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1    Introduction 

Formal specifications are a precise and mathematical description of what a program is supposed 
to do [2,7]. 

The motivation for using specifications is quite clear [7]. Specifications allow a software 
manager, through a specifier, to put thoughts about what a program is supposed to do in a 
formal and precise language. The specification thus acts as a blueprint for the program. Specif- 
ications allow the verification [3,8] or testing [5] of the correctness of a program (with respect to 
its specification). Specifications also help in implementing a program, as our methodology for 
implementations demonstrates. The process of automatically generating an implementation, 
given a specification, is called automatic programming [13]. 

This paper presents a methodology for formal specification and prototype implementation 
of Ada [1] packages using the AnnaflO] specification language. Anna is a language for formally 
specifying Ada packages. 

Section 2 introduces Anna formal specifications. 
Section 3 presents a methodology for producing a formal specification of a module, given 

its interface. The interface of a module is made up of subprograms that the module provides 
to its clients. We start from an Ada package specification and obtain a formally specified Anna 
package. In the following we distinguish between Ada package specifications (the interface made 
up of subprograms) and Anna formal specifications (behavioral description). 

The methodology can be applied to any module specification. It extends the work of [4] 
by allowing a more general framework of specifications, including abnormal situations. The 
methodology results in a specification which is provably sufficiently-complete [4]. The level of 
confidence in the consistency of the specification is also considerably increased. 

The methodology may not result in the best specification. In certain cases the application 
of the methodology may be restricted due to the fact that the intended behavior of a program 
may not be apparent in the format required by the methodology. However, for a wide range of 
programs the methodology does result in a formal specification. 

Section 4 presents a tool, the Anna Specification Analyzer [11], which allows the correctness 
of a specification to be tested. 

Section 5 considers the question of obtaining a prototype implementation, given a formal 
specification of a package [14]. Given a formally specified package resulting from the method- 
ology for specifications, the methodology for implementations allows an implementor to follow 
a few simple steps to get a prototype implementation. 

Consider the following example: 

Example 1: 

Square_Root(X) * Square_Root(X) = X 

This specification describes precisely what the function does but gives absolutely no clue 
as to how an implementation may be attempted. In general, the problem of getting even 
a prototype implementation, given a specification, is difficult. Our restricted framework of 
specifications does allow a prototype in most cases. 

The resulting implementation is typically not the most efficient.  However, the prototype 



implementation allows considerable insight to the properties of the final implementation and 
may act as the starting point for the final implementation. 

Section 6 outlines how tools like verifiers and program testing tools [15] can be used to prove 
and/or test the correctness of the final implementation. 

2    Specifying Ada Packages Using Anna 

Packages are an Ada construct used to encapsulate logically related entities. Ada packages have 
two parts—the specification which defines the interface of the package and a body that defines 
the implementation. Packages can have types, objects, subprograms, and exceptions. 

Anna is an extension of Ada to include formal specification of the intended behavior of Ada 
programs. There are constructs available in Anna for specifying each part of an Ada package. 
Anna constructs are embedded in Ada comments and are preceded by "— |". 

The rest of this Section describes a few Anna formal specifications which can be used to 
specify normal behavior of subprograms, abnormal behavior of subprograms, and behavior 
of packages as a whole. Anna has other constructs which may be used to formally specify 
Ada constructs like subtypes and objects which are not discussed below. The discussion of 
Anna below is thus not meant to cover all aspects of Anna, just those that deal with formal 
specification of packages. 

2.1 Subprogram Annotations 

Subprogram annotations constrain the input and output behavior of subprograms. The key- 
words in and out distinguish the input and output values of parameters of procedures. Results 
of functions are constrained by result annotations. 

Example 2: 

procedure Minus(X, Y : in out Positive); 
— | where (in X >= in Y), 
— | out (X = in X - in Y); 
— Input value of X should be greater than or equal to Y. The output 
— value of X should be the difference of input values of X and Y. 
function Square(X : in Integer) return Integer; 
— | where return Y : Integer => Y = X * X; 

2.2 Exception Propagation Annotations 

Strong exception propagation annotations describe conditions under which an exception will be 
raised. Weak exception propagation annotations describe conditions which must be true when 
an exception is propagated out of a subprogram. 

Example 3: 



procedure Quotient(X, Y : in out Float); 
— | where (in Y = 0.0) => raise Divide_Error, 
— | raise Divide_Error => out (in X = X); 
— If the input value of Y is 0 then exception Divide_Error is raised. If 
— the exception is raised, the value of X remains unchanged. 

2.3 Axioms 

Axioms are first-order predicate logic constraints on the behavior of a package as a whole. 
Axioms describe relationships between subprograms of a package. 

Example 4: 

package Stacks is 
type Stack is private; 
function Push(S : Stack; E : Integer) return Stack; 
function Pop(S : Stack) return Stack; 

— | axiom for all S : Stack; E : Integer => 
— I Pop(Push(S,E)) = S; 

end Stacks; 
— A sequence of a Push followed by a Pop should leave a stack un- 
— changed. 

2.4 A Note on Deflnedness 

An expression is said to be defined if its evaluation terminates normally. Abnormal behavior 
may be divided into two categories—exceptional termination and non-termination. 

Subprogram annotations which constrain in values of parameters of subprograms allow the 
specification of abnormal behavior. For example, in Example 2 above, the subprogram Minus 
may display either kind of abnormal behavior if the value of X is less than Y. 

Exception propagation annotations allow the specification of exceptional behavior of pro- 
grams. Anna thus allows a specifier to distinguish between the two kinds of abnormal behavior. 

3    A Methodology for Specifying Ada Packages 

We now present a methodology for obtaining a formal Anna specification given an Ada package 
specification. 

We start with a methodology for a subset of Ada packages and then show that packages 
outside the subset can be rewritten as packages in the subset. Ada package specifications in 
the subset we consider do not have any procedures or objects and do not have an internal 
state. The form of such a package specification then, is a series of type declarations followed 
by declarations of functions which act on these types. 

Consider a package specification of lists. This is a generic package with a generic formal 
parameter, Item. 



Example 5: 

generic 
type Item is private; 

package List_Package is 
type List is private; 
Out_Of_Range : exception; 
function Length(L : List) return Natural; 
function Get(L : List; N : Positive) return Item; 
function Create return List; 
function Insert(L : List; I : Item; 

After : Natural) return List; 
function Delete(L : List; N : Positive) return List; 
function Member(I : Item; L : List) return Boolean; 

private 

end List_Package; 

The aim now is to provide Anna formal specifications which describe the result of execut- 
ing each subprogram of the package. We extend the methodology presented in [4]. The set 
of functions is divided into generators which build values of new types defined in the package 
and observers which map values of new types to old types. The idea is to define the effect 
of each generator on each observer. This results in a specification which is sufficiently com- 
plete [4]. Sufficient completeness implies that the axioms have conveyed the full meaning of the 
operations. 

Step I Identify the set of new types introduced (declared) in the package. Call this set 
NewT. For the list package this set has a single new type, List. 

Step II Identify the set, Obs, of observers among the functions of the package which have 
a return type T not in NewT. For the list package this set has the functions Length, Get and 
Member. 

For each type T E NewT, identify the set Obs(T), called the set of observers of type 
T, of functions in Obs at least one of whose parameters is of type T. For the list package 
Obs(List) = Obs. 

Step III Identify the set, Gen, of generators among the functions of the package which 
have a return type T € NewT. For the list package this set has the functions Create, Insert 
and Delete. 

For each type T £ NewT, identify Gen(T), called the set of generators of type T, of 
functions in Gen which have the return type T. For the list package, Gen(List) = Gen. 

Step IV Choose the set, ObsBas(T), of basic observers of each type T G NewT. Basic 
observers are functions in Obs(T) which cannot be expressed in terms of other observers. A 
useful condition to consider is that if Expl and Exp2 are expressions of type T then f(Expl) = 



f(Exp2) for all basic observers /, iff Expl = Exp2. In other words, two values of a type are 
equal iff the basic observers cannot distinguish between them. 

For the list package this set has Length and Get. Get itself does not form an observer basis 
since it cannot distinguish between a list and any sublist with the first n (n < Length) elements 
of the list. This holds due to that fact that Get will either return the same element for both 
lists or return an exception for one list. Equality in universally quantified axioms is defined 
such that two expressions are equal if any of them does not terminate normally. 

Member can be expressed in terms of the other two observers as shown below. Member and 
Length do not make a set of basic observers since they cannot distinguish between two lists of 
the same length which have a re-occurring item. 

In general, the choice of basic observers is not unique. In practice, it is not difficult to identify 
a set of basic observers. It is not crucial for the following treatment to obtain a minimal set of 
basic observers. For example, Member could have been (erroneously) chosen a basic observer 
without substantially affecting the methodology. 

Step V Choose the set, GenBas(T) of basic generators of each type T € NewT. Basic 
generators are functions in Gen(T) which cannot be expressed in terms of other generators. 
The condition on basic generators is that any expression Exp of type T should be equal to 
an expression made up of just basic generators. In other words, basic generators generate all 
values of the type. 

For the list package this set has Create and Insert. Delete is not a basic generator because 
any list that can be generated using Delete can be generated using just Create and Insert. 
Create and Delete do not make a set of basic generators since any list with non zero length 
cannot be generated just using Create and Delete. 

Like basic observers, the set of basic generators is not unique and again it is not crucial to 
the methodology that a minimal set of basic generators be chosen. 

Step VI For each type T 6 NewT and for each pair of functions o G ObsBas(T) and 
g G GenBas(T), define the effect each o has on each g. Each new expression g(X) of type 
T built by application of a generator g may change what the observers return. Therefore all 
expressions which look like o(g(X)) should be set equal to some other known expression (which 
does not involve type T). The general form of such expressions is o(g(X*,Y*),Z*) where 
X* are variables of type T, Y* are variables of other types, Z* are variables which stand for 
argument types U of o : t\,...,T,...,tn —► X and, g(X*,Y*) is substituted for one of the 
parameters of type T. There are five options for how o(g(X)) can be defined: 

1. o(g(X)) is equal to some expression o(X). For example, in the list package : 

Length(Create) = 0, 
Length(Insert(L,I,N)) = 1 + Length(L), 
Get(Insert(L,I,N),M) = 

if N + 1 = M then I 
elsif M <= N then Get(L,M) 
else Get(L,M-l) end if, 



The expression Get(Create, N) will be discussed later. A very simple inductive argument 
shows that the effect of basic generators on the observer basis is thus defined. 

2. o(g(X)) is defined by a subprogram result annotation on g. The same approach is taken 
by [6,12]. This is equivalent to the previous step but allows a more local specification. 
For the list example : 

function Create return List; 
— | where return L : List => Length(L) = 0; 

function Insert(L : List; I : Item; 
After : Natural) return List; 

— | where return R : List => 
— | Length(R) = Length(L) + 1; 

Get can be specified in the same way as Length. 

3. o(g(X)) does not terminate normally. There are two options in this case—a subprogram 
annotation which restricts the domain that o can act upon, or a strong exception pro- 
pagation annotation which specifies that an exception should be raised if input to o is 
g{x). 

function Get(L : List; N : Positive) return Item; 
— | where in(Length(L) >= N); 
— Or. 
— | where (Lengthen L) < N) => 
— | raise Out_Of_Range; 

The function Get is permitted to not terminate or terminate with an exception in the 
first case. In the second case, the function must raise the named exception. 

4. Define equivalence classes of generators. Take Integers for example : 

package Integers is ... 
function Zero return Integer; 
function Succ(I : Integer) return Integer; 
function Pred(I : Integer) return Integer; 

end Integers; 

The functions Zero, Pred and Succ form the set of basic generators. However they do not 
uniquely generate any element, for example X = Succ(Pred(X)). This equation creates 
equivalence classes of Integer expressions. Observers need not be defined for each member 



of any equivalence class, it is enough that they be defined on any representative of the 
equivalence class. 

5. Leave the expression o(g(X)) undefined. This results in an incomplete specification. How- 
ever, the incompleteness is well defined in the sense that one can pinpoint the location of 
the incompleteness. 

Step VII Define each observer o 6 Obs(T) — ObsBas(T) (which has not yet been defined) 
in terms of the defined observers or the defined generators. The specification may be easier 
to implement if the observers or the generators (but not both) are chosen to define all other 
functions in this step and in step VIII. 

There are two options. Either, for each o, axioms of the form o(X) = o2(X) should be given 
where o2 G defined observers. Or, o(g(X)) should be defined in terms of other expressions, for 
all g £ basic generators. The method followed is the same as step VI. For example: 

— | Member(I,L) = (exist N : 1 .. Length(L) => 
— I Get(L,N) = I), 
— Or. 
— | not(Member(I,Create)), 
— | Member(I,Insert(L,J,N)) = ((I = J) or Member(I,L)), 

Step VIII Define each generator g £ Gen(T) — GenBas(T) (which has not been defined 
yet) in terms of the defined observers or the defined generators. 

Again, there are two options. Either, expressions of the form o(g(X)) should be defined in 
terms of other expressions, for all o £ basic observers. Or, g(g2(X)) = g2(g(X)) should be an 
axiom, for all g2 £ basic generators. The method followed is the same as that in step VI in 
both cases. 

Length(Delete(L,N)) = Length(L) - 1, 
Get(Delete(L,N),M) = 

if N > M then Get(L,M) else Get(L,M+l) end if; 
Or. 
Delete(Insert(L,I,N),M) = 

if N + 1 = M then L 
elsif M <= N then Insert(Delete(L,M),I,N-l) 
else Insert(Delete(L,M-l),I,N) end if; 

3.1     Subset of Packages to which the Methodology Applies 

This methodology can be applied to packages with procedures by converting each procedure to 
a number of functions. The first function returns a record with all the out parameters of the 
procedure and the other functions select each out parameter from this record. Packages with 
internal state are handled by converting each function to a procedure, adding an "in out" state 



parameter and converting the procedure back to functions (by the above method). Objects 
are coverted into pairs of procedures which read and write a component of the state. The 
methodology however does not handle concurrency (tasks) in the package specification. 

There can be other specifications which are more succinct than the specifications resulting 
from this methodology. Also, the user may not be able to define the meaning of o(g(X)) 
for all cases. For example, consider Example 1. The square root function requires infinite 
equations (one for each number) for its definition according to our methodology. However, the 
methodology we have presented applies to enough packages to make it interesting. 

4    Correctness of Formal Specifications 

The next step is to gain a high degree of confidence in the correctness of the specification. Here 
by the term correctness it is meant that the specification reflects the behavior intended by the 
specifier. This confidence should be gained as early as possible, preferably before an actual 
implementation has been built. 

A specifier needs confidence in two areas of specification: 

t His internal, informal view of the specification of a problem should be a satisfactory 
expression of the problem itself, and 

• The formal specification should implement this internal view correctly. 

Deductive tools may be used to increase the specifier's level of confidence in both areas. One 
such tool, the Anna Package Specification Analyzer[ll], has been built for just such a purpose. 
The Specification Analyzer builds a model of the specification as a logic state, i.e. a set of 
logical expressions concerning the relationships between subprograms defined by the package. 
It contains a deductive theorem prover to derive logical consequences of the specification. The 
user then asks questions with respect to this state, such as the value of an expression as implied 
by package axioms. The state serves as a prototype implementation of the package, allowing 
the user to test ideas and if necessary to alter the specification to reflect either changes in the 
user's internal view of the problem, or errors in the specification. 

For example, recall the five methods of defining the observer function expressions in Sec- 
tion 3. If the observer functions of the List package have been defined by these methods, 
using Specification Analysis it is possible to test that the value of the observers are what were 
intended. A user may query the value of a specific observer; and if the annotations define 
the function in terms of simple discrete-valued functions, and are complete enough to define 
a unique result, that result may be calculated. Using the List example, assume variables II 
and 12 of type Item have been declared (Ada variables may be declared interactively during 
Specification Analysis, to store temporary values). On passing the following expression to the 
Specification Analyzer, 

Length (Insert(I2,1 ,Insert (11,0,Create))) 

if the Length and Insert functions are defined following methods 1 and 2, the Analyzer would 
deduce that the value of this expression is 2.   If the evaluation of an observer terminates 



abnormally, as in method 3, this will be reported to the user. If no value for the expression is 
deducible, the user must decide whether this incompleteness was intentional, as in method 5, 
or whether the specification is incorrect. 

Where equivalence classes of functions are defined, as in method 4 or where functions are 
not defined in terms of other discrete valued functions, the user queries not specific function 
calls but various equivalences, to see if they hold. Using the Integers package example, a user 
may query expressions such as: 

Succ(Succ(Zero)) = Pred(Succ(Succ(Succ(Zero)))) 

and the result will be one of the boolean values True or False, or that neither result is provable. 
Specification Analysis does not decide which function expressions to evaluate — developing 

test cases is still up to the user. But it does allow the user to check all expressions necessary 
to increase confidence in the correctness of the specification. 

5    A Methodology for Implementing Package Specifications 

Given a package which has been formally specified by following the above methodology, the 
methodology outlined below results in a prototype Ada implementation of the package. 

Step I Choose the observers or the generators to be the basis of the data structure which 
implements a type T in NewT. Choose the observer basis if most functions are specified in 
terms of it, else choose the generator basis. Go to step 1.1 in the former case and follow the 
".1" steps and to step 1.2 in the latter case and follow the ".2" steps. 

Step 1.1 If there are N basic generators gi,... ,gN for type T, choose a variant record with 
N variants. The zth variant has m components ^j,...,f,m corresponding to the parameter 
types of the ith generator gi : t^,... ,f,m -» T. In the general case where a generator for T 
might have a parameter of type T, access (pointer) types should be used. For example, for lists: 

type List_Types is (Inserted_List, Created_List); 
type List_Record(Kind : ListJTypes); 
type List is access List_Record; 
type List_Record(Kind : ListJTypes) is record 

case Kind is 
when Inserted_List => 

Elem : Item; Next : List; 
Number : Natural; 

when Created_List => null; 
end case; 

end record; 

In the following we assume that the functions which are not basic observers or basic gener- 
ators are specified in terms of basic generators. Skeleton implementations are provided for the 



case where these functions may have been defined in terms of the basic observers. 

Step II.l Implement generator basis functions. Implementation of #,■ : 2tl,..., itm —► T 
returns a new variant record value which has the ith variant and which is assigned the values 
of parameters /,■ of g. For example: 

function Create return List is 
begin 

return new List_Record(Created_List); 
end Create; 
function Insert(L : List; I : Item; 

After : Natural) return List is 
begin 

return new List_Record'(Inserted_List,I,L,After); 
end Insert; 

Step III.l Implement the observer basis functions. This step is dependent on the axioms 
which relate the observer and generator basis. The implementation mimics the axioms. For 
each option in step VI of the specification methodology, we have an option here: 

1. If o(g(X)) = o(X) is the axiom in the specification the implementation of o(g(X)) is a 
recursive call o(X). For example: 

function Length(L : List) return Natural is 
begin 

case L.Kind is 
when Created_List => return 0; 
when InsertedJList => 

return 1 + Length(L.Next); 
end case; 

end Length; 
function Get(L : List; N : Positive) return Item is 
begin 

case L.Kind is 
when Created_List => 

raise Out_Of_Range; 
when Inserted_List => 

if L.Number + 1 = N then 
return L.Elem; 

elsif N <= L.Number then 
return Get(L.Next,N); 

else return Get(L.Next,N-l); 
end if; 

end case; 

10 



end Get; 

The exception is raised because of the existence of an exception propagation annotation 
in the specification. 

2. Follow option 1 if a subprogram result annotation is used. 

3. If o(g(X)) is specified to terminate abnormally with an exception, the implementation 
raises an exception. If o(g(X)) is specified to just terminate abnormally, the implemen- 
tation is free to abnormally terminate in any way. See option 1 for an example. 

4. Equations between basic generators do not substantially affect the methodology for im- 
plementation. All they do is to suggest improvements in the data structure chosen, since 
many values of the data structure are now the same. 

5. If o(g(X)) is undefined, the user is free to implement o in any way (s)he desires, including 
not implement it. 

Step IV.1 Implement other observers based on corresponding axioms in step VII of the 
specification methodology. If the specification of o is through an equation o(X) = o2(X) then 
the implementation involves a call to o2(X). For example: 

function Member(I : Item; L : List) return Boolean is 
begin 

for N in 1 .. Length(L) loop 
if Get(L,N) = I then return True; end if; 

end loop; 
end Member; 

If the specification defines o(g(X)) for all g 6 GenBas(T) then the implementation follows 
step III.l above: 

function Member(I : Item; L : List) return Boolean is 
begin 

case L.Kind is 
when Created_List => return False; 
when Inserted_List => 

return (L.Elem = I) or Member(I,L.Next); 
end case; 

end Member; 

Step V.l Implement other generators. Look at the axiom that defines the generator g. If 
the axiom is o(g(X)) = o2(X), the implementation of g returns a record the value of observers 

11 



o on which is o2(X). As pointed out at the end of step 1.1, we do not fully treat the case where 
observers are used to define g. 

If the axiom defines g(g2(X)), the implementation of g(Y) involves a call to g2(g(X)). This 
is simple since any actual parameters Y in a call g(Y), are already in the form g2{X). For 
example: 

function Delete(L : List; N : Positive) return List is 
begin 

if L.Kind = Created_List then 
raise Out_Of_Range; 

elsif L.Number + 1 = N then 
return L.Next; 

elsif N <= L.Number then 
return new List_Record' 
(Inserted_List,L.Elem,Delete(L.Next ,N),L.Number-1); 

else 
return new List_Record' 
(Inserted_List,L.Elem,Delete(L.Next,N-l),L. Number); 

end if; 
end Delete; 

Step 1.2 For each o : t\,... ,T,... ,tn —> X in the basic observers, where i,-s are types of 
parameters and X is the return type, define a multidimensional array which has elements of 
type X and is indexed by the i,-s. There could be two problems with this—any £,• could be 
very large (like Integer) or any f,- could be a non-discrete type (like Float). The way to resolve 
both these problems is to instead choose a linked structure. An array indexed by types t* 
is replaced by a linked list of records with components of types t* and X. Each element of 
this list corresponds to an element of the array. In the following we assume the existence of 
operations on linked lists corresponding to the operations UA(I)" and UA(I) := X" on arrays. 
It is assumed in later discussion that these operations are available. For the list example we 
define two arrays corresponding to the two basic observers: 

type Get_Record; 
type Get_Array is access Get_Record; 
type Get_Record is record 

Elem : Item; Index : Positive; Next : Get_Array; 
end record; 
type List is record 

Len : Natural; Get_Obs : Get_Array; 
end record; 

Len is a constant "array" corresponding to Length. Get_Obs is a one dimensional "array" 
corresponding to Get. 
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In the following we assume that functions which are not basic observers or basic generators, 
are specified in terms of the basic observers. We do not treat fully the cases where basic 
generators are used to specify these functions. 

Step II.2 Implement observer basis functions. Observer o is implemented by the selection 
operation llA(I)n on the array corresponding to o. For example: 

function Length(L : List) return Natural is 
begin 

return L.Len; 
end Length; 
function Get(L : List; N : Positive) return Item is 
begin 

— Get the Elem field of the node of the Get_Obs linked list which 
— has Index = N. 

end Get; 

Step III.2 Implement basic generators. The implementation mimics the axioms relating 
basic observers and generators defined in step VI of the specification methodology. 

1. If o(g(X)) = o{X) is the defining axiom, the implementation of g(X) returns a record 
with values corresponding to o(X). For example: 

function Create return List is 
begin 

return (0,null); 
end Create; 
function Insert(L : List; I : Item; 

After : Natural) return List is 
begin 

— Return a new list which is the same as L except that 1. Length 
— is incremented by 1, 2. Indices of all elements of the old list 
— where Index > After have been incremented by 1, 3. A new 
-- element I with Index = After+1 has been added. 

end Insert; 

2. If o(g(X)) terminates abnormally, terminate abnormally. 

3. Equations between generators do not affect implementation. 

4. Partial specification allows any implementation. 
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Step IV.2 Implement other generators. If the defining axiom for the generator defined 
o(g(X)) then steps similar to step III.2 should be taken. For lists: 

function Delete(L : List; N : Positive) return List is 
begin 

-- Return a new list which is the same as L except that 1. Length 
— is decremented by 1, 2. Indices of all elements of the old list 
— where Index > N have been decremented by 1, 3.   Element 
— with Index = N has been removed. 

end Delete; 

If g(g2(X)) = g2(g(X)) is defined, then the implementation of g(Y) involves rewriting 
Y as a generator expression g2{X) and then calling g2(g(X)). That is, choosing an X such 
that Y = g2(X). For the list example this involves setting a general list L equal to some list 
Insert(Ll,I,N) and then calling Insert(Delete(...)). As pointed out at the end of step II.l 
above, we do not fully treat the case where o is defined by basic generators. 

Step V.2 Implement other observers. If the defining axiom is of the form o(X) = o2(X), 
the implementation of o(X) is a call to o2(X). For example: 

function Member(I : Item; L : List) return Boolean is 
begin 

— Check if Elem I exists in list. 
end Member; 

If the defining axiom is o(g(X)) = o2(X), the implementation of o(Y) involves rewriting Y 
as g(X) and making a call to o2(X) similar to step IV.2. We do not treat this case fully. 

5.1    Limitations of the Methodology 

The subset of specifications to which the methodology applies may be too restrictive in some 
cases. The same problems that disallow specification of the square root function in our metho- 
dology, also disallow implementation according to our methodology. 

A major shortcoming is that the implementation obtained is not the most efficient. Various 
optimizations to the data structures used in the methodology give rise to stacks, sets, queues 
and other structures. See [14] for an overview of data structure selection for implementations. 

The prototype implementation allows a user to get insight into the properties of the final 
implementation and also to test out properties of a program before implementing the program 
in its final form. 

6    Correctness of Implementations 

The formal specification of a package constrains the behavior of any implementation written 
for it. Correctness with respect to an implementation means that executions of the implemen- 

14 



tation satisfy the package constraints. Given an implementation, different levels of verifying 
its correctness are possible. Deductive tools may prove from lower-level Anna specifications, or 
from the Ada code itself, that an implementation obeys the package constraints[9]. 

Another option is run-time verification[15]. Here, a tool inserts run-time Ada checks into the 
implementation which test the constraints. If a check fails, the specific annotation violated and 
location in the body where it was violated may be reported for debugging. Hence permanent 
low-cost checking can ensure that every execution of a package body obeys its specification. 

7    Conclusion 

We have presented a methodology for specification and implementation of Ada packages. The 
motivation for obtaining a specification and a prototype implementation have been pointed 
out. The methodology is applicable to most Ada packages. It is our experience that apart from 
certain cases like the square root function, most packages can be specified by our methodology. 

In these cases, the use of Anna virtual functions may be made to introduce intermediate 
functions which bridge the gap between the two specifications. We are involved in ongoing 
research which investigates this line of thought. 

Future research will involve extending the methodology to include more kinds of specific- 
ations and implementations and to develop rules for optimization of implementations. Future 
research will also involve development of tools which help in applying the methodology to ac- 
tual packages and tools which automate parts of specification and implementation of packages. 
Proofs obligations for each step of implementation in the spirit of [6] will also be developed. 
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A    Formal Specification and Implementation of the List Pack- 
age 

One of the possible formal specifications of the list package which results from the methodology 
for specifications is presented here. The operations Member and Delete are specified in terms 
of first the generator basis and then the observer basis. The data structures are provided for 
two cases—implementation choosing the observer or the generator basis. 

generic 
type Item is private; 

package List_Package is 
type List is private; 
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Out_Of_Range : exception; 
function Length(L : List) return Natural; 
function Get(L : List; N : Positive) return Item; 
— | where (Lengthen L) < N) => 
— | raise Out_Of_Range; 
function Create return List; 
function Insert(L : List; I : Item; 

After : Positive) return List; 
— | where (Lengthen L) < After) => raise Out_Of_Range; 
function Delete(L : List; N : Positive) return List; 
— | where (Lengthen L) < N) => raise Out_Of_Range; 
function Member(I : Item; L : List) return Boolean; 
--| axiom for all I, J : Item; L : List; 
— j N, M : Natural => 
--|          Length(Create) = 0, 
— | Length(Insert(L,I,N)) = 1 + Length(L), 
— j Get(Insert(L,I,N),M) = 
— j if N + 1 = M then I 
— | elsif M <= N then Get(L,M) 
— j else Get(L,M-l) end if, 
— | not(Member(I,Create)), 
— j Member(I,Insert(L,J,N)) = 
— j ((I = J) or Member(I,L)), 
— | Delete(Insert(L,I,N),M) = 
— I if N + 1 = M then L 
— j elsif M <= N then 
— j Insert(Delete(L,M),I,N-l) 
— j else Insert(Delete(L,M-l),I,N) end if; 
-- Or. 
— | Member(I,L) = (exist 1:1.. Length(L) => 
— I Get(L,N) = I), 
— j Length(Delete(L,N)) = Length(L) - 1, 
— j Get(Delete(L,N),M) = 
— j if N > M then Get(L.M) 
— | else Get(L,M+l) end if; 

private 
type List_Types is (Inserted_List, Created_List); 
type List_Record(Kind : List_Types); 
type List is access List_Record; 
— Or. 
type Get_Record; 
type Get_Array is access Get_Record; 
type Get_Record is record 

Elem : Item; 
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Index : Positive; 
Next : List; 

end record; 
type List is record 

Len : Natural; 
Get_Obs : Get_Array; 

end record; 
end List_Package; 

Implementation using the generator basis for choosing the data structure to implement lists: 

package body List_Package is 
type List_Record(Kind : List_Types) is record 

case Kind is 
when Inserted_List => 

Elem : Item; Next : List; 
Number : Natural; 

when Created_List => null; 
end case; 

end record; 
function Create return List is 
begin 

return new List_Record(Created_List); 
end Create; 
function Insert(L : List; I : Item; 

After : Positive) return List is 
begin 

return new List_Record'(Inserted_List,I,L,After); 
end Insert; 
function Length(L : List) return Natural is 
begin 

case L.Kind is 
when Created_List => return 0; 
when Inserted_List => 

return 1 + Length(L.Next); 
end case; 

end Length; 
function Get(L : List; N : Positive) 

return Item is 
begin 

case L.Kind is 
when Created_List => 

raise Out_Of_Range; 
when Inserted_List => 

if L.Number + 1 = N then 
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return L.Elem; 
elsif N <= L.Number then 

return Get(L.Next,N); 
else 

return Get(L.Next,N-l); 
end if; 

end case; 
end Get; 
function Member(I : Item; L : List) return Boolean is 
begin 

case L.Kind is 
when CreatedJList => return False; 
when Inserted_List => 

return (L.Elem = I) or Member(I,L.Next); 
end case; 

end Member; 
function Delete(L : List; N : Positive) 

return List is 
begin 

if L.Kind = Created_List then 
raise Out_Of_Range; 

elsif L.Number + 1 = N then 
return L.Next; 

elsif N <= L.Number then 
return new List_Record' 

(Inserted_List,L.Elem, 
Delete(L.Next,N),L.Number-l); 

else 
return new List_Record' 

(Inserted_List ,L .Elem, 
Delete(L.Next,N-l),L.Number); 

end if; 
end Delete; 

end List_Package; 

Implementation using the observer basis for choosing the data structure to implement lists: 

package body List_Package is 
function Length(L : List) return Natural is 
begin 

return L.Len; 
end Length; 
function Get(L : List; N : Positive) 

return Item is 
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Tmp : Get_Array := L.Get_Obs; 
begin 

while Tmp /= null loop 
if Tmp.Index = N then 

return Tmp.Elem; 
else 

Tmp := Tmp.Next; 
end if; 

end loop; 
raise Out_Of_Range; 

end Get; 
function Create return List is 
begin 

return (0,null); 
end Create; 
function Insert(L : List; I : Item; 

After : Positive) return List is 
LI : List := L; 
Tmp : Get_Array := Ll.Get_Obs; 

begin 
Ll.Len := Ll.Len + 1; 
while Tmp /= null loop 

if Tmp.Index > After then 
Tmp.Index := Tmp.Index + 1; 

end if; 
Tmp := Tmp.Next; 

end loop; 
Ll.Get_Obs := new Get_Record'(I,After+l,Ll.Get_Obs); 
return LI; 

end Insert; 
function Member(I : Item; L : List) 

return Boolean is 
begin 

for N in 1 .. Length(L) loop 
if Get(L,N) = I then 

return True; 
end if; 

end loop; 
end Member; 
function Delete(L : List; N : Positive) 

return List is 
LI : List := L; 
Tmp, Tmp2 : Get_Array; 

begin 
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Ll.Len := Ll.Len — 1; 
if Ll.Get_Obs.Index = N then 

Ll.Get_Obs := Ll.Get_Obs.Next; 
end if; 
Tmp := Ll.Get_Obs; 
while Tmp /= null loop 

if Tmp.Index > N then 
Tmp.Index := Tmp.Index - 1; 

elsif Tmp.Index = N then 
Tmp2.Next := Tmp2.Next.Next; 

end if; 
Tmp2 := Tmp; 
Tmp := Tmp.Next; 

end loop; 
return LI; 

end Delete; 
end List_Package; 
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