
eAUTEBTMETWOHC 

CTN Test Report 
91-040 

A Path to Tri-Service 
Use of SGML 

May 31,1991 

Jft ■  -'.Ji 

^\r,. 
0 A 

Prepared for 
Air Force Logistics Command 
Air Force CALS Test Bed (LMSC/SBC) 
Wright-Pauerson AFB, OH 45433-5000 19960826 087 

DISTRIBUTION STATEMENTX 

Approved for public release; 
Distribution Unlimited 



CTN Test Report 
91-040 

A Path to Tri-Service 
Use of SGML 

May 31, 1991 

Prepared By 
SOFTWARE EXOTERICA CORPORATION/CENTECH for 
Air Force CALS Test Bed 
Wright-Patterson AFB, OH 45433 



CTN Test Report 
91-040 

A Path to Tri-Service 
Use of SGML 

May 31, 1991 

Prepared By 
SOFTWARE EXOTERICA CORPORATION/CENTECH for 
Air Force CALS Test Bed 
Wright-Patterson AFB, OH 4 5433 

AFTB Contact 
Gary Lammers 

•  (513) 257-3085 

CTN Contact 
Mel Lammers 
(513) 257-8882 

Prepared for 
Air Force CALS Test Bed 
Wright-Patterson AFB, OH 45433-5000 



A Path to Tri-Service 
Use of SGML 

May 31,1991 

Prepared by Software Exoterica Corporation 
for the United States Air Force 

under Contract to Century Technologies Inc. 



A Path to Tri-Service Use of SGML 

1. Introduction 1 

1.1. The Role Of History in the Evolution of the CALS Initiative 1 
1.2. Outline 2 
1.3. Credit 2 

2. A Basis for a New Generation of Markup Languages 3 
2.1. The Origins of Markup Languages 3 

2.1.1. Copy Markup 3 
2.1.2. Punctuation as Markup 5 
2.1.3. Early Text Formatting Languages — Procedural Markup 7 
2.1.4. The Evolution of Text Markup — Descriptive Markup 8 
2.1.5. Preparing Input For Data Base Systems 9 
2.1.6. Text Interchange Languages 11 

2.2. Capturing Information 12 
2.3. What Is a Language? 13 

2.3.1. Grammar 13 
2.3.2. Syntax and Semantics 15 
2.3.3. Languages and Meta-Languages 15 
2.3.4. Surface Structure and Deep Structure 17 
2.3.5. Classes of Languages 19 
2.3.6. Marks 20 

2.4. Why Use a Text Markup Language? 21 
2.4.1. The Advantages of Text Markup Languages 21 
2.4.2. The Role of Text Markup Languages 23 
2.4.3. Alternatives to Text Markup Languages 23 

2.5. Markup Languages and Programming Languages 24 
2.5.1. The Use of Delimiters 24 
2.5.2. Universal Languages 25 
2.5.3. Standards Development as a Research Activity 26 
2.5.4. Object-Oriented Programming 27 

2.6. SGML 27 

2.6.1. What is SGML? 27 
2.6.2. Common Misconceptions About SGML 30 

2.6.2.1. Angle-Bracket Languages 30 

A Path to Tri-Service Use of SGML 



2.6.2.2. What is an SGML Document? 31 
2.6.2.3. What is a Valid SGML Document? 32 
2.6.2.4. What is an SGML-Defined Markup Language? 33 
2.6.2.5. SGML and Text 33 

2.6.3. The Role of Processing Software ; 35 
2.7. One Markup Language or Many? 37 

3. The Evolution of SGML Usage in the CALS Initiative 39 
3.1. Technical Documents and CALS 39 

3.1.1. Publishing Specifications 39 
3.1.2. An Early View of SGML 40 

3.1.2.1. MIL-M-28001 40 
3.2. "C"-Type Documents 41 

3.2.1. The Development of MIL-M-28001 A 42 
3.2.2. Document Processing — The Output Specification 42 

4. The Road from Here to There 44 
4.1. The Problem — A Multitude of Text Markup Languages 44 

4.1.1. Addressing the Right Audience 44 
4.1.1.1. Marking Up Documents 45 
4.1.1.2. Processing Documents 47 
4.1.1.3. Maintaining a Markup Language 48 
4.1.1.4. Designing a Markup Language 50 

4.1.2. The Impact of Processing Technology 51 
4.1.2.1. Methodology 51 
4.1.2.2. Tools 53 

4.2. The Solution — Managing Technical Documentation 53 
4.2.1. Guidelines and Standards 54 
4.2.2. What Can Be Standardized? 54 
4.2.3. New Methodologies 55 

4.2.3.1. Text Markup Language Families 55 
4.2.3.2. Markup Sublanguages 56 
4.2.3.3. Common Processing Semantics 56 

4.3. What Next? 56 
4.4. Independent Verification and Validation 57 

4.4.1. What is I V & V? 58 
4.4.2. Complete Documentation 60 

Ti A Path to Tri-Service Use of SGML 



4.4.3. What Can Be Subject to I V & V? 60 

5. Summary and Conclusion 62 

A Path to Tri-Service Use of SGML i i i 



1. Introduction 

1. Introduction 

This report presents a "road map" of past and future use of SGML1 within the 
CALS initiative. It describes the path from the current state of CALS through 
to full Tri-Service use of SGML-based technology. A thorough understanding 
of the historical and theoretical basis of using SGML, as well as an 
understanding of the current status of SGML within the CALS initiative, is 
required before the next step in the development of CALS-based SGML usage 
can be competently planned. This document therefore presents a summary of 
the relevant history and theory behind SGML and CALS, as well as a 
discussion of its current status, prior to presenting what has to be done next. 

1.1. The Role Of History in the Evolution of the CALS Initiative 

The CALS initiative is an ongoing development of new standards for the 
management of technical documentation, from initial creation through all 
the stages of production to final printed copy or on-line computer access. In 
part, CALS is an attempt to predict the future of document management 
within the Armed Forces and by their contractors, as well as an attempt to 
profitably prepare for that future. 

The primary purpose of establishing standards is to provide a medium for 
allowing public access to developments within the CALS initiative. Viewed 
in this light, the ongoing revision and adaptation of these standards is not 
just an inconvenience forced on the community of producers and users of 
technical documentation by a rapidly changing technology; rather it is a 
medium by which the major advances that are being made in the technology 
can be used to advantage by that community. 

This view is in contrast to the traditional view of standards as a formalization 
of accepted practice in a mature technology. It is forced on the technical 
publications community by both a rapidly changing technology and a 
perceived need to take advantage of advances in that technology. It requires 
the technical publications community to adapt to rapid changes, but returns 
the cost of doing so by keeping the community at the leading edge of new 
developments. 

The best way of understanding future developments within the CALS 
initiative is to attempt to extrapolate forward from the current state of CALS 
in light of past developments. Such an extrapolation is what this report 
represents. An interesting aspect of this review of the history of text markup 
languages, SGML and CALS, is that expectations for the future have 
undergone almost continual change responding to greater understanding of 
the problems inherent in documentation management. This document 

1 The defining document for SGML is Information Processing — Text and 
Office Systems — Standard Generalized Markup Language (SGML). ISO 
(International Organization for Standardization), 1986. 

A Path to Tri-Service Use of SGML 



provides the best possible review of what can be reasonably expected to occur 
in the CALS environment, and contains recommendations for studies of 
existing components of CALS that will probably further change these 
expectations. 

1.2. Outline 

This report develops a practical path towards Tri-Service use of text markup 
languages. It consists of: 

1. a discussion of the historical and theoretical basis of the use of text 
markup languages, together with a description and discussion of the 
function of SGML, and role of non-SGML components in the design, use 
and processing of text markup languages, 

2. an overview of the current state of markup languages within the CALS 
initiative, 

3. a presentation of the steps necessary to overcome the problems currently 
encountered within the CALS initiative, and 

4. a presentation of how the proposals in this document should be put into 
practice. 

1.3. Credit 

This report was prepared for the United States Air Force CALS Test Network 
by Sam Wilmott and other members of Software Exoterica Corporation under 
contract to Century Technologies Corporation. The report represents the 
current state of research at Exoterica, and parts of this report have been 
adapted from Exoterica's training materials and publications. 

A Path to Tri-Service Use of SGML 



A Basis for a New Generation of Markup Languages 

2. A Basis for a New Generation of Markup Languages2 

A new generation of Tri-Service text markup languages will have to solve the 
major problems presented by the present generation of MIL-M-28001 -based 
markup languages. The main thrust of this report is that the next stage in the 
development of SGML usage in the CALS environment must be based on a 
new, unified approach to markup language design. 

Before a unified approach to markup language design can be developed, the 
nature of markup languages and the way in which they can be used must be 
thoroughly understood. Each stage in the development of text encoding, of 
SGML and of the CALS initiative has brought to light new understanding of 
what markup languages are and what can be done with them. The 
proliferation of variant CALS markup languages, some strongly, and some 
more loosely based on those defined in MIL-M-28001, is partly due to the 
incompleteness of MIL-M-28001, and partly due to the increasing awareness of 
new capabilities and new requirements. 

The following sections describe and discuss the history and development of 
markup language use, which forms the basis for the use of SGML in the CALS 
environment. The discussion is phrased in terms independent of the specific 
kinds of markup languages required for Tri-Service use, so as to allow a fuller 
discussion later on of what directions current CALS technology can take. 

2.1. The Origins of Markup Languages 

Text markup languages predate SGML and CALS. They even predate 
computers. 

2.1.1. Copy Markup 

Text markup languages were used by the typesetting community long before 
the introduction of computers. Copy editors pencil symbols and abbreviations 
on handwritten or typewritten documents. There are typically two types of 
marks: those that indicate corrections to the handwritten or typewritten 
document, and those that indicate to the personnel actually doing the 
typesetting the appearance of each part of the printed document. The first type 
of mark is that most often seen by writers, when their draft copies are 
returned from proofreading. The second type of mark is more the business of 
a print shop. When a marked-up document is sent for printing, it is often 
accompanied by a "style sheet", which lists both features of the typeset 
document as a whole and common features of regularly occurring elements 
of the document, such as the font size used for figure titles. Sets of marks used 
for these purposes have been standardized, so that most writers, editors and 

2 The text of this chapter has been adapted, with permission, from training 
material of Software Exoterica Corp. 

A Path to Tri-Service Use of SGML 



typesetters know that "#" stands for "add space", "stet" means leave alone, 
and a caret means "insert here".3 

The marks used for copy editing constitute a text markup language. The 
major characteristics that it shares with other markup languages (including 
CALS markup languages) are the following: 

1. Marked-up documents consist of text interspersed with marks. 

2. Marks are "punctuation": they either surround text, are placed before or 
after text, or between pieces of text. Marks can also surround or be 
adjacent to other marks, in a similar manner to punctuation, in the 
same way that quotes can surround a period that ends a sentence. 

3. Marks are usually very short, a single letter or symbol, although they can 
be longer. Special symbols are used for some marks ("#"), although 
many consist of words or abbreviations ("stet", "uc", "cap") or a 
combination of the two ("sp" in a circle for "spell out"). 

4. The set of marks is defined in two parts: in A Manual of Style, for 
example, there is a table containing the marks themselves as they would 
be handwritten by a copy editor or stylist, and the accompanying text 
explains what each mark means in terms of the effect it has on the text it 
surrounds or is embedded in. 

5. The markup language is at least partially standardized within the 
community in which it is used. 

6. Different marks deal with different characteristics of the text. A copy 
markup language is entirely concerned with the format and correctness 
of the text when presented to the reader, and has separate marks for 
format and marks for correcting text. Other characteristics of the text, 
even those regarding such obvious book production issues as what 
words and phrases should be placed in an index, do not have defined 
marks associated with them. This does not stop authors from adding to 
the markup language, by as simple a means for example, as circling 
words and phrases to be placed in the index. 

7. The marks are independent of the text of the document. From the point 
of view of copy markup, words are words. The typesetter need not have 
any understanding of the tpxt being set; it may even be in a language 
unknown to the typesetter. The typesetter need only understand what is 
conveyed by the marks. 

8. On the other hand, the purpose of typesetting a book is to make it more 
readily available to readers, who are the ultimate users of the marked-up 
documents. These readers are primarily concerned with the text of the 

3 For a good example of standardized copy marks, see A Manual of Style, pp. 
71-76. 12th Edition. Chicago: The university of Chicago Press, 1969. 

A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

book. The formatting that resulted from the marks, the spacing, font 
changes, boldfacing and italicizing, serve to make the book easier to read. 

2.1.2. Punctuation as Markup 

Common punctuation and spacing in printed text serves as text markup 
language of sorts: spaces separate and delimit words; periods terminate 
sentences; dashes or commas surround elliptical phrases. Punctuation shares 
the key characteristic of other markup languages, i.e. punctuation can be 
interpreted without understanding the text of the sentences. For example, the 
punctuation of French sentences can easily be understood by English-only 
readers, whereas Japanese, in which there often are no word breaks and 
which uses a different system of punctuation, looks like vertical rows of 
marks, with no apparent structure or meaning. 

The "punctuation" characteristic of markup languages is what distinguishes 
them from human language and from computer languages. Very close 
analogies can be drawn between otherwise radically different markup 
languages because of this common characteristic. Punctuation carries 
relatively little of the information in printed text. Printed text without any 
kind of punctuation at all is very hard, but not impossible to read, and so long 
as it is in any way readable, it can convey most, if not all of the information 
intended. Although the computerized use of markup languages is based in 
part on increasing the amount of information in the punctuation, so as to 
make the information more readily available to computer applications, the 
limitations of markup languages have to be appreciated to realize what can be 
done with them. 

An important characteristic of any type of punctuation is that it must 
surround, precede, follow or be embedded in what it is marking. The 
placement of punctuation depends on the nature of what it is marking. For 
example: 

1. Quotation marks surround quoted text. This is because quoted text can 
consist of a word or phrase embedded in a sentence, with no other way of 
distinguishing its boundaries. As well, quoted text can appear inside 
quoted text, requiring distinct marks for the start and the end of each 
piece of quoted text. The use of single (' and ') and double (" and ") quotes 
is used as an extra visual clue for the human reader, although use of a 
single style would be unambiguous. 

2. Commas or dashes surround elliptical phrases. Elliptical phrases are 
typically not embedded within each other, and so the same mark is 
adequate to start the elliptical phrase and to end it. When elliptical 
phrases are embedded, the reader usually uses the meaning of the text to 
distinguish between the possible cases. When an elliptical phrase is at 
the start or the end of a sentence, the leading or following comma or 
dash is omitted. A period never immediately follows a comma, for 
example. 

A Path to Tri-Service Use of SGML 



3. Sentences are terminated by a period, question mark or exclamation 
mark. The start of a sentence is unmarked other than by capitalizing the 
first word. Sentences need only one piece of punctuation because they 
cannot be embedded within other sentences. In the case of a sentence, an 
end mark is adequate. The start of a sentence is signalled by the start of a 
paragraph or by the fact that text immediately follows the end of another 
sentence. 

4. Commas separate alternatives when they are listed in a sentence. 
Leading and trailing marks are not needed if all the alternatives are 
grammatically appropriate at that point in the sentence. For example, 
this sentence lists the sequence of words apples, oranges and pears twice, 
without leading or trailing punctuation on the list "apples, oranges and 
pears" the first time, but including such punctuation (the quotation 
marks) the second time. 

5. Space is used as punctuation. Vertical space is used to separate 
paragraphs. Indentation is used to mark the start of a paragraph. (In the 
latter case, indentation is often adequate without any other visual clues. 
The spatial mark in this case functions similarly to the period ending 
sentences, but appears at the start of what is being marked rather than 
the end.) 

Choosing an appropriate placement of marks is as important as the form of 
the marks when designing a markup language, be it punctuation for a human 
language or tags in a MIL-M-28001 variant markup language. There are trade- 
offs that have to be made: 

1. Unnecessary markup and marks that contain an unnecessarily large 
number of keystrokes can make a marked-up document hard to read. If 
the text being marked up is smaller than the marks, what has been 
marked up can be hard to find. 

2. Unnecessary markup and marks that contain an unnecessarily large 
number of keystrokes can also substantially increase the amount of time 
it takes to enter or modify a document. 

3. Too great a dependence on symbols for marks, as opposed to descriptive 
words and abbreviations, can overload the capacity of the human 
reader's short-term memory and greatly slow down and reduce the 
accuracy of the reading process. 

4. Unexpected dependencies between marks can make a marked-up 
document hard to interpret. For example, commas mean different things 
according to where they are used in a sentence, and the same symbol can 
be used unambiguously to close a quote and to indicate inches. On the 
other hand, overuse of these marks could cause them to be 
misinterpreted, such as inches inside quoted text. This is the cost paid for 

A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

the advantage of avoiding unnecessary markup and unnecessarily large 
marks. 

5. Dependencies between marks increases the time and complexity of 
processing text This should not be a consideration when designing 
markup languages for human use, but can be a consideration when 
designing languages for interchanging data between computer programs. 

2.1.3. Early Text Formatting Languages — Procedural Markup 

Text formatting languages in the 1960's were based, in part, on copy markup. 
Individual codes were placed in the stream of text wherever a change of 
format occurred. Text formatting software would then run over the text and 
the interspersed codes, and change its formatting action on text based on each 
code encountered. As a markup language, an early text formatting language 
had the following characteristics: 

1. Codes were "low-level", in the sense that each code dealt with one aspect 
of the formatting. For example, bold-face could be turned on or off. To set 
a heading, on the other hand, each of the font, point size1, horizontal 
alignment and spacing characteristics of the text had to be set separately. 
Once the text was set, these characteristics had to be reset for the 
paragraphs following the heading. 

Another aspect of the "low-level" of these languages was the 
requirement to specify explicit measurements. For example, when extra 
vertical space was required, the exact amount of space had to be specified. 

2. There was little or no inheritance of characteristics. For example, to get 
bold-italic text, a bold-italic code was required; turning on bold, and then 
turning on italic, would, in many systems, leave the software setting text 
in italic, but not boldface. 

3. The meaning of codes was related to operations on text, rather than to 
the characteristics of text. If a title was to be centered in a line, the "center 
this line" code was used. There was usually no "this is a centered line" 
code. This distinction is sometimes unimportant, but usually its effect is 
apparent when using such a language. In the early text formatting 
languages, for example, a separate "set this line ragged right7' code had to 
be inserted at the end of each paragraph for which all the other lines 
were flush to both margins. 

These characteristics are those of a procedural markup language. A procedural 
markup language is one in which the marks are instructions for processing 
the text. Such languages are relatively easy to implement on computers, but 
are generally inconvenient for humans to use, due to the amount of detail 
that has to be thought about when using them. This necessary concentration 
on detail also encourages errors on the part of the human operator, for even 
with the greatest care, it is often difficult to predict the effect of many text 
formatting instructions. 

A Path to Tri-Service Use of SGML 



Procedural markup languages were primarily used for describing text 
formatting. Other shortcomings of procedural markup languages, such as 
their inflexibility, became clearer later on when other uses were made of 
them. 

2.1.4. The Evolution of Text Markup — Descriptive Markup 

The clumsiness of using these early languages was soon partially alleviated by 
adding a macro processor to the text formatting system; this allowed 
commonly occurring groups of codes to be packaged together. A macro 
processor allows human users to define their own marks, called macros, 
which when found in text are replaced by a string of text and (possibly) other 
marks. The replacement constitutes the definition of the user's macro. 

Often macros can have arguments. A macro that has arguments actually 
consists of a set of marks, and the text surrounded by these marks constitutes 
the macro's arguments. The arguments can then be examined and inserted 
into the replacement of the macro. Macro processors allow user definition of 
complex marks. They also allow for the specification of commonly occurring 
quantities in one place in a document, such as vertical spacing amounts: 
macros can be used as the symbolic name of what they replace. 

Macro processors were a popular subject of study in the mid-1960's in the 
computer-related departments of academic institutions, and it was in such 
institutions, and in companies that produced technical documents and which 
were in touch with such institutions, that macro processors were primarily 
used. Commercial text formatting systems tended to make less use of macro 
processors, and even now stand-alone computer-based typesetting systems, 
with all the shortcomings of early text formatting languages, are in 
widespread use. 

Once macro processors started to be used, it was quickly discovered that they 
could be used to define a whole new kind of text formatting language: a 
descriptive markup language. A descriptive markup language is one in which 
the marks are associated with text and other marks and in which the marks 
specify some characteristic of the associated text or marks. Formatting or other 
operations are not specified by the marks, but are a consequence of the 
characteristics of text. For example, a paragraph would simply be marked with 
a "paragraph" mark, usually at tne start. 

Descriptive markup has the immediate benefit of reducing the amount of 
detail that has to be considered. Formatting considerations can often be 
ignored by the person entering or editing text a paragraph is just a paragraph, 
it does not matter how it looks. Punctuation can be considered a form of 
descriptive markup: it marks a sentence as a sentence, but does not indicate in 
any way what is to be done with a sentence. 

A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

Although descriptive markup increases the convenience of entering marked- 
up text, it does not solve all the problems of the early text formatting systems. 
In particular: 

• Because the processing software was only aware of the procedural 
markup, it could not take advantage of the information provided by the 
descriptive markup. There really is more to a chapter title, for example, 
than just that it is in boldface type and centered. There is the fact that the 
text following it expands on the topic described by the text of the title. 

A more immediate consequence of the processor's ignorance of the 
descriptive markup is that it was usually necessary to use procedural 
markup when a particular macro's replacement produced inappropriate 
formatting. For example, an explicit page break is often required to break 
text at appropriate spots. This is very inconvenient when text is 
undergoing continual revision, and the page breaks have to be moved 
for each revision. The inconvenience is compounded by the common 
necessity to format and print the document one or more times before 
appropriate page breaks can be determined. 

• The descriptive markup is often directed at one form of processing: text 
formatting. The marks in the marked-up text are of no use in any other 
context. The effect of this is illustrated by the fact that users of marked-up 
documents still often request "stripped" documents, with the marks 
removed, because the marks actually impede human or machine use of 
the document. This request is often made when the other context is text 
formatting in a different style or when a different computer system is 
used. Thus descriptive markup often retains the inflexibility of 
procedural markup. 

Later text formatting systems made direct use of some of the descriptive 
markup. With the introduction of "desktop publishing" and "style sheets", a 
more descriptive markup-oriented approach became more common. Style 
sheets in word processors and desk top publishing systems allow a user to 
describe the formatting for each paragraph type. They are similar to the style 
sheets traditionally used in association with copy markup, but differ in 
assuming less expertise from the interpreter of the style sheet, in requiring 
more specific information to be provided, and in being less flexible in what 
can be requested. 

2.1.5. Preparing Input For Data Base Systems 

Until recently, data base systems have been primarily concerned with the 
storage, representation and processing of numerical information. In these 
systems text has a limited function, usually as labels for rows or columns of 
numbers. It is only in the last decade that significant attempts have been 
made to apply data base technology to textual documents. Prior to that, text 
was stored in file systems as "flat" text files, with nothing known about them 

A Path to Tri-Service Use of SGML 



other than what could be implied from the fact that the different parts of a 
document were often stored as a hierarchically structured set of files. Text files 
stored this way were most commoniy only used for producing printed pages 
or page-like displays on computer screens. 

The most successful and widespread use of text files for other than this 
purpose was the full inverted text file. This was a way of storing text placing 
all the words in the text (except possibly some common words that only 
perform a grammatical function, called "stop words", such as "the", "an", 
"and") in an index, with each word in the index pointing to all its uses. This 
form of storage results in very efficient access to any word or combination of 
words in any part of a large collection cf documents. It also lends itself to 
"Boolean" enquiries, based on combinations of tests, that are common in data 
base enquiry systems. 

Data base systems used input systems based on "forms", fields on a computer 
screen into which users typed text. A set of data was organized in "records", 
packets of information, with only a single hierarchical level of structure 
within records, called "fields". Record-oriented and fielded data could be 
transmitted from computer to computer by simply tagging each record and 
field with a code indicating its type, and its length. The use of fixed length 
records and fields, fixed sets of field types, and only one record type meant 
that field and record types and lengths could often be dispensed with. As well, 
each application using a data base system was usually responsible for its own 
file import and export, so there was good reason to go with the simplest 
method in each case. The rigid format used for data transmission meant that 
there was generally no need for a markup language, and that when there was, 
it could be very simple. 

Data base systems and text formatting systems are fundamentally different in 
that the former provides a basis for storing and retrieving data, and the latter 
a basis for processing it. Data base systems typically provide simple means for 
entering and displaying data, but depend on user-written computer software 
to provide any significant processing cf the data. In a classical data base system 
the record and field structure provides very little information that affects 
processing compared to what is provided by the contents of the fields. The 
contents of the fields, text or numbers, are acted on by the user's applications, 
producing the wide variety of computer software based on data base systems. 
Text formatting systems, in contrast, provide most of the processing of the 
text, and this processing is based on marks surrounding the textual data. The 
text itself, typically has little or no effect on processing, other than providing 
the characters to be typeset. 

The widespread use of "spread sheets" on microcomputers introduced the 
need for a more flexible way of transmitting data. Spread sheets were no more 
sophisticated in the kind cf, and information about, data they could store 
than were data base systems. On the other hand, at the expense of imposing a 
rectangular view onto data, they provided simple programming languages 

10 A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

that made it easy for users to specify processing of the data in the fields. Any 
field could be a number (displayed in any one of a large number of formats) or 
text, or could be the result of a computation performed on other fields. The 
result, for data interchange, was a simple markup language, used solely for 
the representation of spread sheet information.4 A lot of the information the 
marks encoded was formatting information, and the organization of the 
interchange files as a sequence of commands and text was very much in the 
spirit of early text formatting languages. 

2.1.6. Text Interchange Languages 

The interchange of spread sheet information was one of the first widespread 
uses of data interchange between different pieces of computer software. The 
primary motivation for this was the requirement on early small systems for a 
clear-text way of transmitting spread sheets between systems. A clear-text 
encoding is one in which only standard graphic (printable) characters are 
used, and in which the marks are easily recognizable (usually human- 
readable). The clear-text encoding meant the primitive, early microcomputer 
file systems could support it, and that application-specific import and export 
programs were not required. As well, a clear-text format meant that 
information could be easily read by other programs, such as ones which could 
print graphical representations of spread sheet information. 

The major factor in the introduction of common interchange formats was 
heavy competition in the microcomputer software market. Each new spread 
sheet program had to be able to read the files produced by all the other spread 
sheet programs so that users of those other programs could move to using the 
new program. Because every program could read every other program's files, 
an environment was created in which the formats used by the most 
commonly used programs could become de facto standards. 

Word processing systems on microcomputers developed a little later than 
spread sheets. Each of the early word processors and desktop publishing 
systems used a proprietary format for documents. This was usually a binary 
encoding: one in which numeric values of characters represented some code 
based on the number rather than the characters themselves. The same 
motivations came into play as in the spread sheet arena. In the word 
processing and desk top arena, the drive to a clear-text format was not based 
on the limitations of the file systems but on the need to import and export 
information from other software. The need to write a multitude of file 
conversion programs made simplifying the task a major requirement. 
Currently, most such systems have their own clear-text format, and some of 

4 A description of the original spreadsheet interchange format and a few of its 
variants can be found in File Formats for Popular PC Soßware, by Jeffrey 
Waiden. New York: John Wiley and Sons, Inc., 1986. Pages 108-111 contain a 
description of the original format. 

A Path to Tri-Service Use of SGML " ff 



the more popular ones are becoming used widely enough to be considered 
standards.5 

Zl. Capturing Information 

What characterizes all the methods of capturing information described in 
previous sections of this report is that each captures information for a specific 
purpose. This purpose is usually formatting text for a printed page or for a 
page-like image on a computer screen. Spread sheet interchange languages 
capture information for simple formatting and for linking information 
together to allow computations to be done. The marks in a markup language 
contain information, either in the marks themselves or by identifying the text 
that they surround or to which they are adjacent. The text between the marks 
is also information, although in most text-formatting-oriented markup 
languages, the characters are themselves the only information in the text. 
That is, the information carried by a letter "a" is that a ietter "a" is to be 
printed. The fact that it is part of a word, a sentence or a report is, of no interest 
to the markup language. 

The question "What is information?", when asked about a marked-up 
document, can only be answered by looking to the origin of the question. 
When asked in the context of a text formatting system, the information is 
formatting information: paragraph boundaries, required spacing, font, type 
size, etc. When asked in the context of a data base system, the information is 
that about which enquiries are expected to be made. The answer to the 
question is much clearer for text formatting systems than for data base 
systems because the kind of processing dene by formatters is better known 
and the role of the data in that processing is well known. 

What information there is in a text document depends on what is going to be 
done with the text. In addition to text formatting and data base retrieval, there 
is another common use of the data: people read it. Text formatting 
information allows computer software to present text in a readable form. This 
means that text formatting information is always an important part of what 
needs to be captured by a markup language. Data base information allows 
computer software to perform other tasks using the text. So the decision to 
capture data base information using the markup language depends on what 
uses other than straight-forward reading are going to be made of the text once 
processed. 

In designing a markup language to capture information, care has to be taken 
to only capture the information that can be usefully processed. Even when a 
lot of markup is done, most of the information in a text document is 
contained in the words of the document. In this regard, text is different from 

3 A case in point is Microsoft's RTF (Rich Text Format), described in Microsoft 
Word For Windows and OS/2 Technical Reference, by Microsoft Press, pp. 
381-409. Redmond: Microsoft Press, 1990. 

12 A Path to Tri-Service Use of SGML 



2. A Basis for a New Gener?;:on of Markup Languages 

the rows and columns of numbers that are usually stored in a data base 
system, where the number 1 (one), for example, is practically meaningless 
without some information about what it is one of. Most of the text can be 
understood without any indication of what it means provided by the markup 
language. There is, in fact, so much information in text that on one hand only 
a small part of it can be understood in any non-trivial sense by computer 
software without markup, and on the other, it is impractical to mark up more 
than a small part of it. 

2.3. What Is a Language? 

Before discussing SGML and its application in the CALS environment, this 
section will present a more general discussion of languages, and place 
markup languages in wider context. This will allow the reader to more 
readily understand the potential of SGML-defined markup languages, 
especially as they can be exploited for Tri-Service use. 

2.3.1. Grammar 

Human languages and computer languages share the need for an underlying 
grammar. A language's grammar is what determines the interrelationship of 
individual pieces of information. Textual information is generally built out 
of small pieces of information. The grammar determines how the pieces are 
put together. A grammar also allows the individual pieces to be recognized in 
a stream of text. This process of recognizing the pieces and their 
interrelationships is known as parsing. 

A grammar for the English language allows one to parse a sentence and 
recognize the nouns, verbs and other words and phrases. The grammar also 
determines which nouns form part of the subject, and which the object. There 
are two ways in which a word's identity is determined. First, the word itself 
determines, or at least suggests, what kind of a grammatical item it is: "foot" 
is usually a noun, for example, although it can be a verb. A grammatical item 
is an identifiable part of something being parsed. For a grammar of English, 
the term part of speech is usually used. Second, the grammar is used to find 
the relationship between the word and the words and punctuation around it: 
in "I can foot the bill.", for example, "foot" is a verb, because it follows "can" 
and because the sentence already has a subject ("I") and an object ("the bill"). 
Because, in English, a word can often serve as a noun, adjective or verb, the 
grammar is especially important in helping recognize the meaning of 
individual words. The interrelationship between the words and phrases in a 
sentence is called the sentence's structure. 

A grammar is usually described by a set of productions: rules that describe 
each grammatical construct in terms of others. For example, in English, one 
form of a sentence consists of a subject, followed by a verb and an object. A 
subject can consist of a noun, as can an object. These rules are often written in 
a form similar to the following: 

A Path to Tri-Service Use of SGML 13 



sentence —» subject, verb, object 

subject —► noun 

object —*• noun 

A parsed sentence can be graphically represented by a parse tree (by analogy 
with a family tree, rather than one that grows in the ground), in which 
relationships are represented by branches, and grammatical items by nodes, 
with the name of the grammatical item used to label the nodes. Figure 1 is a 
simple parse tree for the sentence "Children like candy", in which the 
grammatical item "sentence" is made up of three other grammatical items. 

sentence 

(subject)     M/erb)     Q   subject J 

Cnoun J ( nounJ 

children tike candy 

Figure 1 — A Simple Parse Tree for an English Sentence. 

A parse tree imposes a hierarchical structure on a sentence. A hierarchical, 
tree-like structure is chosen primarily because it is a convenient way of 
organizing information. Non-hierarchical interrelationships, such as the 
requirement that the subject, verb and object be consistent with each other in 
their meaning, and that words like "it" and "they" refer to parts of previous 
sentences, are not always convenient to represent in a hierarchical form. 
Nonetheless, the convenience of the parse tree usually overrides these 
shortcomings. More sophisticated ways of representing the results of parsing 
tend to use parse trees, but with extra information labelling the branches and 
nodes. For common use, parse trees with accompanying explanatory text, 
using the labels that appear in the parse trees, are the most convenient 
graphical representation for the results of parsing. 

A parse tree provides a lot of information about the structure of a particular 
sentence, in a form that is easy to comprehend, but does not say very much 
about the language being parsed. This is because it describes only one of, in 
the case of English, many millions of possible sentences. Productions of the 
sort shown above contain much more information about English: 

14 A Path to Tri-Service Use of SGML 



A Basis for a New Generation of Markup Languages 

productions should be used in preference to parse trees except when 
particular examples are being examined. 

Parsing sentences is something that most people learn in school, although 
many adults have long since forgotten what a participle is. Parsing is 
something that people usually do without thinking about it: we understand 
sentences easily enough. As well, parsing is something that is commonly 
applied to structures other than just sentences. An important example is the 
layout of a printed page, which has a very distinct structure. We determine 
which pieces of text are headings, what the headings apply to and which 
paragraphs are discussing the same subject in a similar manner to parsing a 
sentence. Headings are centered, in boldface type, or both, and paragraphs are 
indented, so there is little trouble recognizing them. Nonetheless, these clues 
are not necessary. In typewritten material, a heading of sufficient length may 
look just like a short paragraph, but the grammar of a document, that 
indicates, for example, that a document starts with a heading, and that 
paragraphs are made up of complete sentences, allows headings and 
paragraphs to be easily distinguished. The grammar of documents also 
indicates that headings .precede what they head, so assodatinga heading with 
the textual explication of the topic listed in the heading is easy, once the 
headings have been identified. 

These characteristics of grammars for human languages also hold for 
computer languages in general, and markup languages in particular. 

2.3.2. Syntax and Semantics 

A grammar describes the syntax of a language. The syntax is the physical form 
of the language. A parse tree, for example, is a graphical representation of the 
syntax of a sentence. The one thing that the syntax does not do is associate any 
meaning with a sentence. All sentences with a noun as a subject, noun as 
object and verb between have the same syntactic structure. 

The "meaning" of a language is called its semantics. A grammar of the sort 
described above does not associate any semantics with grammatical items. 
Semantic association, or definition, is usually done using English text, which 
describes the semantics of each grammatical item, often with variant 
definitions depending on the context of the grammatical item. The names of 
the grammatical items used in the productions can be used in these 
definitions. Doing so helps to make the definitions more precise. The English 
text can also contain constraints on the form of the language, when the 
grammar is not restrictive enough in the combinations it allows, or when 
there are interdependencies that cannot be described in the kind of grammar 
being used. 

2.3.3. Languages and Meta-Languages 

The sample productions for English sentences in an earlier section are 
themselves written using a simple language: the language used to describe a 

A Path to Tri-Service Use of SGML "15" 



grammar. The "grammar language" can itself be described in terms of 
productions: 

grammar -> sequence of productions 

sequence of productions —> production 

sequence of productions -» sequence of productions, production 

production -*■ name, right arrow, sequence of items 

sequence of items ~» item 

sequence of items -» sequence of items, comma, item 

item -» name 

item —> string in quotes 

right arrow -» "-=>" 

As this grammar illustrates, grammatical items (parts of speech) can have 
more than one definition, and items can be defined in terms of themselves. 
For example, a "sequence of productions" is one or more "productions", 
which is achieved by defining a sequence of productions to be either a 
production or a sequence of productions (which itself may be either of these) 
followed by another production. All grammars other than the simplest use 
these techniques. They are especially powerful when used with computer 
languages, including markup languages, which lack the rich semantics of 
human languages. 

Grammars can be defined in a number of ways. The previous example is 
written in a style familiar to school children. Computer programming 
languages are commonly defined using a notation based on BNF (Backus- 
Naur Form). Early forms of BNF used "<" and ">" around the names of 
grammatical items, and "::=" in place of "->". More recent notations tend to 
look more like the above. The exact notation is not important, the form of the 
productions (a thing is defined as a thing, thing, etc.) is. 

The "grammar language" is a meta-language. A meta-language is a language 
used to define other languages. The language of productions is a meta- 
language. The distinction between languages and meta-languages is usually 
quite clear for computer languages. For human languages it is less clear, 
because most commonly, the type of language used to describe a human 
language is human language, usually the very language being described. 
Human language is also used as a meta-ianguage in defining many computer 
languages. For example, if English is used to define the semantics of a 
computer programming language, then English is being used as a meta- 
language. 

16 A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

2.3.4. Surface Structure and Deep Structure^ 

Any sentence or document is only a representation of the information it 
contains. Language is a medium for carrying information. The syntactic 
structure of a sentence or marked-up document is a consequence of the 
language in which it is encoded. This structure may or may not have 
anything to do with the structure of what the sentence or document is about. 
For example, the structure of English sentences when one is speaking is the 
structure of English sentences, not the structure of what one is talking about. 
The three part structure of the sentence "Children like candy" has nothing to 
do with children or candy. In other words, structure is syntax, not semantics. 
The semantic information conveyed by structure is determined by 
interpreting the syntactic structure in terms of the semantics of the language 
in which the information is encoded. 

In computer encoding of data, it is often the case that the syntactic structure of 
data is equivalent or close to that of the information being coded. Information 
inside a computer is often stored in a hierarchical format for the same reasons 
of convenience that parsing is usually represented in a tree-like manner. In 
this case it is easy to design a markup language that is close in structure to the 
structure of the information. 

It is much harder to formulate a syntactic structure for a markup language 
that is close to the form in which the data will be used when marked-up data 
is expected to be used in more than one context. Even two different text 
formatting systems may need to have, data presented to them in two 
substantially different forms. When a document is both to be published as a 
book, and loaded onto a data base system, it is very likely that the information 
will need to be represented in two different ways, and if a common source 
document is to be used for both purposes, it is likely that some form of 
translation is required from the source forms and the different forms used for 
processing the document. As well, when information is processed, there is a 
possibility that not all of the markup and text will be of interest to the 
computer system doing the processing, or that information used in two or 
more ways will need to be duplicated, with different markup required for 
each copy. For example, a data base system may not be interested in all the 
formatting information. Similarly, a text formatting system may not be 
interested in the information used when data base enquiries are made of the 
data, and may require separate copies of titles placed in running headings. As 
a consequence, it is often necessary to remove some text from a document 
that is to be processed, and to duplicate other text. 

6 The linguistic basis for the understanding of the kinds of structures captured 
by text markup languages was developed by Noam Chomsky. A key work 
describing his theories is Aspects of the Theory of Syntax, by Noam 
Chomsky. Cambridge: The M.I.T. Press, 1965. 

A Path to Tri-Service Use of SGML 17 



Each markup language proviaes a different representation for the same 
information. This is analogous to the fact that different human languages 
have different grammars. Parse trees for equivalent sentences in different 
languages are usually different, even for closely related human languages 
such as English and Dutch. Differences are managed by translating from one 
language to another. The only limits on translation are the requirement for a 
competent translator, and the fact that the result of translation can, at best, 
only contain as much information as what is being translated. 

Humans and computers deal with particular representations of languages. 
The structure of these languages is called surface structure. Surface structures 
are used to make data transmission (communication) easier. Some examples 
of language features that make communication easier are: 

1. Linear encoding: A linear encoding is one in which the smallest pieces of 
a message are strung together, one after the other. "Flat" text files on 
computer systems are a linear encoding. Text is entered at a keyboard as a 
linear encoding of keystrokes. Human speech is a linear encoding of 
sounds. 

2. Regular punctuation:  'Regular" punctuation is punctuation that marks 
the end of something and the start of something new, like the periods 
that end sentences. An example of non-regular punctuation is the 
quotation mark, which is used to surround the structure it "marks up", 
but does not end what surrounds die quotation, and which can be used 
in a nested fashion (quotes within quotes). Although hierarchical 
structures are a powerful tool for thinking about the structure of 
information, heavily nested structures are difficult to type in without a 
lot of visual clues as to what is inside what. 

3. Space: Horizontal and vertical space in printed documents, and different 
rates of speech and pauses in speech, aid comprehension, even though 
punctuation may be adequate for a computer. 

In contrast to surface structure, deep structure is the structure of information 
itself. It is the set of interrelationships between the parts of information, in a 
sentence, or in a marked-up text document. The deep structure is what must 
be preserved by translation, and is what is lost when a translation is 
incomplete. 

When looking at the design of a particular text markup language, there are 
two ways in which it can be evaluated: 

•      A markup language can be examined for the convenience and accuracy 
with which markea-up documents can be entered, edited and read (for 
example, for proofreading purposes). This is an examination of the 
markup language's surface structure. 

13 A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

•      A markup language can be examined for what information it is 
capturing. This is an examination of the markup language's deep 
structure. 

2.3.5. Passes of Languages 

Computer processing of languages divides languages into classes, which are 
distinguished by the ease with which they can be parsed (by computer), and 
the richness of interrelationships between grammatical items. The four major 
classes of languages, in increasing order or power and complexity are: 

1. A regular language is one in which things can come one after the other, 
but in which there is no nesting. 

2. A context-free language is one in which nesting is allowed, but in which 
a grammatical item has the same definition no matter where it is used in 
the grammar. For example, a context-free language could allow nested 
quotations. 

3. A context-sensitive language is like a context-free language, but which 
allows a grammatical item's definition to depend its context. For 
example, a context-sensitive language could allow the definition of 
"noun" to be different depending whether it was part of a "subject" or 
part of an "object". 

4. A phrase structure language is any language that can be processed by a 
computer. 

Each class of language includes all weaker classes. For example, the set of all 
context-free languages consist of all regular languages plus some others that 
are not regular. The set of productions used to define most computer 
languages constitutes a context-free grammar. The additional human- 
language explanations place the languages in a context-sensitive or phrase 
structure class. 

A further classification of languages is used for context-free languages. One of 
these classifications is LL(1) (pronounced "el el one"). An LL(1) language is 
characterized by each grammatical item being recognizable by the first 
grammatical item within it (LL(1) means "parsing by examining from Left to 
right, looking at the Leftmost one (1) character"). For example, placing a mark 
at the start of every paragraph is the sort of thing that would be done in an 
LL(1) language: the initial mark is what the paragraph is recognized by. On the 
other hand, a language that distinguished normal sentences, ending in a 
period, and questions, ending in a question mark, as distinct grammatical 
items would not be LL(1) (it would be LR(1): Left-to-right, looking at the 
Rightmost one (1) character). 

LL(1) grammars are popular because they are simple to use and yet allow 
powerful languages to be defined. They have the added advantage that a 
parser for an LL(1) language is easy to implement on a computer. Markup 

A Path to Tri-Service Use of SGML ~"~      ~""~ jg" 



languages tend to be LL(1) even more often than computer programming 
languages, because of their "punctuation" nature. 

LL(1) grammars are especially interesting in the CALS environment because 
markup languages defined using SGML are LL(1). An SGML DTD (Document 
Type Definition) is an LL(1) grammar. SGML element declarations are 
"productions", in a slightly different notation than that normally used for 
defining computer programming languages. For example, the following two 
productions are essentially saying the same thing, even though one is written 
in an early form of BNF and one in SGML: 

<sentence> ::= <subject> <verb> <cbject> 

<!ELEMENT sentence - - (subject, verb, object)> 

SGML can be used to define a wide variety of LL(1) text markup languages. 
The few limitations SGML places on which LL(1) languages can be defined are 
usually consistent with good design principles: most of the limitations are 
designed to discourage the design of languages which seem to be ambiguous 
to their users, even though, from a strictly technical point of view, they are 
not. 

2.3.6. Marks 

A lesson that originated in the field of psychology rather than in computer 
programming, but which impacts the design of both computer programming 
languages and text markup languages, is that there is a limit to how many 
different pieces of information that can be held in human short-term 
memory. This number has been found to be about seven.7 This is why 
telephone numbers have seven digits, and seven distinct tones in an octave 
(the eighth repeats the first bur is an octave higher). This is also why users of 
icon-based computer software interfaces start to use words and names in place 
of individual icons when there ar= more than a small number of items on 
the computer screen at one time. 

A consequence of this observation is that about seven different types of 
punctuation can be used before some significant amount of memorization is 
required (i.e. to place the information in long-term memory). Human beings 
are much more efficient at remembering language than they are random 
marks. So beyond a certain point, meaningful words should be used as part of 
markup. 

This limit on short-term memory is why most computer programs read like 
very poorly written English, with only a small vocabulary of special marks, 
and then only for very common constructs. Likewise, in a text markup 

7 An important article to read for anyone interested in this subject is "The 
Magical Number Seven, ?ius-or-minus Two: Some Limits on Our Capacity 
for Processing Information'", bv George .^. Miller, Psychological Review, 63, 
No. 2 (March 1956), pp. ci-97. 

A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

language, a few common constructs can be marked-up using punctuation-like 
symbols, but where there are more than a few distinct possibilities, "tags", 
incorporating names for grammatical items, should be used. 

2.4. Why Use a Text Markup Language? 

As has been demonstrated already, there were many text markup languages 
in widespread use prior to the development of SGML or the initiation of the 
CALS initiative. Any proposal to develop a new markup language has to 
justify itself by it providing some advantage over using an existing markup 
language. In addition, the use of a text markup language has to be justified in 
preference to some other technique for representing text 

2.4.1. The Advantages of Text Markup Languages 

There are a variety of alternatives to text markup languages when dealing 
with textual documents. Word processors, desktop publishing systems and 
data base systems each have their own format for saving text and the 
formatting and structuring information that goes along with the text. Most 
commonly used text management systems can communicate with other such 
systems, either by being able to read files stored in the format used by the 
other systems (usually a binary encoding), with the help of a simple 
conversion utility that converts one system's format to another's, or with the 
help of an existing agreed-upon interchange format (usually a clear-text 
encoding). Thus, for many uses, file formats, tools for entering text in these 
formats, and tools for displaying these formats in human-readable forms 
already exist. 

Publishing and word-processing-oriented formats are usually limited in their 
ability to represent information in that they can only associate print 
formatting structure with text, and only be used in association with a limited 
range of computer software. Data base file formats often allow for a much 
more flexible interpretation than only as printed documents, but are usually 
even more limited in the range of computer software that can be used with 
them. New ways of storing text are required when an application has 
requirements beyond these limitations. 

A text markup language has a number of advantages when a new way of 
representing information is required. Primary amongst these advantages is 
that a text markup language provides a clear-text encoding, so that files can be 
created and viewed using almost any text editor or word processor on any 
computer system. No new computer software is required for these functions, 
although there are limited application domains in which software designed 
to aid in the entry and editing of specific types of markup languages can 
facilitate the process. 

A clear-text encoding has the further advantage that it makes the job of 
writing a parser, that produces the same results on a wide variety of computer 
systems, easier than if a binary encoding is used. If no special advantage is 

A Path to Tri-Service Use of SGML 2? 



taken of a particular character set or of the control functions supported by 
individual systems, then the documents so encoded are potentially highly 
transportable from system to system. The limit on transportability is whether 
or not there is, in fact, software available to process documents marked up in 
a given text markup language. 

The availability of software that can read a markup language can be increased 
substantially by the ready availability of a parser or a parser generator for the 
kind of markup language being used. A parser generator is a piece of 
computer software that takes a grammar written using a set of productions 
and produces another piece of computer software which can parse text 
marked up using the language described by the grammar. The produced 
parser can be source code for a computer programming language that needs to 
be compiled, or it can be a set of fables cr a sequence of codes, the 
interpretation of which, by suitable software, results in appropriate parsing 
actions. The produced parser can be used by other computer software to 
capture the text and structure of input documents. The other computer 
software can then process the text and structure in some fashion: format it, 
load it into a data base system, etc. 

An SGML parser is a parser generator for text markup languages. It is not a 
parser for any specific text markup language. An SGML parser can be used to 
implement much more complex text markup languages than would 
normally be implemented without the aid of a parser generator. 

In contrast to SGML is ASN.lß ASN.I is one of the few examples of binary 
encodings for text that have been standardized. It is a language for encoding 
the structure and text cf a document that uses numbers for the names of 
grammatical items. The ASN.I standard provides a way of defining subsets of 
the ASN.I grammar that aiiows symbolic names to be attached to 
grammatical items, and than aiiows constraints to be put on the structure of 
grammatical items. ASN.I has the advantage that it is easy to write a parser if 
these subset definitions are not taken into consideration. ASN.l's 
disadvantages are: 

»      Special software is needed to produce ASN.I files. Commonly-available 
text editors cannot be used. 

•      Very little structural information is encoded in the ASN.I grammar. 
Even when a subset grammar is defined, the types of grammatical 
interrelationships are considerably less rich than those that can be 
expressed in, say, SGML. 

8 ISO 8824: Information processing systems — Open Systems Interconnection 
— Specification of Abstract Syntax Notation One (ASN.I). ISO: International 
Organization for Standardization, '937 and ISO 8825: Information 
processing systems — Open Systems Interconnection — Specification of 
Basic Encoding Rules for Abstract Syntax Notation One (ASN.I). ISO: 
International Organization for Standardization, 1987 

22 A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

2.4.2. The Role of Text Markup Languages 

Text markup languages can be used in a number of roles: 

1. They can be used to encode textual documents. 

2. Marked-up documents can be used for document interchange, between 
different computer software and between humans. In a dear-text 
encoding, they can be readily transmitted, if necessary by being printed 
on paper and being read, either by a human or by means of an optical 
scanner. 

3. They can provide a standard format for document delivery. It is practical 
for a receiver of documents to specify that a text markup language be 
used in documents received, because it is reasonable to assume that all 
producers can provide a dear-text encoding. 

4. Marked-up documents can be readily archived. Virtually any archiving 
system can deal with dear-text encoded documents, and archived 
documents are not subject to the encoding idiosyncrasies of a particular 
software product. 

Markup languages need not encode only textual information. Any 
information for which a clear-text encoding can be devised can be 
incorporated into marked-up text documents. If a dear-text encoding can be 
devised for non-text information, it is often practical to use a markup 
language to encode it, and for that markup language to be part of a larger 
language which is also used to markup text. 

2.4.3. Alternatives to Text Markup Languages 

Until about 1980, most computerized typesetting and print formatting was 
done using system-spedfic text markup languages. With the explosion of 
"desktop" and personal computer systems in the 1980's this changed, so that 
today there is widespread use of WYSIWYG ("What You See Is What You 
Get") systems. A WYSIWYG system provides immediate visual feedback of 
formatting information as text is entered. It is a powerful tool for capturing a 
specific visual representation for text. At the same time, large-scale producers 
of printed material continued to use markup-language based systems, most of 
them developed prior to 1980. 

The strength of WYSIWYG is also its weakness. Because it captures a spedfic 
visual appearance, it is often difficult to discover those distinctions that are 
meaningful, and those that are a consequence of how a particular piece of text 
appears on a page. For example, if the first paragraph in a chapter is not 
indented, but all the other paragraphs are indented, it may be difficult to 
identify them as the same type of object. Different uses of bold-faced type may 
be difficult to differentiate. It is often difficult to take a WYSIWYG document 
and print it in a different format. The differences between WYSIWYG 
software products means that the result of even a careful conversion of a 

A Path to Tri-Service Use of SGML 23~ 



document from one word processor to another often produces an 
unsatisfactory appearance. 

Because of their emphasis on visual appearance, WYSIWYG systems produce 
data that is generally unsuited to data base use. The use of "style sheets" with 
WYSIWYG systems makes capturing print formatting information easier, 
although the lack of any firm constraint in this regard in most WYSIWYG 
systems means that, in practice, it is common for documents to contain 
mixtures of style sheet and "do it yourself" formatting. Even style sheets, 
which are defined in terms of appearance, tend to be used in irregular ways. 
For example, it is common for an inappropriate style to be used for a block of 
text because, with a little bit of modification, it produced the best appearance. 

The new interest in text markup languages has developed largely in response 
to the inability of WYSIWYG systems to satisfy the requirements of more 
advanced and flexible text formatting and data base systems. There is 
presently, however, a large investment in WYSIWYG technology, both in 
terms of cost and, for certain types of documents, in convenience of use, 
which much of the publishing community is unwilling to abandon. 

2.5. Markup Languages and Programming Languages 

A number of lessons for markup language design can be learned from 
studying the history of computer programming languages. 

2.5.1. The Use of Delimiters 

The characteristic of text markup languages that makes them syntactically 
different from computer programming languages is that the grammar of a 
markup language defines the "punctuation" for a document, and says 
nothing about what goes between the punctuation (except that it not be 
confused with the punctuation), whereas a programming language's 
grammar defines the whole of a computer program written in that language, 
except for the text that goes in constant strings. This difference is entirely a 
consequence of the relative proportion of a document (marked up text 
document or computer program) that consists of text. For a text document 
this proportion is high, most of the document is usually text rather than 
markup. For a computer program this proportion is usually very low. The 
main visual difference between marked-up text documents is a consequence 
of the fact that the delimiters in a text markup language are used to identify 
the marks, and in a programming language they are used to identify the text. 
For example, in SGML, delimiters such as "<!" and ">" are used to identify 
declarations and other items of markup, whereas in the "C" programming 
language, delimiters such as """ are used to identify text. 

The characteristic syntactic difference of markup languages and programming 
languages must be considered in the design of text markup languages when 
the proportion of markup becomes high. In areas such as the markup of 
equations or tables, in which markup can easily predominate over the text, 

24 A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

markup languages have to be designed as if they were programming 
languages to achieve the most efficient and accurate results. 

2.5.2. Universal Languages 

Another lesson that can be learned from computer programming languages is 
the experience that has been developed with trying to develop a "universal 
language". In the programming language field, there have been attempts to 
develop two types of universal languages: 

• In the mid-to-late 1960's there were a number "universal" programming 
languages developed. PL/1 (Programming Language One) is the best 
known of these in North America. These languages attempted to 
provide all the capabilities of existing programming languages, and to 
eliminate the requirement for using different languages for different 
tasks. 

• In the late 1960's and in the 1970's there were a number of attempts made 
to develop a "universal" target code. The idea was to allow compilers for 
various computer programming languages to compile into a single 
universal target code. For each class of computer, a single translation 
program from this universal target code into the computer's native 
machine language could then be written. This would eliminate the need 
for writing a separate compiler for each language for each class of 
computer. 

Some of the "universal" computer programming languages are still in 
widespread use, but more specialized programming languages such as "C" 
predominate. The primary reason for this is that the "universal" languages 
were not as universal as first thought. Later requirements and developments 
in software technology quickly made many aspects of the languages obsolete. 
The reason these languages are still in use at all is that the substantial 
investment involved in using a new programming language, both in terms 
of training and converting existing programs and support tools, introduces 
considerable inertia into the whole process. There have been far fewer "new" 
programming languages in the public arena in the last decade than in the 
previous two (there has been a noticeable drop-off since the mid-1970's), and 
the new languages generally make no attempt to be inclusive: they are 
designed to solve a certain class of problems or to support a specific 
programming style. 

"Universal" target codes have likewise gone out of style since about the mid- 
1970's. The reason here has been the much smaller variety of machine 
instruction sets on the one hand and the development of programming- 
language-specific target codes. Programming-language-specific target codes are 
oriented to one computer programming language or to a small class of 
languages (although most commonly-used languages, like, "C", Ada, Prolog, 
FORTRAN and COBOL effectively form a class of one member). A compiler is 
written for the programming language that translates programs in the 

A Path to Tri-Service Use of SGML 25 



language into a specific target code for that programming language. Separate 
translators are then written for each class of computer. Programming- 
language-specific target codes are used in preference to a "universal" target 
code because no universal code has been devised that satisfies the functional 
needs of all programming languages and at the same time makes the 
production of efficient machine code simpler than if a language-specific 
translation were being written. 

2.5.3. Standards Development as a Research Activity 

The programming language called Algol 689 was intended as a "universal" 
programming language, to be standardized at the international level, and to 
replace most programming language use at the time (1968). Algol 68 was 
developed, virtually from scratch, by a small group under the strong 
leadership of a project editor. A number of notable discoveries were made 
during its development, and it has had a significant influence on the 
development of later programming languages. In spite of all this, twenty 
years later it has very limited use, and most people in the computer field are 
not even aware of its existence. 

The difficulty with Algol 68 was that a programming language that has a wide 
use cannot be changed very often, or to a substantial extent, without losing a 
large investment, not only in operating computer software implemented 
using that language, but in the knowledge of that language by its users. Algol 
68 was therefore unable to incorporate the new developments in 
programming language design that were taking place at the time, many of 
which were the direct result of discoveries made while developing Algol 68 
itself. 

Computer programming languages that succeed in establishing a place for 
themselves in the computer programming community either fill a vacuum, 
as did the FORTRAN and COBOL languages in the early ^(Ts, or have to be 
used and allowed to develop within a small community of users prior to 
being used by a larger community and standardized, as was the "C" language. 
Neither of these options is available as a way to establish a standardized text 
markup language in the CALS environment. There are numerous 
technologies for managing technical documents currently available and in 
use. None of them satisfy all the stated needs of the technical document 
community in terms of on-line aata base access and selection for display or 
publishing, or in terms of managing large sets of documents, but no new 
technology yet exists that can cost-justify large-scale conversion. At the same 
time the primary requirement of a new document management technology is 
that it be readily available to the Armed Forces generally and to other users of 
military technical documents. 

9 "The Revised Report on the Algorithmic Language Algol 68", in Ada 
Informatica, Vol 5. Fasc. 1-3 1975. 

26 A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

The way to avoid the drawbacks of standardizing newly developed technology 
is to ensure that text markup languages within the CALS environment are 
flexible and able to adapt to new and varied requirements. This flexibility 
must be supported not only by the markup languages themselves, but by the 
tools used to process documents marked up using these languages. 

2.5.4. Object-Oriented Programming 

The single innovation that rendered obsolete the main-stream computer 
programming languages of the 197(ys was the introduction and immediate 
popularity of a number of new programming methodologies. Chief amongst 
these has been object-oriented programming. Object-oriented programming 
allows computer systems to be organized with divisions between classes of 
data objects, with the computation and decision-making logic for each class of 
data objects associated with the objects in that class. This is in contrast with 
classical programming in which the major division is between data objects on 
one hand, and computation and decision-making logic on the other. 

The move to object-oriented programming has not shown up only in new 
programming languages, but in "object-oriented" variants of existing 
languages and in the use of related methodologies such as "modular 
programming", in which a software system is formally separated into 
individual modules of closely related routines and data objects. 

2.6. SGML 

This section describes why SGML is an important component of the CALS 
initiative. 

2.6.1. What is SGML? 

SGML is a "meta-language" for defining text markup languages. It is not itself 
a text markup language but is rather a language in which the context-free 
syntax of text markup languages can be defined. 

An SGML document (properly called an SGML document entity) consists of 
an SGML Declaration, a document prolog and a document instance, in that 
order. SGML defines the syntax and semantics of the prolog of an SGML 
document. A document prolog, written using SGML declarations, in turn 
defines an LL(1) context-free grammar with which the document instance is 
parsed: in other words, the prolog defines the syntax of the document 
instance. For an SGML document: 

1.     The syntax of the document prolog is the form in which declarations 
appear in the prolog. For example, a simple element declaration looks 
like: 

<!ELEMENT title - - (#PCDATA)> 

The syntax of SGML is what says that an element declaration consists of: 

A Path to Tri-Service Use of SGML 27 



(a) a markup declaration ot>en ("<!"), followed by 
(b) the word "ELEMENT'/ 
(c) a name, consisting of a "name start character", followed by "name 

characters" ("title" in the example), 
(d) two symbols each of which is a "-" or an "O" ("- -" in the example), 
(e) a "content model" in parentheses ("(#PCDATA)" in the example), 

and 
(f) a markup declaration close {">"). 

2. The semantics (i.e. the meaning) of the document prolog is the grammar 
being defined. The semantic value of the example element declaration is 
that: 
(a) the name is the name of an element, markup for which is allowed 

to appear in the document instance, 
(b) when the element with that name is present in the document 

instance, it must be surrounded by marks that identify that 
particular element (the presence of the element cannot be implied 
by the presence of other elements), and 

(c) when the element with that name is present in the document 
instance, its content can consist only of text characters and cannot 
contain nested elements. 

An element is what in SGML-defined markup languages corresponds to 
a grammatical item. It is a single recognizable piece of text, and may in 
turn consist of one or more grammatical items, called subelements. 

3. The syntax of the document instance is determined by the grammar 
defined by the prolog, and by additional rules for parsing document 
instances stated in the SGML Standard. These additional rules deal with 
issues such as handling white space, and with a means for inserting 
comments in a document instance without affecting the semantics of the 
document. 

4. The semantics of the document instance is solely determined by an 
application. Neither the SGML Standard, nor the grammar defined by a 
document prolog contribute in any way to the "meaning" of an SGML 
document instance. 

An application is a piece of computer software that, in SGML terms, does 
all the processing of a document instance other than parsing it according 
to the grammar defined in the prolog. An SGML document instance 
does not "mean" anything without either an associated application to 
provide this processing or a definition of the semantics of the instance in 
some other terms (for example, in a set of definitions for the 
grammatical items, written in English). In the latter case, the set of 
definitions can be considered tc be the application, as they provide a 
means for humans to interpret a document. 

28 A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

In most cases the interpretation of a parsed document instance by an 
application will, as well as providing semantics, impose further syntactic 
constraints. For example, in most cases it is invalid for an element to be 
empty of text or subelements (e.g. a paragraph must contain some text). 
SGML does not provide means for stating this constraint on a markup 
language in a prolog, so it has either to be implemented in an 
application, or stated in the set of definitions that serve as the 
application. 

The SGML Declaration defines the form of the marks used in the 
document prolog and the document instance, and so contributes in part 
to the definition of the grammar of both the prolog and the instance. The 
SGML Declaration provides a set of sequences of characters used as 
marks and used to surround marks, a set of characters allowed in text 
and in the names of grammatical items, and a set of constraints on the 
marks and their use (an example of a constraint is placing an upper limit 
on the length of the name used as part of a mark to indicate a 
grammatical item). The division of function between the SGML 
Declaration and the prolog is that the SGML Declaration defines the 
marks used in the markup language (its lexical structure) and the prolog 
defines the interrelationships between these marks (the language's 
syntactic structure). 

There is a division between the SGML Declaration and the prolog for 
two reasons: 
— If an SGML document entity is transferred to a computer with a 

different character set, only the SGML Declaration needs to be 
modified to reflect the new character set. Thus, the separation of 
SGML Declaration and prolog simplifies the task of interchanging 
SGML documents. 

— It is very common for different text markup languages to use the 
same form for their marks. Doing so makes learning a new markup 
language much easier than if each markup language used a 
completely new set of marks. The limited number of characters on a 
keyboard constrains the set of characters available for use, and so 
encourages such standardization. 

Using a common form for marks does not mean each markup 
language need use the same marks. Many marks incorporate easy- 
to-remember names for grammatical items in the language. For 
example, the mark "<chapter>" is used in many markup languages 
to indicate the start of a chapter. (Marks of this sort, incorporating a 
name for a grammatical item, are called, in SGML terminology, 
tags.) As well, as is noted earlier in this report, the number of 
"iconic" marks must be kept relatively small to make a markup 
language usable, but for each markup language, the iconic marks 
can mark different types of grammatical items. (An example of 

A Path to Tri-Service Use of SGML 29 



iconic marks is the use of brackets, "[" and "]", to surround 
keywords of a certain class. Marks of this sort are called, in SGML 
terminology, delimiters.) 

Using a common form for marks is similar to using the same 
letters, punctuation and conventions for separating words by spaces 
and line breaks in different human languages, and to using the 
same form for numbers in different languages. Doing so makes it 
much easier for individuals to use more than one language, and 
makes it possible to use the same technology (e.g. typewriters and 
computers) for different languages with a minimum of difficulty 
and expense. 

The syntax of an SGML Declaration is defined solely by the SGML 
Standard. Its semantics consists of the set of delimiters and the form of 
the marks it defines, the constraints it places on those marks, and the set 
of characters it provides for entering names and text. 

The definition of a grammar in a document prolog is called a document type 
definition or DTD. A document type definition is contained within a 
document type declaration, which is a declaration that usually starts with a 
markup declaration open and the keyword "DOCTYPE". A text markup 
language, its syntax and its semantics, together with the set of document 
instances that use the language, is called'a document type. The SGML 
Standard allows for more than one grammar to be defined in a prolog and for 
application-specific information to be included in a prolog, but the CALS 
standard that uses SGML specifies that these features not be used. 

2.6.2. Common Misconceptions About SGML 

There is widespread misunderstanding of the role of SGML. This report has 
attempted to provide a conceptual groundwork using which the reader can 
avoid most of these difficulties. The following is a summary of some of the 
more common misunderstandings about SGML and its role as a text markup 
meta-language. 

2-6.2.1. Angle-Bracket Languages. The common misconception that an 
SGML-marked-up document consists of text intermixed with "tags", names of 
elements surrounded by "<" and ">", is caused by the use of a common set of 
marks. This is similar to considering two written human languages to be the 
same if they use the same alphabet. Its syntactic structure and semantics 
characterize a language, not its marks. 

There are many text markup languages that are "angle-bracket" languages (i.e. 
in which the marks are all surrounded by "<" and ">") but are not SGML- 
defined markup languages. Many text formatting languages use this 

30 A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

convention.10 For any given angle-bracket language, it may or may not be 
possible to write an SGML Declaration and prolog that describe a language 
which recognizes the marks and the grammatical items identified by the 
marks. For a language for which this can be done, it may or may not be 
possible to capture all or many of the syntactic constraints of the language in 
the SGML definition. 

The grammars of a very large class of languages can be defined using SGML. 
Even so, it is not useful to call any such language SGML unless an SGML 
parser is being used in its processing. Even the convention of calling SGML- 
defined text markup languages, SGML, makes the use of the term so 
unspedfic as to limit its usefulness, and makes it difficult to distinguish 
SGML itself, the definition of text markup languages using SGML, and the 
text markup languages defined using SGML, because the term SGML is 
commonly used in reference to all three. 

Another consequence of the confusion about angle-bracket languages is the 
misconception that SGML-defined languages are limited to angle-bracket 
languages. By defining appropriate sets of marks using the SGML Declaration, 
a wide variety of languages can be defined. In particular, it is possible to write 
SGML definitions for the grammars of many existing text formatting 
languages. SGML can be used to define the grammar of a language: 

1. that uses marks for both the start and end of some elements, 

2. that uses marks for only the start of some elements, and 

3. that uses marks for only the end of other elements. 

An SGML-defined grammar can also imply the existence of elements from 
surrounding elements, and allows the same mark to be used for different 
purposes in different contexts. These capabilities contribute to the flexibility of 
SGML as a vehicle for defining markup languages, and makes using the term 
"SGML" to describe angle-bracket languages alone even more of an 
impediment to understanding its use. 

2.6.2.2. What is an SGML Document? An SGML document entity is an 
optional SGML Declaration, a document prolog and a document instance. At 
least a document prolog and a document instance must be present. The SGML 
Standard allows the system on which a document is being processed to 
provide an SGML Declaration, but also requires that an SGML Declaration be 
included in an SGML document entity if it is transferred between computer 
systems. In other words, any document sent from one computer system to 
another that does not include all three of an SGML Declaration, a prolog and 

10 Two examples are formatting languages used by Frame (see Maker 
Interchange Format (MIF) Reference Manual. San Jose: Frame Technology 
Corporation) and Xerox (see Xerox Integrated Composition System — 
Reference Manual. Xerox Corporation.). 

A Path to Tri-Service Use of SGML 31 



an instance, is not a valid SGML document entity as defined by the SGML 
Standard. 

In practice, it is often convenient to keep each of these parts separate when 
creating or processing SGML documents. For example, it is common for a 
number of different SGML-defined markup languages to use the same SGML 
Declaration, and therefore convenient not to have a separate copy of the 
SGML Declaration in each document. It is even more common for many 
documents to use one markup language. In fact, where there are very many 
documents, it is impractical not to do so. Keeping the document prolog 
separate from the document instance, and keeping only one copy of the 
document prolog for a set of document instances, is common and practical, 
for a number of reasons: 

• When the markup language is modified or enhanced, only one copy of 
its SGML definition need be updated. 

• Where there are facilities for preprocessing an SGML Declaration and 
prolog, so as to avoid parsing and interpreting them each rime a 
document instance is to be parsed, a single copy of the "compiled" SGML 
Declaration and prolog can be used for parsing many document 
instances. 

The way in which SGML documents are commonly handled, especially when 
they are initially prepared, has led to some confusion about what an SGML 
document really is, and has led to so-called SGML documents' being 
transmitted without their SGML Declaration or prolog, or with the prolog 
transmitted separately. Doing so, in turn, causes confusion for the recipient, 
especially if that person is also unclear about what an SGML document is. 
Two installations can legitimately exchange parts of SGML documents when 
doing so is convenient, but both parties must understand whether or not a 
conforming SGML document is being transmitted, and what that means, for 
the sender to be able to unambiguously transmit what the receiver expects. 

2-6.2.3. What is a Valid SGML Document? Another common misconception 
is that if the markup in a document instance conforms to the grammar 
defined in the document's prolog, then the document is "SGML". This view 
ignores the parts of the markup language's syntax that are not LL(1) context- 
free, and which therefore cannot be checked by reference to the grammar in 
the prolog, and it ignores the semantics of the language. A marked-up 
document may be completely meaningless and not violate the grammar 
defined in the prolog (e.g. it is possible for a grammatically correct document 
to have all its paragraphs empty of text). Again by analogy with human 
languages, this is like considering the sentence "rain are thoughtful" to be 
acceptable, when it is not only incorrect grammatically (in a way that a 
straight-forward grammar will not detect: another choice for the noun subject 
would produce a correct sentence), but cannot be interpreted meaningfully. 

32 A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

This misconception has resulted in considerable confusion about the validity 
of SGML documents, and the whole subject of document validation. The key 
role played by verification and validation of text markup languages, their 
definitions, and documents that use them, is discussed later in this report. 

2.6.2.4. What is an SGML-Defined Markup Language? As described earlier, 
SGML is a tool for defining the grammar of text markup languages, but the 
grammar of a language is only one part, and often a small part, of the 
language. Confusion over this point makes the statement "SGML is used to 
define markup languages" often incorrect, in the sense in which it is 
understood. 

The grammar of a simple text formatting language, which consists of marks 
for headings and paragraphs, for left, right, and centered alignment of text, for 
setting the size of text, and for boldfaced and italicized text, can easily be 
defined using SGML. The fact that the language captures only text formatting 
information does not make it any less "SGML" than any other language. On 
the other hand, SGML was developed as a flexible method of defining 
languages in order to ease the implementation of text markup languages for 
purposes other than capturing just text formatting information. A language 
that, for example, allows the specification of type size with each paragraph is 
not necessarily "bad SGML", but, because SGML can be used to define more 
than just text formatting languages, such a feature is inappropriate for many 
SGML-defined languages, and many languages which contain such 
capabilities are "bad" markup languages. 

2.6.2.5. SGML and Text. SGML is not just for text. Although an SGML 
document instance consists entirely of text characters, some of which are the 
marks of a text markup language, and some of which are the text being 
marked up, text and marks can be used to contain other than just textual 
information. The primary reasons for this are that many things can be 
represented by the type of hierarchical structure of a text markup language, 
and that text can be used to represent much more than human speech (in fact, 
almost anything). SGML-defined markup languages have been defined for 
capturing the information in a desktop publishing system's "style sheet", for 
representing music, and for representing the information required to typeset 
the characters in a printer's font with the correct spacing and placement of 
characters. 

The fact that some information is not text, in the usual sense, is not a reason 
for not using SGML. Reasons for not using SGML are: 

1.     A binary encoding is more appropriate. If humans are never, in other 
than exceptional circumstances, going to see marked-up information, 
and if a binary encoding can be devised that is either easy to parse or 
provides the benefit of a far more compact representation than would be 
provided by a dear-text encoding, then a binary encoding is the 
appropriate choice for a language, and definition techniques other than 

A Path to Tri-Service Use of SGML 33" 



SGML should be used. This is usually the case, for example, for 
encodings of graphical information, in raster or vector form. 

2. The information is so simple that the use of SGML would add 
unnecessary work. A simple association dictionary, which, for example, 
pairs SGML formal public identifiers with their system-specific 
counterparts, is too simple an application to justify the even the trouble 
of creating an SGML definition. 

3. A language is very widely and commonly used, and is very stable in its 
definition. In this case it is appropriate and economically justified to 
define the language's grammar with features that are clumsy to define 
using SGML, to include constraints in the grammar that must be left to 
the application when using SGML, and to either implement a language- 
specific parser or use grammar definition and parser generation tools 
other than SGML. This set of conditions describes commonly-used 
computer programming languages: it is inappropriate to use an SGML 
parser to parse a "C" program, for example. 

Occasionally confusion arises over why SGML parsers are not 
implemented using such grammar definition and parser generation 
tools as "Lex" and "Yacc".11 The chief reason is that, because an SGML 
parser is itself a parser generator, another parser generator is often not 
the best tool for its implementation. Another reason is that "Lex" and 
"Yacc", in particular, were designed, almost 20 years ago, for 
implementing certain kinds of computer programming languages and 
operating system script languages, and so are not the appropriate tool for 
implementing many other types of languages, in particular, text markup 
languages. 

4. A language has a grammar so complex that SGML (along with most 
other computer-based grammar definition tools) is simply inadequate. 
This category consists primarily of human languages. 

As can be seen, the use of SGML does not really depend on whether the 
information to be marked up is text, but rather on the complexity of the 
required encoding, and on the use to which the information is to be put. 

A significant advantage of the ability to encode non-textual information 
using a text markup language is that text documents often contain things 
other than text. A lot of non-textual information is usually an indication that 
some other technique should be used, but where non-textual information is 
heavily interspersed with text, and where a human-usable representation for 

11 These tools are described in "Language Development Tools," by S.C. 
Johnson and M.E. Lesk, in The Bell System Technical Journal, Vol. 57, No. 
6, Part 2, pp. 2155-2175. American Telephone and Telegraph Company (July- 
August 1978) 

34 A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

the non-textual information can be devised, it is often most appropriate to 
keep the two kinds of information together. 

2.6.3. The Role of Processing Software 

As was previously pointed out, an application, or a non-SGML definition of 
the semantics (and often some of the syntax) of a text markup language is 
required to make the definition of the language complete. In practice, because 
there is so much potential information in text, an application's interpretation 
of a parsed document usually only makes use of part of the available 
information, and so is only a partial definition of its semantics. Similarly, 
practicality dictates that an English-language definition of the semantics of a 
document type be limited to those aspects of the semantics that are of interest 
to the expected processing of the documents. There will tend to be a separate 
part of the definition for each expected processing requirement. 

Many document types have a potential for being processed in a manner 
particular to that document type. For example, the heart of a Fault Isolation or 
Fault Reporting Manual12 is a set of procedures for isolating or reporting 
mechanical faults found in the type of equipment to which the manual 
applies. An excellent use of this kind of information would be to have a 
computer program take a human operator through a procedure, with the 
human answering questions, and the computer creating whatever forms and 
reports are required. As well, the ability of the computer to reliably log the 
isolation or reporting process would be an invaluable aid in reviewing and 
assuring the quality of such work. 

The information required to take an operator through a procedure, asking 
questions, and at each stage choosing the next step based on the operator's 
answers is quite a bit different from the information required to satisfy other 
requirements of a document. It can reasonably be expected that the following 
uses will need to be made of a Fault Isolation or Fault Reporting Manual: 

1. A document will have to exist in print format to satisfy the needs of 
non-computerized installations. 

2. The information in the document will be used in an interactive "expert 
system" environment, as described above. 

3. A document will need to be subject to enquiries as part of an on-line data 
base, for example, is enquiries as to which fault isolation procedures 
require using a certain piece of test equipment. 

Data base enquiries typically treat a large set of documents in a "global" 
manner: all are looked at at once. In contrast, "expert system" interaction 
moves through the data base in a directed manner. The semantics of how 
information is accessed is very different in each case. Fault Isolation and Fault 

12 The military publishing specification defining these manuals, MIL-M- 
83495, is discussed later in this report. 

A Path to Tri-Service Use of SGML 35* 



Reporting Manuals are just one example of the increasing need to be able to 
process information in application-specific ways. 

The problem of many different semantics is made worse by the existence of 
many different ways of expressing even one semantic. Each desktop 
publishing system has its own model of how formatted text is structured, and 
instructions as to how text is to look when displayed have to be expressed in 
terms of this model. For example, some systems structure text in a 
hierarchical form with blocks of text at the "leaves" of the structure tree, some 
systems use a hierarchy in which blocks of text must also exist at all of the 
nodes (branch points) of the tree, and some systems structure text by placing 
blocks adjacent to each other, with the concept of a hierarchy replaced by 
constraints on the association between adjacent blocks. The problem becomes 
even more difficult when considering data base systems, where the semantics 
are not all print-formatting-oriented, and where there is therefore a wider 
range of possibilities. 

The problem of expressing print formatting semantics in a uniform way is 
being addressed in a number of ways, some within the CALS initiative, some 
on its fringes and some completely outside.13 Efforts are underway to develop 
a uniform way of expressing the semantics of "hypertext" data base systems, 
in which arbitrary pieces of text can be linked in a variety of ways, and to 
encode hierarchically structured documents prepared for use in these systems, 
as well as for "time-based" information for "hypermedia" documents.14 Work 
is only starting on integrating the type of information required by these two 
classes of applications with that required for the on-line enquiry of 
hierarchically structured text data bases.15 

The variety of interpretations that can apply to just one document, the variety 
of ways of expressing those interpretations, and the fact that many of those 
interpretations are particular to one or a small class of document types, makes 
a single, uniform method of expressing the semantics of documents a very 
difficult thing. Faced with rapid change, this uniformity could be an 
impossible thing to achieve. On the other hand, especially for documents that 
undergo regular revision, it is impractical to keep a separate copy of each 
document's text for each distinct use made of it. As much effort as possible, 
therefore, must be put into unifying the expression of the semantic 
requirements of technical documents. 

13 Two approaches to this problem, D3SSL and the MIL-M-28001 Output 
Specification are discussed in a later chapter. 

14 See Committee Draft International Standard 10743: Information 
Technology — Standard Music Description Language (SMDL) and 
Committee Draft International Standard 30744:Information Technology — 
Hypermedia/Time-based Structuring Language (HyTime) ISO: International 

^Organization for Standardization, 1991. 
15 An important example is SFQL, refered to elsewhere. 

36 A Path to Tri-Service Use of SGML 



2. A Basis for a New Generation of Markup Languages 

2.7. One Markup Language or Many? 

In an earlier section it was pointed out that if a language is highly stable in its 
design, and is widely and often used, then it is often economical to build tools 
for processing that language without regard to existing standards for defining 
grammars or generating parsers. When looking for the best markup language 
or markup languages for use in the CALS environment, and in light of the 
fact that such markup languages are sure to get widespread use, this 
observation raises the question, whether the top priority should be given to 
developing a single, highly stable, text markup language for all technical 
documents in the Armed Forces. Possible choices are a single language, a 
single language with minor allowed variations to allow for varied 
requirements, or a small number of languages, in order to ensure stability and 
widespread use. This was, in fact, the approach taken at the start of the CALS 
initiative, as will be discussed in a later section. 

The experience of CALS was, basically, that there are too many different types 
of information in all the different types of technical documents used in the 
Armed Forces. A single markup language for all types of documents, or even 
a small number, would be unmanageably large, and as new types of 
documents are continually being developed it would be difficult, if not 
impossible, to maintain any sort of stability. As well, as the requirements for 
on-line computer access to information becomes more sophisticated, and the 
type and amount of information that needs to marked up in documents 
changes, further compromising any stability that may be possible. 

The attempt to develop a "universal" text markup language ran into many of 
the same problems that "universal" computer programming languages 
encountered. Any attempt at a "universal" language turned out to be too 
limited in scope to address the requirements of most types of technical 
documents. Attempts to extend "universal" languages to encompass new 
requirements resulted in clumsy and unusable languages. 

Ideally, each type of document would, in fact, have its own markup language, 
designed to efficiently and conveniently capture the type of information that 
those documents contain. This would address the issue that text contains a 
very large amount of information, only a small part of which can be directly 
represented by markup. This means that it is only economical to capture 
information that can be directly used by currently existing tools, or tools that 
can reasonably be expected within the lifetime of the marked-up data. As new, 
and often unexpected, tools develop, there is a demand for the markup of 
more information, introducing changes that often change the most 
economical way of capturing already marked-up information. 

Technical document types often contain information characteristic of the 
type, so there is a strong motivation for taking the approach that each type has 
its own text markup language. On the other hand, there are so many types of 
documents, and it so often happens that an individual document is a type to 

A Path to Tri-Service Use of SGML 37 



itself, that the resources to develop so many markup languages simply do not 
exist. As well, each type would require some, often significant, expenditure of 
effort to support formatting documents for printing, and accessing documents 
using an on-line data base system. Some compromise therefore needs to be 
struck between the two extremes of a single "universal" text markup 
language, and a galaxy of markup languages. As will be shown in the next 
chapter, it is towards this compromise that SGML usage within the CALS 
initiative is moving. 

38 A Path to Tri-Service Use of SGML 



3. The fcvolution of SGML Usage in the CALS Initiative 

3. The Evolution of SGML Usage in the CALS Initiative 

This chapter discusses the different components of CALS that relate to the use 
of SGML in light of the history and capabilities of text markup languages. 

A major component of the Computer-Aided Acquisition and Logistics 
Support Initiative of the United States Department of Defence (CALS)16 is the 
development of text markup languages for the capture of textual information 
for the purpose of vendor- and system-independent delivery. The CALS 
Initiative has provided a major impetus to the evolution of markup language 
design and implementation. This evolution is still very much in progress. 
This chapter provides an overview of text markup languages in the CALS 
environment, and positions CALS within the more general development of 
this technology. 

3.1. Technical Documents and CALS 

3.1.1. Publishing Specifications 

Traditionally, the primary technology used for disseminating the information 
found in technical manuals was print, and as a consequence, the print 
formatting specifications for the different types of manuals still provide the 
largest single source of information about the document format and content. 
The current general specification for SGML use in the U.S. Armed Forces is 
MIL-M-28001, which in turn is based on the publishing specification MIL-M- 
38784B17 Some of the other publishing specifications are based on MIL-M- 
3878.18 

MIL-M-38784 and other publishing specifications do not specify so much what 
must appear in a printed document (although there are some basic guidelines 
for this) as how to display certain kinds of information if they are present. A 
lot of decisions on minor formatting details were left to the users of the 
specification, who were expected to be experts in the style and layout of 
technical manuals. Nonetheless, the publishing specifications are the primary 
authority on the component information present in each type of document 
and the interrelationship between these components. The goal of these 
publishing specifications is not to provide this information, and it is generally 

16 For overview of the CALS program, refer to Military Handbook MIL- 
HDBK-59: Computer Aided Acquisition and Logistics and Support (CALS) 
Program Implementation Guide. 20 December 1988 

17 Military Specification MIL-M-38784 — Technical Manuals: General Style 
and Format Requirements. (16 April 1983). 

18 An example is Military Specification MIL-M-83495: Manuals, Technical, On 
Equipment Set, Organizational Manuals: Detailed Requirements for 
Preparation of (For USAF Equipment). 

A Path to Tri-Service Use of SGML 39 



not possible to design a text markup language (other than a text formatting 
language, and then only in part) based entirely on these specifications. 

The limitations of a publishing specification become clear when an attempt is 
made to produce a formal description of a markup language for the class of 
documents based on the publishing specification. Often there is not enough 
information explicitly stated in the specification to determine what 
combinations of structural elements are allowed in conjunction with others, 
and what elements exclude the presence of others. 

Because publishing specifications do not provide all the information needed 
to develop a text markup language, directives must also be provided 
indicating the goal or goals of the markup language being designed. At its 
simplest, the goal could be to reproduce the print forms of the documents. At 
its most complex, the goals could be to provide enough information to enable 
an interactive multimedia presentation of the documents to be created. The 
driving goals of the CALS initiative are to take operational documentation 
away from a solely print-oriented technology, so there must be stated goals for 
any markup language project that take it beyond simply reproducing print 
documents. 

3.1.2. An Early View of SGML 

In the early 198(ys most text markup languages used in the publishing and 
printing community consisted of a fixed set of "tags", each with a fixed, 
defined meaning. Some such markup languages provided a "macro" facility, 
so that new tags could be defined, but these new tags were almost invariably 
minor variations of existing tags, and so did not change the nature of a 
markup language. These markup languages were almost all publishing- 
oriented and had semantics that were well understood in terms of print 
formatting. 

SGML was developed, in part, to sever this strong link between markup tags 
and print formatting semantics. It provides the means for describing the 
grammar of a markup language, and associates tags with the components of 
that grammar, without any reference to the tags' semantics. The development 
of SGML was partially motivated by the anticipated increased use of text in 
on-line data bases, and partially motivated by the need to prepare, deliver and 
revise print documents without being tied to a single processing technology. 
At the time, there was little familiarity with data base use of text (a situation 
which is only slowly changing), so the emphasis continued to be on print 
technology. CALS anticipated data base use but there were no specific 
provisions for data base use. 

3.1.2.1. MIL-M-28001. The emphasis on print technology meant that the 
original CALS use of SGML was heavily print-oriented. The first specification 

40 A Path to Tri-Service Use of SGML 



3. The Evolution of SGML Usage in the CALS Initiative 

for SGML use, MIL-M-28001,19 contained a "conforming" DTD, defining a 
"Universal" markup language for technical manuals. 

The text markup language definition in MIL-M-28001 is based on an SGML 
DTD, and a "Data Dictionary" that describes the function, typically in a few 
words, of each tagged element. There is no description of the markup 
language or of the information it captures in non-SGML terms. There is no 
indication of what requirements each component of the text markup 
language is intended to satisfy. 

Early in the development of MIL-M-28001, an appreciation developed of the 
wide variety of print formatting requirements in technical manuals. MIL-M- 
28001 supported this by providing a "non-conforming" markup language on 
which the development of "variant" markup languages could be based. A 
study of markup languages developed to support just one publishing 
specification, MIL-M-83495, found that some MIL-M-83495-based markup 
languages could appropriately be made very similar to the "conforming" 
markup language of MIL-M-28001, where others had requirements closer to 
those being addressed by the HyTime language being developed for 
"Hypermedia" documents.20 The same study also found that different 
solutions were applied when solving the same problem of how to capture a 
certain type of information, even when the document types were closely 
related, and both solutions were produced by the same contractor. 

The experience with MIL-M-28001 was that all markup languages used in 
practice were variants. The "Universal" markup language encountered a 
similar fate to that of "universal" computer programming languages. 

The lack of guidelines for developing variant markup languages has lead to 
examples of arbitrary variations in markup languages intended for use with 
closely related documents. This difficulty has not been addressed by MIL-M- 
28001A, and is the most important sub-component of text markup language 
use within the CALS initiative as yet undeveloped. 

3.2. "C"-Type Documents 

The inadequacies and inflexibility of MIL-M-28001, especially with regard to 
using documents in a data base context, lead to revision of some of the 
original requirements. A new revision of MIL-M-38784 was developed.21 

Variant markup languages were developed incorporating general 

19 Military Specification MIL-M-28001: Markup Requirements and Generic 
Style Specification for Electronic Printed Output and Exchange of Text. 26 
February 1988. 

20 CALS DTD Verification and Validation Final Report, F33600-89-D-0164, 
written for the U.S. Air Force by Software Exoterica Corp. under contract to 
Century Technologies, Inc. 1990 

21 Military Specification MIL-M-38784C — Technical Manuals: General Style 
and  Format  Requirements. 

A Path to Tri-Service Use of SGML 4l" 



improvements to MIL-M-28001. As well, revisions to MIL-M-28001 were 
developed, culminating in the publication of MIL-M-28001 A.22 

3.2.1. The Development of MIL-M-28001 A 

MIL-M-28001 A incorporates better documentation for the tag set, less 
emphasis on the "conforming" markup language, and an "Output 
Specification" language for specifying print formatting semantics. The 
primary emphasis of the SGML definition is towards providing a pool of 
standard elements and structures (the "baseline tag set") that can be combined 
together to form a text markup language. A "conforming" language is still 
provided, but only as an example of using the baseline tag set. 

MIL-M-28001 A is still, however, fundamentally similar in structure and form 
to MIL-M-28001. The definition of the markup language is still oriented 
towards the SGML definition of the markup language. There are no 
guidelines for how to use the baseline tag set or how to develop new text 
markup languages. The guidelines provided are a short, useful,-tutorial on 
the general use of SGML. 

3.2.2. Document Processing — The Output Specification 

MIL-M-28001 included a specification for print formatting each of the 
elements defined in the "conforming" text markup language. 

The specification language itself, called the "Output Specification" or OS, is 
itself a markup language whose grammar is defined by an SGML DTD. A 
marked-up document (i.e. a document instance) using the OS language is 
called a "Formatted Output Specification Instance" (FOSI). Corresponding to 
each element in the "conforming" markup language in MIL-M-28001 there 
are one or more structures in its FOSI that specify print formatting 
characteristics. The Output Specification is, in effect, a simple text formatting 
language, that binds the tag set of MIL-M-28001 to print formatting semantics. 

MIL-M-28001 A developed the idea of the Output Specification further. In 
addition to structures specifying print formatting for individual elements, the 
MIL-M-28001 A FOSI contains structures that define overall characteristics of a 
printed document, such as page layout and page headers and footers. The 
formatting language used in MIL-M-28001 A is functionally much more 
complete than that of MIL-M-2C001, and its components are more completelv 
defined. v      7 

Until the use of OS-based text formatting systems has been demonstrated, it 
will be hard to evaluate the effectiveness of the FOSI approach to specifying 
print formatting. The incompleteness of the MIL-M-28001 OS language 
inhibited its use, but the near future should see one or more MIL-M-28001 A 

22 Military Specification MIL-M-28001 A: Markup Requirements and Generic 
Style Specification for Electronic Printed Output and Exchange of Text. 20 
July 1990. ö     ; 

42 A Path to Tri-Service Use of SGML 



3. The Evolution of SGML Usage in the CALS Initiative 

OS language-based "FOSI compilers". If not, their absence will indicate that 
further effort is required in this direction. 

The Document Style Semantics and Specification Language (DSSSL), 
currently under review as a draft international standard by ISO,23 is a more 
general approach to associating processing semantics with the structure 
captured by text markup languages. It provides a text and structure processing 
language together with a specification mechanism for print formatting 
semantics. Its intent is more general than that of the Output Specification, in 
that it is intended to be used for associating data base semantics with 
document structures as well as print formatting semantics. Evaluation of its 
effectiveness, like that of the Output Specification, has to await 
demonstration of its use in an application of significant size, such as a full 
technical manual. 

23 ISO/IEC DIS 10179: Information technology — Text and office systems 
Document Style Semantics and Specification Language (DSSSL). ISO: 
International Organization for Standardization, 1991. 

A Path to Tri-Service Use of SGML 43" 



4. The Road from Here to There 

The previous chapters have presented the basic problem faced by CALS: the 
multitude of divergent requirements for capturing the information content 
of text documents. This chapter elaborates on the issues that have to be 
addressed in solving this problem, and describes a methodology and set of 
tools that can be used in the solution. 

4.1. The Problem — A Multitude of Text Markup Languages 

As has been seen, the major problem faced by CALS is the multitude of text 
markup languages under development, and soon to be developed, with very 
little control over how those markup languages are to be developed. 

MIL-M-28001A provides a "baseline tag set" with definitions for the elements 
identified by those tags, formatting information for the elements, some 
introductory material on the use of SGML, and a sample "conforming" DTD 
for a markup language using the baseline tag set,. There are a few short 
guidelines for developing new markup and modifying the existing markup, 
and nothing about the philosophy or justification used in the development of 
the baseline tag set. MIL-M-28001A documents the SGML definition of the 
markup language represented by the baseline tag set, rather than 
documenting either the markup language itself or the structure and 
information captured by the markup language. 

Tri-Service use of MIL-M-28001A is inhibited by the lack of a uniform way of 
adapting MIL-M-28001A to the needs of the individual services, or to the 
variety of requirements within each service. 

4.1.1. Addressing the Right Audience 

For a text markup language to be usable, its use must be fully documented. 
Users of the markup language, and of the information captured by it, have to 
be able to learn about the markup language in terms they understand. There 
is more than one kind of user of a text markup language. Each kind of user of 
a markup language needs a different kind of documentation. 

A useful analogy can be drawn between the documentation required for a text 
markup language and that required for a piece of equipment: a vehicle for 
example. Four types of documentation are required: 

1. Operational manuals, describing how to use a markup language. 

2. Interface manuals, describing the place and function of a markup 
language in a computer system which is to prepare and process marked 
up documents. 

3. Maintenance manuais, describing how to modify a markup language. 

4. Design manuals, describing the principles on which a markup language 
was designed and the requirements it is designed to satisfy. 

44 A Path to Tri-Service Use of SGML 



4. The Road from Here to There 

Following is an outline and description of the requirements of each of these 
types of supporting documentation. 

4.1.1.1. Marking Up Documents. Personnel who actually markup documents 
need to be provided with a description of the mark up languages they are 
using that deals with the format of marked-up documents. Starting a new 
paragraph on a new line with an identifying piece of markup in a marked-up 
document is as much a formatting issue as is indenting a paragraph and 
surrounding it with space in a printed document. The reasons for choosing a 
format are similar: in each case information is displayed in a fashion most 
comprehensible to personnel reading it. Issues that have to be dealt with 
include: 

1. How to recognize each type of thing that is to be marked up. For 
example, how to recognize a text paragraph and distinguish it from a title 
or verbatim example. 

When marking up documents that have already been printed, 
individual items are most often identified by their print format: 
paragraphs are indented, titles are centered and in bold-face type. Items 
in newly marked-up documents, on the other hand, need to be identified 
in a manner that depends on who is doing the markup. Items can be 
identified by their content if the markup personnel are familiar with the 
subject matter of the documents being marked up. If they are not, some 
sort of pre-markup is required to identify textual elements to markup 
personnel. The exact form of these marks depends on the documents 
and personnel. Marks similar to traditional copy marks would be 
suitable for documents that are primarily to be marked up using print 
formatting information. 

2. What marks identify each type of thing and where they are put. A 
paragraph, for example, may be marked up using a tag at the start of the 
paragraph. 

In some cases it is appropriate to provide different markup for an SGML 
element in different contexts. For example, when using MIL-M-28001, it 
was necessary to place markup immediately following the end of a 
footnote, without any intervening space or line breaks. Either the end of 
a surrounding element that would normally not be required, or the 
starting markup of the following element on the same line as the end of 
the footnote, was required. In more advanced text markup languages, the 
context of an element may determine how it is marked up. For example, 
a keyword would have to be surrounded by identifying marks when 
used in normal text, but could be marked up differently where it was 
defined as a term, a context in which list-oriented markup would be 
appropriate, and for example, the markup for the definition of a term 
would provide the end of the term. 

A Path to Tri-Service Use of SGML 45 



Where the type of markup varies by context, the variations need to be 
documented, either as exceptions to the "usual" markup, or as different 
pieces of markup. In the latter case it may be appropriate to treat an 
element as being a different "thing" in each context. 

It is not appropriate to describe markup in SGML terms. Markup 
operators are typically not interested in whether a piece of markup is a 
tag or a short reference. They are not interested in whether or not the 
OMITTAG feature is being used, but are interested in the effect that using 
SGML's features has on marking up documents. 

3.     Other issues of formatting marked up documents need to be dealt with, 
especially regarding the use of white-space in marked-up documents. 
Such issues include how many space characters go at the end of a 
sentence, where spaces and line breaks need to be placed, or must not be 
placed around pieces of markup, and the use of blank lines. Rules need 
to be stated about the symbolic names assigned to sections and 
paragraphs when these are used to cross-link references within 
documents. 

In general, personnel who actually mark up documents only need to know 
enough about a document to recognize its components. Ideally, they need not 
even be aware of the existence of SGML. Their job is to mark up a document 
using a particular markup language provided for that document. For this type 
of user, all they see of SGML is the tag set and other markup specified by the 
DTD that defines the markup language they are using. 

Although in most cases not required, there are often reasons markup 
personnel should have some knowledge of the principles behind the markup 
language they are using. Such knowledge helps markup operators recognize 
and deal with situations in which the data that they are entering does not fit 
with the markup language they are using. Especially when pre-existing 
documents are being marked up, and when these documents vary from the 
standards and guidelines on which the text markup language is based, 
decisions have to be made that have the potential to change at least the 
appearance of the marked-up document when, for example, it is next printed. 
When such a variance is discovered, there are usually two choices available 
for how to mark the variant text: 

• The text can be modified to conform to the markup language. This often 
consists of something as simple as changing the manner in which lists 
and sections are marked or numbered. In other cases, the sectional 
structure of the document may need reorganization: sections may 
become chapters, for example, or new titles may need to be added. 

• The text can be marked up in the manner that causes it, when next 
printed, to as closely as possible resemble the way it did when last 
printed. For example, a paragraph with a run-in bold-face title could be 

46 A Path to Tri-Service Use of SGML 



4. The Road from Here to There 

marked up as a paragraph with no tiüe but with bold-face emphasis of 
text at the start of the paragraph. 

The first of these two methods is always preferable, but is usually the more 
difficult to put into practice. The difficulty is produced by the fact that some 
authority is usually required to modify the appearance of a document, and 
markup operators often do not have this authority, nor do they have ready 
access to those who do. Existing standards and guidelines are almost all print- 
oriented, as is the experience of markup and production personnel. This 
means that there are typically few personnel who are familiar with the new 
requirements that are the reason for using a MIL-M-28001A-based text 
markup language. Often the personnel with the authority to make decisions 
concerning the appearance of a document do not have this familiarity, 
making the situation even more difficult. 

As a consequence of these difficulties, the second method, preserving the 
appearance of the printed document, is most often seen in practice, even 
though it causes information to be lost. If titles are not identified, for example, 
a complete table of contents cannot be produced. This may not be of 
significance for the printed document, where some titles or headings may be 
omitted in the print document, but it could be significant for future uses of 
the document, where these titles may be required for an on-line subject index. 
4-L1-2- Processine Documents. Personnel responsible for processing marked- 
up documents are generally not interested in the exact manner in which they 
are marked up. The ready availability of tools such as SGML parsers means 
that the computer software that does the processing (formatting, conversion, 
loading into a data base) need only deal with the hierarchical structure of a 
marked-up document, and with its text. The marks used, and whether a 
grammatical item was preceded, followed or surrounded by marks, do not 
affect the processing. 

The grammatical structures identified by the text markup language are 
directly available to the the processing software. Issues that have to be dealt 
with in documentation directed towards processing a markup language 
address that structure, and the text embedded within that structure: 

• The function, in terms of capturing information, of each element has to 
be documented. 

• All grammatical issues not dealt with by the SGML definition of the 
markup language have to be documented. The significance of leading, 
trailing and embedded spaces, and the meaning of line breaks has to be 
made explicit. 

Personnel who implement computer programs that process marked-up 
documents typically need not be SGML experts, and the documentation of 
markup languages they use should reflect this. They are similar in this regard 
to personnel who mark up documents. On the other hand, unlike markup 
operators, they must be very much aware of the nature of the content of 

A Path to Tri-Service Use of SGML " ~" Jf 



processed documents. These requirements are simple, and of a sort familiar to 
markup operators, when the requirements refer to the processing of print 
formatting information. The requirements are somewhat more complex 
regarding the type of information that is dealt with by data base systems. 

4.1.1.3. Maintaining a Markup Language. Once a text markup language has 
been designed it will probably require regular maintenance as user needs and 
the supporting technology change. Well designed markup languages should 
anticipate this change to some extent, reducing the required maintenance. 
However, the changing approach of the CALS initiative since its inception to 
the design of text markup languages is ample evidence that such change is the 
norm rather than the exception. Maintenance of text markup languages, like 
the maintenance of anything eise, is based on the availability of supporting 
documentation. 

SGML expertise is required of the personnel who create and maintain a text 
markup language. Documentation directed at this group of personnel can 
reflect this expectation. The designers and maintainers of a markup language, 
however, have to be constantly aware that it is designed to be used by other 
than its designers. As a consequence, any modification of a markup language 
must refer to the documentation prepared for markup operators and 
implementors of processing software. 

When modifying a text markup language, it is important that changes have a 
minimal impact on prior investment in both marked-up documents and 
processing software. The following issues have to be considered: 

1.     It is often prohibitively expensive to modify documents that have 
already been marked up and which are not due for revision in the near 
future. Preserving this investment has to be the top priority when any 
change to a markup language, or to the systems that process it, is being 
considered. 

It was practical, when the only use of computer-stored documents was to 
print them, to have different documents of the same type marked up in 
different fashions. The only requirement for preserving the investment 
was to use the computer software designed for each markup language 
when processing documents marked up using that language. With the 
expected advent of highly structured and integrated textual data base 
systems, all documents must be available for processing by the same 
computer software, and the approach of using different pieces of 
computer software is no longer possible. 

The most straight-forward way of preserving an investment in existing 
markup is to make any change in a text markup language "upward 
compatible": existing markup must be still valid in the modified 
language. The modified markup language differs from the old one in 
having additional types of markup, all of which are optional: available 
for use in new documents, but not required in existing documents. 

48 A Path to Tri-Service Use of SGML 



4. The Road from Here to There 

The only other practical way of dealing with change when there are a 
large number of existing documents is to "convert" the existing 
documents. Well designed text markup languages readily lend 
themselves to this sort of processing, the reason being that they are 
designed to be processed by computer software for a large variety of 
reasons. However, especially where documents have been archived, 
such conversion may be prohibitively expensive. 

2. Computer software is often very expensive to modify, even when only 
one computer system is involved. As has been noted above, as the CALS 
initiative progresses, there will be many computer software systems 
potentially impacted by changes to text markup languages they process, 
and the cost of change can be expected to increase in the future. 

Modifications to text markup languages require processing software to be 
changed. The amount of change can be minimized if changes to a 
markup language are upward compatible. Both old and new documents 
must be processed by computer software after an upward compatible 
change, but so long as the text and structure captured by the new markup 
can either be ignored, or the text processed while the new structure is 
ignored, the requirements of the new documents are minimal. 

3. Markup personnel vary considerably in their ability to adapt to new or 
modified text markup languages. Upward compatible changes, which 
have a minimal impact on what such personnel already know, are 
easiest to introduce into the workplace. 

The cost to the markup process of changing a text markup language must 
not be underestimated. It is often the largest component of the cost of 
doing so. The cost is incurred by training, by reduced productivity while 
personnel are adapting to changes, and by the potential for increased 
incidence of errors in marked-up documents. The cost of errors in 
marked-up documents is greater than is usually recognized, because it is 
the only cost of those mentioned here that is realized only when use is 
made of the final product resulting from processing marked-up 
documents, and is therefore deferred. The other costs are more 
immediately apparent. 

In spite of the large cost of change, provision must be made for it in planning 
for Tri-Service use of SGML: the only alternative is to abandon the 
advantages of a rapidly progressing technology. A strategy needs to be 
developed that ensures that text markup languages developed for Tri-Service 
use can be maintained in an upward compatible manner, and that computer 
software developed to process these languages be easily adapted to upward 
compatible changes. 

In addition to a general strategy for text markup language maintenance, each 
language must be supported by maintenance documentation that addresses 
the issues raised above in terms of the particular language. A "maintenance 

A Path to Tri-Service Use of SGML *" ~' 49" 



manual" is as important for a text markup language as it is for a piece of 
equipment. 

4.1.1.4. Designing a Markup Language. New text markup languages will be 
required as new classes of documents are encountered in the process of 
converting to system-independent document management technology from 
print-based or system-specific technology. There are three major 
considerations when developing a new markup language: 

1. There must be good reason for developing a new markup language in 
preference to using an existing one. Documentation must be available 
for existing text markup languages that clearly describes the 
requirements these languages satisfy and the principles used in their 
design. This documentation can be used to efficiently and accurately 
determine to what extent the goals and requirements of existing markup 
languages match or differ from the requirements of newly encountered 
documents. 

2. The new language must fit into existing processing technology to as great 
an extent as possible. The kinds of structure captured by a new markup 
language must match that captured by existing markup languages as 
much as is possible if existing processing software is to be used with a 
minimum of modification. A well designed markup language will have 
a consistent basis for its structures. The same kind of things, for example 
titles and headings, will have the same kind of structure and the same 
options on what is allowed within it. Processing for similar types of 
things will therefore be similar. 

An example of the need for uniformity of structure is where a marked 
up document is to be formatted for printing. The fewer basic types of 
structures used, the less specification has to be provided to describe the 
distinct formatting of each structure. For example, if lists are allowed 
either to be embedded within paragraphs or to appear between 
paragraphs, different processing logic will normally be required in each 
case. The documents being marked up may demand this distinction, but 
the cost of supporting one of two such forms when only the other is 
already supported needs to be considered in the designing of a new text 
markup language. 

Design documentation should describe the existing kinds of structures as 
a basis for making these kinds of design decisions. Such documentation 
also allows decisions to be made about the applicability of existing or new 
processing software to documents, especially when, as is presently the 
case with most text management and display software, the ability of the 
computer software to manipulate arbitrary data structures is very 
limited. In some extreme cases it may be appropriate to design new text 
markup languages with the specific purpose of supporting some very 
limited computer software. In this case, study of the design 
documentation of existing markup languages is critical to determining 

50 A Path to Tri-Service Use of SGML 



4. The Road from Here to There 

exactly what requirements have to be made of the new markup language 
to support the software's limitations. 

3.     The marks used by new text markup languages must be as consistent as 
possible with those of existing text markup languages. A review of the 
design documentation of existing text markup languages must be 
preformed to find those ways in which the new language can be made to 
most closely resemble the existing ones. The way in which names used 
in marks are chosen should be uniform, and the same name should be 
used for the same structure (e.g. a title should use the same mark). If 
SGML short references are used to mark the items of lists and to mark 
table entries, all documents used in an organization should use the same 
short references in the same way. 

Designing a new text markup language is very much like modifying an 
existing one. The same considerations of preserving existing investments 
apply in both cases. 

There is a reason for documenting the design of a text markup language other 
than using the documentation to aid the design of later markup languages. A 
text markup language, like a newly designed piece of equipment or computer 
program, has to be subject to a quality assurance process. The record of the 
design process is the primary subject of the independent verification and 
validation that confirms the quality and appropriateness of the text markup 
language. The design documentation for a markup language, therefore must 
contain: 

1. A list of all the requirements that formed the basis of the design, together 
with a report on the extent to which the markup language satisfies each 
requirement. 

2. A report of how each requirement in any pre-existing specification (such 
as a publishing specification) is met by the markup language. 

3. A description of the principles on which the markup language was 
designed, such as naming conventions, etc. 

4.1.2. The Impact of Processing Technology 

The current state of SGML usage, both in the Armed Forces, and in the 
private sector, has been largely determined by the methodology and the tools 
currently available for creating and processing both markup languages and 
text documents. 

4.1.2.1. Methodology. A methodology is a way of doing something. In the case 
of designing a text markup language, the methodologies of interest are: 

1. how to determine what information in a set of documents needs to be 
captured, 

2. how best to structure the captured information for use by processing 
applications, 

A Path to Tri-Service Use of SGML " " ^f 



3. how best to mark up the documents in order to capture the information 
with the desired structure (i.e. how to design a text markup language for 
the information in the documents), and 

4. how to define the resulting text markup language using SGML. 

In addition, processing methodologies are required for the use of text markup 
languages. Processing methodologies of interest include: 

• how to create and revise marked-up documents, 

• how to produce useful products (e.g. readable pages, searchable on-line 
documents) from marked-up documents. 

Examples of two different processing methodologies are text-markup 
language-based-preparation of text using a classical text editor and WYSIWYG 
("What You See Is What You Get"). Processing methodologies depend for 
their effectiveness on the tools available to implement them. For example, 
prior to the existence of textual data bases there was no use for, and no way of 
practically evaluating the effectiveness of, processing methodologies for data 
base use. A processing methodology does not imply a choice of what 
computer system or software products are used, but rather the capabilities of 
those products. 

Design methodologies do not depend on high-tech tools. Pencil and paper are 
adequate tools. A design methodology is a way of working with pencil and 
paper. This difference between processing and design methodologies is the 
basic reason that it is practical to design text markup languages for computer 
applications, most of which will come into existence at some time in the 
future. So long as a reasonable prediction can be made about the capabilities of 
processing tools, and so long as these predictions include some judgement as 
to the kind of processing methodology that will be used with those tools, 
design methodologies can be developed for markup languages that anticipate 
these future processing methodologies. 

The "semantics" captured by a text markup language is generally defined in 
terms of particular processing. For example, markup for a paragraph is 
associated with laying out the text of the paragraph as a block on a page or 
screen and making it look "normal" (not distinguished as a title or 
quotation). Paragraph semantics are "partial" in this fashion because the exact 
implementation of these requirements depends on the medium and tools 
used to display a paragraph. Processing semantics generally have to be defined 
in this partial manner, not only to allow for their implementation using a 
variety of media, but to allow anticipation of tools and techniques not yet 
fully understood. A processing methodology should incorporate partial 
specification where it is appropriate. 

Semantics have to be assigned to text markup languages for their use to be 
meaningful. Therefore, a processing methodology, incorporating a set of 
semantics, generally has to be associated with any newly defined text markup 

52 A Path to Tri-Service Use of SGML 



4. The Road from Here to There 

language. The semantics of the processing methodology can be partial, but 
something must be there. For example, it is insufficient to design a markup 
language for text that is intended to be used in a data base system without 
identifying what pieces of information are captured, and how, in general 
terms, they can be used. 

At present there are no standard methodologies in common use. Effective 
Tri-Service use of text documents requires that there be developed standard 
text markup language design and processing methodologies. 

4.1.2.2. Tools. Computer programs provide the tools for using text markup 
languages. Most text entry at present uses either a WYSIWYG word processor 
or desktop publishing system, or a classical text editor. A text editor is 
essentiaUy a "glass typewriter", with formatting typically limited to a single 
font, type style and size, and to "spacebar" type spacing. From a WYSIWYG 
point of view, a text editor is just a very simple word processor, although text 
editors have a very important characteristic that word processors lack: text 
prepared using a text editor is typically easy to transfer to another computer 
system, be it another text editor or a processing program. Other methods of 
text entry are provided for hypertext systems and other data base systems, but 
these are usually simple variants on WYSIWYG systems or text editors. 

Computerized print formatting of text has been common since the 1960's, 
based on either a WYSIWYG approach or on specialized text markup 
languages. Data base use of text is distinguished from print formatting in that 
useful "small scale" text data bases are not common. The whole point of 
putting text on a computer is that the volume of information exceeds the 
capabilities of traditional media (books and manuals). This is unlike the 
situation with print formatting where the scale of documents ranges from 
single memos to multi-volume encyclopedias. Standards for data base use of 
text are currently under development24 and the development of systems 
based on these standards can be expected by the mid 1990's. 

New markup languages have to accommodate existing tools. There is no 
point in capturing information that these, or soon-to-exist, tools cannot 
handle. An understanding of the available tools must form the basis of 
determining what kind of information new text markup languages capture. 
This understanding must be reflected in the design documentation for new 
markup languages. 

4.2. The Solution — Managing Technical Documentation 

The current ad hoc approach to developing text markup languages has not 
worked. As was found with the set of markup languages developed based on 
the MIL-M-83495 publishing specification, different solutions to the same 

24 SFQL: Structured Full-Text Query Language — Specification by Dr. Neil R. 
Shapiro. GE Corporate Research and Development. 

A Path to Tri-Service Use of SGML 53" 



markup problem will be developed if there are no strong guidelines for 
development. 

Based on what has been learned about the management of text, Tri-Service 
use of SGML must be based on the formalization of design and processing 
methodologies for text markup languages. There will be many markup 
languages produced to satisfy the varying requirements of different services. 
Management of these languages, using guidelines and standards for 
developing text markup languages, is what can and must be done. The 
alternative, a multitude of incompatible markup languages, will eradicate 
most of the benefits of the CALS initiative. 

Management of technical documentation, and of the way in which it is 
encoded, relies on the use of guidelines and standards, but this reliance must 
not be made on inappropriate standards or inadequate guidelines. 

4.2.1. Guidelines and Standards 

The term "standard", applied to SGML, has misguided those not familiar in 
detail with ISO 8879, the SGML standard, as to the extent its application 
provides a management tool for text. A similar misapprehension has arisen 
from viewing military publishing specifications and MIL-M-28001A as 
standards. Each of these documents provides tools for describing the structure 
of text and its format, and provide some basic guidelines for using the tools. 
The very generality of their specifications, which allows each of them to apply 
to such a wide range of documents and applications, means that specific 
requirements of applications have to be dealt with by other means than these 
standards and specifications. 

Additional guidelines are needed, primarily for the production of 
documentation that supports the design and use of text markup languages. 
Once it is ensured that adequate documentation is being produced for new 
markup languages, more specific guidelines for standard marks and 
structures can be developed. 

4.2.2. What Can Be Standardized? 

Guidelines can be developed for standardizing many of the activities related 
to text markup language design. The following is a list of some of these: 

1. Common print-format-oriented elements, and their associated markup. 
Paragraphs and the common sectional structure of body matter, together 
with their titles, are examples of these types of elements. 

2. Common attributes, with wide utility, such as security identification. 
Standard attributes can be used in a new text markup language even 
with non-standard elements. The more uniformity there is in attribute 
usage, the simpler it is for both markup operators and implementors of 
processing computer software. 

54 A Path to Tri-Service Use of SGML 



4. The Road from Here to There 

3. Conventions for the names of elements can be established, so that by 
their consistency they are easier to remember. 

Naming conventions have to consider the trade-offs between long and 
short names, the former easier to understand, the latter easier to enter. 
Longer names are appropriate for rarely used elements, shorter ones for 
commonly used elements. 

4. Conventions for the identifiers used to cross-link elements when text 
refers, say, to a figure. Similarly, conventions need to be developed for 
naming external objects, such as graphics, that will make documents 
more nearly portable across a variety of computer systems. 

5. Common markup for tables is required that deals with some of the 
complex formatting that commonly appears in them. 

6. Conventions for the appearance of DTDs, and the names used in them, 
other than those used in tags and general entities, such as parameter 
entity names and short reference map names. 

The use and limits of each of these standardized items and conventional 
procedures must be documented. For example, if paragraphs are standardized, 
something has to be said about what is a paragraph and what is not, to 
minimize the chance of one markup language considering a structure a 
paragraph, and another considering a similar structure to be not, with no 
justification for the difference. 

It should be emphasised again that there is no use in having standard 
elements and attributes if their use in a text markup language is not fully 
documented. 

4.2.3. New Methodologies 

An important set of methodologies for managing a large number of text 
markup languages depends on the concepts of partitioning the set of 
languages to produce a set of markup language families, and of partitioning 
text markup languages into sublanguages, making it possible to reuse whole 
sublanguages in designing new markup languages, not just individual 
standardized elements ("Divide and conquer"). 

4.2.3.1. Text Markup Language Families. A text markup language family is a 
set of markup languages which have many components in common, and 
which vary in a uniform manner. For example, repair manuals for different 
classes of equipment, which are identical except that each class of equipment 
needs a different structure to list exceptional procedures, would form a family 
with each equipment class having its own member markup language. Text 
markup language families have the advantage that only the manner in 
which the members differ have to be documented separately for each 
member. This greatly reduces the cost of maintaining the documentation, the 

A Path to Tri-Service Use of SGML ~ ~ 55" 



cost of training for personnel marking up new family members, and the cost 
of implementing processing for new family members. 

4.2.3.2. Markup Sublanguages. A text markup sublanguage is the markup for 
a set of related elements in a document structure. For example, common 
structures for paragraphs, sections and titles used with those sections could 
form a sublanguage. Documentation can be produced for sublanguages, 
meaning they can be incorporated in new text markup languages with 
virtually no overhead incurred by the cost of documentation. Each 
sublanguage needs to be documented as to its appropriate use, so that it is well 
understood when it should be used. 

4.2.3.3. Common Processing Semantics. Common processing semantics are 
the application of the same meanings to similar syntactic constructs in 
different text markup languages. The reduction in the variety of processing 
semantics reduces the cost of implementing processing computer software. 
The application of common semantics requires the formal definition of these 
semantics on one hand, and a way of using the semantics on the other. For 
example, if paragraphs, sections and their titles have common processing 
semantics, it should be possible to take the part of a FOSI that describes how to 
print format them and use that part in other FOSIs. To do this requires the 
creation of FOSI "sub-instances" that are similar in their intent, and should 
often parallel, text markup language sublanguages. 

Another method of applying common processing semantics is to have a 
single "processible" markup language that incorporates all the processing 
semantics for a markup language family. Processing can then be accomplished 
at reduced cost of implementation by converting documents marked up using 
family members into the "processible" family member, which is the only 
markup language in the family ever subject to processing. Very large families 
can be created to take advantage of this technique. 

4.3. What Next? 

Two things need to be done: the proposals of this report need to be validated, 
and they need to be implemented. Most of the supportive effort that has 
resulted in the specification for SGML usage in the Armed Forces, MIL-M- 
28001A, has up to now concentrated on developing specific components of 
text markup languages, and techniques for specifying how marked-up 
documents are print formatted. This emphasis needs to change towards 
developing guidelines for the design and use of text markup languages. These 
guidelines should emphasize the role of documentation in the development 
and support of a text markup language. 

Documentation produced to support text markup language needs to take 
advantage of advances in CALS technical documentation technology. In 
particular, there needs to be developed a MIL-M-28001 A-based text markup 
language for text markup language manuals. This markup language needs to 

56 A Path to Tri-Service Use of SGML 



4. The Road from Here to There 

be subject to Independent Verification & Validation (I V & V), like any other 
markup language. 

The proposals of this report can be validated and verified by initiating a 
project to design a new text markup language based on strong guidelines. 
Such a project would have to be preceded by development of these guidelines, 
but that process itself should have the advantage of introducing new tools 
into the arena of CALS markup language development. 

Once new guidelines have been developed, existing text markup language 
development material should be subject to I V & V. MTL-M-28001A should be 
I V & V'd, as should existing markup languages and the Output Specification 
language. Doing this will place the CALS use of text markup languages on a 
much firmer footing. 

4.4. Independent Verification and Validation25 

The sequence of tasks which produces a new text markup language consists of 
the following steps: 

1. background analysis of the standards and specifications oh which the 
new language is based, of existing text markup languages, and of the 
history of past developments in related areas; 

2. examination and analysis of a selected class of related documents, and of 
the use that is expected to be made of those documents; 

3. design of a markup language which effectively and efficiently captures 
the information in documents of the selected type; 

4. formal description of the markup language using a Document Type 
Definition (DTD) conforming to the Standard Generalized Markup 
Language (SGML) standard; 

5. if required, production of a formal specification or specifications of how 
marked-up documents are to be processed (using the Output 
Specification defined in MIL-M-28001A for print formatting, if its use is 
specified); 

6. testing the usability of the markup language and its formal description by 
marking up sample documents of the selected class; 

7. analysis of the effectiveness of the markup language and its formal 
description by processing the sample documents (using the formal 
specification, if there is one) in ways that exemplify their expected uses; 
and 

25 The I V & V task is discussed in more detail in How To Do Independent 
Verification And Validation On An SGML-Defined Markup Language, 
written for the U.S. Air Force by Software Exoterica Corp. under contract to 
Century Technologies. 1991. 

A Path to Tri-Service Use of SGML57" 



8.     independent verification and validation the text markup language, its 
SGML definition and its supporting documentation in order to 
determine if the preceding tasks have been completed, how accurately 
and effectively each one was accomplished, and how well each task is 
documented. 

I V & V is the final task in the process of creating a new text markup 
language. I V & V is crucial to confirming the usability of a markup language. 

4.4.1. What is I V & V? 

The IV & V task consists of subtasks that parallel the tasks that preceded it: 
analysis, markup language design, formal definition, and testing. Personnel 
doing I V & V follow a set of procedures that match those followed by the 
personnel who developed the markup language. At each point in each 
procedure there must be a document, on paper or in machine-readable form, 
which provides the link between the original task and the I V & V subtask. 

The background analysis of the standards and specifications, of existing text 
markup languages, and of past developments, needs to be done both by the 
designers of the markup language and by I V & V personnel. This analysis 
provides the basis for understanding the new markup language and the way 
it will be used. Verification and Validation requires the same clear 
understanding as does the initial design. 

Where possible, repeatable tasks should be performed by the I V & V 
personnel. For example, the sampie marked-up documents should be 
reprocessed so that the practicality of the production process can be evaluated, 
and the processed forms (printed pages, on-line accessible data base) should be 
examined and compared to those delivered as part of the design 
documentation for the markup language. In some cases the I V & V 
personnel may not have the resources to repeat all such processing, but the 
one task that must always be repeated is machine analysis of the SGML 
definition of the markup language (the DTD) and of the sample marked up 
document. In other words, the I V & V personnel must parse the DTD and 
parse the sample documents. 

The other subtasks consist of an examination and review of the 
documentation that was produced by the markup language design personnel. 
The sample documents provide important clues as to the usability of the 
markup language. Two kinds cf errors can be made: 

•      Syntactic errors are violations of the constraints of the grammar of the 
markup language. These errors can be found by an SGML parser applied 
to the markup language's DTD and the sample documents. Errors of this 
sort should never be found, because the markup language designers 
must have had an SGML parser available to them to be able to develop 
the DTD and process the sample documents. 

58 A Path to Tri-Service Use of SGML 



4. The Road from Here to There 

• Semantic errors are violations of the intended use of syntactic structures. 
For example, a paragraph with no text in it is almost always indicative of 
an error. A keyword that should be, but is not marked up, is another type 
of semantic error. 

Detection of some semantic errors can be automated. There are three kinds of 
semantic errors: 

1. Original sample documents may be inconsistent in format. Traditional 
print media typically encourage inconsistency because, prior to the 
introduction of the computer to publishing, there was no effective way 
of checking for inconsistency other than by direct examination. An 
example of a symptom of this type of error in a document is a title with 
no text inside it. This may be a result of the grammar for a section 
requiring a title but an original print document from which a sample 
was taken having no title for the section. 

2. The design of the markup language may be in error because it cannot be 
used to capture the structure of existing documents. A title empty of text 
could be a symptom of this kind of error as well. 

3. A sample document may be incorrectly marked up. An empty title could 
be a symptom of a poor choice of markup by a markup operator: there 
may have been a more correct form of markup that did not require a 
title. Incorrect markup could also be a symptom of inadequacies of the 
documentation produced for markup operators. 

Processing the sample marked-up documents is an important step in I V & V. 
Even if the intended use of marked-up documents is in an on-line data base, 
print formatting the sample documents is a source of visual clues to problems 
with the markup language, as well as a way of testing its utility in a processing 
environment. Such processing confirms the value of the text markup 
language and is an efficient way of finding semantic errors in the sample 
marked-up documents ("a picture is worth a thousand words"). 

Things like titles with missing text or text that looks "wrong" (for example a 
title that is a number) can be detected by computer software, the use of which 
aids in the quality analysis of marked-up documents.26 Other types of errors, 
such as missing markup, can only be detected by examining marked-up 
documents or the printed pages that result from processing the marked-up 
documents, and comparing them to the intended print result, if one is 
available. 

An example of such software is the "Semantic Analyzer", produced for the 
U.S. Air Force CALS Test Network by Software Exoterica Corp. under 
contract to Century Technologies Corp. 

A Path to Tri-Service Use of SGML """""" 59" 



4.4.2. Complete Documentation 

An important part of the I V & V is confirming the completeness of the 
documentation provided to support a text markup language. Without 
complete documentation, a markup ianguage is unusable. 

If the markup language project has not produced all the documentation 
required to do the analysis required by I V & V, the I V & V personnel may 
have to create the missing documentation in order to enable them to 
complete the I V & V task. Documentation that may have to be produced bv 
the I V & V task includes: 

• Design documents describing the text markup language and its SGML 
definition. These documents are the required link between the markup 
language and its initial requirements, and are needed for the analysis of 
the markup language's satisfaction of these requirements. 

• Sample marked-up documents using the markup language.^ If sample 
documents are incomplete in terms of containing samples of all types of 
markup allowed by the markup language, or if they are missing, I V & V 
personnel must create sample documents. 

Such documentation should be incorporated in the documentation for the 
text markup language, so that it becomes available to users of the markup 
language. The two types of documentation listed above are the minimum 
required to perform I V & V. If other types of documentation are missing, 
such as documentation for the markup operator or processing software 
implementor, the markup language maystill be unusable. 

4.4.3. What Can Be Subject to I V & V? 

Until now the I V & V of the design of a text markup language has been 
described. Other things can be subject to I V & V: 

1. Text markup language families can be subject to I V & V in much the 
same way as individual text markup languages. All members of a 
markup language family share documentation. The effectiveness of a 
markup language family can be tested by designing an individual 
markup language that fits within the family and then performing I V & 
V on it. If the family is well designed, adding a new member to it should 
not require undue effort, so this should be a practical activity. 

2. Marked-up documents need to be subject to I V & V as a Quality 
Assurance activity. The I V -k V task in this case consists of checking for 
syntactic and semantic errors in marked-up documents in much the 
same manner as for the sample documents that are part of a markup 
language design project. Processing the sample documents provides the 
additional benefit of confirming the effectiveness of the markup. 

60 A Path to Tri-Service Use of SGML 



4. The Road from Here to There 

3.     Processing of marked-up documents can be subject to I V & V. Sample 
documents that have previously been confirmed in their correctness can 
be used to identify problems with processing software. 

A Path to Tri-Service Use of SGML 61 



5. Summary and Conclusion 

The CALS Initiative has gone a long way towards introducing uniform 
handling of text documents, in particular technical manuals, into the Armed 
Forces. Further progress is required, however, if the full benefits of the 
constituent technologies are to be realized. Further effort is required in the 
following areas: 

1. Guidelines need to be developed to specify development procedures for 
creating new text markup languages. 

2. Guidelines, markup specifications and publishing specifications are 
required for the manuals that are needed to support a text markup 
language. 

Like any other system of interest to the Armed Forces, a text markup 
language needs to be supported by technical manuals. A text markup 
language can be considered to be a piece of equipment in this regard. 
Required supporting manuals are Operation Manuals, Interfacing 
Manuals, Maintenance Manuals and Design Manuals. 

3. Independent Verification and Validation needs to be done on all 
components of a text markup language, on its design and on its use. 

4. The emphasis of contributions to the evolution of MIL-M-28001 has to 
change towards developing these guidelines and documentation 
specifications. 

Development of these guidelines and specifications will place Armed Forces 
text markup language use on the firm footing required of other computer- 
based systems, and is the key to Tri-Service use of SGML-based text markup 
languages. 

62 A Path to Tri-Service Use of SGML 


