
U^. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

IR 4646

National PDES Teslbed
es

ttitlillM
ystem

■■IKiiiliiils-7

•NATONMJ

■ " f\

TESTBED!
i*PP

5ÜT10N STAI

Approved for public release;
Distribution Unlimited

19960917 024

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4646

National PDES Testbed
Report Series

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

August 21,1991

NATIONAL

TESTBED A Guide to Configuration
Management and the
Revision Control System
for Testbed Users

Scott Bodarky

a

^0FCn

\

X
% m

5

•^TESO^
/

Contents

1 Introduction 1
2 Document Conventions 1
3 System Configuration 2

3.1 The -pdes File System 2
3.2 The Generic Configuration Management Set-up 2
3.3 Additional Notes for Software Developers 3
3.4 File Conventions 4

4 RCS Archives 4
4.1 The Administrative Node 5
4.2 The Revision Tree 6
4.3 The General Description 6
4.4 The Deltas 6
4.5 RCS Reserved Keywords 8

5 Checking Out Files From Archives 9
5.1 Checking Out with Read Access Only 9
5.2 Checking Out with Write Access 10
5.3 Checking Out by Revision or Symbolic Name 10
5.4 Checking Out by Date or Time 11
5.5 Checking Out by State 11

6 Checking Files Into RCS 12
6.1 Checking In 12
6.2 Assigning a Revision Number 12
6.3 Assigning a Date 13
6.4 Assigning a Symbolic Name 13
6.5 Assigning a State 13

7 The RCS Command 14
7.1 Manipulating Access Lists 14
7.2 Designating the Default Branch 14
7.3 Locking an Archive 14
7.4 Symbolic Names 15
7.5 Updating Archives 15
7.6 Assigning States 15
7.7 Modifying the General Description 15

8 Getting Information About Archives (rlog) 16
9 RCS and other Gnu Software •. 16

9.1 Gnumake 16
9.2 Gnu Emacs 17

10 Glossary 18
11 References 19
Appendix A The Electronic Mailing Lists/Newsgroups 20

in

A Guide to Configuration Management and the Revision Control System for Testbed Users

1 Introduction

Product Data Exchange using STEP (PDES) refers to the United States organizational
activities in support of the development of the Standard for the Exchange of Product Model
Data (STEP). These activities have resulted in the creation of large amounts of information and
software, which reside in the PDES File System, a directory hierarchy called ~pdes on the
computer system at the National Institute of Standards and Technology. The PDES software,
documents, and data have been placed under configuration management [Ressler90] using the
Revision Control System (RCS) [Tichy85], in order to ensure that change to these items occurs
in a controlled manner, and that any services provided by them are done so as reliably as
possible.

This document provides instructions for anyone needing to access this material. Enhancements
to the RCS-based configuration management system will be documented in updates to this
document and via electronic-mail (see Appendix A). A set of configuration management
procedures will be published as another document.

The RCS-based system is intended to handle a variety of objects, including documents,
software, and data. It is assumed that the reader has a basic familiarity with UNLX and an
account on the systems at NIST. It is hoped that this system will be minimally encumbering
while providing as stable and productive an environment as possible. This system is designed
to make life easier for all users, from whom feedback is encouraged.

2 Document Conventions

There are sample command formats and code examples scattered throughout this document, all
of which observe the following conventions:

• That which is to be typed verbatim by the user appears in bold.
• That which is to be typed by the user and is variable appears in boldface italics.
• Verbatim RCS and Unix system messages appear in Helvetica.
• Variable RCS or Unix system messages appear in Helvetica Oblique.
• The Unix system prompt is the percent sign (%, in Helvetica), which will precede all

Unix commands to be typed by the user, but is itself not to be typed.
• Items enclosed in square brackets [] are optional.

Note: Certain commercial products are identified in this paper in order to adequately specify configuration
management procedures at NIST. This does not, however, imply recommendation or endorsement by NIST, nor does
it imply that said products are necessarily the best available for their purpose.

The work described in this document was funded by the U.S. Government's Department of Defense Computer-aided
Acquisition and Logistic Support (CALS) program and is not subject to copyright.

A Guide to Configuration Management and the Revision Control System for Testbed Users

3 System Configuration

This section provides an overview of the configuration management environment and detailed
instructions on setting up a local environment, for users needing to access items in ~pdes that
are under configuration management.

3.1 The ~pdes File System

The principal repository for items under configuration management at the Testbed is a
directory hierarchy called ~pdes. This hierarchy contains various entities used in support of the
STEP development effort, including software tools, STEP test data, documents, and various
other types of objects. The exact configuration of ~pdes and its contents tends to change
periodically; these changes will be reflected by updates to this document and by electronic mail
distribution (see Appendix A).

The following is a list of those sub-directories in -pdes that are under configuration
management by RCS. Each sub-directory may contain other sub-directories, which may
themselves contain sub-directories, and so forth.

~pdes/data contains STEP Testing data
~pdes/distribute contains packaged software releases
~pdes/docs contains documents
~pdes/generic.env contains the Testbed generic environment
~pdes/include contains header files for software tools
~pdes/man contains the on-line man pages for software tools
~pdes/src contains the source code for software tools
~pdes/bin contains various executables
~pdes/arch/bin contains architecture-specific executables

All manually generated files (i.e., those not output by some program) in these directories are
managed by RCS, as are some binary executables.

Each directory contains the current, officially-released version of each of its files. Each of these
files should be read-only, and should not be modified directly.

Each directory also contains a sub-directory called RCS, which contains an RCS archive for
each controlled file. A user who wishes to modify a file must establish a symbolic link between
his own account and the RCS directory, and then check out (into his account) a writable copy
of the file from the appropriate archive. Instructions for doing this constitute the remainder of
this section.

3.2 The Generic Configuration Management Set-up

A user's home directory must contain a sub-directory named pdes (~/pdes) that is structured
like ~pdes. If the user wishes to access a particular file stored in the ~pdes hierarchy, his own
pdes hierarchy must contain copies of all the intermediate nodes. The user's copy of the file

A Guide to Configuration Management and the Revision Control System for Testbed Users

will have the same relative path as the copy in -pdes, differing only by the inclusion/exclusion
of the slash between the tilde and the pdes.

Once the relevant portion of the pdes hierarchy has been duplicated, the user must establish a
symbolic link from his copy of the file's source directory to the RCS sub-directory in the
-pdes source directory. For example, if a user wanted to modify the contents of a fictitious
directory called -pdes/stuff, he would create the configuration illustrated in Figure 3.1, by
typing the following commands (from his home directory):

% mkdir pdes{,/stuff}
% In -s -pdes/stuff/RCS -/pdes/stuff/RCS

pdes ~pdes

stuff stuff

RCS
1

RCS

Figure 3.1 The RCS File-System Configuration

Once the source directory has been created, the user can check out a copy of the file via RCS
(see Section 5), which extracts a copy of the file from its archive in -pdes and deposits it in the
user's directory. In the above example, the file would go into -/pdes/stuff. Any modifications
(or testing, in the case of software) to the file occur in the user's account. After the desired
modifications are made, the file is checked back in as a new revision (see Section 6).

Important: It is critical that each user's path contain ~/pdes/bin before the /depot directories.

3.3 Additional Notes for Software Developers

The guidelines and procedures that will govern development of software under configuration
management are being drafted as part of the recently launched Testbed Readiness Program.
They will be published as two separate documents, called "PDES Software Development
Guidelines" and "PDES Software Configuration Management Procedures". The following
comments are important, however, and are worth mentioning here.

The software tools under configuration management reside in -pdes/src and -pdes/include.
The actual files that compose the tools, and that reside in these directories support
dependencies in other files and are used to build releases; they are write-only, and should never
be modified in the course of development. Each file also has a designated release state, which
will be one of the following: Exp (experimental), Alpha, Beta, or Stable.

A Guide to Configuration Management and the Revision Control System for Testbed Users

In addition to the files and the RCS sub-directory, each source directory will contain a shell
script called CheckOut, which automatically checks out a read-only copy of the officially-
released version of each file in that directory. The CheckOut script checks out these files
according to their release state (see Section 6.5), and therefore requires updating only when a
new file is added or an existing file changes state (e.g., is promoted from alpha to beta). Here
is an example CheckOut script:

#!/bin/sh
co -salpha Makefile
co -sbeta hash.c hash.h
co -salpha class.c class.h dictionary.c dictionary.h \

error.c error.h linkedjist.c linkedjist.h

If the changes to a given file constitute a new release, but the state of the file has not changed,
the developer should move to ~pdes/src/stuff and run the CheckOut script. If the state of the
file has changed, the CheckOut script should be modified to reflect this and then run from the
appropriate directory in ~pdes.

3.4 File Conventions

RCS has an automatic keyword-expansion facility (see Section 4.5), and each text file in the
~pdes hierarchy should contain the RCS reserved-word Id. Files containing C code should
contain the string static char rcsid[] = "Id";, so that it will be possible to easily determine
from which version of source code a binary was generated. C header files need only contain the
string /*Id*/. Shell scripts should contain the string #Id. Documents produced with
various publishing systems (e.g., Framemaker or WordPerfect) may also take advantage of this
mechanism, although it is not required. It is important that the Id be in a comment, so that it
is visible on the screen, but not in the printed document.

A revision of a source file that is to be included in a software release should be assigned a
symbolic name (see Section 6.4) indicative of its status, with the hierarchical levels of the
revision number separated by hyphens (e.g., bpr2-l). This will enable check-outs predicated on
the symbolic name. Note that periods are not permitted in symbolic names.

4 RCS Archives

A file configured under RCS is maintained in an archive, which has the same name as the file,
with a ,v appended. An archive is an ASCII text file which contains the revision history and a
complete description of the file. Each version of the file, including the original, is called a
revision. One revision is defined to be the current revision, which means that operations that
do not specify a specific revision will be applied to it. A physical copy of a revision, called a
working-file, can be checked out from an archive. Each revision (except the current revision—
see section 4.4) is stored inside an archive as a set of changes relative to another revision, called
a delta. An archive contains, in order, an administrative node, the revision tree (implemented
as a linked list), a general description of the archive, and the deltas. The remainder of this

A Guide to Configuration Management and the Revision Control System for Testbed Users

section describes the contents of an RCS archive. Those readers who are looking to get started
with development as quickly as possible can skip ahead to Section 5, and refer back to this
section as time or need permits.

The next several sections outline the exact syntax of an RCS archive. Although it is perhaps
outside the scope of a basic users guide, it has been included for two reasons. First, knowledge
of what is contained in archives serves to make the functioning of RCS more intuitive. Instead
of a bevy of commands with multifarious options, RCS can be seen as maintaining a data
structure whose slots can be manipulated in various ways. Also, the information is organized
differently from other available documentation, and some of it is not available in the RCS
documentation.

4.1 The Administrative Node

The first item in an archive is its administrative node, the syntax of which follows:

head [head-num];
branch [branch-num];
access [access-list]',
locks [lock-list];
symbols [symbol-list];
comment [@string@];

where

head-num is the revision number of the current revision.
branch-num is the revision number of the root of the default branch of the revision

tree, which means that operations on entire branches (as opposed to
specific revisions) that do not specify their targets will affect the branch
whose root is branch-num; if there is no branch-num, the highest
branch on the trunk (see section 4.2) is the default.

access-list is the access list for the archive. Users mentioned in the list are granted
write access to revisions in the archive. If the list is empty, access is
unrestricted.

lock-list is a list of security-status determinants. The lock list for each archive
will always contain the word strict, which indicates that strict locking is
engaged. Strict locking is a security feature which prevents more than
one writable working-file from being checked out at a time. Strict
locking can be disengaged (see the on-line manual), in which case Strict
will disappear from the locks list. When a writable working-file is
checked out under strict locking, the name of the user who checked it out
is added to the lock list. The name is removed when the revision is
checked back in.

symbols is a list of symbolic names (if any), as defined by ci -n.
comment is a space reserved for comments.

A Guide to Configuration Management and the Revision Control System for Testbed Users

4.2 The Revision Tree

The revision tree consists of a sequence of nodes, each of which represents a delta and contains
a link to its parent. Each node is of the following form:

rev-num
date date-string; author author-name; state state-name;
branches [branch-lisf\;
next [next-rev];

where

rev-num is the revision number of the node.
date-string is the date the revision was checked in.
author is the user who checked in the revision.
state-name indicates what state the archive is in. The set of possible states is user-

definable. Currently, RCS is configured to recognize the following
states: Exp (Experimental), Alpha, Beta, and Stable. All newly created
archives and newly checked-in revisions are designated Exp
automatically, unless another state is explicitly assigned (see sections
6.5 and 7.6).

branch-list is a list of the revision numbers that are at the top of any side-branches
of the revision tree that issue from the node.

next-rev is the revision number of the node's parent in the revision tree.

4.3 The General Description

The general description of the archive is entered at check-in time, though it can be modified
later (see section 7.7). It appears as follows:

desc
@[description]@

where description is a textual description which may or may not span more than one line. The
@ character is the RCS string delimiter.

4.4 The Deltas

The current revision is stored in its entirety. Each other revision is stored as a delta, which
consists of a list of instructions for undoing the changes that were made to the revision. When
a revision is checked out, RCS constructs it by starting at the current-revision node and
traversing the path in the revision tree to the node of desired revision. If RCS is ascending the
tree it follows the instructions in the deltas, which undo changes. If it is descending or moving
laterally in the tree it reverses the instructions in the deltas, thus making changes (see Figure
4.1). A delta is formatted as follows:

A Guide to Configuration Management and the Revision Control System for Testbed Users

rev-num
log
@[description]
text
@[conten1\
@

where

rev-num
description

content

is the revision number
is a description of the revision. For the initial revision, it is automatically
set to Initial Revision; for subsequent revisions the user supplies the
description at check-in.
is either the complete text of the revision (if the revision is the current
one) or the instructions on how to construct the revision from the node
that is one closer to the current revision (see figure Figure 4.1). Instruc-
tions are of the form: xr s [t], where x is either a (for add) or d (for
delete), r is the first line to be affected, and S is the number of lines to be
affected. If x'vs a, the optional argument f is included, containing the text
to be added.

Note the following example:

1.0
log
<§> Initial Revision
text
@d2 2
a0 1
This is line 1
a21
This is line 3
@

1.1
log
@ Lines 1 and 3 removed
text
@This is line 2
This is line 4
This is line 5
@

We can see that revision 1.1 reads:

A Guide to Configuration Management and the Revision Control System for Testbed Users

This is line 2
This is line 4
This is line 5

Were we to check out revision 1.0, RCS would build it from revision 1.1 according to the
instructions in delta 1.0. First RCS would delete the second and third lines (d2 2). Then it
would add one line at position 0 (a0 1 This is line 1) and one more at position 2 (a2 1 This
is line 3) to give us our initial revision. Note that subsequent instructions do not build on each
other, but refer back to the unrestored revision. Our result:

This is line 1
This is line 2
This is line 3

1.0
1

1.1 1.1.1.1
i 1

1.2.1.1 1.2 1.1.1.2
1 1 1

1.2.1.2 1.3 1.1.1.3

Figure 4.1: Revision 1.0 would be reconstructed by modifying the text of revision 13 with the instructions
in deltas 1.2,1.1, and 1.0, in that order. Revision 1.1.1.3, however, would be obtained by modifying the text
of revision 1-3 according to the instructions in deltas 1.2,1.1,1.1.1.1,1.1.1.2, and 1.1.1.3, also in order.

4.5 RCS Reserved Keywords

There are certain reserved keyword clauses that can be included in a revision. When a revision
containing them is checked in, the clauses are expanded to include values which reflect
conditions at that particular moment. When next checked out, the values from the previous
check-in will appear in the clauses, but will be replaced by new values when checked in again.
These clauses are useful for maintaining topical information. Each keyword is entered into a
revision enclosed in dollar signs, as follows:

$keyword$

When the revision containing one or more such keyword clauses is checked in, values are
assigned, and the clauses appear as follows:

$keyword: value$

8

A Guide to Configuration Management and the Revision Control System for Testbed Users

For example, if $Date$ were included in a revision which was checked in on September 4,
1990 at 2:52:51 PM, the revision would contain the following string:

$Date: 90/09/04 14:52:51 $

Following is a list of all the permissible keywords and brief descriptions of each. The keywords
are case-sensitive.

Author user who checked in the revision
Date date and time of check-in
Locker user who currently has write-access, if any
Log log message from last check-in
RCSfile name of the archive
Revision revision number
Source name of the archive, including path
State state of the revision
Header set of Source, Revision, Date, Author, State, and Locker
'd set of RCSfile, Revision, Date, Author, State, and Locker

The ident command lists all keyword clauses in a file:

%ident filename

5 Checking Out Files From Archives

The RCS check-out command (co) is used to extract a file from its RCS archive. This section
provides instruction on important functions one can perform with this command:

- viewing a read-only copy of a file
- accessing a writable copy of a file
- checking out by symbolic name
- checking out by date or time
-checking out by state

For additional information, consult the on-line man pages.

5.1 Checking Out with Read Access Only

To view a file, a check-out (co) command must be issued:

%co filename

Either the name of the file or the name of the archive (i.e. the ,v is optional) may be supplied.
RCS will then deposit a read-only working-file in the user's development directory, where it
may be looked at or deleted. Any number of read-only working-files may be checked out at a

A Guide to Configuration Management and the Revision Control System for Testbed Users

time to any number of users.

5.2 Checking Out with Write Access

To obtain a writable working-file, the check-out command with the -I option must be used:

%co -1 filename

The -1 stands for lock, and a co command which includes it locks the archive so that no other
users can check out writable copies of the file. The lock is removed when the writable copy is
checked back in (see section 6). Note that a file cannot be checked in if the archive is locked,
so if a writable file is checked out and then accidentally deleted, the lock is left in place. To
remove such a lock from the archive, type:

%rcs -u filename

If a user attempts to check out a writable copy of a revision that another user has locked, RCS
will not allow the check out, but will supply the usemame of the holder of the lock. The
command res -u can be used to break a lock imposed by someone else. As this somewhat
defeats the purpose of using RCS in the first place, it is not a recommended practice, and should
only be done if absolutely necessary. Injudicious use of res -u can result in the locks getting
out of sync, a circumstance that is most undesirable. When a lock is broken, automatic
notification is mailed to the holder of the lock.

A single user can have any number of files checked out and locked simultaneously, and can
also perform repeated check-outs on a single file (without checking it in). Each checked-out
revision is automatically placed in the development directory, and will replace its predecessor
there. If the file to be replaced has been modified, RCS will ask for verification before deleting
it. Care should be exercised, because supplying such verification will erase any changes that
have been made.

Should a file be inadvertently checked out, it can simply be checked back in. RCS will
recognize that no changes have been made and ask Are you sure?. If the answer is no, RCS
will delete the working-file and release the lock.

5.3 Checking Out by Revision or Symbolic Name

In an RCS archive, one revision (usually the most recent one) is defined as the current revision,
and is checked out by default. The -r option with the desired revision number is used to check
out a revision other than the current one:

%co -I -rl.2 some_fHe.c

The -r option can also be used to check out a working file based on a symbolic name, as
assigned with ci -n (see section 6.4):

10

A Guide to Configuration Management and the Revision Control System for Testbed Users

%co -rsymbolic _name filename

5.4 Checking Out by Date or Time

A revision can be checked out according to the date and/or time it was checked in, with the -d
option. RCS allows considerable variation in the formatting of the -d option, but it is
recommended that users use the following syntax:

%co -d" 15:34 August 20 1990" somejile.c

The date-string must be in quotations if it contains spaces. It can contain one or more of the
eight fields described below, in order of precedence:

year. 2- or 4-digit string (e.g. 1990 or 90)
month: the mil name or any sufficiently distinct abbreviation thereof, either with

or without a period (e.g. February, Feb., Feb, Fe--an F alone would
not suffice, as it could be confused with Friday)

day. either the number (with respect to the month) or the name (subject to the same
syntactical requirements as the month)

hour. 12-hour notation or military time
minute-, number
seconds: number
am/pm: optional
time zone: any (e.g. CDT, EST, PDT)

The fields can be rearranged or omitted. When fields are omitted, those of higher precedence
than the highest supplied are assumed to be current, and those of lower precedence to have the
lowest value possible. For example, if a particular revision is desired, but the user doesn't recall
its number, the date may be used to retrieve it. If it is known that the revision is, say, the first
one done in August, the following would work:

%co -dAugust some_file.c

The year field is of higher precedence than the month field, so the current year is assumed.
The remaining fields have lower precedence and assume their minimum valid values.

5.5 Checking Out by State

It is possible to assign states to specific revisions (see sections 6.5 and 7.6). The four states that
RCS is configured to deal with are Exp (experimental), Alpha, Beta, and Stable. To obtain a
revision based on state, use the -s option:

%co -sBeta some_fiIe.c

If more than one revision has the same state, the most recent one will be chosen.

11

A Guide to Configuration Management and the Revision Control System for Testbed Users

6 Checking Files Into RCS

The RCS check-in command (ci) is used to add a new set of changes to an RCS archive. This
section provides instruction on the important functions one can perform with this command:

- checking in changes
- explicitly assigning a revision number
- assigning a date
- assigning a symbolic name
- assigning a state

For additional information, consult the on-line man pages.

6.1 Checking In

After all desired modifications have been made, the file must be checked back into the archive.
Issuing a check-in command with no options will increment the level number and create a new
revision. If revision 1.3 of some_file.c is checked out and modified, checking in as follows will
result in revision 1.4:

%ci some_file.c
RCS/test.c,v <- teste
new revision: 1.4; previous revision: 1.3
enter log message:
(terminate with AD or single '.')
»

As shown, RCS will confirm the check-in and prompt for comments. If a user wishes to enter
comments, they must be typed at the » prompt. There is no limit to the number of lines; the
log entry is terminated with either a AD or a period alone on a line.

6.2 Assigning a Revision Number

Revision numbers define the logical relationships between revisions. Generally, the initial
version of a file entered into a configuration management system (CMS) is called a baseline.
If the baseline is a release as defined in the next paragraph, it should be assigned a revision
number of 1.0. If it is not a release, it should be assigned a revision number of 0.0. The first
digit of a revision number is termed the release number. The second and subsequent digits are
called revision numbers.

A release is that incarnation of a series of versions of an item under configuration management
that is sufficiently changed from its predecessor such that it can be defined as a new conceptual
entity. If the incarnation is the oldest ancestor of the series, it is the baseline, and is of course
different from its predecessor, the empty set. The revision number of a release is generally of
the form x.0, where * is the release number. Having zero as the revision number reflects that
no changes have yet been made to the release.

12

A Guide to Configuration Management and the Revision Control System for Testbed Users

The revision numbers order the lower-level changes that result in the higher-level ones which
differentiate releases. The revision number for a new release is automatically set to zero and
incremented by one as each subsequent revision is checked in.

RCS permits assignment of a specific revision number to a revision, via the -r option:

%ci -r2.0 somefile.c

6.3 Assigning a Date

The -d option is used to specify the date:

%ci -d" August 30" some_file.c

6.4 Assigning a Symbolic Name

A symbolic name is a string that can be assigned to a specific revision. The string becomes
functionally equivalent to the revision number. The symbolic name can consist of any
alphanumeric characters except periods. The assignment is done with the -n option:

%ci -ndistribution somefile.c

For instructions on removal of a symbolic name, see section 7.4.

6.5 Assigning a State

Every revision has a state. If none is explicitly assigned, the revision is automatically
designated experimental (exp). Other states that RCS recognizes are alpha, beta, and stable.
When a file is designated an alpha release (cf. the forthcoming Procedures Document
mentioned in the introduction), an entry is made in the CheckOut script in the appropriate
directory in -pdes. The commands in CheckOut should reference a file by state, and should
therefore only require modification when the file changes state (i.e., from alpha to beta or from
beta to stable). If the changed file is a component in a binary or library, the developer should
rebuild the binary/library and deposit it in ~pdes/arch/bin or ~pdes/arch/lib, as appropriate. The
developer should be sure to delete all object files after building a library or binary.

A state is assigned with the -s option:

%ci -sAIpha some file.c

13

A Guide to Configuration Management and the Revision Control System for Testbed Users

7 The RCS Command

The res command is used for a variety of functions, most of them administrative in nature.
Some of the functions of res are identical to those performed by ci, but provide the opportunity
to change archive attributes without going through a check-out and subsequent check-in.

7.1 Manipulating Access Lists

Each archive has an access list, though no restrictions are enabled so long as the list is empty.
The -a option is used to add users to the access list of an archive:

%rcs -auserjnames filename

Names on the list should be separated by commas. The -A option is used to duplicate the access
list of one archive for another, as follows:

%rcs -Afilelfile2

where filel is the source and file! the destination. Use the -e option to remove names from an
access list:

%rcs -e[user_names] filename

If no user-names are supplied, the entire access list is deleted. This makes the file available to
everyone (subject, of course, to UNIX security measures).

7.2 Designating the Default Branch

One branch of the revision tree is considered the default branch. Any RCS operations will be
directed at this branch, if none other is indicated. The default branch can be designated as
follows:

%rcs -b[rev] filename

The revision number supplied should be that of the top node on the desired branch; if no
revision number is supplied, the highest branch on the trunk is designated the default.

7.3 Locking an Archive

Although the standard way to lock an archive is to use co -1, there may be times when it is
desirable to prevent anyone from modifying a file. One easy way to do this is to lock the archive
as follows:

%rcs -\[rev] filename

14

A Guide to Configuration Management and the Revision Control System for Testbed Users

To unlock the archive:

%rcs -u[rev] filename

7.4 Symbolic Names

To assign a symbolic name to a revision, use either ci -n (see section 6.4) or res -n:

%rcs -nsymbolic_name filename

To remove a symbolic name, use -n with no argument:

%rcs-n filename

To replace a previously assigned symbolic name with a new one, use -N:

%rcs -Nnew_symbolic_name filename

7.5 Updating Archives

To delete old and obsolete revisions from an archive, use:

%rcs -orange filename

where range is of the form [revl][-][rev2]. One revision number alone will result in the
deletion ofthat revision. A revision number with a trailing hyphen will result in the deletion of
that revision and all that follow it on its branch. A revision number with a leading hyphen will
result in the deletion of that revision and all that precede it on its branch.

This procedure is recommended when appropriate. It frees up physical storage space and
results in cleaner and more efficient archives.

7.6 Assigning States

A revision can be assigned a state with ci -s (see section 6.5) or as follows:

%rcs -sstate[:rev] filename

If no revision is specified, the current one is assumed.

7.7 Modifying the General Description

Each archive has a general description which describes the entity under configuration
management, as opposed to comments on specific revisions. To modify the general description,
use the -t option as follows:

15

A Guide to Configuration Management and the Revision Control System for Testbed Users

%rcs -t[txtfile] filename

The descriptive text in txtfile will be inserted into the archive. If the argument is left off, RCS
will prompt the user to input the text through the standard input. When finished, terminate the
text with a AD alone on a line.

8 Getting Information About Archives (rlog)

The rlog command will generate a listing of information from the archive of a particular file:

%rlog smush.c
RCS file: RCS/smush.c,v
Working file: smush
head: 1.2
branch:
locks: strict

bodarky: 1.2
access list:
symbolic names:
comment leader: "#"
keyword substitution: kv
total revisions: 2; selected revisions: 2
description:
This file is an ersatz application.

revision 1.2 locked by: bodarky
date: 1991/03/04 15:27:18; author: bodarky; state: Exp; lines: +10-11
fixed post-impact re-inflation bug

revision 1.1
date: 1991/02/28 18:39:29; author: bodarky; state: Exp;
Initial revision

9 RCS and other Gnu Software

RCS is distributed by the Free Software Foundation1, which also distributes other software
tools that can interact with RCS. Two of these are discussed in the following sections.

9.1 Gnumake

1 Free Software Foundation
675 Mass Ave.
Cambridge, MA. 02139
USA

16

A Guide to Configuration Management and the Revision Control System for Testbed Users

Make is a generic UNIX utility which can be used to automate the installation of large software
systems. The Gnu version of this tool is called gnumake. No provision for RCS need be made
in a Makefile to be used with gnumake; if a file is referenced in such a Makefile and not found,
gnumake will search for an appropriately named RCS archive and, if it finds it, check out the
file automatically.

9.2 Gnu Emacs

Gnu also has its own version of the powerful text editor emacs, called Gnu emacs. Emacs can
be very intimidating and confusing for the novice, and it is recommended that you not attempt
the following instructions unless you are already familiar with it.

When emacs is first invoked, it searches the user's home directory for a file called .emacs,
which contains user-specific set-up information. The following three lines need to be
somewhere in the file in order for Gnu emacs to properly handle RCS:

(setq find-file-not-found-hooks '(my-RCS-file))
(autoload 'ci "res" "RCS ci/co mode" t)
(autoload'my-RCS-file "res" "res ci/co mode" t)

When you have an emacs session running, and try to access a file, emacs will generally load it
from the current directory. If the file is not there, emacs will open a new-file buffer with the
name you have provided. When RCS-enabled, emacs will try to locate an appropriately named
RCS archive before it opens a new buffer. If the archive is found, gnu-emacs will check out the
file automatically, after asking you whether you want a read-only or writable copy.

Emacs does not automate check-in. After your modifications are complete, you must issue an
explicit check-in command to register your work in the archive. First type

<Esc>x ci

by holding down the Escape key and pressing lower case x, then releasing both and typing ci,
and then pressing the return key. You will then be prompted to enter a log message. Do so if
you choose, and then type:

As* An

by holding down the Control key and pressing lower case c twice. The file will then be checked
into the archive at this point.

17

A Guide to Configuration Management and the Revision Control System for Testbed Users

10 Glossary

Archive: A file containing administrative information for some entity configured under
RCS, the text of said entity, and a set of revision instructions (deltas) detailing all the
modifications that have been made to the entity. An RCS archive can be recognized by a ',v'
appended to the file-name.

Current Revision: The current revision is the default target for all operations that do not
specify a revision. It is the only revision in an archive for which the entire text is stored. Note:
the current revision is not necessarily the most recent revision, although it almost always is.

Delta: A complete description of the differences between one revision of a file and its
predecessor in the revision history.

Initial Revision: The first revision of a file, usually the text that is first entered into an RCS
archive. Its revision number is generally 1.0.

Level Number: The second (and any subsequent) field of a revision number.

PDES File System: A dedicated file system (called ~pdes) containing various items which
support PDES. Items stored there include software, documents, test data, etc.

Release: A release is a conceptual entity that consists of one or more related software items.
In most cases, only one version of each item is included in the release.

Release Number: The first field of a revision number.

Revision: A snapshot in time of a file configured under RCS and under development. A
new revision is created when a modified version of a file is checked into an RCS archive. A
revision is denoted by its revision number.

Revision Number: The identifying number of a revision, establishing its place in the
revision history.

Revision History: The set of all revisions, each of which has a distinct revision number.
The revision numbers are arranged hierarchically, and the release and/or level numbers are
incremented with each subsequent revision.

Revision Tree: The data structure in which the revision history of an archive is stored. The
root node of the tree contains administrative information. It has one child (the sub-root, if you
will), which is the initial version of the file. Subsequent revisions are stored below the sub-root,
either in the tree's trunk or in side branches (see Figure 10.1):

18

A Guide to Configuration Management and the Revision Control System for Testbed Users

Trunk

Side Branches

itial Revision

1.1.1 1.1.1.1
1

1.1.2 1.1.1.2
1 1

1.1.3 1.1.1.3
i

1.1.4

Side Branches

Figure 10.1: A typical revision tree

Side Branch (of a revision tree): A side branch contains revisions with multiple level
numbers (e.g. 1.1.1,1.1.2,1.1.2.1,1.1.2.2, etc.).

Trunk (of a revision tree): The trunk consists of those revisions with a single level number
(e.g. 1.1,1.2,1.3,1.4, 2.0, 2.1, etc.), which constitute the main path of revision.

Working File: A file that has been checked out of an RCS archive.

11 References

[Clark90]

[McLean91]

[Ressler90]

[Tichy85]

Clark, Stephen Nowland, An Introduction to the NIST PDES
Toolkit, NISTIR 4336, The National Institute of Standards and
Technology, MD, May 1990.

McLean, Chuck, National PDES Testbed Readiness Program:
Policies and Procedures. Internal Memorandum, March 1991.

Ressler, Sanford, and Katz, Susan, Development Plan:
Configuration Management Systems and Services. NISTIR 4413,
The National Institute of Standards and Technology, MD,
September 1990.

Tichy, Walter F., RCS - A System for Version Control. Purdue
University, Indiana, July 1985.

19

A Guide to Configuration Management and the Revision Control System for Testbed Users

Appendix A The Electronic Mailing Lists/Newsgroups

In order to improve communication between users of the configuration management system
and to facilitate dissemination of information concerning it, two local Usenet newsgroups have
been established at NIST. These newsgroups are also available as electronic mailing lists for
users off-site or anyone who would rather receive mail than read news. The two lists are
pdes.config.discussion and pdes.config.policy. To be added to (or removed from) either
mailing list, send an e-mail message containing your request to the NIST Configuration
Management System Administrator at pdescmsa@cme.nist.gov.

The discussion newsgroup is an open forum for general discussion of (or questions about) the
configuration management system. To submit comments or questions to the list, enclose them
in an e-mail message addressed to pdes-config.cme.mst.gov. Your message will appear in the
local newsgroup and be distributed as a mail message to everyone on the list, as will responses
to your message.

The policy newsgroup is a read-only newsgroup for quick dissemination of information, new
policy, and changes to old policy. Only the NIST Configuration Management System
Administrator can send messages to this list; messages from anyone else will be re-routed to
the Administrator.

20

NIST-114A
(REV. 3-90)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

4. TITLE AND SUBTITLE

1. PUBLICATION OR REPORT NUMBER

 NISTIR 4646
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBLICATION DATE

AUGUST 1991

A Guide to Configuratin Managment and the Revision Control System for the Tested Users

9. AUTHOR(S)
Scott Bodarky

«. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
QAITHERSBURG, MD 20899

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Office of the Secretary of Defense
CALS Program Office
Pentagon
Washington. DC 20301-8000

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

10. SUPPLEMENTARY NOTES

11* LrreRA^ESuK?MEimOl»Ur HEREJ*1"SUMMARY °F MOST ««""CANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR

Product Data Exchange using STEP (PDES) refers to the United States organizational activities
in support of the development of the Standard for the Exchange of Product Model Data (STEP).
These activities have resulted in the creation of large amounts of information and software, which
reside in the PDES File System on the computer systems at the National Institute of Standards
and Technology. The PDES software, documents, and data have been placed under configuration
management using the Revision Control System (RCS), in order to ensure that change to these
items occurs in a controlled manner, and that any service provided by them are done so as
reliably as possible. This document provides instructions for anyone needing to access this
material.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL OROER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WOROS BY SEMICOLONS)

Configuration Management; PDES; PDES Toolkit; Revision Control; Software Configuration;
Software Development

13. AVAILABILITY

UNLIMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

2,^5517??* »"»»OMNTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402. ^

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

24

15. PRICE

A03

ELECTRONIC FORM

