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PILE TRANSFER FUNCTIONS

The purpose of this memo is to present a detailed derivation of the

transfer function of a critical pile and to relate this steady-state description

and the transient response to a step function change of reactivity. Reference

to G.E, re

port JI0-1 - Revised is implied throughout this discussion.

The transfer function of a critical pile can be determined from the

differential equations of the pile. The reactivity of the pile is assumed to

be control

For these

led by the delayéd neutrons so that korsy is always less than 1 + B

assumptions elementary pile theory gives -

{ a.

£ @-(-1a 2N L /3 (1)

i—:i—/:g:%i- n - )\i c,/B (2)
= B;/B

Skers
keff

neutron flux

mean life of a neutron

% of group—~l fission neutrons

% of neutrons emitted which are delayed

= concentration of fission fragments which emit

group—~1 delayed neutrons
decay constant of group-i neutrons

time (seconds)
reactivity in dollars =

= keff - 1
= ratio of fission neutrons produced to those lost for an infinite pile

Ekeors
B

The discussion thus far is somewhat misleading. We have been con-

sidering a pile on the basis of elementary pile theory, when actually we are

going to use an electronic pile simulator whose correspondence to a pile de-

vends on the accuracy of the assumptions of elementary pile theory. To avoid

considering these assumptions we will be more exact and say that we desire to

determine

the transfer function of the electronic pile simulator. The simulator

-3 -
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obeys the same differential equations. To determine the transfer function consider
the simulator as a four-terminal network., The input function is the reactivity,
D= 5 (t) and the output is the neutron flux. For a simsoidal function of time
input the transfer function EKG(s) is the ratio of the Laplace transforms of the
output and input. It consists of K = a constant, or frequency invariant portion,
and G(s) = the frequency variant portion, or the portion dependent on time
derivatives, In general, we define f(s) as the Laplace transform of £(%) by

this integral:

¢
£(s) = fe's"‘ £(t) dt

©

j e —— —_— e e ammamand

S(t) n(t) &) K3 (s) n'(s)

—— g >—f— —_———e [

§(s) K6(s) = n'(s)

Let the reactivity have small sinusoidal oscillations of amplitude €

D= §(t) = €e vt (3)
Since the pile is critical, the neutron flux will vary simisoidally [nq about

a steady level, n,. The same is true for the concentrations of fission fragments.
Thus
a(t) = ny # n'(t) (4)
C3(t) = Cgq £ Cy1 (%) (5)

By definition the transfer function relates simusoidal variations, so that
1
kG - BJ.E.).
(S) = S(S) (6)
To obtain this result we eliminate C; from equations (1) and (2),

take the Laplace transform and substitute to obtain an expression for n!.

From (2) MO = fj n-34/3 /B (7)
B dt



Substituting in (1) and using (3):

dw- (5 1045 w3 Loy

By (4);(5):
A R N SV SR 7 1Y)
° it T T

B at

but n =.Zfin
1
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(8)

(9)

It is convenient to neglect n'(t) $(t). For power levels greater than one

quarter power n, % (t)>> n'(t) § (), so that this assumption will not introduce

appreciable error., Taking the Laplace transform of (9) gives

{s n'(s) = np 5(s) _Z/s ¢, (s)

Rewriting eq. (2) in terms of n'(t) and C,;'(t) we have:

d Ci//B

£; £3 _ c _ Cit
=7'n°;‘2-n' Ai—%“ 7\1—%‘

But the steady-state condition dCi/B _ g ghows that
at

f13 N\ O
Z "'

taking the Laplace transform and then solving for Cj':

Q

g cBi '(s) :% 2t (s - _)_\_Lgi'(s)

Ci'(s) - £1 n'(s)
B /é(s # Ai)

Substituting (13) in (10)
[{s ;?ﬁg—j n'(s) = noB(s)

n'(s) - n = n'(s) - Bng
6 (s) g*;‘fs 7 H0] Zs]_ 3 *M)]

(10)

(11)

(12)

(13)

(14)

(15)
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This can be rewritien:

= 3B (sBp\l)(s ENo) ... (s ’L)\i)"{a' (16)
Ls (s gN)eels $N) oot f(s EN). (s /-)\i)...,LZZ-(s FAD (s M) e
2's) - B Il(s £N)
(s) ‘i?; ag F a5 £ axs? f... £ agst .o (a7)

= noB U(Sf"l)
A s(s # 59)(s £ 82)eea(s £ 84) o0

(18)

This is the general form of the transfer function. All the 7\1'5 and sj's are
positive. That sy is positive follows from the fact that all the aj's being

positive excludes positive roots. This just says that the pile transfer function

can be handled by the standard techniques of servo theory. (This was implicit

in the original assumptions). J
This general result may now be applied to a simulator having five

groups of delayed neutrons,

Balf-life Decay constant Fraction of Fission Neutrons
t Al = 9.693 sec™t B:
1/2 %1/2 i
0.05 Al = 1k By = 0.00029
0.43 A2 =1.6 B, = 0,00084
1.52 A3 = 0.456 B3 = 0,002k
I, 51 Ab = 0,154 By = 0.0021
22.0 A5 = 0.0315 B5 = 0.0017
Assume ,flz 5x 10’5 sec

Eq. (17) is now

n'(e) _nB (s £23)(s FA2)(s £2a3)(s £ay)(s £ Ac) (19)
(s) Ls a5 ¢ ausn # a3s3 f a2 fags }oag

The a;'s can be written in terms of 7\1, By and,Z/by comparing them with

the corresponding coefficients of the denominator expressed in eq. (16).
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The results are shown in Appendix I. Now the roots of this fifth degree equation

must be determined.

D(s) = 85 £ 163 s* # 2270 €3 £ 3750 62 4 1200 s £ 73.2 = 0 (20)
= (s 4 9)(s £5,)(s ¢ s3)(s Foey)(s £ 85) . (21)
The results are: 8y = 148 .
Sy = 13.3
53 - 1.)45
sy = 0.32
85 = 0.08

These resulte can be used to plot the Bode diagram of Figure 1 by replacing s
by Jjw.

The Bode diagram (Figure 1) shows the asymptotes of the steady-state
amplitude gain of the pile simulator for a sinusoidal input. BReplacing s by Jjw
is an obvious operation, since s may bve éonsidered equivalent to the time
derivative. Taking the time derivative of a sinmusoid, exp Jjwt, is just multiplica

tion by jw. The valuesof sy and ?\i are the break points of the asymptotes of the

function whose analytical expression is:

LleG(jw)I = Imn, # Lm% - Im | v 148' (22)
FIm | gw 4 1 - In | gv £ 13.3
#In | jw £ 1.61] - Im | jw £ 1.45
FIm | gw f 0.486] - Im | jw f 0.32
,LLm,.jw,to.lsul ~In | jw # 0.08

,th,Jw,L o.0315| -Inmljvl
Iransient Response

The response of a steady-state pile to a step function change of

reactivity, 5 , can be expressed as a sum of exponential terms. Usually

N = N°é1 A @p; ¢ ,(23)
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we are interestsd in six groups of delayed neutrons giving seven terms in the
expansion, For each amplitude,s , there are seven values of p. Each p has an

A associated with it. TFigure 2 shows the calculated values of p; and Ai for

values of reactivity,d , from - $2.00 to £ $1.00 (-1.5% to £ 0.75%). These
curves also are plotted for various values of the mean life of a neutron, //.

These step-function response graph.s can be related to the Bode
diagram of steady-state sinusoidal response.

The transfer function of the simulator KG(s) depends only on the
simulator's physical characteristics. On the other hand the constants obtained
from the step-function response graphs depend on the amplitude of the input.

If we apply a unit impulse function (unit step-~function minus another unit step-
function) we can use the step~-response graphs to determine the output. The values

of Ay and p; are those corresponding to &= 0, and in a sense do not depend on

reactivity S . but only on the characteristics of the simulator. Now by previous
definitions ~

n(s) = S(s)Ee(s) (21)
1f §(t) is an impulse function §(s) =1 and

n(s) (t)-—o = KG’(S) (25)
The step~function response

6
n(t) = mp D 4 Pit (26)
i=1

 bas the Laplace transform

(27)

subject to certain mathematical restrictions (the physical equivalent of not

allowing the pile to blow up). For the case of 6 groups of delayed neutrons




the transfer function

(s # M) (s £N,)(s £ N3)(s £ N (s £ Ne)(s £ Ng)
s(s # 8,)(s £ s,)(s £ s3)(s £ s )(s f 95)(3 t sg)

KG(S) = E}Q

; Equation (25) states that this equals
: 6

A
n(S) - i
P (8)=0 = ©{F 5- Py
!
bgs® £ bes® £ byst £ bgsd £ bp6” £ bys £ b
= o

(S“Pl)(sfpz)(sij)(smpu)(sij)(s”Pé)(s‘P7)

There is a correspondence between the s; 's and the pj 's.

p =0 '

p2 = -0.u15 sg = 0.015
p3 = -0.08 35 = 0.08
Py = =0.33 gy = 0.32
Pg = =13.3 8, = 13.3
Pg= - 8, = 148

- gives a convenient check and can be used to correlate results,

AECD-3260

(28)

(29)

The value of s was obtained from the Bode diagram of G.E. revort JIO-1,

The values of Py to pg and sg to s, do not change appreciably for different values
of neutron life / , 80 that the above comparison is valid even though the pi's
were computed forf: 10"5 and the si's for/: 5x 10"5. The value of sy (and p7)
varies considerably for different values of /. but for a given /. s, is the

negative of Py. This correspondence between steady-state and transient response
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Appendix I

A= N F N+ NN A B

73

Cl3=-' ?\lz * )\,3 * )\:q+7\:5+ )\23+)‘29 N )\zs+ 7\34 * 7\35 " 7\45
*%(}‘ﬁ N+ At }\5> + %()\.+)\3 + A, +)\5) +%_()\l+7\z+)\q+ )\>

+%_()\. +N\, +)\3+)\,) +%s_(>\,+>\Z +A, +>\4).

a,= 7\.13+)\l24+ 7\le+ >‘/3'i + )\135 + )\ms ¥ Nyt )\235 +)\z:/5+ ')\3L/5'
+',%L()\13 + 7\24 +)\25 + 7\34 +)\35 M )\‘is)
+%(>\"’ ¥ )\/‘f +’)\5’ +)\54 * >\35 * )\Kﬁ) + % ()\l1+ )\H +)\15 +)\2‘1 +>§5+)\9:)

BN NN Aot At ) B0 At N APt >\3>

A= N7+ >\I135 + >\ms T )\1345 * ?\23?5 + %()\34-}—)\235 + Ay + A

I 1234

+%(7\'3“+ Nt N, T AM) +%()\m 4N, t N, + )\M)

B (Mt At b Ad o BN A+ A )

345

qo = Anzs-es‘\—g\')\zavs +% )\ms + ]?3- )\nzw +‘%i }\ms +%‘ )\'7-31

where )\[J’k,.. == )\. 7\- )\k e & o
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