
NASA Contractor Report 198339 

ICASE Report No. 96-37 

ICASE 
CONVERGENCE ANALYSIS OF DOMAIN 
DECOMPOSITION ALGORITHMS WITH 
FULL OVERLAPPING FOR THE 
ADVECTION-DIFFUSION PROBLEMS 

Patrick Le Tallec , '^^2£:tl!:::B:f^ 
Moulay D. Tidriri j    *"££L£rtLST _ I 

NASA Contract No. NAS1-19480 
May 1996 

Institute for Computer Applications in Science and Engineering 
NASA Langley Research Center 
Hampton, VA 23681-0001 

Operated by Universities Space Research Association 

National Aeronautics and 
Space Administration «-,„«.■« * 

ünC QUALITY INSPECTED 3 
Langley Research Center 
Hampton, Virginia 23681-0001 

19960916 033 



Convergence Analysis of Domain Decomposition 
Algorithms with Full Overlapping for the 

Advection-Diffusion Problems. 

Patrick Le Tallec 
INRIA 

Domaine de Voluceau Rocquencourt 
B.P. 105 Le Chesnay Cedex France 

Moulay D. Tidriri * 
Institute for Computer Applications in Science and Engineering 

NASA Langley Research Center 
Hampton VA 23681-0001 

Abstract 

The aim of this paper is to study the convergence properties of a Time 
Marching Algorithm solving Advection-Diffusion problems on two domains 
using incompatible discretizations. The basic algorithm is first presented, 
and theoretical or numerical results illustrate its convergence properties. 

'This work has been supported by the Hermes Research program under grant number 
RDAN 86.1/3. The author was also supported by the National Aeronautics and Space Ad- 
ministration under NASA contract NAS1-19480 while he was in residence at the Institute 
for Computer Applications in Science and Engineering. 



1 Introduction 

Domain decomposition methods have become an efficient strategy for solv- 
ing large scale problems on parallel computers ([1], [2], [3], [4], [5], [6]). 
Nevertheless, they can also be used in order to couple different models [11], 
[18], [19] and [21]. In this paper we will examine a domain decomposition 
strategy which can be applied to such situations. 

This approach was introduced in order to solve several difficulties that 
occur in fluid mechanics. In particular, our aim is to introduce several 
subdomains in order to locally introduce an enriched model next to a domain 
boundary. For this purpose, we propose to fully overlap the subdomains 
and to couple the solutions through natural "friction" (Neumann) forces 
acting on the internal boundary of the domain, these friction forces being 
updated inside the time marching algorithm used for the solution of the 
initial problem. 

The theoretical study of our method will be done on an Advection- 
Diffusion problem, which will serve as our model problem from now on. 
The analysis will be made at the continuous level, independently of any 
discretization strategy, which means that the derived results will be mesh 
independent. The use of friction (Neumann) coupling boundary conditions 
makes the convergence analysis somewhat different of the analysis done in 
Kuznetsov [22] or Rannacher [23] in their study of explicit Schwarz additive 
methods for time evolution parabolic problems. 

In the next section we will describe this model problem. In the third 
section we will present our algorithm for some basic cases. The fourth section 
will treat the one-dimensional stationary problem. We will show also that 
the convergence of this method can be improved by introducing a relaxation 
parameter [5]. The fifth section will focus on the linear convergence of the 
implicit version of the coupling algorithm in the general multidimensional 
case. In the last section we study the numerical stability of the explicit 
algorithm. Practical applications of the proposed algorithm to real life CFD 
problems can be found in [14], [19], [20], and [21]. 

2 The Model Problem 

Consider a bounded domain, Q. of Rn such that its boundary du is lips- 
chitzian and Qioc a connected domain of Rn with €t\oc C 0 (fig.   1).  The 



Figure 1: Description of the computational domain. 

boundaries of the two subdomains are defined as follows: 

If, = du n dttioc,   ( internal boundary) 

T,- = düioc nfi,   ( interface) 

Too = dü\Tb. (farfield boundary) 

We denote by n the external unit normal vector to du or düioc 

We will make use of the following notation 

IK'Iko = IMU2(o) 
\Ms,0 = \\

V
\\H*(0) 

\V\I,O = l|Vv|U2(o) 

where 0 is an open bounded domain of Rn. 
Let v be the velocity field inside a given incompressible flow such that: 

divv    =   0 in   ft, 

v.n   =   0 on    Tb- 

We consider the following convection-diffusion model problem: 
Find (p. a real valued function, defined on ti and satisfying 

(1) 



<hv(v<p) — vAtp   —   0 in ft, 

<p   =   (p°° on Too, (2) 

if   —   0 on IV 

Above v is the flow velocity and v is the diffusion coefficient. Problems of this 
form typically occur in fluid mechanics, gas dynamics or wave propagation. 

Most CFD algorithms will in fact consider the solution of this problem 
as the stationary solution of the evolution problem (3) described below : 

Find d>: ft x (0, T) -+ R such that, 

— + div(v<p) - fAcf) 0 in ft x(0,T), 

<j>   =   <f° on Too x(0,T), 

(^ = o on r6 x(o,r), 

(f,(0)   =   fa in ft. 

(3) 

The general CFD algorithm consists then in integrating (3) in time until 
reaching a stationary solution. 

3    General Algorithm 

3.1    Time Continuous Case 

Let us introduce the local subdomain ft;oc (see fig. 1) which has as external 
boundary I\-, and let us consider the trace 4>[oc of <f> on the subdomain ft;oc, 
as an independent variable, to which we associate an arbitrary independent 
initial value <f>0i ^ <t>o\nloc- We now replace the evolution problem (3) by the 
following evolution system : 

Find 4> (resp. <f>ioc) : ft -»■ R (resp. ft;oc -+ R) satisfying 

~dt 
+ div(vcj)) - uA(j) 

d<f> 

0 in ft x (0,2"), 

<T on rcox(o,r), 

d<f>io 

(4) 

d n dr 
on r6x(0,T), 



r ^ + div(^,oc) - vAfroc 

hoc 

Oloc 

=   0 in ßZocx(0,T), 

=   0 on Tb x(0,T), (5) 

= <t> on r,-x(o,r), 

<j>(0) = <po in Ü,  <j>ioc(0) = (j>oi in fyoc. (6) 

Remark 3.1 The global problem (4) with the initial condition (6) has no 
no-slip boundary condition. This suppresses the boundary layer which ap- 
pears at low viscosity and facilitates the numerical solution of this problem. 
The boundary layers are modeled by the local problems (5)-(6) which are 
only to be solved on a small domain tiioc, with a very fine discretisation if 
needed. The two problems are only coupled by their boundary conditions and 
not by volumic interpolation. 

3.2    Time Discrete Case 

The general algorithm that we propose for the solution of our model problem 
(2) is as usual to integrate in time the evolution problem (4)-(5)-(6) until we 
reach a stationary solution. This integration in time is then achieved by the 
following uncoupled semi-explicit algorithm, where the operators are treated 
implicitly inside each subdomain and where one of the coupling boundary 
conditions is treated explicitly and the other is treated implicitly: 

• set (jPloc = <Poi and <t>° = <j>0, 

• then, for n > 0, <j>foc and (j>n being known, solve successively 

f ct1 
<t>L 

At 
+ div(tC")-*A*&1 

TIOC 

ct1 

0 in Qioc, 

<t>n on r,-,      (7) 

0 on Tb, 

' ^>
n+1 - 4>n 

At 
+ div(^n+1) vA<f>n+1 

d<t>n+1 

v~~ä  on 

0 in ft, 

<p°° on Too, 

/Jf m r, 
on 

(8) 



Remark 3.2 We have a full decoupling between (7) and (8). They can 
(and actually will) be discretized and solved by two independent solution 
techniques. 

Remark 3.3 The fully implicit version of this method consists in replacing 
the condition : 

tf£ = <j>n on Ti 

by the condition : 

<rioc 

The two subproblems are then coupled at each time step. 

kn+l _ ^n+1    on   p._ 

Remark 3.4 If we replace in (8) $7 by QE defined as follows : 

&E = &\Qloc, 

and Tb by I\-, and if we set At = oo, we obtain a nonoverlapping version 
of our strategy, which is a standard Dirichlet-Neumann algorithm [16], [17] 
and therefore requires a relaxation strategy to converge. 

Remark 3.5 The initial condition <f>0i is not assumed to be equal to <fo on 
the local subdomain fi;oc because in most cases this condition is impossible 
to impose at the discrete level since the grid used on fi/pc will be in general 
different from the grid used onil. In addition, even if we assume <j>0i — 4>o, 
we will not have 4>foc = 4>n on £2/oc unless we use the fully implicit algorithm 
on compatible grids. 

4    Stationary one-dimensional case 

For At = +oo, the above algorithm can be written : 

• set 4>°ioc ~ ^o and <f>° = <f>0, 

• then, for n > 0,<f>foc and <f>n being known, solve 

f div(t;^+1)-i/A^+1    =    0 in fi(oc, 

<p£}   =   F on r,-, (9) 

Ct1   =   0 on r6, 



' div(v<j>n+1) - J^ra+1 

d<f>n+1 

V~-T>— on 

0 in ft, 

4>°° on rc (10) 

=      V a       on Tb. on 

In one space dimension, we take the global domain ft to be the interval 
]0,1[ of R decomposed into two fully overlapping subdomains ft =]0,1[ and 
ft/oc=]/i2,l|>ith 

0<h2<l. (11) 

We then consider the following one dimensional problem 
Find (f, a real valued function, defined on ft and satisfying 

vip' - u(f"   =   0 on ft, 

(12) <f(0)   =   a, 

V(l)   =   b 

with a constant velocity v. In this one dimensional case, the above algorithm 
corresponds to: 

r          (n)'             (n)" 
= 0   on   ]h2,l[ 

< WiM) = <p(rl\h2% 

4n)(l) = b, 

r     (»)'      («)" = 0   on   ]0,1[, 

(13) 

rf°(0) a, (14) 

rf°'(l)   =    4n)'(l)- 
By introducing two relaxation parameters 6\ and 02, we can also intro- 

duce the following variant of the above algorithm : 



(n)' (n)" 0   on   }h2,l[, 

4n)(D   =   b, 

$\h2) = 02¥>{r1\h2) + (i-e2)^
n-1)(h2), 

0   on   ]0,1[, 

(15) 

(n)' (n)" 

^(0) a, (16) 

^)'(i)  =  eiv>J,)'(i) + (i-öi)vSB-1)'(i). 
We shall now exhibit the conditions under which the algorithm (15)-(16) 

converges, and those for which this convergence is optimal. For this purpose, 
we write the interface solution under the form 

VSB)'(1) = V'(1) + 7B, (17) 

(18) 

where <p is the solution of the initial problem (12). Using the analytical 
solutions of the problems (15) and (16), we obtain the following induction 
formula 

6" 
= MIN I    7(„_i) (19) 

with 

MIN 

( 1_e2 e2v^)(e> - 1) 
V 

0i(l"W)    e^MaCe^2 - 1) 
V eWVv-i) _ 1 (c(J)(fc2-i) _ 1} 

+ (1-Öi) 

(20) 

/ 

This iterative process converges if the spectral radius of the matrix MJN is 
less than 1. A direct but tedious calculation then yields: 

Lemma 4.1  The spectral radius of the transfer matrix of the algorithm 
(15)-(16) is: 



p(MIN) = max[-\D ± VD
2
 - 4R\] (21) 

with 

D = 2-(e1 + e2) + M2e<-^(e^ - l)e.v/vJhaM_1 (22) 

£ = (1-01X1-02)- (23) 

From this calculation we obtain the following results: 

i) When h2 goes to 1 (nonoverlapping), D goes to +oo, and then, P(MIN) 

goes to +oo. There is no-convergence at this limit. 

ii) The optimal convergence is obtained in the case where all the eigenvalues 
of the matrix MIN are zero, i.e., when : D = 0 and R = 0. The latter 
conditions imply in particular 

0a = 1 or 02 = 1. 

If we choose, in addition, 0X - 02, the condition D = 0 implies h2 = 0. 
In this case the subdomain 0/oc is equal to the whole domain, and the 
associated algorithm is no-longer of interest. 

iii) The convergence of the method depends symmetrically on both relax- 
ation parameters. 

According to ii) it is reasonable to take one of the 0; equal to 1 and call the 
other 0. 

By setting: 

A = l -     eivMfa-i) _ i (24) 

we then have 

p(MIN)=\l-9A\. (25) 

In this case, setting 

e(-vlv)<e(v/v)h2 _ l) 

V = {i-   .(J^-i) -1   >   ' (26) 

which is < 1, we get the following convergence results: 



Theorem 4.1 1) The convergence is optimal (convergence in 1 iteration) 

if 
e = eopt. (27) 

2) The algorithm converges for all 9 in ]0, jj[. 

Corollary 4.1 1) The case without relaxation (0 — 1) converges only if: 

i.e., by setting d = 1 - h2 (overlapping length), only if : 

d > —Log r—  (stability condition). 
v       {l + e~v/v) 

2) When v goes to zero, we must have d > |. 

Remark 4.1 This theorem states that the application of the algorithm (15)- 
(16) to the time-independent problem (12) converges only if the overlapping 
d is sufficiently large. In the same situation, we will see that if the problem 
(12) can be regarded as the steady solution of a time-dependent problem 
and we apply our strategy to this evolution problem, the resulting algorithm 
will converge to the same steady solution but with less restrictions on d. 
This motivates the introduction of the time marching algorithm of section 3. 
Moreover, this time marching technique is well adapted to nonlinear problems 
such as those encountered in fluid mechanics (see [14], [19], [20], and [21]). 

5    Implicit Time Discretization 

5.1    The General Algorithm 

This section deals with the convergence analysis of the proposed algorithm in 
multiple dimensions when one uses the fully implicit version of our strategy 
(4)-(6) : 

• Set <$oc = 4>oi and cf>° = 4>0: 

• then, for n > 0,(f>"oc and <f>n being known, solve 



A"+l <f>n 

At 
+ div(v<f>n+l) - PA</> kn+l 

i  

dn 

0   in   ft, 

0oo   on   Too, 

,2g£   on   r„ on 
(28) 

( ^1
A/

L+dlv(^+1)-^ACt1   =   0   m   ft,«:, 
c+i    =   r+i   on   ^      (29) 

^t1   =   0   on   rfc. 

5.2    Convergence Analysis 

Before establishing the convergence result we shall state the preliminary 
results that are central to the proof of the convergence of our algorithm. 
The first result states the basic L2 and H1 local estimates. 

Lemma 5.1  We have the following estimates: 

^ll<P -<Ploc   HoAoe     +     VW -<Ploc   llAoc 

~    2Äi"^"_ ^0C"°Aoc' 

in+l        JJi+l\\2 
\<P ~ Vice    \\0,uloc      ^ 

1 
1 + 2vAtc w - ^LIIOAOC» 

(30) 

(31) 

H^-^lloAoe    <    (IT^Ä^^1^0-^11^    (32) 

Un+1 - 4C1 112,0,«   +  2Z.A* £ \<p+i - &lüloc 
I=P 

<    W-4>L\\lnloc*P<n, (33) 

where c is the Poincare constant on subdomain il[0 

10 



Proof of lemma 5.1 

Substracting (29) from (28), multiplying the result by 4>n+1 - 4>^c
l and 

integrating by parts over ttioc, we obtain the classical following relation: 

J^loc   At J^loc   At (34) 

+ /   HV(4>"+1 - Ct1)!2 = o- 

By using the Cauchy-Schwarz inequality, we obtain the estimate (30). The 
second estimate (31) follows by using the Poincare inequality with c the 
Poincare constant bounding the squared H1 seminorm of any function v of 
5'1(fi/oc) with zero trace on I\- by its squared L2 norm. By induction we 
also obtain the basic L2 estimate (32). And finally, we obtain the estimate 
(33) by summing (30). 

■ 
The above lemma states that the restriction of (j>n+1 - (ff*1 to Qioc 

converges to 0 in both L2 and H1 norms. We shall establish now other L2 

and Hl local estimates. Let 6xn be defined by 

fan = (*-»-*£?)-(<--*£«), (35) 
At 

and let G be defined by 

G(n) = l^Un - CcllW + \<F ~ tfoclW (36) 

Lemma 5.2  We have the following estimates: 

H^loAoc    <    -^(G(n)-G(n + 1)) (37) Ar 

1 \\v 12 
G(R + 1)    -    ^t 

+ ^^~1-^c\\lnloc^P<n.     (38) 

Proof of lemma 5.2 

Substracting the two first equations in (28) and (29), multiplying the result 
by Sxn and integrating over ft/oc we obtain 

11 



0   =     /     \6xn\2+ f     div(t;(^+1-#l+1))fcrn 

+u [    V{d>n+x-<f>^c
l)V6xn 

Using the boundary conditions in (28) and (29), and the Cauchy-Schwarz 
inequality we obtain 

1 t.     ill    I   .«-LI m-l.1 |9 li»     .«ii- 

09) 
ii^ii^ < ö\nl\r+1-^Xüloc + -A^n\\l 

Using now the relation (30) (lemma 5.1) leads to the first estimate of our 
lemma. In fact, this estimate implies that G is a decreasing function. This 
property then yields 

n+l 

(n + 2-p)G(n + l)   <    £ G(i) 
i=p 
n+l ||„||2    "+1 

y      V^ IJ.'       ,A«     |2 i II    lloo V^ 11/A«       ^v»     II2 

<     l^\9  ~ <Ploc\l,nloc + -T^T 2s 11^   - ^/oclloAoe 
i=p i=p 

(40) 
Using again the relations (30) and (31) (lemma 5.1) yields the second 

estimate (38). And the lemma is proved. 
■ 

We shall establish now the global L2 and H1 estimates.  Let <£n+1 be 
defined as follows 

f <f>n+1 - tp   in   tt\üioc, 
4>n+1 = ^ (41) 

with y the solution of the stationary problem (2). By construction, 4>n+l 

satisfies the following equations: 

12 



*"        ^ + div(^ra+1) - vA4>n+1    =   0   in   Q!oc U (fi\fi/oc), 

<^+1    =   0   on   dÜ, 

4>nJrl  continuous across   IV 

Let A, B\, and B2 be denned by the following relations 

1 
A = 

I + (vc - 2c\)At' 

(42) 

52 = At( IM + v)A, 

where c is the Poincare constant and c\ > 0 is an arbitrary constant as will 
be seen in the proof of the following lemma. 

Lemma 5.3  We have the following estimates 

(^t-cl)\\4>n+1\\ln + ^n+1\ln   <   ^t\min + ^¥*nUlo + 

'U'loo    ,    ^M^n+l _   jn+l|2 

2c\ + öMoV-r+1\uh 

(43) 

A»+l|2 \\4>n+1\\la < AWPWljn + B1\\6xn\\inloc + BM0
+

C
l - <f>n+1\U. (44) 

Proof of lemma 5.3 

Multiplying the equation (42) by <f>n+1 and integrating by parts over fi;oc 

and 0\fi;oc, and taking into account the boundary conditions in (42) we 
obtain the following relation: 

/ 
Ja Ja 

/ri£
(^1_^+1)^+1=o- 

At 
d 

(45) 

13 



On üioc, (f)?*1 - <t>n+1 satisfies the following equation 

A* _ (46) 
Therefore, multiplying the above equation by <f>n+1, integrating by parts and 
using the Cauchy-Schwarz inequality we obtain 

° /jjn+l       Jin+lün+ll <r JLllA-r"!!? _      X -r?\\Ä>n+l\\! "\ f > Jr, on 
l?+i _ «^)<^| < ^WSxXfl^ + ^iWF+Xflu 

,  IWIooi^n+l       ^n+112 .   I^llira+l1|2 
+-^rm0c -v    liAoe + 2 i"^    llo'n'<* 

with ci > 0 arbitrary. Combining the above inequality with (45), bounding 
the local norm |/|,-,nIoe by |/|fijj and using the Cauchy-Schwarz inequality we 
obtain the estimate (43). The estimate (44) results immediately from the 
estimate (43) by applying the Poincare inequality on Ü with c the Poincare 
constant. And the lemma is proved. 

■ 
Finally, we are in a position to state the main result of this section. 

Theorem 5.1 The solution of the algorithm (28)-(29) converges linearly in 
H1^) to the solution of the stationary problem (2), for all values of At and 
all choices o/fi;oc. 

Proof of theorem 5.1 

Let ci be chosen such that vc - 1c\ > 0. Using the relation (44) (lemma 
5.3) we obtain by induction 

\\4>n+1\\lu   <  A>\\^1-%# + T&Ai(B1\\6x»-i\\ljaioe+ 

Since A < 1 by assumption on c\, this implies 

14 



\\4>n+X,n   <   Aqr^-%n + A(B1    £    \\6x%Qlo + 
i=n+l-p (4g) 

i=n+l—p 

Now, using (37) (lemma 5.2) and (33) (lemma 5.1) we obtain 

Ün+%ü   <   A^n+l-%ü + A(B1-^(G(n + l-p)-G(n + l))+ 
v 

1 
'■2vAtUYloc 

(49) 
The same relation written between 0 and n + 1 - p yields 

B2^r-Mo+
c
1'P ~ r^lUj- 

\\4>n+1-p\\ln   <   An+^\m\luloc + MBi^-t(G(0)-G(n-p+l)) 

By combining this relation with (49), we finally obtain 

ll^llin   <   ^+1ll^°llo,fi 
+   A*+\B^G{0) + B2^KtU° - iUlflJ 

+   A(B1^-tG(n + 1 - p) + ^IICt1_P - ^+1-loAoc)- 

Choosing p such that n = 2p + q, q > 1 and using (38) (lemma 5.2) we 
conclude that 

ll^llg.o < An+1C2 + A^C3 + C4UL - nl,nloc, (50) 

which, from (32) (lemma 5.1), implies the linear convergence of ||<^n+1||o,n 
toO. 

On the other hand by combining (37) (lemma 5.2) and (43) (lemma 5.3) 
we obtain 

15 



(^-cl)Ün+X,o + ^n+%*<^M 
2 At 

+ W^TÄG(n) - G(n + 1)) + & + ^M0? ~ <F+l\l 

i.n\\2 
lO.Q 

2c\At 

Therefore by using (30) we obtain 

2ci 

(51) 

(52) 

2cf 2i/Af 

Our result follows then from (38) (lemma 5.2), (32) (lemma 5.1), and the 

linear convergence of ||^n||o,n- 

5.3    Convergence of a Fixed Point Method for the Implicit 
Scheme 

The implicit scheme proposed in this section couples the global and the local 
problem. To uncouple them, it is advisable to use the fixed point algorithm 
below : 

set <t>°ioc,o - $oi and <t>° = tl>o, 

then for A; > 0,4>nk^ being known, 

solve 

(   9, loc,k+l       'loc 

At 
n+1 + div«orfc+1)-^ACtU1 

/.n+1 Jloc,k+l 

/.n+l 
Jloc,k+l 

0   in Qioc, 

4>n
k
+1  on rt-, 

0  on r^, 
(53) 

16 



^+l_^ + div(t7^n+l)_I/A^n+l     =     0    in   fi, 
At 

4>lX\   ~  ^°°  on r°°' 
vdftllldn   =   vdfl£k+1/dn   on Tb. 

We will study now the algorithm (53)-(54). By setting 

1ploc,k,q = Ctfc+1 - <^/!+1 

we observe that ^i0c,k,q and ^.g verify the following equations 

(5.4) 

(55) 

(56) 

i>hc,k,q/At + div{vi>ioc^q) - i>Aipl0Ctktg   =   0   in fi/oc, 

i>loc,h,q   =    ^fc-i,9-i   on r,-,      (57) 

^/oc,fe,9   =   0   on rt, 

ibk,q/At + div(vipk,q) - vAi>k,q =   0   in Q, 

■^k,q =    0   on  Too, 

dlpk,q dtploc,k,q 
on on 

(58) 

on IV 

If At is sufficiently small, we prove in [15] that ^k,q and ipioc,k,q converge 
linearly to zero. Hence the sequences <^+1 and <f>?*\ are Cauchy sequences 

which converge linearly towards the unique solutions <pn+1 and 4>^c
l of the 

implicit scheme. This guarantees the convergence of the above fixed point 
algorithm. 

6    Numerical Analysis of the Stability of the Al- 
gorithm (7)-(8) 

In this section we focus on the application of the explicit time marching 
algorithm (7)-(8) studied in the previous sections to the numerical solution 

17 



of the steady problem (2). We first assume that the boundary condition on 

Tb in (8) is explicit 

v     dn on 

so that the resulting algorithm is parallel (Jacobi type). 
Here, Q denotes the domain surrounding the obstacle (an ellipse in our 

numerical study) as described in Figure 1. The global and local domains are 
discretized by fully overlapping compatible finite element grids. The global 
mesh contains 1378 nodes and 2662 elements (see figure 7). Further the time 
marching algorithm is being initialized by setting (f>0 to zero. 

In a first step, the velocity field is obtained by solving the following 
inviscid incompressible flow problem: 

divu = 0, 
curl v = 0 

^oo = (1,0), 
v.n = 0 on the body Tb 

with a first order finite element method using the same global mesh. 
If we set v = 0, the algorithm may or may not converge depending on 

the values of i/At. More precisely, we observe that the algorithm converges 
linearly when vAt < a0 and is divergent otherwise. This is graphically 

shown in the figures (4-7) where the values of ^"[^j^11 are plotted versus 

the iteration count n for vAt equal respectively to 1CT6, 10_1, 1, and 10. 
Further, when the velocity is taken sufficiently large, the algorithm becomes 
unconditionally stable. In particular, the initialization of our algorithm by 
4>Q = 0 with Hvooll = 1, v - 0.1 and At = 100 leads to a converging algorithm 
(fig. 8). 

By intuition such a behavior seems natural. An overestimation of the 
solution <f>n at the interface T; implies an overestimation of the friction forces 
on Tb- For sufficiently small time steps, this overestimation will not affect 
the value of <ßn+1 on I\- and can therefore be ignored at the next time step. 
If the Reynolds is sufficiently large, this error will only affect the wake region 
but will not have any influence at the interface T;. To the contrary, for large 
At and v, this error does affect the value of <f>n+1 on IV The influence of 
the error on 4>n+1 may be amplified throughout the iteration process. 

Another variant of the algorithm consists of replacing the explicit Dirich- 
let condition 
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^+a = <f,n on rt- in the algorithm (7)-(8) 

by the following semi-implicit condition 

In fact, this implies replacing the previously parallel algorithm (Jacobi like ) 
by the sequential algorithm (Gauss-Seidel like ). 

When we solve the pure diffusion problem (i.e. with flow velocity v = 0) 
with v = 1 and At — 1 (respectively At = 2) we obtain a better convergence 
history : 

• the speed of the new algorithm is linear and clearly faster than the 
parallel algorithm. 

• the domain of convergence is moderately larger (see table 1). 

To study experimentally in more details the convergence behavior of both 
algorithms we assume that we have a linear behavior of our algorithm, and 
hence that the error at the iteration n will satisfy the following inequality 

||^n+1-01oo*A-l^-0°| oo- 

The algorithm converges if K < 1. An estimate for K can be found by 
considering as in table 1 the ratio 

-?*w-*>u = "log K 

which is displayed as a function of (uAt) for n = 14 and different values of 
V = -. A negative value of this ratio means divergence of the algorithm. 
As expected, this ratio is positive for sufficiently small values of At and 
converges to zero as At goes to zero. 

In this table, we observe that for V = 0, vAt < ao « 2, the algorithm 
converges. However the convergence is slow since the minimal contraction 
constant Kmin (for the optimal value of vAt) is close to one (see table 2). 
For V — 10, the algorithm converges for a much larger range of values of i/At 
and the optimal contraction constant is much smaller. This is summarized 
on table 2 where we have displayed the best possible contraction constants 
for each of the coupling algorithms and for different values of the Reynolds 
V = - 
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i/At 1/1000 1/10 1/2 2 5 10 50 1000 

Gauss-Seidel 
V = 0 

0.06 0.1 0.22 0.5 -0.27 -0.5 -0.75 -0.8 

Jacobi 
V = 0 

- 0.1 0.22 0 -0.09 -0.25 -0.4 -0.41 

Gauss-Seidel 
V = 10 

0.03 0.25 1.46 2.12 2.8 2.6 2.4 2.4 

Jacobi 
7 =.10 

0.03 0.28 1.15 1.15 1.15 1.15 1.14 1.14 

Jacobi 
V = 1000 

0.23 2.79 2.8 2.7 2.75 2.8 

Table 1: Contraction constant (in fact minus its logarithm) in function of 
i/At for the explicit (Jacobi) and semi-explicit (Gauss-Seidel) version of our 
coupling algorithm. We observe divergence for V = 0 and vAt > 2 and 
convergence otherwise. 

Jacobi (parallel) Gauss-Seidel (sequential) 

V              Kmin V                       l^-min 

0           0.85 0                  0.68 
10          0.50 10                 0.11 

103         0.14 

Table 2: Minimal contraction constant versus the Reynolds V for both se- 
quential and parallel versions of the algorithm. 
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Figure 2: Convergence of the Time Marching Algorithm: '^Hfolto are 

plotted versus the iteration count n for vAt = 10~6, v = 0 (Jacobi). Observe 
the very slow convergence. 
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Figure 3:   Convergence of the Time Marching Algorithm:   ^"||j>0|fJ   are 

plotted versus the iteration count n for i/At = 10"1, v = 0 (Jacobi).. 
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Figure 4:   Convergence of the Time Marching Algorithm:     A<1|<1 if " are 
plotted versus the iteration count n for i/At = 1, t> = 0 (Jacobi). 
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Figure 5: Divergence of the Time Marching Algorithm: ^"iMU   are plot- 
ted versus the iteration count n for vAt - 10, v = 0 (Jacobi). 
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Figure 6: Convergence of the Time Marching Algorithm: AtllfoiL are 

plotted versus the iteration count n for vM = 10 and the flow velocity is 

equal to 1 (Jacobi). 
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7    Conclusion 

We have analysed the convergence properties of a standard time marching al- 
gorithm for solving a domain decomposed advection-diffusion problem with 
full overlapping and coupling by friction. We were able to prove theoreti- 
cally the unconditional stability and linear convergence of the fully implicit 

algorithm (§5). 
When using the uncoupled semi-explicit algorithm in the general case, 

numerical evidence indicate that this algorithm is unstable for large values 
of At and small overlapping, and that it becomes linearly convergent when 
At is below a Reynolds dependent threshold (§7). This conditional stability 
is not a real issue for practical CFD problems because most solvers already 
require to use small time steps inside each domain. Nevertheless, it would 
be nicer to derive an uncoupled unconditionally stable version of the present 
time marching algorithm. 
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Figure 7: Description of the finite element mesh and of the local subdomain. 
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