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ABSTRACT 

In this paper we further explore a class of high order TVD (total variation diminishing) 

Runge-Kutta time discretization initialized in [12], suitable for solving hyperbolic conser- 

vation laws with stable spatial discretizations. We illustrate with numerical examples that 

non-TVD but linearly stable Runge-Kutta time discretization can generate oscillations even 

for TVD (total variation diminishing) spatial discretization, verifying the claim that TVD 

Runge-Kutta methods are important for such applications. We then explore the issue of 

optimal TVD Runge-Kutta methods for second, third and fourth order, and for low storage 

Runge-Kutta methods. 
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1     Introduction 

In this paper we further explore a class of high order TVD (total variation diminishing) 

Runge-Kutta time discretization initialized in [12]. For related work of multi-step type see 

[11]. The method is used to solve a system of ODEs: 

ut = L{u) (1.1) 

with suitable initial conditions, resulting from a method of lines approximation to a hyper- 

bolic conservation law: 

ut = -f(u)x (1.2) 

where the spatial derivative f(u)x is approximated by a TVD finite difference or finite element 

approximation (e.g. [4], [8], [13], [2]), denoted by -L(u), which has the property that the 

total variation of the numerical solution: 

rV(«) = X)l"i+i-"il (L3) 
j 

does not increase 

TV(un+1) < TV{un) (1.4) 

for a first order in time Euler forward stepping: 

un+1 = un + AtL{un) (1.5) 

under suitable restriction on At: 

At < Ah. (1.6) 

The objective of the high order TVD Runge-Kutta time discretization, is to maintain the 

TVD property (1.4) while achieving higher order accuracy in time, perhaps with a different 

time step restriction than (1.6): 

Ai<cA*i. (1.7) 

where c is termed CFL coefficient for the high order time discretization. 



The TVD high order time discretization is useful not only for TVD spatial discretizations, 

but also for TVB (total variation bounded) (e.g. [10]), or ENO (Essentially Non-Oscillatory) 

(e.g. [5], [12]), or other types of spatial discretizations for hyperbolic problems. It maintains 

stability in whatever norm, of the Euler forward first order time stepping, for the high order 

time discretization, under the time step restriction (1.7). For example, if it is used for multi 

space dimensional scalar conservation laws, for which TVD is not possible but maximum 

norm stability can be maintained for high order spatial discretizations plus Euler forward 

time stepping (e.g. [3]), then the same maximum norm stability can be maintained if TVD 

high order time discretization is used. As another example, if an entropy inequality can be 

proved for the Euler forward, then the same entropy inequality is valid under a high order 

TVD time discretization. 

In [12], a general Runge-Kutta method for (1.1) is written in the form: 

a«   =   Y, (ctiku^ + &tßikL(uW)) ,        i = l,...,m (1.8) 
k=0 

Clearly, if all the coefficients are nonnegative aik > 0, ßik > 0, then (1.8) is just a convex 

combination of Euler forward operators, with At replaced by ^At, since by consistency 

El=o aik = 1- We thus have 

Lemma 1.1. [12] The Runge-Kutta method (1.8) is TVD under the CFL coefficient (1.7): 

c = min-^-, (1-9) 
«•.*  ßik 

provided that an, > 0, ßik > 0. 

D 

In [12], schemes up to third order were found to satisfy the conditions in Lemma 1.1 with 

CFL coefficient equal to 1. 

If we only have aik > 0 where ßik might be negative, we need to introduce an adjoint 

operator L. The requirement for L is that it approximates the same spatial derivative(s) as 
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L, but is TVD (or stable in another relevant norm) for first order Euler, backward in time: 

un+l = u
n- AtL(un) (1.10) 

This can be achieved, for hyperbolic conservation laws, by solving the backward in time 

version of (1.2): 

«< = /(«)*• (1.11) 

Numerically, the only difference is the change of upwind direction. Clearly, L can be com- 

puted with the same cost as that of computing L. We then have the following lemma: 

Lemma 1.2. [12] The Runge-Kutta method (1.8) is TVD under the CFL coefficient (1.7): 

c = nHnT^7' (L12) 
*<k  \Pik\ 

provided that o^ > 0, and L is replaced by L for negative ßik. 

D 

Notice that, if for the same k, both L(u^) and L(u^) must be computed, the cost as 

well as storage requirement for this k is doubled. For this reason, we would like to avoid 

negative ßik as much as possible. In [12], two Vs were used to give a fourth order TVD 

Runge-Kutta method with a CFL coefficient c = 0.87. We will improve it in this paper, 

however unfortunately we also prove that all four stage, fourth order Runge-Kutta methods 

with positive CFL coefficient c in (1.12) must have at least one negative ßik- 

For large scale scientific computing in three space dimensions, storage is usually a paramount 

consideration. Therefore, there are discussions about low storage Runge-Kutta methods [15], 

[1], which only require 2 storage units per ODE equation.  We will consider in this paper 

TVD properties among such low storage Runge-Kutta methods. 

In the next section, we will give numerical evidence to show that, even with a very nice 

second order TVD spatial discretization, if the time discretization is by a non-TVD but 

linearly stable Runge-Kutta method, the result may be oscillatory. Thus it would always be 

safer to use TVD Runge-Kutta methods for hyperbolic problems. 



The investigation of TVD time discretization can also be carried out for the general- 

ized Runge-Kutta methods (which have more than.one step) in, e.g., [6] and [7]. We have 

performed this study but failed to find good (in terms of CFL coefficients and whether L 

appears) TVD methods in this class. The result will not be discussed in this paper. 

2    The Necessity to Use a TVD Time Stepping:   A 
Numerical Example 

In this section we will show a numerical example, using the standard minmod based MUSCL 

second order spatial discretization [14]. We will compare the results of a TVD versus a 

non-TVD second order Runge-Kutta time discretizations. The PDE is the simple Burgers 

equation 

ui+(iu2)   =0 (2-1) 

with a Riemann initial data: 

«*>*)A\Al->l (2-2) 

ux in (2.1) is approximated by the conservative difference 

^ (/,+l - 4_i), 

where the numerical flux fj+i is defined by 

with 

uT i = Uj+-minmod(uj+i-Uj,Uj-Uj-i),        uj"+i = uj+TL--minmod{uj+2-Uj+i,uj+1-uj) 
3+2 2 2 Z 

The monotone flux h is the Godunov flux 

+ minu-<„<„+ (£) ,    if u- < u+ 

v ( maxu->„>u+ (^-j ,   iiu   > u+ 



and the now standard minmod function is given by 

,.    ,.      sign(a) + signib)    .   .... .... 
minmod(a, b) = \—^^ mm(|a|, \b\). 

It is easy to prove, by using Harten's Lemma [4], that the Euler forward time discretization 

with this second order MUSCL spatial operator is TVD under the CFL condition (1.6): 

Ar 
A* < -    A*   B| (2.3) 

Thus At = 7,—Ax, n, will be used in all our calculations. 2maxj \u"\ 

The TVD second order Runge-Kutta method we consider is the one given in [12]: 

UW   =   u
n + AtL{un) (2.4) 

«»+1   =   \un + i«W + l-AtL{4% 

the non-TVD method we use is: 

u (i) =   un-20AtL(un) (2.5) 

un+l   =   un + ^AtL(un)-^AtL(uW). 

It is easy to verify that both methods are second order accurate in time. 

If the operator L is linear (for example the first order upwind scheme applied to a linear 

PDE), then both Runge-Kutta methods (actually all the two stage, second order Runge- 

Kutta methods) yield identical results (the two stage, second order Runge-Kutta method for 

a linear ODE is unique). However, since our L is nonlinear, we may and do observe different 

results when the two Runge-Kutta methods are used. 

In Figure 1 we show the result of the TVD Runge-Kutta method (2.4) and the non-TVD 

method (2.5), after the shock moves about 50 grids (400 time steps for the TVD method, 

528 time steps for the non-TVD method). We can clearly see that the non-TVD result is 

oscillatory (there is an overshoot). 



exact 

TVD 

Figure 1: Second order TVD MUSCL spatial discretization. Solution after 500 time steps. 

Left: TVD time discretization (2.4); Right: non-TVD time discretization (2.5). 

Such oscillations are also observed when the non-TVD Runge-Kutta method coupled with 

a second order TVD MUSCL spatial discretization is applied to a linear PDE (ut + ux = 0). 

Moreover, for some Runge-Kutta methods, if one looks at the intermediate stages, i.e. uw 

for 1 < i < m in (1.8), one observes even bigger oscillations. Such oscillations may render 

difficulties when physical problems are solved, such as the appearance of negative density 

and pressure for Euler equations of gas dynamics. On the other hand, TVD Runge-Kutta 

method guarantees that each middle stage solution is also TVD. 

This simple numerical test convinces us that it is much safer to use a TVD Runge-Kutta 

method for solving hyperbolic problems. 

3    The Optimal TVD Runge-Kutta Methods of Sec- 
ond, Third and Fourth Order 

In this section we will try to identify the optimal (in the sense of CFL coefficient and the 

cost incurred by L if it appears) TVD Runge-Kutta methods of m-stage, ra-th order, for 

m = 2,3,4, written in the form (1.8). 

For second order m = 2, we can choose ß10 and a2i as free parameters.   The other 



coefficients are then given as [12]: 

' aw = 1 
a2o = 1 - «2i (3.1) 

^21 = 2L 
ßiO = 1 -  2^ - Ö21Ä0 

Proposition 3.1. If we require o% > 0 and ßa > 0, then the optimal second order TVD 

Runge-Kutta method (1.8) is given by 

u(i)   =   un + AtL(un) (3.2) 

un+l     =     lun + lu(l) +  1 AtjL(ttW), 

with a CFL coefficient c = 1 in (1.9). 

Proof: If we would like a CFL coefficient c> 1, then ai0 = 1 implies /?10 < 1, which in turn 

implies ^ > §. Also, a2\ > #21 = äfc, which implies a2i/?io > §• We thus have 

Ä» = 1-2^-Q2lA»<1-5-5 = 0- 

which is a contradiction. 

D 

For the third order case ra = 3, the general Runge-Kutta method consists of a two 

parameter family as well as two special cases of one parameter families [9]. We can similarly 

prove the following proposition: 

Proposition 3.2.   If we require a^ > 0 and ßik > 0, then the optimal third order TVD 

Runge-Kutta method (1.8) is given by 

uw   =   un + AtL(un)' 

u(2)   =   \un + \u(1) + \AtL(uW) (3-3) 

u n+l     =     I„»   i   2.(2)   ,   £ (2) «n + £«w + jAtL(u^), 3 

with a CFL coefficient c = 1 in (1.9). 

Proof: The proof is more technical, and is given in the Appendix. 



For the fourth order case m = 4, the general Runge-Kutta method again consists of a two 

parameter family as well as three special cases of one parameter families [9]. Unfortunately, 

this time we cannot avoid the appearance of negative /fo: 

Proposition 3.3. The four stage, fourth order Runge Kutta scheme (1.8) with a nonzero 

CFL coefficient c in (1.12) must have at least one negative ßik. 

Proof: The proof is technical, and is given in the Appendix. 

We thus must settle for finding an efficient solution containing I, which maximizes ^, 

where c is the CFL coefficient (1.12) and i is the number of Is. This way we are looking for 

a TVD method which reaches a fixed time T with a minimal number of residue evaluations 

for L or L. We use a computer program and the help of optimization routines to achieve 

this goal. The following is the best method we can find: 

«W   =   un + ^AtL(un) 

_649_ (0) _ 10890423   f j51_ ft)     5000 (1) 

1600 25193600       ^    ;     1600 7873       v 

u(3)   _   J!^_M"_i^LAaK) + i^^^ (3.4) U      ~~   2500000 5000000       {    '     20000000 

20000       [      }     32000       + 10000       l     } 

with a CFL coefficient c = 0.936 in (1.12). Notice that two 2s must be computed. The 

effective CFL coefficient, comparing with an ideal case without Is, is 0.936 x | = 0.624. 

Since it is difficult to solve the global optimization problem, we do not claim that (3.4) is 

the optimal 4 stage, 4th order TVD Runge-Kutta method. 



4    The Low Storage TVD Runge-Kutta Methods 

For large scale scientific computing in three space dimensions, storage is usually a paramount 

consideration. Therefore, there are discussions about low storage Runge-Kutta methods [15], 

[1], which only require 2 storage units per ODE variable. We will consider in this section 

TVD properties among such low storage Runge-Kutta methods. 

The general low-storage Runge-Kutta schemes can be written in the form [15], [1]: 

du®   =   AM{-V + AtL(u^-^) 

u(i)   =   u(.-i) + Bidu®,        i = l,...,m (4.1) 

u<°)   =   un,  w(m) = un+1,  Ao = 0   . 

Only u and du must be stored, resulting in two storage units for each variable. 

Carpenter and Kennedy [1] have classified all the three stage, third order (m=3) low 

storage Runge-Kutta methods, obtaining the following one parameter family: 

zx = y/36c4
2 + 36ci - 135c| + 84c2 - 12 

z2 = 2c2 + c2 — 2 

z3 = 12<4 - 18c2 + 18c* - llc2 + 2 

z4 = 36^ - 36cf + 13c2, - 8c2 + 4 

z5 = Wc3
2 - 62c* + 28c2 - 8 

z6 = Uc\ - 46<| + Uc2
2 - 13c2 + 2 

B,   =   c2 (4.2) 

I2c2(c2-l){3z2-z1)-(3z2-z1)
2 

B2 

B3 

A2 

A3 

144c2(3c2-2)(c2-l)2 

-24(3c2 - 2)(c2 - l)2 

(3z2-z1)
2-l2c2{c2-l){Sz2-z1) 

-z1(6c2-4c2 + l) + 3z3 

(2c2 + l)Zl - 3(c2 + 2)(2c2 - l)2 

-ziZl + 108(2c2 - l)c5
2 - 3(2c2 - l)z5 

24^c2(c2 - l)4 + 72c2z6 + 72ci(2c2 - 13) 



Which is converted into the form of equation (1.8), by introducing three new parameters. 

Then we search for values of these parameters that would maximize the CFL restriction, 

again by a computer program. The result seems to indicate that 

c2 = 0.924574 (4.3) 

gives an almost best choice, with CFL coefficient c = 0.32 in (1.9). This is of course less 

optimal than (3.3) in terms of CFL coefficients, however the low storage form is useful for 

large scale calculations. 

Carpenter and Kennedy [1] have also given classes of 5 stage, 4th order low storage Runge- 

Kutta methods. We have been unable to find TVD methods in that class with positive aik 

and ßik. Notice that L cannot be used without destroying the low storage property, hence 

negative ßik cannot be used here. 

5    Concluding Remarks 

We have given a simple but illustrating numerical example to show that it is in general much 

safer to use a TVD Runge-Kutta method for hyperbolic problems. We then explore the 

optimal second, third and fourth order TVD Runge-Kutta methods. While for second and 

third order optimal methods are found with a CFL coefficient equal to one, for fourth order 

we simply give the best method we can find. A TVD third order low storage Runge-Kutta 

method is found, which uses only two storage units per equation and has a CFL coefficient 

equal to 0.32. Finally, we prove that general four stage fourth order Runge-Kutta methods 

can not be TVD without introducing an adjoint operator L. 

Acknowledgments: We would like to thank Mordechai Berger and Mark Carpenter for 

helpful discussions. 
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6    Appendix 

In this appendix we prove Proposition 3.2 and Proposition 3.3. 

We write the general 4 stage, 4th order Runge-Kutta method in the following standard 

form [9]: 

W   =   un + cl0L{un) u 

„(2)   =   un + c20AtL(un) + c2lAtL{uw) 

„(3)   =   u
n + c30AtL(un) + c31AtL{u^) + c32AtL(u^) (6.1) 

un+1   =   un + c40AtL(un) + c41AtL{u^) + c42AtL(uW) + c43AtL(u{3)) 

The relationship between the coefficients cik here and aik and ßik in (1.8) is: 

ClO    =    ßw 

C20     =     $20 + a2l/?10 

c2\    =    ßil 

C30   =   a32a2\ßio-\-ct^ßw-V a32ß2Q-\-ßzo 
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C31     =     «32^21 + ßz\ (6-2) 

C32     =     ßz2 

C40     =     a43Q!32a:2l/?10 + 043^32^20 + Ö43Ö31Ä0 + 042021^10 

+041,010 + Ö42Ä0 + «43^30 + ßiO 

C41     =     a43a32ß21 + 042/?21 + «43^31 + Äl 

C42     =     a43/?32 + /?42 

C43     =     /?43 

For a third order Runge-Kutta method, the general form (6.1) is similar without the last 

line (and with u^ replaced by un+1). The relationship (6.2) also is similar without the last 

four lines for c4o, C41, c42 and C43. 

Proof of Proposition 3.2: 

The general third order, three stage Runge-Kutta method in the form (6.1) is given by a 

two parameter family as well as by two special cases of one parameter families [9]. 

• General Case: If a3 ^ a2, 0:3 / 0, a2 7^ 0 and a2 ^ §: 

C10     =     «2 

3a2a3(l - a2) — a\ 
C20 

C21 

C30   =   1 + 

a2(2 - 3a2) 

Q3(OJ3 - a2) 

cc2(2 - 3a2) 

2 - 3(a2 + a3) 

C31 

C32 

6a2a3 

3Q3-2 

60:2(0:3 -Q2) 

2-3a2 

60:3(03 - Oi2) 

Notice that 602C21C32 = 1 and c2o + c2\ = 03.  If we want to have a CFL coefficient 

c > 1 in (1.9), we would need a^ > ßik > 0 unless both of them are zeroes. This also 
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implies that cik > 0 by (6.2). Also, notice that clV_! = #,,-_i > 0, otherwise that stage 

is not necessary. 

Now, cio = /?io < aio = 1 and c10 > 0 imply 0 < a2 < 1. 

1. a3 > OJ2. 

c2i > 0 implies a2 < §, and c3X > 0 requires a3 > |. 

^o > 0 and a2X > ß2i imply c20 > a2i/?io > /Mio, which is °3 - c2i > c2aa2, or 

-^a— > Coi. So we must have 

3a2 - 2a\ 
Ot3 < 

On the other hand, ß3X > 0 requires c31  > a32ß2i > c32c21  =  ^, which is 

3a3 - 2 > a3 - a2, or 

a3 > 1 - -a2 

Combining these two inequalities, we get l-|a2 < -^pS or (2-3a2)(l-a2) < 

0, which is a contradiction, since 2 - 3a2 > 0 and 1 — a2 > 0. 

2. a2 > a3. 

a3 = c20 + c2i > 0 requires a3 > 0. 

c32 > 0 requires Qf2 > |, and c3x > 0 requires a3 < 3. 

c3i > a32/?2i > c32c2i = gjj, which is 

a3 < 1 - -a2, 

C20 > a2i/?io > /?2iAo requires 

a2(3 — 2a2) 
a3 > —r~:  1 +a2 

Putting these two inequalities together, we have °"f~*°^ < 1 - |«2, which means 

(2 - 3a2)(l - a2) > 0, a contradiction since 1 - a2 > 0 and 2 - 3a2 < 0. 
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|. In this case 

2 
ClO 

3 
2       1 

C20 
3     4o;3 

1 
C21 

4^3 
1 

C30 4 
3 

C31 — --CU3 
4 

C32 = uiz 

ß3l > 0 and a<32 > ßzi = c32 requires c31 > a32/?2i > C32&1 = \ which implies u3 < \. 

ß20 > 0 and a2i > j02i = c2i requires c20 > a2i/?io > Ic2i, wnich means § - ^ > |^. 

for which we must have CJ3 > |. A contradiction. 

Special Case II: a3 = 0. In this case the equations read 

2 
ClO 3 

1 
C20 4o;3 

1 
C21 

4a?3 
1 

C30 

3 
C31 — 

4 

C32     =    ^3 

Clearly c2o and c2i cannot be simultaneously nonnegative. 

Special Case III: a2 = 0. In this case the method is not third order. 

D 
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Proof of Proposition 3.3: 

Recall that all the aik's must be nonnegative to satisfy our TVD criteria. From the 

relationship (6.2) between the coefficients of (6.1) and of (1.8), we can see that nonnegative 

ßikS imply nonnegative cVs. We now show that we cannot have all nonnegative c^'s. 

• General Case. If two parameters a2 and a3 are such that: a2 ^ a3, a2 / 1, a2 7^ 0, 

a2 ^ i, a3 ^ 1, a3 / 0, a3 ^ §, and 6a2a3 - 4(a2 + a3) + 3 + 0. Then the coefficients 

Cik are [9]: 

ClO = «2, C20 = «3 - c21, C21 - 2a2(l-2a2)' 

1 _  (l-»2)Ia2+a3-l-(2a3-l)2]   .  _    (l-2of2)(l-of2)(l-a3) 
C30 - 1 - C3I - C32, C31 — 2a2(a3-a2)[6a2«3-4(af2+03)+3]' °

32   a3(a3-<*2)[6a2a3-4(a:2+a3)+3]' 

1 , 1-2(02+03)    „  _     2^-1      -  _     (l-2a2)      ._  _ 1 ,  2(a2+a3)-3 
C40 = 5+ \2o2o3      i C41 - 12a2(«3-«2)(l-«2)' 

42 ~" 12a3(a3-o2)(l-a3)' °
43   2^ 12(l-a2)(l-a3)' 

There are five possibilities to consider: 

1. ö2 < 0 implies c10 < 0. 

2. a3 > a2 > 0 and 0 < a2 < \: 

c41 > 0 requires a3 > \. c20 > 0 requires a3 < 3a2 - 4a2, < ^|- c32 > 0 and 

C31 > 0 require that a2 > 2 - 5a3 + 4a|. Since this is a decreasing function of a3 

when a3 < ^, we obtain a2 > 2 - 5(3a2 - 4a?,) + 4(3a2 - 4a2,)2. Rearranging, 

we find that 0 > 2((2a2 - l)2 + 4a2) (2a2 - l)2, which is impossible. 

3. a3 < a2 and a2 > §: 

C42 > 0 requires 0 < a3 < 1. 

We can only have c32 > 0 in one of two ways: 

(a) If 1 - a2 > 0, and 6a2a3 - 4(a2 + a3) + 3 > 0. 

c41 > 0 requires a3 < \.   Simple calculation yields c30 = 1 - c3i - c32 = 

(2-6aa+4ag)+(-5+15a2-12c,|)a3+(4-12ct3+12ag)al    h > Q ^ 
2or2a3(6a2Of3-4(a2+a3)+3) ' ou _ n 

A+5a3+Ca2 = (2-6a2+4a2)+(-5+15a2-12a2>3+(4-12a2+12a2)a2 > 0 
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It is easy to show that, when \ < a2 < 1, we have A < 0, B < 0 and C > 0. 

Thus, for 0 < a3 < |, we have 

A+tfas+Ca2. < max (A, A+-B + -Cj = max (A, -(1 - 2a2)(l - a2)J < 0, 

which is a contradiction, 

(b) a2 > 1, and 6a2a3 - 4(a2 + a3) + 3 < 0. 

c31 > 0 requires a2 + a3 - 1 - (2a3 - l)2 < 0, which implies 

(1 - 4a3)(l - a3) = 4a2 - 5a3 + 1 > a2 - 1 > 0. 

Clearly, this is true only if a3 < \. 

Now, c40 > 0 requires that 0 < 6a2a3 — 2(a2 + a3) + 1 = 2a3(3a;2 — 1) + (1 — 

2a2) < |(3a2 — 1) + (1 — 2a2) = |(1 — a2), an apparent contradiction. 

4. 0 < a2 < | and ct3 < a2: in this case we can see immediately that C42 < 0. 

5. If \ < a2 < a3, C21 < 0. 

• If 6a2a3 — 4(a2 + a3) + 3 = 0, or if a2 = 0 or if a3 = 1, then this method is not fourth 

order [9]. 

• Special Case I. If a2 = a3 the method can be fourth order only if a2 = a3 = |. In 

this case [9] cw = |, c20 = § - g^, c2i = ^, c30 = 0, c31 = 1 - 3tt73, c32 = 3io3, 

c40 = |, c4i = § - u;3, c42 = w3, c43 = |. 

Clearly we need to have c42 = to3 > 0. To have c3i = 1 — 3iu3 > 0 and C2Q = \ — -^- > 0, 

we require w3 = |. This leads to the classical fourth order Runge-Kutta method. 

Clearly, then, an = C2°~^20 = —2ß20. This is only acceptable if a2\ = ß20 = 0. But 

/?2i = \, so in the case where all ^'s are nonnegative, the CFL coefficient (1.12) is 

equal to zero. 

• Special Case II. If a2 = 1, the method can be fourth order only if a3 = |. Then 

[9] do = 1, c20 = §, c21 = |, C30 = 1 - c3i - c32, C31 = -i^r, C32 = 3^7, C40 = |, 

C41 = I - W4, c42 = 5, c43 = tü4. 
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In this case we want c31 = -^ > 0 which means w4 < 0. But then c43 = w4 < 0. So 

this case does not allow all nonnegative ß-jt's. 

Special Case III. If a3 = 0 the method can be fourth order only if a2 = \. Then [9] 

dO  = h C20  = -^, Cn  = i, 030 = 1 " <*1 - C32, C31 = |, C32 = 6t03, C40 = J - U*, 

C41 = §, C42 = ™3,  C43 = 6* 

Clearly, c20 = -jtr = _C21' one of these must be ne§ative- Thus' this case doeS n0t 

allow all nonnegative ßik% either. 

D 
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