 

(3.21) 

(3.22) 

(3.23) 
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t>,   = 

2{vrv) - ß 
2r 

2(irr«) -/* 

Mi -|—Ar3'2 cos7 1     2 

2r u2 + Ur3/2 sin7 

(3.24) 

(3.25) 

5.^    Summary 

The equations of motion of a spacecraft under the influence of gravity and continu- 

ous thrust have been presented in four different coordinate frames. In three dimensions, 

inertial Cartesian coordinates are used. In two dimensions, inertial Cartesian or polar 

coordinates are used. Finally, the equations of motion are modified by the KS transfor- 

mation. An original thrust model is presented that is simplified compared to the model 

given in Reference [20]. These sets of equations will be used in Chapter 4 to derive optimal 

control formulations for the minimum-time orbital transfer problem. 
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IV.   Optimal Control Formulations and Solutions 

This chapter begins with a standard development of the variational calculus approach 

to the minimum-time trajectory optimization problem [7]. Then, the resulting relationships 

are applied to the equations of motion for a spacecraft under continuous thrust in several 

coordinate systems, as derived in Chapter 3. Finally, the shooting method is presented 

as a means to solve the two-point boundary value problem of transferring from one orbit 

to another, using the optimal differential equations for the states and costates. There are 

two original presentations in this chapter: the application of Euler-Lagrange theory to 

the equations of motion under the KS transformation, and a dynamic step limiter which 

improves the convergence properties of the shooting method. 

Optimization problems come in many forms, but the usual goal is to minimize (or 

maximize) the value of some desired quantity. Sometimes, the answer we seek is a function 

of time that will minimize this quantity. Suppose it is desired to get from one position to 

another in a minimum time. The solution to this problem is a path, or set of directions 

as a function of time. For example, a map with highlighted roads from an automobile 

club could be considered an optimal path to minimize travel time between cities. A better 

example might be a program for a road rally, in which the drivers are expected to arrive at 

intermediate checkpoints at specific times. In this case, the goal would be to maximize a 

score, rather than to minimize the time. Either way, the set of instructions specifies quan- 

tities like position, speed, and direction. To follow an optimal path as in these examples, a 

driver must control the vehicle by steering, accelerating, braking, and so on. These control 

actions must be done in exactly the right order at the right time for success. Thus, a set 

of control instructions or control law is the solution that we ultimately require. 

Euler-Lagrange theory provides an analytical method to find the control law for a 

variety of path optimization problems through the calculus of variations [7]. To implement 

this theory, we need to define a quantity to be minimized (or maximized), and to determine 

any constraints that affect the optimal path. For a problem in spaceflight, the vehicle 

must move according to Newton's laws of motion under the influence of gravity and the 

propulsion system. We will not consider other perturbations or relativistic effects on the 

spacecraft. The equations of motion may be treated as constraints, since the vehicle has 
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no other choice than to obey them. These constraints may be written as a set of first order 

differential equations: 

S(t) = f(x(t),u(t),t) (4.1) 

If we wish to minimize or maximize a quantity J, a cost functional is defined as: 

J = f'{C)dt (4.2) 
Jo 

where tj is the final time. The integral form is chosen so that the integrand may be 

identified as the Lagrangian (£), which will be used in the calculus of variations approach. 

The constraints may be added to the Lagrangian without changing the value of the cost 

function, if they are appended in the following way: 

J = J*' (c + \T(j-'x))dt (4.3) 

Notice that the quantity (/ — x J is identically equal to zero if the state vector, x, solves the 

differential equations, /, by the definition of the equations of motion given above. Thus, 

we have added nothing to the cost function, as long as the constraints are obeyed. The 

variable A is a vector of scalar valued functions known as Lagrange multipliers. Strictly 

speaking, the vector is a representation of linear functionals [14]. The Lagrange multipliers 

are also known as costates, since there will be one element of the Lagrange multiplier vector 

associated with each element of the state vector. The behavior of the costates turns out 

to be very important for defining the optimal control law, as will be shown. 

The cost function is now dependent on the states, x, and the controls, -u, which are 

contained in /. An infinitesimal variation away from the minimum point will not increase 

the value of the cost, since the slope is zero there. The variation operation is similar to 

taking a derivative, but it provides information about the relationships of many variables 

at the same time. First, define a scalar valued function H, the Hamiltonian: 

H = C + XTf (4.4) 
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The first, total variation of the cost function for either fixed or free final conditions 

and fixed initial conditions is given by [12]: 

SJ = -XT(tf)6x(tf) + H(tf)6tf + p UjtL + \\ Sx + ~Su dt (4.5) 

We would like to be able to make small variations in the control and final time without 

changing the value of the cost function. For this to happen, the variation of J must be 

zero for arbitrary Stj and Su. The states must be free to vary except at the endpoints, 

so Sx is also arbitrary in the integrand. If some of our final conditions are not specified, 

such as the final radius, then the first term may have non-zero elements for 8x(tj). Since 

we assume the variation of the cost function to be identically zero, the final Lagrange 

multiplier vector would have as many zero components as necessary for the first term to 

vanish. As mentioned above, this reasoning will also apply if the initial states are free and 

the final states are specified [12, 7]. 

The second term in the variation requires that the final value of the Hamiltonian, 

Ti(tf), is equal to zero if Stj is free to vary. This is known as the transversality condition [7]. 

For minimum-time problems, the final time must be free to vary, so the final value of the 

Hamiltonian must be zero. This condition may be met through proper scaling of the 

Lagrange multipliers. Scaling may also be used to make the first term in the variation zero 

as well. The equations of motion for the states and costates in our problem will not be 

affected by scaling the Lagrange multipliers, which gives us some freedom to choose the 

scale factor. This is because the Lagrange multipliers appear in the equations of motion 

for the state variables as ratios of each other, as is shown in the following sections. 

The integral term in the variation must also be zero for arbitrary values of Sx and 

Su. Thus, for the integrand to be zero, we have the Hamilton-Jacobi equations [11]: 

dn -T 
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Equation (4.6) is the optimality condition, which states that the variation of the Hamil- 

tonian with respect to the control should be zero on the optimal path. Equation (4.7) 

provides a set of first order differential equations that govern the behavior of the Lagrange 

multipliers. These are the costate equations, which may be integrated along with the state 

equations through the time interval. 

In the calculus of variations, the Legendre-Clebsch condition is used to check if the 

control u minimizes or maximizes the Hamiltonian. For minimization, we have [7]: 

d2n ,   , 
-d*y- ° ^ 

which states that d27i/du2 is a positive semi-definite matrix throughout the time interval. 

For maximization, we have: 

£*• 
which states that d2H/diP is a negative semi-definite matrix throughout the time interval. 

Thus, we may check for either occurrence. If the second partial derivative of the Hamilto- 

nian with respect to the control is equal to zero or a zero matrix, then we have a singular 

arc [12], and further investigation is necessary to determine the nature of the critical path. 

However, the partial derivatives of the Hamiltonian are functions of time, and numerical 

experience has shown that the second partial derivative is extremely unlikely to remain 

exactly equal to zero throughout a trajectory. This situation would amount to a case in 

which the optimal solution does not depend on the constraint equations in the Hamilto- 

nian, as may be seen from control laws which are developed in the following sections. The 

Legendre-Clebsch condition provides the necessary conditions for a minimizing path [7]; 

however, to have both necessary and sufficient conditions for a minimum, one must make 

certain that there are no singular arcs encountered along the path. In the problem we are 

investigating, the second partial derivative is positive or negative semi-definite in all cases 

of interest. 

The optimality condition and the costate equations are a very powerful result of 

Euler-Lagrange theory. This result may be used to determine the optimal control law for 
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a spacecraft under continuous thrust. However, there is a significant difficulty inherent in 

this formulation which is addressed in this research. 

Although the costate equations may be derived from the above relationships, they 

must be initialized to begin a numerical integration procedure. We may choose the initial 

and final conditions for the physical states, but there is no guaranteed way to determine the 

correct, optimal boundary conditions for the costates. In addition, the costate equations 

tend to be very sensitive to initial conditions in practice. They are also just as sensitive 

when choosing final conditions for backwards integration, as in a forward/backward sweep 

approach [7]. The shooting method, which is described in a later section, depends on 

"reasonable" choices of initial Lagrange multiplier values. If they are too far away from 

the correct values, the shooting method will fail. 

4-1    Optimal Control in Three Dimensions 

Using the three-dimensional equations of motion derived in Chapter 3, Equations 

(3.3)-(3.5), we may form the following variational Hamiltonian: 

H    =    1 + \xx + Xyy + \zz + Xi [—(fji/r3)x + A cos ß cos a] 

+    \y[-(n/r3)x +Acosßs'ma]+\i[-(n/r3)x +As'mß] (4.10) 

The optimality condition leads to two control laws for the thrust vector angles a and ß: 

tana    =    —^ (4.11) 

tan ,3    =    — ~  *       . r (4.12) 
— (A± cos a + Ay sin a) 

This choice of sign will guarantee the necessary conditions for a minimum with respect to 

each of the control angles, as is shown next using the Legendre-Clebsch condition. Since 

there are two control angles, the second partial derivative of the Hamiltonian will be a 
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2x2 matrix: 

d2n 
du 

d2n/da2       d2H/{dßda) 

d2n/(dadß)       d2H/dß2 
(4.13) 

Starting with the first diagonal term, we have: 

82H 
da2 —Xi A cos ß cos a — XyA cos ß sin a (4.14) 

Using Equations (4.11) and (4.12) to eliminate a and ß from the right-hand side, it is 

possible to determine the sign of the second partial derivative of the Hamiltonian with 

respect to the control angle a: 

da y/% + A? + A? 
(4.15) 

The second diagonal term is given by the second partial derivative of the Hamiltonian with 

respect to the control angle ß: 

d2n 
dß2 XiA cos a(— cos ß) + Xy A sin a(— cos ß) — Xi A sin ß (4.16) 

As before, Equations (4.11) and (4.12) may be used to determine the sign of the second 

partial derivative with respect to ß: 

d2H_ ,  Aj + A| + Aj   _ 
dß2 /\2 _L  \2 _L   \2 /% + % + % 

(4.17) 

Lastly, the off-diagonal terms are necessary to complete the check for the Legendre-Clebsch 

condition: 
d2n d2H 

= XiA sin a sin ß — XyA cos a sin ß (4.18) 
da dß     dß da 

Using Equations (4.11) and (4.12) to eliminate the control angles from the right-hand side 

yields the following: 

d2U d2U A(Xj;XyXZ    —   AjAyAj) _ 

dadß      dßda      .JXl + Xj^Xl + Xl + X 
(4.19) 
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Thus, the off-diagonal terms are identically equal to zero and the diagonal terms are both 

greater than or equal to zero. This makes the second partial derivative matrix positive 

semi-definite, which satisfies the Legendre-Clebsch condition. Thus, we have the necessary 

conditions to conclude that the control minimizes the path integral [7]. As mentioned 

before, there is no case of interest in which all three of the Lagrange multipliers A^, A^ 

and Ai are all identically equal to zero throughout the path integral over the transfer time. 

Since these costates premultiply the constraint equations in the Hamiltonian, the optimal 

path would be independent of the gravitation and thrust models if the velocity costates 

were all zero throughout the transfer. 

The costate equations are found using Equation (4.7), and the results are as follows: 

K = ^[Xi(y2 + z2-2x2)-3x(Xyy + Xiz)] (4.20) 

K = ^[Xy(x2 + z2-2y2)-3y(Xix + Xiz)} (4.21) 

Xz = ^[Xi(x2 + y2-2z2)-3z(Xix + Xyy)} (4.22) 

Xi = -Xx (4.23) 

K = -Ay (4.24) 

Xi = -Xz (4.25) 

In the two-dimensional problem, the three final boundary conditions are the radial 

distance r = R, the radial velocity u = 0, and the tangential velocity v = 1/^/R. This 

set of conditions may be used to define a circular orbit completely with a desired direction 

of rotation. In the three-dimensional problem, two more final conditions are necessary to 

correspond with the two out-of-plane initial costates, Az(0) and Ai(0). If the three com- 

ponents of the angular momentum vector h are used along with the radial and tangential 

velocities, a total of five scalar boundary conditions are established. These quantities will 

uniquely determine a circular orbit with a desired inclination and ascending node.  Since 
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h = fxf, the components of the angular momentum vector may be calculated as follows: 

hx = yz- zy (4.26) 

hy = zx — xz (4-27) 

hz = xy - yx (4.28) 

The above equations are useful for checking end conditions after integrating the Cartesian 

equations of motion in three dimensions. If the final orbit is circular with a given radius, 

inclination and ascending node, the components of the final angular momentum may be 

found from the circular velocity and angular information. 

Now that the equations of the states and costates have been derived, they must be 

initialized prior to numerical integration. The initial values of the states are known, but the 

initial values of the Lagrange costates are unknown. However, the number of independent 

unknown initial costates may be reduced. Either Ar(0), Ay(0), or Az(0) may be initially 

scaled to unity by dividing the initial value of the Hamiltonian by Ac(0), Ay(0) or Az(0). 

Although there is no mathematical reason to prevent these initial costates from being zero 

at the same time, the resulting problem would not be of practical interest. This is because 

the resulting optimal trajectory would be independent of the initial velocity components, 

as can be seen from the Hamiltonian. Thus, it is assumed that Ar(0) ^ 0, allowing it 

to be divided through the Hamiltonian. As a result of this scaling, A^O) = 1, and the 

cost is also scaled since the Lagrangian becomes 1/AX(0), a new constant. This has no 

effect on the final optimal trajectory since the minimum of the scaled cost corresponds to 

the minimum time. If the scaling changes the sign of the terms in the Hamiltonian, then 

the optimization problem becomes one of maximizing the negative of the time. This is 

discussed in the section on optimization of the two-dimensional problem. 

The Lagrange costates associated with the z position and velocity, \z(0) and Ai(0), 

are unknown at the initial time. However, they may be set equal to zero as a reasonable 

starting guess at the initial time. This is because Xz and Xz are both always equal to zero 

if the transfer is confined to the x, y plane. In Table 4.1, the initial values Xz(0) and A^(0) 

4-8 



are indicated as unknowns, because zero will not be the optimal value in general. Finally, 

it will be shown in a later section that the initial values Ay(0) and Ai(0) are equal if the 

starting orbit is circular. The three-dimensional set of states and costates are initialized 

as given in Table 4.1: 

Table 4.1    Initialization for 3D Problem 

3(0) = i Mo) l 
2/(0) =    0 Mo) —     ? 

*(0) =    0 Mo) =     ? 

i(0) =    0 Ai(0) =   Mo) m =   1 Mo) —     ? 

i(0) =    0 Mo) —     ? 

Table 4.1 shows a total of four unique scalar values to be found, and the optimal flight 

time makes five unknowns for the three-dimensional problem. Five scalar end conditions 

are required at the final time to produce a square Jacobian matrix, which will be described 

later in this chapter. To provide a total of five scalar end conditions, the three components 

of the final angular momentum vector are used in addition to the radial and tangential 

velocities. If angular momentum and velocity are matched correctly, their relationship 

guarantees the correct value of R. Thus, R becomes a redundant end condition, and does 

not need to appear explicitly. In fact, any one of the six scalar quantities r, u, v, hx, hy, 

hz could be eliminated in this way. 

4-2    Optimal Control in Two Dimensions 

Using the two-dimensional equations of motion derived in Chapter 3, the Hamiltonian 

for this problem becomes: 

Ti = 1 + Xxx + Xyy + Xx (--^x + Acosa) + Xy f-JLy + Asmaj (4.29) 

The control law which minimizes the flight time for a given end condition is found by 

setting dH/da = 0, and leads to: 

tana= (^TM (4-30) 
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Using the control law given above, we obtain the following: 

cosa    =    —, (4.31) 

sin a    = ~X* (4.32) 
yfil + % 

Substituting these results into the Legendre-Clebsch condition yields: 

^ = ,^L>0 (4.33, 
y 

Equation (4.33) provides the necessary conditions for a minimum. It is interesting to notice 

the similarity between the above result and the equivalent development in the three di- 

mensions. In both cases, the velocity costates appear in the denominator. Equation (4.33) 

could be further reduced by division, but it is left in this form for comparison with the 

three-dimensional results. 

In order to be consistent with the results of Bryson and Ho [7], the Hamiltonian may 

be multiplied by —1 without loss of generality. The Lagrangian and Lagrange multipliers 

will all change sign. This leads to an equivalent control law: 

tana=f^) (4.34) 

We then have the following: 

cos a    =    —, (4.35) 

sin a   = * (4.36) 
y/% + * 
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When the Lagrangian is —1, the optimization problem is one of maximizing the negative 

of the time of flight. The Legendre-Clebsch condition is still satisfied as follows: 

da2 7*1 + * 
(4.37) 

which provides the necessary conditions for a maximum of the negative of the time of 

flight, or the minimum time to a given final boundary condition. 

Using the control law in Equation (4.34), the differential equations for the states and 

cost at es are as follows: 

A* + A 

-±V + A 

A« 

7A? + A 

Ax 

M 

/* 

3x2 

Sy2 

-l)A, + ^Ay' 

-IJA. + ^A, 
3xy . 

A,    = 

Ay 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

Every solution of the differential equations for the state and costates is a minimum- 

time arc to some final end condition.   The states and costates are initialized as follows: 

Table 4.2    Initialization for 2D Problem 

x{0) =   1 A,(0) 1 

y(o) =    0 Ay(0) =        ? 

x(0) =    0 Ai(0) =    Ay(0) 

m =   1 A,(0) =       1 
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Table 4.2 shows the initialization of the states and costates in the two-dimensional 

problem. There are two unknown initial costates, and the unknown flight time makes a 

total of three scalars to be found. The end conditions for r, u, and v are an appropriate 

choice for matching via the shooting method, which is discussed later in this chapter. 

Using the polar equations of motion from Chapter 3, Equations (3.8) - (3.10), the 

Hamiltonian is as follows: 

IV LL \ f    uv \ 
H = 1 + Xru + Xu f ^ + Asm4>) + XV ( + Acos<f>) (4.44) 

The optimality condition yields the following: 

— = A{\ucos<i)- A„sin<£) = 0 (4.45) 

Solving for the polar thrust angle <j> leads to: 

4> = tan"1 (^) (4.46) 
A. 

Using the control law given above, we obtain the following: 

«* = 73TTTJ (4'47) 

si°* = 7^ (4'48) 

To find the costates, we need the other result from Euler-Lagrange theory: 

; OH ,    (   v2      2p\      ,  uv 

K    =    -^ = -Xr + Xv- (4.50) 
du r 

• 9H A   2v     .   u 
Xv    =    -^- = -Xu— + Xv- 4.51) 

ov r r 
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Table 4.3    Initialization for Polar Coordinate Problem 

r(0)     =     1 
tt(0)    =     0 
17(0)       =       1 

Ar(0) = 1 
Au(0) = ? 
A„(0)    =    ? 

which completes the set of optimal control equations in the polar case. The polar states 

and costates are initialized as shown in Table 4.3. 

In the polar coordinate case, there are two unknown initial costates along with the 

unknown final time. These three quantities are used in discussion of the Jacobian matrix 

later in this chapter. 

4-2.1    Comparison of Cartesian and Polar Hamiltonians. At the initial time 

only, the inertial thrust angle a may be used in the polar Hamiltonian since the polar and 

inertial angles sum to exactly 7r/2 at t = 0. At t = 0, the spacecraft is located at the point 

(1,0) on the cc-axis. The spacecraft local horizontal direction is along the positive y-axis. 

The inertial angle a is always measured to the thrust vector from the z-axis, and initially 

the polar angle <^>(0) is measured to the thrust vector from the j/-axis. Since the x and y 

axes are 7r/2 radians apart, the two angles must sum to 7r/2. This relationship may be 

expressed as follows: 

sin <t>(0) = COS(TT/2 - <j>(0)) = cos a(0) (4.52) 

cos <f>(0) = sin(7r/2 - (f)(0)) = sin a(0) (4.53) 

The sine and cosine terms will then be reversed because of this relationship. This 

substitution allows for direct comparison of the terms in each Hamiltonian. 

Here, the initial Hamiltonian is expressed in both sets of coordinates, with "p" de- 

noting polar and "c" denoting Cartesian: 

Hp(0) = 1 + Xru + Xu (— -^ + Acosaj + A„ (-— + A sin a J (4.54) 
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Hc(0) = l + Xxx + Xyy + Xi (-^x + Acosaj + Xy (-^y + Asmaj (4.55) 

where all terms have their initial values. The initial conditions for the polar and Cartesian 

cases are: 

r(0)    =    1 z(0)   =    1 

tt(0)    =    0       &        y(0)    =    0 

v(0)    =    1 i(0)    =    0 

y(0)    =    1 

Using these initial conditions and equating the resulting initial Hamiltonian expressions 

yields: 

Au A cos a + XVA sin a = Xy + A± (—1 + A cos a) + XyA sin a (4.56) 

where all terms have their initial values. By equating coefficients of sina(0) and cosa(0), 

the following three relationships are obtained: 

Ay(0)   =    Ai(0) (4.57) 

MO)   =    Au(0) (4.58) 

Ay(0)   =    A„(0) (4.59) 

The equality in Equation (4.57), Ay(0) = Ai(0), is the same relationship shown 

in the initialization Tables 4.1 and 4.2 for the three- and two-dimensional problems. The 

initial conditions used in each Hamiltonian are expressed in dimensionless, canonical units, 

which allow for great simplification by substitution of appropriate ones and zeros. If 

physical units were used instead, then Ay(0) and Ai(0) would be related by some constant 

conversion factor based on the system of units. However, this constant may be found by 

simply equating the polar and Cartesian Hamiltonians as done here, only with the initial 

conditions expressed in the physical units. 

This same relationship between Ay(0) = Ai(0) also arises in the minimum-fuel prob- 

lem with impulsive thrust, and may be derived from Lawden's primer vector results for the 

impulsive orbital transfer case [13, 18]. In both the minimum-time and the minimum-fuel 
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formulations, a starting circular orbit of unit radius is required for the simple equality 

relationship to hold. 

4-3    Optimal Control under the Kustaanheimo-Stiefel (KS) Transformation 

Although it is possible to use the KS transformation for problems with three di- 

mensions [21], only the two-dimensional problem will be addressed here for the purpose of 

comparison with the two-dimensional Cartesian case. In the next chapter, the initial values 

of the costates are presented graphically as functions of A and R for the two-dimensional 

case. The three-dimensional case requires two more parameters, so this type of graphical 

presentation is not possible. Thus, only the two-dimensional case under the KS transfor- 

mation is necessary for the graphical comparison. 

In the minimum-time problem [7], the cost functional is the real time. As shown 

in Chapter 3, the independent variable is changed to s under the KS transformation. 

Therefore, the cost functional becomes: 

J = t =  /        rds (4.60) 

Thus, the Lagrangian is r. The Hamiltonian for this problem is as follows: 

H    =    K1vi + XU2v2 + XVl 
2{vrv) - n 

2r 
Ui + —Ar3'2 cos 7 

+   Ki 
2(iFtO - fi 

2r 
u2 + -AT

312
 sin 7 > + r + Xtr (4.61) 

Defining A( = At + 1, the Hamiltonian becomes: 

2{vrv) - pi 
H    -    AUlvi + K?v2 + A„, 

2r 
Ui + -Ar3?2 cos 7 

+    A„2 
2(^0) - n 

2r 
u2 + -Ar3/2sin7 > + Xtr (4.62) 
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As before, the parameter A is a function of time, defined by A = T/(m0 + mi). T is the 

thrust, m0 is the initial spacecraft mass, and m is the constant mass flow rate. The optimal 

control law is found by setting dH/df equal to zero. For a minimum, the result is: 

tan 7 
-A,, 

- A„ 
(4.63) 

This choice of sign satisfies the Legendre-Clebsch condition for a minimum.   From this 

control law, we have the following: 

cos 7 

sin 7 

— XVl 

A2' + A-a» 

(4.64) 

(4.65) 

These relationships may be used to eliminate the sin 7 and cos 7 terms from the Hamilto- 

nian. The costate equations are then found using the canonical relationship A' = —dH/dq, 

in which q = (iii,u2,v1,v2,t). Recall that the primes indicate differentiation with respect 

to the fictional time, s. Using this relationship and taking the indicated partial derivatives 

produces the following five first-order differential equations: 

A; - 

A:, 

-räJY(3/2) 

2(m0 + mt)2 

2{vrv) - /x 

■yfiii + K. (4.66) 

2r 
2«! 

(A^uj + K2u2) - XVl 

+   {t^Ar^u^X^ + XI - 2«! (4.67) 

A' 
2(iFv) - n 

2r 
2u, 

(XVlux + XV2u2) - XVQ 

K>  = 

K   = 

+   (3/2)ArWu2yJ\l + Xl2 - 2u2 

2v^ 
r 

-2v2 

(XVlui + A„2u2) - AUl 

(AVlUj + XV2u2) - AU2 

(4.68) 

(4.69) 

(4.70) 
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If m = 0, then A^ = 0 as well. In this case, Xt will be a constant. It would then be possible 

to divide the Hamiltonian through by A( which would scale the remaining costate variables, 

and eliminate Xt from the problem. If m / 0, Xt must be retained because the real time 

will explicitly appear in the equations of motion. The Hamiltonian may be set equal to 

zero at the initial time by adding an arbitrary constant, since the constant will contribute 

nothing to the partial derivatives. Then, it is possible to solve for initial Xt (or A„2) as a 

function of the initial values of the remaining states and costates: 

A((0) = AA^XIW + XKO) (4.71) 

At the initial time, A„, = 2AU2. This may be shown by equating the KS Hamiltonian 

to another Hamiltonian in polar coordinates, but with ficticious time. This procedure is 

analogous to the derivation given earlier using the Cartesian and polar Hamiltonians. Also, 

the Hamiltonian may be scaled such that AUl = 1. Thus, there are three remaining values 

that must be found to solve the boundary value problem of coplanar transfer between two 

circular orbits. As shown in Table 4.4, they are: 5/, AU2(0), and A„2(0). If Xt is not used, 

then the three values that must be found are Sf, AUl(0), and AU2(0). The other two costates 

are found from XVl = 2AU2, and from solving H(0) = 0 for A„2. Since the final circular 

orbit may be described using three scalar values, the number of unknowns is the same as 

the number of end conditions to be matched. 

Table 4.4    Initialization for KS Problem 

Ui(O) =   1 KM l 
«2(0) =    0 KM =       ? 

*i(0) =    0 KM =    2AU2(0) 

«2(0) =    1/2 KM =          ? 

4-4    Solution of the Optimal Control Problem 

4-4-1 The Shooting Method. The shooting method [16] is an indirect technique 

for solving a two-point boundary value problem by numerically perturbing a reference 

trajectory. It is named after the classical method of aiming an artillery piece.  The basic 
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idea is to fire one shell as a reference, then "bracket" the target by adjusting the angle up 

or down if the shot fell short or long, respectively. Inherent in this method is the need to 

guess the initial angle for the first shot, and the need for an effective means of selecting 

the next angle based on the results of the previous shot. 

When applied to the continuous-thrust spacecraft problem, the differential equations 

governing the state and costate variables are numerically integrated to form the required 

reference trajectory. Since the initial values of the costate variables are usually unknown, 

they must be guessed. This normally results in failure to meet the desired end conditions for 

the state of the spacecraft, even though every trajectory satisfies the optimality condition. 

To correct this, additional trajectories are propagated with slight changes in the initial 

values of the costates. Then, a matrix of partial derivatives is formed to quantify the 

influence of initial costate values on final states. With this "secant" or Jacobian matrix, 

the optimal initial values of the costates may be found approximately. If the elements of 

the Jacobian matrix are found numerically with one-sided difference approximations, as 

is done in this implementation, the search is a quasi-Newtcm method. Also, the Jacobian 

matrix represents only a first order linear approximation for a typically highly nonlinear 

set of equations. Often, the nonlinearity results in a process that will not converge from 

poor initial guesses. The Jacobian matrix may also be found analytically, allowing for 

integration of the equations of variation and better convergence properties. This technique 

is a multi-variable application of Newton's method [14, 16] to a nonlinear problem, which is 

only guaranteed to converge within a "small" neighborhood of the solution point. The size 

of this neighborhood is determined by the extent over which the problem is approximately 

linear about the solution point. Since the exact equations for the states and costates do 

not have an analytical solution, the only way to approximate the size of the nearly linear 

region is through numerical methods. Appendix A contains a flowchart that outlines the 

shooting method algorithm. Appendix A also contains a description of the convergence 

criteria used for all of the numerical examples in this dissertation. 

When attempting to solve a problem of this nature, the analyst has a choice of 

variables to use in forming the Jacobian matrix. It is generally a good idea to keep the 

partial derivative matrix square, since the inverse will be required to find the corrections 
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to the initial costates. If the Jacobian matrix is not square, other alternatives exist such 

as left and right inverses [22]. If the final time of a boundary value problem is unknown, 

but the final states are specified, then the final time may be chosen as an input to the 

Jacobian matrix. This way, the unknown final time may be refined from an initial guess 

along with the costates. 

The first step in solving this boundary value problem is to guess the two unknown 

costates and a final time, then numerically integrate. Once the final time has been reached, 

the final state values are examined to see how close they came to the desired final conditions. 

Since they will undoubtedly be wrong, the initial costates and final time must be adjusted 

to try again. If this process is convergent, the final conditions will be met to a desired 

accuracy after several iterations. Time is the independent variable, so a final value of the 

time makes a reliable stopping condition for integrating the equations of motion. The 

stopping condition r = R is not as useful, since the equations of motion apply equally to 

orbit-lowering and orbit-raising. Thus, some initial values of the costates lead to a decrease 

in r, so that r = R may not occur at or before t = tj. Therefore, refining the final time is 

the most practical approach to the problem. 

To adjust the initial costate values and final time, we form the Jacobian matrix of 

partial derivatives numerically to see how the final state errors depend on initial guesses. 

We will now describe the formulation of the quasi-Newton step using the polar, two- 

dimensional case which results in a 3 X 3 Jacobian matrix since there are two initial costates 

and the time of flight to be determined. By comparison, the three-dimensional case will 

have a 5 X 5 Jacobian matrix corresponding to four unknown initial costates and the time 

of flight. 

If the initial value of Ar was not taken to be unity as explained before, a reasonable 

formulation for the quasi-Newton step in polar coordinates would be as follows: 

AAr(0) 

AAu(0) 

AAo(0) 

dr(tj)/d\r(0)    dr{tf)/d\u(0)    dr(t})/dXv{0) 

du(tf)/dXr(0)   du(t})/dXu(0)   du(tf)/dK(0) 

dv(tf)/dxr(o) dv(tf)/dxu(o) dv{tj)/dxv(o) 

Ar(*,) 

Au(tf) 

Av(tf) 

(4.72) 
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Each of the partial derivatives is formed by making small changes to the initial conditions 

of a reference trajectory, and noting the changes in the final conditions. As mentioned 

previously, the partial derivatives are approximated numerically, so this technique is a 

quasirNewton method. 

Since the initial value Ar(0) may be scaled to unity, there is no need to include it in 

the above formulation. However, the final time is also unknown in this problem. Rather 

than make manual changes in final time, it is possible to incorporate it directly into the 

quasi-Newton step formulation: 

At; 

AAv(0) = 

_ AAv(0) 

dr(tf)/dt} dr(tf)/dXu(0) dr(tf)/dXv(0) 

du(tf)/dtf du(t,)/d\v(0) du(tf)/dXv(Q) 

dv(tf)/dtj    dv(tj)/dXu(0)   dv(tf)/dK(0) 

i -i 
Ar(f;) 

Att(t;) 

Av(tj) 

(4.73) 

This is an original formulation that saves computing time, since it completely auto- 

mates the shooting technique. In this form, the boundary value problem may be imbedded 

in a larger programming loop that allows for parameter variations. This way, we can 

more easily study the effects of changing the thrust level, mass flow rate, final radius, and 

gravitational constant. 

The above Jacobian matrix formulation automates the search over a range of fixed 

final time values. Each "shot" in the shooting method is still a minimum-time arc, but 

this technique allows us to match the desired end conditions and determine the correct 

final time simultaneously. In the three-dimensional case, the quasi-Newton step becomes: 

AF = 

At; Au(tf) 

AAy(0) &v(t;) 

AA,(0) = J~l 
AM'/) 

^Ay(O) Afcy(t,) 

AAi(O) bh,{tj) 

(4.74) 
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The Jacobian matrix is denoted by J. This expression corresponds to the results given 

in Table 4.1. The partial derivatives in the 5x5 Jacobian matrix are similar to the 

two-dimensional case, using the variables given in the above equation. 

4-4-2 Dynamic Step Limiter. To improve the convergence properties for these 

problems, an original modification is made to Newton's method by providing a variable 

scaling factor for the quasi-Newton step. Let P be a vector of unknowns such as P = 

(tj, Au(0),A„(0)), and let AP be the quasi-Newton step from Equation (4.73), where 

AP = 

Atf 

AAu(0) 

AA„(0) 

(4.75) 

Then, the following equation is used: 

P+i = Pi + 
APi 

1+   AP, 

This modification provides a dynamic scaling effect on the quasi-Newton step.  If 

(4.76) 

AP 

is large, the scaling limits the individual component changes to less than unity, without 

changing the step direction. If AP,- is small, the scaling does not affect the magnitudes of 

the individual component changes very much, so the quadratic convergence rate is nearly 

maintained in the neighborhood of the solution point. The scaling preserves the direction 

of the quasi-Newton step in the search space, but prevents the magnitude from becoming 

unreasonably large, as can happen with nonlinear problems. 

A proof of convergence for Newton's method is given by Luenberger [14] for the mul- 

tivariable, nonlinear case. To quote the source, "the theorem can be paraphrased roughly 

by simply saying that Newton's method converges provided that the initial approximation 

x-i is sufficiently close to the solution x0" Luenberger also states, "One device useful in 

these situations is to begin iterating with a slower but surer technique and then change 

over to Newton's method to gain the advantage of quadratic convergence near the end of 

the process." This is exactly the purpose of the dynamic scaling technique presented here. 
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From numerical experience, it has been found that an initial approximation that is just 

outside of the region of convergence will often result in a very large quasi-Newton step 

magnitude. By limiting the magnitude of the step, it is possible to exploit the directional 

information from the quasi-Newton step while potentially increasing the region of conver- 

gence. Due to the nonlinearity of the problem, this result has only been shown to hold true 

to varying degrees based on numerical experimentation. The one definite statement that 

can be made about this scaling technique is that it cannot make the region of convergence 

smaller. If the quasi-Newton step is denoted by AP as before, the convergence proof [14] 

requires that: 

AP, <V (4.77) 

where r\ is some sufficiently small scalar quantity to provide convergence. Clearly, it may 

be seen that 
APi 

< AP{ 
1 + A£ 

<v (4.78) 

The modified Newton step satisfies the proof, as long as the original Newton step does. 

The modified quasi-Newton method may take more iterations to acheive convergence, but 

it also increases the radius of convergence, based on numerical experience. 

In this research, the modified quasi-Newton method is used for its simplicity. The 

initial costate approximations contain an entire control history in a compact form, since the 

thrust angle is produced automatically with numerical integration through the final time. 

Thus, by applying the modified quasi-Newton method to determine the initial costates 

and time of flight, it is possible to explore a large range of control functions. Further 

extensions of Newton's method are available [9], but they add more complication to the 

search technique. Most importantly, the purpose of this research is to provide approximate 

models with enough accuracy so that the modified quasi-Newton method converges without 

further modification. A convergence sensitivity study is presented in Chapter 5, which 

shows the number of iterations required for convergence for the entire practical range of R 

and A. 

Figure 4.1 shows a comparison of the modified quasi-Newton method (MNM) with 

the unmodified quasi-Newton method (NM). This is a a well-known Earth-to-Mars transfer 
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Modified quasi-Newton vs. quasi-Newton Method 
for the Bryson-Ho Example 
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Figure 4.1    Iteration History for Modified vs. Unmodified Quasi-Newton Method 

example developed by Bryson and Ho [7], which will be discussed in greater detail in 

Chapter 6. The iteration history shows seven modified quasi-Newton steps with solid 

lines, and six unmodified quasi-Newton steps with dashed lines. The solid line segments in 

Figure 4.1 are seen to have slope magnitudes less than or equal to the dashed fine segments 

between iteration numbers 1 and 2. Since iterations 2 through 6 start from different values 

using the two methods, the modified quasi-Newton steps may have slopes that are larger, 

smaller or the same as the quasi-Newton steps. In this example, the modification caused 

an increase of one iteration over the quasi-Newton method to reach the same converged 

values. Appendix A describes the numerical criteria used in this and all other examples 

presented in this dissertation. 

Table 4.5 shows a case with R = 2.2 and A = 0.01 in which the quasi-Newton 

method begins to diverge on the third iteration. The modified quasi-Newton method 

achieves convergence in 11 iterations. 

4-5    Summary 

This chapter presents the minimum-time optimal control formulation in several coor- 

dinate systems for the orbital transfer problem considering gravity and continuous thrust. 
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Table 4.5    Comparison of Search Methods for R = 2.2, A - 0.01 

quasi-Newton Meth od Modified quasi-Newton Method 

it. Au(0) A„(0) time it. Au(0) A„(0) time 
1 0 1 32.58001 1 0 1 32.58001 
2 -0.01441 0.637370 32.44273 2 -0.00295 0.925693 32.55188 
3 2.19319 0.912565 59.36023 3 -0.00138 0.825579 32.92815 
4 -51.25330 95.665720 -54.05710 4 0.00441 0.823785 33.02219 

divergence 5 0.033265 0.816452 33.48742 
6 0.059477 0.817559 33.90471 
7 0.080149 0.823066 34.24611 
8 0.093224 0.829128 34.47590 
9 0.098446 0.832526 34.57503 
10 0.099224 0.833181 34.59116 
11 0.099240 0.833198 34.59154 

convergence achieved 

In an original presentation, the minimum-time formulation is also applied to the equations 

of motion under the KS transformation. Numerical initialization techniques are discussed 

for each set of optimal control equations. The shooting method is described as a means 

to solve the boundary value problem. Finally, an original dynamic scaling modification to 

the quasi-Newton method is provided which improves the convergence properties of the 

shooting method. An example is provided showing differences in the convergence proper- 

ties of the quasi-Newton method and the modified quasi-Newton method. The modified 

quasi-Newton step satisfies the conditions for convergence, as long as the conditions are 

met by the unmodified quasi-Newton step, and often when the unmodified quasi-Newton 

step does not. 
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V.   Optimal Initial Costate Locus 

In this chapter, the optimal initial Lagrange multipliers are modeled as functions 

of the problem parameters which include R = r(tf), the final radius, and A = A(0), the 

initial thrust acceleration. This is accomplished by first examining the functional form 

of the costates graphically, then dividing the resulting locus into three distinct regions 

for separate analysis. A combination of analytical and empirical techniques is used to 

model the regions of the costate locus. The models are then evaluated by measuring 

the convergence sensitivity for the entire practical range of A and R. Finally, the initial 

costate locus is presented under the KS transformation to provide a qualitative, graphical 

comparison to the Cartesian form. Appendix A contains a description of the numerical 

convergence criteria used to determine the "exact" solutions that appear in the figures and 

examples. 

To illustrate the importance of developing the initial costate models, one may simply 

consider the alternatives. There are no models available in the literature that provide 

initial costate estimates for the minimum-time, continuous thrust orbit transfer problem 

as functions of the problem parameters. As mentioned previously, others [15, 18] have tried, 

with limited success, to use the Hohmann transfer to initialize the Lagrange costates for 

the minimum-fuel problem with coasting arcs. However, the minimum-fuel problem allows 

for throttling and has a Lagrangian based on fuel mass, neither of which appear in the 

minimum-time problem. Thus, the minimum-fuel results provide no reliable information 

to initialize the costates in the minimum-time problem. 

The only way to solve the minimum-time boundary value problem is to guess some 

initial Lagrange costate values and hope for good fortune, resulting in a convergent case. 

However, good fortune is notoriously unreliable. Even if one happens upon a convergent 

case to the desired final radius, it is unlikely that the parameter value of the thrust accel- 

eration will match the spacecraft design. Then, the task is to adjust the value of A until it 

matches the desired value. If A is too large, it may be reduced by some small percentage, 

and used with the initial costate values from the known case. If the reduction percentage 

is small enough, the problem may converge for the new value of A. This process may be 

repeated until the desired value of A is achieved. The drawback to this technique, known 
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as the continuation method [12], is that the step size for A to result in convergence is not 

constant, and one must therefore "hand-hold" the process by monitoring the convergence 

behavior through perhaps hundreds of small changes in A. Depending on the available 

computing power and sensitivity of the problem, this process could take days or weeks to 

complete. Again, one must also have found a "seed" case to begin the search. 

Suppose R = 2, and we have a converged case for A = 100. A numerical description 

of convergence for this and all other examples is presented in Appendix A. If A is multiplied 

by 0.9, then convergence may be achieved using the last values of the initial costates as 

the new starting guess. If this procedure is repeated more than roughly 20 times, the 

shooting method will take more iterations to converge, and eventually will not converge at 

all. Then, the multiplication factor must be increased to perhaps 0.95, and higher still as 

A decreases. This phenomenon is due to the sensitivity of the system to initial conditions, 

which increases for the increased flight times associated with small thrust values at a 

given R. Although this process is difficult and time consuming, it does produce valuable 

information. After completing the process for a large range of A, it is instructive to 

make a plot of the converged initial values of the costates versus one another to examine 

their behavior. This is an original presentation technique [23, 24] which first appears in 

Figure 5.1. This choice of axes is motivated by the polar thrust angle <f> as shown in 

Figure 3.2. The initial value of <f> may be measured from the A„(0) axis to a point on the 

locus with the vertex at the origin. Thus, the initial thrust angle may be seen relative to 

the spacecraft local horizon directly from the figure. For large values of A, the initial thrust 

angle <f>(0) approaches 90 degrees, and for small values of A, <f>(0) approaches zero degrees, 

in the spacecraft horizontal direction. The analysis of the initial costate locus is carried 

out using the two-dimensional Cartesian coordinate formulation, so it is important to 

remember that Ai(0) = Au(0) and Ay(0) = A„(0), as shown in Equations (4.58) and (4.59). 

As the thrust acceleration decreases, the optimal trajectory will cover a larger transfer 

angle to reach the same final radius. There are particular values of A that result in 

integer values of orbital revolutions, and the points corresponding to one through twelve 

revolutions are indicated in Figure 5.2 for R — 2. The first point marked with a circle on the 

outermost curve of the spiral corresponds to a one-revolution transfer. The next indicated 
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Figure 5.3    Optimal Initial Costate Locus for R = 2, m = —0.01,-0.1 

point inward towards the center of the spiral corresponds to a two-revolution transfer, and 

so on, until the last indicated point closest to the center of the spiral represents a twelve- 

revolution transfer. The number of revolutions will continue to increase as the thrust is 

reduced, but the flight time increases as well. This pattern continues indefinitely if the 

mass flow rate is equal to zero, because the spacecraft will never run out of propellant 

mass. The values of A that correspond to integer revolution transfers will change with R, 

but they have been found to give a negative value of <f>(0) in all cases. 

The process used to create the solid locus in Figure 5.1 is repeated for different 

values of the mass flow rate, and shown in Figure 5.3. When rh = —0.1 mass units per 

time unit, the final time cannot exceed 10 time units, since all of the spacecraft mass 

would be consumed. Similarly, the final time cannot exceed 100 time units for rh = -0.01. 

Thus, the locus spiral will stop for some minimum value of A, because small values of A 

correspond to long flight times. When rh is taken to be zero, there is no time limit for 

the powered trajectory, and any value of A may be used. Therefore, the m = 0 locus 

may continue spiraling indefinitely as A is reduced.   It is clear from Figure 5.3 that the 
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changes in m have little effect on the location of the initial costates. A possible physical 

interpretation of this relative insensitivity to m is that mass flow rate has no immediate 

effect at the initial time, since the spacecraft mass is normalized to unity at t = 0. Also, 

only small changes in the costates at the initial time are required for significant changes in 

the trajectory at the final time, due to the sensitivity of the problem. Based on observations 

from the numerically generated initial costate loci, the quantity m is assumed to be zero in 

the development of the initial costate models, in order to simplify the analysis. However, 

the equations of motion always include m, so the examples in Chapter 6 may be given 

realistic values of the mass flow rate. 

The next step in the analysis is to take the numerical results of many converged cases 

with R and A as parameters, and plot the optimal initial costates as functions of R and A, 

forming the loci shown in Figure 5.4. In this way, the functional behavior of the costates 

is easily seen to be represented by three distinct regions. Near the origin of the A„(0), 

Au(0) plane, the optimal initial costates lie on a nearly parabolic arc. As A decreases or R 

increases, the locus moves away from the origin on a nearly elliptical path, and eventually 

spirals into the point A„ = 1, Au = 0. This point represents the limiting case of purely 

tangential thrust [26]. The optimal initial costate loci show a common tendency to spiral 

towards the point (1,0) with m = 0. Two example points are shown in Figure 5.4, which 

correspond to an anti-satellite avoidance mission (ASAT) [10] and the well-known Earth- 

to-Mars transfer example given by Bryson and Ho [7]. These examples will be described 

in detail in Chapter 6. The parameter S = \/(R — 1)/'A is developed in the next section. 

The parabolic, elliptic, and spiral regions of the costate locus will be addressed 

separately for modeling purposes. The parabolic region represents orbital transfers that 

take less than about one quarter revolution to complete, either due to high thrust or small 

radius change. This situation lends itself to an analytical approach, which is presented in 

the next section. 

5.1    Parabolic Region 

For orbital transfers with large A or small R, the optimal trajectory tends to be a 

nearly linear path which takes less than roughly one quarter revolution, based on numerical 
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Figure 5.4    Optimal Initial Costate Loci 

investigation. Under these conditions, the problem may be approximated with gravity-free 

space, since it is the influence of gravity that causes multiple revolution trajectories. 

Large A and small R values correspond to the parabolic region of Figure 5.4, near 

the origin. If the equations of motion are approximated by setting /J, — 0 and m = 0, the 

differential equations for the states and costates may be integrated in closed form. Although 

ignoring the gravity may not seem to be the most obvious choice for approximation, it does 

reduce the problem to a system of algebraic equations. Further, the boundary conditions 

are still chosen to be circular orbits. Thus, gravity still has an influence on the solution 

since the boundary conditions depend on the nominal gravitational constant value, /x = 1. 

Once these two approximations (/z = 0, m = 0) have been made, the equations of 

motion in Cartesian coordinates simplify enough to allow analytical integration. The result 

is a system of eight algebraic equations for the position and velocity components and their 

associated costates. These solutions are functions of A, R, time and eight constants of 

integration. Recall that the polar and Cartesian optimal initial costates are related by 

Equations (4.58) and (4.59). 
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5.1.1    Equations of Motion with Zero Gravity.      Setting the gravitational constant 

to zero, the differential equations of motion simplify to: 

A~ 

y   =   A 

K   =   0 

Ay   =   0 

Ai    —    -A, 

— A,, 

Ay 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

The last four equations may be integrated immediately and substituted into the first four 

equations.  Defining Apo, = JXl + Ajj, and A„e; = wAf + A|, the fi = 0 solutions for the 

costate and state equations are: 

A*    =    a 

Xy    =    b 

Xi   =    —at + c 

X-    =    -bt + d 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

x   =    A 
Xve 

ZApos 
'- (a?c - 2b2c + Zabd - aX2

post\ 

+    —i- (-3ab2c2 + 4a2bcd - 2b3cd - a3d2 + 2ab2d2 + 2X2
posb (be - ad) ij 

^   pos 

x    In [-ac -bd+ X2
post + XposXve,J +k1t + k3 (5.11) 
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y   =   A Xyel (b2d - 2a2d + 3abc - bX2
post\ 

+    -— (-Za2bd2 + Aab2cd - 2a3cd - b3c2 + 2a2bc2 + 2X2
posa (ad - be)t) 

pos 

X In (-ac -bd+ X2
post + ApoAei) -\-k2t -\- K4 (5.12) 

y  = 

\3 Apos 

Xpos 

-aXposXvel + b(bc- ad)In {-ac- bd+ Xpost + XposXvelJ   + A;x    (5.13) 

-bXposXve, + a(ad- bc)\n (-ac- bd+ Xpost + XposXvelJ   + k2    (5.14) 

The terms a, 6, c, d, kt, k2, k3 and k4 are constants of integration. Because the Lagrange 

multipliers appear in the Hamiltonian as linear terms, the initial value of one of them may 

be scaled to unity. For this system, we choose A^O) = 1, thus a = 1. Also, if the initial 

state is on a circular orbit, we have b = c, as shown in Chapter 4 by equating the system 

Hamiltonian expressed in polar and Cartesian coordinates. 

The constants kx and k2 may be eliminated from Equations (5.13) and (5.14) by 

using the velocity component end conditions, x(0), x(tj), y(0), y(tj) and the final time, tj. 

The final velocity components come from the desired final orbit. It should be noted that 

Xpos does not have a time argument since it is a constant in the zero-gravity case where 

Xpos — y/l + b2, using the definition given previously. Performing these operations yields: 

(x(tf)-x(0))X3
pos 

(y(*/)-y(0))AgM 

Apo, (Aoe,(0) - Xvel(tj)) + b(d-b2)L 

'b2-d^ 
Ab 

—   Ap0J (A„e((0) — Xvel(tf)) + 

L In 
-b - bd + Apo,A„e;(0) 

-b-bd+XposXvel(0) + X*tf 

(5.15) 

(5.16) 

(5.17) 

5.1.2    Rectilinear Case.      In the special case in which the initial and final velocity 

components are all equal to zero, the optimal trajectory is a straight line. This rectilinear 
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case allows for a simplification of the above equations. They take the form: 

0 = \o. (A.«,(0) - XUtf )) + b{d- b2) L (5.18) 

0 = Apo, (AeeJ(0) - A„.,(*/)) + (~J^) L (6-19> 

The only difference in the above two equations is the coefficient of the logarithmic term, 

so these coefficients must be equal. The logarithmic term is not zero unless the final time 

is zero, but this is a degenerate case since there would be no transfer at all. Also, the term 

Ap0J is greater than or equal to one, since A?0, = %/l + b2. The equality between coefficients 

leads to the following relationship: 

(b2 + 1) {d - b2) = 0 (5.20) 

Clearly, the real solution is d = 62. If this result is substituted back into Equation (5.18) 

or (5.19), the logarithmic term vanishes. Since Apo, > 1 by definition, we have: 

Av„(0) = \ci(tf) (5-21) 

Using the definition Ausl = y'Äf+Äf and the solutions for A* and \y given in Equa- 

tions (5.9) and (5.10), this becomes: 

y/b*Tdi = yj(b -tf)* + (d- bt}f (5.22) 

Squaring both sides, expanding, collecting terms and using d = b2 leads to: 

0   =    -2bz+tfb*-2b + tf (5.23) 

0   =    (b2 + 1) (b - tf/2) (5.24) 

Again taking the real solution, the result is b = tf/2. As mentioned previously, Euler- 

Lagrange theory does not provide enough information to solve the orbital transfer boundary 

value problem. This situation does not change by approximating gravity to be zero. Thus, 
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additional information is required to solve the algebraic equations. Newton's law may be 

used to approximate the optimal time of flight, allowing for a solution. Having assumed 

TO = 0, the thrust will switch directions midway through the trajectory to decelerate to a 

stop, and the time of flight is tj = 2^/(R - 1) /A. We now define an original parameter, 

S, as follows: 

S = y/(R-l)/A (5.25) 

The parameter S has the canonical units of time, and is equal to one-half of the flight time 

on a straight-line (rectilinear) trajectory in field free space with stationary end conditions. 

Since it includes both R and A, the S parameter provides a convenient way to quantify 

the regions of the costate locus, as shown in Figure 5.4. Since Ai(0) = b and Ay(0) = d, 

we have an original solution for the rectilinear case: 

A±(0)    =    S (5.26) 

Ay(0)    =    S2 (5.27) 

tf    =   2S (5.28) 

These solutions are for the simplest case of no gravity, no mass-flow rate, and zero velocity 

end conditions. Note that A^ = b0 and Ay = d0 define a parabola in the Ay, A^ plane, or 

equivalently in the Au, A„ plane as shown by Equations (4.58) and (4.59). 

Equations (5.26), (5.27), and (5.28) along with b — c and a = 1 provide an approxi- 

mate analytical solution for the initial values of the Lagrange costates and the final time. 

These approximations can be used to start sub-optimal transfers, or as starting points for 

solving the two-point boundary value problem. Further refinement is possible by scaling 

these results, as will be shown next. 

In Figure 5.5, the exact initial costates, obtained numerically as described in Ap- 

pendix A, are shown on the solid line for the zero-gravity case. These are obtained by 

numerically solving the \i = 0 = m two point boundary value problem with circular end 

conditions corresponding to an Earth-Mars transfer (R=1.525). The o symbols correspond 

to A values of 1000, 100, 10 and 1.6, with the largest values near the origin. The locus data 
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 Zero Gravity, 
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Static B.C.s 

x     Unsealed 
Approximations 

+     Scaled 
Approximations 

o     Zero Gravity, 
Circular B.C.s 

D     Gravity = 1, 
Circular B.C.s 

Figure 5.5    Comparison Costate Solutions to Exact Cases 

is stopped at A = 1.6, because it has been numerically determined that the R = 1.525, 

\x = 0 locus no longer resembles the /x = 1 locus for A < 1.6. The dashed line is a parabola 

defined by Equations (5.26) and (5.27) for b0 = Ai(0) and d0 = A^O). The X symbols 

correspond to the same values of A as the o symbols. Note the excellent agreement for 

large A, as expected. 

In Figure 5.5, the initial costate approximations based on Equations (5.26) and (5.27) 

lie on nearly the same parabolic arc as the exact values for /J, = 0, except that they appear 

to be shifted upwards along the arc. This makes them too large for the values of A, so 

if they are scaled down along the parabolic arc, they will more closely match the correct 

values. An original scaling approach leads to improved agreement for the lower values of 

A. The scaled points are shown with the + symbols, and the scaring factor q is defined as 

follows: 
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b   w    qS (5.29) 

d   «   g2S2 (5.30) 

It is interesting to observe that the scaled approximation for A = 1.6 is very close to the 

exact case with // = 1. Physically, the scaling factor increases the initial thrust angle, as 

seen in Figure 5.5 since the initial thrust angle <f> is measured up from the horizontal Xv(0) 

axis. In the case with circular velocity boundary conditions, the initial velocity must be 

greater than the final velocity on a larger circular orbit. By raising the initial thrust angle, 

the scaling factor decreases the initial acceleration in the tangential direction, reducing the 

amount of velocity to be removed by the final time. In the case with fi = 1 instead of 

fi = 0, a larger initial thrust angle is needed to counter the gravity while raising the orbital 

altitude. 

If the two velocity components, Equations (5.18) and (5.19), are used to eliminate 

their common logarithmic term, the following relationship is obtained: 

^(tf) - s(0) j + b (y(tf)~ *(0)) + J{b _tfy + (d_ btfy _ Vj?+d? = 0      (5.31) 

The initial velocity components are i(0) = 0 and ^(0) = 1 on the starting circular orbit. 

The final Cartesian velocity components are not known individually at tf, and they may 

be set equal to zero as an approximation which results in the simplest form of the solution. 

This has been found to be the most useful approximation, but others have been tried such 

as x(tf) = 0 and y(tf) = 1. With both final velocity components set equal to zero, the 

scaling factor may be introduced to produce an equation in a single variable with two 

parameters, R and A. Then, Equation (5.31) becomes: 

A 
+ y/(q-2)2S2 + {q2S2-2qS2f - VVS2 + q4S4 = 0 (5.32) 
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The scaling factor q may be expressed as an infinite series in the quantity (1/A). 

After solving for the coefficients, the first three terms in this series solution are: 

Numerically, it has been found that truncation after the third term is adequate in this 

approximation because there are greater sources of error from the other assumptions, such 

as zero gravity. Using this result, the initial costates are given by: 

b * {1~h + ^)s (=A*(0)) (5-34) 

d * {l~h + ^)s2 (=A*(0)) (5-35) 

Since the expansion for q involves the quantity (1/A), it should not be used if 

A < 1. If A < 1, the approximate initial costates may be obtained from Equations (5.26) 

and (5.27), which do not include the scaling factor q. The time of flight, tj, is not as sen- 

sitive to the presence of the gravity term, so the formula for tj does not require additional 

scaling. 

To summarize, Equations (5.26) and (5.27) give the approximate initial costate val- 

ues, and Equation (5.28) is the approximate time of flight. If A > 1, the scaled Equa- 

tions (5.34) and (5.35) should be used to improve the approximate initial costate values. 

These relationships were derived using the assumptions of zero gravity, zero mass-flow rate, 

and zero final velocity components. Even using these assumptions, the results lead to a 

good initial guess for the associated boundary value problem over the parabolic region of 

the costate locus, where the parameter S is less than or equal to one. The convergence 

sensitivity of this model will be discussed at the end of the chapter, along with the elliptic 

and spiral region models. 
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Figure 5.6    Final R vs. Orbital Revolutions 

5.2    Elliptic and Spiral Regions 

If the transfer occurs in the neighborhood of one-quarter to one-half revolution, the 

initial costates do not lie near the parabolic arc or the point (1,0). In this case, the locus 

has a nearly elliptical shape as seen in Figure 5.4, and the range of S is roughly 1 < S < 10. 

If R = 2, for example, 5* = 1 corresponds to a transfer over about 0.2 of a revolution, and 

S = 10 corresponds to a transfer over about 3 revolutions. As R increases, the range 

of orbital revolutions narrows between lines of constant 5=1 and S = 10, as shown in 

Figure 5.6. The well known Earth-Mars transfer example given in Bryson and Ho [7] with 

R = 1.525 lies in this region with S = 1.933, and has roughly 0.3 revolutions. This example 

will be presented in Chapter 6. 

It is difficult to provide a physical explanation for the elliptical form of the locus in 

this region, but the appearance naturally leads one to try the equation of an ellipse as a 

model. In the parabolic region, the thrust term in the equations of motion is dominant over 

the gravity term. In the spiral region, the gravity dominates the thrust. Thus, the gravity 

or thrust may be taken to be zero as a limiting case, allowing for closed-form solutions 

of the equations for the states and costates.  The zero-gravity development is presented 
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Figure 5.7    Elliptic Region Angles for R = 1.1,5,100 

in the previous section, and the zero-thrust development is in the literature [26], with the 

results described later in this section. However, the thrust and gravity terms are typically 

within an order of magnitude of each other in the elliptic region. Therefore, neither term 

may be considered small relative to the other. Several attempts were made to develop a 

perturbation solution for this region, but because both the gravity and thrust terms must 

be retained, the attempts were unsuccessful. Since there is no closed form solution of the 

full equations for the states and costates, we approximate the initial costates in the elliptic 

region with the equations of ellipses through curve fitting of the numerical results, using 

the parameters R and A. 

An empirical relationship between the polar angle and the fourth root of thrust 

acceleration A may be obtained from the data shown in Figure 5.7. This relationship is 

used in a linear approximation for the polar angle of the elliptic region to construct the 

complete parametric fit. The quarter power relationship is a result of simple trial and error 

to produce a fairly linear graph. Because of the form of the elliptic model, it is necessary to 

relate the parameter A to an angle along the elliptic curve. An example of the parametric 

fit is shown in Figure 5.8 for R = 1.525, the distance to Mars, and for R = 100. The model 
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Figure 5.8    Elliptic Fit for R = 1.525,100 

accuracy decreases with decreasing R and A, but is still within the numerically determined 

radius of convergence using the modified quasi-Newton method described in Chapter 4. 

The elliptic models are as follows: 

&ell 

Tell      =■ 

1.0 .4(0.25) _l_ 1.0 
(0.498719 - 0.811477Ä(° 25))" '  (0.279574 - 0.050554Ä(-° 25)) 

-0.00091Ä +0.4114 
1.0 + (0.00264Ä + 0.616) cos (6eU + 0.0008124Ä + 0.11876) 

A„(0)    =   reU sin 0e„ + 0.03588 

A„(0)    =   0.165989 - re„ cos 6e„ 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

The spiral point on the costate locus corresponds to problems with more than 10 

revolutions, and it is well known [26] that the optimal thrust direction is nearly tangential 

to the path through most of the transfer. For such cases, a good starting guess is Au(0) = 0, 

and A„(0) = 1.  The time of flight for a many-revolution transfer is approximately given 
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by [26]: 

"^(1-7S) (5-40) 

To solve the boundary value problem using the previous results, the parameter S is 

first calculated from Equation (5.25). If S < 1, then Equations (5.26), (5.27) and (5.28) 

should be used to initialize the problem. If 1 < S < 12, then Equations (5.28) and (5.38)- 

(5.39) provide a reasonable set of initial values for the problem. The parameter value of 

S = 12 is used to extend the elliptic costate model further into the spiral region. If S > 12, 

the initial values of the costates will be close to Au(0) = 0, and A„(0) = 1. The approximate 

time of flight for this case is given by Equation (5.40). 

5.3    Convergence Sensitivity 

To measure the convergence sensitivity of the shooting method for various values of 

S and R, a plot of modified quasi-Newton method iterations is presented in Figure 5.9. 

The number of iterations for a given R and A is a good measure of the success of the 

approximate models, since closer initial values require fewer iterations for convergence to a 

desired error tolerance (as defined in Appendix A). Generally, the sensitivity of the system 

increases with decreasing A and thus increasing S, because the flight times become much 

longer for a given R value. In other words, the "shots" become much longer in the shooting 

method. The initial values of the Lagrange costates tend to stay within the neighborhood 

of unity, as seen in Figure 5.4. However, the flight time may become large for small A, 

so errors in the time models tend to be magnified for large values of S corresponding to 

multiple revolution transfers. This explains the increased system sensitivity for large S, 

but the modified quasi-Newton method will still converge using the models for the time 

and initial costates over the specified ranges of A and R. In Figure 5.9, the S parameter 

is plotted on the horizontal axis using a logarithmic scale, and the three decades shown 

correspond to the three regions of the costate loci in Figure 5.4. There are peaks in the 

sensitivity near 5=1 and S = 12, which occur in the transition regions between the 

parabolic, elliptic, and spiral point models for the approximate initial costates. Some of 

the curves do not span the entire range of S, because of the relationship R = S2A + 1. 
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Figure 5.9    Convergence Sensitivity to Initial Costate Model 

For instance, on the curve of constant A = 0.5, R = 201 when S = 20. Since this value 

of R is larger than the range of the models, the data is stopped when R reaches a value 

of 100. The value of R = 100 is used as an upper limit because of physical considerations. 

In an Earth-centered system, the lunar orbit is at roughly 60 DU, based on the radius of 

the Earth. In a Sun-centered system, the planet Pluto is at roughly 40 DU, based on the 

radius of the Earth's orbit about the Sun. Thus, R = 100 DU is more than adequate to 

cover the range of currently practical missions. 

It is important to recognize that the iteration numbers shown in Figure 5.9 are based 

on the approximate costate models. If the boundary value problems represented by each 

point on the curves had been solved by slowly varying the thrust as described at the 

beginning of this chapter, the step size could be kept small enough such that each case 

could be done in about 5 iterations. However, that technique requires a slow approach from 

some elusive known case to the case of interest. Using the approximate costate models 

provided here along with the modified quasi-Newton method, any case of interest may be 

solved directly with no prior knowledge.  Thus, one may proceed immediately with any 
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values of R and A to Figure 5.9 and obtain a rough idea of how many iterations to expect 

using the modified quasi-Newton method. Without the initial costate approximations, it 

would be unreasonable to expect convergence at all for arbitrary values of R and A, unless 

one is very fortunate. 

The extreme sensitivity of the minimum-time continuous thrust problem to the initial 

costate values is well documented [7, 10]. As mentioned earlier regarding the continuation 

method [12], the step size in the problem parameter A must be constantly decreased to 

maintain convergence in a fixed number of iterations as the locus moves toward the center 

of the spiral region, where A approaches zero. This decreasing step size phenomenon is a 

direct measurement of the convergence sensitivity, but this also depends on the robustness 

of the search technique. Because of the interdependence of the model accuracy and the 

capabilities of search method, both the model and the modified quasi-Newton method are 

used to produce the iteration data shown in Figure 5.9 instead of the continuation method. 

Clearly, a different initial costate model and search method will produce different iteration 

data. Thus, the convergence sensitivity shown in Figure 5.9 is only intended to represent 

the behavior of the models and techniques presented in this dissertation. 

5.4    Optimal Initial Costate Locus under the KS Transformation 

Figure 5.10 shows the optimal initial costate locus under the KS transformation for 

R = 2 with rh = 0. The behavior of the locus is similar to the Cartesian case in that 

the spiral region corresponds to small A, many revolution transfers. Also, the "top" of 

the curve extends upward with increasing R. The entire initial costate locus is stretched 

horizontally compared to the Cartesian case. The focus of the spiral is at the point (2,0), 

which may be found by letting A = 0 and equating the KS Hamiltonian to the polar 

Hamiltonian with ficticious time. As a result, the initial costate A„2(0) should be taken as 

2A„(0) for the purpose of initial approximation. Because of the similarity to Figure 5.1, one 

might be tempted to conclude that the approximate initial costate models may be used to 

initialize the problem under the KS transformation in all cases. However, the horizontal 

stretching phenomenon is not linear, since the first horizontal axis crossing in Figure 5.1 

is not exactly twice that of Figure 5.10, even though the spiral point is located at (2,0). 
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Figure 5.10    Optimal Initial Costate Locus under the KS Transformation 

Thus, the approximate initial costate models provide only a rough estimate to initialize the 

problem under the KS transformation. Convergence may still be achieved in some cases, 

and an example of this is given in Chapter 6. 

5.5    Summary 

This chapter presents an original approach to solving the minimum-time orbital 

transfer problem under continuous thrust by modeling the initial values of the Lagrange 

costates. To accomplish this, numerical results from many cases are used to depict graphi- 

cally the functional relationship between the initial costates and the parameters R and A. 

Then, analytical and empirical means are used to provide approximate expressions for the 

initial costates and time of flight. The success of the approximate models is examined by 

presenting the number of modified quasi-Newton steps required for convergence over the 

complete range of R and A. Again, convergence would not be expected at all for arbitrary 

parameter values without the approximate models, since there is no other information 

available for initialization. With the approximate models, one may quickly produce a 

minimum-time orbital transfer example based on any practical spacecraft design and mis- 

sion requirement. Finally, a locus of the initial costates under the KS transformation is 

included for comparison. 
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VI.   Numerical Examples 

This chapter presents a series of numerical examples which correspond to each of the 

earlier theoretical developments. The boundary value problems are solved using the shoot- 

ing method, and the quasi-Newton step is modified with the dynamic scaling technique 

described in Chapter 4. The trajectories are propagated with an integration tolerance of 

10-8, and an error tolerance in the final state values of 10-7 in canonical units. A discussion 

of convergence criteria is presented in Appendix A. 

The approximate initial costate models developed in Chapter 5 are for the circle-to- 

circle, coplanar problem. Therefore, we first present two examples of coplanar, circle-to- 

circle problems, to demonstrate the parabolic and elliptic models. The first example is a 

military application with very low thrust [10], and the second is the well-known Earth-to- 

Mars example given by Bryson and Ho [7]. The reader should note that the approximate 

initial costate models developed in Chapter 5 lead to convergence for all values of A and 

R in the domain of intent (0<J4<OO,1<ä< 100). The KS transformation is used 

on the Bryson and Ho example for comparison, and is also used on a many-revolution 

circle-to-circle problem, which uses the spiral point model. This last example may be used 

as a sample truth model for a perturbation technique in which A is treated as a small 

perturbation. 

The approximate initial costate models may also by used on problems with noncircu- 

lar end conditions that are elliptical or hyperbolic. Thus, an example of a coplanar transfer 

to a non-circular end condition is presented. The final orbit is hyperbolic, but the initial 

costates still provide reasonable starting values, and convergence is achieved. An elliptical 

end condition case is presented later with the three-dimensional examples. 

Continuing away from the coplanar, circle-to-circle case, the next example shows 

a trajectory from one circular orbit to another with a change in inclination. Thus, the 

trajectory occupies three dimensions. Convergence is still achieved using the initial costate 

models. An example with the largest departure from the coplanar, circle-to-circle case is 

then presented with an inclination change combined with non-circular end conditions. The 

final orbit in this example is both polar and elliptical. 
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Two additional examples are given that result from the solution of multiple boundary 

value problems with varying parameters. In the first example, after completing many 

coplanar, circle-to-circle cases, curves of time per revolution are plotted for a large range 

of A, with different values of R. In this way, it is possible to observe the behavior of the 

transfer angle as a function of R and A. In the final example, a plot is provided that 

shows the existence of a minimum-time ascending node value associated with J?, A, and 

inclination in the noncoplanar, circle-to-circle case. 

6.1    Two-Dimensional Problems 

6.1.1 Circle-to-Circle. The first example involves a spacecraft design that has 

been investigated by past researchers [10]. A 2400 kg spacecraft is at geosynchronous 

altitude with a thrust of 1.3 N and a mass-flow rate of —0.000069 kg/s. In canonical units, 

the problem parameters are A — 0.002425 and m = —0.000395. Suppose it is desired to 

make a small increase in altitude in minimum time to avoid a ballistic anti-satellite weapon. 

If R = 1.000336, the new orbit radius will increase by roughly 15 km. In this case, the 

quantity S = \/(R — 1)/A — 0.3722, which is less than unity. Thus, the optimal initial 

costates should lie near the parabolic region of the costate locus, and the approximate 

initial values are given by Equations (5.26) and (5.27). The approximate time of flight is 

given by Equation (5.28). Using the above problem parameters, the results in canonical 

units are given in Table 6.1. 

Table 6.1    ASAT Avoidance Example 

iteration */ Au(0) A„(0) 
1 

4 

0.7441893 

0.7366198 

0.3720947 

0.3395791 

0.1384544 

0.1201369 

The first line in Table 6.1 is the set of initial approximations for the ASAT avoidance 

example. The first iteration is considered to be the evaluation of the approximate models 

for the initial costates and time of flight. The second line shows the final, converged values 

after 4 iterations of the shooting method. The converged initial costate values are plotted 

in Figure 5.4 as a point on the costate locus which is identified with the label "ASAT." 
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Figure 6.1    Iterative Search History for ASAT Avoidance Example 

The initial costate approximations are obtained from Equations (5.26) and (5.27), and the 

approximate time of flight is given by Equation (5.28). The total thrusting time is roughly 

2.8 hours in physical units. In this case, the initial approximations for the costates and 

flight time are very close to the converged values, allowing for quick convergence. Figure 6.1 

shows the iterative search history for the flight time and initial costates from the initial 

guess to the converged values. 

Figure 6.2 compares the exact control angle history from the converged case with 

the approximate history generated by the initial estimates. Both curves pass through the 

zero angle, showing the switch in thrust direction. The differences between the initial 

estimates and the converged values are most evident here, since the costate histories are 

very sensitive to the initial conditions. 

Figure 6.3 shows a comparison of flight path trajectories using the control law from 

the initial estimates and the converged values. In this case, the paths are almost identical 

in spite of the differences in the control angle histories. Thus, approximate initial costates 

obtained assuming zero gravity, zero mass flow rate and zero final velocity are sufficient to 

achieve an almost optimal trajectory. 

6-3 



ASAT Example 
R= 1.000336, A = 0.002425 

30 

^^ 0 
O) 
CD 
Q -M 
^i^ 

<D 
O) -b'U 
c 
< -90 
o 
L. 

c -120 
o u -150 

-180 J 

~-> 
\ \ 

\ 

I 
I 

\ 

I ■J^ 

-Exact Values 

 Approximate 
Values 

0.2 0.4 0.6 0.8 

Flight Time (TU) 

Figure 6.2    Control Angle History for ASAT Avoidance Example 

ASAT Example 

0.8 -i 

R=1 00033 6,A=0 .0024 25 

0.6 - 

s 
9.   0.4 - 
> 

0.2 - 

 Exact Path 

o    Approximate Path 

0 - 
( 3            0 2           0 4           0 6           0 8             1 

X(DU) 

Figure 6.3    Optimal Trajectory for ASAT Avoidance Example 

6-4 



The next example will be the well known Earth-to-Mars orbital transfer case given 

in Bryson and Ho [7], page 66, where R = 1.525, A = 0.1405, and m = —0.07488 mass 

units per TU. The initial costate values are not given in the reference. In this case, the 

quantity S = 1.933, so 1 < S < 10. Thus, the optimal initial costates should lie in 

the elliptic region of the costate locus, and the approximate initial values are given by 

Equations (5.38) and (5.39). Using these problem parameters, the results in canonical 

units are given in Table 6.2. 

Table 6.2    Bryson and Ho Example 

iteration h Au(0) A„(0) 

1 

7 

3.8660858 

3.3192600 

0.4221273 

0.4949228 

1.1093899 

1.0785465 

The first line in Table 6.2 is the set of initial approximations for the Bryson and 

Ho example. The second line shows the final, converged values after 7 iterations of the 

shooting method. The converged initial costate values are plotted in Figure 5.4 as a point 

on the costate locus which is identified with the label "Bryson-Ho." The approximate time 

of flight is given by Equation (5.28). The initial approximations for the costates and time 

of flight are still close to the converged values, but this example takes more iterations for 

convergence than the ASAT example. This is because the convergence sensitivity is greater 

in the elliptic region than in the parabolic region, and the initial approximations are not as 

close as in the ASAT example. However, the initial approximations are all within roughly 

15% of the converged values, which is certainly better than no information at all. 

Figure 6.4 shows the iterative search history for the flight time and initial costates 

in the Bryson and Ho example from the initial guess to the converged values. Figure 6.5 

compares the exact control angle history from the converged case with the approximate 

history generated by the first and third iterations of the initial estimates. All curves pass 

through 180 deg, showing the switch in thrust direction. As the search progresses, the 

control angle history approaches the optimal control angle solution. Again, the differences 

between the initial estimates and the converged values are most evident here, since the 

costate histories are very sensitive to the initial conditions. 
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Figure 6.6    Optimal Trajectory for Bryson and Ho Example 

Figure 6.6 shows three trajectories corresponding to the first, third, and seventh 

iterations in the shooting method to solve the Bryson and Ho example. The seventh 

iteration is considered the exact solution for this example, as described in Appendix A. 

The trajectory from the first iteration overshoots the desired final radius by roughly 0.5 DU, 

and the third is much closer. The "in track" error along the spacecraft velocity direction is 

dominant, and is sensitive to changes in the final flight time. This example shows typical 

behavior in which the final flight time is directly related to the final radius, assuming the 

errors are small. By this, we mean that a small increase in final time over that of the 

minimizing path will result in a small increase in R. Conversely, a small decrease from 

the optimal flight time will result in a small decrease in R. It is the observation of this 

direct relationship behavior that motivates the Jacobian formulation given in Chapter 4, 

Equation (4.73), in which the final time is used instead of the initial value of Ar. 

6.1.2 KS Transformation. The Bryson and Ho example will now be examined 

under the KS transformation, for comparison with the previous results using polar coordi- 

nates and real time. Before proceeding with the full example, the mass will be held constant 

to allow a comparison of two approaches, with and without a separate time costate \t. 
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Let R = 1.525, A = 0.1405, and rh = 0. Given these parameter values, the optimal 

fictitious time is 5/ = 2.864381149. If Xt is not used in the constant-mass case, the initial 

values of the costates are as follows: ( Notice A„, = 2AU3, and A„2 is from JET(O) ) 

AUi(0) = -5.506657441 

AU2(0) = -2.957059105 

AUl(0) = -5.914118211 

A„2(0) = -12.948161442 

If A« is used in the constant-mass case and AUl(0) is chosen to be unity, then the 

initial values of the costates are as follows, and sf is unchanged: 

AUl(0)    =       1.000000000 

AU3(0)   =      0.536997105 

Aei(0)    =       1.073994210 

A„3(0)    =       2.351364974 

A«(0)    =    -0.181598367 

These values may be obtained by dividing the first four numbers by -5.506657441, and 

also Xt = (-1/5.506657441), which is the coefficient of the Lagrangian r term. Here, the 

magnitude of the largest costate has been reduced by roughly a factor of 6, making the 

numerical search easier, since all of the numbers are closer to unity. 

Next, the complete Bryson and Ho example is presented with m = -0.07488. The 

first line in Table 6.3 is the set of initial approximations. These initial values are obtained 

from the approximate models of Chapter 5, and are the same values that are used in the 

previous presentation of this example. The second line shows the final, converged values 

under the KS transformation. Figure 6.7 shows the iterative search history for the flight 

Table 6.3    Bryson and Ho Example under KS Transformation 

iteration 
1 

18 

sf 
3.8660858 
2.7090520 

AU3(0) 
0.4221273 
0.5371110 

KM 
2.2187798 
2.3409681 

time and initial costates in the Bryson and Ho example under the KS transformation, 
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Figure 6.7   Iterative Search History for Bryson and Ho KS Example 

from the initial approximations to the converged values. In this case, convergence took 

18 iterations of the shooting method. The number of iterations is larger in this case than 

in the previous presentation of this example, mostly driven by the large difference in the 

fictitious time and the real time. However, the approximate initial costate and flight time 

models were not derived for the KS transformation. This example demonstrates the utility 

of the approximate models and the modified quasi-Newton method in solving problems 

under the KS transformation. It is important to recognize that the difference between tj 

and Sj will increase with increasing A, so convergence may not be achieved for large values 

of R. The exact control angle history and flight path are the same as shown previously. 

As a final example using the KS transformation, the initial costate values and ficti- 

tious time sj for a many-revolution tircle-to-circle transfer are presented as a possible test 

case for a perturbation technique. If the thrust is taken to be a small perturbation, the 

resulting minimum-time trajectory will typically be a many-revolution spiral. Thus, the 

results of a perturbation analysis may be checked for accuracy against this example for the 

particular values of R and A. 
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The following results are for a low thrust transfer with A — 0.001, R — 2, and m = 0. 

The resulting ficticious time is ss = 215.5980372. Again, AVl(0) = 2A„2(0), and A^O) is 

from H(0). 

AUl(0)   =     -945.557353841 

AU2(0)   = 17.418466660 

AOl(0)    = 34.836933320 

A„a(0) = -1999.696574002 

This trajectory takes roughly 30 revolutions to complete, and resembles a simple 

spiral. The thrust angle never exceeds 5 degrees above or below the local spacecraft hori- 

zontal. The initial values of the costates are not scaled very well, as the largest magnitude 

is nearly 2000. By including the Xt costate, all four of the above values could be divided 

through by -945.557353841, which will bring them all nearer to the interval of (-1,1). 

After scaling in this way, A^O) = -0.0368, and A„2(0) = 2.1148, which is close the spiral 

point model of A„x(0) = 0, and A„3(0) = 2. However, for simplicity, it may not be desired 

to include Xt in a perturbation technique. The reason the initial costates are shown with 

the large magnitudes is to demonstrate the inherent difficulty brought on by the elimina- 

tion of At. The poorly scaled numbers are nowhere near the interval (—1,1), so the search 

becomes more difficult to initialize. If it is required to eliminate At to simplify a pertur- 

bation technique, the poor scaling shown above must be retained to satisfy H(0) = 0, as 

explained in Chapter 4. 

6.1.3 Circle-to-Hyperbola. In order to demonstrate how the initial costate ap- 

proximations may be used for a problem without circular end conditions, we present a case 

in which the final conditions are hyperbolic. The approximations may also be used if the 

final conditions are elliptical, which is demonstrated later in a three-dimensional exam- 

ple. In this example, a spacecraft starts with a circular orbit of unit radius, and arrives 

at R = 5 with a large tangential velocity. The final orbit is hyperbolic since the escape 

speed is 0.6325 DU/TU, and the spacecraft has a much larger tangential velocity of 2.0 

DU/TU. The final radial velocity is zero, so the spacecraft arrives at the periapsis point 

of the hyperbola. 

6-10 



Table 6.4    Hyperbolic Example 

iteration tf Au(0) A„(0) 
1 

10 
circ: 

10.7 
11.1 
8.1 

-0.039250 
-0.109450 
-0.130130 

1.226865 
1.388047 
1.388460 
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Figure 6.8    Iterative Search History for Hyperbolic Example 

The first line in Table 6.4 is the set of initial approximations for the hyperbolic 

example. The second line shows the final, converged values after 10 iterations of the 

shooting method. Table 6.4 also shows the relationship between the initial costates for 

the circle-to-circle case and the hyperbolic case. The third line shows what the converged 

initial costates and flight time would be if the final conditions were circular at R = 5. The 

biggest difference is in the time of flight, which takes longer in the hyperbolic case to reach 

the final desired end conditions. 

Figure 6.8 shows the iterative search history for the flight time and initial costates 

in the hyperbolic example from the initial guess to the converged values. In this case, 

convergence took 10 iterations of the shooting method. 

Figure 6.9 shows the control angle history for the hyperbolic example. In this case, 

the initial thrust angle is below the spacecraft local horizon. Figure 6.10 shows the exact 
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Figure 6.9   Control Angle History for Hyperbolic Example 

trajectory for the hyperbolic example. It is interesting to notice that the optimal solution 

takes the trajectory beyond R = 5 in order to give the spacecraft "room" in terms of both 

space and time to accelerate to the final desired velocity. The initial and final thrusting 

times are indicated on the trajectory, to show that the final hyperbolic orbit continues on 

past R = 5. 

This example illustrates the idea that the solution trajectory is a minimum-time path 

to a complete set of final states, not just a maximum radius. Otherwise, the problem would 

have been solved as the spacecraft first reached R = 5. However, the velocity components 

were not yet correct at that time, so the final path is the minimum-time arc to the final 

set of r, u, and v. 

In spite of the highly noncircular final conditions, the initial costates are still similar 

to the circle-to-circle case, as shown in Table 6.4. For this example, convergence is achieved 

in ten iterations of the shooting method using the approximate initial costate model based 

on an empirical fit to the circle-to-circle case. If the final desired end conditions are for an 

elliptical path, the final velocity magnitude would lie between the circular and hyperbolic 

cases. Thus, the approximate initial costates may be used as initial guesses for elliptical 

end conditions as well as for the circular and hyperbolic end conditions. 
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Figure 6.10    Optimal Trajectory for Hyperbolic Example 

6.2    Three-Dimensional Problems 

To show the relationships between the two- and three-dimensional cases, a two- 

dimensional example is first presented, then modified to include an inclination change. A 

third example is presented with a polar, elliptical end condition. This example uses the 

converged initial costates and flight time from the second example as initial values. All 

other parameters are held the same. 

In Figure 6.11, an optimal transfer is shown where R = 5, A = 0.1, and m — — 0.05. 

In this case, the parameter S takes the value of 6.3246. Accordingly, the initial costates lie 

in the elliptic region of Figure 5.4. To solve this problem, the parameterized elliptic curve 

fits are used to provide the approximate initial costate values. 

The second case is shown in Figure 6.12. The problem parameters are the same as in 

the first case, but the desired final inclination is 45 degrees, and the desired ascending node 

is zero degrees on the x axis. The approximate initial values for Au and A„ are the same 
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R=5, A=0.1, mdot=-0.05, i=45 

Figure 6.12    Flight Path for Three-Dimensional Example 
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Figure 6.13    Flight Path for Polar-Elliptical Example 

as in the two dimensional case, and Xz(0) and A„,(0) are taken to be zero. Convergence is 

achieved in 14 iterations, even with the change in final inclination. 

In the third case, the goal is to reach a polar, elliptical orbit at apoapse where the 

tangential velocity is 0.4 DU/TU, which is less than the circular velocity of 0.447 DU/TU. 

Convergence is achieved in 18 iterations using the three-dimensional initial values from the 

fourth column of Table 6.4 with no further modification. Taking large steps in this way by 

using continuation combined with the approximate initial costate models can allow for the 

solution of a wide variety of orbit transfer problems in a short time. In this case, the steps 

involve inclination changes of 45 degrees each time. The converged trajectory is shown in 

Figure 6.13. 

Both the first and second cases are solved using the two-dimensional approximations 

as initial values. The third case uses the results of the second case as initial values. The 

largest difference between the second and third cases is in the flight time. Some of the initial 

costates in the third case are actually closer to the approximate two-dimensional models 

than those in the second case. However, the difference in final time is apparently large 

enough to prevent convergence from the approximate models directly. For comparision, 

the final, converged values are shown in Table 6.5 for each case. 

Figures 6.14, 6.15 and 6.16 show the iterative search histories for the flight time and 

initial costates in the two-dimensional, three-dimensional, and polar-elliptical examples 
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Table 6.5    Planar vs. Non-Coplanar Example 

model 2D 3D,; = 45 SD,i = 90 
Ax(0) 1 1 1 1 
Vo) -0.1092950 -0.239259 -0.190287 -0.161830 

A.(0) 0 0 0.565053 0.353082 
Ai(0) -0.1092950 -0.239259 -0.190287 -0.161830 

Ay(0) 1.1923589 1.278794 1.281757 1.550567 
Ai(0) 0 0 0.443959 0.827519 

</ 12.6491106 10.045897 10.985076 14.437969 
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Figure 6.17    Control Angle Histories for 2D and 3D Examples 

from the initial approximations to the converged values. In these cases, convergence took 

12, 14, and 18 iterations of the shooting method, respectively. 

Figure 6.17 shows that the behavior of the thrust angle a is similar between the 

two-dimensional and three-dimensional cases, although the three-dimensional case has 

smoother "corners," which may be because it is not constrained to two dimensions. The 

thrust angle ß starts off with similar behavior between the three-dimensional i = 45° case 

and the polar-elliptical example, and arrives at nearly the same final values for both cases. 

Figure 6.18 shows the control angle histories for a and ß in the polar-elliptical example. 

The flattening of both curves at the end of the trajectory indicate the braking maneuver 

needed to arrive at apoapse. 

In the two-dimensional case, the costates related to the z direction are zero through- 

out the transfer. In the three-dimensional case, all of the costates vary with time. The 

ascending node was zero for this example, but choosing other angles will result in different 

values for the optimal initial costates and final time. The best agreement between the two 

cases is for Ay(0) and Ay(0), which may be approximated with Equations (5.26) and (5.27), 

Equations (5.34) and (5.35), or the point (0,1) as appropriate. Convergence is achieved in 
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Figure 6.18    Control Angle Histories for Polar-Elliptical Example 

12 iterations of the shooting method for the first case, 14 iterations for the second case, 

and 18 iterations in the third case. 

6.2.1 Time per Revolution. Certain trends in the behavior of the optimal tra- 

jectories become evident after plotting the results for many numerical cases [2]. As the 

parameters R and A change, the time of flight per revolution changes as well. This relation- 

ship is difficult to model in general without performing numerical integration. However, 

the maximum value may be modeled as a function of R with a fairly simple expression. 

Figure 6.19 shows the relationship between time of flight and transfer angle for a 

range of values of A and R. The maximum time per revolution occurs near a one-revolution 

transfer for each value of R. An empirical fit for the one-revolution case is as follows: 

tfl » ^/(Ä-0.6551)/0.01231 (6.1) 

A plot of final radius against the time of flight for one revolution shows a roughly parabolic 

shape, as seen in Figure 6.20. 

It is difficult to identify a physical explanation for the parabolic relationship, because 

the path is a powered trajectory, and Keplerian relationships do not apply directly to 
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these orbit transfers. The empirical relationship in Equation (6.1) is found by assuming 

R = Cit2fi + c2, and solving for the unknown coefficients cx and c2. This functional form 

is the simplest available to model the parabolic shape adequately. A numerical example 

is given below to demonstrate the accuracy and utility of this simple model. It should be 

noted that the coefficients in Equation (6.1) are found using a small number of data points, 

so this is at best a rough approximation. The data points are found manually to match 

the requirement of exactly one revolution. It would be possible to modify the shooting 

method to include the unit revolution as an end condition, and allow the thrust magnitude 

to vary as an input. However, the purpose of the approximation in Equation (6.1) is only 

to provide a general idea of the relationship between the time of flight and the transfer 

angle in the neighborhood of one revolution. 

A mission planner could use Equation (6.1) to find the approximate time of flight 

for one revolution to the final radius, and then decide whether more or less time would 

meet requirements. An estimate of the required thrust may be obtained by using this time 

value in Equation (5.28), and solving for the parameter A. Similar information about the 

relationship between time of flight and orbital revolutions is presented graphically in Ref- 

erence [2]. As a numerical example, suppose that R = 7 and m = 0. Using Equation (6.1) 

and Equation (5.28), we have tfl « 22.7, and A « 0.0466, each in canonical units. The 

exact values are tj1 = 22.9 and A = 0.0494 to the same number of significant figures. Even 

as a rough approximation, Equation (6.1) gives a reasonable value of the optimal flight 

time for a one-revolution transfer. 

6.2.2 Minimum Time vs. Ascending Node. Figure 6.21 shows the variation of 

time of flight to orbits with the same inclination but different ascending nodes. As the final 

inclination changes, the ascending node for the minimum time remains relatively constant. 

The two minima of each locus shown in Figure 6.21 are of equal values, and they represent 

trajectories that are reflected about the x,y plane. The values of the ascending node 

associated with these minima are normally spaced at ir radians apart. This is because the 

intersection of the final orbit with the x, y plane is a line segment, and the two minimum- 

time paths typically arrive at locations on opposite sides from the origin as projected onto 
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Figure 6.21    Time of Flight to Various Ascending Nodes 

the line segment. It is difficult to model the minimum-time node as a function of R and A, 

due to extreme sensitivity. This example is provided to show a qualitative illustration of 

a typical relationship between the ascending node and the minimum-time path to a final 

orbit with a given inclination. 

6.3    Summary 

This chapter presents a series of numerical examples of minimum-time orbit transfers 

under continuous thrust for two- and three-dimensional end conditions, and also a two- 

dimensional problem under the KS transformation. The purpose of these examples is to 

demonstrate the wide range of applicability of the approximate initial costate models and 

the modified quasi-Newton method developed in Chapter 5. In addition, numerical results 

from many converged cases are presented concerning the time of flight for one revolution 

in the coplanar circle-to-circle case, and for the minimum-time path to a given final in- 

clination. In all cases, the approximate intial costate relationships result in convergence 

directly or by continuation with a large step, as in the polar-elliptical example. 

6-22 



VII.   Summary and Conclusions 

7.1 Summary 

The equations of motion for a spacecraft under the influence of gravity and continuous 

thrust are developed using several coordinate systems. Euler-Lagrange theory is then used 

to derive the optimal control law and differential equations for the states and costates in 

each of the coordinate systems. Expressions are developed for the approximate optimal 

initial costates as functions of R and A for the minimum-time, circle-to-circle continuous- 

thrust orbit transfer problem. The shooting method is described and used to solve the 

boundary value problem, and the approximate optimal initial costate expressions are used 

for the initial values. A dynamic step limiter is presented which improves convergence 

in the shooting method. The minimum-time continuous-thrust orbital transfer problem 

is also developed under the Kustaanheimo-Stiefel (KS) transformation, and the optimal 

initial costates are presented for comparison. Examples are provided for coplanar and 

non-coplanar orbital transfers, showing the utility of the two-dimensional approximations 

for three-dimensional problems and non-circular end conditions. 

7.2 Conclusions 

The prime motivation for this work is that there are no models available in the 

literature that provide initial costate estimates for the minimum-time, continuous-thrust 

orbit transfer problem as functions of the problem parameters. The inherent difficulty 

in classical optimization methods is the need to guess the initial values of the Lagrange 

multipliers. The expressions and techniques developed in this research lead to convergence 

in the shooting method for the indicated range of problem parameters. The greatest 

advantage to this approach is that the resulting trajectories satisfy the Euler-Lagrange 

equations, so optimality is guaranteed. This research has proven successful, in that it 

provides a reliable means to determine the optimal thrust angle history from the shooting 

method for arbitrary values of the problem parameters. It was not possible to do this 

before with any reliability, because the only other option is to rely on pure guesswork and 

good fortune. 
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In the literature, there are many attempts to solve approximations of the optimal 

control problem by making simplifications of the dynamics equations or assumptions about 

the control law. However, there are very few instances where researchers provide analysis 

for the problem of determining the initial costates [1, 13, 15, 18]. The references cited 

here each analyze the issue, but they assume impulsive thrust maneuvers or non-optimal 

constant tangential thrust. There is no information from these sources that provides any 

useful information to solve the minimum-time, continuous-thrust problem for arbitrary 

values of the parameters R and A. Thus, the research presented here is unique in that it 

directly addresses the optimal, minimum-time continuous-thrust case for the purpose of 

modeling the optimal initial costates based on the problem parameters. 

A mission planner could use the results of this research to simplify the job of mission 

design for continuous-thrust spacecraft. Without the approximate initial costates, it is 

very difficult to find an optimal solution to match desired end conditions. If low-thrust 

devices are used on military spacecraft, there may not be much time available to design a 

tactical orbital maneuver. This adds importance to achieving convergence to the optimal 

trajectory as quickly as possible. 

When tracking a maneuvering spacecraft, it is usually necessary to wait for the 

maneuver to be completed before estimating the new orbit. Under continuous thrust, 

however, the maneuver may go on indefinitely. In order to track such a spacecraft, the 

estimation process must include some sort of dynamics model that takes the thrust into 

account. If the trajectory of the thrusting spacecraft is assumed to be time optimal, the 

results of this research could be used to provide a reference trajectory for the estimation 

process. 

A natural extension of this research is to examine the optimal initial costates for 

the minimum-fuel problem, which would involve throttling and coasting arcs. Also, the 

behavior of the optimal initial costates might be modeled for continuous-thrust Earth- 

Moon trajectories, where the Moon's gravity is included in the equations of motion [21]. 

The variational Hamiltonian would be much more complex in the restricted three body 

problem. Another extension of the research would be to include the effects of uncertainty in 

the values of the states, and to examine the effect on the costates for in-flight computations. 
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There are many possibilities for future research in the area of initial costate deter- 

mination for continuous-thrust optimization. Simplified gravity models could yield closed 

form solutions for the equations of motion, or the costate equations. Any such solution 

might provide an analytical approximation for the initial costates when the accelerations 

due to gravity and thrust are of nearly the same magnitude. Also, the KS transforma- 

tion development and examples could be used to verify pertubation analysis for low-thrust 

problems. 
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Appendix A.   Numerical Solution and the Shooting Method 

To solve the boundary value problems presented in the text, the differential equations 

of the states and costates must be numerically integrated from the initial time to the final 

time. The final conditions will depend on the choices for the initial conditions. If the 

final conditions are incorrect, then the initial conditions must be adjusted according to 

Equation (4.73). The partial derivatives in the Jacobian matrix may be found numerically, 

through the shooting method. First, a reference trajectory is propagated by numerically 

integrating the differential equations from the initial time to the final time. Then, small 

perturbations are made in each of the unknown initial conditions, and the trajectory is 

propagated again individually for each of the perturbations. The relative errors at the 

end time are collected and used with the perturbation magnitudes to calculate one-sided 

approximations of the partial derivatives in the Jacobian matrix. The corrections to the 

initial conditions are then given by Equation (4.73). 

Because of the nonlinearities in the differential equations, the errors in the final 

conditions may grow, shrink or stay the same as the shooting process is repeated. With 

good initial costate models, and the modified Newton step described in Chapter 4, the final 

errors will normally get smaller with each iteration of the shooting method. Figure A.l 

is a flowchart for the shooting method. Many sources of computer code are available 

to accomplish the tasks shown in this flowchart [16]. The code is available in the form 

of subroutines in various computer languages. The coding for this research was done in 

Borland Turbo Pascal for Windows, version 7.0, and the computations were performed on 

a Pentium-90 based personal computer. 

The trajectories in all of the examples in this dissertation are propagated with an 

integration tolerance of 10-8, and an error tolerance in the final state values of 10-7 in 

canonical units. This defines the "exact" solutions referenced in the text, regardless of 

which iteration in the shooting method results in the required error tolerance. Borland 

Turbo Pascal can support "extended" precision, which gives a floating point variable an 

accuracy of 19 digits past the decimal point. This is much more precision than 10-8, 

but it is not necessary to exercise the full capability of the machine and programming 

language. Based on numerical experience, convergence always occurs, once the final errors 
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STEP 1: 
READ INPUT 

STEP 2: 
INITIALIZE LAGRANGE MULTIPLIERS, 

TIME OF FLIGHT 

STEP 3: 
PROPAGATE REFERENCE TRAJECTORY, 

CALCULATE ERRORS AND JACOBIAN MATRIX 

STEP 4: 
IF ERROR > MIN, UPDATE INITIAL VALUES 

AND REPEAT STEP 3 

IF ERROR < MIN, STOP 

Figure A.l    Flowchart for the Shooting Method 

are reduced to the order of 10-3 or 10~4 in canonical units. The error tolerance of 10-7 

is three or four orders of magnitude more precise than necessary to indicate convergence, 

and thus provides confidence that the minimizing path has been found for the particular 

problem. If all 19 digits are used, the integration time becomes much larger per trajectory. 

Since the shooting method requires many trajectories to be calculated during an iterative 

search, the increase in computing time is multiplied, with no great benefit. 
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