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1    Introduction 

Domain decomposition methods have recently become an efficient strategy 
for solving large scale problems on parallel computers ([1], [2], [3], [4], [5], 
[6]). Nevertheless, they can also be used in order to couple different models 
[11], [18]. In this paper we will examine a domain decomposition strategy 
which can be applied to such situations. 

This approach was introduced in order to solve several difficulties that 
occur in fluid mechanics. In particular, our aim is to introduce several sub- 
domains in order to do one of the following : 

• Solve different problems on each subdomain. 

• Use different kinds of approximation methods on each subdomain [7]. 

• Use "local refinement techniques" or "mesh adaptive techniques", lo- 
cally, per subdomain ([10]). 

The subdomains fully overlap and the coupling is achieved through "fric- 
tion" forces acting on the internal boundary of the domain, these friction 
forces being updated by an explicit time marching algorithm. 

Several versions of this methodology have been studied in [15]. In [15] the 
emphasiz was on the implicit time discretization version of this algorithm, 
we focus in this paper on the explicit version of this methodology. The 
theoretical study of our method will be done on an Advection-Diffusion 
problem, which will serve as our model problem. The analysis will be made 
at the continuous level, independently of any (space) discretization strategy, 
which means that the derived results will be mesh independent. 

In the next section we develop a maximum principle for general second- 
order elliptic problem based on the De-Giorgi-Nash theory. In section 2 and 
3, we develop estimates for the solution of the convection-diffusion problems 
respectively with Direchlet-Neumann and Direchlet boundary conditions. 
These results are based on the maximum principle of section 2. We then 
apply these tools to the analysis of an explicit time marching algorithm. We 
also study a fixed point method for the implicit time marching algorithm of 
[15]. Practical applications of the time marching algorithm to real life CFD 
problems can be found in [14], [19], [20], and [21]. 



2    Local estimates 

In this section we shall establish a maximum principle for an arbitrary elliptic 
operator of second order.   These tools are central to the development of 
our theory in order to derive the convergence analysis of the explicit time 
marching algorithm described in section (5.1). 

Let L be an operator written under the form 

Lu = aij(x)DijU + b\x)DiU + c(x)u, 

for any u in W2'n(ü), with ft a bounded domain of En. The coefficients 
all,bx and c,i,j = l,...,n are denned on ft. As usual, the repeated indices 
indicate a summation from 1 to n. 

We suppose that the operator L is strictly elliptic in ft in the sense that 
the matrix A of coefficients [a%i] is strictly positive everywhere in ft. Let A 
and A denote respectively the smallest and the largest eigenvalue of A. Let 
V denote the determinant of the matrix A and V* = Vxln. We have 

0 < A < V* < A. 

We suppose in addition that the coefficients aij, V and c are bounded in ft, 
and that there exists two positive real numbers 7 and 8 such that : 

A/A   <   7, (L is uniformly elliptic) (1) 

(l&l/A)2    <    S. (2) 

Now, we are in a position to state the principal result of this section, 
proved in annex. 

Theorem 2.1 Let u e W2'n(ü) and suppose that Lu > f with f <= Ln[ü) 
and c < 0. Then for all spheres B = B2R{V) of center y and radius 2R 
included in ft and for all p > 0, we have : 

sup3R(y)u < cR{(± fju+y)* + f ||/|U,B}, (3) 

where the constant CR depends on {n,-y,6R2,p), but is independent of c. 
Above u+ = max(u, 0). 



Remark 2.1  The statement of the same theorem can be found in [12], un- 
der the assumption 

\c\/X<6. (4) 

So, there the constant CR depends indirectly on c through 6. That is 
exactly what we want to avoid, since we would like this constant to be inde- 
pendent of c (see section 5.1). 

3    First fundamental estimate 

Let ft/oc be a connected domain of Rn with ft/oc C ft (Figure 1).   The 
boundaries of the two subdomains are defined as follows: 

Tb = dQ.n düioc,   (internal boundary) 

Ti = dflioc fl ft,   (interface) 

Too = dft\IV (farfield boundary) 

We denote by n the external unit normal vector to du or dftjoc. 
Let Fbea given velocity field of an inviscid incompressible flow such that: 

divV = 0 in ft, 
(5) 

V.n = OonTj. 

We shall derive an estimate for the solution of the following Direchlet- 
Neumann problem: 

Cv   =   -vAv + V • Vv + -v in ft, (6) 
T 

v   =   0 on Too, (7) 
dv 
Tn    =   9 °n r*' (8) 

where the function g is given in i?-1/2^) and the coefficient r is strictly 
positive, and v is the diffusion coefficient. Let W be the sub-space of H1(Q,) 
defined by 

W = {w € ff1!0)! w = 0 on Too} (9) 



We then define the following bilinear forms on W 

a(v,w)= / vVvVw+ / div(Vv)w, (10) 
Jci Jn 

(v,w) = / vw. (11) 

The first basic problem associated to (6)-(8), can be written as follows: Find 
v e W satisfying : 

a(t;,to) + (l/r)(t;,ti;) =  / gwdT,  Vw 6 W, (12) 

Moreover, we assume that the coefficients v and r satisfy the following 
relation: 

vr < 1. (13) 

This hypothesis is not necessary but simplifies the proofs to come. More- 
over, it is not restrictive, since we would like the convergence for small r 
(see section 5.1). 

Let d denotes the overlapping distance as described in the Figure 2. Let 
then ß be a real number such that 

0 < ß < Zy/D/d, 

and set 
k = ßHyy/r). 

The first basic result states the global H1 estimate of the solution of the 
first basic problem (12) in terms of the boundary data g. 

Lemma 3.1  There exists a constant c0 such that we have: 

IMIi,n < (c<,/*/)||<7||-i/2A, (14) 

Proof of lemma 3.1 

By using the relation (5) we have the following equality: 

/ vdiv(Vv)   =    1/2 f div(tV) 
Jü JQ 

=   1/2 fv.nv2 

=   0, V v e W. 



Choosing w = v in (12), we then obtain 

[{V\VV\
2
 + (1/T)V

2
} =   /   gV. (15) 

Ja Jrb 

From this equality we deduce the following estimate: 

HMIi,n ^ NI-i/2,rJMIi/2,iv 
The application of the trace theorem yields the estimate (14), which implies 
in particular 

||«||o,fi < (coM\\g\\-i/2,rb. (16) 

■ 
Let ti{ be the subdomain of width | with external boundary Tj as described 
in the Figure 2. Let Ky — Bd{y) be the sphere of center y and radius |. 

There exist yi,...,yi belonging to J2; such that 

n2i = UyeQiBa(y)CUl
j:=1Kyj. 

6 

We define then K by setting 

K   =   öl
j=1Ky:. 

The next lemma states the local estimate of the solution v of the first basic 
problem (12). 

Lemma 3.2 There exists a constant c\ such that: 

\Moo,K < cilMkn- (17) 

where c\ is a constant depending only on u,~f,8d2 and (3/2d)n'2. 

Proof of lemma 3.2 

The operator 
L = -C 

satisfies the assumptions of the theorem 2.1, with c = — 1/r and / = 0. 
Applying then this theorem with p = 2, y € ft; we obtain 

||«||oo>ür»<Ci||t>||o>B2<V3(j,). 



Therefore 

\Moo,Ky < c1||t>||0|n, (18) 

where ci is a constant depending only on v,j,8d? and (3/2d)n/2. 
Applying the relation (18) to each Kyj we obtain: 

IM|oo,*r<   sup  cy||t>||o,n. 

Setting ci =   sup   cij, we finally have 

\MOO,K < ci|M|o,n- (19) 

And the lemma is proved. 

■ 
We shall now establish other local estimates for the solution v of the first 

second basic problem. For any M,- in fi,-, we introduce (see Figure 2): 

• Bi = the ball centered on Mi of radius d/6, 

• Vi = exp[k(r2 - (PßöMvW^eBr 

We then have: 

Lemma 3.3 The solution v of the first basic problem satisfies: 

\v(Mi)\ < exp(-A;d2/36)||t;||oo)9JB„ VM; € ü{. (20) 

Proof of lemma 3.3 

The operator C applied to Vi, can be written in polar coordinates (with 
r = MiM) : 

r.2.._2      ,     .   k„r 1 

Therefore 

Lvi = 4(-k2vr2 -kv + -V.err + —)v{. 
2 AT 

k 1 
Lvi > 4(-k2vr2 - -\V.er\r + (— - kv))Vi. (21) 

We set then : 

cp(r, k) = a{k)r2 + b(k)r + c(k), (22) 

with 



a(k)   =    -k2v 

m   =    -||V.er| 

c(k)   = kv. 
AT 

We seek to satisfy the following relation : 

0 < inf (p(r, k) for 0 < r < -. 

As ip(r, k) decreases on 1R+, this will be satisfied iff 

<p(d/6) > 0, 

i.e. iff 

k2vd2     kd\\V\\      1      ,    ^ n 

36 12 AT 

We replace k by its value. Therefore, we have to satisfy 

ß2d2       ßd\\V\\  |    1        ßv       0 

(36i/r)      12iVf     4r     ^V^ 

Multiplying by yf, it follows that 

4^ 9^ ' -   v        12i/ 

The constraint /? < Zy/v/d, finally yields after division 

From the relation (21) and the previous calculation, we deduce that for 
ß < Zy/v/d and r satisfying the above inequality, we have 

Lvi > 0 = Lv. 



In addition, by construction 

Vi > v on dBi. 

Consequently, by using the maximum principle we obtain the following re- 
lation : 

v < Vi in Bi. 

In particular 

v(Mi) < expi-ktf/zqWvWoojBi. 

We do the same for —v, and finally we have 

\v{Mi)\ < exp(-kd2WWvWnfiBi, VAf,- € ß,-. (24) 

■ 
Let ft,» be defined by ü^ = Q \ Qloc. The next result establishes an E1 

estimate of the solution v of the first basic problem on the domain fi^. 

Lemma 3.4 There exists a constant c2 such that: 

IMIi,n„ < Hloo,n.-V^(1 + ^V^)1 2- (25) 

Proof of lemma 3.4 

Let f e H1(Q.) be such that : 

(£ = 1 in fioo, 

suppf c &i U fioo. 

We have using (12): 

/ (-i/At; + div(Vv) + V/T)£
2
V = 0. (26) 

By using the Green's formula we deduce : 

/ -vAvfv = / v\V(£v)\2 ~ / HV£| V. (27) 
Jto JQ Jn 



On the other hand, we have : 

/ div(Vv){2v = ( div(V£V/2) - / V.Vtfv2. (28) 
JQ JQ JQ 

Using the relations (27) and (28), (26) becomes 

0   =    [(v\V(tv)\2 + dxv(y{2J/2) + Z2v2/T)- /(™2|V£|2 + ^v-vo 
Ja JQ 

=    I K|V(^)|2 + I^H + / (l/r - v)?v2 - I (™2|V||2 + v2£V.VO 
JQ JQ JQ 

=   /  Kiv^|2 + H2)+/ Klv(^)l2 + IH2)+/(i/r-^V 
JQOO JQi JQ 

- f (vv2\V£\2 + v2tV.VO. 
JQi 

Hence, we obtain : 

"IMlU»+ /  K|V(^)|2 + H2)+ /(l/r-i#V = 
JQi JQ 

I (vv2\Vt\2 + v2tV-VO. 
JQi 

The relation (13) then yields 

"HHlln-u*    <    / (™2|V£|2 + t^eV.VO (29) 

< \\V\\1,Q, I Hvei2 + fV.VO (30) 

< ||f||2oA("KI?A + llflko.-l|Vr|IKIiA) 

< ll*||LAl^A(" + llflloAll^ll/ieiiA).        (31) 
If we take £ such that 

IKIloA < 1. 



KliA- = c2/d, 

where c2 is a constant, (31) then becomes 

Nil,!»« < lb||ooA\/^ (l + ^y/d/Z)1 \ (32) 

which, is the conclusion of our lemma. 

■ 
Now we are in a position to state the main result of this section. 

Theorem 3.1 Let v be the solution of the first basic problem (12). If r is 
sufficiently small, we have 

(lMexP(-kd2/36)\\g\\_1/2,Tb, 

where C\ and C2 are constants, with C\ depending only on d, u, 7 and 6, but 
not on T. 

Proof of theorem 3.1 

The proof of this theorem is based on the above lemmas. Since dB{ C K, 
We have 

IM|oo,9B,- < \\v\\oo,K, (33) 

The lemma 3.2 then implies 

IMIoo,aB,- < ci|M|o,fi. (34) 

Using the lemma 3.3 and the above estimate we obtain: 

\v{Mi)\ < exp(-kd2/36)c1||V||o,t2, VM,- G fl;. 

Consequently we have 

IMUA < exp(-kd2/36)Cl\\v\\0tn. (35) 
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Applying the lemma 3.1 we obtain: 

IMIooA < ^exK-M2/36)||5ll-i/2A- (36) 

The application of the lemma 3.4 then yields: 

IMknoo < c0ciy/^/d (l + ^JdjZ) (37) 

(l/v)exp(-kd2/36)\\g\\-1/2,Tb. 

To conclude we use the trace theorem which yields 

IMIi/2,ri < csllvlli,««,. 

Consequently, we have the final estimate: 

IMIiAFi   <   c„ciC3V^7d(l + ^V^)1/2 

(lMexP(-kd2/36)\\g\U/2,Tb, 

which corresponds to our theorem with C\ = c0c\Cz and C2 — c2. 

4    Second fundamental estimate 

In this section we shall derive an estimate of the solution of the following 
Direchlet problem: 

Cv   =    -i/At; + V ■ Vv + -v in üloc, (38) 
T 

v   =   h,  on Tj, (39) 

v   =   0,  on Tb, (40) 

where the function h is given in üT1/2^;), the coefficient r is strictly positive, 
and v is the diffusion coefficient. The velocity field V is given by the relation 
(5). Let W be the sub-space of 5rl(fi;0C) defined by 

11 



Figure 1: Description of the Domain fyoc and of the splitting used in the 
majoration of the local solution. 

12 



W = {w e H^ilioe)] w = 0 on r6}. 
We then define the following bilinear forms in W: 

a(v, w) = v /     Vv.Vw +         di\ r(Vv)w, (41) 

(v,w) =   /       VW, (42) 

with v and w in W.   The second basic problem associated to (38)-(40) 
corresponds to the following problem: 
Find v € W snch that 

<I(V,W) + (1/T)(V,W)= I   V-^-W, Vw€ W, (43) 

v\vi = K (44) 

where h is given in H1'2(I\-). We first have the following lemma ; 

Lemma 4.1 For r sufficiently small, we have 

a(w,w) + (1/T)(W,W) > (x//2)||ti;||f Ao 5, Vwew. 

Proof of lemma 4.1: 

Under the hypothesis 1/r > v/2 + (l/2i/)||V||2o, and using the Cauchy- 
Schwarz inequality, we obtain : 

a(v,v)+(l/r)(v,v)   =    1     vVv.Vv+ f     VNVV + {1/T) j     v2 

>  H|v<2 + (i/r)||<2 - !m|oo||Vi,||o,2|M|o,2 

>     V\\VV\\12+(1/T)\\V\\12 - {yßW*\$* 

-(iM\\v\\lo\Mh 

> W2)(l|v<2 + |l<2) ■ 

13 



We will also make the simplifying assumption (13).   We first establish a 
global estimate for the solution of the second basic problem. 

Lemma 4.2  The solution v of the second basic problem (43)-(U) satisfies: 

IMktW < 2(1 + T-*)W (l + i±JjP« )1/2 mWi (45) 
v 

Proof of lemma 4.2: 

Choosing w = v in (43) we obtain : 

v f     \Vv\2 + /    (6iv(Vv)v + (l/r>2) = / u^-h. (46) 
Jttioc Jsiioc JTi   on v    ' 

The lemma 4.1 then yields 

IMlUoc ^ 2||Öt;/dn||_1/2|r|.||Ä||1/2,r.. (47) 

We shall now establish an estimate of ||d?>/<MI-i/2,rv Combining (43) and 
(5) we obtain: 

f dv r    , i 
/   -5-10= /     (VvVw + (l/v)V.Vvw +—vw). 

dv 
w = / 

Therefore, for any w in W, we have 

I f^l    <   l|V*||oÄoJ|VW||0,n(oc + (l/v)||F||00||V«||OAoo|HI«MiIa 

+—IMIOAJMIOA« 

< (llv*|ßAoc + (i/S)\\v\\l\\Vv\\W. + (I/^)NI2AJ
1/2 

(liv«||g,nte0 + IHig^ + {i/T*)\\w\\lülJ/i 

< [i + C1 + »y|l^WlAji + r" »)V'H|i,r Ao 

14 



The trace theorem then yields 

Wdv/M-W, < (1 + r-2)1'2 (l + i±|P^) X    IMk^W 

(48) 

Combining now the relations (47) and (48) we have 

IM|iAoc < 2(1 + r-2)1'2 (l + ÜÄj      ||A||1/2iI, (49) 

and hence in particular 

IMIOA« < 2(1 + r"2)1/2 (l + 1+||2
F|lgo)      |W|1/2,ri • (50) 

■ 
Let Ky = B^/iiy) be the sphere centered on y and of radius d/4, with y 
belonging to FV (see Figure 3). By construction, Ty is the center surface of 
£lioc and Qi is the subdomain of width | centered on IV • 
We have the following lemma: 

Lemma 4.3 There exists a constant c\ such that: 

NIoo^cxHIcfw (51) 

Proof of lemma 4.3: 

Following the same argument as in the proof of the lemma 3.2 we obtain: 

IM|oo,*„  < ClIMIoAoe» (52) 

where c\ is a constant depending only on d, v, 7 and 6. On the other hand 
there exist y\,..., y\ in Ct{ such that 

l 

tt2i = U Bi (V) c U Kvi = K- 
yetii    6 i=i 

By applying the relation (52) to each Kyj, we obtain 

15 



a, 

Figure 2: Description of the local domain ftjoc and of the splitting used in 
the majoration of the global solution. 

\\v\\oo,K <   sup   cylltfUo,«,«, = Ci||t>||, = Cl||t>||0Aoe- (53) 

Next we shall establish another local estimate for the solution of the second 
basic problem (43)-(44). For any Mi G ft;, we introduce (see Figure 3): 

• a ball B{ centered on M; and of radius d/6, 

• the function «; = exp[k(r2 - d2ßeyiWvW^aB^ 

We then have: 

Lemma 4.4 The solution v of the second basic problem (43)-(44) satisfies: 

\v(Mi)\ < exp[-kd2lZQ}M\oo,dBi. (54) 

Proof of lemma (4.4): 

By construction of k (see the previous section), <p(r,k) is positive for all 
r e [0,d/6]. Then by following the same argument as in the proof of the 
lemma 3.3 we obtain the inequality (54). 

16 



Let üb be the sub domain of üioc described in the Figure 3. The H1 global 
estimate of the solution of the second basic problem, is obtained in the next 
lemma. 

Lemma 4.5  The solution v of the second basic problem (43)-(44) satisfies: 

IMIi^un,- < IMIOOA-V^A* (i + ^v^V^)    • ^ 

Proof of lemma (4.5): 

Consider f € fl"1(f2/oc), such that: 

£ =    1   in   üb, 
suppf C üb U üi 

(56) 

Choosing tu = £2v in (43) we obtain : 

/    (-uAv + ^v(Vv) + (V/T)){
2
V = 0. (57) 

Similarly to the proof of the lemma 3.4 we obtain: 

v\\Zv\\i,abuai < I (^2|V^|2 + ^V.Ve). 

Choosing f such that 

neiioA < i 
and 

If liA = c^ 
we finally obtain as in the proof of the lemma 3.4 the inequality (55). 

■ 
Finally, the main result of this section is presented in the following the- 

orem: 

Theorem 4.1 For r sufficiently small, the solution v of the problem (43)- 
(44) satisfies: 

17 



H«»/8»ll-iAr»   <   C1^Jd(l + l±^ 

(1 + &y^f 

2 
oo 

(1 + l/r2)exP(-kd2/36)\\h\\1/2tr., (58) 

where C\ and C2 are constants with C\ depending only on d,v,v and S. 

Proof of theorem 4.1: 

Since dB{ C K by construction, the lemmas 4.3 and 4.4 imply: 

IMUA < exp(-kd2:/36)c!||t;||o,nIoe. (59) 

Furthermore by using the lemma 4.2 it follows: 

HU^fi + i^V'2 
v2       J (60) 

Cl(l + llr2Yl2exp{-kd2/ZQ)\\h\\1/2tTi. 

By using the lemma 4.5 we then obtain: 

wllAu!),<2f1 + i±M 2   X1/2 

1/2 (61) 

(1 + l/rY^exX-fcdVseJIlÄllw.. 
Before concluding we shall establish an estimate of the term 

l|0tf/0»ll-i/2,iv 

Choosing tu such that: 

w € 5rl(ß/oc),  with to = 0 on düb n dfl,-, 

and using (43) we obtain: 

18 



/   (-i/At; + div(Vv) + V/T)W = 0. 

Applying the Green's formula and using (5), we obtain: 

/   —-w = /   (VvVw + (l/i/W.Vvw -) vw). 
Jrb dn        Jut VT 

Similarly to the proof of the lemma 4.2 we obtain the following inequality: 

ll^/HI-i/2A<(1 + 1/^2)1/2    1 + 
1 + 2   \!/2 

ffi        IMIi.iV (62) 

The completion of the proof of the theorem results from the combination of 
the relation (61) with (62). 

5     Convergence analysis of the explicit time march- 
ing algorithm 

Consider the following elliptic problem: 

+ V.V0 - uA<f>   =   0 in Ü, 

(63) <t>   =   <f>oo  on Too, 

(j>   =   0 on Tb, 

that we would like to solve by the fundamental algorithm of [15].   This 
algorithm can be written in this case as 

• set 4>°oc = <j>0i and 4>° = <j>0. 

• then, for n > 0, <%c and 4>n being known, 

solve 

^2S- + V.V^1-i/A^1    =   0intyoc, 

tf*}   =   r on r,-, vloc 
(64) 

4CX    =   0 onr6, 

19 



( 6n+1 

 + V.V<J>n+1 - uA<f>n+1    =   0 in ft, 

4>n+1    =   4>oo  on Too, (65) 

vJsr = >-%-« r" 
We shall show in this section that this algorithm converges, and the 

converged solution corresponds to the solution of the initial problem (63). 
More precisely we have the following theorem. 

Theorem 5.1 Forr sufficiently small, <f> being the solution of the stationary 
problem (63), we have : 

i) ~^- converges to ^ in F~1/2(r6), 

ii) </>n+1 converges to <j> in ff1/2^;), 

iii) 4>n+1 converges to <f> in 5'1(ft), 

iv) <Pf£} converges to <f> in 5'1(ft/oc). 

Proof of theorem 5.1: 

By the transformation <j>n+1 ->• <f>n+1 -<j> with <f> the solution of the stationary 
problem, this problem can be reduced to the case ^ = 0. Multiplying the 
equation in (64) by w € W, integrating by parts, we obtain: 

L       TW+
L    VX^v + vL    V^V» 

f W"1 

= uk   dtw' yweW- (66) 

We now apply the theorem 4.1 and we obtain 

ll^fjHI-W.    <   4v^(l + ^(l + ll^o)) (67) 

20 



l       /—^1/2 

i + ^imicoVW^^ 

(l + l/rVM-^WiriliAF,- 

On the other hand, multiplying the equation in (65) by w € W and inte- 
grating by parts we obtain the equality 

/ " w + / V.V<f>n+1w + v \ V<f>n+lVw = v \   -^^w        (68) 
Jn    T Jn Jn Jrb    on 

with w € Srl(12) and w = 0 on Too.   Applying the theorem 3.1 to this 
problem yields: 

II^HW    <   cr^d^ + ^VUjd/^ 
1/2 

exP{-kd?lW)\\d4>^ldn\\_ll2rb. (69) 

Combinig (67) and (69), we then have: 

(l + IWVWooy/djZ)1'2 

d2 

(1 + l/r*)exp i-k-\ \\d<f>lc/dn\\_1/2trb, 

with k = —r=. Therefore for r sufficiently small, the coefficient of reduction 

will be dominated by the exponential term and will then be strictly less 
than 1, implying the linear convergence to zero of 

21 



This corresponds exactly to the statement (i). This statement combined 
with (69) leads to the convergence of <£n+1 to 0 in Hll2{Ti). Applying (14) 
with g = dcff^/dn, we have in addition 

and therefore ||^n+1||i,n converges to zero at the speed of Hd^tV^II-iArv 
Applying now (45) with h = <f>n, we also have 

IICriliAoc < 2(1 + 1/r2)1/2 (l + 1(1 + IIFUL))172 WPh/vcr 
1/2 

.   2-(i + nvii2.V 

And then ||<£n+1||i,fi also converges to zero at the speed of ||^n||i/2,rv 

5.1    Convergence of a fixed point method for the implicit 
time marching algorithm 

The implicit time marching algorithm of [15] couples the global and the local 
problem. To uncouple them, it is advisable to use the fixed point algorithm 
below : 

• set <t>°ioc,o = Al and <$>° = Vo, 

• then for k > 0, (f^t1 being known, 

solve 

(  Ct,W     ^+div(^gfe+1)-^ACt1
fc+1    =    0   inJW, 

CtUi    =   rk
+1   on I\-, 

(70) 

Jloc,k+l     -     Vk 

Ln+l CtUi    =   0   on Tb, 

(   J,n+1 _ A>n 

^~- + div(^J) - v&4>lX\   =   0   in fi, 

<f>h+l     =     ^     OI1   r~' 

vd^+l/dn   =   vdfß^Jdn   on Tb. 
(71) 
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We will study now the algorithm (70)-(71). By setting 

lW* = <jH-i-<i+i, w 

^,« = («+1-^+1). (73) 

we have that ipioc,k,q and tßk,q verify the following equations : 

i>loc,k,q/At + div(vtpl0Ctk,q) ~ V^loc,h,q     =     0     Ul   fi/oc, 

ll>loc,k,q     =     V'fc-l.g-l     on   I\-, (74) 

i>loc,k,1     =     °     0n   ^b, 

i>k>g/At + div(vil>k,q)-v&'<f>k,q    =   0   in tt, 

i>k,g    =   0   on Too, (75) 

On on 

If At is sufficiently small, we can apply the analysis of the previous 
section to this algorithm and we conclude that V'fc.g and ipioc,k,q converge 
linearly to zero. Hence the sequences 4>1+1 and <%+\ are Cauchy sequences, 

which converge linearly to the unique solutions <f>n+1 and ^j^1 of the implicit 
scheme. This guarantees the convergence of the above fixed point algorithm. 
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Appendix 

The main result of this section relies on the notion of a contact set. If u 
is a continuous arbitrary function on ft, the upper contact set, denoted T+ 

or r+, is the sub-set of ft, defined by 

r+ = {y G ft, 3p(y) € IRnsuch that u(x) < u(y) + p • (x - y) \/x 6 ft }. 

(76) 
We see that u is a concave function on ft iff T+ = ft. When u G Cx(ft) 

we must have p = Du(y) in the relation (76). In addition, when u G C2(ft), 
the Hessian matrix D2u = [Diju] is negative on T+. In general, T+ is closed 
in ft. 

If u is a continuous arbitrary function on ft, we define the "normal 
mapping" x(y) = Xu(y) at point y € ft by 

X(y) = {pe Mn,u(x) < u(y) + p.(x -y)Vx<E ft}. (77) 

We can see that x(y) is non empty iff y G T+. In addition when u G CJ(ft), 
we have x(y) = Du{y) on T+; in other words x is the gradient field of u on 
r+. 

As a particular case of the Bakelman-Alexandrov ([8] and [9]) maximum 
principle, we have under the above notation. 

Lemma .1 For u G C2(ft) D C°(ft), we have : 

sup« < supQQU + —I7^||o^A-iV^*lk,r+ 
" nwn 

with d the diameter of ft and wn the volume of a unit sphere in Rn. 

For further details see [12]. 
We now proceed to the proof of Theorem 6.1, by following the steps of 

[12]. We take B = 2?i(0) and the general case will be deduced by considering 
the coordinate transform, x —► x = (x - y)/2R. 

We will begin, in first step, by showing this result for u G C2(ft) n 
P72,n(ft) and then in a second step we will deduce the result for u G W2>n(ft). 

Step 1: 
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We suppose that u € C2(fi) D W2'n(Q). For ß > 1, we consider the cut 
off function 77 defined by 

V(x) = (1 - ixiy. 

By differentiation, we obtain 

DiV=-2ßzi(l-\x\2y-\ 

DijV = -2ßSij(l - \x\y~1 + Aß{ß - l)xiXj{\ - \x\2f-\ 

By setting 
v — 7]U, 

we then obtain 

a*'Dip   =   rjäijDijU + 2äijD^DjU + uäijDijrj 

>   rj{f - VDiU - cu) + 2a^bir\DjU + uaijDijr]. 

Let r+ = T+ be the upper contact set v, in the sphere B ; we have : 

u > 0 on T+. 

If x € dB such that p.(x — y) < 0 we indeed have v(x) = 0. Consequently 

^(s/) + p-(x -y)> v(x) = 0. 

Moreover, using the concavity of ti on r+, we can estimate the following 
quantity : 

\Du\ = (l/r))\Dv-ui)r)\. 

Indeed, 

Du    <   (1/T/X Dv + u \brj) 

< (IMY^ + UI^I) 

<   2{\ + ß)if1lßu. 

In that way, we have on T+ the following inequality : 

27 



-a'JDijv <    {(16/32 + 2Vß)kv-
2/P+ 

2ß\b\r,-1/P + c}v + T)\f\. 

Since c < 0, we deduce the inequality 

-ff'DtjV   <   {(16ß2 + 2Vß)Ar1-
2/ß+ (78) 

2ß\b\rl-W}v + V\f\ 

< ClV
2//W|/l, 

with c\ = c(n, ß, 7,8) independent of c. 
Consequently, by applying Lemma 6.1 on J5, we obtain, for ß > 2 : 

B nwn       Lf 

By using the relation (2), it comes 

sur - {^)cih~2lßv^+(-47n)(i)n/n^ B UWn nwn'       A 

<  c^-di^/^ii^ + ci/A)!!/!^) 

< cxJdl^/^+H,^+ (1/^)11/11,^) 

< c1^(supv+)1-^\\(v*)^\\nt6 + (1/A)||/||^), 

where C\ is a constant depending only on n,ß,j and 8.   Here, d is the 
diameter of B(d = 2). 

By using the Young inequality under the form 

ab < sa9 + e~r/qbr 

for q=(l- 2/ß)-1 and r = ß/2, we have 

(supv+y-WWiu+f'Xj < SSUPV+ + e^^W^flßfJl,   V£ > 0. 

By taking s = x and plugging in our inequality on v, we obtain : 
2cic 
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sup*;   <    (l/2)suj>v+ + (l/2)1-V\c1d)V2\\(u+nl/?        (79) 
B 

+M/A)||/||n,B- 

We want to prove the theorem for all p > 0. We will treat separately 
the cases p < n and p > TO. 

If p < n, we set ß = 2n/p. In this case we have 

||(^)^||^| = ||(„+)||ptfi. 

Plugging this in our inequality on v, we obtain : 

(1/2) supv < (l/2)1-^2(ei^a||(«+)||J,fA + (cJ/Xm^. 
B 

Consequently, we obtain the following inequality ; 

sup * < c2{( / (u+y fl* + (d/2X)\\f\\nß. 
B JB 

On the sphere #1/2(0), the cut off function satisfies 

I/17 < (1/2)". 

It follows, then 

sup   u   <     sup {v/rj) 
Bi/2(0) Si/2(0) 

<   2" sup v. 
B 

Finally we end up at the desired estimate 

sup   u < c3{( Uv+Y)1/P + (d/2X)\\f\\nß. 
B1/2(0) JB 

for u in W2'n(Jl) n C2(Ü). The constant C3 above depend only on TO, ß, 7 and 
8, but is independent of c. 
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On the other hand if p > n, we have : 

2n/ß < p, V/? > 2. 

Then, it follows (by assuming ß > 2) 

\B\-^/ß)Ku+)ll2n/ßä < |Ä|-^||«+||ptÄ. 

But 

and therefore, by processing as before, we obtain the desired estimate 

sup   u < c4{( /'(u+Yflv + (d/2\)\\f\\   $} 
Bl/2(0j J& 

for «in W2'n(ü) n C2(ü). The constant c4 above depends only on n,ß,-y 
and 8, but is independent of c. 

Transformation £ —> x. 

By construction, Ay = R~2Dij, thus Ä = i?~2A and £ = SR2.   In 
addition, we have \B\ = wn(2R)n and |j|  £ = R-n/P\g\PtB. 

Written in term of x, the last inequality becomes 

SZ"s C4<(9r U"+)Tix)1"+i^w-*}' 
with c4 a function of n,j,S = SR2 and p. This is the desired estimate for 
u € W2'n(ü) n C°(fi). 

Step 2: 

Now, let tt € W2,n(fi). By density, let («m) be a sequence of functions 
of C2(B), converging towards u in W2'n(B). The injection of W2'n(B) in 
C°{B) is continuous, consequently (um) converges uniformly towards u in 
B. We have 

Lum   =   L(um -u) + Lu 

>   f + L(um - u). 
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By setting, fm = L(um - u), we observe by construction that fm con- 
verges towards 0 in Ln(ü). As um € W2'n(ü) D C2(ü) and fm = f + fm'^ 
in Ln(Q,), the estimate (3) is valid also for um, so that we have 

sup um < cte{{-±- j (u+y)1/p + f ll/lln.B}. (80) 
BR{y) \ß\ JB * 

Using previous results and taking the limit, we have : 

sup u < cte{(-±- I {u+y)llv + y ll/lks}- 
BR(y) \

B
\JB A 

Observe also that by replacing u by —u, the theorem can be extended 
easily to the case of supersolutions and solutions of the equation : 

Lu = f. 
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