
COMPUTER SYSTEMS LABORATORY

STANFORD UNIVERSITY ■ STANFORD, CA 94305-4055

CONCURRENT RUNTIME MONITORING OF
FORMALLY SPECIFIED PROGRAMS

Manas Mandal and Sriram Sankar

Technical Report No. CSL-TR-90-425

jjjgCMBPBOff EfTÄTEMEMf 1.

Approves to: p-ujs&f: zekxsssj

April 1990

This research was supported by the Defense Advanced Research Projects Agency under
contract N00039-84-C-0211.

DTIC QUALITY mr^C'*'^ 3

19960916 153

IN REPLY
REFER TO

OFFICE OF THE UNDER SECRETARY OF DEFENSE (ACQUISITION & TECHNOLOGY)
DEFENSE TECHNICAL INFORMATION CENTER

8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

1 AUG 96

DTIC-OMI

SUBJECT: Distribution Statements on Technical Documents

TO:

- U.S. DEFENSE ADVANCED RESEARCH PROJECT
AGENCY/INFORMATION SYSTEMS OFFICE
3701 NORTH FAIRFAX DRIVE
ARLINGTON, VA 22203-1714

1. Reference: DoD Directive 5230.24, Distribution Statements on Technical Documents,
18 Mar 87.

2. The Defense Technical Information Center received the enclosed report (referenced
below) which is not marked in accordance with the above reference.

"CONCURRENT RUNTIME MONITORING OF FORMALLY SPECIFIED PROGRAMS"
REPORT #CSL-TR-90-425 CONTRACT #N00039-84-C-0211

3. We request the appropriate distribution statement be assigned and the report returned
to DTIC within Jrworking days.

4. Approved distribution statements are listed on the reverse of this letter. If you have
any questions regarding these statements, call DTIC's Input Support Branch,
(703) 767-9092, 9088 or 9086 (DSN use prefix 427).

FOR THE ADMINISTRATOR:

1 End :R(ySTAL RILEY
Chief, Input Support Branch

FL-171
Dec 95

DoD Directive 5230.24, "Distribution Statements on Technical Documents," 18 Mar 87, contains seven
distribution statements, as described briefly below. Technical Documents that are sent to DTIC must be
assigned one of the following distribution statements:

I

a DISTRIBUTION STATEMENT A:

□
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

DISTRIBUTION STATEMENT B:

DISTRIBUTION AUTHORIZED TO U. S. GOVERNMENT AGENCIES ONLY; (FILL IN REASON); (DATE
STATEMENT APPLIED). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED TO (INSERT
CONTROLLING DoD OFFICE).

□ DISTRIBUTION STATEMENT C:

DISTRIBUTION AUTHORIZED TO U. S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS;
(FILL IN REASON); (DATE STATEMENT APPLIED). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE
REFERRED TO (INSERT CONTROLLING DoD OFFICE).

□ DISTRIBUTION STATEMENT D:

DISTRIBUTION AUTHORIZED TO DoD AND DoD CONTRACTORS ONLY; (FILL IN REASON); (DATE
STATEMENT APPLIED). OTHER REQUESTS SHALL BE REFERRED TO (INSERT CONTROLLING DoD
OFFICE).

□ DISTRIBUTION STATEMENT E:

DISTRIBUTION AUTHORIZED TO DoD COMPONENTS ONLY; (FILL IN REASON); (DATE
STATEMENT APPLIED). OTHER REQUESTS SHALL BE REFERRED TO (INSERT CONTROLLING DoD
OFFICE).

□ DISTRIBUTION STATEMENT F:

FURTHER DISSEMINATION ONLY AS DIRECTED BY (INSERT CONTROLLING DoD OFFICE AND
DATE), OR HIGHER DoD AUTHORITY.

□ DISTRIBUTION STATEMENT X:

DISTRIBUTION AUTHORIZED TO U. S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS OR
ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN ACCORDANCE WITH
DoD DIRECTIVE 5230.25 (DATE STATEMENT APPLIED). CONTROLLING DoD OFFICE IS (INSERT).

(Reason)

OASB/TIO
(Assigning Office)

Debra K. Amick

(Signature & Typed Narr/e)

Defense Advanced Research Projects Agency (DARPA)
(Controlling DoD Office Name)

3701 N. Fairfax Dr.. Arlington. VA 22203-1714
(Controlling DoD Office Address (City/State/Zip)

September 11, 1996
(Date Statement Assigned)

Concurrent Runtime Monitoring of Formally Specified
Programs

Manas Mandal* and Sriram Sankar

Program Analysis and Verification Group
Computer Systems Laboratory

Stanford University
Stanford, California 94305-4055

Computer Systems Laboratory Technical Report CSL-TR-90-425

Abstract

This paper describes an application of formal specifications after an executable program
has been constructed. We describe how high level specifications can be utilized to monitor
critical aspects of the behavior of a program continuously while it is executing. This method-
ology provides a capability to distribute the monitoring of specifications on multi-processor
hardware platforms to meet practical time constraints.

Typically, runtime checking of formal specifications involves a significant time penalty
which makes it impractical during normal production operation of a program. In previous
research, runtime checking has been applied during testing and debugging of software, but
not on a permanent basis.

Crucial to our current methodology is the use of multi-processor machines — hence
runtime monitoring can be performed concurrently on different processors. We describe
techniques for distributing checks onto different processors. To control the degree of con-
currency, we introduce checkpoints— a point in the program beyond which execution cannot
proceed until the specified checks have been completed. Error reporting and recovery in a
multi-processor environment is complicated and there are various techniques of handling
this. We describe a few of these techniques in this paper.

An implementation of this methodology for the Anna specification language for Ada
programs is described. Results of experiments conducted on this implementation using
a 12 processor Sequent Symmetry demonstrate that permanent concurrent monitoring of
programs based on formal specifications is indeed feasible.

Keywords—Ada, Anna, concurrent monitoring, consistency checking, debugging, instru-
mentation, multi-processors, program specification, program testing, self-checking programs.

'from Department of Computer and Information Science, The Ohio State University, Columbus, Ohio - 43210.

I I

Computer Systems Laboratory
Stanford University
Copyright © 1990

1 Introduction

A substantial body of current formal methods research is aimed at utilizing formal specifica-
tion languages in the software development process. Top-down methodologies such as VDM
seek to utilize specifications based on mathematical formalisms (e.g., the Larch and Z specifi-
cation languages) to develop correct programs (see [2,3,6,14]). Typically, standard theories of
specification concepts are developed prior to an application, and then high-level specifications
using the concepts of those theories are gradually transformed into executable code in some
programming language. Other formal methods seek to prove mathematically that a high-level
specification is consistent with a program.

These methodologies may be divided rather loosely into soft and hard formal methods.
The main difference between the two is that soft methods do not require a rigorous proof of
correctness of each step while hard methods do. The difference between these two philosophies
has arisen probably because the hard methods were seen as not achieving short term applications
on a wide scale.

This paper describes an application of a soft formal method. We describe how a high level
specification can be utilized to monitor critical aspects of the behavior of a program continuously
while it is executing. The executable program (the underlying program) is constructed using
the formal specification prior to the application of our methodology.

Typically, runtime monitoring of formal specifications involves a significant time penalty
which makes it impractical during normal production operation of a program. In previous
research, runtime monitoring has been applied during testing and debugging of software, but
not on a permanent basis [8,11,13]. In this paper, we describe the use of multi-processor
machines to perform runtime monitoring concurrently with the execution of the underlying
program.

Concurrent runtime monitoring is aimed particularly at dealing with security and safety-
critical problems that may occur in systems even when they are produced by hard formal
methods. Incorrect behavior in systems produced by formal methods can result from failures
in underlying hardware or errors in compilers, operating systems, or other software upon which
the target system depends [12].

This use of formal specifications complements both categories of formal methods mentioned
above that apply earlier in the development process when a program is being constructed. Also,
specifications that have already been constructed and analyzed by other formal methods earlier
in the lifecycle can be utilized here.

1.1 Background

Instrumenting programs for the purpose of consistency checking has been around since the mid-
70's [15,16]. Since then, many systems have been built where assertions have been compiled
into runtime checking code. The recent work on the Anna Consistency Checking System [11]
involves the transformation of various specification language constructs written in Anna [9] into
checking code, which is then embedded into the underlying Ada [1] program. This checking
code takes the form of checking functions which are called from the underlying program from
locations where the specifications can potentially be violated.

A methodology whereby the checking functions are replaced by Ada tasks is discussed in [10].
These checking tasks accept program data through entry calls and perform consistency checking
concurrently. A disadvantage of this approach is that the underlying program may run in a
potentially unsafe state while the checking tasks are still performing earlier checks. However,
this may not pose a problem in many situations. For example,

• It may be acceptable to allow a database application to continue running even after the
database gets corrupted until some critical operations are performed by the application.

• Consistency checking of an abstract data type implementation may take place concur-
rently with the execution of the underlying program until the underlying program makes
another call to an operation of this abstract data type.

• In more simplistic programs, the final program output may be the only important activity
of the program. In such cases, consistency checking can take place concurrently until the
program is ready to produce its output.

In this paper, we describe an implementation of concurrent runtime monitoring of Anna
programs. The methodologies described here are a refinement and extension of the methodolo-
gies described in [10]. This implementation is bootstrapped on top of the sequential monitoring
system [11]. We avoid going into details of the implementation that are not very interesting in
the top-level view of the system. The concurrent monitoring system currently assumes that the
underlying program is sequential. If the underlying program has multiple threads of control,
an extra level of complexity is added. This is a subject for future research.

1.2 Possible Applications

Below is a list of possible applications of the technology for permanently monitoring a pro-
gram against its formal specifications. These are typically large applications involving complex
specifications.

Security of databases: Operations may sometimes want to permit non-secure output based
upon secure data, for example, producing an unclassified report which averages some top
secret data. Also, a database may want to check dynamically that certain properties of
data are preserved. Such details can be specified as constraints which are then checked
automatically at runtime. Denning [4] describes an intrusion-detection expert system
capable of detecting break-ins, penetrations and other forms of computer abuse. This
system is based on monitoring the system's audit records for abnormal patterns. These
patterns can be specified as formal constraints and our technology can then be used to
automatically generate this expert system. An overview of data security is presented
in [5], and clearly indicates the usefulness of the technology.

Consistency of databases: Specifications can be used to describe what it means for a data-
base to contain consistent information. For example, one may specify that the relation
father.of is anti-symmetric. These specifications can be checked at runtime to en-
sure that the database does not become inconsistent. An example of such a database is

CYC [7]. CYC is a very large evolving knowledge-base of commonsense facts about the
world whose consistency aspects are specified formally and checked at runtime.

Program maintenance: Permanent self-checking is also useful in the maintenance of large
programs. It is quite common to make inconsistent modifications to a large program.
Such mistakes can be detected automatically by a self-checking program. A subtle error
may be detected only after many runs of the program on some very specific kinds of
inputs.

1.3 Organization of the Paper

The organization of this paper is as follows: Section 2 gives an overview of Anna1. Section 3
gives an overview of the relevant aspects of the sequential checking methodology. Section 4
introduces checking tasks and describes how they are used. This section describes the core of
the concurrent checking methodology. Section 5 goes into the details of checkpointing and the
algorithms used to implement it. Section 6 discusses error reporting and recovery in general.
Section 7 describes the experiments conducted on the concurrent checking system and also
outlines other experiments that will be performed in the future. Section 8 concludes the paper.
Appendix A shows a sample Anna program before and after transformation for concurrent
checking.

2 An Overview of Anna

Anna (ANNotated Ada) is a language extension of Ada [1] to include facilities for formally
specifying the intended behavior of Ada programs. Anna was designed to meet a perceived need
to augment Ada with precise machine-processable annotations so that well established formal
methods of specification and documentation can be applied to Ada programs. In this section
we give a brief overview of Anna with special emphasis on subtype annotations. A complete
definition of Anna is given in [9].

Anna is based on first-order logic and its syntax is a straightforward extension of the Ada
syntax. Anna constructs appear as formal comments within the Ada source text (within the
Ada comment framework). Anna defines two kinds of formal comments, which are introduced
by special comment indicators in order to distinguish them from informal comments. These
formal comments are virtual Ada text, each line of which begins with the indicator —:, and
annotations, each line of which begins with the indicator --1.

2.1 Virtual Ada Text

Virtual Ada text is Ada text appearing as formal comments, but otherwise obeying all of the
Ada language rules. Virtual text may refer to actual text, but is not allowed to affect the
computation of the actual program. Actual text cannot refer to virtual text. The purpose of
virtual Ada text is to define concepts2 used in annotations. Often the formal specifications of

JIt is assumed that the reader has a working knowledge of Ada.
2 Functions used in annotations are called concepts.

a program will refer to concepts that are not explicitly implemented as part of the program.
These concepts can be defined as virtual Ada text declarations. Virtual Ada text may also be
used to compute values that are not computed by the actual program, but that are useful in
specifying the behavior of the program.

2.2 Annotations

Annotations are constraints on the underlying Ada program. They are comprised of expressions
that are boolean-valued. The location of an annotation in the Ada program together with its
syntactic structure indicates the kind of constraints that the annotation imposes on the under-
lying program. Anna provides different kinds of annotations, each associated with a particular
Ada construct. Some examples of annotations are subtype annotations, object annotations,
statement annotations, subprogram annotations, exception propagation annotations and ax-
iomatic annotations. The Anna expressions extend (i.e., are a superset of) the expressions in
Ada.

The Anna language and the nature of the sequential monitoring system is such that con-
current checking needs to be explicitly implemented only for the following Anna constructs:
subtype annotations, object annotations and axiomatic annotations. All other constructs are
either transformed to one of the above constructs by the sequential monitoring system or else
they are not amenable to concurrent checking. For reasons of brevity, this paper concentrates
on subtype annotations only. The ideas described in this paper can easily be extended to other
kinds of annotation constructs and other specification and programming languages. Subtype
annotations are discussed in a little more detail below.

2.2.1 Subtype Annotations

A subtype annotation is a constraint on an Ada type. The constraint applies throughout the
scope of the type definition. Subtype annotations are located immediately after the definition
of the type they constrain, and are bound to the type definition by the keyword where.

Example of a subtype annotation:

type EVEN is new INTEGER;
— | «EVEN_CONSTRAINT»
— | where X:EVEN =>
--| X mod 2 = 0;

The above subtype annotation constrains all values of the type EVEN to be even numbers.
The name of the annotation is EVEN_CONSTRAINT. This name can be used to refer to the
annotation later. This constraint also applies to all derived types and subtypes of EVEN.

2.3 Anna Pragmas for Concurrent Checking

Many new Anna language-specific pragmas have been defined for the purpose of controlling the
degree of concurrency, checkpointing and error reporting. These pragmas must appear within

virtual text and are described in the sections that follow.

3 Overview of the Sequential Transformation Methodology

Subtype annotations are transformed into checking functions. These functions take a parameter
of the type in question and check this parameter for consistency with the subtype annotation.
Calls to the checking functions are inserted at places where inconsistencies with respect to
the annotation can arise. Examples of such places are assignment statements, procedure call
statements and type conversions.

An example of such a transformation is shown in Figure 1. Here, a subtype annotation
that constrains a type to have only even values is transformed to a checking function. Also, an
assignment statement in the example is transformed to one that includes a call to the checking
function. The subtype annotation and the new code generated as a result of its transformation
are enclosed in boxes to indicate their equivalence. The naming conventions used in all examples
in this paper are for ease of readability. A more thorough naming convention is used in the
actual system.

BEFORE:

declare
type EVEN is new INTEGER.
-| «EVEN_CONSTRAINT>>

--j where X:EVEN =>
--| X mod 2 = 0;
E:EVEN;

begin
E := exp;

end;

AFTER:

declare
type EVEN is new INTEGER;
E:EVEN:
function CIIECK_EVEN(X:EVEN)

return EVEN is
begin

if not(X mod 2 = 0) then
report_error;

end if;
return X;

end CHECK_EVEN;
begin

E := |CHECK_EVEN(|ezp[J1;
end;

Figure 1: Example of a Checking Function

If a new type or subtype is defined based on the type EVEN, then the constraint on EVEN
also applies to the new type or subtype. For example, the subtype POS_EVEN in the following
example is constrained by both its own subtype annotation as well as the annotation on type
EVEN.

subtype POS_EVEN is EVEN;
— | «POS_EVEN_CONSTRAINT»
— j where X:POS_EVEN =>
— | X > 0;

In such situations, the checking function of the newly defined type or subtype makes a call
to the checking function of the type or subtype based on which it was defined. The checking
function for POS_EVEN is shown below:

function CHECK_POS_EVEN(X: POS_EVEN) return POS_EVEN is
begin

if not(X > 0) then
report_error;

end if;
return CHECK_EVEN(X);

end CHECK POS_EVEN;

4 Checking Tasks

Checking tasks are Ada tasks that perform consistency checks concurrently with the execution
of the underlying program. The motivation behind generating checking tasks instead of check-
ing functions is to improve the performance of the self-checking program in a multi-processor
system. Checking tasks accept check requests from the underlying program through entry calls.
The parameters of these entry calls are the same as the parameters of the checking functions
in the sequential case.

The checking task generated for the type EVEN is shown below:

task CHECK_TASK_EVEN is
entry ENQUEUE(E:EVEN);

end CHECK_TASK_EVEN;

task body CHECK_TASK_EVEN is
X:EVEN;

begin
loop

accept ENQUEUE(E:EVEN) do
X := E;

end ENQUEUE;
if not (X mod 2 = 0) then

report_error;
end if;

end loop;
end CHECK_TASK_EVEN;

The functionality of report_error is described in the subsequent sections on checkpointing, and
error reporting and recovery.

The above checking task for type EVEN is generated instead of the checking function shown
in Figure 1. However, the checking function is not completely erased, rather the check within
the checking function is replaced by the entry call to the checking task. The modified checking
functions for the types EVEN and POS_EVEN are shown below:

function CHECK_EVEN(X: EVEN) return EVEN is
begin

CHECK_TASK_EVEN .ENQUEUE(X);
return X;

end CHECK_EVEN;

function CHECK_POS_EVEN(X:POS_EVEN) return POS_EVEN is
begin

CHECK_TASK_POS_EVEN. ENQUEUE(X);
return CHECK_EVEN(X);

end CHECK_POS_EVEN;

Notice that since each checking function interface is still the same as in the sequential case,
no modifications are required for calls to these functions. This simplifies the transformation
process because we can leverage on the already existing sequential system. In addition, we
can also mix sequential and concurrent checking within the same program. For example, the
constraint on type EVEN can be checked concurrently, while the constraint on type POS_EVEN
is checked sequentially. Anna pragmas are defined later in this section to specify the kind of
checking to be performed for each annotation.

If we did not maintain the checking function and instead enqueued checks directly to the
checking task, we would save the time of making one function call. This problem can be solved
by using the Ada pragma INLINE to specify that all checking functions that perform the actual
enqueuing be expanded inline at their calls.

This scheme of using checking tasks has one problem — the checking task will not respond
to a check request while it is performing a previously requested check. This will therefore cause
the underlying program to block. To prevent this from happening, we generate a buffer task for
each checking task. This task maintains a queue of check requests. The underlying program
enqueues check requests to the buffer task and the checking task dequeues these requests from
the buffer task and then performs the actual check. The buffer tasks also perform other activities
specific to the annotation for which they have been generated. For this reason, these buffer
tasks are referred to as secretary tasks. The other activities of the secretary tasks are described
in the subsequent sections. A simplified version of the secretary task for EVEN_CONSTRAINT is
shown below. This version does not include any of the secretary task's additional functionalities
that will be described later3:

3In the actual implementation, secretary tasks are generic instantiations of a secretary task template.

task CHECK_SECY_EVEN is
entry ENQUEUE(X:EVEN);
entry DEQUEUE(X: out EVEN);

end CHECK_SECY_EVEN;

task body CHECK_SECY_EVEN is
EMPTY: BOOLEAN := TRUE;
TMP:EVEN;

begin
loop

select
accept ENQUEUE(X:EVEN) do

TMP := X;
end ENQUEUE;
enqueue the value of TMP and update EMPTY;

or
when not EMPTY =>

accept DEQUEUE(X: out EVEN) do
X := first element in the queue;

end DEQUEUE;
dequeue the first element and update EMPTY;

end select;
end loop;

end CHECK_SECY_EVEN;

The modified checking task and checking function for EVEN_CONSTRAINT are shown below:

task CHECK_TASK_EVEN;

task body CHECK_TASK_EVEN is
X: EVEN;

begin
loop

CHECK_SECY_EVEN. DEQUEUE(X);
if not(X mod 2 = 0) then

report_error;
end if;

end loop;
end CHECK_TASK_EVEN;

function CHECK_EVEN(X: EVEN) return EVEN is
begin

CHECK_SECY_EVEN. ENQUEUE(X);
return X;

end CHECK EVEN;

The interaction between the underlying program, secretary tasks and checking tasks is illus-
trated in Figure 2. Assume that the variable P in this figure is of type POS_EVEN.

P := exp;
exp POS_EVEN

Checking
Function

exp EVEN
Checking
Function

exp exp

POS_EVEN
Secretary

Task

EVEN
Secretary

Task

exp exp

POS_EVEN
Checking

Task

EVEN
Checking

Task

Figure 2: Checking Tasks and Secretary Tasks

No
Checking

Sequential
Checking

Concurrent
Checking '

Underlying Program

Secretary Task

Checking Task

Figure 3: Timing Diagram of Check Requests for EVEN

A scenario where a program generates two check requests for variables El and E2 of type
EVEN in quick succession is illustrated in Figure 3. This figure compares the performance of

the program in the three cases of (1) no runtime monitoring, (2) sequential runtime monitoring,
and (3) concurrent runtime monitoring in a multi-processor machine. The dashed lines in this
figure denotes that the corresponding processor is idle.

Ada is a block-structured language. In most situations, Ada requires that a thread of
control cannot leave a scope in the Ada program until all local tasks created by this thread
of control have terminated. Therefore, upon leaving scopes in the transformed Ada program,
all local checking tasks and secretary tasks will have to be terminated. It is preferable to
terminate these tasks after all requested checks have been completed. This is achieved using
the checkpointing facility described in Section 5. The code generated at the end of the scope of
EVEN_CONSTRAINT is shown below. We will elaborate more on this code later in the section
on checkpointing.

wait until all check requests to CHECK_TASK_EVEN have been handled;
abort CHECK_TASK_EVEN, CHECK_SECY_EVEN;

The structure of the checking tasks and the secretary tasks is such that abort-ing these tasks
terminates these tasks as quickly as using an Ada terminate alternative4. Such code to perform
the handling of activities at the end of a scope will occur at (1) the physical end of the sequence
of statements of the scope as well as of each of the exception handlers for that scope; and
(2) return, exit and goto statements that transfer control outside of the scope. In addition, a
dummy exception handler is introduced to intercept all exceptions that are not handled by the
already existing exception handlers. The dummy exception handler executes the above code
and then reraises the exception that it intercepted.

4.1 Anna Pragmas for Specification of Checking Methodology

A set of Anna pragmas are provided to the programmer to specify whether annotations are to
be checked concurrently or sequentially. They are listed below. These pragmas have parameters
to describe the mechanism for error recovery. These parameters are described in Section 6.

ANNA_PARALLEL_SCOPE: This pragma can appear anywhere in a program (but within
Anna virtual code), and its effect is to generate code for concurrent checking of all anno-
tations declared in the scope of the pragma, unless overridden by a more local pragma.

ANNAJSEQUENTIAL_SCOPE: Like the previous pragma, this pragma can appear anywhere
in a program. Its effect is to generate code for sequential checking of all annotations
declared in the scope of the pragma, unless overridden by a more local pragma.

ANNA_PARALLEL_ANNOTATION: This pragma must occur immediately after an annota-
tion. Its effect is to generate code for concurrent checking of this annotation.

ANNA_SEQUENTIAL_ANNOTATION: As in the case of pragma ANNA_PARALLEL_ANNO-
TATION, this pragma must occur immediately after an annotation. Its effect is to generate
code for sequential checking of this annotation.

4Either the ahoit or the terminate approach can be used. No study has been conducted as to which is more
efficient.

10

All checks pertaining to the same annotation have to be performed in the same manner —
either all concurrently or all sequentially.

4.2 Multiple Checking Tasks per Annotation

It is quite easy to generalize our model to permit multiple checking tasks for each annotation.
There will still be only one secretary task which queues up all the check requests. Whenever
any of the checking tasks have completed a previous check, they can dequeue the next available
check request. Having multiple checking tasks per annotation is very useful in situations where
there are many check requests made for each annotation.

This generalization has not yet been implemented. We intend to implement it at a later
time, and provide Anna pragmas to specify the number of checking tasks for each annotation.

5 Checkpointing

When a check is performed concurrently by a checking task, the underlying program continues
to execute beyond the point where the check request was made. If the checking task detects
an inconsistency, the underlying program could potentially be running in an unsafe state. If
the programmer has chosen to perform a particular check concurrently, it means that the
programmer felt it does not matter for the program to continue executing in such situations.
However, the programmer might want to prevent the underlying program from executing beyond
a certain point until certain checking tasks have processed all their pending check requests.

The checkpointing facility is used to specify such points in the program beyond which it is
unsafe to continue execution until all checks have been performed. It is specified using the Anna
pragma ANNA_CHECK_POINT. This pragma takes as its parameter a list of annotation names.
The underlying program is suspended whenever it reaches an ANNA_CHECK_POINT pragma
until all check requests pertaining to each of the annotations in the list have been processed. If
the list of annotation names is empty, then the underlying program is suspended until all check
requests for every annotation has been processed. By assuming that the underlying program is
sequential, we have avoided many complications in defining the semantics of a checkpoint. For
example, what does it mean for one task to checkpoint on an annotation, while another task
continuously makes check requests on the same annotation?

Checkpoints are implemented by maintaining an enqueue counter and a dequeue counter
for each annotation being checked concurrently. The enqueue counter is incremented every
time a check request is sent to the corresponding secretary task, while the dequeue counter
is incremented every time a check request is processed5 by the corresponding checking task.
The underlying program is allowed to proceed from a checkpoint when all the relevant de-
queue counter values catch up with their corresponding enqueue counter values. The actual
implementation of this algorithm involves more details. For example, if we are working on
a multi-processing system without any shared memory, comparing counters will require some
amount of message passing.

5The dequeue counter maintains a count of all the checks requests that have been processed by the checking
task, rather than a count of all the check requests that have been dequeued from the secretary task. These two
numbers will differ by 1 while the checking task is processing a check request.

11

Our approach is to use a dedicated checkpoint controller, which is a separate process. Every
time a checking task—secretary task combination starts running, the secretary task registers
itself with the checkpoint controller. Similarly, whenever these tasks are aborted at the end of
their scopes, the checkpoint controller is notified.

We assume the presence of shared memory. It so happens that only the enqueue counters
need to be placed in shared memory in our algorithm. Furthermore, the enqueue counters are
used only by the underlying program when it is not waiting at a checkpoint; and used only by
the checkpoint controller when the underlying program is waiting at a checkpoint. Hence, if we
do not have shared memory, we need to exchange the values of the relevant enqueue counters
only at checkpoints.

The enqueue counters are incremented by the corresponding checking functions every time
a check request is made. The dequeue counters are maintained by the checkpoint controller.
The secretary task periodically sends the checkpoint controller the number of completed checks
since it last communicated with the checkpoint controller. The checkpoint controller then adds
this number to its appropriate dequeue counter. The secretary task attempts to send these
messages as infrequently as possible at the same time ensuring that the underlying program
is not made to wait too long at a checkpoint. Hence, the secretary task sends such a message
every time its queue of check requests is empty and the checking task is ready for more checks.
Chances are that at this point the secretary task is anyway going to be idle and so it might as
well use this time to send the checkpoint controller an update of its status.

Every time a checkpoint is reached, the underlying program makes an entry call to the
checkpoint controller, giving the checkpoint controller the list of annotations to checkpoint on.
Since the underlying program is sequential, the enqueue counters cannot be incremented while
the underlying program is waiting at a checkpoint — the enqueue counters are constant for the
duration of the checkpoint. The checkpoint controller therefore waits for update messages to
the corresponding dequeue counters from their respective secretary tasks until all the dequeue
counters becomes equal to their corresponding enqueue counters. The underlying program is
then released from the checkpoint. The secretary tasks are not allowed to manipulate the
dequeue counters directly because there could be times when the checkpoint controller and the
secretary task attempt to access the dequeue counter simultaneously.

The secretary task and checking function for CHECK_EVEN are shown below after modifi-
cation to handle checkpointing. Note the use of the local counter CHECKS_PROCESSED. This
counter maintains a count of all the processed check requests since the last time the secretary
task communicated with the checkpoint controller. Actually, this counter is incremented as
soon as a check request has been dequeued, i.e., earlier than it should have been incremented.
However, by the time the secretary task processes the next dequeue request from the checking
task, this counter contains the correct value.

task CHECK_SECY_EVEN is
entry ENQUEUE(X:EVEN);
entry DEQUEUE(X: out EVEN);

end CHECK SECY EVEN;

12

task body CHECK_SECY_EVEN is
EMPTY: BOOLEAN := TRUE;
TMP:EVEN;
CHECKS_PROCESSED: NATURAL := 0;

begin
register EVEN_CONSTRAINT with checkpoint controller;
loop

select
accept ENQUEUE(X:EVEN) do

TMP := X;
end ENQUEUE;
enqueue the value of TMP and update EMPTY;

or
accept DEQUEUE(X: out EVEN) do

if EMPTY then
if CHECKS_PROCESSED /= 0 then

send checkpoint controller the value of
CHECKS_PROCESSED;

CHECKS_PROCESSED := 0;
end if;
accept ENQUEUE(Y:EVEN) do

TMP := Y;
end ENQUEUE;
enqueue the value of TMP and update EMPTY;

end if;
X := first element in the queue;

end DEQUEUE;
dequeue the first element and update EMPTY;
CHECKS_PROCESSED := CHECKS_PROCESSED+1;

end select;
end loop;

end CHECK SECY EVEN;

function CHECK_EVEN(X: EVEN) return EVEN is
begin

CHECK_SECY_EVEN .ENQUEUE(X);
ENQUEUE_COUNTER(EVEN_CONSTRAINT) :=

ENQUEUE_COUNTER(EVEN_CONSTRAINT) + 1;
return X;

end CHECK_EVEN;

The code to handle a checkpoint on EVEN_CONSTRAINT is shown below:

CHECKPOINT_CONTROLLER.CHECKPOINT(EVEN_CONSTRAINT);

The relevant portion of the checkpoint controller is shown below. Note that the enqueue and
dequeue counters are zeroed to prevent the counters from overflowing:

13

accept CHECKPOINT(ANNOTATION:ANNOTATION_TYPE) do
while DEQUEUE_COUNTER(ANNOTATION) /=

ENQUEUE_COUNTER(ANNOTATION) loop
wait for corresponding secretary task to send CHECKS_PROCESSED;
DEQUEUE_COUNTER(ANNOTATION) :=

DEQUEUE_COUNTER(ANNOTATION) + CHECKS_PROCESSED;
end loop;
ENQUEUE_COUNTER(ANNOTATION) := 0;

end CHECKPOINT;
DEQUEUE_COUNTER(ANNOTATION) := 0;

The above is a simplified version of the checkpoint controller. In general, the checkpoint con-
troller will have to handle multiple annotations at the same time. The timing diagram in
Figure 4 illustrates the checkpointing algorithm. The scenario is similar to the one depicted in
Figure 3.

Report number
of checks
processed

Release from
checkpoint

Underlying Program

*-Secretary Task

♦-Checking Task

■»- Checkpoint Controller

Figure 4: Timing Diagram of a Checkpoint

In Section 4, we discussed the need to abort all local checking and secretary tasks when
control reaches the end of their scopes. The code presented there is refined below:

CHECKPOINT_CONTROLLER. CHECKPOINT(EVEN_CONSTRAINT);
tell checkpoint controller that EVEN_CONSTRAINT no longer exists;
abort CHECK_TASK_EVEN, CHECK_SECY_EVEN;

5.1 An Alternate Checkpointing Algorithm

We now describe another checkpointing strategy. No counters are required in this case, but we
still make the assumption that the underlying program is sequential. This strategy is outlined

14

below.
Every time the queue of the secretary task is empty and the corresponding checking task is

ready for more check requests (i.e., the checking task is idle), the secretary task communicates
this information to the checkpoint controller. The secretary task also communicates with the
checkpoint controller as soon as its queue becomes non-empty. The queue becomes non-empty
when an enqueue is performed by the underlying program. In this algorithm it is essential
for the secretary task to report to the checkpoint controller before releasing the underlying
program from the ENQUEUE entry call. Hence the checkpoint controller is aware of when each
checking task is idle and when it is not. The underlying program performs an entry call to the
checkpoint controller at the checkpoint and communicates the list of annotations on which to
checkpoint.

The checkpoint controller releases the underlying program from the checkpoint as soon as
the checkpoint controller knows that all relevant checking tasks are idle. This method will
work because once the underlying program is at a checkpoint, it cannot enqueue any further
checks. Also, all earlier check requests have already been enqueued with the secretary tasks,
and if necessary the checkpoint controller has been informed about it. Hence, the checkpoint
controller just has to wait until all relevant checking tasks are idle.

Though this method is conceptually much simpler, it has some disadvantages:

• In this method, all communication has to be synchronous. This is because we rely on the
fact that when the underlying program is waiting at a checkpoint, all previous enqueue
requests have reached the corresponding secretary tasks and the checkpoint controller has
also been notified of this.

In the case of the counter implementation, the enqueue operation between the underlying
program and the secretary task can be performed asynchronously (possibly using some
meta-Ada construct). This is because the counter values at checkpoints are independent
of whether or not previous check requests have reached the corresponding secretary task.

• In a situation where there are a large number of annotations to be checked, but very
few check requests per annotation, checking tasks will become idle frequently. This could
swamp the checkpoint controller with a large amount of communication from secretary
tasks. Since a lot of this communication takes places while the underlying program is
waiting to be released from an ENQUEUE entry call, this will slow down the underlying
program.

5.2 Multiple Checking Tasks per Annotation

If we have one checking task per annotation, we know that the value of CHECKS_PROCESSED
is correct whenever the checking task performs a dequeue operation.

When there are multiple checking tasks for each annotation, this is not enough. All other
checking tasks also have to become idle before we have a correct value in CHECKS_PROCESSED.
Designing a scheme to handle this is a topic for future research.

15

6 Error Reporting and Recovery

The Anna reference manual requires that the exception ANNA_ERROR be raised whenever an
inconsistency with respect to an annotation is detected. Furthermore, this exception must be
raised at the location of the inconsistency. In the sequential checking methodology, this is easy
to implement. In fact, in the sequential case, control can also be transferred to a specialized
Anna Debugger [8], through which further information about the inconsistency can be obtained.

When the checks are performed concurrently, it may be too restrictive to adhere to the
Anna semantics of raising the exception ANNA_ERROR at the location of the inconsistency. To
implement this, the program execution has to be backtracked to the location from where the
failed check request was made. We have not implemented the backtracking scheme due to the
complexities involved. However, there are many other schemes of error reporting and recovery
which are easier to implement and at the same time quite useful. We have implemented the
three schemes listed below. The programmer can choose a particular scheme of error reporting
and recovery for each annotation.

• Inconsistencies are ignored.
In this scheme, the checking task makes a log of the inconsistency, but takes no other
action. This scheme is useful in non-critical situations, where the log of the inconsistency
can be used for routine maintenance of the underlying program. Checkpoints with respect
to an annotation being checked using this scheme are ignored.

• Inconsistencies are reported to the underlying program by raising the exception ANNA_
ERROR at the next checkpoint.
In this scheme, the secretary task reports any inconsistencies to the checkpoint controller
every time the secretary task sends an update on the number of processed checks. The
checkpoint controller then causes the exception ANNA_ERROR to be raised in the under-
lying program when it releases it from the next checkpoint. This scheme is useful when
the underlying program wishes to recover from an inconsistency.

• The first detection of an inconsistency causes the entire program to be aborted as soon as
possible.
On detecting an inconsistency, the checking task initiates the process of aborting the
underlying program. The main complication in achieving this is due to the Ada visibility
rules. The underlying program is not necessarily visible to all the checking tasks (or
secretary tasks). Our solution to this problem is discussed later.

In all three schemes, the inconsistencies are logged into a file. The default is the current
(standard) output, but the programmer can specify an alternate file using the Anna pragma
ANNA_PARALLEL_LOG_FILE. This pragma takes a filename as its argument.

To specify the error reporting and recovery scheme, the programmer may use the Anna
pragma ANNA_REPORT_MODE. This takes as argument one of IGNORING, REPORTING or
ABORTING6. The effect of this pragma is to set the default scheme for error reporting and

6The "-ING" at the end of each of these possible options is to work around the fact that "ABORT" is an Ada
reserved word.

16

recovery throughout its scope except where it is overridden by a more local pragma that specifies
an error reporting and recovery strategy.

These error reporting and recovery options may also be specified as parameters in the
four Anna pragmas described in Section 4.1. This will have the same effect as a pragma
ANNA_REPORT_MODE at the same location with the same parameter.

The following paragraphs go into details of the implementation of the REPORTING and
ABORTING schemes.

In the case of the REPORTING scheme, if the checkpoint controller determines that ANNA_
ERROR must be raised in the underlying program the following Ada trick is used: The check-
point controller raises the exception ANNA_ERROR inside the accept statement that is handling
the checkpoint. This exception is then allowed to propagate outside the accept statement. This
causes the exception to be reraised at the location of the checkpoint in the underlying program.
The exception is also reraised within the checkpoint controller outside the accept statement,
but the checkpoint controller "kills" this second propagation using an exception handler. An
outline of the checkpoint controller code that achieves this is shown below:

begin
accept CHECKPOINT(ANNOTATION:ANNOTATION_TYPE) do

if MODE = REPORTING then
raise ANNA_ERROR;

end if;
end CHECKPOINT;

exception
when ANNA_ERROR =>

null;
end:

We can achieve the effect of raising ANNA_ERROR in the underlying program through other
means also. For example, the entry CHECKPOINT can return a parameter based on which the
underlying program can determine whether or not to raise the exception. However, the method
we have adopted is more general in that the checkpoint controller could potentially raise an
exception of its choice and not just ANNAJERROR.

Before we go into the details of how the ABORTING scheme is implemented, we discuss the
different ways in which the underlying program can terminate. In general there are three ways:

1. Normal termination.
The underlying program terminates normally after all consistency checks have been com-
pleted successfully.

2. Abnormal termination.
An exception was raised within the underlying program during its execution and was not
handled. This could either be an Ada exception, or the exception ANNA_ERROR raised
at a checkpoint due to an annotation being checked using the REPORTING scheme.

17

3. Termination due to inconsistency.
This happens when an inconsistency is detected with respect to an annotation being
checked using the ABORTING scheme.

To handle these three situations, the original main program of the underlying program is
transformed into a task. This task is then placed inside a procedure that becomes the new
main program. This new main program waits for one of the above three situations to arise and
takes the necessary action to terminate the underlying program and the monitoring tasks.

In the runtime system, we place a task with the two entry calls, SIGNAL_END and WAIT_END.
These entries have one parameter each. This parameter is used to specify the kind of program
termination. All this task does is wait for an entry call to SIGNAL_END and copies the param-
eter over; it then waits for an entry call to WAIT_END and returns this copied parameter to
the task that issued the WAIT_END entry call. This task is shown below:

type TERMINATION is (NORMAL,ABNORMAL,INCONSISTENCY);

task PGM_CONTROLLER is
entry SIGNAL_END(SIGNAL: in TERMINATION);
entry WAIT_END(SIGNAL: out TERMINATION);

end PGM_CONTROLLER;

task body PGM_CONTROLLER is
END_SIGNAL: TERMINATION;

begin
accept SIGNAL_END(SIGNAL: in TERMINATION) do

END_SIGNAL := SIGNAL;
end SIGNAL_END;
accept WAIT_END(SIGNAL: out TERMINATION) do

SIGNAL := END_SIGNAL;
end WAIT_END;

end PGM_CONTROLLER;

The new main program makes an entry call to WAITJEND and waits until this entry call is
processed by the task PGM_CONTROLLER. Hence, if any information needs to be communi-
cated to this main program, all one has to do is to make an entry call to SIGNAL_END with
the appropriate parameter. This works around the Ada visibility rules restriction due to which
direct access to the main program is not permitted.

The way in which the new main program handles each of the different possible termination
schemes is described below:

NORMAL: SIGNAL_WAIT is called by the underlying program when it reaches a normal ter-
mination point. The new main program simply terminates.

ABNORMAL: An exception handler is inserted to catch all exceptions that are not handled
within the underlying program. Within this exception handler, SIGNAL_WAIT is called.
Following this, the previously mentioned trick (to propagate an exception across tasks) is

18

used to propagate the exception to the new main program. The new main program can
then mimic the abnormal termination of the underlying program.

INCONSISTENCY: As soon as a checking task detects an inconsistency with respect to an an-
notation being checked using the ABORTING scheme, the checking task calls SIGNAL_END.
The new main program then aborts the underlying program and then terminates itself
by raising the exception ANNA_ERROR.

As part of the termination process, the new main program also terminates the checkpoint
controller. The mainline of the underlying program before and after transformation is shown
below:

Before:

procedure MAIN is

end MAIN;

After:

procedure MAIN is
-- This is the new main program.
END_SIGNAL TERMINATION;

task MAIN_PGM is
entry PROPAGATE_ADA_ERROR;

end MAIN_PGM;

task body MAIN_PGM is
procedure MAIN is

-- The original main program transformed to include checking
-- tasks, secretary tasks, entry calls to these tasks, etc.

end MAIN;
begin

MAIN;
-- Normal termination. New main program should terminate nor-
-- mally.
PGM_CONTROLLER.SIGNAL_END(NORMAL);

exception
-- Abnormal termination due to an exception raised within the
— underlying program. New main program should also terminate
-- abnormally by raising the same exception.
when others =>

PGM_CONTROLLER.SIGNAL_END(ABNORMAL);

19

-- The same trick that was used in implementing the RE-
— PORTING scheme is used here. Note that in this case,
-- we do not know the exception being propagated.
begin

accept PROPAGATE_ADA_ERROR do
raise;

end PROPAGATE_ADA_ERROR;
exception

when others =>
null;

end;
end MAIN_PGM;

begin
PGM_CONTROLLER. WAIT_END(END_SIGNAL);
terminate checkpoint controller;
if END_SIGNAL = NORMAL then

-- Normal termination.
null;

elsif END_SIGNAL = ABNORMAL then
— Find out and raise the exception raised in the original main
— program.
MAIN_PGM. PROPAGATE_ADA_ERROR;

elsif END_SIGNAL = INCONSISTENCY then
-- A checking task has detected a violation and the error reporting
-- and recovery scheme is ABORTING.
abort MAIN_PGM;
raise ANNA_ERROR;

end if;
end MAIN;

This concludes our description of the translation schemes to generate a concurrent monitoring
system from a formally specified program in Anna. Figure 5 illustrates all the processes and
their interactions in this monitoring system. The box labeled UNDERLYING PROGRAM is also a
separate process since it is invoked from the task MAIN_PGM.

7 Experimental Results

Many small test examples have been transformed and executed successfully using the concurrent
monitoring system. These tests were designed to test the functionalities of the system thor-
oughly. Some examples of experiments conducted were (1) mixing sequential and concurrent
checking, (2) mixing different kinds of error reporting and recovery techniques, and (3) check-
pointing under various different circumstances. We have found that the monitoring system is
quite sturdy and usable.

The other realm of experiments were concerned with performance issues. We were interested
in comparing the performance of the underlying program in the three cases of running without
any checking; with sequential checking; and with concurrent checking. We performed these

20

PGM_
CONTROLLER

NEW MAIN
PROGRAM

Figure 5: The Concurrent Monitoring System

experiments on a Sequent Symmetry machine with 12 processors. Though we did get the
anticipated results — no checking < concurrent checking < sequential checking7 — the lack of
good instrumentation tools have hampered our attempts at obtaining precise timing information
from our experiments.

Some example programs which have been run on this system include a Prime Number
Generation program, and a Sorted Array program. The first program had a constraint on a
data type that all values of the type be prime. When larger numbers were fed to the prime
number checking algorithm, the concurrently monitored program completed more quickly than
the sequentially monitored program.

The second program had a constraint on an array type that restricted all components to
be sorted in a non-decreasing order. For small arrays, the sequentially monitored program ran
more quickly, but once the array size became sufficiently large, the concurrently monitored
program completed quicker than the sequentially monitored program.

rThese results are for large programs with a large overhead in annotation checking.

21

7.1 A Performance Degradation Model

In this section, we develop a model using which we can quantitatively analyze the various
performance degradation parameters of a runtime monitoring system.

For any monitoring system m, let us define the following performance degradation param-
eters:

• 1° 9 bm
This is the time overhead due to the initialization and termination of the monitoring
system. Even if there were no annotations to be checked, the transformed program will
take this much longer to execute. In the system described in this paper, this includes
the time take to create and terminate tasks like the checkpoint controller and the new
main program, initializing the task within which the underlying program will run and the
time taken to communicate with the new main program through the SIGNAL_END and
WAIT_END entry calls.

• t0a 9 lm
Here, a is an annotation. This is the time overhead due to the presence of a in the
program. In a program where a is the only annotation, but no checks are performed, the
transformed program will take t°m + t% longer than the original program to execute. In
the system described in this paper, t% includes the time taken to create and terminate
the secretary task and the checking task of a.

• t%
This is the amount of time by which the underlying program is slowed down every time
a check is performed with respect to a. In the system described in this paper, this is
the time required to perform the enqueue operation and then to increment the enqueue
counter. In the sequential checking system presented in Section 3, this time includes that
taken to make a function call and then to perform the actual check.

In general, t% will depend on the value being checked. For example, the annotation
IS_PRIME(X) can take more time to check for larger values of X. To avoid complicating
our model, we redefine t*£ to be the average amount of time by which the underlying
program is slowed down every time a check is performed with respect to a.

• na

For any program, this is the number of checks with respect to a that needs to be performed.
This number is independent of the monitoring system m, but will vary depending on the
particular program run. Here again, na can be considered the average number of checks
with respect to a over the program runs which are of interest.

If the program contains annotations a\,... ,a^, then the performance degradation due to a
monitoring system m is:

t=i

22

If mcon is the concurrent monitoring system and mseq is the sequential monitoring system,
then it make sense to use the concurrent monitoring system over the sequential monitoring
system when:

k

V'mcon ~ ''mseq) + 2~/\y™'con ~ ^m'seq) + n ' X Vm'con ~ tm'seq)) < 0 (2)
t'=l

The above inequality is obtained from (1) by substituting mcon and mseq respectively for m
and then comparing the two. This inequality can be simplified by making a few assumptions.
We can assume that t^ is independent of the annotation a. Therefore, we rewrite t% as t™8.
We also split t^ into two components — the constant overhead due to setting up to perform the
check, which we denote by t^a and the overhead due to actually performing the check, which
we denote by t%". We can assume that t%a is independent of the annotation a (hereafter, this
is referred to as t%), and that tc^gn = 09. Then (2) simplifies to:

(Ccon - Cseq) + (C - C..,) X * + (Cco„ - C..f) X £(na') < J2(n«' X tt?eq) (3)

This inequality states that if the total time required to perform the actual checks is greater
than the extra overhead of the concurrent system over the sequential system, the concurrent
system should be used. It should be clear that this inequality assumes that the monitoring
system does not interfere with the underlying program except when it holds up the underly-
ing program during the enqueueing of check requests — i.e., all annotations are checked in
IGNORING mode and the underlying program is never held up at a checkpoint.

We have attempted to determine values for the above performance degradation parameters
for both the sequential and concurrent monitoring systems using a variety of typical annotations.
Due to lack of good instrumentation tools, the values we obtained are not precise enough to be
very meaningful in the scope of this paper.

We propose to refine our experiments to come up with more meaningful results. We hope
to characterize for each annotation from a representative set when the conditions under which
concurrent monitoring improves the performance over sequential monitoring.

8 Conclusions and Future Work

Our efforts in developing a permanent runtime monitoring system have been quite fruitful. We
demonstrated the feasibility of using multi-processor machines to perform concurrent moni-
toring of critical aspects of a program's behavior continuously while it is running. We have
an actual implementation of such a system for Anna subtype annotations. Since this system

Here we also assume that the total number of tasks generated does not cause the Ada runtime scheduler to
degrade. Otherwise, t% would be a function of how many checking tasks and secretary tasks have already been
created in the program.

9We are making a simplifying assumption here that the underlying program never has to wait for a check to
be completed. For example, we assume that if the underlying program reaches a checkpoint, all relevant checks
have already been performed and the underlying program is not held up.

23

bootstraps on top of the already existing and well-developed sequential monitoring system, the
concurrent monitoring system is able to handle most Ada constructs.

Notwithstanding the success of our project, we have identified several areas where further
work is required.

• Extension of the concurrent monitoring system to handle more Anna constructs.
Extending the concurrent monitoring system to handle Anna object annotations requires
the implementation of a similar methodology to that we have already implemented. How-
ever, there are other aspects that we have to spend more time on to design efficient
methodologies. For example, an annotation on a complex data-structure may require
saving a copy of this data-structure every time a check request is made. This might in-
troduce an unacceptable overhead. Techniques need to be developed to save only those
portions of the data structure that the check is based on. Alternatively, portions of the
data structure are saved only when they are modified while there is a pending check
request based on the old value of the data structure.

• Extension of the concurrent monitoring system to handle underlying programs with mul-
tiple threads of control.
When the underlying program is not sequential, many of our algorithms need to be mod-
ified before they can work properly. In addition, many of the features we have developed
will also have to be refined. For example, what happens when one thread of control in
the underlying program requests a checkpoint on a particular annotation, while another
thread of control is enqueuing check requests repeatedly on the same annotation? We
might need to permit checkpointing based on check requests from a particular thread of
control, or from a particular subprogram in the underlying program. Similarly, our error
recovery strategies may also require modification. For example, it may not make sense
to report an inconsistency based on a check request from one thread of control to some
other thread of control.

• Dynamic modification of checking and error reporting/recovery schemes.
In many complex systems, it may be useful to have the ability to dynamically change
the method of checking and the method of error reporting and recovery. For example,
the checking of an annotation could be suppressed completely, or changed from sequential
checking to concurrent checking. Also, inconsistencies with respect to the same annotation
may be critical in some situations (in which case, the program may have to be immediately
aborted), and not so critical in other situations (in which case the annotation violation is
just logged to a file).

• Design of a new specification monitoring language.
Our studies have shown the necessity for designing a new language in which one can not
only specify the program behavior, but also the degree of concurrency with which checking
can take place and the method of error reporting and recovery. Our Anna pragmas
have extended Anna in a very rudimentary manner to specify these other aspects of
runtime monitoring. This new language need not be based on any particular programming
language like Ada, but can provide a general paradigm for specification monitoring of
programs written in any language.

24

• Characterization and implementation of real-life examples where runtime monitoring is
useful.
In this paper, we listed a few possible applications of our monitoring system. These
applications and others will have to be implemented for runtime monitoring to test the
feasibility of concurrent monitoring on real-life examples.

• Better performance metrics and measurements.
Especially with the design of a new and more sophisticated specification monitoring lan-
guage, our simple performance degradation parameters will have to be extended. We
also have to create the necessary framework in which we can measure these parameters
precisely.

9 Acknowledgements

We are grateful to Prof. David C. Luckham, David S. Rosenblum and other members of the
Program Analysis and Verification Group at Stanford for the ideas generated through our many
interactions with them. Special thanks are due to Geoff Mendal for his extensive proof-reading
of the paper.

This research was supported by the Defense Advanced Research Projects Agency under
contract N00039-84-C-0211.

References

[1] The Ada Programming Language Reference Manual. US Department of Defense, US Gov-
ernment Printing Office, February 1983. ANSI/MIL-STD-1815A-1983.

[2] Dines Bj0rner and Cliff B. Jones. Formal Specification and Software Development. Pren-
tice/Hall International, 1982.

[3] R. Bloomfield, L. Marshall, and R. Jones, editors. VDM'88, VDM — The Way Ahead.
Volume 328 of Lecture Notes in Computer Science, Springer-Verlag, 1988.

[4] D. E. Denning. An intrusion-detection model. In Symposium on Security and Privacy,
IEEE Computer Society, 1986.

[5] D. E. Denning and P. J. Denning. Data security. ACM Computing Surveys, ll(3):227-249,
September 1979.

[6] J. V. Guttag, J. J. Horning, and J. M. Wing. The Larch family of specification languages.
IEEE Software, 2(5):24-36, September 1985.

[7] D. Lenat and R. V. Guha. Building Large Knowledge Based Systems. Addison Wesley,
1989.

[8] D. C. Luckham, S. Sankar, and S. Takahashi. Two Dimensional Pinpointing: An Applica-
tion of Formal Specification to Debugging Packages. Technical Report CSL-TR-89-379,
Stanford University, April 1989. To appear in IEEE Software.

25

[9] D. C. Luckham, F. W. von Henke, B. Krieg-Brückner, and 0. Owe. Anna — A Language
for Annotating Ada Programs. Springer-Verlag — Lecture Notes in Computer Science No.
260, July 1987.

[10] D. S. Rosenblum, S. Sankar, and D. C. Luckham. Concurrent runtime checking of an-
notated Ada programs. In Proceedings of the 6th Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 10-35, Springer-Verlag — Lecture
Notes in Computer Science No. 241, December 1986. (Also Stanford University Computer
Systems Laboratory Technical Report No. 86-312).

[11] S. Sankar. Automatic Runtime Consistency Checking and Debugging of Formally Specified
Programs. PhD thesis, Stanford University, August 1989. Also Stanford University De-
partment of Computer Science Technical Report No. STAN-CS-89-1282, and Computer
Systems Laboratory Technical Report No. CSL-TR-89-391.

[12] S. Sankar. A note on the detection of an Ada compiler bug while debugging an Anna
program. ACM SIGPLAN, 24(6):23-31, 1989.

[13] S. Sankar, D. S. Rosenblum, and R. B. Neff. An implementation of Anna. In Ada in
Use: Proceedings of the Ada International Conference, Paris, pages 285-296, Cambridge
University Press, May 1985.

[14] J. M. Spivey. Understanding Z, A Specification Language and its Formal Semantics. Cam-
bridge Unversity Press, 1988. Tracts in Theorectical Computer Science, Volume 3.

[15] L. G. Stucki and G. L. Foshee. New assertion concepts for self-metric software validation.
In Proceedings of the International Conference on Reliable Software, pages 59-65, April
1975.

[16] S. S. Yau and R. C. Cheung. Design of self-checking software. In Proceedings of the
International Conference on Reliable Software, pages 450-457, April 1975.

A A Sample Transformation

The following Ada program includes many constructs that have been used in the examples of
this paper. The complete transformation of this program is shown later.

--: pragma ANNA_REPORT_MODE(REPORTING);
procedure P is

type EVEN is new INTEGER;
— | «EVEN_CONSTRAINT»
— j where X:EVEN =>
— j X mod 2 = 0;
subtype POS_EVEN is EVEN;
--| «POS_EVEN_CONSTRAINT»
— I where X:POS_EVEN =>
— I X > 0;

26

I:EVEN := 2;
J:POS_EVEN := 6;

begin
I := 4;
—: pragma ANNA_CHECK_POINT(EVEN_CONSTRAINT);
J := 2;

end P;

The Anna program after transformation is shown below. Note the use of the END_OF_SCOPE
procedure to encapsulate everything that has to be done at the end of the scope of procedure
P, and also note how all exit points (including abnormal exit points) are handled. The details
of the checking tasks, checking secretaries, etc. have been omitted to save space. The actual
code generated by our tool differs in minor details, but these details are beyond the scope of
this paper.

procedure P is
END_SIGNAL: TERMINATION;
task MAIN_PGM is

entry PROPAGATE_ADA_ERROR;
end MAIN_PGM;
task body MAIN_PGM is

procedure P is
type EVEN is new INTEGER;
subtype POS_EVEN is EVEN;
I: EVEN := 2;
J:POS_EVEN := 6;
task CHECK_SECY_EVEN is ...
task body CHECK_SECY_EVEN is ...
task CHECK_TASK_EVEN;
task body CHECK_TASK_EVEN is ...
function CHECK_EVEN(X:EVEN) return EVEN is ...
task CHECK_SECY_POS_EVEN is ...
task body CHECK_SECY_POS_EVEN is ...
task CHECK_TASK_POS_EVEN;
task body CHECK_TASK_POS_EVEN is ...
function CHECK_POS_EVEN(X: POS_EVEN) return POS_EVEN is
procedure END_OF_SCOPE is
begin

CHECK_POINT_CONTROLLER. CHECK_POINT(EVEN_CONSTRAINT,
POS_EVEN_CONSTRAINT);

tell checkpoint controller that EVEN_CONSTRAINT and
POS_EVEN_CONSTRAINT no longer exist;
abort CHECK_TASK_EVEN, CHECK_SECY_EVEN,

CHECK_TASK_POS_EVEN,CHECK_SECY_POS_EVEN;
end END_OF_SCOPE;

begin
I := CHECK_EVEN(4);
CHECK_POINT_CONTROLLER.CHECK_POINT(EVEN_CONSTRAINT);

27

J := CHECK_P0S_EVEN(2);
END_OF_SCOPE;

exception
when others =>

END_OF_SCOPE;
raise;

end P;
begin

P;
PGM_CONTROLLER. SIGNAL_END(NORMAL);

exception
when others =>

PGM_CONTROLLER.SIGNAL_END(ABNORMAL);
begin

accept PROPAGATE_ADA_ERROR do
raise;

end PROPAGATE_ADA_ERROR;
exception

when others =>
null;

end;
end MAIN_PGM;

begin
PGM_CONTROLLER.WAIT_END(END_SIGNAL);
terminate checkpoint controller;
if END_SIGNAL = NORMAL then

null;
elsif END_SIGNAL = ABNORMAL then

MAIN_PGM. PROPAGATE_ADA_ERROR;
elsif END_SIGNAL = INCONSISTENCY then

abort MAIN_PGM;
raise ANNA_ERROR;

end if;
end P;

28

