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SUMMARY 

We have investigated the potential of photorefractive beam fanning as an optical 

limiting device. Beam fanning is attractive as an optical limiter since it provides the possibility 

of allowing the outside world to be monitored, while it simultaneously rejects a laser threat. 

As a device it also has the potential to be sensitive over a broad spectral range, operate with a 

large field-of-view, provide protection against continuous and pulsed laser sources, protect 

against a laser threat from any direction, simultaneously block multi-wavelength laser 

radiation, and to transmit a scene without significant degradation or attenuation. 

The major obstacle preventing the beam fanning limiter from reaching this potential 

has been speed of response. Because the photorefractive beam fanning phenomenon involves 

charge transport, it is inherently slow. Its relatively slow speed and the corresponding 

reputation it has acquired, suggests that the beam fanning limiter may not switch fast enough 

to stop a laser threat before sensor damage occurs. 

In the present project we have developed several techniques which are successful in 

enhancing the photorefractive beam fanning response time. In particular, we demonstrate and 

characterize the use of applied d.c.and a.c. electric fields, use of a grating to seed the beam 

fan, use of cylindrical and spherical lens, control of the acceptor and donor concentrations, 

and control of crystal temperature. Each can lead to an improved response time. 

As part of the project we carried out a demonstration of the beam fanning optical 

limiter. Using a combination of spherical and cylindrical lenses and an applied d.c.electric 

field, we demonstrated the beam fanning limiter for a laser threat of lm w/cm2 over a two inch 

diameter aperture. The limiter switched in 6 msec with an O.D. of 3 to 4. This limiter, 

therefore, allows only 6 ujoules to be transmitted before the O.D. of 3 to 4 was in effect. For 

both higher and lower intensities the limiter switched faster and slower, as expected, still 

limiting at 6 ujoules with an O.D. of 3 to 4. The demonstration was at the 488 nm and 514.5 

nm wavelengths. While the limiter operated, the outside world could still be monitored, a 

large field-of-view was in effect, and about 50% absorption existed for outside world scenes. 
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I. OVERVIEW OF THE PROBLEM 

The existence of high powered lasers is a severe threat to all optical sensors. 

Widespread use of lasers as range finders and target designators makes this threat a 

present and immediate danger. The human eye, as well as man-made detectors such as 

the many FLIR devices presently employed in the battlefield, are extremely vulnerable 

to stray and directed laser radiation. The eye is easily attacked by light from a laser 

source at a considerable distance. Damage caused to optical sensors is extensive and 

crippling. With the success of many military operations dependent on effective use of 

optical sensors, the development of sensor protection is imperative. 

The laser threat itself is highly agile. The high powered output radiation can 

occur in a short pulse or continuously, while the wavelength of the output radiation can 

be either fixed, shifted, or mixed. One example of a threat laser is the short-pulsed 

neodymium-doped yittrium aluminum garnet or YAG laser. The output wavelength of 

the laser is in the near infrared at about one micron. However, it can easily be altered 

via frequency doubling, a process which produces an additional output in the green at 

about 0.5 microns. The output can be further modified, producing laser radiation at a 

series of wavelengths scattered over the visible spectrum via the process called Raman 

scattering. This type of laser threat can, therefore, deliver several laser frequencies 

simultaneously onto a sensor. It is commonly referred to as a "rainbow" or "white- 

light" laser. The actual spectrum of the output laser light can be varied and difficult to 

predict. 

While the output of the YAG laser is usually a short pulse, there are also serious 

laser threats which can provide a continuous output of laser light. The argon-ion and 

krypton-ion lasers are prime examples. These lasers emit radiation at seven to eight 

wavelengths simultaneously and can be regarded as continuous wave "rainbow" or 

"white-light" lasers. While the spectral output of these lasers is fixed, the development 



of continuously tunable dye lasers and solid state lasers presents a threat with a 

complex and variable spectral structure. 

The ideal protector must provide complete blocking of laser radiation above a 

predetermined threshold value. It must: 

(i)       be sensitive over a broad spectral range; 

(ii)      not significantly degrade or attenuate the desired scene to be 

interrogated; 

(Hi)     operate with a large field-of-view; 

(iv)     provide protection   against   continuous   and pulsed  laser 

sources; 

(v)       protect against laser radiation coming from any direction; 

(vi)     be capable of simultaneously blocking multi-wavelength laser 

radiation emitted from a single source. 

No such protection device presently exists. 

Protection devices or "optical limiters" can be classified as one of two types: 

active or passive. Active optical limiters require an auxiliary feedback system which is 

initiated by the incoming laser radiation. A simple example of an active optical limiter is 

a mechanical shutter which closes when incident laser radiation is detected by an optical 

diode and a corresponding electrical signal is sent to the shutter. Since lasers with 

nanosecond rise times are now common, there is very little time for an active protection 

device to switch. However, electro-optic switches make active switches a realistic 

possibility. Meanwhile, passive optical limiters rely solely on the incoming laser 

radiation for switch activation. As a result, the switching time can be minimized and 

very little, if any, auxiliary equipment is required. 

Passive optical limiters can be constructed by using a nonlinear optical material 

in a specific geometrical configuration.  A nonlinear material is one which displays an 



index of refraction or an absorption which is dependent on the incident laser intensity. 

The deflection of radiation or the absorption of radiation can thus increase as the 

incident laser radiation increases. This increase in energy absorbed or deflected 

produces a decrease in transmission and thereby provides self-generated protection 

against a laser threat. 

The effort described here will concentrate on a dynamic passive device via 

photorefractive beam fanning. The device operates on the principle of dynamic 

gratings. In the formation of a dynamic grating the incoming laser radiation produces a 

modulation in the material index of refraction. The index modulation then acts as a real 

time phase grating and deflects, or scatters, the incident laser light as depicted in Figure 

1-1. 

There are many benefits which can be derived from the development of 

photorefractive dynamic grating devices. For example, they offer the following 

desirable features (Figure 1-2): 

(i)        low switching threshold to protect against jamming  and 

spoofing; 

(ii)      high optical density (OD) to protect against laser-induced 

damage; 

(Hi)     broad spectral bandwidth to cover in-band agile threats; 

(iv)      can protect against short plusses well as cw radiation; 

(v)       direction insensitivity to protect against off-angle radiation; 

(vi)     allow   the   outside    world   to   be   monitored   while    it 

simultaneously rejects laser radiation. 

Lets look at one of these features more closely. A photorefractive limiter has 

the potential to protect against both short pulse and cw. threats. This capability is a 
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result of the fact that the laser light intensity transmitted through a photorefractive 

limiter, IT falls off nearly exponentially in time, i.e. 

IT=I0e-,,T (1-1) 

where the characteristic response time is found to be inversely proportional to the 

incident intensity, I0, and given by 

A 
T=— (1-2) 

A is a constant. 

As a result, the energy per unit area which passes through the crystal is 

therefore given as 

J ITdt=Jl0e-/x dt (1-3) 

Using (1-2) in (1-3) we find 

flTdt=iuA. (1-4) 
a " 

Experimental values of the constant "A" are on the order of. 1 to .01 Joules per cm2. It 

is immediately obvious that if "A" could be reduced by about four to five orders of 

magnitude, the energy transmitted trough the beam fanning limiter would be clamped in 

the microjoule range. Amazingly this limiting value would be, therefore, independent 

of the input temporal width or input intensity. Physically, this attractive feature is due 

to the fact that if the incident intensity increases the photorefractive limiter response time 

decreases proportionally, switching off the higher incident intensity more quickly. The 

faster shutter speed results in the transmitted energy remaining constant at the value 

"A". Of course, in practice, the transmitted energy does not drop to zero but rather to 

an equilibrium value Ieq. The comparison between I0 and Ieq is called the optical 

density, or O.D., of the limiter. That is, 



OD. slog-2- (1-5) 

The steady OD. is determined by the photorefractive index change which 

depends on the magnitude of the effective electro-optic coefficient of the crystal. 

Presently available materials, such as BaTi03 and SBN, have large electro-optic 

coefficients and consequently display strong photorefractive index changes. When this 

strong photorefractive index change is maintained by preserving the gain-length 

product, then significant improvements in the performance of beam fanning limiters can 

be realized by using a number of different techniques to enhance (speed-up) the decay 

time of the transmitted beam. 

Any technique employed to improve the beam fanning response time, TBF, must 

not be accompanied by a loss of gain or the value of the OD. will suffer. Optical 

densities in the steady-state should approach 3 or 4. Although the parameter A has not 

been studied in great detail, however, it is known to be a function of dopants, 

wavelength, temperature, focusing geometry, length, seeding, applied electric field, 

and surface quality. A number of techniques have been devised recently for improving 

the response time of photorefractive materials without sacrificing gain. These include 

for example, the techniques of increasing the laser intensity, using applied electric 

fields, seeding the scattering, causing self-focusing and defocusing, controlling the 

dopant concentration and changing the crystal temperature. To discuss the merit of the 

results of our investigation of these enhancement techniques we now discuss a model 

for the photorefraction limiter. 

Conclusion 

It is clear that our goal is to improve the photorefractive response time by 4 to 5 

orders of magnitude while maintaining an O.D. or 3 to 4. 



II.       PHOTOREFRACTION 

The most widely accepted model used to explain the photorefractive effect is the 

band transport model. This model assumes the existence of mobile charge carriers 

(which are usually electrons in SBN) residing in traps in the material. When an 

intensity distribution is incident on the material, the charge carriers in the bright regions 

of the material are photoexcited from the traps into the conduction band. These excited 

charges then migrate via drift and diffusion leaving behind ionized traps. The excited 

charge carriers are continually retrapped and excited again as they migrate until they are 

eventually retrapped in thr dark regions of the material, where the rate of 

photoexcitation is greatly reduced. As a result of this migration, a charge distribution 

forms in the material consisting of the ionized traps in the bright regions and the 

retrapped charge carriers in the dark regions. This charge distribution generates a 

space-charge field in the material in accordance with Gauss's law. The space-charge 

field, in turn, produces a change in the refractive index of the material through the linear 

electro-optic (Pockel's) effect. 

If two plane waves interfere coherently in the material so that the intensity 

distribution varies periodically, then the resulting index change will be periodic as well. 

Thus, an index grating is produced in the material. According to Gauss's law, there 

will be a JI/2 phase shift between the incident intensity distribution and the induced 

index grating. The Till phase shift will cause the two waves to couple as the propagate 

through the material and will transfer energy from one wave to the other in the process. 

In general, this phase shift between the incident intensity distribution and the induced 

index grating is uniquely responsible for phenomena which make photorefractive 

materials inviting as an optical limiter. 

One of the goals of the mathematical analysis of the band transport model is an 

expression for the space-charge field in the photorefractive material.   A preliminary 

framework must be established in order to analyze the problem.   The positive x-axis 

8 
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will be defined by the c-axis of the photorefractive material. Two monochromatic plane 

waves of the same frequency propagate through the material with wave vectors kx and 

k2. These plane waves interfere coherently to produce a sinusoidal intensity pattern 

whose grating wavevector is kg = £, - k2. To simplify the problem, the following 

constraints are placed on the wavevectors of the plane waves: Kyl =ky? = 0, kzl>0 and 

&z2>0, i.e. the propagate in the xz plane. 

Two species of impurity atoms are present in the photorefractive material. The 

density of acceptor impurities is given by NA and is assumed constant. The density of 

donor impurities is given by ND likewise considered constant. The energy state of the 

acceptors is assumed to be lower than that of the donors. Thus, each acceptor takes an 

electron from a donor, producing an ionized donor capable of trapping excited charge 

carriers. It is assumed that the acceptor impurities NA are fully occupied at all times, so 

they do not participate actively in the charge transport mechanism. The density of 

ionized donors is denoted by N+
D(x,t>, while the density of electrons in the conduction 

band is given by ne (x,t).   When no light is incident on the material, njx,t) = 0 and 

' A- 

conduction band 

rsssss)rsssss/A{s//ss///. 

© ©_ © 
hv \ 

donor level 

© ©© ©© 
acceptor level 

valence band 

PHOTOREFRACTIVE 
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• Rate Equation : the rate of change in the number of ionized donor atoms (neglecting 

thermal ionization) is the difference in the rate at which the donors are excited and the 

rate at which ionized donors recapture electrons: 

dt = sI(x)(ND-N+
D)-yRneN+D, (2.1) 

where s is the photoionization cross-section, I(x) is the incident intensity distribution 

along the *-axis and yR is the recombination coefficient of a free electron at the site of 

an ionized donor. 

• Current Density : the (conventional) current density, jx (x, t), is composed of drift and 

diffusion terms: 

/* = WA + Mß7^  • (2-2) 

where qe is the magnitude of electron charge, jie is the electron mobility, Ex (x, t) is the 

total electric field (internal and external), kB is Boltzmann's constant and Tis the tem- 

perature (in Kelvin). 

• Continuity Equation : any spatial variation of the current density must be accompanied 

by the accumulation or depletion of charge carriers in the region of variation: 

!*--«.&*£-».>■ <") 

• Gauss's Law : the spatial variation of the electric field is dependent upon the charge dis- 

tribution in the material: 

BE       a 

where e is the static permittivity of the material. 
11 



Solution for the Space-Charge Field 

The equations in the preceding section form a highly nonlinear system which, in general, 

cannot be solved analytically. However, a closed form solution can be obtained with some 

assumptions. The interference of two monochromatic plane waves results in an intensity 

distribution which is modulated sinusoidally. Hence, if I(x) is expressed as a Fourier series 

and it is assumed that all but the zeroth- and first-order terms are negligible, then the inten- 

sity distribution can be written as follows: 

/(*) = /0+5 [V^ + cc] = /(, + ? [V'V + cc.] , (2.5.a) 

where m = /j/^is the modulation ratio. The other variables then assume similar forms: 

ne(x,t) = neQ(t)+Unel(t)eik'x+c.c] ' ^5^ 

N+D(x,t) = rtJ(0+5[Ni(0e,V+c.c.] , (2.5.C) 

ix (*'0 = h (0 + \ Hi (0 e'kgX + c-c- ] - (2.5.d) 

Ex (x, t) = £0 (0 + i [Ei (/) e'V + c.c.] , (2.5.e) 

where £0 is any applied external field and £j is the space-charge field in the photorefrac- 

tive material. Substituting these equations into (2.1)-(2.4), the following set of linearized 

equations is obtained: 

dNi 
Jt    =^ND~K)-\neQNl, (2.6.a) 

dN\ 
j     =smI0(ND-N+

0)-sI0N
+

l-yR(ne0N\ + nelN
+

0) 
ai , (2.6.b) 

12 



k = We
neOE0 

h  = '^Ko^l+'M^o) +iVe
kBTkgnel • 

(2.6.C) 

(2.6.d) 

0 = 
dN^ _dneQ 

dt      dt (2.6.e) 

<V'i = "^ ^dt      dt (2.6.f) 

0 = flJ-ne0-JVA 

/*,£, = -OriNX-n,.) 
Vi 

(2.6.g) 

(2.6.h) 

With these, one can obtain the following second-order differential equation for E\ 

7? 
l    , 1       1       1      ;' JE\    ,    1 1 1,     1      / + (r+r+r-f>Ä +<rT-+iT-?V)£'-«i(f-f),,B/o^i,-»H)-^). (2.7) 

where the time constants in (2.7) are 

q 
iD = mean diffusion time =  , 

*MK 
(2.8.a) 

xr = mean drift time = —;—— , 
E ^ek

S
E0 

(2.8.b) 

%di = dielectric relaxation time = 
4eV-eneQ 

(2.8.C) 

x; = excitation time = 
^o + V^o ' 

(2.8.d) 
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x. = 
+  sIo+2yRneo+yR

NA ' 
(2.8.e) 

For low  irradiances,  i.e.  few  photoexcited  carriers  (NA»neQ)  and  fast  trapping 

(lRNA » sl0), X+ reduces to t^, the recombination time: 

x+   YA   XR (2.9) 

A detailed derivation of (2.7) is given in Appendix I, as well as derivations of the steady- 

state and time-dependent forms of the space-charge field in the photorefractive material. 

Steady-State Solution 

The steady-state solution for the space-charge field is easy to obtain since the time deriva- 

tives in (2.7) vanish. For low irradiances, the equilibrium space-charge field is given by 

E" = mEj* , (2.10) 

where the amplitude, Esc, and the phase shift, $, are 

Esc ~ EN. 
ED + E0 

(ED + EN)2 + E2
0 (2.11.a) 

tan<t> = _   l + _ + __ (2.1 l.b) 

and ED and E^ are defined as 

knTK p     -  _£ 8 

(2.12.a) 

EN = 
_  <leNeff _  1eNA 

¥ k8E 

14 
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"D-"A. 
(2.12.b) 



The electric field £# is the effective field causing electron diffusion while the electric field 

EN is the maximum space-charge field attainable without applying an external field. The 

total electric field at equilibrium is then 

Ksw =£0+?*«r«,(V+w + c.c] . (2.13) 

Time-Dependent Solution 

Due to the form of (2.7), some damped, oscillatory behavior in the space-charge field 

would be expected as it evolves from its initial value to its equilibrium value. If no gratings 

exist in the photorefractive material at time t = 0 and if we assume that x+ « %di, x+ « %D 

and x+ « Xj, then the time-dependent form of the space-charge field is given by 

£,(0 =£"[l-<f"Vw] , (2.14) 

where x and CD are 

x = x di 

i+2t + ^ 
"D XdU 

ex. \ 

\XEJ 

i + 
X1XDJ 

i + !i + V 
"D "diJ 

di      -t 

x/ vx£y 

2 ' 
(2.15.a) 

1 
co = — 

xdi 

rt.\r*di 

VX£. VXI 
-l 

J 

i + -± + -± 
x. -\2   (*+\

2 

"D "diJ \XEJ 

(2.15.b) 

The time-dependent form of the total electric field is then 

m J{kx+<lf) -t/x im-. Ex{x,t) s=£0+p,c[«^""[l-«"V""]+c.c.] (2.16) 

15 



Pockel's Effect and Grating Formation 

The space-charge field produced by charge separation in the photorefractive crystal 

induces a change in the refractive index of the crystal via Pockel's effect. Given an electric 

field in the material, the change in the impermeability tensor is given by 

All// = rijkEk . (2.17) 

where r^ is the linear electro-optic tensor. This results in an index change given by 

An = -\nlreffE' (2-18) 

where n0 is the unperturbed refractive index of the medium and reffis a linear combination 

of elements of r,^ that depends on both orientation of the crystal and direction of the elec- 

tric field (see Appendix II). By substituting (2.13) into (2.18), we obtain the following 

expression for the equilibrium change in the refractive index due to the electric field in the 

material: 

An = -5«ä^o-?»o^,c^(V+W+c.c.] - (2.19) 

The spatial variation of the refractive index in the material can be expressed as 

n(x) =«, + -[n/«x+c.c] . (2.20) 

By comparing (2.19) and (2.20), nY and n2 must be given by the following: 

1   i 
"l = no~2noreffE0' (2.21.a) 

n2 = -JnlreffEsc^ ■ (2-21.b) 

16 



Assuming reff is positive, (2.2l.b) shows that the modulation of the refractive index is 

in phase with the space-charge field and, thus, shifted by the phase angle <3> with 

respect to the incident intensity distribution. 

Summary 

Having coumpleted a description of the basic underlying physics for the 

photorefractive limiter we can now turn our attention to a discussion of the most 

significant results of our efforts to enhance the photorefractive response time without a 

reduction in the O.D. 

17 



III.     INCREASING THE INTENSITY 

The photorefractive response time is given in expression (2.15.a).    For our 

materials, x+ ~ xR «iD,i& ,xz.   a result, for zero applied field (2.15.a) becomes 

x=xdi (3-1) 

Since x^ is inversely proportional to neo which is itself proportional to the incident total 

intensity I0, x^ is inversely proportional toI0, i.e. 

T=A (3-2) 
*o 

Physically, this is the case because a higher intensity means more charges in the 

conduction band and therefore an increased diffusion rate and a faster approach to 

equilibrium. 

Given that the photorefractive response time can increase due to a higher 

intensity it is easy to see that one approach to achieving our goal of a faster response 

time would be to focus the incident laser power to a small spot size. In this way, for a 

given incident power the photorefractive response time will shorten dramatically. This 

approach, however, is not straight forward. 

The beam fan originates from conventional scattered light which crosses the 

incident beam and writes index gratings in the crystal via the photorefractive effect.  As 

a result of these index gratings, energy is coupled from the incident beam into the 

weaker scattered beams, which can result in significant depletion of the incident beam. 

The magnitude of the coupling depends on the number of scatterers, the gain of the 

crystal, and the available length ((interaction length) over which the incident beam and 

the scattered beam the interaction length can typically be several millimeters long (i.e., 

of the order of a few beam waists).   This interaction length does not change as the 

intensity is increased by turning up the laser power and an intensity dependence of 

approximately I"1 is typically observed for the beam fanning time response.   However, 

for a beam focused with a spherical lens the interaction length may be of the order 50 
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(im or less.   Beam fanning is almost absent for such small interaction lengths even 

though the time response still exhibits an I"1 intensity dependence. 

The situation is different with a cylindrical lens which can produce faster 

response times without a reduction in coupling strength. This is because a cylindrical 

lens focuses in one dimension. It can, therefore, produce a tight focus in the dimension 

which has a small gain and still maintain a large interaction length in the other 

dimension. For example, in SBN the relevant EO coefficients are r33 = 2224 x 10' 

12m/V and r13 = 55 x 10'12m/V, where r33 provides the maximum gain for extraordinary 

polarized beams propagating at near normal incidence to the c-axis (the grating wave 

vector parallel with the c-axis). As a result, the greatest beam depletion is achieved by 

combining the large gain associated with r33 and the large interaction length associated 

with the major axis of the elliptical beam spot produced by the cylindrical lens. The 

gain coefficient in the other direction is dominated by rI3 and is small by comparison, 

so little is lost by having a tight focus in this direction. In the cylindrical focusing 

geometry the intensity is increased although not as much as the spherical lens case (i.e., 

7t r-0 vs Jtr0r). However, the increase in intensity decreases the response time at no cost 

to beam depletion. 

A comparison of the beam fanning response is shown in Fig. 3.1. In this 

figure the c-axis of the crystal is into the plane of the page and the beams are focused in 

the crystal. In these conditions there is virtually no beam fanning produced when 

focusing to a spot size of 0.1mm (FWl/e2M) with a spherical lens. This comparison is 

somewhat striking since the unfocused spot size was 2.12mm, and the cylindrical lens 

focused the beam to an elliptical spot with axes of 0.11 x 2.12mm. 

The response times vs power for unfocused and cylindrical focusing are 

compared in Fig. 3.2 for the same spot sizes used in the measurements of Fig. 3.1. 

The observed shortening of the response time (factor of 20) by the cylindrical lens 

compares well with the ratio of the areas of the focused and unfocused beams.  In other 
21 



words, the improvement in the time response obtained for the cylindrical lens is just 

due to the increase in intensity achieved by reducing the spot size. The parameters A 

and b, given in the caption, were obtained from a least-squares fit to the data and agree 

well with previous measurements of the beam fanning response time where 

approximate I"1 intensity dependence was found for Ce doped SBN crystals. The 

present measurements indicate that the I"' intensity dependence of the time response is 

valid over at least 3 orders of intensity variation. 

Conclusion 

We have demonstrated that the use of a cylindrical lens to focus the incident 

laser power down to a small spot size can reduce the response time while maintaining 

an O.D. of 2 to 3. This means that an incident beam of 5cm x 5cm can be focused 

using a cylindrical lens 50 microns x 5cm or a reduction in size, in one dimension, of 

10"3. This results in an intensity increase of 103 and a corresponding decrease in 

response time of 3 orders of magnitude. Since this is close to our 4 to 5 orders of 

magnitude goal, it is clear that this technique is significant when coupled with others 

may produce a viable photorefractive limiter. 
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IV.      APPLIED DC ELECTRIC FIELD 

As can be seen from expressions (2.11.a) and (2.15.a), both the magnitude of 

the space charge electric field and its time of formation response time can be enhanced 

with the application of a d.c. electric field. 

The dependence of the space charge field and its formation time on the applied 

field can be seen from 

Ex(x,t) = E0+^Esc[e
i(K^)[l-e-'V™ + c.c]] (4-1) 

where 

m = 2(l1I2)    /(I,+I2) 

= fringe visibility 

(4-2) 

E2 +E2 
E     =E    E-D+^O >E 

sc q  / T-.   \ T-2 9 (ED+Eq) +EI 
(4-3) 

approaching E or E^ large applied fields and 

tan 0 =-5s- 
E„ 

E E2 

1+-^ + 
Eq     EDEqJ 

—> —oo (4-4) 

approaching 4> = -90° for large applied fields 

and x —> T, (4-5) 

approaching xl for large applied fields 
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and 

±-1 
co=- VTi 

1+i. 
A2 

+ - + 
"diy 

(4-6) 

approaching a number which make possible to observation of oscillations. 

Physically, Eq or E^, is the electric field that would exist if all available charge 

carrier bright to the dark regions of an interference pattern. Meanwhile, x, is the time 

to excite ah the charges will be transported. In addition, the period of oscillation T is 

now the ratio of xE to xR times the response time Xj. In other words it is related to the 

number of grating periods the carriers travel before re-trapped. 

While these limiting values provide a sense of the potential of using an applied 

electric field, numerical solutions can be used to focus more at finding optimum crystal 

parameters. 

The numerical method used in our computer program and the physical 

parameters are listed in Appendix IV and V. The computer program was run for 

different trap number densities of the crystal. For each value of NA the total space- 

charge field was calculated for both the no field case and the DC field case. The 

calculated results for the space-charge field time evolution are shown in Fig. 4-1 

through Fig. 4-6. 
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no field    NA=5*1016 cnr3   ND= 5-1017 cm"3 

kg = 2.4« 1041/cm   I = 100 mw/cm2 

1* (T = 2.3S) 

5000 

•g   4000 

.>   30001- 

{S   2000 

1000 

0 200 400 600        800 
Fig. 4-1 

*   E sc is the total space-charge field 

1000     1200 
t (xO.01 s) 

DC field: 4 kv/cm     NA= 5-1016 cm"3     ND= 5-1017 cm"3 

2.4-104 1/ci 

(x=1.6s) 

kg = 2.4»104 1/cm    I = 100 mw/cm2 

t (xO.01 s) 
1200 

Fig. 4-2 
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no field NA= 1.5«1016cm-3   ND=5»1017 cm'3 

2000 
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kg = 2.4«104l/cm I = 100 mw/cm2 

(x = 0.8s) 

200 400 600 800 1000    t (xO.01 S) 

Fig. 4-3 

DC field: 4kv/cm NA=1.5»1016cnT3    ND=5«1017cm'3 

k„ = 2.4-104 1/cm     I = 100 mw/cm2 

c 
D 
> 

2000 

1500 

c2 1000 

500 

( X = 0.4 s ) 

200 400 600 

Fig. 4-4 

800 1000  t(xO.01 S) 
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no field NA=5»1015cm-3 
ND=5-1017cnV3 

kg = 2.4» 104 1/cm    I = 100 mw/cm2 

(x=1.2s) 

1000 

~   800 
c 
D 
> 600 

PC   400 

200 

200 400 1000       t (xO.01 S) 600 800 

Fig. 4-5 

DC field: 4kv/cm    NA=5«1015 cm-3    ND=5»1017cm'3 

kg = 2.4'lü41/cm    I = 100 mw/cm2 

(x = 0.6s*) 

c 
D 

_> 
%—» 
a. 

1000     t (xO.01 s) 

Fig. 4-6 

*Note: The response time x is measured from a curve drawn by connecting 
the bottom points on this curve. 
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These curves show that due to a DC field (1) the magnitude of the space-charge field 

was increased; (2) the photorefractive response time was reduced; and (3) an 

oscillation of the space-charge field appeared (see Fig.4-6 ). 

For the curves Fig.4-1 through Fig.4-6 all the parameters are the same except 

NA the trap number density in the crystal. The NA values picked in different curves are 

5«1016cm"3 in Fig.4-1 and 4-2, 1.5«1016 cm"3 in Fig.4-3 and 4-4, and 5-1015 cm"3 in 

Fig.4-5 and 4-6. By analyzing and comparing these curves we found that for crystals 

with different NA values, the enhancement of the photorefractive effect was different 

even with the same DC field. Looking at Fig.4-1 and Fig.4-2, it is seen that for a large 

NA value the applied DC field doesn't change the photorefractive response time 

substantially. However, by reducing the NA value from 5»1016 cm'3 to 1.5«1016cm"3 , 

the results shown in Fig.4-3 and Fig.4-4 are exciting.  We see that with the same DC 

field as used in the above case a larger enhancement is observed in both the magnitude 

and the speed of the photorefractive effect. The response time is reduced by about one 

half with a DC field of 4 kv/cm to a crystal.  In Fig.4-5 and Fig.4-6 the NA value was 

decreased further to 5«1015 cm"3.   We see that the response time is also reduced to 

about one half with a DC field of 4 kv/cm, but the actual response time in this case is 

longer than that in the case of NA=1.5«1016cm"3. Moreover, an oscillation with time in 

the space-charge field is observed. From eq.(4-6) we can get a dependence of co on NA 

and ND , which is 

Co a ( ND
2 - NA

2)/[ c,( NA
2+ c2) + c3 ] (4-7 ) 
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where Cj, c2 and c3 are constants independent of NA and ND. From (4-7) we can see 

that a smaller NA will cause a bigger co. Physically, a smaller NA makes a longer 

recombination time xR, which results in that the electrons in conduction band can move 

freely across one or more grating space periods without being recombined. That's why 

Fig.4-6 showed an oscillation. 

Therefore, the conclusion is that if the ND value is fixed an appropriate NA value 

of a crystal is vital to observe an enhancement of the photorefractive response time 

with an applied field. This important result can be explained physically. The 

recombination time xR is inversely proportional to the crystal trap number density. 

With NA decreasing xR is increasing. As xR is increased to be longer than the field drift 

time ip electrons in the conduction band can move further without being recombined. 

A longer recombination time makes it possible for the space-charge field to be built up 

in a shorter time. This is why the photorefractive response time is getting shorter for 

the same magnitude of an applied field as the crystal has a smaller NA value. However, 

if NA is too small, or in other words, the recombination time xR is too long, electrons in 

conduction band can move freely across several grating space periods without 

recombination. This will result in an oscillation of the space-charge field, and it will 

take longer time to have the space-charge field reach an equilibrium. So it seems that 

there is a compromise for a trap number density of the crystal between a big number 

and a small number. The value of NA should be chosen such that by applying an 

external electric field across a crystal the resulted space-charge field will be able to 
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reach an equilibrium faster but without causing oscillations. We also ran the computer 

program for the space-charge field by keeping NA constant while changing the ND 

value and kg value, respectively. The parameters and results are as follows: 

1.     Varying ND value 

DC field: 4 kv/cm    NA= 1.5«1016cnr3   ND = 5«1017 cm"3 

k = 2.4'IQ41/cm    I = 100 mw/cm2 

^sc 
(x = 0.4 s ) 

2000 

/—s 
C/3 
+-' 

"c 
D 

.£ 
a  1000 
<u 
& 

t (~xO 01 O 
0 200         400        600        800       1000      1200 

Fig. 4-7 

DC field: 4 kv/cm    NA= 1.5*1016cm"3   N^= 1.5»1017cm-3 

(smaller ND) kg = 2.4-1041/cm    I = 100 mw/cm2 

(x=3.6s) 

600 800 
Fig. 4-8 

1000   t (xO.01 s) 

33 



DC field: 4kv/cm    NA= 1.5'1016cnr3   ND= 1.5»!018cnr3 

(bigger   ND)        kg = 2.4«1041/cm    I=100mw/cm2 

E. 

2000 

s 
O   1500 
> 

.2 "3 1000 

500 

(T = 0.15s) 

200 400        600 800 1000     t (xO.01 s) 

Fig. 4-9 

The curves showed that (1) a smaller NDmade a longer response time; (2) a 

larger NDcaused an oscillation of the space-charge field. Mathematically, from 

expression (4-7) we see that a bigger ND causes a bigger co. Physically, with 

same optical intensity, if NDis bigger, more electrons will be excited to the 

conduction band than the case with smaller ND. This will make more electrons in 

conduction band moving freely across one or more grating space periods. 

Therefore, an oscillatory space-charge field is produced. 

Varying k„ value 

In Fig.4-7, NA=1.5«1016 cm-3, ND=5«1017 cm"3, kg=2.4»10< cm-1; 

In Fig.4-10, NA=1.5»1016 cm"3, ND=5«1017 cm"3, kg=8«103 cm"1 ( smaller kg); 

In Fig.4-11, NA=1.5«1016 cm"3, ND=5«1017 cm"3, k^l.2'104 cm-1 (bigger kg). 
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Fig. 4-10 

DC field: 4 kv/cm 

NA=1.5-1016cm-3    ND = 5-1017cm-3 

bigger k(k=7.2»104 1/cm) 

(x = 0.32 s ) 

0        200    400    600   800    1000   t (xO.01 s) 
Fig. 4-11 

The curves showed that (1) a smaller kg produced a longer response time ; (2) a 

bigger kg produced a shorter response time but a smaller enhancement in the 

magnitude of the space-charge field. We plotted the curves of x versus NDand x 

versus kg, which are shown in Fig.4-12 and Fig.4-13. 
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t(s)    NA= 1.5*1016cm-3    kg = 2.4«104 1/cm 

5 10       15        20        25       30 
ND(xlOI7cm-3) 

Fig. 4-12 Dependence of Response Time on ND 

x(s)   NA=1.5«1016cnr3     ND=5«1017 cnr3 

1.2 

4 6 8 
kgCxlO4 1/cm) 

Fig. 4-13   Dependence of Response Time on kg 

From Fig.4-12 we can see that a bigger NDmakes a shorter x, and from Fig.4-13 

we see that a bigger kg makes a shorter x. The physical explanation is that (1) A 

bigger ND makes a shorter x,, thereby, produces a shorter response time; (2) A 

bigger kg makes a shorter xE. As xE gets approximately equal to or less than xR, 

the response time will be reduced. So from these two curves we are able to 
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predict the optimum ND and k„ values. For a DC field of 4 kv/cm, if NA value 

was more or less than 1.5»10    cm"", the numerical results showed that the 

response time was longer than the case with NA value of 1.5« 1016 cm"3. 

Therefore, for a DC field of 4 kv/cm and ,yR=10"9cm3/s, the NA value of 1.5«1016 

cm*3 is the optimum value for getting a fast response time, and the optimum ND 

and kg values are 5*1017cm"3and 2.4*104cm"1, respectively. In the general case, 

for a DC field of 4 kv/cm the optimum NA value is about 1.5* 107/yR cm"3, and the 

curve of response time versus ND and the curve of response time versus k are 

similar to Fig.4-12 and Fig.4-13.  Therefore, we can estimate that the optimum 

NDvalue is about 30 times of NA value and the optimum k value is in the range 

of 2« 10 cm" to 3*10 cm* .  In other words, the optimum full crossing angle 

between two beams is in the range of 8 to 13 . 

Experimental Setup And Data Presentation 

Experimentally, we measured the photorefractive signals by applying a DC field 

across a crystal. Our experimental research can be described as follows. 

(1). The measurement technique adopted in the experiment included beam fanning 

and two beam coupling. 

(2). Samples measured by us included a heavily doped BSKNN crystal which had a 

larger value of NDand NA, and an undoped BSKNN crystal which had a smaller 
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value of NDand NA 

(3). Each sample was measured with no field and with an applied field across it 

Experimental Apparatus 

The experimental setup for beam fanning is shown in Fig.4-14. The laser we used 

Digitizing 

signal 

analyzer 

A 

LASER 

Neutral y,. 
density   CN/ >^, 

filter 

O Shutter 

M 

Neutral 
density 
filter 

Polorizer 

Fig. 4-14   Experimental setup for beam fanning 

experiment was a Coherent Argon-ion Laser.  The laser beam of 458 nm wavelength 

with an extraordinary polarization was incident to a crystal in the direction 
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perpendicular to the c-axis of the crystal. The transmitted beam was detected by a 

photodiode through an aperture. The signal was then sent to a 602A Digitizing Signal 

Analyzer to be measured. In order to measure the photorefractive effect with a DC 

field a high voltage needs to be applied across a crystal. Two copper tapes were pasted 

on a crystal by using silver paste and the electrodes were connected to a high voltage 

supply. A high voltage was provided by a TREK Model 610C H.V. SUPPLY 

AMPLIFIER/CONTROLLER which had a maximum output of 10 kv/cm. 

The setup for two beam coupling is shown in Fig.4-15. The laser output with 
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density 

filter 
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ID 
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Beam 
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Shutter 

M 
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Fig. 4-15    Experimental setup for two beam coupling 
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ordinary polarization and a wavelength of 458 nm was split into two beams. By using 

neutral density filters we made the intensity of one beam much stronger than the other. 

The full crossing angle between two beams was 10 . The crystal was oriented to have 

its normal line bisecting the two beams. In our experiment the transmitted intensity of 

the weak beam was measured. The signal was detected by a photomultiplier ( PMT ) 

and sent to a 602A DSA to be measured. 

Measurement and Data Presentation 

Experimentally, we measured the beam fanning signal for two different BSKNN 

crystals with no field and with a DC field. For the BSKNN sample which was heavily 

doped, the measured results are shown in Fig.4-16 ( no field ), 4-17 ( DC field 3.6 

kv/cm), and 4-18 ( DC field 5.6 kv/cm ). The data measured from Fig.4-16 through 

Fig.4-18 are listed in table 4-1. 
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Table 4-1 Data of Beam Fanning with a DC Field 

Sample 1: BSKNN heavily doped 

Wavelength: 458 nm ( Extraordinary polarization ) 

Figure    Magnitude   Optical   Transmission   Response 

No of Field      Intensity   Coefficient*      Time 

EQ (kv/cm) I (mw/cm2)        T x (s) 

Fig.4-16       0 250 3.0% 3.5 

Fig.4-17   DC: 3.6 250 1.4% 1.0 

Fig.4-18   DC: 5.6 250 1.1% 0.46 

* The transmission coefficient T is defined as a ratio of the 

transmitted beam intensity at equilibrium to the initial 

intensity of that beam. 
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BSKNN heavily doped 
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I = 250 mw/cm 

no field (x = 3.5s) 

I 
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!______ 

2s/div 

Fig. 4-16 

Note: This experimental curve was shown on the screen of DSA oscilloscope. The 

vertical axis gave the intensity of the transmitted beam. 
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Beam Fanning 

BSKNN heavily doped 

I = 250 mw/cm2 

DC field: 3.6kv/cm (xsl.Os) 

t 

I 

95.5mvf 
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Fig. 4-17 
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Beam Fanning 

BSKNN heavily doped 

I = 250 mw/cm2 

DC field: 5.6kv/cm    (x = 0.46s) 

108mv 
/div 

2s/div 
Fig. 4-18 

Using an undoped BSKNN sample, the measurement results are shown in Fig.4-19 ( no 

field ) and 4-20 (DC field 4 kv/cm). For the undoped BSKNN crystal we also 
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measured a beam fanning signal while focusing the beam into the crystal in order to 

make the optical intensity in the crystal about 4 times stronger. The results are shown 

in Fig.4-21 (no field ) and 4-22 (DC field 4 kv/cm ). The data measured from Fig.4- 

19 through Fig.4-22 are listed in table 4-2. 

Table 4-2 Data of Beam Fanning with DC Field 

Sample 2: BSKNNundoped 

Wavelength: 458 nm (Extraordinary polarization ) 

Figure    Magnitude   Optical   Transmission   Response 

No       of Field       Intensity   Coefficient*      Time 

EQ (kv/cm) I (mw/cm2)       T x (s) 

Fig.4-19      0 160 90.0% 5.6 

Fig.4-20 DC: 4.0 160 18.5% 1.5 

The following figures are for beam fanning with focusing. 

Fig.4-21      0 640 90.0% 1.1 

Fig.4-22 DC: 4.0 640 19.8% 0.6 

* The transmission coefficient T is defined as a ratio of the 

transmitted beam intensity at equilibrium to the initial 

intensity of that beam. 
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Beam Fanning with Focusing 
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As expected these results show that by focusing the speed of response can be 

decreased. In fact, when the spot size is greatly reduced to 30 Jim ( in SBN ) the 

response time was extremely fast. The experimental results are shown in Fig.4-23, 

which gave the transmitted intensity as a function of time for an input power of about 

0.04 mw. As can be seen from the curve, the characteristic response time is on the 

order of 800 ms. 

Beam fanning with focusing 

Sample: SBN:60 

H i—i 

W ^ 
H .-a 
H-,    p 
Q  <u 
W .£ 

CM 

1.00-- 

0.75 

0.50-■ 

Wavelength: 458 nm ( Extraordinary polarization ) 

DC field: 6kv/cm 

INCIDENT POWER = 0.042 mW 

0.25 

1.0 

TIME (Seconds) 
Fig. 4-23 Transmitted Intensity with Applying Field and Focusing Beam 

Comparing the data shown in Fig.4-16, 4-17 and 4-18, we see that with an 

increase in applied DC field: (1) the transmission coefficient is decreasing which 
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means the energy exchange is increasing; and (2) the response time is getting shorter. 

Similar results are also obtained from the comparison of Fig.4-19 with Fig.4-20. 

By comparing Fig.4-19 with 4-21 and Fig.4-20 with 4-22, we see that with 

focusing the beam, the photorefractive response time gets shorter without a trade off in 

sensitivity. So on the use of an applied field, the response time can be further 

decreased with focusing the laser beams. 

In Fig. 4-20 ( also in Fig. 4-22 ) we see a field screening that is caused by the 

applied DC field. A few seconds after turning the laser beam on, the intensity of the 

transmitted beam starts increasing. In other words, the space-charge field was getting 

smaller.  This is due to the electric field screening. 

In Fig.4-23 we see an oscillation in the beam fanning signal. This agrees with 

the theoretical prediction in section I of this chapter. According to eq.(4-6), the 

oscillation frequency of the space-charge field is 

co a (xR/xE)/[ (l+xR/tD)2 + (xR/xE)2 ] 

With no applied field ( l/xE=0), co is zero. With an increase in an applied field, co can 

be seen to increase. In this experiment, we applied a strong electric field ( E0=6 kv/cm 

) to the crystal. Therefore, with a strong applied field we can make the frequency very 

large. That's why we see an oscillation in the beam fanning signal. 

In the two beam coupling experiments we measured an intensity time evolution 

of the weak beam for the BSKNN undoped crystal. Fig.4-24 is the experimental curve 
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with no field and Fig.4-25 is with a DC field of 3.6 kv/cm.   The data measured from 

Fig.4-24 and Fig.4-25 are listed in table 4-3. 

Table 4-3 Data of Two Beam Coupling with DC Field 

Sample 2: BSKNN undoped 

Wavelength: 458 nm ( Ordinary polarization ) 

Full Crossing Angle: 29=10° 

Figure Magnitude Intensity Intensity m   Relative Response Modu- 

No     of Field     of Weak   of strong Energy     Time      lation* 

EQ          Beam Ij    Beam I2 Exchange** x 

(kv/cm)    (mw/cm2) (mw/cm2) A^/Ij       (s) 

Fig.4-24    0 0.6 64 0.2 0.1 9.0 

Fig.4-25 DC: 3.6 0.6 64 0.2 0.9 5.0 

m=2(I1I2)i/2/(I1+I2) 

* The modulation is defined as a ratio of the oscillation amplitude to 

the signal magnitude. 

** The relative energy exchange is defined as a ratio of the intensity 

gain to the original intensity. 
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The basic idea is to examine if the iwo-bcam coupling can be enhanced in both 

magnitude and speed with an applied DC. field. In fact we will show that for SBN and 

BSKNN this is indeed the case. The problem however is that screening of the applied 

field leads to a loss of this enhancement after a time about equal to the dielectric response 

time, or about ten times longer than the photorcfractive response time. Figure 4-24 and 4- 

25 demonstrate that the response time and the magnitude of the two-beam coupling are 

enhanced with an applied field. In fact the response time improves from 9 seconds to S 

seconds and the energy transfer increases many fold over the no field case. The only 

difference between figures 4-24 and 4-25 is that a field of 3.6 KV/cm is applied for figure 

4-25. Notice that the enhancement, however, is gradually lost as a function of time due, 

to screening of the applied field. 
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Two - beam coupling   BSKNN undoped Total I = 64 mw/cm2 

o 

Full crossing angle: 10        no field        ( T = 9.0 s) 

75mv 
/div 

Fig. 4-24 5s/div 

Two - beam coupling   BSKNN undoped Total I = 64 mw/cm2 

o 

Full crossing angle: 10      DC field: 3.6 kv/cm     (x = 5.0 s ) 

68.5mv 

i 

/div 

Fig. 4-25 5s/div 

We also measured the signal of the weak beam by focusing both beams into the crystal. 

The results using two focused beams are shown in Fig.4-26,4-27,4-28 and 4-29. The 
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data measured from Fig.4-26 through Fig.4-29 are listed in table 4-4. 

Table 4-4 Data of Two Focused Beam Coupling with DC Field 

Sample 2: BSKNNundoped 

Wavelength: 458 nm ( Ordinary polarization ) 

Full Crossing Angle: 20=10°     ( Focal Length of the Lens: 100 cm) 

Figure Magnitude Intensity Intensity  m  Relative Response Modu- 

No     of Field     of Weak   of strong        Energy     Time     lation* 

Eg Beam l{   Beaml2       Exchange** x 

(kv/cm)     (mw/cm2) (mw/cm2)        AI^        (s) 

Fig.4-26    0 2.6 . 260 0.2 0.1 4.0 

Fig.4-27 DC: 3.6 2.6 260 0.2 1.4 1.7 

Fig.4-28    0 26 2600 0.2 0.3 0.9 

Fig.4-29 DC: 3.6 26 2600 0.2 1.3 0.2 

m=2(I1I2)i/2/(I1+I2) 

* The modulation is defined as a ratio of the oscillation amplitude to 

the signal magnitude. 

** The relative energy exchange is defined as a ratio of the intensity 

gain to the original intensity. 
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Two focused beam coupling BSKNN undoped 
o 

Full crossing angle: 10 Total I = 260 mw/cm2 

no field (x = 4.0 s ) 

75mv 
/div i ' 11... 11   11.111.. 111. 

ls/div 

Fig. 4-26 

DC field: 3.6kv/cm (x=1.7s) 

75mv 
/div 

■ t ■ i ■ ■ i ■ 111.. i i ■ ■ i 1111 ■ ■..>.■..». 

ls/div 

Fig. 4-27 
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Two focused beam coupling 
o 

Full crossing angle: 10 

no field 

r 

BSKNN undoped 

Total I = 2.6 w/cm2 

(x = 0.9s) 

40mv 
/div 

i 11111... i... 11. • i i.... i. 

i ^ 

500ms/div 

Fig. 4-28 

DC field: 3.6kv/cm (x = 0.2s) 

500ms/div 

Fig. 4-29 
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By comparing Fig.4-24 ( no field ) with Fig.4-25 ( DC field ), Fig.4-26 ( no field ) 

with Fig.4-27 (DC field ), Fig.4-28 ( no field ) with Fig.4-29 ( DC field ), it is shown 

that an applied DC field can really enhance the photorefractive effect in both the 

magnitude and the speed. 

Direct Comparison Of The Theoretical Analysis 

With The Experimental Results 

Experimentally, we measured the intensity change of the weak beam due to two 

beam coupling. The gain of the weak beam is given by 

I,c/I, = ( 1 + c )exp(rLcff)/[ 1 + c-exp(rLefr) ] (4-8) 

But as the weak beam is much weaker than the strong beam, then the diffraction signal 

due to the strong beam can not be neglected. Under this circumstance, the intensity 

measured from the weak beam would include two parts: one is the energy gain of the 

weak beam and the other is the diffraction signal of the strong beam due to the grating. 

If the two-beam energy-coupling gain coefficient of the weak beam is V and the 

diffraction signal from the strong beam is D, Tin eq. (4-8) would be replaced by ( r2 + 

D2 )1/2. 

Ilc    (l+OeVr2+D2L<" 

Ii       i + ce^r2+D2Lel 
(4-9) 

•err 
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By using eq. (4-9) we can convert the measured intensity change to ( F2 + D2 )m.  On 

the other hand we can convert the space-charge field obtained numerically to the gain 

coefficient r of the weak beam. Then the comparison of two gains, experimental and 

theoretical, will give us a direct comparison. 

A. Gain coefficient obtained from the experimental data 

The experimental data we used for deriving ( F2 + D2 )1/2are shown in Fig. 4-28 

and Fig. 4-29. For the data we used, c is 1/100 and Lcff is about 4 mm. For small gain, 

therefore according to eq. (4-8), we can get 

I.c/I^expWp+c^ 

Then Vp + D2=ln(Ilc/I,)/Lel.f 

This equation enables us to obtain the total magnitude of both the gain coefficient 

and  the  diffraction  signal     from   the   intensity   change   which   we   measured 

experimentally.  In the experiment, after a grating was formed inside the crystal we 

blocked the weak detected beam and measured only the diffraction signal from the 

strong beam. The diffraction signal was found to be one fourth of the energy exchange 

signal. So we can get ( r2 + D2 )1/2 = ( r2 + P/4 )l/2 = LIT. Then based on the data in 

Fig. 4-28 ( no field ) and Fig. 4-29 ( DC field ) we calculated the corresponding T 

versus time, which are shown in Fig. 4-30 and 4-32.   From these figures we can 

determine the response time for each case. 

B. Gain coefficient obtained from the numerical computation 

Numerically, by using the same data as in the experiment and varying the parameters 
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Using a Cylindrical Lens and an Applied Electric Field. 

While focusing coupled with an applied D.C. seems promising it suffers from 

the screening effect seen in figures 4-20 and 4-22. That is, after some time charges 

move to the edges of the incident beam and produce a screening field which brings to 

zero the enhancement of the applied field. This can be avoid using a c focus the 

incident beam in one direction only and maintains an optically induced electrical path 

between electrodes. As a result, using both an applied D.C. field along with the 

cylindrical lens for focusing an enhancement of four orders of magnitude is possible. 

While this is still marginal it does accomplish the speed enhancement without loss of 

O.D. due to screening. 

Conclusions 

Our results, both theory and experiment, clearly show that the application of an 

electric field can enhance both the speed and the magnitude of the photorefractive effect. 

In fact, the data and modeling clearly show that the use of a sperical lens to focus to 

about 100 micron spot size with an applied field gives the four order of magnitude 

improvement in the response time that we were seeking. This is accomplished without 

sacrificing O.D. The problem is that focusing with an applied field leads to the 

screening effect. However, the case of an applied field with a cylinderical lens is very 

successful since the incident light fills the crystal. 
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V.       APPLIED A.C.  ELECTRIC FIELD 

The photorefractive effect can be enhanced by applying a DC field across a 

crystal. An applied DC electric field can (1) enhance the magnitude of the space-charge 

field   and   corresponding   photorefractive-index   change   and   (2)   speed   up   the 

photorefractive response time.   However, the technique of applying a DC field has 

some drawbacks or disadvantages of its own (Ref. [l]-[4].  Equation (4-4) showed a 

phase shift between the space-charge field and the intensity pattern.   When there is no 

applied field, the phase shift is 90°, which gives the maximum energy exchange 

between two beams.   But, if a DC field E„ is turned on the phase will no longer 

preserve the 90° shift and energy exchanged between two beams is diminished.   A 

second problem is that screening of the DC field is observed. That is, when a DC field 

is applied across a crystal the electrons in the conduction band move in one direction. 

As electrons move to the edge of the illuminated area the separated positive and negative 

charges will be frozen there and a screening of the applied field will occur.  As a result 

of screening the enhancement in the magnitude and speed of the photorefractive effect is 

lost.   Experimentally, it is easy to observe the screening effect.  Fig. 4-20, Fig. 4-22 

and Fig. 4-25 in last chapter demonstrates a field screening with an applied field.  After 

a short time the enhancement in magnitude of the photorefractive effect is lost.  These 

two disadvantages, however, can be avoided using an applied AC field. 

SCREENING OF EXTERNAL FIELD 
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Two focused beam coupling 

BSKNN undoped 
o 

Full crossing angle: 10 

no field 

Total I = 2.6 w/cm2 

2.0 

E 1.6 
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C3 
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0.4 

( T = 0.9 s ) 
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Fig. 4-30 Experimental curve 
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Fig. 4-31 Theoretical curve 
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Two focused beam coupling 

BSKNN undoped 
o 

Full crossing angle: 10 
DC field: 3.6kv/cm 

Total I = 2.6 w/cm2 

( x = 0.2 s ) 
2.0 

E   1.6 

S. 1-2 

0.4 

yfrHM+'ft 

0.5 1.0 1.5 2.0 2.5 

Fig. 4-32 Experimental curve 
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§   1.6 

•a o.8 
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( x = 0.18s) 
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Fig. 4-33 Theoretical curve 
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Analytical Solution For Space-Charge Field With An 

Applied Square-Wave AC Field Of A Short Period 

The applied square-wave AC field is 

EAC= E0forO<t<T/2 or 

= -E0 for T/2 < t < T 

where T is the period of square-wave field and the range of T is xR « T « x  ( x: the 

photorefractive response time). 

The space-charge field with a DC field is given by Eq. (4-2 ) 

E, (t) = Esc (-e l<p - e_l/T - e "icot -*- eitp) 

where Escis given by Eq. (4-3 ). 

We define a non-dimensional physical quantity E,' (t) as 

E,(t) = Esc-E1'(t) 

Then E,' at the end of each negative half period, i.e., when t = nT, is given by ( see 

Appendix II) 

1 -e -nT/T 
c I/.TN      ( 1 ~c \ /  a W   -T/T,       ><P    iwT/2   -T/2T Ei(nT) = ( ^r-)(-e -e    + e  -e      -e 

1-e -T/T 

-i<P       -i(p    icoT/2   -T/2-cx -e    +e    -e       -e       ) (5-1) 

( n = 1, 2, 3... is the period order of the square-wave field ) 

Meantime, E,' at the end of each positive half period, i.e. when t = ( n + 1/2 ) T, is 
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E,'[(n + i)T]=( 
1 -e 

-nT/T 

1 -e 
-T/T ■)•( 

-i<P   -T/T      ^-Kp^-icoT/2     -T/2T\ •I  e   • e     - e    •e 

-(n+l)T/t 

+ ( 1~e \    (       i<P      kp    -koT/2     -T/2T \        / c o \ )  ( e -e • e -e       )     (>^) 
1-e 

-T/T 

Since the solution to the differential equation of space-charge field (see eq. (4-1)) can 

also be written as 

E1(t) = Esc{[E1'(t0)-e*].eK|-^e-,M(l-,0) + ehp} 

Therefore, E{' during each positive half period is 

E1'(t) = [E1'(nT)-ei<f,]-e-,7T.e-iCül' + ei<,>    (0<t'<T/2) (5-3) 

During each negative half period 

E1'(t)={EI'[n + l/2)T] + e-kp}-e-l7T.e-iö),'-e-i<p   (0<t'<T/2)     (5-4) 

Eqs. ( 5-1), ( 5-2), ( 5-3 ) and ( 5-4 ) constitute the basic equations for space-charge 

field under an applied square-wave AC field.  In the case of T « x two results can be 

derived. 

1. In general XD»TR, SO that xR/xD=0.  In addition, for not very large applied 

field xE»xR, so that xR/xE=0.   We, therefore, can write the following 

expression. 

(-^)->-(-^)2<^+-f(-^) 

Xc 

->(-^M)< [l+^]+(-V(-£"-) lE     X ^D?, 
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Then we get 

->(^-D < [ 1+-3&1](1 + -£-)+(-^-) Ä (5-5) 

Let's go back to Ch.4 and look at Eq. (4-5 ) and Eq. (4-6 ). It's not 

difficult  to  find  that  Eq.   (   5-5   )   yields   a   relation   of   1/x   >   GO. 

Therefore, if T « x, then T « 1/co or coT«l. This relation will be used in 

the following derivation. 

2. In the case of T « x only after many many periods of AC field (in other 

words., n must be a very large number ) an equilibrium can be reached.  So 

we will have 

(n+ 1 )T/x = nT/x      forn»l 

Thus Eq. ( 5-2 ) becomes 

-nT/t 

E,'[(n + -)T]= (-—  1U     2 -       -T/T 

,.     .      -i<P   -T/t        _i(p    -icoT/2 0-T/2T 
e    -e 

1 -e 

i<p      \<f    -iö)T/2     -T/2T  ) 
+ e -e ■ e -e        ' 

(5-6) 

From either Eq. (5-1 ) or Eq. ( 5-6 ), both will have the same result for the 

imaginary part 

ImE.'[ nTor(n+l/2)T] = 

-nT/T 

( *    eT)   ) [-e
T/xsincp + e-T/2* sin(coT/2 + cp) 

+ sin<P + e-T/2Tsin(coT/2-<P)] ( 5.7) 

Eq. ( 5-7 ) shows that in the end of each half period of AC field (whatever 

63 



positive or negative half period ) the space-charge field stands the same. 

From this analysis we can examine the response time and the phase shift. 

When an equilibrium state is established n must be a large number, or in other 

words, n -> oo in Eq. ( 5-7 ), then the equilibrium value of the imaginary part 

of the space-charge field is 

ImE,' eq=( —^ [-e"T/Tsin(p + e-T/2Tsin(coT/2 + (p) 
1-e 

+ sin9 + e-T/2xsin(0)T/2-<P)] (5.8) 

When Im E,'eq reaches its e"1 value or when nT/x = 1, Eq. ( 5-7 ) becomes 

1 -e -i 
ImE,'(nT/x = l) = ( -*—^—) [-e     sin9 + e-T/2x sin(coT/2 + 9) 

1-e    x ' 

+ sin 9 + e'T/2x sin (coT/2 - 9) ] 

= (1-1/e) ImE,'eq 

(5-9) 

That is the field reaches its e"1 value after time nT/x = 1 or nT = x. But x is 

also the time for the space-charge field to reach its e"1 value for same applied 

DC field. Therefore, this tells us that the response time, in the case of 

applying a square-wave AC field, with a period of T « x, is the same as in 

the case of applying a DC field. 

To see the phase shift in equilibrium, for T « x we can  make an 

approximation 

e-T/(2t) = e°=l 
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Then from Eq. (5-1 ), for n -» °o 

1 
ReE, (nT)=( —) [_Cos<P+cos(coT/2 +<P) 

1-e 
-cos<P+cos(coT/2+9)] 

1 nT 2 
=- ( ^77) coscp ( Hi.)        Since cöT/2«l 

1-e 2 

Due to the same reason, for n —> «> 

1 
ImE,' (nT)= ( ^) coscp (coT) 

1-e 

If we write the complex number E,' (nT) as 

E,'(nT) =IE,' (nT) I-eiö 

then    tarn} = ImE!' (nT)/ReE,' (nT) = -4/(coT) ->-°° for coT«l 

we will get 

-r> = 90°+£ 

where £ is an infinitesimal. 

(5-10) 

Also from eq ( 5-2 ), by using the same way as above we can get for n—»°o 

ReE,' ((n+1/2) T) =( ^) cos(p( J2Ü)2 

1-e 2 

ImE,' ((n+1/2) T) = ( —) coscp(coT ) 
1-e 

We write E,' ((n+1/2) T) = IE,' ((n+1/2) T)!-^ 

tan\|/ = ImE,' ((n+1/2) T)/ReE,' ((n+1/2) T) =2/(coT) ->°o 

for CDT«1 

V « 90°-e (5-11) 
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Eqs ( 5-10 ) & ( 5-11 ) show that the phase shift is always about 90° in both the 

positive and negative half periods. Physically, this means that we can get a 

maximum energy exchange between two beams by applying a square-wave short 

period AC field to the crystal. This is a remarkable result. 

Numerical Solution For Space-Charge Field With An 

Applied Square Wave AC Field Of An Arbitrary Period 

We have already obtained an analytical solution for the space-charge field with an 

applied square wave AC field of a very short period ( T«t ). But, in general, the 

photorefractive effect can be enhanced by applying an AC field with any period. 

Therefore, we have to resort to numerical solution for the space-charge field with an 

external square wave AC field of an arbitrary period. Considering that the applied AC 

field changes its value through a process of +E0->0~>-E^ therefore, we must make a 

transition between the positive and the negative fields when we look for a numerical 

solution for the space-charge field. 

The crystal physical parameters for the AC field case are same as those for the 

DC field case in Chapter 4.  The only difference is that a fixed DC field value Eo is 

now replaced by an alternating field value ±Eo. Fig.5-1, 5-2 and 5-3 show the space- 

charge field time evolution with an AC field for different NA. Fig.5-4 and 5-5 show 

the space-charge field with an AC field of different frequency. 
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AC field   I=100mw/cm2   kg = 2.4*1041/cm   f=0.5Hz 
NA= 5-1016 cm -3 ND= 5-1017 cm "3 (x = 1.7 s ) 

200 
t (xO.01 s) 

400      600       800     1000    1200 

Fig. 5-1 
*Note: The response time x is measured from a curve drawn by connecting 

the bottom points on this shown curve. 
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Fig. 5-3 
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AC field    I = 100 mw/crrr    kg = 2.4» 1041/cm 

T = 2s f=0.5Hz 
(T = 0.5S) 
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The numerical solutions for an AC field tell us the following points. 

1. General effect of AC field 

An applied AC field can give an efficient enhancement on the photorefractive 

effect in both magnitude and speed. This can be seen by comparing Fig.5-1 ( AC 

field ) with Fig.4-1 ( no field ),or Fig.5-2 ( AC field ) with Fig.4-3 ( no field ),or 

Fig.5-3 ( AC field ) with Fig.4-5 (no field ). Also, by comparing Fig.5-1 ( AC field 

) with Fig.4-2 ( DC field ), or Fig.5-2 ( AC field ) with Fig.4-4 ( DC field ), or 

Fig.5-3 ( AC field ) with Fig.4-6 ( DC field ), we can see that the effect of AC field 

on enhancing the magnitude and response time of the space-charge field is not as 

strong as that of DC field, which can be explained physically.  From the analytical 

solution presented in last section, the equilibrium value of the space-charge field 

with an AC field is given by eq. (5-8), from which we can get 

ImE,'ccl = sincp + 2-[l/(eT/2x -e "
T/2T

 )]-sin(coT/2)-coscp 

In this equation, when T increases the equilibrium value of the space-charge field 

decreases. As stated in last section, when T«T the space-charge field with an AC 

field is almost same as that with a DC field. So when T is not very small compared 

to x, the space-charge field will be less than the case of T«T. This means that the 

space-charge field with an AC field having a not very short period is not as strong 

as that with a DC field.   That's why the effect of AC field on enhancing the 

magnitude of the space-charge field is not as strong as that of DC field.  As to the 

response time, the physical explanations are as follows. During the first half period 
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of an AC field, the temporal behavior of the space-charge field is same as the DC 

curve. But immediately after the first half period, the space-charge field intends to 

decrease and an oscillation starts. The oscillation makes the response time with AC 

field not as fast as that with DC field. 

2. Influence of the trap number density 

The numerical solutions for different trap number density of the crystal ( Fig.5-1, 5- 

2 and 5-3 ) tell us that in order to get a stronger enhancement of the photorefractive 

effect with an applied AC field it is important that a crystal must be doped to have 

appropriate donor number density and trap number density as in the DC case. In 

these three figures, the peak performance for the response time is that with NA 

value of 1.5«1016 cm-3. The physical reason is same as what we discussed 

previously in DC field case in Chapter 4. 

3. Effect of AC field frequency 

All these figures ( Fig.5-1 through Fig.5-5 ) show that the frequency of total space- 

charger field is twice the frequency of an applied AC field.  The numerical results 

with different frequency of an AC field ( Fig.5-4 and 5-5 ) indicate that an increase 

of an AC field frequency will cause less modulation in the space-charge field and a 

faster response time. As stated previously, with an AC field the space-charge field 

would intend to decrease and start to oscillate immediately after the first half period 

of the AC field. With a low frequency of AC field the oscillation gets stronger than 

that with a high frequency. That's why a high AC field frequency causes less 
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modulation in the space-charge field and a faster response time. 

Experimental Setup And Data Analysis For AC Field 

The experimental apparatus using an AC field is mostly same as that using a DC 

field. The AC voltage was produced by using HEWLETT-PACKARD 8002A PULSE 

GENERATOR, which was then amplified 1000 times using a 6IOC H.V. SUPPLY 

AMPLIFIER. The amplified AC high voltage was then connected to the crystal. We 

investigated the effect of AC field on the photorefractive phenomena through both 

beam fanning and two beam coupling experiments. The experimental setup is same as 

in Fig.4-14 ( for beam fanning ) and Fig.4-15 ( for two beam coupling). 

Experimental Data 

The beam fanning curves are shown in Fig.5-6 through Fig.5-11 for a BSKNN 

heavily doped crystal, Fig.5-12 through Fig.5-14 for a BSKNN undoped crystal, and 

Fig.5-15 and Fig.5-16 for a BSKNN undoped crystal using a focused laser beam. The 

data measured from these figures are listed in table 5-1. 
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Table 5-1 Data of Beam Fanning with AC Field 

Sample 1: BSKNN heavily doped 

Wavelength: 458 nm (Extraordinary polarization ) 

Figure Magnitude Frequency Optical Transmission    Response 

No      of Field     of Field    Intensity Coefficient* Time 

Eo(kv/cm)    f(Hz)   I (mw/cm2)      T x(s) 

Fig.5-6      0 0 

Fig.5-7   AC: 3.6 0.33 

Fig.5-8   AC: 3.6 25 

Fig.5-9   AC: 5.6 0.33 

Fig.5-10AC:5.6 25 

Fig.5-11 AC: 5.6 50 

250 3.0% 3.5 

250 6.4%(top) 3.0%(bottom) 2.7 

250 2.6%(top) 1.5%(bottom) 2.6 

250 5.5%(top) 2.5%(bottom) 2.3 

250 2.2%(top) 1.4%(bottom) 2.3 

250 2.1%(top)0.8%(bottom) 2.3 

* The transmission coefficient T is defined as a ratio of the 

transmitted beam intensity at equilibrium to the initial 

intensity of that beam. 
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Beam Fanning    BSKNN heavily doped    I = 250 mw/cm2 

no field (t = 3.5s) 
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lOOmv 

i 

i 
i 

i 
i 
| 

/div 

' ^ 

J 
i 

1 ^ 
J 1 
i 
i 

^ 

2s/div 
Fig. 5-8 

73 



Beam Fanning        BSKNN heavily doped      I = 250 mw/cm2 

AC field: 5.6kv/cm   0.33 Hz    (x = 2.3s) 

lOOmv 
/div 

JS    ■" "" >      ■ >~v_ rv,   .,   r\ >■»       i  ■ 

2s/div 
Fig. 5-9 
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By comparing Fig.5-6 ( no field ) with Fig.5-7 through Fig.5-11 ( AC field ) we 

see that the photorefractive effect in both magnitude and speed is enhanced by applying 

an AC field. But from comparing Fig.5-7 and Fig.5-8 ( AC field ) with Fig.4-17 ( DC 

field), or Fig.5-9 through Fig.5-11 ( AC field ) with Fig.4-18 (DC field ), it shows that 

the effect of AC field on enhancing the magnitude and speed of the photorefractive 

effect is not as strong as that of DC Field. A detailed comparison of Fig.5-7 ( AC field 

of 3.6 kv/cm) with Fig.4-17 (DC field of 3.6 kv/cm), Fig.5-9 ( AC field of 5.6 kv/cm 

) with Fig.4-18 (DC field of 5.6 kv/cm ) showed that the fanning signal in the first half 

period of AC field was almost same as DC figure, but after that an oscillation happened 

in the fanning signal with AC field. The oscillation then made the response time longer 

than that of DC field case. 

By comparing Fig.5-7 and Fig.5-8 ( AC field of 3.6 kv/cm ) with Fig.5-9 through 

Fig.5-11 ( AC field of 5.6 kv/cm ), it can be seen that an increase of AC field amplitude 

will cause a stronger enhancement of the photorefractive effect in both magnitude and 

speed. Fig.5-9 ( or Fig.5-10 ) with AC field of 5.6 kv/cm showed a stronger beam 

fanning signal and less response time than Fig.5-7 ( or Fig.5-8 ) with AC field of 3.6 

kv/cm. 

By comparing Fig.5-7 ( AC field of 0.33 Hz) with Fig.5-8 ( AC field of 25 Hz ), 

or Fig.5-9 ( AC field of 0.33 Hz ), Fig.5-10 ( AC field of 25 Hz ) and Fig.5-11 ( AC 

field of 50 Hz) with each other, it can be found that an increase of AC field frequency 

will reduce the modulation of oscillation in signal. 

All these experimental results are in general agreement with the numerical 

solutions presented in last section ( Section II of this chapter). Another beam fanning 
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experiment was performed for the undoped BSKNN sample.  The measurement results 

are shown in Fig.5-12 through Fig.5-14 for beam unfocused, and Fig.5-15 and Fig.5-16 

for beam focused. The data measured from these figures are listed in table 5-2. 

Table 5-2 Data of Beam Fanning with AC Field 

Sample 2: BSKNN undoped 

Wavelength: 458 nm (Extraordinary polarization ) 

Figure Magnitude Frequency Optical Transmission    Response 

No      of Field     of Field    Intensity Coefficient* Time 

Eo(kv/cm)    f(Hz)   I (mw/cm2)      T x(s) 

Fig.5-12      0 0 160 90.0% 5.6 

Fig.5-13 AC: 4.0       0.4      160 39.1%(top) 17.5%(bottom) 4.0 

Fig.5-14 AC: 4.0       20       160 83.2%(top) 79.8%(bottom) 3.8 

The following figures are for beam fanning with focusing. 

Fig.5-15        0 0 640 90.0% 1.1 

Fig.5-16 AC: 4.0       1.2      640 60.7%(top)41.8%(bottom)1.0 

* The transmission coefficient T is defined as a ratio of the transmitted 

beam intensity at equilibrium to the initial intensity of that beam. 
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Beam Fanning     BSKNN undoped      I = 160 mw/cra2 

no field        (x - 5.6 s) 

50mv 
/div 

2s/div 
Fig. 5-12 

AC field: 4kv/cm      0.4 Hz  (x = 4.0s) 

50mv 
/div 

-f. -..»....(■ 

/YrVVKH 

2s/div 
Fig. 5-13 

AC field: 4kv/cm     20 Hz   (x = 3.8s) 

59mv 
/div 

2s/div 
Fig. 5-14 
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Beam Fanning with Focusing 

BSKNN undoped 

no field 

I = 640 mw/cm2 

(xsl.ls) 

50mv L. 

/div   . 

•M 

2s/div 

Fig. 5-15 

AC field: 4-kv/cm   1.2 Hz    (x = 1.0 s) 

50mv 
/div ■ i i  

AAAAAAAAMA 

ls/div 

Fig. 5-16 
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By comparing Fig.5-12 ( no field ) with Fig.5-13 and Fig.5-14 ( AC field ), or 

Fig.5-15 ( no field) with Fig.5-16 ( AC field ), it can be seen that an applied AC field 

really enhance the photorefractive effect in both magnitude and speed. 

By comparing Fig.5-13 and Fig.5-14 ( AC field ) with Fig.4-20 ( DC field ), or 

Fig.5-16 (AC field and focusing) with Fig.4-22 (DC field and focusing ), we see that 

although the effect of AC field on enhancing the photorefractive effect is not as strong 

as that of DC field, but with an applied AC field the field screening is avoided, which 

happens in the case of DC field shown in Fig.4-20 and Fig.4-22. Let's compare Fig.5- 

16 (AC field of 4 kv/cm ) with Fig.4-22 (DC field of 4 kv/cm ). In Fig.5-16 the beam 

fanning signal during the first half period of AC field is almost the same as DC figure 

shown in Fig.4-22. Then, in Fig.4-22 the signal keeps going down, but in Fig.5-16 

after the first half period the signal goes up and an oscillation happens. Due to the 

oscillation the response time gets longer in AC field case than that in DC field case. 

That's why the effect of AC field on enhancing the photorefractive effect is not as 

strong as that of DC field. 

In Fig.5-13 we see that the frequency of the beam fanning signal is twice the 

frequency of an applied AC field, which is in agreement with the theoretical prediction 

in last section. 

From comparing Fig.5-13 and Fig.5-14 (beam unfocused ) with Fig.5-16 ( beam 

focused ), it can be seen that on the use of AC field, if laser beam is focused, the 

response time can be further decreased. 
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For the BSKNN undoped crystal, the experimental results of two beam coupling 

are shown in Fig.5-17 and Fig.5-18 for the case of beam unfocused, and Fig.5-19 

through Fig. 5-24 for the case of beam focused. The data measured from Fig.5-17 and 

Fig.5-18 are listed in table 5-3, and data from Fig.5-19 through Fig.5-24 are in table 5- 

4. 

Table 5-3 Data of Two Beam Coupling with AC Field 

Sample 2: BSKNN undoped 

Wavelength: 458 nm (Extraordinary polarization ) 

Full Crossing Angle: 26=10° 

Figure Magnitude Frequency Intensity Intensity m Relative Response Modu- 

No    of Field     of Field  of Weak of strong       Energy   Time      lation* 

EQ f        Beam Ij   Beam I2     Exchange**! 

(kv/cm)      (Hz)   (mw/cm2) (mw/cm2)        AIj/Ii      (s) 

Fig.5-17    0 0 

Fig.5-18 AC: 3.6       1.2 

0.6 64      0.2      0.1        9.0 

0.6 64      0.2      0.9 6.5     0.35 

m=2(I1I2)i/
2/(I1+I2) 

* The modulation is defined as a ratio of the oscillation amplitude to the signal 

magnitude. ** The relative energy exchange is defined as a ratio of the 

intensity gain to the original intensity. 
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Two - beam coupling 

no field 

BSKNN undoped    Full crossing angle: 10 

Total I = 64 mw/cm2 (x = 9.0 s) 

■ 

r5mv 
/div 

! 

5s/div 
Fig. 5-17 

Two - beam coupling     BSKNN undoped      Full crossing angle: 10 
AC field: 3.6kv/cm    1.2 Hz        Total     I = 64 mw/cm2      (x = 6.5s) 

65.5mv 
/div 

- 

■ 

^*iiiiii 1NMIM 1 

: .           i.            i            ii  

5s/div 
Fig. 5-18 
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Table 5-4 Data of Two Focused Beam Coupling with AC Field 

Sample 2: BSKNN undoped 

Wavelength: 458 nm (Extraordinary polarization ) 

Full Crossing Angle: 20=10° 

(Focal Length of the Lens: 100 cm) 

Figure Magnitude Frequency Intensity Intensity m Relative Response Modu- 

No     of Field     of Field   of Weak of strong       Energy   Time      lation* 

EQ f        Beam Ij   Beam I2     Exchange** x 

(kv/cm)      (Hz)     (mw/cm2) (mw/cm2)        AIj/^      (s) 

Fig.5-19 0 0 2.6 260 0.2 0.1 4.0 

Fig.5-20 AC: 3.6 1.2 2.6 260 0.2 1.3 1.7 0.42 

Fig.5-21 AC: 3.6 1.2 2.6 410 0.16 0.9 1.26 1.1 

Fig.5-22 AC: 3.6 1.8 2.6 410 0.16 1.2 0.88 0.55 

Fig.5-23 0 0 26 2600 0.2 0.3 0.9 

Fig.5-24 AC: 3.6 3.2 26 2600 0.2 1.7 0.3 0.7 

m=2(I1I2)i/2/(I1+I2) 

* The modulation is defined as a ratio of the oscillation amplitude to the 

signal magnitude. 

** The relative energy exchange is defined as a ratio of the intensity gain to 

the original intensity. 
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Two focused beam coupling     BSKNNundoped    Full crossing angle: 10 

Total I = 260 mw/cm2 no field (x = 4.0 s ) 

75mv 
/div 

11.... i.. i i   i ' i ■' i ■ i.'. 11.' ■ ■ i. 

ls/div 
Fig. 5-19 

Total I = 260 mw/cm2   AC field: 3.6 kv/cm    1.2 Hz   (x = 1.7 s) 

75mv 
/div 

WWW' 
I I I I I I 11 I 1. 11 . I 11 I I I'll I 

ls/div 
Fig. 5-20 
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Two focused beam coupling     BSKNNundoped    Full crossing angle: 10 

Totall = 410mw/cm2   AC field: 3.6kv/cm    1.2 Hz   (x = 1.26 s) 

Totall = 410mw/cm     AC field: 3.6kv/cm    1.8 Hz   (x = 0.88 s) 

ls/div 

Fig. 5-22 
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Two focused beam coupling 
2 

Total I = 2.6 w/cm 

4-1 

BSKNN undoped     Full crossing angle: 10 
no field ( x = 0.9 s ) 

40mv 
/div 

—■ ■ 11 ■ ■■■i ■ ■ i • i  

L.. 
500ms/div 

Fig. 5-23 

AC field: 3.6kv/cm 3.2 Hz  (x = 0.3s) 
-r       r     - r 

75mv 
/div 

i 

i 

500 ms/div 

Fig. 5-24 
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By comparing Fig.5-18 ( AC field ) with Fig.5-17 ( no field ), or Fig.5-20 ( AC 

field ) with Fig.5-19 (no field ), or Fig.5-24 ( AC field ) with Fig.5-23 ( no field ), we 

see that an AC field enhances the photorefractive effect in both the magnitude and 

speed. Fig.5-17, Fig.5-19 and Fig.5-23 show almost no or very little energy exchange 

between two beams. But with applying an AC field, Fig.5-18, Fig.5-20 and Fig.5-24 

show an obvious energy exchange between two beams and also a decrease of the 

response time compared with the no field case. 

By comparing Fig.5-18 ( AC field, T=6.5 s ) with Fig.4-25 ( DC field, T=5.0 s ), or 

Fig.5-20 ( AC field, x=1.7 s ) with Fig.4-27 ( DC field, T=1.7 s ), or Fig.5-24 ( AC field 

, x=0.3 s ) with Fig.4-29 ( DC field, x=0.2 s ), we see that the effect of AC field on 

enhancing the photorefractive response time is not as strong as that of DC field, but two 

results are very close. Also, the. advantage of using AC field is that with the use of AC 

field a field screening is avoided, which can be seen from comparing Fig.5-18 ( AC 

field ) with Fig.4-25 (DC field ). 

By comparing Fig.5-21 ( AC field of 1.2 Hz) with Fig.5-22 ( AC field of 1.8 Hz ), 

we see that an increase of AC field frequency can reduce the response time and 

enhance the energy exchange between two beams. 

By comparing Fig.5-20, Fig.5-21, Fig.5-22 and Fig.5-24 ( AC field and beam 

focused ) with Fig.5-18 ( AC field and beam unfocused ), we find that if the laser 

beams are focused the response time can be further reduced. The results show that 

focusing increases the speed of response and that the applied AC field makes possible 

strong coupling simultaneously. 
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Direct Comparison Of Experiment With Theory 

By using the same way and same parameters as in Section IV of Chapter 4, we can 

obtain the gain coefficient for AC field case from both the experimental and numerical 

data. The results are shown in Fig.5-25 and 5-26, which are based on the experimental 

data of Fig.5-24. Two curves give almost the same energy gain and same response 

time. 
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Two focused beam coupling 

BSKNN undoped 
o 

Full crossing angle:  10 

AC field: 3.6 kv/cm, 3.2 Hz 

Total I = 2.6 w/cm2 

( x = 0.34 s ) 

0.5 l.O 1.5 2.0 

t(s) 

Fig. 5-25 Experimental curve 

( x = 0.33 s ) 

0.5 1.0 1.5 2.0 

t(s) 
Fig. 5-26 Theoretical curve 
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Conclusions 

Both theory and experiment demonstrate that the application of an A.C. electric 

field can be used to enhance both the speed and magnitude of the photorefractive effect 

without the draw back of the screening phenomena observed using a D.C. electric field. 

Our experiments were carried out using BSIKNN as opposed to SBN or BaTi03 due to 

the higher depoling field of BSKNN. Our initial experiments using SBN were not 

successful after about lkv/cm. However, for BSKNN it was possible to apply fields 

up to 6kv/cm without significant depoling. It would be interesting to find additional 

materials with higher depoling fields since they would allow even higher applied A.C. 

electric fields and furancement. 

The clear result in this investigation is that a focused laser beam into a BSKNN 

sample enhanced the response time. Our experiments show that for an incident beam 

5cm x 5cm in size the use of a spherical focusing lens to focus to a 50 micron beam 

diameter would increase the intensity by six orders of magnitude in the crystal and 

reduce the response factor. Since this is much greater than the four orders of 

magnitude required this technique can act as an effective limiter. 
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VI.     DETERMINATION OF TRAP NUMBER DENSITY 

One of the by-products of our investigation using applied D.C. electric fields 

has been of a new technique to determine the trap number density in photorefractive 

materials. Our technique is based on the energy exchange between two laser beams in a 

two-beam coupling experiment. 

Two laser beams intersect inside a crystal and write an interference pattern. 

Then due to the charge migration, a change of the refractive index is caused and an 

index grating is produced in the crystal, which is shifted in phase with the intensity 

pattern. The phase shift between the grating and the fringe pattern, thus, causes an 

energy exchange between two beams. 

In a two beam coupling experiment we can measure the energy exchange signal 

between two beams, Ie and the diffraction signal due to the grating, Id (Ref. [1]). The 

energy exchange signal is the intensity change of the detected beam after two beams are 

turned on, and the diffraction signal is the intensity measured immediately after the 

detected beam blocked. If two beams have equal intensity of I0 and the crossing angle 

between two beams are small, Ie and Id must be much less than I0. Then the phase shift 

<|> between the grating and the fringe pattern can be determined by the following 

equation . (Se Appendix III). 

sin<|>=Ic/[2(I0Id)
,'a] (6-1) 

Energy Transfer Measurement And Determination Of The 
* 

Phase Shift Betwen The Grating And The Fringe Pattern 

The experimental set up for two beam coupling is shown in Fig. 6-1. 
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Beam 
expander 

Shutter 

Polarizer Beam 
splitter 

Fig. 6-1 Experimental setup for measuring phase-shift 
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The He-Ne laser ( 5 mw of power and X = 632.8 nm) was ordinary polarized in order 

to minimize beam fanning and resulting fluctuations in the two beam coupling 

signals. After the polarizer the laser beam was split into two beams IT and ID that 

intersect inside a thin sample of SBN 60 with 0.015% Cesium as a dopant ( static 

dielectric constant e' = 950) such that the grating vector is parallel to the c-axis. The 

beam splitter is 50% to 50% to make the beam IT having the same intensity as ID. The 

angle 28 between the two beams was 22°. The beam L^ d ) was detected with a 

photodiode. For all our observed intensity values the photodiode was linear. To 

avoid the observation of multi-exponential growth and decay times, the detected 

beam was expanded with a beam expander so that only the uniform portion of the 

beam was detected by the photodiode. The output of the diode was fed into the 602A 

Digitizing Signal Analyzer. After turning on both beams a growth curve was 

recorded and the energy exchange signal IE was measured. When the grating reached 

its steady state we blocked the detected beam. The transmitted beam immediately 

went to zero, and the diffraction signal Id was detected. Finally, the intensity of the 

transmitted beam I0 was measured. By substituting I0, I£ and Id into Equation ( 6-1 ), 

we can calculate the phase shift between the grating and the interference pattern in the 

crystal. 

III. Determination Of Trap Number Density By Phase Shift Measurement And 

Field Dependence Of Dielectric Constant And Electro-Optic Coefficient 
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As discussed in chapter 4 and 5, a trap number density NA of a crystal plays a key 

role in the photorefractive response time. Therefore, measuring NA accurately 

becomes an important topic in the research on photorefractive phenomena. In this 

section we will present a new technique for the measurement of NA by applying a DC 

field across a crystal and determining the resulted phase shift between the grating and 

the fringe pattern. 

After applying a DC field across a crystal we carried out the measurement 

described in the last section yielding values for I0, Ie and Id. By substituting them into 

Eq. (6-1) we calculated both the sin <p and the tan (p. In order to get accurate results 

we varied the magnitude of DC field and measured I0, I£ and Id for each DC field 

value EQ. The data for different E0 and the calculated sin op, tan (p are listed in Table 

6-1. 

From the band transport theory we have 

2 

tancp=-^+(^+E0) — 
E0       E0 Eq 

L = (tan(p_|o.) A-^+Eo 
Eq Eo 

(6-2) 

(6-3) 

2,1/2 Expression (6-2) gives a value of EQ for minimum (p of ^[Ej^E +ED ]    . Using 

eq. ( 6-3 ) we are able to calculate a set of data of 1/E? vs E0  Eq is defined as 

Eq = 47ceNeff/eKg 

NA 
where     ( N „■=  

eff 1 + NA/(ND-NA) 
) 
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Table 6-1 Relation Between the Applied DC 

Field and the Resulted Phase Shift 

EQ (v/cm)                              tancp sin(p 

0.0                                        25.4680 0.9992 

277.78                                   5.48783 0.9838 

555.56                                   3.21020 0.9548 

833.33                                   2.66599 0.9363 

1111.11                                 2.46498 0.9267 

1388.89                                 2.26533 0.9148 

1666.67                                 2.41280 0.9238 

1944.44                                 2.53525 0.9303 

2222.22                                  2.71445 0.9386 

2511.11                                 2.72540 0.9388 

If Eq depends on E0, so the dielectric constant e must depend on E0. For the 

parameters used in our experiment we found 

Kg= ^L (2 sinG) = 3.79x10 4 cm"1 

ED=—r-L = 963.24/cm 

4^e. (_^)=(4 ?76 x JQ-MJ (^ ( 6_4} 
i    Kg       e e 
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We assume that the dependence of the dielectric constant e on the magnitude of DC 

field EQ has a form of 

e(Eo)= e'd + ccEo+ßEo2) 

= e'[l+f(E0)] (6-5) 

where a and ß are constants to be determined. 

By combining Eqs (6-3 ), (6-4) and (6-5 ) we can calculate 1 / En and N.«-/ e' for teff' 

each value of DC field E0. The results are listed in Table 6-2. 

Table 6-2 

i        (E0)j (1/Eq)i (l/E^/d/E^p Nef/e' 

(v/cm)    (xlCr4cm/v)    {l+fKPJilW+fKJEJtf)   (xl013cm-3) 

1      277.78 

2     555.56 

833.33 

4    1111.11 

5    1388.89 

7    1944.44 

5.5838 

6.6335 

7.7571 

8.2114 

7.6419 

6   1666.67        8.2526 

8.4236 

8 2222.22   8.6410 

9 2511.11 8.1296 

1.0000 4.71 

1.1880 4.53 

1.3892 4.30 

1.4706 4.37 

1.3685 4.92 

1.4779 4.66 

1.5086 4.57 

1.5475 4.37 

1.4559 4.44 
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Based on the data in Table 6-2 we plotted { 1 + f [ ( E0), ] } / { 1 + f [ ( E0) , ] 

versus (E0), which is shown in Fig 6-2. By fitting the data we found that 

a = 0.0009515 and ß = -2.51 xlO '7. 

500 2500 1000 1500 2000 

Applied Field (v/cm) 

Fig. 6-2 

As a function of an applied DC field, the dielectric constant € has a form of 

e ( EQ ) = e' [ 1 + 0.0009515 E0 - 2.51 x 10 "7 EQ
2
 ] 

4.776 -10"" N. 
Then Eq= 

1 + 0.0009515 E0 - (2.51 10 '7) E0
2 

( 
^eff 

) 

For each pair of E0 and Eq we calculated the value of Neff/e', which is listed in the 

middle column of Table 6-3. 
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Table 6-3 Full crossing angle: 22° 

Applied DC field E0 (v/cm)   Neff/e' (x 1013cm"3)   Neff (x 10 16cm'3) 

277.78 

555.56 

833.33 

1111.11 

1388.89 

1666.67 

1944.44 

2222.22 

2511.11 

4.71 

4.53 

4.30 

4.37 

4.92 

4.66 

4.57 

4.37 

4.44 

4.47 

4.30 

4.09 

4.15 

4.67 

4.43 

4.34 

4.15 

4.22 

* The above listed results are based on the dielectric constant € being e = 

e' (1 + 9.2 • 10 ^ EQ - 2.51 • 10 "7 EQ
2
 ), where e' is 950 for our crystal. 

By taking the average, we obtained 

Neff/e' = (4-54 ± 0.38 ) x 1013 (cm-3). 

For our crystal €' is 950. Therefore, we get Neff = (4.31 ± 0.36 ) x 10 lö ( cm-3). 

Neff is approximately the trap density NA for our crystal. So we can get 

NA= (4.31 + 0.36 ) x 10 16 (cm-3). In Ref.[3] NA value of (4.2 + 0.2) x 10 16 ( cm3 

) was reported for a crystal of SBN:60 with 0.015% Rh. concentration. Our results 

96 



are very closer to theirs. We plotted curves of sin cp vs E0, tan cp vs E0 and e vs E0, 

respectively. They are shown in Fig 6-3, 6-4 and 6-5. 
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Fig. 6-5 
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Beside the information of the electric field dependence of the dielectric 

constant which we obtained from this experiment, from the measurement of 

diffraction signal we are also able to determine the electric field dependence of the 

electro-optic coefficient. The diffraction efficiency TJ is given by ( Ref. [1], [2]) 

T| = sin2( Kd ) 

where K = 7C • An / X cos9 and An = (1/2 ) n0
3 reff Esc- m. 

From the above equation we can get an expression for electro-optic coefficient reff 

which is 

r   _^sin"Vrj w2Xcos6x 
Esc       7cn0

jdm 

As we applied a DC field EQ across a crystal, the diffraction signal T| and the space- 

charge field Esc will change with EQ but keep all other parameters unchanged. 

Therefore, by calculating T| and Esc we are able to determine the dependance of 

electro-optic coefficient reff on the applied DC field E0. Since the laser beams are in 

ordinary polarization, the effective electro-optic coefficient reff in our measurement is 

equal to r13. For the parameters of X = 633 nm, 9 = 11°, n0 = 2.3, m = 1 and d = 1.5 

mm, we got r13 = 48.5 pm/v with no applied field. Then with an applied field, the 

diffraction efficiency and related calculation results are listed in Table 6-4. We 

plotted electro-optic coefficient versus electric field and fitted the data, which is 

shown in Fig. 6-6. 

The fitting results gave us 
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Table 6-4 Electric Field Dependence of the Electro-Optic Coefficient 

EQ ( v/cm)   T| (xlO"3)   Sin"1 (r)1/2) ( xlO"2)   Esc( v/cm )   r( eff 

0 

278 

556 

7.31 

7.90 

8.62 

8.56 

8.90 

9.29 

667 

641 

661 

M3 

1.08 r13 

1.10r13 

833 9.61 9.81 684 1.12r 13 

1111 

1389 

1667 

1944 

9.82 

10.24 

10.32 

10.75 

9.92 

10.13 

10.17 

10.38 

731 

830 

851 

888 

1.06 r,3 

0.95 r13 

0.93 r13 

0.91 rI3 

2222 10.85 10.43 912 0.89 r 13 

2511 11.68 

1.15-, 

.2 1.10. 

o 
w 
H    1-05- 
e 

o 
U 
_o 
Q.   0.95- 
o 

I 

s 
8    0.90 • 
w 

0.85- 

10.82 933 

•■■.o 

0.88 r13 
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Fig. 6-6 
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r( EQ ) / r 13 = 0.99308+ ( 5.282 • 10 ~4 ) EQ - ( 6.935 • 10 ~7) EQ
2
 + 

(2.682 • 10 "10) E0
3 - ( 3.289 • 10 ~14) Eg4 

For our SBN:60 crystal, the effective electro-optic coefficient Reff is given by 

Reff = ne r33 cos 0 - n0 rn sin 9 for extraordinary rays and Reff = n0
4 r13 for ordinary 

rays.  Experimentally we measured the gain coefficient of the weak beam with an 

ordinary polarization and an extraordinary polarization, respectively.    Then by 

calculating the ratio of two gains, we can get the ratio of   r33 to r13.   From our 

measurement the ratio of r33 to r13 is 3.21 for our crystal. 

Experimentally,  we also measured the electro-optic coefficient  by  an   optical 

interference experiment.    The experimental set up  is  shown  in  Fig.  6-7. 

Ml 

M2 

Vertically Polarized 
Beam Expander Laser Beam 

M4 

BeamSplitter Crystal 

§ M3 

/\/\ Fringe Pattern 

Fig. 6-7 Experimental Setup For Measuring The Interference Pattern 
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From this experiment, the electro-optic coefficient could be determined by measuring 

the resultant shift of the interference fringe pattern due to applying an electric field 

across the crystal. As a voltage V was applied to a crystal, the resultant refractive 

index change in the crystal would be 

An = (r33ne3-r13n03)V/2d 

where d was the width of the crystal. This refractive index change caused a 

difference of the optical path between two beams, which was equal to 2«An«l (1: the 

length of the crystal). Experimentally, we founded that the fringe pattern moved one 

space, which indicated that the optical path difference between two beams was equal 

to A, , when the voltage across the crystal was 625 v. Based on this data we can 

calculate r,3 which is equal to 38.1 pm/v for an applied voltage of 625 v. For the 

same voltage of 625 v , from the-data in table 6-4 we got r,3(V0=625 v) = 0.95*48.5 = 

46.1 pm/v. 

Comparing these two values of r13 obtained by different experiment proved that our 

results  for the  electric  field  dependence  of the  electro-optic   coefficient  are 

dependable. 

Finally, in order to exam the accuracy of NA value which we obtained by using the 

technique of determination of phase shift. We also did an experiment to measure NA 

value by using a traditional method of changing the angle between two beams.  The 

basic theory and measurement steps are as follows ( Ref [4]). 

Due to two-beam coupling, the weak beam l{ experiences an increase in intensity 

101 



along its propagation direction which is ( see Appendix I) 

Ilc    (l+m)eYLeff 

i!      l + meTLeff 
(6-6) 

where m= IQ, /102, a ratio of the weak beam intensity to the strong beam intensity. 

Experimentally, we measured IIc, l{ and m, and then calculated yLeff. 

In other hand, 

Y =R 
27iRelTKBT      Kg 

XncosGe l+(Kg/K0)
: (6-7) 

where RefT = ne r33 cos 9 - n0
4 r13 sin29 for an extraordinary ray, Kg is grating 

constant and Ko= KßT    (~^—)=C( e  } Provided C = 4TT eV KBT,and R is the 

measure of the electro-hole competition in the formation of the space-charge field. 

n4r 
By defining f(8)=cos9 /(cos29 J5j-p-sin29) we will have 

ne
4 r33 

K„ 
YLefrf(9)a 

Kg   / NefT 

c /     e 

By plotting the data of y Lefff ( 9) vs Kg and fitting the data, we then obtained a value 

°f Neff/€ •   Tne data we measured and calculated are listed in Table 6-5, and the 

fitting curve is shown in Fig.6-8.   The fitting results gave us the value of NcJe 

which was 
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Fig. 6-8 

Neff/e = (4.59 + 0.31) x 1013 (cm"3) 

Therefore, from the data we have obtained, we can see that 

1. We got a very good fitting for the data of sin (p vs E0 and tan (p vs E0 from our 

phase shift measurement. Also, two values of Nen/e obtained in two different 

experiments are so close. All these provide an evidence that the new technique of 

measuring NAdeveloped by us is accurate and dependable. 

2. Based on the experimental data, we got fitting curves for the electric field 

dependance of both the dielectric constant and the electro-optic coefficient which 

were shown in Fig 6-5 and 6-6. In Ref. [5] the author also plotted these two curves 

of e vs E0 and r vs EQ. Ours have the same shape with theirs. This varifies 
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indirectly the validity of our new developed technique. 

IV. Calculations Of Electron-Hole Competition 

If electrons and holes occur simultaneously in the charge transport process, 

there will be a electron-hole competition in the formation of the space-charge field 

which will lead to a reduction in strength of the photorefractive effect. Suppose both 

electrons and holes can be excited from ( and to ) a single impurity band, then by 

employing band-transport model in Ch. 3, a first-order differential equation for the 

time evolution of the space-charge field can be derived which is ( see Ref. [ 6 ]) 

dE,(t)       neoeiie[l+k(k-iV)/y]      nhneuh[l+k(k+iV)/kn
2] 

"     dt     =
E,(0l     e[l+k(k-iV)/Ke

2]     +    €[l+k(k+iV)/KA
2]    ; 

  nhneuh(k+iV) 
?~~x e [l+k(k-iV)/Ke

2]   " e[H-k(k+iV)/KA
2] 

+ jn$nl (   n~e^k-iv> }     (6-8) 

where ne0 = seI0(ND-NA)/yeNA and nhö = shI0NA/yh(ND-NA) are zeroth-order free-carrier 

density. 

Ke-2 = kBT^e/eyeNA, Kh"2 = kaT^/ey^-N^, k2 = e2NA(ND-NA)/<= kBTND and 

V = eE(/kBT.   Ke
_1 and Kh-' are average distance travelled by electrons and holes 

between excitation and recombination, Eois the externally applied field. 

If the charge carrier is only electron, then ^=0, Kh
_1=0, and B^—»<».   If the charge 

carrier is only hole, then |ie=0, Ke-'=0, and Ke—>oo. 

If we write eq. (6-8) as 
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-dE,(t)/dt = AE,(t) + B ( 6-9 ) 

The solution for eq. (6-16) is 

E1(t) = (Be-Al-B)/A 

At equilibrium, the steady-state space-charge field is 

Esc=-B/A 

As no voltage is applied to a crystal, v is equal to zero in eq. (6-8). Then we have 

" n 

B_(imknTv        f    neone nhonh 
B-{-^-)^)k{l+k2/Ke2   -   i+k2/Kh2   ) 

Thus, the steady-state space-charge field is 

E -   imknTr        k       )f    neo^ie nh0^h 
sc e        l+k2/V A l+k2/Ke2    ~   l+k2/Kh2   > 

'V   l+k2/Ke2     +   l+k2/Kh2    > 

or E =   imknT      k 
SC C       l+k2/k02R 

where     R = ( 1-C )/( 1+C ) 

with       C = shNA(kg2+Ke2)/[sc(ND-NA)(kg2+Kh2)] 

If the charge carrier is only electron C=0, R=l, and if the charge carrier is only hole 

C->oo, R=-i. Therefore, R=l or -1 indicates no electron-hole competition. From 

our data in table 6-5 we plotted Kg/y vs Kg
2and fitted the points. The results gave us 

a straight line which is shown in Fig. 6-9. The slope and the y-intercept of the 

line enable us to determine the electro-hole competition R, which is found to be 
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Fig. 6-9 Determination of Electron-Hole Competition Factor 

0.98. This indicates that there is no electron-hole competition in the formation of the 

space-charge field. 

V. Conclusion 

We have demonstrated a new technique for the measurement of the trap density 

in photorefractive materials. This technique has been shown to give the same result 

for the trap density as the conventional two-beam coupling technique but is more 

convenient to carry out in practice. The technique presented here also yields 
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the electric field dependence of both the dielectric constant and the electro-optic 

coefficient. In addition, an electro-hole competition was determined based on our 

data of gain versus grating constant. The result indicates that there is no electron-hole 

competition for our crystal. 

108 



VII.    GRATING WRITING AND ERASURE TIMES 

In developing an effective photorefractive optical limiter it is important to have 

in hand a good understanding of the physics of the response time of the material. 

Therefore, part of our research effort has been focused on developing a clear picture of 

the writing and erasing photorefractive response times. Our results are in strictly 

excellent agreement with our photorefractive model although some are intuitively 

surprising. For example, we have found the I"1 dependence to be vigorously followed 

for our SBN samples while we have found that, contrary to suggestions in the 

literature, the writing and erasing times are not equal for equal incident intensities. 

Investigation On Grating Formation Time And Erasure Time 

Analytical Solution For Grating Erasure Time 

When a grating is being written the total current due to the electrons in the 

conduction band can be expressed as j = j0+j,eik\ where j^e^n^ depends on the 

applied field and j, has two parts jD and jE. The jD part is a current due to the diffusion 

and the jE is a current due to the formation of the space-charge field. In this physical 

picture, the direction of net electron flow is the same as the electric field direction. But 

Electron Distribution 

dn/dx > 0 (— _} 3n/9x < 0 

Jdiffus ion Jdiffusion 
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when a grating is erasing the situation is different from the writing case. 

1. The current still has two parts j0 and j j, however, the direction of net electron 

flow is now opposite to the direction of the space-charge field. Therefore, we 

have to write the current as j = j0 - jjeikx where the minus sign can be explained as 

a 180° phase shift. 

2. In the grating erasing case the electron are driven by the space-charge field. The 

part of j, due to diffusion can often be neglected. 

3. During the period of erasing a grating the optical intensity is uniform, and can be 

written as I = I0. 

Based  on  the  above  consideration  the  four  basic  equations  describing   the 

photorefractive effect in a grating erasing case should be written as 

-an.      f5?D _    1Ü1 
at     at e dx 

(7-1) 

—D=SI(N-ND)-TRnND 

j = e|inE 

(7-2) 

(7-3) 

M=42p(n + NA_N+) 

Then the assumptions are 

(7-4) 

I = L (7-5) 
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n = n0+nI(t)e
ikx 

N^N^+N^t)^* 

(7-6) 

(7-7) 

E = E0+E,(t)ei ikx 
(7-8) 

J=Jo-Ji(t)e' ikx 
(7-9) 

By substituting (7-5 ) - (7-9 ) into (7-1) - (7-4) we can obtained a second-order 

differential equation which is 

§h<4-J-f)f'+(-7iF--Ti-JE1-0 (7-10) 
9r XR     Tdi     XE     dt XdiTR X,XE 1 

The solution for (7-10) is 

E1(t) = R(^)e-,/xe.e
iö5t where 

e       di 

T 

V 

1 "   (-^-)2Ä 
(7-11) 

is the grating erasure time. 
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In the writing case, the grating writing time ( or say " grating growing time" ) is 

given by eq. (4-5), which is 

Tc x2 .  , Tc 

* = ** 
(1+-?-)+(-?■) 

[l-K-^Ä] (l+-^.)+(^L)*Ä) 

In the case that TR«^ eq. (4-5) can be written as 

Xe=X, di 

T    2 

1+ (-£■)  IE_ 

14ÄÄ+ÄÄ (7-12) 

If we now compare (7-11 ) with ( 7-12 ), it is clear that the grating erasure time is 

longer than the writing time.   This is true even in the case of zero field but is 

particularly important for the applied field case since TF can be on the order of xK 

and tdi can be 10 times longer than x,. 

Experimental Measurement For Grating Writing Time And Erasing Time 

Experimentally, we measured the writing time and the erasing time of 

photorefractve index gratings for SBN:60 with Cerium as a dopant. The 
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experimental set up is shown in Fig. 7-1. 

Polorized 
laser 

beam 

Fig. 7-1 Experimental setup for measuring the linear response 

Determination for the varying function of the grating erase with time 

asingle exponential decay function 
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In order to measure the grating erasing time we must first know the function 

of how the grating erasure varying with time. We measured a diffraction signal for a 

SBN sample as a function of time. The results are shown in Fig. 7-2, which 

indicated that the grating erase is a single exponential time decay function. 

11 = 0.19916 + 1.98785»e 28.11747 

- 
Data: DATA1_B 
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Fig. 7-2    Single Exponential Decay Function 
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Measurement for grating growing time and erasing time 

Our experimental parameters were: wavelength = 458 nm, total laser power = 25 

mw, the full crossing angle between two beams = 10°, and the intensity ratio of two 

beams = 1:100. Experimentally, the weak beam was detected. At first the energy 

exchange signal was traced by DSA oscilloscope, from which a grating growing time 
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xg can be measured. After the refractive index grating being formed inside the 

crystal we blocked the detected beam and then the diffraction signal due to the strong 

beam was traced by DSA oscilloscope, from which a grating erasure time x can be 

measured. 

The curve of grating formation is shown in Fig. 7-3, and that of grating erase is in 

Fig. 7-4. The measurement results for the grating growing time and the erasing time 

are xg=2.66 s and %=4.22 s, respectively, which showed that the grating erasure time 

is longer than the grating formation time. Quantitatively, in this measurement the 

200mv 
/div    i 

Fig. 7-3 Grating Formation Time 
ls/div 
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x = 4.22 s e 

200mv 
/div 

ls/div 
Fig. 7-4 Grating Erasure Time 

grating erasure time is about 1.6 times of the grating formation time. 

Another measurement of the grating writing time T and the erasing time x was 

performed for BaTi03 crystal with different kg values. The measurement results are 

(1) \l\ = 1.5 for crossing angle of 14°; (2) zjx = 1.9 for crossing angle of 40°. 

These results agree with the theoretical predictions that (1) the grating erasure time is 

longer than the grating growth time and (2) the ratio of the grating erasure time to the 

grating growth time is increased with kg increased. 

Comparison Of Experimental Data With Theoretical Calculation 

In the case of no applied field, eq. (7-11) gave an erasing time of xc = xdiand eq. 
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(7-12) gave a growth time of 

TP=- 

Xdi 

i+A(-^> 

For the parameters of ^=458 nm, 29=10°, NA=1*1016 cm"3 and ND=10NA, we can 

calculate the ratio of grating erasure time to formation time which is 1.8. This 

theoretical value is close to the experimental result for the ratio of 1.6 which we 

measured. Therefore, the experimental results conform the theoretical analysis for 

the photorefractive grating erasure time which we derived in the beginning of this 

chapter. Both theoretical and experimental results do indicate that the grating 

erasure time is longer than the growth time. 

From eq. (7-11) and (7-12) we can obtain 

Xe lM^^ +(-^)2(-^) 

Ts 1- (-^-X-^) 

= (1+Akg + Bkg
2)/(1-Bkg

2) (7-13) 

where A = uE^x,. / x,and B = ^WIx,. 

From eq. (7-13), we can see that the ratio of the grating erasure time to the 

growth time is increased with kg increased. 

Dependence Of Grating Erasure Time On Applied DC Filed 

In the last section we have seen that in the case of no applied field the grating 
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erasure time is longer than the formation time, both theoretically and experimentally. 

We have measured the grating erasure time without field, which was 4.22 s ( see 

Fig.4-7 ). But what happens when a DC field is applied? According to our 

theoretical analysis given by eq.(7-ll), the grating erasing time should get longer 

with a DC field than that with no field. In order to verify the theoretical prediction, 

experimentally, we measured a grating erasure time with a DC field applied to the 

crystal. The experimental parameters were same as those described in last section. 

When a DC field of 6 kv/cm was applied to the crystal, a grating erasure time of 6.4 s 

was measured. This erasing time of 6.4 s is obviously longer than the erasing time of 

4.22 s with no field obtained in last section ( Fig.4-7 ). 

Then with eq.( 7-11), we calculated the theoretical value of grating erasing time 

with a DC field of 6 kv/cm. The calculated result for grating erasure time with a DC 

field of 6 kv/cm was 7.0 s. This is close to the experimental result of 6.4 s. 

Therefore, the theoretical prediction for the grating erasure time given by eq.( 7-11 ) 

is dependable. Both theoretical and experimental results indicates that the grating 

erasure time depends on the applied field. In the case of a DC field applied to a 

crystal the grating erasure time is getting longer than that in the case of no field. 

Dependence Of Grating Erasure Rate On Optical Intensity 

Photorefractive crystals have been used to demonstrate several novel operations 
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in real-time optical data processing. Understanding the time dependent behavior in 

these materials is important both for predicting the response of the photorefractive 

crystals and for determining how to modify them to improve response ( Ref. [2]-[5] 

)• 

In this chapter we will present the data which show the dependance of light- 

induced erasure rate of a refractive index grating on optical intensity. Our 

measurement was performed for SBN crystals and BaTi03 crystals, respectively. 

Different behavior of the dependance were obtained for these two types of crystals. 

The curve fitting results showed that in SBN the speed of erasure of a photorefractive 

index change is linearly dependent on the intensity of the erasing beam with and 

without an applied field. However, in BaTi03 this erasure rate of a photorefractive 

grating scaled sublinearly with optical intensity, with and without a field. 

Experimental Setup And Data Collection 

The experimental setup is shown in Fig. 7-1. Two writing beams wrote a 

photorefractive grating inside a crystal. The third beam which bisected two writing 

beams was used to erase the grating. It is called erasing beam. Experimentally, we 

detected the weak beam. After the grating being formed inside the crystal we 

blocked the detected beam, and at the same time turned on the erasing beam. Then a 

diffraction signal from another beam was sent to PMT and measured by DSA. By 
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changing the intensity of erasing beam we are able to measure the dependance of the 

grating erasure rate on the optical intensity. Our measurement were performed for 

two SBN thin samples, two BaTi03 thin samples and one BaTi03 thick sample. The 

experimental data of grating erasure time versus erasing beam intensity are listed in 

Table 7-1 to Table 7-3. The fitting results are shown in Fig. 7-5 to Fig. 7-11. From 

the fitting curves we found that there is a very good linear dependance of the grating 

erasure time on optical intensity for SBN samples. But for BaTi03 samples the 

behavior shown are apparently sublinear. The fitting results gave an T067 

dependence for one BaTi03 thin sample, I"0'72 dependence for another BaTi03 thin 

sample and Tm'0M) dependence for the BaTi03 thick sample. 

Table 7-1    Data of Measuring the Linear Behavior for SBN Crystals 

Thin Sample #1 

Neutral density filter Ierase(mw) x'(s)  xdark(s) l/x=l/x'-l/xdark(l/s) 

in erasing beam 

0 75 0.052 790 19.23 

1 5.5 0.67 790 1.491 

2 0.55 6.7 790 0.148 

3 0.055 70 790 0.013 

4 0.0055 376 790 0.00139 
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Thin Sample #2 

Neutral density filter Ierase(mw) x'(s)  x^s) l/x=l/x'-l/xdark(l/s) 

in erasing beam 

0 

1 

2 

3 

4 

20    0.1503 75.633   6.6419 

1.52  75.633   0.6447 

0.2 13.47     75.633 0.061 

0.02       50.706   75.633 0.0065 

0.002      71.369  75.633 0.00079 

SBN Sample 1 1       n        d .008 
Tdecay erase 

0.0001 
0.001        0.01 0.1 l 10 100 

Optical power in erasing beam ( mw ) 
Fig. 7-5 
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Fig. 7-6 

Table 7-2   Data of Measuring the Linear Behavior for BaTi03 Crystals 

Thin Sample #1 

Wmw)    T'(s)    Tdark(s)    Tn/t=l/i:,-l/xdark(l/s)] 

0.8 19.0 40 

2 13.4 40 

3.2 10.8 40 

8 6.50 40 

32 2.92 40 

80 1.62 40 

36.2 

20.2 

14.8 

7.76 

3.15 

1.69 
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Thin Sample #2 

Ierase(mw)    X' ( s >    W(s)    X [ l/x= W - l/x^ ( 1/s ) ] 

0.8 

2 

3.2 

8 

32 

80 

11.4 

7.28 

5.60 

3.12 

1.24 

0.63 

31 

31 

31 

31 

31 

31 

18.0 

9.51 

6.83 

3.47 

1.29 

0.64 

BaTiO^ Thin Sample 1 

100 

_! j 0.668 
erase 

0.1 1 10 
Optical power in erasing beam ( mw ) 

Fig. 7-7 
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BaTi03 Thin Sample 2 J j 0.724 
erase 

0.1 1 10 100 
Optical power in erasing beam ( mw ) 

Fig. 7-8 

Table 7-3    Data of Measuring the Linear Behavior for BaTi03 Thick Sample 

BaTi03 Thick Sample (#3 ) 

Table A: Full crossing angle 26=14°    Table B: Full crossing angle 20=40° 

Intensity ( mw ) l/xerase ( 1/s ) Intensity ( mw )    l/xerase ( 1/s ) 

217 0.6235 200 0.5665 

138.23 0.3715 100 0.254 

84.41 0.221 78 0.194 

42.75 0.113 39.4 0.1125 

33.2 0.092 30.6 0.073 

13.67 0.0615 19.8 0.048 

8.46 0.0355 7.8 0.021 

4.25 0.0205 3.92 0.016 

3.28 0.018 3.02 0.014 
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Table 7-3    Data of Measuring the Linear Behavior for BaTi03 Thick Sample 

BaTi03 Thick Sample (#3 )   Table C: Full crossing angle 20=80° 

Optical Intensity (mw) lAWO/s) 

208 0.5995 

132.5 0.438 

80.91 0.311 

40.98 0.1915 

31.82 0.155 

20.59 0.09 

13.1 0.067 

8.11 

4.08 

0.043 

0.028 

1 

£•0.1 
O u •o 

0.01 

3.14 0.024 

BaTi03 sample 3 

Full crossing angle: 80 degree 

log (1/xd) = -2.0448 + 0.79603 logl0 

10 100 1000 
Optical power in erasing beam ( mw ) 

Fig. 7-11 
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Explanation For Subliriear Photorefractive Response Time in BaTiO, 

From the band transport model the photorefractive response time x is governed 

by eq. (4-5 ), which gives x is proportional to Tdj, the dielectric relaxation time. This 

Tdi is inversely proportional to n0, the zeroth-order electron number density. In the 

single-donor-trap model n0 is the only intensity-dependent parameter that affects eq. 

(4-5 ). It is simply proportional to the laser intensity, and consequently the 

response time x is expected to vary inversely with intensity. The results of our 

measurement for the dependance of the grating erasure rate on optical intensity 

showed a good agreement with the theoretical prediction. But this linear behavior 

only happened to crystals the donor number density of which greatly exceeds that of 

accepters ( ND » NA ). For .this type of crystals which were defined as type-A 

crystals ( Ref. [2]-[5] ), the previous models of the photorefractive effect assumed 

that either the donors or the accepters ( but not both ) took part in charge transport, 

and neglected thermal excitations. 

However, for another type of crystals which have ND < NA and are defined as 

type-B crystals ( Ref. [2]-[5] ), the band transport model should be extended to 

include secondary photorefractive centers. These are trapping centers that are highly 

ionized at room temperature but become populated by acquiring free charge carriers 

generated by the interaction of the laser light with the deep-level impurities. The 

important feature of this model is the finite thermal ionization rate of the secondary 
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centers,   which   influences   the   free-carrier   and   occupied   trap   concentrations. 

Theoretically, one more rate equation for accepters should be added to the original four 

basic equations (3-1) to (3-4), then the nonlinear behavior between the grating erasure 

rate tne the optical intensity for BaTi03 could be explained (Ref. [6]). 

Conclusionsn 

Our results, both theory and experiment, show that the writing and erasure time 

for photorefractive materials are not the same. However, they are in practice 

sufficiently close considered to be on the same order. At the same time an examination 

of response time versus intensity dramatically supports a I"1 dependence for SBN. As a 

result our assumption for a photorefractive limiter based on SBN is validated. 

However, this assumption is not true for all materials. 
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VIII. SELF-FOCUSING AND DEFOCUSING 

One of the most dramatic photorefractive phenomena observed in the laboratory 

has been self-focusing and self-delbcusing. Either phenomena can be used together 

with an imaging lens and aperture as a limiter. 

Fig. 8-1 shows a top view of a crystal with a 10 micron diameter beam passing 

through it. Without an applied voltage the beam is clearly seen to diverge due to normal 

diffraction. With a small applied voltage, however, the beam is seen to defy 

diffraction. This effect is due to the self-focusing photorefractive phenomena. 

As ,in the case of Kerr focusing and defocusing, photorefractive focusing and 

defocusing can also be physically understood. To illustrate the photorefractive effect, 

we can first consider two plane waves of light overlapping in a crystal producing an 

optical interference pattern as shown in Figure 8-2. In the bright regions of the 

interference pattern carriers are excited into the conduction band. The excited carriers 

then diffuse or drift and are finally trapped in the dark regions of t interference pattern. 

The resulting charge separation in turn generates a space charge electric field. The drift 

and diffusion process continues until equilibrium is reached where the diffusion or drift 

current is exactly balanced by the current generated by the induced space charge field. 

In this way the magnitude of the field is simply determined by the value necessary to 

balance the diffusion or drift current. The space charge field can then distort the lattice 

and produce via the electro-optic an index change given by 

An=— r-E eff    sc (8-1) 

ere refr is the effective electro-optic coefficient of the material, Esc is the induced space 

charge field, and n is the unperturbed index of refraction of the material. 

The resulting induced index change can then be used in Maxwell's equation to 

predict the propagation behavior of the two overlapping laser beams. The result is that 

the induced index causes a coupling between the two beams which can be written as 
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dEl   •/      •  \E1& 

dr, I0 

^-(Y.-y,)^ dr2 I0 

(8-2) 

(8-3) 

where y is the coupling coefficient and is determined by the material effective electro- 

optic coefficient and the magnitude of the laser-induced space charge field. The fact 

that y has real and imaginary parts points out that the coupling between the two waves 

causes energy exchange between them and causes each of them to see a modified index 

of refraction. 

In the physical picture we present here, we consider a propagating finite beam 

to be made up of Fourier plane-wave components. As shown in Figure 8-3(a) we can 

form a physical picture of diffraction that is based on "watching" each Fourier 

component propagating through the material. Since each component has a different k- 

vector projection direction, the relative phase between Fourier components changes as a 

function of propagation distance z. Consequently, the sum of the Fourier components 

produces a different wave form at each z or propagation position. In the 

photorefractive picture each Fourier component produces an interference pattern with 

each and every other Fourier component. The result is that each component, therefore, 

"sees" a modified index of refraction which is determined by summing the index 

modification produced between a given Fourier component and every other component. 

When the low frequency Fourier components "see" a lower index than the higher 

frequency components due to the coupling, focusing is induced. Figure 8-3(b) 

Likewise, when the low frequency components "see"" a higher index than the higher 

frequency components, defocusing is induced (Figure 8-3(c). In practice, the sign of 

the index change depends on the sign of an applied external field so that focusing is 

induced with an applied field along the c-axis direction while defocused field opposite 

the c-axis direction.    On interesting possibility not discussed here occurs when 
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diffraction is exactly compensated by photorefractive focusing. In this case, shape 

pursuing propagation or soliton formation is observed. This picture neglects energy 

coupling which would result in an amplitude change of the Fourier components and 

would be important for a more complete analysis. In our work the effect of energy- 

coupling was minimized by the choice of input beam diameter, the value of applied 

field, and the time at which the measurement was made. 

The basic apparatus consisted of a cw argon-ion laser and a 5 mm x 5 mm x 6 

mm strontium barium niobate (SBN) crystal with 0.01% by weight rhodium dopant. 

The cw argon-ion laser wavelength was 457 nm and its output beam diameter was 1.5 

mm. A schematic diagram of the apparatus is shown in Figure 8-4. The output beam 

was directed onto a 10 cm focal length lens and the SBN crystal was placed 2.6 mm 

beyond the beam waist with 2 w0 = 33 |im. The beam diameter at the SBN crystal 

entrance face was 75 |im. The crystal was oriented with its c-axis in the horizontal 

plane and perpendicular to the propagation direction of the incoming laser light. The 

polarization of the incoming light could be varied using a polarization rotator but was 

initially chosen to be along the c-axis (extraordinary polarization). The beam diameter 

throughout the crystal was measured using an imaging system consisting of an imaging 

lens and a two-dimensional detector array. The input face of the 6 mm long SBN 

crystal was well beyond the Rayleigh range of 1.5 mm from the beam waist formed by 

the focusing lens. The imaging system, therefore, imaged the beam spot at the SBN 

entrance face with some magnification onto the detector array. As the imaging lens and 

the detector array are moved away from the SBN crystal, different cross sections of the 

Gaussian beam are then imaged onto the array. In this manner, the beam diameter at 

different locations throughout the SBN crystal was monitored. The magnification of 

the imaging system was determined by placing a thin aperture on the crystal exit (and 

entrance) face and imaging the aperture onto the detector array. Using the known value 

of the reference aperture, the magnification was determined to be about 15.6 and the 
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positions of the exit and entrance faces of the SBN crystal were located. Using this 

information the horizontal cross section of the incident beam on the entrance and exit 

faces of the crystal was determined. Beam diameter and viergence data were taken at a 

time when these quantities reached a maximum value. 

Figure 8-5 shows the effect of applied voltage on the exiting beam diameter 

while Figure 8-6 shows its effect on the divergence of the incident beam. As shown in 

these two figures the photorefractive defocusing is a dramatic effect. Similar results 

have been observed for focusing. Only the sign of the applied d.c. electric field was 

reversed when producing focusing or defocusing effects. Defocusing effects are seen 

when the field is opposite the c-axis direction. 

Conclusions 

Our results clearly demonstrate the potential of photorefractive self-focusing and 

defocusing as an optical limiter. Both are seen to be large and dramatic effects to occur 

with little or low laser power. Although we have not had the opportunity to study this 

effect e have determined the magnitude and speed of the effect and its independence on 

intensity. That is, with the same applied voltage the degree of focusing and defocusing 

is observed to be independent of intensity over four orders of magnitude, as expected. 
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CONTROL OF NA AND ND 

As has been pointed on numerous occasions in this report, control of NA and ND is 

important to the design of a photoTefractive optical limiter. Variations in the response time 

and the O.D. and NA and ND are large. One potential technique for control of both of 

these variables is to use separate dopants in an attempt to control them independently. For 

this reason we have investigated the behavior of double-doped crystals. In particular, we 

have focused on the Cr-Mo combination. Four crystals were studied and the results are 

shown below. 

Cr, Mo DATA 

(a) .01 Cr and .005 Mo 

aL~.66 

T~ 1.68 sec 

OD~ 1.6 

all data at 1W/CM2 at 4880A 

(b) .005 Cr and .01 Mo 

a L -.33 

T~ 1.68 sec 

OD ~ 1.3 

all data at 1 W/CM2 at 4880A 

(c) .005 Cr and .005 Mo 

a L -.33 

T~ .8 sec. 

OD ~ 1.2 

all data at 1W/CM2 at 4880A 
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(d)      .01 Cr and .01 Mo 

a L -.55 (.65 for second cube) 

T~ 1.7 sec. 

OD-.3 

all data at 1W/CM2 at 4880A 

The data from crystals (a), (b), and (c) supports the idea that only Cr controls the 

crystal absorption. That is Cr plays the role of ND. For crystals (a) and (b) the Cr 

concentration changed by a factor of 2. Meanwhile the total dopant concentration remained 

constant. This indicates that Cr alone plays the role of the optical absorber. Likewise 

crystal (c) has the same Cr concentration as crystal (b). For these two crystals aL or the 

absorption was determined to be the same. These three crystals therefore offer strong 

support that Cr alone plays the role of ND. Crystal (d) behaves more like a Cr 

concentration of .0075 and a Mo concentration of .0075. Perhaps this was tout from a 

different boule location. 

The same crystals also indicate that both Cr and Mo are playing the role of NA. 

That is, the response time for both crystals (a) and (b) measure to be the same. This would 

be the case if the trap density were also the same in both crystals. Meanwhile crystal (c) 

has a clear faster response time. The total dopant concentration is less in this case than for 

crystal (a) or (b). Likewise the OD for crystal (c) is less than that for crystals (a) and (b) 

supporting a smaller NA for crystal (c). The fourth crystal looks like a Cr, Mo 

concentration of .0075 each or a total again of .015. 

The data from crystal (a), (b), (c), and (d) therefore support the idea that 

Cr plays the role of ND 

Cr and Mo play the role of NA 
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In addition to the double-doped samples we also examined the two types of dopants 

separately. For Mo alone we found for four samples: 

(a) .005 Mo 

a 1 ~ 3.2 

T~ 1.2 sec 

OD-1.0 

All data at lW/cm2 at 4880A 

(b) .01 Mo 

a 1 - 1.7 

T~4sec 

OD-1.6 

All data at lW/cm2 at 4880A 

(c) .015 

a 1 -2.9 

T - .228 sec 

OD - 2.6 

AlldataatlW/cm2 

(d) .015 

a 1 -2.3 

T ~ 1.26 sec 

OD - 2.3 

All data at 1 W/cm2 at 4880A 
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(e)      .025 

a 1-1.7 

T~ 1.98 sec. 

OD-3 

All data at lW/cm2 at 4880A 

(f)       .025 

ccl~1.4 

T ~ 2.35 sec. 

OD~3 

All data at lW/cm2 at 4880A 

While for Cr alone we found 

(a) .005 Cr 

a L ~ .35 

T - 2.6 sec 

OD~l 

all data at 1 W/cm2 at 4880A 

(b) .01 Cr 

a L ~ .69 

T-2.6 sec 

OD - 1.3 

all data at lW/cm2 at 4880A 

(c) .015 Cr 

ccL~.73 
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T ~ .390 sec 

OD-1 

all data at lW/cm2 at 4880A 

(d) .025 Cr 

aL-1.2 

T- .515 sec 

OD~l 

all data at 1 W/cm2 at 4880A 

(e) .015 Cr 

a L -.8 

T ~ .375 sec. 

OD-1.3 

(f) .025 Cr 

aL~2 

T - .455 sec. 

OD-1 

That is, for Mo we have 

Data from crystal (a), (b), (c), and (d) suggest that Mo plays the role of NA. By 

increasing the concentration of Mo we increase the response time indicating that NA is 

increasing. Meanwhile the otL is decreasing!. This would suggest that the higher 

concentration of Mo is lowering the ND allowed in the crystal. The higher NA value is also 

supported by a higher OD value for crystals with higher Mo concentration. It is also 

interesting that the ratio of ocL for the two .015 crystals is 2.3/2.9 or .80 while the ratio of 
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the .025 crystals is 1.4/1.7 or .82. This suggest that the section from each boule is the 

same. 

And for Cr we have 

(a) The ratio of dopants for the two samples is .015/.025 or J> 

(b) The ratio of response times for the two crystals is .397.515 or .75 

(c) The ratio of absorption, ccL, for the two crystals is .73/1.2 or Jj 

It would appear that both NA and ND change in proportion to the Cr concentration. 

This is consistent with our previous conclusion that the Cr concentration alone determined 

ND while both Cr and Mo concentrations determine NA. There is, however, a lower 

absorption the .015 Cr and .025 Cr crystals than the previous data for the double doped 

.005 and .01 Cr crystals suggested. This could easily be due to the difference in 

absorption through the boule. It would be good to always look at crystals taken from 

nearly the same location in the boule if this is not already the case. 

Conclusion 

There is substantial evidence that in the double doped Cr-Mo crystals that Cr plays 

the role of ND the donor, while both Cr and Mo play the role of NA, the acceptor. While 

the data is not 100% in support of this conclusion the evidence would warrant a additional 

measurements. This is the first time, to our knowledge, that control on NA and ND seems 

eminent. 

The comparison of our data on the new crystals 18,19,20, &21 gives the 

following bottom line. 

1. 

2. 

3. 

Cr plays the role of ND. Only Cr determines the absorption in the samples I have 

looked at. 

Both Cr and Mo play the role of NA. both Cr and Mo determine the response time. 

The data supports the conclusion that when you compare the double dopant to the 

single dopant, the absorption is given directly by the absorption of Cr, i.e. 
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ttCr, Mo ~" aCr 

4.       The response time for the double dopant can be determined from the single dopant 

using the empirical relation 

j_=J 1_ 
^CrJUo       T0       T Mo 

This last result works extremely well for the two cases I have looked at. That is, 

for 

(Cr .005, Mo .005), (Cr .01, Mo .01) and (Cr .005), Mo (.005), and for (Cr .01), 

Mo (.01). 
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X .       SEEDING THE BEAM FAN 

In order to test the idea that the initial scattered light is weak and the cause of a 

slow start for the beam fanning phenomenon, we investigated the possibility of seeding 

the fanning with a more intense beam. Figure 10-1 depicts the seeding concept. A 

grating is placed in front of the photorefractive crystal. The incident laser beam now 

passes through the grating before entering the crystal. The incident beam on the grating 

is diffracted into several beams which propagate through the crystal while overlapping 

each other. Because of the overlap, gratings are written and energy is exchanged. If 

the grating chosen diffracts more light than normally found scattered in the non-grating 

case, the crystal can be said to be seeded. The data shown in Figure 10-2a,b is for a 

series of gratings of 1% diffraction efficiency. The observed enhancement in speed is a 

modest factor of 3. On the other hand, with a diffraction efficiency of 5%, Figure 2c, 

d, the enhancement in speed is more like 8 or 9. that is, it appears that by providing the 

crystal with a seed beam of greater intensity than that normally found via scattering by 

crystal imperfections, the response time for the optical limiting behavior of the crystal is 

dramatically shortened and brought more in line with that observed for two-beam 

coupling experiments. 

In order to investigate the seeding effect more thoroughly the apparatus of 

Figure 10-3 was employed. In particular, instead of using a series of gratings to 

provide the seed beam, a weak seed beam is intentionally crossed in the crystal with the 

incident beam. The intensity of the seed beam was then controlled using simple neutral 

density filters. The crossing angle was controlled by changing the arrangement 

slightly. As seen in Figure 10-4a, for an input seed intensity of 1% no significant 

enhancement was observed. On the other hand, for seed intensities of 5, 10, and 20% 

an increasing enhancement was noted as seen in Figure 10-4a, b, c. In addition to an 

enhancement in speed it is also interesting to note that the transmission was nearly 

always more limited with the seed beam than without (Figure 10-50. 
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DISCUSSION 

Energy depletion from one beam into the other beam in two-beam coupling 

experiments is described for I01» I02 by th expression 

1,(0X1+ m) 

1 
10-1 

Ii(z)= 

I2(z) = 

[l + mexp(rz)] 

I2(0Xl + m)exp(rz) 

[l + mexp(rz)] 

where 1(0) is the incident intenstiy for beam 1 or 2, I(z) is the intensity of beam 1 or 2 

after propagation of a distance z in the crystal, T is the two-beam coupling gain 

coefficient, and m is the ratio 

In 
m = '02 

01 

10-2 

The gain coefficient for zero applied field is given by 

r=r0[i-exp(-t/t)] 

where 

27treffkBTkgcos(20) 

qXncos© l+-f 

10-3 

10-4 

In this expression for ro, q is the charge of thecarrier, rcff is the effective electro-optic 

coefficient, kg is the grating wave vector, X is the laser light wavelength, 0 is the half- 

angle between the two crossing laser beams, and k„ is the Debye screening wave vector 

given by 

2  q2Nefr 

kBTe K = 10-5 

In the expression for k^, Neff is the effective charge density, e is the d.c. dielectric 

constant, and kBT is the thermal energy. 
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The response time for he formation of the two-beam coupling grating is given 

by the expression 

X = ' 
I, 

eh(ü l+k 

aq X  ko  . 

-v YNA | kfol^ 

H J 
10-6 

wherey is the recombination rate coefficient, \x is thhe carrier mobility, NA is the 

acceptor charge density, a is the absorption coefficient, and IT is the total initial 

intensity. 

As can be seen from expression (1) the change in intensity is dependent on the 

modulan index m. Since seeding can result in a higher modulation index than is 

normally present for beam fanning it can therefore produce a greater change in intensity 

via two beam coupling. This may explain the improved or higher depletion shown in 

Figure 10-5 when the beam fan is seeded. 

Expression 10-3 describes the time behavior of two-beam energy coupling. 

The characteristic response time-is T. As can be seen from expression 10-6, the 

response time has an intensity dependence which is inverse to the total intensity. Since 

seeding does not change the total intensity significantly a dramatic Change in the beam 

fan time is not expected. For example, a 10% or 20% seed would not be expected to 

alter the response time by factors of 3 to 8. For this reason, the explanation for the 

improved response time most likely lies in the fact that the formation of the fan is 

through to evolve from gratings current. The addition of a seed beam of superior 

intensity perhaps encourages the energy exchange to take place more by the rules of 

two-beam coupling than by the more complex rules associated with beam fanning. 

Conclusions 

We have demonstrated that the speed of response for a beam fanning optical 

limiter can be enhanced by using a grating in front of the photorefractive crystal in order 

to seed the fanning effect.   One possible extension of the work is to investigate the 

possibility of fabricating a grating right on the crystal entrance face. 
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XI.     SUMMARY 

Our investigations under this contract have proved to be very productive.   We 

have: 

Developed a limiter, using a cylindrical lens, with a 103 enhancement in 

speed.   Using a 5 cm x 5 cm crystal this means that if the incident 

intensity is lW/cm2 which normally produces a 0.1 second response 

time, the cylindrical technique gives a 100 microsecond response time. 

This can now be accomplished with an O.D. of 2 to 3. 

We have investigated the effect of a D.C.   electronic field on a 

photorefractive crystal.   Using an applied field of about 6KV/cm we 

find an enhancement of a factor of 10 can be achieved.  When coupled 

with the result of using a cylindrical lens the combination would give a 

10 microsecond response time with an O.D. of 2 to 3. 

We discovered that A.C. applied fields can cause speed enhancements 

on photorefractive SBN and BSKNN.  We have, in fact, developed a 

physical understanding of the effect of A.C. fields in these crystals. 

The advantage of A.C. fields is that the screening effect accompanying 

D.C. fields is eliminated.    We have both computer simulations and 

experimental data to support our understanding.  The A.C. field can be 

used in combination with a spherical focusing lens system.   The two 

together can yield an enhanced speed of 106.   This means that for our 

incident intensity of 1 W/cm2, on the 5 cm x 5 cm crystal, the 0.1 second 

response time can be reduced to 0.1 microseconds. 

We developed a new technique to measure NA.   In this technique, two- 

beam coupling is used while we measure the phase angle between the 

intensity pattern and the space change field as a function of applied field. 

Our results were compared with the traditional two-beam coupling 
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7. 

8. 

technique of measuring coupling versus crossing angle. The 

comparison showed that both techniques give the same answer for NA. 

However, our new technique is simpler and more accurate. 

We examined writing versus reading times in photorefractive crystals. 

We found in our experiments that these times can be different. We also 

demonstrated that they are expected to be different using our 

photorefractive model. Papers which state that these two times are the 

same are simply wrong. Similar results were found for ordinary and 

extra ordinary polarization. 

We examined the response time of our crystals versus intensity 

Interestingly, we found a strict 1/1 dependence on the response time 

when the data was properly taken. This was true for several SBN 

crystals. BaT;03 crystals will soon be tried as we showed a less than 1/1 

dependence indicating the presence of shallow traps. 

We discovered and have characterized self defocusing and focusing by 

photorefractives. The defocusing effect in SBN is very strong, raising 

the divergence of the incident beam by 3-fold for a 1KV applied 

potential. This could be the basis of a "new limiter". 

We have developed a limiting concept based on the quadradic electro- 

optic effect. In this case our results demonstrate a fast limiter without 

the D.C. screening effect. More data should be taken before these 

results are reported. Here again, a new limiting idea was discovered. 

We have established that double dopant crystals do provide control over 

NA and ND. Our evidence is strong that for Cr, Mo doped crystals, Cr 

alone plays the role of ND while both Cr and Mo play the role of NA. 

Although the result is not the ideal case of one dopant acting as NA and 

one as ND, it is true that our results suggest that NA can be varied 
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independently of ND and that by changing only the Mo concentration, 

NA can be forced to change while holding ND fixed. 

10. We have examined the role of temperature on the photorefractive 

response time. It is clear that both the O.D. and the reponse time are 

enhanced with higher temperature. More data must be taken using a 

combination of focusing, field, and temperature before a report is made. 

11. We have developed a seeding method to increase the photorefractive 

response time by a factor of 5 tolO without loss of O.D. 

We believe that the evidence is strong that an effective photorefractive 

limiter is NOW. The next step is to try a device for each "concept" investigated or 

demonstrated, and to compare with the needed response time and O.D. I would 

be happy to Support any effort by the ARMY to construct a photorefractive optical 

limiter based on the results of our work. 

Finally, we have three strong suggestions for device fabrication based on our 

studies. The first is to use a cylindrical lens, spherical lens combination. Consider 

an input beam 5 cm x 5 cm. A spherical lens system reduces the beam to .5 cm x 

5 cm, while a cylindrical lens system takes the beam to .5 cm x 50 microns. The 

total reduction in area is 104. As a result the response time is 104 times faster! If 

we now apply a D.C. electric field, we can produce a 10' enhancement in speed. 

This device would not suffer from screening and would have a 2 to 3 O.D. This 

works TODAY, limiting at 6 uj/cm2 with an O.D. of 3 to 4. In addition, seeding 

the beam fan could, in principle, bring improvement higher. 

The second device is based on using a spherical lens system coupled with an 

A.C. electric field. Using the same parameters outlined above and a BSKNN 

crystal and 10« enhancement in speed is possible with an O.D. of 2 to 3. While this 

system is simpler than the cylindrical lens, the laboratory results were never as 

clean cut. However, it is promising and should be tried. 
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The third device is based on the quadradic electro-optics effect. We found 

exciting results using an A.C. square wave on a SBN sample with La doping. At room 

temperature, this sample was above but near the Curie temperature. The experimental 

results showed a modulated scattering or fanning phenomena that followed the temporal 

behavior of the driving field. This system protected effectively with spherical lens, 

except during the zero applied field periods of the cycle. However, a combination of 

two crystals, each at a different driving frequency, would illuminate this problem. 

Here, again we found a limiter with promise for today. 

In addition to the J_l major results of our work it should be noted that at least 22 

publications in major journals, 20 publications in proceedings, and about 40 talks at 

conferences were also among the achievements of the grant. Moreover, additional 

papers will be submitted over the next six months. 

It should be noted that nearly all my work was carried out with the help of many 

of the scientists at the Night Vision Electro-optics Center part of which is now the 

Army Research Laboratory. I am grateful for the support, collaboration, and friendship 

of Ed Sharp, Gary Wood, Bill Clark, Mary Miller, and Byong Ahn. Of course none 

of my work would have been possible without the crystals, scientific expertise, and 

collaboration of R2 Neurgaonkar. Also, I would like to add a special note of thanks to 

Wolfgang Elser and L. N. Durasula, who supported this work from beginning to end 

without hesitation. 
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Appendix I: Derivation of the Space-Charge Field 

In this section, the steady-state and time-dependent solutions for the space-charge field 

will be derived from the linearized set of equations given by (2.6.a)-(2.6.h): 

äNi 
Tt      =sI^D-K)-We*K dt (I.La) 

dN\ 
-     =smIQ(ND-N+

0)-sIQN
+

l-yR(ne0M+
l+nelN

+
0) dt 

JO = ^e\ieneQEQ ' 

h  = 4e\ie(
ne0El + nelE0') +i^e

kBTk
g
nel ' 

(Ll.b) 

(I.l.c) 

(Ll.d) 

dt dt (1.1.e) 

ikgil  = -4e 

'dN\ _dnel 

üfi      di (1.1.f) 

0 = A5-ne0-^ 
(I.l.g) 

,Vl  =  f W~neO (I.l-h) 

First, an expression for ne\ must be obtained which eliminates TVj"1". Combining the time 

derivative of (I.l.h), 

.k
dEx = i_1(

dKj%{\ 
1 *dt        e [dt      dt   j (1.2) 

with (Ll.d) and (I.l.f), one obtains 
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Jt    =~T^eoEl + nelE0) i  (1-3) 

Solving this for «el yields 

ne\ = 

ik edEl 

-tat +'VM 
_1 i_ 

(1.4) 

where the time constants in (1.4) are defined as 

q 
xn = mean diffusion time =   , 

WS 
(I.5.a) 

xr = mean drift time = —z—=- E VekgEQ 
(I.5.b) 

Assuming /ie0 to be constant, the time derivative of (1.4) is given by 

ik ed E{ dEy 

2    + iKk
e
n* dneX        qedt2   ^We0dt 

dt \ i_ 
XD     XE (1.6) 

At this point, (I.l.b) and (1.6) can be substituted into (1.2) to obtain an expression involv- 

ing A^i+and ne\ and time derivatives of E\. 

ikged-Ex dE, 

smI0(ND-l^) -sI0f^-JR(nc0N\ + nelN*0) = 
—~? + Wt»eOjt       . 

J i_ qe dt 
(1.7) 

Using (I.l.h) and (1.4) to eliminate N + and neX from (1.7) results in the following second- 

order differential equation for E\. 
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d2E l        111;    ^i 11/ 91/ 

dt l+       '■di     XD      X£   ar X+Tj;      VD      VE 'S£    TD      X£ ,   (1.8) 

where the time constants in (1.8) are 

xdi = dielectric relaxation time = 
cie\ieneQ 

(I.8.a) 

Xj = excitation time = 
^o + V^o ' 

(I.8.b) 

x. = +      *4>+2V*<0 + Y/M 
(I.8.c) 

Since ne0 is constant, (I.La) and (I.l.e) can be used to obtain the following: 

*Vty>-flo)-YÄ»eO*o = 
^0   = ^e0 

dt dt (1.9) 

Assuming A^ » ne0 for low irradiances, the resulting expression for ne0 is 

ne0 = 
\NA 

(1.10) 

At equilibrium, the time derivatives in (1.8) vanish. Hence, the steady-state expression for 

Ei is given by 

E\s 

Qe        1 / ■nr£(z--z-)MlQ(ND-ne0-NA) 

c-U l (1.11) 

X
+
Zdi     XIXD     XIZE 

) 

For low irradiances (A^ » ne0 and yRNA » sl0), (1.11) can be simplified to 

ET = mEN 

ED + iE0 

lE0 + i(ED + EN)j 
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where Ep and E^ are defined as 

bD ~  —  
(I.13.a) 

F _?A//_^/ 
JCW     — — -N V V 

1 + »A   V1 

ND-"A. 
(I.13.b) 

Note that (1.12) can be written in the form 

'"* E? = mEsce« , (1.14) 

where the amplitude, Esc, and the phase shift, ({), are given by 

Esc ~ EN. 

ED + E0 

(EN + ED)2 + Ei
0
t 

(I.15.a) 

tan([) = —   1 + — + —— 
^0 V        £JV     ^D^N' 

(I.15.b) 

The transient character of E\ is found by solving the homogeneous form of (1.8). This can 

be written as 

d E,     i dE,     i 

^r2      rW      7? 
(1.16) 

where 7^ and T2 are defined by 

J_ = _1_    J_    _1 i_ 
(I.17.a) 

1 1 
+ 

+  0/        ID        IE 
(I.17.b) 
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The complex quantities xa and xb can be defined such that 

1 

7i " 

1      1 
—+ — 

a        b 

1 

T2 ~ 

1       1 
T       X. a      b 

(I.18.a) 

(I.18.b) 

The solution to (1.16) then takes the form 

?ss ,  A-t/% ,  D„-A ^(0 = E\s + Ae     ° + Be (1.19) 

where A and B are constants to be determined by initial conditions. By assuming x   « x .., 

x+ « xD and x+ « x;, (I.18.a)-(I.18.b) can be solved for xa and xb in terms of T\ and T2: 

X        T- a      1 ■ 

1 
2 ' 
2 

(1.20.3) 

1 1 

V (I.20.b) 

Since Re{\/xa) «Re(l/xb).   the term in (1.19) involving xb can then be neglected 

since it decays much faster than the term involving xa. Thus, (1.19) becomes 

£,(/) = Es,s + Ae 
-t/x. 

(1.21) 

The real quantities x and CD can now be defined such that 

1       1 
— = —h /CO 
X X 

a 
(1.22) 

Using (I.17.a)-(I.17.b), the following expressions for x and co are obtained: 
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1    p f7M - = Re  — 
x r2 x

di 

X
+V 1 + 

V XIXD J 
i + -± + -i 

xrf/ 

V VD *di. 

(1. \ 

\XEJ 

■ + ^ + ^ 
"D 

+ 
"diJ \XEJ 

(I.23.a) 

co = Im 
fTy\ 

\I2S "di 

ft. vx 

vx£y 
Vi 

'■+^ + 
v bD       V/. 

(I.23.b) 

This initial value problem is completed by determining the constant A in (1.21). If no grat- 

ings exist in the photorefractive material at time t = 0, then the initial condition is 

El (0) = 0, so the time-dependent form of the space-charge field is given by 

-t/x -/'cor-, ^(0 =E\*[\-e-e-) , (1.24) 

where x and co are given by (I.23.a)-(I.23.b), respectively. 
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APPENDIX I-B 

DERIVATION OF EQUATION (4-8 ) 

The two waves R and S (reference and signal waves respectively ) intersect in the 

volume of the real time holographic medium. The amplitudes of two waves are 

deduced as 

dR/dz = -x0S (1-1) 

dS/dz = XoR (1-2) 

where %Q= nrnAnsin(p/(A.cos9) with m = 2RS/(R2 + S2) is the corresponding beam 

coupling constant. R(0) = R0, S(0) = S0 are the boundary conditions. 

By introducing T= 47rAnsincp/(?tcos0) and substituting the expression of m into eq. ( 

I-1) and (1-2 ) we obtain 

dR/dz = -(l/2)rRS2/(R2 + S2) (1-3) 

dS/dz = (l/2)rR2S/(R2 + S2) (1-4) 

We have IR = R2, Is = S2 and R2 + S2 = R0
2 + S0

2. 

Therefore, the R and S amplitudes satisfy to the equations: 

dR/dz = -(l/2)rR + (I72)R3/(R02 + S0
2)        (1-5 ) 

dS/dz = (l/2)rS - (r/2)S3/(R0
2 + S0

2) (1-6) 

The waves intensities emerging from the material ( z=Lfeff) and solutions of eq. (1-5) 

and (1-6) are given by 

Is = W Ro2 + S0
2)/[ R0

2 + S0
2exp(rLeff) ]      (1-7 ) 

172 



IR = W Ro2 + S0
2)/[ V + S0

2exp(TLeff) ]       (1-8 ) 

If Ilc and Ij are transmitted intensities of the signal beam with and without coupling, 

respectively, then signal beam ( suppose it is a weak beam ), Ij will experience an 

increase in intensity given by 

I^/Ij = (Is with reference beam)/(Is without reference beam) 

= (R02 + S02)exp(ELeff)/[ V + S02exp(TLeff) ] 

= (1 + c )exp(TLeff)/[ 1 + cexp(TLelT) ] 

with c = S0
2/R0

2. This is eq. (4-8 ) used in Chapter 4. 
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APPENDIX II 

ANALYTICAL SOLUTION FOR SPACE-CHARGE FIELD WITH 

AN APPLIED SQUARE WAVE AC FIELD 

Using £l»+IÜl+_Lp_P g at2 + T,at + T2
2E,-C 

c = i(C,-fiC2E0) = -C2E0 + iC, 

where A,, A2, B,, B2, C,, and Cj are real numbers. 

Then 

-T1/(T2
2) = -(B1+iB2E0)/(A,+ iA2E0) 

= -[(A1BI+A2B2E0
2) + iE0(-A2BI+A,B2)]/(A,2 + A2

2E0
2) 

= -l/T-ico 

T2
2c = (-C2E0 + iC,)/(B,+iB2E0) 

= f(-B1C2 + C1B2)E0 + i(BlCI + B2C2E0
2)]/(BJ

2-fB2
2E0

2) 

= Esc( cos q> + i sin (p) 

= E"e'9 (IM) 

V-tm-McB^ + BAEo^/K-BA + CA)^], (II.2) 
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Introduce a non-dimension physical quantity E, (t) as 

E,(t) = E$cE,'(t) 

If we apply a square-wave AC field across the crystal the amplitude and period of 

which are E^ and T, respectively, the E, in the end of the first half period would be 

E,' (t = T/2) = -e*»e-T/<2t>e->»T/2+e K» (n_3 > 

During 2nd half period (T/2 < t £ T), the applied field is - E^ So now 

T2
2c = [(-B1C2 + CIB2)(-E0) + i(B1Cl + B2C2E0

2))/(B|
2 + B2

2E0
2) 

= Esc( -cosy + i sincp) 

= -EM-e-* 

-V(T2
2) = -(B1-tB2E0)/(A1-iA2E0) 

= - [ (A,B, + A2B2Eo2) - i E0( -A2B, + A,B2) ] / (A,2 + A.V) 

= -l/T+i(0 

Then the solution is 

EI
,(t) = [E,'(t = T/2) + e"]e-(,-T/2)'T.eto(,-T/2).eu> 

= r.e«9e-T/(2t)e-la,T/2 + e,V + e,(>]    ^..T/ZyT.^O-T/Z).^       {T/2<t<T) 

Thus 

EI
,(t=T) = .c"e-T/t + ei'e-T/(2t)etoT/2 + e-i»eT/2tc't,,T/2-e'" 

By using the same procedure as above, we can get 

E,' (t = 3T/2) = VV3T/(2t>c.toT/2 + e*cTrt + c'veT/T-e*c"T/(2t)e",MT/2 
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E,' (t = 2T ) = -e1 V2T/T + ei(f,e-3T/2t eiü)T/2 + e"i<pe3T/2xeicoT/2 - e'VT,T - eitpeT/T 

+ eilp eT/2T eiwT/2 + e iVT/2TetoT/2 - e"i(p 

E,' (t = 5T/2 ) = -ei<pe-5T/2te-iMT/2 + ej VT/2t + t^t47'2' - e^V37721^7'2 

ai(p   -3T/2I   -icoT/2        to   -2T/2T        -ip   -2T/2r       -iq>   -T/2x   -icoT/2 eTe + eTe        +e^e e Te 

_ei(pe-T/2le.iü)T/2 + eicp 

Now we want to find the recurrence in the expression of El  ( nT ) ( n is a positive 

integer). Look at E/ (2T) and rewrite the expression as 

E; (t = 2T) = -eiVT/x( 1 +e-T/T) + ei<peiaT/2e-T/2T( 1 +e-T/t )-e^( 1 + e"T/T) 

+ e-i<p-eiwT/2-e-T/2T(l+e-m) 

From this, we can derive an expression for E{ as t = nT, which is 

E,' (t = nT) = [ 1 + eT/T + e"2T/T + + e-(n-1)T/T] • (-e'V7'1 + ei(p-eicoT/2 

•e-T/2T-e-i<f> + e-i<p-eiMT/2-e-T/2T) 

= ( 1 - e-nT/t) / (1 - e-T/T) • (-e""e "T + e"''- e 

+ e-iC.etoT/2.e-T/2T) 

i<P „-T/t _,_ ftl<P. „icoT/2   e-T/2x _ ^iq, 

(n = 0,l,2, ) (II-4) 

Next let's look at E,' (t = 5/2T) and rewrite it as 

E,' (t = 5T/2) = ei(p ( 1 + e"T/T + e'2T/x) - ei(p e
iü)T/2 e"T/2t (1 + e-T/T + e'2T/T) + 

e*VT/t • (1 + e T/t ) - e1* e-iuT/2e-T/2T (1 + e"T/T) 

= (i + e"T/ x + e"27/x) (ei(,> - ei<p ci(är'2 e T/2x) + (1 + eT/x) 

(e^.e^e^e-1'21) 
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Also, from this, we can predict the expression for E, as t = ( n + 1/2 ) T, 

which is 

E, (t = ( n + 1/2 ) T ) = [ 1 + e"T/T + e       + •+e-nl/T]-(e" 

eiVC0T/2.e-T/2x) + [1+e.T/x + e-2T/t+ + 

e-(n.l)T/T]<e.iVT/x_e-i«pe..fl,T/2e-T/2t) 

= ( j _e-(n+l)T/T)/( j .e-T/t).(ei9.ei<Pe-iC0T/2e-T/2T) 

+ (1 -e"nT/t)/(1 -cr") • (e-jVT/T -eicpeicoT/2eT/2T) 

(n = 0,l,2, ) (II-5) 

Eq. (II-4) & (II-5 ) are the basic equations ( 5-1 ) & ( 5-2 ) in Chapter 5. 
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APPENDIX in 

DERIVATION OF EQUATION FOR PHASE SfflFT MEASUREMENT 

Two laser beams with ordinary polarization and equal intensity I0 intersect inside a 

crystal, which results in an energy exchange signal IEand a diffraction signal Id. 

The diffraction efficiency T| is given by (Ref. [1], [2]) 

1^ = ^/10 = sin2(Kd) (III-l) 

where K is the coupling constant and d is the thickness of the crystal. 

According to Ref. [7], both the real and imaginary part of the space-charge field 

contribute to the diffraction efficiency.  Therefore, K in eq. (III-l) is given by ( Ref. 

[1], [2], [7]) 

K = 7C • An / X cosG    - 

= (7I/2XcosGXno3relT)[(ReEsc)2+(IrnEsc)2]i/2 (III-2 ) 

where ReEscand ImEscare real and imaginary part of the space-charge field, 

respectively. If we write 

c = (JC/2A. cos6)(n0
3 refr) (III-3 ) 

Then from eq. (III-l) and (III-2) we can obtain 

[(ReEsc)2+(imEsc)2]i/2= (i/cd)[sin-i(r|1/2)] (III-4) 

In other hand, the energy-exchange efficiency is (Ref. [1]) 

e = VIo   . 

The gain of the detected beam is governed by the equation (Ref. [1] and Appendix I) 
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(Io+g/10 = l+e = (l+l)erd/(l+erd) (III-5 ) 

where T is the gain coefficient, which is only due to the imaginary part of the space- 

charge field (Ref. [7]). Tis given by (Ref. [4]) 

r= (27tA. coseXn^r^XImE;.,.) 

By using eq. (III-3) T becomes 

r = 4c(ImEsc) (III-6) 

By substituting eq. (III-6) into eq. (III-5), we can obtain 

ImEsc= (l/4)(l/c-d)-ln[(l+e)/(l-s)] (III-7 ) 

The phase shift cp between the grating and the fringe pattern is determined by the 

equation 

tanq>= ImEsc/ReEsc 

Therefore, by using eq. (III-4) and (III-7) we will get 

sincp = tancp/(l+tan2(p)1/2 

= ImEsc/[(ReEsc)2+(ImEsc)2]i/2 

= ln[(l+e)/(l-£)]/[4sin-KT|,/2)] (III-8 ) 

For small coupling which is the case in our experiment, both r\ and e are much less 

than 1. So mathematically, by using Taylor expansion, we can get 

ln[(l+e)/(l-e)] = 2e fore<l 

and sin-i(r|1/2) = r|1/2        forri<l (III-9) 

By substituting eq. (III-9) into eq. (III-8 ), we obtain 
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sin(p = £/2r|1/2 

= (VI0)/2(Id/I0)i/2 

= y2(idi0)1/2  . 

Equation (III-10) is just equation (6-1) presented in Chapter 6. 

(111-10) 
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APPENDIX IV 

NUMERICAL METHOD AND PHYSICAL PARAMETERS 

Numerical Calculation for the Space-Charge Field 

The equation of space-charge  field is time  dependent second-order differential 

equation, the form of which is 

d2Ei( t )/dt2 + A (t) dE!( t)/ dt + B( t) Etf t) = C( t) 

where E\( t), A( t), B( t) and C( t) are all complex. 

Firstly, we have to separate the real and imaginary part of the above equation. 

Secondly, we must separate the second-order differential equation into two first-order 

differential equations by a change in variables. 

Thirdly, we utilize Euler's method as a numerical method for solving differential 

equation. 

Fourthly, we write a C program to generate the numerical solution. 

Physical Parameters Used for Computer Programs 

Dielectric constant € = 3000 

Temperature T = 300 k 

Optical wavelength 1 = 4580 A 
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Photoionization cross section s = 5-10" 18 cm^ 

Recombination coefficient yR = M0~9 cmVs 

Mobility |i = 0.5 cm^/vs 

Full crossing angle 20 = 10° 
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APPENDIX V 

COMPUTER PROGRAM FOR CALCULATING 
PHOTOREFRACTIVE SPACE-CHARGE FIELD 

/* Program: Space-charge field with applied square-wave AC field.c */ 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
void main(void) 

{ 
int i, points=250000, j, 1, m; 
long double const0=3.861935e+l, Tplus=8.0e-9, s=5.0e-19, gammaR=2.5e-8, 

gammaRNA=1.25e+8, mu=5.0e-l, k=5.0e+3, NDminusNA=5.0e+16, 
constl=1.66e+9,10, omega, Tc, TD, hc=1.988e-15, nO, const2, Tdi, TI, 
TE, Al, A2, Bl, B2, Cl, C2, lemda=4.58e+3, I=2.4e+1, E0=3.0e+3, 
delt=7.0e-9, RE=0.0e+0, IE=0.0e+0, dRE, dIE; 

static long double ReEl[5000], ImEl[5000]; 

I0=I*lemda/hc; 
nO=s*IO*(NDminusNA)/(gammaRNA); 
TD=constO/(mu*k*k); 
Tdi=const l/(mu*n0); 
TI=l/(s*I0+(gammaR)*n0); 
TE=l/(k*mu*E0); 
Tc=Tdi*((l+Tplus/TD)*(l+Tplus/TD)+(Tplus/TE)*(TplusA'E))/ 

((l+Tplus!):Tdi/(TD*TI))*(l+Tplus/TD)+Tplus*Tplus*Tdi/(TE*TE*TI)); 
omega=(Tplus/TE)*(Tdi/TI-1)/ 

(Tdi*((l+Tplus/TD)*(l+Tplus/TD)+(TplusA,E)*(TplusATE))); 
const2=s*I0*((NDminusNA)-n0)/(constl*k); 
Al=l/TD+lArdi+lATplus; 
A2=1/TE; 
Bl=l/(TD*TI)+l/(Tplus*Tdi); 
B2=1/(TI*TE); 
Cl=-const2/TE; 
C2=const2/TD; 
dIE=(C2*Al-Cl*A2)/(Al*Al+A2*A2); 
dRE=(Cl*Al+C2*A2)/(Al*Al+A2*A2); 
ReEl[0]=0.0e+0; 
ImEl[0]=0.0e+0; 
for (1=0; 1<=360; 1++) 
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} 

{ 
for (i=(2*l*points); i<((2*l+l)*points); i++) 

{ 
RE=RE+delt*(dRE); 
dRE=dRE+delt*(Cl-Al*dRE+A2*dIE-Bl*RE+B2*IE); 
IE=IE+delt*(dIE); 
dIE=dIE+delt*(C2-Al *dIE-A2*dRE-B2*RE-B 1 *IE); 
} 

ReEl[2*l+l]=RE; 
ImEl[2*l+l]=IE; 
printf("\n%5d    %Le %Le", (2*1+1), ReEl [2*1+1], ImEl [2*1+1]); 
for G=((2*l+l)*points); j<(2*(l+l)*points); j++) 

{ 
RE=RE+delt*(dRE); 
dRE=dRE+delt*(-C 1 -A 1 *dRE-A2*dIE-B 1 *RE-B2*IE); 
IE=IE+delt*(dIE); 
dIE=dIE+delt*(C2-Al*dIE+A2*dRE+B2*RE-Bl*IE); 

} 
ReEl[2*l+2]=RE; 
ImEl[2*l+2]=IE; 
printf("\n%5d    %Le %Le", (2*1+2), ReEl [2*1+2], ImEl [2*1+2]); 

printf("\n\n"); 
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