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PILE TRANSFER FUNCTIONS

The purpose of this memo is to present a detailed derivation of the

transfer function of a critical pile and to relate this steady-state description

and the transient response to a step function change of reactivity. Reference

to G.E. report JIO-1 - Revised is implied throughout this discussion.

The transfer function of a critical pile can be determined from the

differential equations of the pile. The reactivity of the pile is assumed to

be controlled by the delayed neutrons so that keff is always less than 1 + B

For these assumptions elementary pile theory gives -

/ (D - 1)n A J i/ (1)
B dt ii

d Ci/B _fi nA ClB (2)
dt T

where: fi Bi/B

n = neutron flux
I - mean life of a neutron

Bi= % of group-i fission neutrons

B = % of neutrons emitted which are delayed
Ci concentration of fission fragments which emit

group-i delayed neutrons
Ai decay constant of group-i neutrons

t = time (seconds) Sk
D = reactivity in dollars B

Skeff keff - 1

keff - ratio of fission neutrons produced to those lost for an infinite pile

The discussion thus far is somewhat misleading. We have been con-

sidering a pile on the basis of elementary pile theory, when actually we are

going to use an electronic pile simulator whose correspondence to a pile de-

pends on the accuracy of the assumptions of elementary pile theory. To avoid

considering these assumptions we will be more exact and say that we desire to

determine the transfer function of the electronic pile simulator. The simulator
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obeys the same differential equations. To determine the transfer function consider

the simulator as a four-terminal network. The input function is the reactivity,

D = 8 (t) and the output, is the neutron flux. Por a sinusoidal function of time

input the transfer function KG(s) is the ratio of the Laplace transforms of the

output and input. It consists of K = a constant, or frequency invariant portion,

and G(s) = the frequency variant portion, or the portion dependent on time

derivatives. In general, we define f(s) as the Laplace transform of f(t) by

this integral:

f(s) 1e-st f(t) dt
0

n(t) e) rG(s) n'(s)

6(s) KG(s) = n'(s)

Let the reactivity nave small sinusoidal oscillations of amplitude

D = 6 (t) = E e jwt (3)
Since the pile is critical, the neutron flux will vary sinusoidally [nj] about

a steady level, no. The same is true for the concentrations of fission fragments.

Thus:

n(t) =no ;• n'Ct) (4)
Ci~t) =Cio A Ci, (t) (5)

By definition the transfer function relates sinusoidal variations, so that

KG(s) =AL(e (6)

To obtain this result we eliminate Ci from equations (1) and (2),

take the Laplace transform and substitute to obtain an expression for n'.

From (2) ii = di / (7)
B J dt
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Substituting in (1) and using (3):

dn _(• 1)n f fi n- jd(Ci/B3 (8)
B dt ii dt

By (4) i(5):

ýLn = hoS ý n' 8 - n f in _ d(i/ (9)Sdn'= L' fn

B dt i i dt

but n =•fin

It is convenient to neglect n'(t) 8(t). For power levels greater than one

quarter power noS (t)»> n'(t) S (t), so that this assumption will not introduce

appreciable error. Taking the Laplace transform of (9) gives

s n'(s) = noS(s) -i F-ci(s) (10)

Rewriting eq. (2) in terms of n'(t) and Cil(t) we have:

d CfIB fi f i oi l

dt 7n o  n. - B•1)

But the steady-state condition dCi/B 0 shows that

dt

fi no Biio 
(12)-7-= B

taking the Laplace transform and then solving for C 1 :

8 Co'(s) = (f n'Cs) - i Ci(s)
B 7 B

C = f n'(s) (13)
B '(s , Xi)

Substituting (13) in (10)

L s /, n'(s) nos(s) (14)

n'(s) - Hns Bn ^ ( 15)

S B s i tZ7X
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This can be rewritten:

noB F (s (s)(s /2) ... (s 0\0)-. (16) 1

(s ao A als A a 2 s 2 
7 ... L aisi L ...

- o n, l(js/ (18)
-, s(s A sl)(s A S2)..Cs A SO)..

This is the general form of the transfer function. All the Al's and si's are

positive. That si is positive follows from the fact that all the ails being

positive excludes positive roots. This just says that the pile transfer function

can be handled by the standard techniques of servo theory. (This was implicit

in the original assumptions).

This general result may now be applied to a simulator having five

groups of delayed neutrons.

&if-life Decay constant Fraction of Fission Neutrons

tl/2 A i P sec- 1  Bi
tl/ 2

0.05 )Il 14 BI = 0.00029

0.43 X2 = 1.61 B2 = 0.00084

1.52 X3 = 0.456 B3 = 0.0024

4.51 A4 = 0.154 B4 = 0.0021

22.0 X5 = 0.0315 B5 = 0.0017

Assume 5 x 10-5 sec

Eq. (17) is now

n'(s) noB (s X 1 ))(s A X2 )(s AX-3)(s AX 4 )(s AX5) (19)

(s) s s5 A a4 s4 A a 3 s3 , a 2s2 7 als A ao

The ai's can be written in terms of Ai, Bi and/by comparing them with

the corresponding coefficients of the denominator expressed in eq. (16).
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The results are shown in Appendix I. Now the roots of this fifth degree equation

must be determined.

D(s) 9 s5  163 84 A 2270 s3 3750 •2 7 1200 a ý73.2=0 (20)

( (s 7  ( / 2 ? 53)(8 L 54)(s 7• 95) (21)

The results are: sI = 148

s2 = 13.3
s3 = 1.45
s4 = 0.32

s5 = 0.08

These results can be used to plot the Bode diagram of Figure 1 by replacing s

by jw.

The Bode diagram (Figure 1) shows the asymptotes of the steady-state

amplitude gain of the pile simulator for a sinusoidal input. Replacing s by jw

is an obvious operation, since s may be considered equivalent to the time

derivative. Taking the time derivative of a sinusoid, exp jwt, is just multiplica-

tion by jw. The values of si and N are the break points of the asymptotes of the

function whose analytical expression is:

LmIKG(jv)l =Lmno A Lm LIM jw A1 48j (22)

A Lm liv A 141 L nJiw A 13 -3 1

,• •Lmjw A 1.611 Lm I jw A 1.451

SIMjw, A0.4561 -Lm jw, 0.321

SIJw A 0.1541 -Lm jw A 0.o81
A Li-~ 0011 I j

Transient Response

The response of a steady-state pile to a step function change of

reactivity, S , can be expressed as a sum of exponential terms. Usually

SAie•Pi t (23)
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we are interested in six groups of delayed neutrons giving seven terms in the

expansion. For each amplitude, 8 , there are seven values of p. Each p has an

A associated with it. Figure 2 shows the calculated values of Pi and Ai for

values of reactivity, , from - $2.00 to L $1.00 (-1.5% to A 0.75%). These

curves also are plotted for various values of the mean life of a neutron, -.

These step-function response graphs can be related to the Bode

diagram of steady-state sinusoidal response.

The transfer function of the simulator KG(s) depends only on the

simulator's physical characteristicsý. On the other hand the constants obtained

from the step-function response graphs depend on the amplitude of the input.

If we apply a unit impulse function (unit step-function minus another unit step-

function) we can use the step-response graphs to determine the output. The values

of Ai and Pi are those corresponding to 6 = 0, and in a sense do not depend on

reactivity , but only on the characteristics of the simulator. Now by previous

definitions -

n(s) = S(s)KG(s) (24)

If S(t) is an impulse function S(s) = 1 and

n(s)I (t)=O = KG(s) (25)

The step-function response

n(t) .no A. Pit (26)

has the Laplace transform

6 Ai (27)n(s) = noý pi (27)
i11

subject to certain mathematical restrictions (the physical equivalent of not

allowing the pile to blow up). For the case of 6 groups of delayed neutrons
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the transfer function

KGs - n0  (s Al (a ) 2 ) (s /A 3)s O (s ýX5)s A NL)6) (8
( -j s(s A 81 )(s A s 2 )(s s3)(5 A s4)(s A , 5 )(s A s6 )

Equation (25) states that this equals
6n (s) (n) o F: A

"(" =1 s -Pi

116s 6 ,Lb55 5 , b4js 4 b 3 s3 A b2 s 2 2 bis ý bn (29)
= no (s-pl)(s-p2 )(s-p 3 )(s-p,)(s-p5 )(s-p 6 )(s-p 7 )

There is a correspondence between the si s and the pi Is.

p1 = 0

P2 = -O.u15 86 = 0.015

P3 = -0.08 s5 = 0.08
P4 = -0.33 s4 = 0.32

p5 n -1.45 S3 = 1.45

P6 = -13.3 82 = 13.3

P7 = - sI = 148

The value of S6 was obtained from the Bode diagram of G.E. report JIO-l.

The values of p, to P6 and 86 to 82 do not change appreciably for different values

of neutron life!, so that the above comparison is valid even though the pi's

were computed forj= 10-5 and the si's for/= 5 x 10-5. The value of s1 (and p7)

varies considerably for different values of ], but for a given A, s1 is the

negative of p7 . This correspondence between steady-state and transient response

gives a convenient check and can be used to correlate results.
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