
4 *

COMPUTER SYSTEMS LABORATORY

STANFORD UNIVERSITY ■ STANFORD, CA 94305-4055

A Methodology for Formal

Specification and Implementation

of Ada Packages Using Anna

Neel Madhav

Walter Mann

CLEARED
POP OPEN PUBLICATION

.5tP V.0W 1

-^SäBBS?
Technical Report No. CSL-TR-90-438

Program Analysis and Verification Group Report No. 50

August, 1990

19960916 151

Ajjpiovec t« pxuzhc release

DTIC QUALITY INSPECTED 3

This research was supported by the Defense Advanced Research Projects Agency under
contract N00039-84-C-0211.

/?

IN REPLY
HEFER TO

OFFICE OF THE UNDER SECRETARY OF DEFENSE (ACQUISITION & TECHNOLOGY)
DEFENSE TECHNICAL INFORMATION CENTER

8725 JOHN J KINGMAN RD STE 0944
FT BELVOIRVA 22060-6218

1 AUG 96

DTIC-OMI

SUBJECT: Distribution Statements on Technical Documents

TO:
• U.S. DEFENSE ADVANCED RESEARCH PROJECT

AGENCY/INFORMATION SYSTEMS OFFICE
3701 NORTH FAIRFAX DRIVE
ARLINGTON, VA 22203-1714

1. Reference: DoD Directive 5230.24, Distribution Statements on Technical Documents,
18 Mar 87.

2. The Defense Technical Information Center received the enclosed report (referenced
below) which is not marked in accordance with the above reference.

"A METHODOLOGY FOR FORMAL SPECIFICATION AND IMPLEMENTATION
OF Ada PACKAGES USING ANNA" REPORT #CSL-TR-90-438 DATED AUG 1^90
CONTRACT #N00039-84-C-0211

3. We request the appropriate distribution statement be assigned and the report returned
to DTIC within 5~Working days.

4. Approved distribution statements are listed on the reverse of this letter. If you have
any questions regarding these statements, call DTIC's Input Support Branch,
(703) 767-9092, 9088 or 9086 (DSN use prefix 427).

FOR THE ADMINISTRATOR:

1 End CRYSTAL RILEY *v
Chief, Input Support Branch

FL-171
Dec 95

DoD Directive 5230.24, "Distribution Statements on Technical Documents," 18 Mar 87, contains seven
distribution statements, as described briefly below. Technical Documents that are sent to DTIC must be
assigned one of the following distribution statements:

□ DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

□ DISTRIBUTION STATEMENT B:

DISTRIBUTION AUTHORIZED TO U. S. GOVERNMENT AGENCIES ONLY; (FILL IN REASON); (DATE
STATEMENT APPLIED). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED TO (INSERT
CONTROLLING DoD OFFICE).

□ DISTRIBUTION STATEMENT C:

DISTRIBUTION AUTHORIZED TO U. S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS;
(FILL IN REASON); (DATE STATEMENT APPLIED). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE
REFERRED TO (INSERT CONTROLLING DoD OFFICE).

Q DISTRIBUTION STATEMENT D:

DISTRIBUTION AUTHORIZED TO DoD AND DoD CONTRACTORS ONLY; (FILL IN REASON); (DATE
STATEMENT APPLIED). OTHER REQUESTS SHALL BE REFERRED TO (INSERT CONTROLLING DoD
OFFICE).

□ DISTRIBUTION STATEMENT E:

DISTRIBUTION AUTHORIZED TO DoD COMPONENTS ONLY; (FILL IN REASON); (DATE
STATEMENT APPLIED). OTHER REQUESTS SHALL BE REFERRED TO (INSERT CONTROLLING DoD
OFFICE).

□ DISTRIBUTION STATEMENT F:

FURTHER DISSEMINATION ONLY AS DIRECTED BY (INSERT CONTROLLING DoD OFFICE AND
DATE), OR HIGHER DoD AUTHORITY.

Q DISTRIBUTION STATEMENT X:

DISTRIBUTION AUTHORIZED TO U. S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS OR
ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN ACCORDANCE WITH
DoD DIRECTIVE 5230.25 (DATE STATEMENT APPLIED). CONTROLLING DoD OFFICE IS (INSERT).

(Reason)

OASB/TIO

(Assigning Offi

Debra K. Amick

(Signature & Tyried'Mame)/ S

Defense Advanced Research Projects Agency (DARPA)
(Controlling DoD Office Name)

3701 N. Fairfax Dr., Arlington, VA 22203-1714

(Controlling DoD Office Address (City/State/Zip)

September 11, 1996

(Date Statement Assigned)

A Methodology for Formal Specification and
Implementation of Ada Packages Using Anna

Neel Madhav* and Walter Mannt

Program Analysis and Verification Group
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, California 94305-4055

Computer Systems Laboratory Technical Report CSL-TR-90-438

Program Analysis and Verification Group Report No. 50

August, 1990

Abstract

This paper presents a methodology for formal specification and prototype implementation
of Ada packages using the Anna specification language.

Specifications play an important role in the software development cycle. The methodol-
ogy allows specifiers of Ada packages to follow a sequence of simple steps to formally specify
packages.

Given the formal specification of a package resulting from the methodology for package
specifications, the methodology allows implementors of packages to follow a few simple steps
to implement the package. The implementation is meant to be a prototype.

This methodology for specification and implementation is applicable to most Ada pac-
kages. Limitations of this approach are pointed out at various points in the paper.

We present software tools which help the process of specification and implementation.

Keywords—Ada, Ada Package, Anna, formal specification, prototype implementation,
sufficient completeness

"Department of Computer Science, Stanford University, Stanford, California 94305. E-mail:
Madhav@Cs.Stanford.Edu

*E-mail: Mann@Anna.Stanford.Edu

Computer Systems Laboratory
Stanford University
Copyright © 1990

1 Introduction

Formal specifications are a precise and mathematical description of what a program is supposed
to do [2,7].

The motivation for using specifications is quite clear [7]. Specifications allow a software
manager, through a specifier, to put thoughts about what a program is supposed to do in a
formal and precise language. The specification thus acts as a blueprint for the program. Specif-
ications allow the verification [3,8] or testing [5] of the correctness of a program (with respect to
its specification). Specifications also help in implementing a program, as our methodology for
implementations demonstrates. The process of automatically generating an implementation,
given a specification, is called automatic programming [13].

This paper presents a methodology for formal specification and prototype implementation
of Ada [1] packages using the AnnaflO] specification language. Anna is a language for formally
specifying Ada packages.

Section 2 introduces Anna formal specifications.
Section 3 presents a methodology for producing a formal specification of a module, given

its interface. The interface of a module is made up of subprograms that the module provides
to its clients. We start from an Ada package specification and obtain a formally specified Anna
package. In the following we distinguish between Ada package specifications (the interface made
up of subprograms) and Anna formal specifications (behavioral description).

The methodology can be applied to any module specification. It extends the work of [4]
by allowing a more general framework of specifications, including abnormal situations. The
methodology results in a specification which is provably sufficiently-complete [4]. The level of
confidence in the consistency of the specification is also considerably increased.

The methodology may not result in the best specification. In certain cases the application
of the methodology may be restricted due to the fact that the intended behavior of a program
may not be apparent in the format required by the methodology. However, for a wide range of
programs the methodology does result in a formal specification.

Section 4 presents a tool, the Anna Specification Analyzer [11], which allows the correctness
of a specification to be tested.

Section 5 considers the question of obtaining a prototype implementation, given a formal
specification of a package [14]. Given a formally specified package resulting from the method-
ology for specifications, the methodology for implementations allows an implementor to follow
a few simple steps to get a prototype implementation.

Consider the following example:

Example 1:

Square_Root(X) * Square_Root(X) = X

This specification describes precisely what the function does but gives absolutely no clue
as to how an implementation may be attempted. In general, the problem of getting even
a prototype implementation, given a specification, is difficult. Our restricted framework of
specifications does allow a prototype in most cases.

The resulting implementation is typically not the most efficient. However, the prototype

implementation allows considerable insight to the properties of the final implementation and
may act as the starting point for the final implementation.

Section 6 outlines how tools like verifiers and program testing tools [15] can be used to prove
and/or test the correctness of the final implementation.

2 Specifying Ada Packages Using Anna

Packages are an Ada construct used to encapsulate logically related entities. Ada packages have
two parts—the specification which defines the interface of the package and a body that defines
the implementation. Packages can have types, objects, subprograms, and exceptions.

Anna is an extension of Ada to include formal specification of the intended behavior of Ada
programs. There are constructs available in Anna for specifying each part of an Ada package.
Anna constructs are embedded in Ada comments and are preceded by "— |".

The rest of this Section describes a few Anna formal specifications which can be used to
specify normal behavior of subprograms, abnormal behavior of subprograms, and behavior
of packages as a whole. Anna has other constructs which may be used to formally specify
Ada constructs like subtypes and objects which are not discussed below. The discussion of
Anna below is thus not meant to cover all aspects of Anna, just those that deal with formal
specification of packages.

2.1 Subprogram Annotations

Subprogram annotations constrain the input and output behavior of subprograms. The key-
words in and out distinguish the input and output values of parameters of procedures. Results
of functions are constrained by result annotations.

Example 2:

procedure Minus(X, Y : in out Positive);
— | where (in X >= in Y),
— | out (X = in X - in Y);
— Input value of X should be greater than or equal to Y. The output
— value of X should be the difference of input values of X and Y.
function Square(X : in Integer) return Integer;
— | where return Y : Integer => Y = X * X;

2.2 Exception Propagation Annotations

Strong exception propagation annotations describe conditions under which an exception will be
raised. Weak exception propagation annotations describe conditions which must be true when
an exception is propagated out of a subprogram.

Example 3:

procedure Quotient(X, Y : in out Float);
— | where (in Y = 0.0) => raise Divide_Error,
— | raise Divide_Error => out (in X = X);
— If the input value of Y is 0 then exception Divide_Error is raised. If
— the exception is raised, the value of X remains unchanged.

2.3 Axioms

Axioms are first-order predicate logic constraints on the behavior of a package as a whole.
Axioms describe relationships between subprograms of a package.

Example 4:

package Stacks is
type Stack is private;
function Push(S : Stack; E : Integer) return Stack;
function Pop(S : Stack) return Stack;

— | axiom for all S : Stack; E : Integer =>
— I Pop(Push(S,E)) = S;

end Stacks;
— A sequence of a Push followed by a Pop should leave a stack un-
— changed.

2.4 A Note on Deflnedness

An expression is said to be defined if its evaluation terminates normally. Abnormal behavior
may be divided into two categories—exceptional termination and non-termination.

Subprogram annotations which constrain in values of parameters of subprograms allow the
specification of abnormal behavior. For example, in Example 2 above, the subprogram Minus
may display either kind of abnormal behavior if the value of X is less than Y.

Exception propagation annotations allow the specification of exceptional behavior of pro-
grams. Anna thus allows a specifier to distinguish between the two kinds of abnormal behavior.

3 A Methodology for Specifying Ada Packages

We now present a methodology for obtaining a formal Anna specification given an Ada package
specification.

We start with a methodology for a subset of Ada packages and then show that packages
outside the subset can be rewritten as packages in the subset. Ada package specifications in
the subset we consider do not have any procedures or objects and do not have an internal
state. The form of such a package specification then, is a series of type declarations followed
by declarations of functions which act on these types.

Consider a package specification of lists. This is a generic package with a generic formal
parameter, Item.

Example 5:

generic
type Item is private;

package List_Package is
type List is private;
Out_Of_Range : exception;
function Length(L : List) return Natural;
function Get(L : List; N : Positive) return Item;
function Create return List;
function Insert(L : List; I : Item;

After : Natural) return List;
function Delete(L : List; N : Positive) return List;
function Member(I : Item; L : List) return Boolean;

private

end List_Package;

The aim now is to provide Anna formal specifications which describe the result of execut-
ing each subprogram of the package. We extend the methodology presented in [4]. The set
of functions is divided into generators which build values of new types defined in the package
and observers which map values of new types to old types. The idea is to define the effect
of each generator on each observer. This results in a specification which is sufficiently com-
plete [4]. Sufficient completeness implies that the axioms have conveyed the full meaning of the
operations.

Step I Identify the set of new types introduced (declared) in the package. Call this set
NewT. For the list package this set has a single new type, List.

Step II Identify the set, Obs, of observers among the functions of the package which have
a return type T not in NewT. For the list package this set has the functions Length, Get and
Member.

For each type T E NewT, identify the set Obs(T), called the set of observers of type
T, of functions in Obs at least one of whose parameters is of type T. For the list package
Obs(List) = Obs.

Step III Identify the set, Gen, of generators among the functions of the package which
have a return type T € NewT. For the list package this set has the functions Create, Insert
and Delete.

For each type T £ NewT, identify Gen(T), called the set of generators of type T, of
functions in Gen which have the return type T. For the list package, Gen(List) = Gen.

Step IV Choose the set, ObsBas(T), of basic observers of each type T G NewT. Basic
observers are functions in Obs(T) which cannot be expressed in terms of other observers. A
useful condition to consider is that if Expl and Exp2 are expressions of type T then f(Expl) =

f(Exp2) for all basic observers /, iff Expl = Exp2. In other words, two values of a type are
equal iff the basic observers cannot distinguish between them.

For the list package this set has Length and Get. Get itself does not form an observer basis
since it cannot distinguish between a list and any sublist with the first n (n < Length) elements
of the list. This holds due to that fact that Get will either return the same element for both
lists or return an exception for one list. Equality in universally quantified axioms is defined
such that two expressions are equal if any of them does not terminate normally.

Member can be expressed in terms of the other two observers as shown below. Member and
Length do not make a set of basic observers since they cannot distinguish between two lists of
the same length which have a re-occurring item.

In general, the choice of basic observers is not unique. In practice, it is not difficult to identify
a set of basic observers. It is not crucial for the following treatment to obtain a minimal set of
basic observers. For example, Member could have been (erroneously) chosen a basic observer
without substantially affecting the methodology.

Step V Choose the set, GenBas(T) of basic generators of each type T € NewT. Basic
generators are functions in Gen(T) which cannot be expressed in terms of other generators.
The condition on basic generators is that any expression Exp of type T should be equal to
an expression made up of just basic generators. In other words, basic generators generate all
values of the type.

For the list package this set has Create and Insert. Delete is not a basic generator because
any list that can be generated using Delete can be generated using just Create and Insert.
Create and Delete do not make a set of basic generators since any list with non zero length
cannot be generated just using Create and Delete.

Like basic observers, the set of basic generators is not unique and again it is not crucial to
the methodology that a minimal set of basic generators be chosen.

Step VI For each type T 6 NewT and for each pair of functions o G ObsBas(T) and
g G GenBas(T), define the effect each o has on each g. Each new expression g(X) of type
T built by application of a generator g may change what the observers return. Therefore all
expressions which look like o(g(X)) should be set equal to some other known expression (which
does not involve type T). The general form of such expressions is o(g(X*,Y*),Z*) where
X* are variables of type T, Y* are variables of other types, Z* are variables which stand for
argument types U of o : t\,...,T,...,tn —► X and, g(X*,Y*) is substituted for one of the
parameters of type T. There are five options for how o(g(X)) can be defined:

1. o(g(X)) is equal to some expression o(X). For example, in the list package :

Length(Create) = 0,
Length(Insert(L,I,N)) = 1 + Length(L),
Get(Insert(L,I,N),M) =

if N + 1 = M then I
elsif M <= N then Get(L,M)
else Get(L,M-l) end if,

The expression Get(Create, N) will be discussed later. A very simple inductive argument
shows that the effect of basic generators on the observer basis is thus defined.

2. o(g(X)) is defined by a subprogram result annotation on g. The same approach is taken
by [6,12]. This is equivalent to the previous step but allows a more local specification.
For the list example :

function Create return List;
— | where return L : List => Length(L) = 0;

function Insert(L : List; I : Item;
After : Natural) return List;

— | where return R : List =>
— | Length(R) = Length(L) + 1;

Get can be specified in the same way as Length.

3. o(g(X)) does not terminate normally. There are two options in this case—a subprogram
annotation which restricts the domain that o can act upon, or a strong exception pro-
pagation annotation which specifies that an exception should be raised if input to o is
g{x).

function Get(L : List; N : Positive) return Item;
— | where in(Length(L) >= N);
— Or.
— | where (Lengthen L) < N) =>
— | raise Out_Of_Range;

The function Get is permitted to not terminate or terminate with an exception in the
first case. In the second case, the function must raise the named exception.

4. Define equivalence classes of generators. Take Integers for example :

package Integers is ...
function Zero return Integer;
function Succ(I : Integer) return Integer;
function Pred(I : Integer) return Integer;

end Integers;

The functions Zero, Pred and Succ form the set of basic generators. However they do not
uniquely generate any element, for example X = Succ(Pred(X)). This equation creates
equivalence classes of Integer expressions. Observers need not be defined for each member

of any equivalence class, it is enough that they be defined on any representative of the
equivalence class.

5. Leave the expression o(g(X)) undefined. This results in an incomplete specification. How-
ever, the incompleteness is well defined in the sense that one can pinpoint the location of
the incompleteness.

Step VII Define each observer o 6 Obs(T) — ObsBas(T) (which has not yet been defined)
in terms of the defined observers or the defined generators. The specification may be easier
to implement if the observers or the generators (but not both) are chosen to define all other
functions in this step and in step VIII.

There are two options. Either, for each o, axioms of the form o(X) = o2(X) should be given
where o2 G defined observers. Or, o(g(X)) should be defined in terms of other expressions, for
all g £ basic generators. The method followed is the same as step VI. For example:

— | Member(I,L) = (exist N : 1 .. Length(L) =>
— I Get(L,N) = I),
— Or.
— | not(Member(I,Create)),
— | Member(I,Insert(L,J,N)) = ((I = J) or Member(I,L)),

Step VIII Define each generator g £ Gen(T) — GenBas(T) (which has not been defined
yet) in terms of the defined observers or the defined generators.

Again, there are two options. Either, expressions of the form o(g(X)) should be defined in
terms of other expressions, for all o £ basic observers. Or, g(g2(X)) = g2(g(X)) should be an
axiom, for all g2 £ basic generators. The method followed is the same as that in step VI in
both cases.

Length(Delete(L,N)) = Length(L) - 1,
Get(Delete(L,N),M) =

if N > M then Get(L,M) else Get(L,M+l) end if;
Or.
Delete(Insert(L,I,N),M) =

if N + 1 = M then L
elsif M <= N then Insert(Delete(L,M),I,N-l)
else Insert(Delete(L,M-l),I,N) end if;

3.1 Subset of Packages to which the Methodology Applies

This methodology can be applied to packages with procedures by converting each procedure to
a number of functions. The first function returns a record with all the out parameters of the
procedure and the other functions select each out parameter from this record. Packages with
internal state are handled by converting each function to a procedure, adding an "in out" state

parameter and converting the procedure back to functions (by the above method). Objects
are coverted into pairs of procedures which read and write a component of the state. The
methodology however does not handle concurrency (tasks) in the package specification.

There can be other specifications which are more succinct than the specifications resulting
from this methodology. Also, the user may not be able to define the meaning of o(g(X))
for all cases. For example, consider Example 1. The square root function requires infinite
equations (one for each number) for its definition according to our methodology. However, the
methodology we have presented applies to enough packages to make it interesting.

4 Correctness of Formal Specifications

The next step is to gain a high degree of confidence in the correctness of the specification. Here
by the term correctness it is meant that the specification reflects the behavior intended by the
specifier. This confidence should be gained as early as possible, preferably before an actual
implementation has been built.

A specifier needs confidence in two areas of specification:

t His internal, informal view of the specification of a problem should be a satisfactory
expression of the problem itself, and

• The formal specification should implement this internal view correctly.

Deductive tools may be used to increase the specifier's level of confidence in both areas. One
such tool, the Anna Package Specification Analyzer[ll], has been built for just such a purpose.
The Specification Analyzer builds a model of the specification as a logic state, i.e. a set of
logical expressions concerning the relationships between subprograms defined by the package.
It contains a deductive theorem prover to derive logical consequences of the specification. The
user then asks questions with respect to this state, such as the value of an expression as implied
by package axioms. The state serves as a prototype implementation of the package, allowing
the user to test ideas and if necessary to alter the specification to reflect either changes in the
user's internal view of the problem, or errors in the specification.

For example, recall the five methods of defining the observer function expressions in Sec-
tion 3. If the observer functions of the List package have been defined by these methods,
using Specification Analysis it is possible to test that the value of the observers are what were
intended. A user may query the value of a specific observer; and if the annotations define
the function in terms of simple discrete-valued functions, and are complete enough to define
a unique result, that result may be calculated. Using the List example, assume variables II
and 12 of type Item have been declared (Ada variables may be declared interactively during
Specification Analysis, to store temporary values). On passing the following expression to the
Specification Analyzer,

Length (Insert(I2,1 ,Insert (11,0,Create)))

if the Length and Insert functions are defined following methods 1 and 2, the Analyzer would
deduce that the value of this expression is 2. If the evaluation of an observer terminates

abnormally, as in method 3, this will be reported to the user. If no value for the expression is
deducible, the user must decide whether this incompleteness was intentional, as in method 5,
or whether the specification is incorrect.

Where equivalence classes of functions are defined, as in method 4 or where functions are
not defined in terms of other discrete valued functions, the user queries not specific function
calls but various equivalences, to see if they hold. Using the Integers package example, a user
may query expressions such as:

Succ(Succ(Zero)) = Pred(Succ(Succ(Succ(Zero))))

and the result will be one of the boolean values True or False, or that neither result is provable.
Specification Analysis does not decide which function expressions to evaluate — developing

test cases is still up to the user. But it does allow the user to check all expressions necessary
to increase confidence in the correctness of the specification.

5 A Methodology for Implementing Package Specifications

Given a package which has been formally specified by following the above methodology, the
methodology outlined below results in a prototype Ada implementation of the package.

Step I Choose the observers or the generators to be the basis of the data structure which
implements a type T in NewT. Choose the observer basis if most functions are specified in
terms of it, else choose the generator basis. Go to step 1.1 in the former case and follow the
".1" steps and to step 1.2 in the latter case and follow the ".2" steps.

Step 1.1 If there are N basic generators gi,... ,gN for type T, choose a variant record with
N variants. The zth variant has m components ^j,...,f,m corresponding to the parameter
types of the ith generator gi : t^,... ,f,m -» T. In the general case where a generator for T
might have a parameter of type T, access (pointer) types should be used. For example, for lists:

type List_Types is (Inserted_List, Created_List);
type List_Record(Kind : ListJTypes);
type List is access List_Record;
type List_Record(Kind : ListJTypes) is record

case Kind is
when Inserted_List =>

Elem : Item; Next : List;
Number : Natural;

when Created_List => null;
end case;

end record;

In the following we assume that the functions which are not basic observers or basic gener-
ators are specified in terms of basic generators. Skeleton implementations are provided for the

case where these functions may have been defined in terms of the basic observers.

Step II.l Implement generator basis functions. Implementation of #,■ : 2tl,..., itm —► T
returns a new variant record value which has the ith variant and which is assigned the values
of parameters /,■ of g. For example:

function Create return List is
begin

return new List_Record(Created_List);
end Create;
function Insert(L : List; I : Item;

After : Natural) return List is
begin

return new List_Record'(Inserted_List,I,L,After);
end Insert;

Step III.l Implement the observer basis functions. This step is dependent on the axioms
which relate the observer and generator basis. The implementation mimics the axioms. For
each option in step VI of the specification methodology, we have an option here:

1. If o(g(X)) = o(X) is the axiom in the specification the implementation of o(g(X)) is a
recursive call o(X). For example:

function Length(L : List) return Natural is
begin

case L.Kind is
when Created_List => return 0;
when InsertedJList =>

return 1 + Length(L.Next);
end case;

end Length;
function Get(L : List; N : Positive) return Item is
begin

case L.Kind is
when Created_List =>

raise Out_Of_Range;
when Inserted_List =>

if L.Number + 1 = N then
return L.Elem;

elsif N <= L.Number then
return Get(L.Next,N);

else return Get(L.Next,N-l);
end if;

end case;

10

end Get;

The exception is raised because of the existence of an exception propagation annotation
in the specification.

2. Follow option 1 if a subprogram result annotation is used.

3. If o(g(X)) is specified to terminate abnormally with an exception, the implementation
raises an exception. If o(g(X)) is specified to just terminate abnormally, the implemen-
tation is free to abnormally terminate in any way. See option 1 for an example.

4. Equations between basic generators do not substantially affect the methodology for im-
plementation. All they do is to suggest improvements in the data structure chosen, since
many values of the data structure are now the same.

5. If o(g(X)) is undefined, the user is free to implement o in any way (s)he desires, including
not implement it.

Step IV.1 Implement other observers based on corresponding axioms in step VII of the
specification methodology. If the specification of o is through an equation o(X) = o2(X) then
the implementation involves a call to o2(X). For example:

function Member(I : Item; L : List) return Boolean is
begin

for N in 1 .. Length(L) loop
if Get(L,N) = I then return True; end if;

end loop;
end Member;

If the specification defines o(g(X)) for all g 6 GenBas(T) then the implementation follows
step III.l above:

function Member(I : Item; L : List) return Boolean is
begin

case L.Kind is
when Created_List => return False;
when Inserted_List =>

return (L.Elem = I) or Member(I,L.Next);
end case;

end Member;

Step V.l Implement other generators. Look at the axiom that defines the generator g. If
the axiom is o(g(X)) = o2(X), the implementation of g returns a record the value of observers

11

o on which is o2(X). As pointed out at the end of step 1.1, we do not fully treat the case where
observers are used to define g.

If the axiom defines g(g2(X)), the implementation of g(Y) involves a call to g2(g(X)). This
is simple since any actual parameters Y in a call g(Y), are already in the form g2{X). For
example:

function Delete(L : List; N : Positive) return List is
begin

if L.Kind = Created_List then
raise Out_Of_Range;

elsif L.Number + 1 = N then
return L.Next;

elsif N <= L.Number then
return new List_Record'
(Inserted_List,L.Elem,Delete(L.Next ,N),L.Number-1);

else
return new List_Record'
(Inserted_List,L.Elem,Delete(L.Next,N-l),L. Number);

end if;
end Delete;

Step 1.2 For each o : t\,... ,T,... ,tn —> X in the basic observers, where i,-s are types of
parameters and X is the return type, define a multidimensional array which has elements of
type X and is indexed by the i,-s. There could be two problems with this—any £,• could be
very large (like Integer) or any f,- could be a non-discrete type (like Float). The way to resolve
both these problems is to instead choose a linked structure. An array indexed by types t*
is replaced by a linked list of records with components of types t* and X. Each element of
this list corresponds to an element of the array. In the following we assume the existence of
operations on linked lists corresponding to the operations UA(I)" and UA(I) := X" on arrays.
It is assumed in later discussion that these operations are available. For the list example we
define two arrays corresponding to the two basic observers:

type Get_Record;
type Get_Array is access Get_Record;
type Get_Record is record

Elem : Item; Index : Positive; Next : Get_Array;
end record;
type List is record

Len : Natural; Get_Obs : Get_Array;
end record;

Len is a constant "array" corresponding to Length. Get_Obs is a one dimensional "array"
corresponding to Get.

12

In the following we assume that functions which are not basic observers or basic generators,
are specified in terms of the basic observers. We do not treat fully the cases where basic
generators are used to specify these functions.

Step II.2 Implement observer basis functions. Observer o is implemented by the selection
operation llA(I)n on the array corresponding to o. For example:

function Length(L : List) return Natural is
begin

return L.Len;
end Length;
function Get(L : List; N : Positive) return Item is
begin

— Get the Elem field of the node of the Get_Obs linked list which
— has Index = N.

end Get;

Step III.2 Implement basic generators. The implementation mimics the axioms relating
basic observers and generators defined in step VI of the specification methodology.

1. If o(g(X)) = o{X) is the defining axiom, the implementation of g(X) returns a record
with values corresponding to o(X). For example:

function Create return List is
begin

return (0,null);
end Create;
function Insert(L : List; I : Item;

After : Natural) return List is
begin

— Return a new list which is the same as L except that 1. Length
— is incremented by 1, 2. Indices of all elements of the old list
— where Index > After have been incremented by 1, 3. A new
-- element I with Index = After+1 has been added.

end Insert;

2. If o(g(X)) terminates abnormally, terminate abnormally.

3. Equations between generators do not affect implementation.

4. Partial specification allows any implementation.

13

Step IV.2 Implement other generators. If the defining axiom for the generator defined
o(g(X)) then steps similar to step III.2 should be taken. For lists:

function Delete(L : List; N : Positive) return List is
begin

-- Return a new list which is the same as L except that 1. Length
— is decremented by 1, 2. Indices of all elements of the old list
— where Index > N have been decremented by 1, 3. Element
— with Index = N has been removed.

end Delete;

If g(g2(X)) = g2(g(X)) is defined, then the implementation of g(Y) involves rewriting
Y as a generator expression g2{X) and then calling g2(g(X)). That is, choosing an X such
that Y = g2(X). For the list example this involves setting a general list L equal to some list
Insert(Ll,I,N) and then calling Insert(Delete(...)). As pointed out at the end of step II.l
above, we do not fully treat the case where o is defined by basic generators.

Step V.2 Implement other observers. If the defining axiom is of the form o(X) = o2(X),
the implementation of o(X) is a call to o2(X). For example:

function Member(I : Item; L : List) return Boolean is
begin

— Check if Elem I exists in list.
end Member;

If the defining axiom is o(g(X)) = o2(X), the implementation of o(Y) involves rewriting Y
as g(X) and making a call to o2(X) similar to step IV.2. We do not treat this case fully.

5.1 Limitations of the Methodology

The subset of specifications to which the methodology applies may be too restrictive in some
cases. The same problems that disallow specification of the square root function in our metho-
dology, also disallow implementation according to our methodology.

A major shortcoming is that the implementation obtained is not the most efficient. Various
optimizations to the data structures used in the methodology give rise to stacks, sets, queues
and other structures. See [14] for an overview of data structure selection for implementations.

The prototype implementation allows a user to get insight into the properties of the final
implementation and also to test out properties of a program before implementing the program
in its final form.

6 Correctness of Implementations

The formal specification of a package constrains the behavior of any implementation written
for it. Correctness with respect to an implementation means that executions of the implemen-

14

tation satisfy the package constraints. Given an implementation, different levels of verifying
its correctness are possible. Deductive tools may prove from lower-level Anna specifications, or
from the Ada code itself, that an implementation obeys the package constraints[9].

Another option is run-time verification[15]. Here, a tool inserts run-time Ada checks into the
implementation which test the constraints. If a check fails, the specific annotation violated and
location in the body where it was violated may be reported for debugging. Hence permanent
low-cost checking can ensure that every execution of a package body obeys its specification.

7 Conclusion

We have presented a methodology for specification and implementation of Ada packages. The
motivation for obtaining a specification and a prototype implementation have been pointed
out. The methodology is applicable to most Ada packages. It is our experience that apart from
certain cases like the square root function, most packages can be specified by our methodology.

In these cases, the use of Anna virtual functions may be made to introduce intermediate
functions which bridge the gap between the two specifications. We are involved in ongoing
research which investigates this line of thought.

Future research will involve extending the methodology to include more kinds of specific-
ations and implementations and to develop rules for optimization of implementations. Future
research will also involve development of tools which help in applying the methodology to ac-
tual packages and tools which automate parts of specification and implementation of packages.
Proofs obligations for each step of implementation in the spirit of [6] will also be developed.

Acknowledgements

We would like to thank Professor David Luckham at Stanford for his guidance and his

support for writing this paper.
This research was supported by the Defense Advanced Research Projects Agency under

contract N00039-84-C-0211.

References

[1] Reference Manual for the ADA Programming Language. United States Department of
Defense. ANSI/MIL-STD-1815A-1983.

[2] H. K. Berg, W. E. Boebert, W. R. Franta, and T. G. Moher. Formal Methods of Program
Verification and Specification. Prentice-Hall, 1982.

[3] R. Boyer and J Strother Moore. Program Verification. Journal of Automated Reasoning,

l(l):17-22, 1985.

[4] J. V. Guttag and J. J. Horning. The Algebraic Specification of Abstract Data Types. Ada
Informatica, 10:27-52, 1978.

15

[5] J. C. Huang. Error Detection Through Program Testing. In Current Trends in Program-
ming Methodology, Volume II—Program Validation, Prentice-Hall, 1977.

[6] C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall, 1986.

[7] Barbara Liskov and Stephen Zilles. An Introduction to Formal Specifications of Data
Abstractions. In Current Trends in Programming Methodology, Volume I—Software Spec-
ification and Design, Prentice-Hall, 1977.

[8] Ralph L. London. Perspectives on Program Verification. In Current Trends in Program-
ming Methodology, Volume II—Program Validation, Prentice-Hall, 1977.

[9] D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne, D. C. Oppen,
W. Polak, and W. L. Scherlis. Stanford Pascal Verifier User Manual. Technical Report 79-
731, Department of Computer Science, Stanford University, March 1979.

[10] David C. Luckham, Friedrich W. von Henke, Bernd Krieg-Brückner, and Olaf Owe.
Anna—A Language for Annotating Ada Programs. Springer-Verlag—Lecture Notes in
Computer Science No. 260, July 1987.

[11] Walter R. Mann. Anna package specification analyzer user's guide. Unpublished technical
report.

[12] D. L. Parnas. A Technique for Software Module Specification with Examples. Communi-
cations of the ACM, 15(5):330-336, May 1972.

[13] Charles Rich and Richard C. Waters, editors. Artificial Intelligence and Software Engi-
neering. Morgan Kaufman Publishers, 1986.

[14] Lawrence A. Rowe and Fred M. Tonge. Automating the Selection of Implementation
Structures. IEEE Transactions on Software Engineering, SE-4(6), 1978.

[15] Sriram Sankar. Automatic Runtime Consistency Checking and Debugging of Formally
Specified Programs. PhD thesis, Stanford University, 1989.

A Formal Specification and Implementation of the List Pack-
age

One of the possible formal specifications of the list package which results from the methodology
for specifications is presented here. The operations Member and Delete are specified in terms
of first the generator basis and then the observer basis. The data structures are provided for
two cases—implementation choosing the observer or the generator basis.

generic
type Item is private;

package List_Package is
type List is private;

16

Out_Of_Range : exception;
function Length(L : List) return Natural;
function Get(L : List; N : Positive) return Item;
— | where (Lengthen L) < N) =>
— | raise Out_Of_Range;
function Create return List;
function Insert(L : List; I : Item;

After : Positive) return List;
— | where (Lengthen L) < After) => raise Out_Of_Range;
function Delete(L : List; N : Positive) return List;
— | where (Lengthen L) < N) => raise Out_Of_Range;
function Member(I : Item; L : List) return Boolean;
--| axiom for all I, J : Item; L : List;
— j N, M : Natural =>
--| Length(Create) = 0,
— | Length(Insert(L,I,N)) = 1 + Length(L),
— j Get(Insert(L,I,N),M) =
— j if N + 1 = M then I
— | elsif M <= N then Get(L,M)
— j else Get(L,M-l) end if,
— | not(Member(I,Create)),
— j Member(I,Insert(L,J,N)) =
— j ((I = J) or Member(I,L)),
— | Delete(Insert(L,I,N),M) =
— I if N + 1 = M then L
— j elsif M <= N then
— j Insert(Delete(L,M),I,N-l)
— j else Insert(Delete(L,M-l),I,N) end if;
-- Or.
— | Member(I,L) = (exist 1:1.. Length(L) =>
— I Get(L,N) = I),
— j Length(Delete(L,N)) = Length(L) - 1,
— j Get(Delete(L,N),M) =
— j if N > M then Get(L.M)
— | else Get(L,M+l) end if;

private
type List_Types is (Inserted_List, Created_List);
type List_Record(Kind : List_Types);
type List is access List_Record;
— Or.
type Get_Record;
type Get_Array is access Get_Record;
type Get_Record is record

Elem : Item;

17

Index : Positive;
Next : List;

end record;
type List is record

Len : Natural;
Get_Obs : Get_Array;

end record;
end List_Package;

Implementation using the generator basis for choosing the data structure to implement lists:

package body List_Package is
type List_Record(Kind : List_Types) is record

case Kind is
when Inserted_List =>

Elem : Item; Next : List;
Number : Natural;

when Created_List => null;
end case;

end record;
function Create return List is
begin

return new List_Record(Created_List);
end Create;
function Insert(L : List; I : Item;

After : Positive) return List is
begin

return new List_Record'(Inserted_List,I,L,After);
end Insert;
function Length(L : List) return Natural is
begin

case L.Kind is
when Created_List => return 0;
when Inserted_List =>

return 1 + Length(L.Next);
end case;

end Length;
function Get(L : List; N : Positive)

return Item is
begin

case L.Kind is
when Created_List =>

raise Out_Of_Range;
when Inserted_List =>

if L.Number + 1 = N then

18

return L.Elem;
elsif N <= L.Number then

return Get(L.Next,N);
else

return Get(L.Next,N-l);
end if;

end case;
end Get;
function Member(I : Item; L : List) return Boolean is
begin

case L.Kind is
when CreatedJList => return False;
when Inserted_List =>

return (L.Elem = I) or Member(I,L.Next);
end case;

end Member;
function Delete(L : List; N : Positive)

return List is
begin

if L.Kind = Created_List then
raise Out_Of_Range;

elsif L.Number + 1 = N then
return L.Next;

elsif N <= L.Number then
return new List_Record'

(Inserted_List,L.Elem,
Delete(L.Next,N),L.Number-l);

else
return new List_Record'

(Inserted_List ,L .Elem,
Delete(L.Next,N-l),L.Number);

end if;
end Delete;

end List_Package;

Implementation using the observer basis for choosing the data structure to implement lists:

package body List_Package is
function Length(L : List) return Natural is
begin

return L.Len;
end Length;
function Get(L : List; N : Positive)

return Item is

19

Tmp : Get_Array := L.Get_Obs;
begin

while Tmp /= null loop
if Tmp.Index = N then

return Tmp.Elem;
else

Tmp := Tmp.Next;
end if;

end loop;
raise Out_Of_Range;

end Get;
function Create return List is
begin

return (0,null);
end Create;
function Insert(L : List; I : Item;

After : Positive) return List is
LI : List := L;
Tmp : Get_Array := Ll.Get_Obs;

begin
Ll.Len := Ll.Len + 1;
while Tmp /= null loop

if Tmp.Index > After then
Tmp.Index := Tmp.Index + 1;

end if;
Tmp := Tmp.Next;

end loop;
Ll.Get_Obs := new Get_Record'(I,After+l,Ll.Get_Obs);
return LI;

end Insert;
function Member(I : Item; L : List)

return Boolean is
begin

for N in 1 .. Length(L) loop
if Get(L,N) = I then

return True;
end if;

end loop;
end Member;
function Delete(L : List; N : Positive)

return List is
LI : List := L;
Tmp, Tmp2 : Get_Array;

begin

20

Ll.Len := Ll.Len — 1;
if Ll.Get_Obs.Index = N then

Ll.Get_Obs := Ll.Get_Obs.Next;
end if;
Tmp := Ll.Get_Obs;
while Tmp /= null loop

if Tmp.Index > N then
Tmp.Index := Tmp.Index - 1;

elsif Tmp.Index = N then
Tmp2.Next := Tmp2.Next.Next;

end if;
Tmp2 := Tmp;
Tmp := Tmp.Next;

end loop;
return LI;

end Delete;
end List_Package;

21

