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Executive Summary 

This report presents results from the basic contract and the three options. The 

report is divided into 2 parts. This approach was taken to organize the studies and 

investigations conducted and the results obtained into logical reporting categories. In the 

first part, we first review the approach to scene partitioning and statistical characterization 

originally developed at Syracuse University by Drs. M. A. Slamani and D. D. Weiner. 

The approach consisted previously of two main stages referred to as Mapping and 

Indexing. In the first stage, clutter patches are separated from background noise, and, in 

the second stage, clutter patches are separated from each other and the probability density 

function (PDF) is approximated for each patch. 

The approach to scene partitioning and statistical characterization is remodeled so 

that it can be applied in general to separate any set of non-homogeneous patches without 

having to require that a background noise be present. Also, recognizing that two 

procedures are used to separate regions, the stages of the approach have been redesigned 

to reflect this fact. The two main stages of the approach are known as (1) the Mapping 

procedure, which uses image processing means to separate regions, and (2) the Statistical 

procedure, which uses statistical means to separate between them. The approach is 

assigned the acronym A'SCAPE which stands for the Automated Statistical 

Characterization And Partitioning of Environments. Though using two procedures, 

A'SCAPE needs four stages to achieve its aim at separating the different contiguous non- 

homogeneous regions that may exist in a scene. These stages consist of a preprocessing 

stage where classical time-frequency processing of the data is performed, a mapping 

procedure stage, a statistical procedure stage, and an indexing stage which assigns a set of 

descriptors for every pixel in the scene under investigation. When A'SCAPE is followed 

by a detection stage, all information is available with respect to which probability density 

function (PDF) should be used for each cell in the scene. 



In order to enable A'SCAPE to process real data, the image processing and 

statistical algorithms had to be rewritten and new rules (in addition to the old ones) were 

selected to enable the convergence of the expert system which controls the flow between 

the different stages in A'SCAPE. 

An example of a real IR scene is included in the report which consists of a lake 

region and a land region. First, the samples are selected in the preprocessing stage to 

result in a scene with uncorrelated data. Then, the mapping procedure separates the lake 

and land regions. Road ways and very small patches in the land region are successfully 

detected as outliers. Also, non-homogeneous regions (due mainly to trees) in the land 

region near the boundary between the land and lake are separated by the statistical 

procedure and grouped as homogeneous subpatches. Finally, every homogeneous 

declared region has its PDF approximated. 

A demo package built in Matlab was also developed which describes in detail the 

different stages of A'SCAPE. The package has a friendly mouse driven graphical user 

interface (GUI) and consists of two main sections. The first section presents the detailed 

steps of the real IR data example. The second section is subdivided into two subsections 

where the first one consists of a set of examples which illustrate the need for A'SCAPE, 

whereas in the second a description is given for every stage of A'SCAPE. The views can 

be displayed manually or automatically. A movie is included that shows the steps through 

which the scene goes during the mapping procedure. This demo package is among the 

deliverables. 

The objective of the second part was to study some specific parametric methods 

for the detection of signals in the presence of interferences such as noise, clutter and 

jamming. Specifically, we looked at a technique developed by LeCadre and studied its 

performance by comparing it to previously developed methods and against several 

parameters. 

The scope of this effort was limited to the feasibility study of this method as far as 

its implementation is concerned.  We investigated the performance of this technique and 
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studied all other effects which may contribute to its degradation and therefore reduce the 

probability of detection. LeCadre's technique is based upon assuming an AR or (ARMA) 

model of the interference. The first step in the technique is then to estimate the order of 

the model used. The second step involves estimating the AR parameters from which a 

covariance matrix is derived. Once this matrix is obtained, it will be used in conjunction 

with the detection problem to study two direction of arrival (DOA) techniques, namely 

MUSIC and ESPRIT, using the transformed or sometimes referred to as the "whitening" 

functional obtained from the inverse of the AR parameters covariance matrix. 

Note that in this effort, we extended the ideas presented by LeCadre to include 

scenarios where signals, clutter and additive noise are included. These additions make 

this work very interesting since several improvements have been made to the original 

work. Moreover, the computer simulations of section 3 show that the results do match 

the theoretical development of section 2. 

We feel that substantial additions to the beam-forming problem have been added 

in this effort and the results of the computer simulations describe the efficacy of the 

proposed algorithms. 

Vll 



Parti 

Automated Statistical Characterization and Partitioning of Environments 

with Application to IR Data 



INTRODUCTION 

1.1 - Problem Statement 

In signal processing applications it is common to assume a Gaussian problem in 

the design of optimal signal processors. However, studies have shown that the Gaussian 

receiver performs very poorly in strong interference whenever the interference and signal 

spectra cannot be separated by filtering. For example, consider the spectra shown in 

Figure 1.1 consisting of 24 Doppler bins with uniformly spaced targets, indicated by the 

Interference . 

Target Background 

Noise 

UÜU 
16 20 24 

Doppler Bin No. 

Figure 1.1 - Targets in Non-Gaussian Interference 

small arrows, embedded in background noise and a bell shaped Gaussian interference. 

The optimal Gaussian based detector, referred to as the joint-domain localized 

generalized likelihood ratio receiver, is applied to each Doppler bin. The performance of 



the receiver1, shown in Figure 1.2, reveals that the probability of detection, PD, of the 

receiver is close to unity everywhere except for Doppler bins 11, 12, and 13 in which the 

strong Gaussian disturbance exists and PD falls rapidly to the probability of false alarm, 

PFA. 

PD 

0.2 

0.0 

1.0 

0.8 Optimal Receiver 

0.6 

0.4 
SNR = 0dB 

INR = 50dB 

PFA = 105 

Center of 
iclutter 

,!    i 
5 10 15 

Doppler Bin Number 
20 24 

Figure 1.2 - Performance of the Optimal Receiver 

Because of the fact that the interference is Gaussian and that the detector is based 

on the Gaussian distribution, we recognize that it is not possible to obtain any detection 

improvement. A question that arises is, "Could improved detection have been obtained in 

bins 11 to 13 had the disturbance been non-Gaussian ?". The answer is, "It is possible to 

achieve significant improvement in detection performance when the disturbance is non- 

Gaussian". To illustrate this answer, Table 1.1 presents the results of an example for a 

1 H. Wang, L. Cai, "On Adaptive Multiband Signal Detection with GLR algorithm." IEEE Trans, on AES, 
AES-27, no. 2, March 1991. 
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weak target in strong K-distributed clutter where the target and clutter spectra are 

coincident2 (i.e., not separable). Note that the K-distributed based detector provides 

significantly improved performance even when the PD of the Gaussian detector 

approaches the PFA. For example, with SCR=0 dB and PFA=10"5, PD equals 0.3 for the 

k-distributed detector and 10"5 for the Gaussian detector. This means that the K- 

distributed based detector can detect 3 out of 10 targets, whereas the Gaussian detector 

can detect only 1 in 100000 targets on the average. The important point is that detections 

can be made in a non-Gaussian environment using a non-Gaussian detector even when 

such performance is not possible with the Gaussian detector. Unfortunately, there are 

problems associated with non-Gaussian distributions: (1) there are a multitude of Non- 

Gaussian distributions, (2) some non-Gaussian distributions have shape parameters which 

result in different shaped probability density functions (PDFs), and (3) for a given set of 

data, it is difficult to determine which PDF can approximate the data. 

PD PD 

SCR (dB) PFA (K-Distributed (Gaussian 

Detector) Detector) 

0 IO"2 0.50 0.06 

-10 io-2 0.40 0.02 

-20 io-2 0.22 0.01 

0 IO5 0.30 IO"5 

-10 IO"5 0.25 IO"5 

-20 IO5 0.10 io-5 

Table 1.1 - Comparison of non-Gaussian and Gaussian based detectors 

The use of PDF based detectors in the implementation of likelihood ratio tests, 

LRTs, and locally optimum detectors, LODs, for the general detection problem allows us 

2 P. Chakravathi, M. A. Slamani, D. D. Weiner, "Performance of the Locally Optimum Detector in a 
Correlated K-Distributed Disturbance," Proceedings of the 1993 National Radar Conference on 
Revolutionary Developments in Radar. Wakefield, MA, April 20-23, 1993. 



to derive algorithms for performing both strong and weak signal detection, respectively, 

in a non-Gaussian environment. This is in contrast to classical detection which assumes a 

priori knowledge of the joint PDF underlying the received data and makes use of a single 

detector usually based on the Gaussian distribution. 

Note that in practice, one cannot assume a priori knowledge of the joint PDF 

underlying the received data since the received data can come from a clear region, where 

background noise alone is present, or from a clutter region, where returns are due to 

reflections from such objects as ground, sea, buildings, birds,...etc. When a desired target 

return is from a clear region and the background noise is sufficiently small, the signal-to- 

noise ratio will be large and the strong signal detector (i.e, the LRT) should be used. 

However, if a desired target return is from a clutter region, two situations can exist. When 

the desired target can be separated from the clutter by means of space-time processing 

and the background noise is sufficiently small, the signal-to-noise ratio will be large and a 

strong signal detector should again be used. When the desired target cannot be separated 

from the clutter by means of space-time processing and the clutter return is much larger 

then the desired target return, then a weak signal detector (e.g., LOD) based on the PDF 

of the clutter should be used. Use of the LOD in a strong signal situation can result in a 

severe loss in performance. Hence, it is necessary for the receiver to determine whether a 

strong or weak signal situation exists. 

Figure 1.3 summarizes the different cases which may arise depending on whether 

the target is embedded in background noise or in background noise plus clutter. This can 

result either in a strong signal case, intermediate signal case or a weak signal case. Note 

that the Gaussian assumption is used for the cases where the likelihood-ratio-test (LRT) 

and generalized likelihood-ratio-test (GLRT) detectors are utilized. For the weak signal 

case, the PDF of the region has to be approximated in order to enable the use of the 

appropriate LRT or the sub-optimal locally-optimum-detector (LOD). 

All of this suggests the necessity for a procedure to 1) continuously monitor the 

environment, 2) subdivide the surveillance volume into homogeneous patches, and 3) 

select the appropriate detector for processing the data.  In addition,  depending on 



statistical changes in the environment over time and space, the process enables the 

receiver to adapt so as to obtain close to optimal performance. This is achieved by the 

Automated Statistical Characterization and Partitioning of Environments (A'SCAPE) 

procedure, previously used successfully on simulated radar data34. 

Clear Region 1 

|   Large SDR| 

Strong 
Signal Case ] 
Gaussian 

Assumption ] 

Returns 

Desired Target| 
Return 

| Clutter Region| 

Intermediate SDR Weak SDR 

Intermediate 
Signal Case 

1 

Weak 
Signal Case 1 

I 
Gaussian 

Assumption 

LRT II 

Region PDF 
Approximation 

GLRT LRT/LOD 1 

Figure 1.3 - Different Target Cases 

3 M. A. Slamani and D. D. Weiner, "Rationale Behind the Use of Image Processing to Partition a Radar 
Surveillance Volume into Background Noise and Patches," Proceedings of the 1993 36th Midwest 
Symposium on Circuits and Systems. 
4 M. A. Slamani and D. D. Weiner, "Use of Image Processing to Partition a Radar Surveillance Volume 
into Background Noise and Patches," Proceedings of the 1993 Conference on Information Sciences and 
Systems. 



A'SCAPE uses two separate procedures to determine all homogeneous regions 

and sub-regions in the scene. The first procedure, referred to as the mapping procedure, is 

used to separate contiguous homogeneous regions by segregating between their power 

levels. The second procedure, referred to as the statistical procedure, separates contiguous 

homogeneous regions by segregating between their data distributions. The statistical 

procedure uses the Ozturk algorithm, a newly developed algorithm for analyzing random 

data5. Furthermore, the statistical procedure identifies suitable approximations to the 

probability density function for each region. Convergence of the mapping and statistical 

procedures are controlled through expert system rules as developed in Chapter 4. 

1.2 - A'SCAPE Procedure 

A'SCAPE is based on the approach to scene partitioning and statistical 

characterization originally developed at Syracuse University by Drs. M. Adel Slamani 

and D. D. Weiner. The approach consisted previously of two main stages referred to as 

Mapping and Indexing. In the first stage, clutter patches are separated from background 

noise, and, in the second stage, contiguous non-homogeneous clutter patches are 

separated from each other and the probability density function (PDF) is approximated for 

each patch. 

The approach is remodeled so that it can be applied in general to separate any set 

of contiguous non-homogeneous patches without having to require that a background 

noise be present. Also, recognizing that two procedures are used to separate regions, the 

stages of the approach have been redesigned to reflect this fact. The two main stages of 

the approach are known as (1) the Mapping procedure, which uses image processing 

means to separate between regions, and (2) the Statistical procedure, which uses 

statistical means to separate between regions. The approach is assigned the acronym 

A'SCAPE which stands for the Automated Statistical Characterization And Partitioning 

of Environments. Though using two procedures, A'SCAPE needs four blocks to achieve 

its goal of separating the different contiguous non-homogeneous regions that may exist in 

5 A.  Ozturk and E.  J.  Dudewicz,  "A New Statistical Goodness of Fit Test Based on  Graphical 
Representation," The Biomedical Journal, 1991. 



a scene. As shown in Figure 1.4, the first block is a preprocessing block that performs 

classical space-time processing on the collected data (e.g., inphase and quadrature 

components extraction, envelope detection). The second block separates contiguous 

homogeneous patches and subpatches by segregating between their average power levels 

based on the mapping procedure described in chapter 2. The next block, presented in 

chapter 3, goes one step further and separates homogeneous subpatches by segregating 

between their probabilistic data distributions. Furthermore, this block identifies suitable 

approximations to the probability density function (PDF) of each homogeneous patch and 

determines the location of outliers in the scene. The final block, labeled indexing, indexes 

the scene under investigation by assigning a set of descriptors to every pixel in the scene. 

For each pixel, the indexing is used to indicate to which homogeneous patch the pixel 

belongs, whether it is an edge pixel, whether it is an outlier, which pixels can be chosen 

as reference pixels if the pixel is to be tested, and which PDF best approximates the data 

in the pixel. Note that the reference pixels are pixels which belong to the same 

homogeneous patch and which are closest to the pixel to be tested. 

Preprocessing 

Patch & Subpatch 
Investigation Using the 

Mapping Procedure 

Outlier Search & 
Subpatch Investigation 

Using the 
Statistical Procedure 

I 
Indexing 

Figure 1.4 - A'SCAPE Block Diagram 



The forward and backward interactions between the different blocks are 

controlled through rules of an expert system shell referred to as Integrated Processing and 

Understanding of Signals (IPUS) developed jointly by the University of Massachusetts 

and Boston University6. IPUS is discussed in chapter 4. 

Note that when A'SCAPE is followed by a detection stage (e.g., target detection in 

Radar), all information needed is available for every pixel in the scene. Furthermore, 

given the PDF that can approximate the patch in which the test pixel is located, the 

appropriate detector is readily selected. This is in contrast to the classical detection 

approach where a single detector (usually the Gaussian detector) is used in processing the 

entire scene. 

The mapping and statistical procedures are presented in chapters 2 and 3, 

respectively. The expert system shell is discussed in chapter 4. An example illustrating 

the different stages of A'SCAPE when applied to real data of an IR image is given in 

chapter 5. 

6 H. Nawab, V. Lesser, et al., Integrated Processing and Understanding of Signals in Symbolic and 
Knowledge-Based Signal Processing, Edited by A.V. Oppenheim and H. Nawab, Prentice Hal, 
Ennglewood RPsiffs, N.J., 1991. 



Mapping Procedure 

2.1 - Introduction 

In this chapter, a mapping procedure is presented to partition a scene into 

homogeneous regions by segregating between the power levels of the different patches. 

Given a scene which consists of a set of non-homogeneous patches, the mapping 

procedure starts first by separating the regions into a patch with the lowest power level, 

referred to as the lowest patch (LP), and remaining patches (RPs). The procedure is then 

repeated to isolate the next patch with the lowest power level (LP) and so on until it is not 

possible to find anymore LPs. General observations are first made on LP and RPs. 

2.1.1 - Observations on LP and RPs 

Assume that a scene consists of JxK pixels and that JxK data magnitudes P(j,k) 

are available to the mapping procedure. In this case, JxK pixels need to be mapped into 

LP and RPs. Let's, examine the nature of the LP and RPs in order to understand the 

theory behind the procedure developed for mapping. 

The following observations are based on computer generated examples of LP and 

RPs data where the RPs-to-LP (RLR) ratio is assumed to be greater than 0 dB. 

2.1.1.a - Observations on LP 

- On average, the LP data values are smaller than the RPs data values. 

- Large data values exist in a LP that may be higher than some data values of the 

RPs. 

- Large data values in the LP tend to be isolated points. 

- The number of LP data significantly larger than the average is relatively small. 

Figure 2.1 shows a typical LP data histogram. 

- The relatively small number of LP pixels with large data values are distributed 

evenly throughout the LP. 

10 



Figure 2.1 - Typical LP data histogram 

2.1.l.b - Observations on RPs 

- On average, RPs data values are higher than LP data values. 

- The large RPs data values are larger than the largest LP data values assuming 

positive RPs-to-LP-Ratio (RLR). 

- Small RPs data values exist and may be smaller than the large LP data values. 

- Large data values in the RPs tend to be clustered. 

2.2 - Mapping Procedure 

Using the fact that the RPs patches, on average, have stronger magnitudes, the 

mapping procedure begins by setting a threshold that results in a specified fraction of LP 

pixels. Image processing tools based on data thresholding and region partitioning are then 

used to establish the LP and RPs patches. If the final image contains a significantly 

different fraction of LP than originally established by the initial threshold, the process is 

repeated with a new threshold. The mapping procedure iterates until it is satisfied that the 

final scene is consistent with the latest specified threshold. Then, edges of all patches are 

11 



detected using an image processing technique based on the unsharp masking78. Finally, all 

regions in the scene are assigned a unique identifying number. 

The mapping procedure is therefore composed of three steps. The first step results 

on the identification of LP and RPs, whereas the second and third steps consist of the 

enhancement and detection of patch edges and labeling of the different regions, 

respectively. These three steps are explained next. 

2.2.1 - Identification of LP and RPs 

Identification of LP and RPs is performed by the following steps: thresholding, 

quantization, corrections and assessment. 

2.2.1.a - Thresholding and Quantization 

Identification of LP and RPs starts by setting a threshold q that results in a 

specified fraction of LP declared pixels. Then, a quantized volume is formed as follows: 

all pixels with magnitude less than q are given a value of 0 (zero) and all pixels with 

magnitude above q are given a value of 1 (one). Let Q(j,k) represent the quantized value 

of the jkth pixel. Then, 

[I    if P(J,k)>q 
QU,k) = \n '   , j=l,2,...,Jandk=l,2,...,K    (2.1) 

0   if P(j,k)<q 

where P(j,k) is the magnitude of the jkth pixel. 

2.2.1.b - Corrections 

Consider a set of 3x3 pixels. As shown in Figure 2.2, let the center pixel be 

referred to as the test pixel and the surrounding pixels be referred to as the neighboring 

7 R. Gonzalez, P. Wintz, "Digital Image Processing." 2nd edition, Addison-Wisley Publishing Company, 

Nov. 1987. 

8 E. Hall, Computer Image Processing and Recognition. Academic Press, 1979. 

12 



pixels. Assume that a patch cannot be formed by a single pixel. In this case, every test 

pixel in a patch has at least one neighboring pixel that belongs to the same patch. 

A test pixel belonging to a RPs patch that has at least one neighboring LP pixel is 

referred to as a RPs edge pixel (RPsE). On the other hand, a test pixel that belongs to a 

RPs patch for which none of the neighboring pixels are in the LP is referred to as an inner 

RPs pixel. Vice versa, a test pixel belonging to a LP patch that has at least one 

neighboring RPs pixel is referred to as a LP edge pixel (LPE). Also, a test pixel that 

belongs to a LP patch for which none of the neighboring pixels are in the RPs is referred 

to as an inner LP pixel. 

D 

D 

Test Pixel 

Neighboring Pixel 

Figure 2.2 - 3x3 pixels 

The proposed correction technique consists of transforming the quantized volume 

into a "corrected" volume. The transformation consists of the following steps: 

-1. In the quantized volume, declare as LP pixels all pixels with quantized values 

Q(j,k)=0 and as RPs pixels all pixels with quantized values QJJ,k)=l. 
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- 2. Choose the necessary number of RPs neighboring pixels, NCQ, for a test pixel 

in the quantized volume to be declared as a RPs pixel in the corrected volume. NCQ can 

take one of the following values: 5,6,7,8. 

- 3. For every test pixel in the quantized volume count the number of neighboring 

RPs pixels. If the number is greater than or equal to NCQ declare the test pixel as a RPs 

pixel in the corrected volume. Otherwise, declare the test pixel as a LP pixel in the 

corrected volume. 

When all the pixels of the quantized volume have been tested, a "corrected" 

volume consisting of declared LP or RPs pixels is obtained. 

Because NCQ is chosen to be relatively large (i.e. NCQ=5,6,7 or 8), LP pixels 

that were incorrectly identified in the quantized volume as RPs pixels due to their large 

power tend to be reclassified as LP pixels. Also, inner RPs pixels in the quantized volume 

are recognized as RPs pixels in the "corrected" volume. Meanwhile, most of the RPs edge 

pixels in the quantized volume are recognized as LP pixels in the "corrected" volume. 

This results in an over-correction where most of the RPs edge pixels are identified as LP 

pixels. As an example, when NCQ=8, only inner RPs pixels in the quantized volume are 

recognized as RPs pixels in the "corrected" volume and all RPs edge pixels in the 

quantized volume are recognized as LP pixels in the "corrected" volume. In order to 

recover the edge pixels, a second correction stage is needed where the "first corrected" 

volume will be transformed into a "second corrected" volume. Let the "first corrected" 

volume be referred to as the "corrected-quantized" volume (CQV) and the "second 

corrected" volume be referred to as the "corrected-corrected" volume (CCV). The 

following steps are used to transform the CQV into the CCV: 

-1. Choose the necessary number of RPs neighboring pixels, NCC, for a test pixel 

in the CQV to be declared as a RPs pixel in the CCV. NCC can take one of the following 

values: 1,2,3 or 4. 

- 2. For every test pixel in the CQV count the number of neighboring RPs pixels. 

If the number is greater than or equal to NCC, declare the test pixel as a RPs pixel in the 

CCV. Otherwise, declare the test pixel as a LP in the CCV. 
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2.2.1.C - Assessment 

Let LPQP, LPCQP and LPCCP denote the percentage of LP pixels in the 

quantized, "corrected-quantized" and "corrected-corrected" volumes, respectively. LPQP 

is pre-specified so as to determine the threshold for the quantized volume, whereas 

LPCQP and LPCCP are computed after the CQV and the CCV are obtained. 

The assessment process consists of comparing LPCQP and LPCCP to LPQP in 

order to determine whether or not the percentages of the LP pixels after correction are 

consistent with the percentage of LP pixels in the quantized volume. When there is no 

consistency, further quantization, correction and assessment are performed until 

consistency is obtained. 

The thresholding/quantization, first correction, second correction, and assessment 

stages are used to find the best threshold to separate between LP and RPs patches. Once 

LPQP has been set a threshold is computed. Then, corrections are made to try and build 

the LP region and the RPs patches . The correction stages re-label some of the above- 

threshold pixels as LP pixels if they are likely to belong to the LP, and some of the 

below-threshold pixels as RPs pixels if they are likely to belong to a RPs patch, based on 

the choices for NCQ and NCC. Depending on the quality of the threshold choice many or 

few pixels are re-labeled. At the end of the procedure, LPCCP is computed and compared 

to LPQP, if the values are within a certain range, few pixels would have been re-labeled, 

the threshold is accepted and the assessment passes. Otherwise, many pixels would have 

been re-labeled and the threshold is rejected. The iterative process continues then by 

setting another threshold through the choice of a new value for LPQP. 

Rules for choosing NCQ, NCC and LPQP and for determining when consistency 

of the percentages is obtained are explained in Chapter 4. 

2.2.2 - Enhancement and Detection of Patch Edges 

Once the LP and RPs have been detected, The mapping procedure enhances the 

patches and detects their edges. These are done by the smoothing, edge detection and 

edge enhancement stages presented next. 
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2.2.2.a - Smoothing 

In many cases of simulated data, examples have shown that when the percentages 

are consistent, declared patches may contain isolated LP declared pixels. Because small 

magnitudes can arise in a RPs patch as explained in the Section 2.1.1, it is most likely 

that the LP isolated pixels in the RPs patches are RPs pixels. The smoothing process is 

used to detect these isolated pixels and label them adequately by transforming the CCV 

into a smoothed volume (SV). The smoothing technique consists of the following steps: 

- 1. Choose the necessary number of RPs neighboring pixels NS for a LP 

identified test pixel in the CCV to be declared as a RPs pixel in the SV where NS can 

take one of the following values: 5,6,7, or 8. 

- 2. For every LP identified pixel in the CCV count the number of neighboring 

RPs pixels. If the number is greater than or equal to NS, declare the test pixel as a RPs 

pixel in the SV. Otherwise declare the test pixel as a LP pixel in the SV. 

2.2.2.b - Detection of Patch Edges and Edge Enhancement 

(i) - Detection of Patch Edges 

After smoothing, each pixel in the SV has been declared as either a LP or a RPs 

pixel. The next step is to determine which of the RPs pixels are located on the edges of 

the RPs patches and which of the LP pixels are located on the edges of the LP patch. This 

is important for subsequent signal processing if reference pixels for estimating parameters 

of a test pixel are to be chosen properly. 

Identification of RPs edge pixels (RPsE) and LP edge pixels (LPE) is done by the 

use of an image processing technique referred to in the image processing literature as the 

unsharp masking. It consists of the following steps: 

To detect RPsE pixels 

1 - A weighting filter consisting of a 3x3 array of pixels is constructed, as shown 

in Figure 2.3, where the center pixel has a weight given by w(0,0)=8 and the neighboring 

pixels have weights given by w(-l,-l)=w(0,-l)=w(l,-l)=w(-l,0)=w(l,0)= 

w(-l,l)=w(0,l)=w(l,l)=-l. The center pixel is positioned on the test pixel. Notice that 

the weights of the filter pixels sum to zero. In particular, 
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w(-l,-l)=-l w(0,-l)=-l w(l,-l)=-l 

w(-l,0)=-l w(0,0)=8 w(l,0)=-l 

w(-l,l)=-l w(0,l)=-l w(l,l)=-l 

; 

Figure 2.3 - Weighting Filter 

" !;:ü. 

SQG-l,k-l) SQ(j,k-l) SQG+l,k-l) 

SQÖ-l,k) SQÖ,k) SQG+l,k) 

SQG-l,k+l) SQO,k+l) SQG+l,k+l) '.• 

Figure 2.4 - Quantized values of the 3x3 array corresponding to the jkth pixel 
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1      1 

X2>(w'") = 0     (2.2) 
»i=-l n--\ 

2 - Assume that the weighting filter is centered at the jkth pixel in SV. The pixels 

corresponding to the 3x3 array of the weighting filter have quantized values as illustrated 

in Figure 2.4. By definition, 

[l   if the jkth cell in SV is declared as RPs 

SQ(j,  ) = j0   if the jfoh ceii inSv is declared as LP ^ 

where j=l,2,...,J and k=l,2,...,K. 

To avoid filter pixels falling outside SV, the coordinates of the jkth pixel at which 

the filter is centered are constrained to j=2,3,...,J-l, and k=2,3,...,K-l. 

3 - Form the sum, 

i     1 S=H 5]wo,")sß(7+»a+«)  (2.4) 
m=-\ n=-\ 

- If S is equal to zero, all pixels have the same assigned value. This can 

arise only when the test pixel is not an edge pixel. 

- If S is positive, the test pixel is an edge pixel and is labeled as such. 

- If S is negative, the test pixel cannot be an edge pixel. On the other hand, 

one or more of the neighboring pixels are guaranteed to be an edge pixel. 

The three situations are illustrated in Figures 2.5-a, b, c and d. In Figures 2.5-a and 2.5-b, 

S=0 because all 9 pixels are in LP and RPs, respectively. Observe that the test pixel is not 

an edge pixel. In Figure 2.5-c, S=4>0. Note that the test pixel is an edge pixel. Finally, in 

Figure 2.5-d, S=-2<0 and the test pixel is not an edge pixel. 

To detect LPE pixels. 

First, Equation 2.3 is rewritten as follows, 

(0 if the jkth cell in SV is declared as RPs 

|l if the jkth cell in SV is declared as LP 

where j=l,2,...,J and k=l,2,...,K. 
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Figure 2.5 - Example of Unsharp Masking Technique 

(a) S=0, (b) S=0, (c) S>0, (d) S<0 

Then, step 3 above is repeated. 

At the end of the edge detection procedure, each pixel in the original volume has 

been labeled as either RPs, LP, RPsE, or LPE. 

(ifl Enhancement of Patch Edges 

The edges of the smoothed volume (SV) tend not to follow the irregular edges 

that may actually exist. Consequently, the edges are further enhanced by examining the 

magnitudes of pixels just outside the LPE pixels and the RPsE pixels. If the magnitudes 

19 



of these pixels exceed the last threshold q for which the assessment passes, they are 

declared as RPsE pixels otherwise they are declared as LPE pixels. 

At the end of the edge enhancement procedure, edges are detected and each pixel 

in the original volume is labeled as either LP, RPs, LPE, or RPsE pixel. 

2.2.3 - Labeling of Patches 

When the first round of the mapping procedure is completed, recall that the 

mapped volume has a value of 0 assigned to LP pixels and a value of 1 assigned to the 

RPs pixels. Therefore, nothing more needs to be done for the LP region as all of its pixels 

are already indexed by the number 0. On the other hand, all pixels in each of the RPs 

patches are assigned a value of 1. Thus, a numbering procedure has to be implemented to 

enable the computer to distinguish between the various RPs patches. The approach taken 

in this work is to assign every pixel in the first patch investigated the number 1, every 

pixel in the second patch investigated the number 2, and so on until all patches have been 

indexed with consecutive integers. In this way, all pixels in each RPs patch are assigned a 

unique number. 

If a pixel belongs to a new RPs patch, the key to the numbering is the ability to 

recognize this fact. This is done by considering a mask of 5 pixels as shown in Figure 2.6 

where the white pixels represent neighboring pixels and the shaded one is the test pixel to 

be numbered. 

If M(j,k) is the value assigned to the ijth pixel in the mapped volume, then 

f  0 if the jkth pixel is declared as LP 

I   1 if the jkth pixel is declared as RPs 

Assuming that the test pixel to be numbered is the jkth pixel in the original surveillance 

volume, let the assigned number be denoted by N(j,k). Also, let G denote the unique 

number assigned to the RPs patch previously investigated and H the minimum positive 

number assigned to the neighboring pixels. Then, by definition, we have that, 
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NG-l,k-l) Nö-l,k) NÖ-l.k+1) 

NG,k-l) N(j,k) 

1 Neighboring Pixel   1     1   Test Pixel 

Figure 2.6 - Mask used in numbering 

N{j,k) = 

0        IfMU,k) = 0 

G + l   If all neighboring cells are numbered 0 (2.6) 

H       If at least one of the neighboring cells is numbered nonzero 

The number G is incremented by unity whenever a new RPs patch is detected. 

Because a RPs patch boundary may be sharply shaped, as shown in the example 

of Figure 2.7, the numbering procedure may end up by assigning two different numbers 

for different pixels of the same RPs patch. This anomaly is avoided by further testing the 

neighboring pixels of the pixel to be numbered as follows: 

1 - For a given pixel to be numbered, look up the numbers assigned to the set of 

neighboring pixels (j-l>k-i), GJk-1), G+l.k-1), md Q-1M), 

2 - Take the minimum nonzero number of those in step 1, 

3 - Reassign all nonzero numbered neighboring pixels the minimum nonzero 

number from step 2, 
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4 - Revisit all the pixels in the surveillance volume that have been numbered so 

far. If any pixel is assigned a nonzero number identical to one of those in step 1, reassign 

that pixel the minimum nonzero number of step 2. 

For example, with respect to Figure 2.7, the above steps have the effect of 

assigning a value of 1 to all pixels of the RPs patch shown. 

Once numbering is completed, the LP pixels are assigned a value of 0, and every 

RPs patch is assigned a unique positive number. 

Figure 2.7 - Example of a sharply shaped boundary 

2.3 - Conclusion 

The mapping procedure consists of the following steps: thresholding/quantization, 

correction, assessment, smoothing, edge enhancement, edge detection, and labeling of 

patches. As explained in the previous sections and shown in Figure 2.8, these are 

subdivided into three main stages referred to as the Identification of LP and RPs, the 

detection of patch edges, and labeling of patches, respectively. 
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Figure 2.8 - Block Diagram of the Mapping Procedure 

As stated before, once numbering is completed, the LP pixels are assigned a value 

of 0, and every RPs patch is assigned a unique positive number. 

Recall that mapping consists of appropriately selecting a threshold to distinguish 

between LP and RPs patches using only the assumption that the LP magnitudes, on 

average, are smaller than the RPs magnitudes. This same approach may be used once 

again to extract a LP subpatch from a set of contiguous RPs subpatches of higher 

magnitudes  in a given RPs patch.  In this case,  the RPs patch containing non- 
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homogeneous RPs subpatches will be viewed as a volume containing a RPs subpatch 

region with low power level and a set of subpatches with higher power levels occupying 

the rest of the RPs patch area. 

The mapping procedure is therefore used to extract the RPs subpatch with the 

lowest power (which becomes an LP) from among the remaining RPs subpatches in a 

given RPs patch. Because the numbering stage has already labeled each patch with a 

unique number it is straight forward for the program to select a patch and check for the 

presence of subpatches in it. 

For each RPs patch, the mapping procedure is performed iteratively until it is 

hypothesized that every subpatch in a given RPs patch is homogeneous and cannot be 

partitioned further. After all RPs subpatches have been extracted, the surveillance volume 

will consist of a set of homogeneous patches with different power levels. 
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3 

Statistical Procedure 

3.1 - Introduction 

In Chapter 2, a mapping procedure was presented to partition a scene into 

homogeneous regions by segregating between the power levels of the different patches. 

When no more patches (sub-patches) can be found, the mapping procedure ends and is 

followed by the statistical procedure. The statistical procedure is applied to every 

homogeneous previously declared patch or subpatch to (1) further separate non- 

homogeneous subpatches having very similar power levels but different statistical 

distributions, (2) locate outliers in the scene, and (3) approximate the probability density 

function (PDF) of each homogeneous region. 

The Ozturk algorithm is used by the statistical procedure to approximate the PDF 

of each patch and is presented next followed by the definition of outliers. The strategy 

used in the statistical procedure is discussed in the last subsection. 

3.2 - Introduction to the Ozturk Algorithm 

The Ozturk algorithm is based on sample order statistics and is used for univariate 

distribution approximation. This algorithm has two modes of operation. In the first mode, 

the algorithm performs a goodness of fit test. The test determines, to a desired confidence 

level, whether the random data is statistically consistent with a specified probability 

distribution. In the second mode of operation, the algorithm approximates the PDF 

underlying the random data. In particular, by analyzing the random data and without any 

a priori knowledge, the algorithm identifies from a stored library of PDFs that density 

function which best approximates the data. Estimates of the location, scale, and shape 

parameters of the PDF are provided by the algorithm. The algorithm has been found to 

work reasonably well for observation sizes as small as 100. Throughout this work, 100 

reference pixels are selected for approximating the PDF of each test pixel. Note that when 

a region contains less than 100 pixels it is discarded and is not processed by the statistical 

procedure stage. 
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3.2.1 - Goodness of Fit Test 

The goodness of fit test determines whether or not the set of data samples 

provided to the algorithm is statistically consistent with a specified distribution, referred 

to as the null hypothesis. Let NR denote the number of reference pixels. For the null 

hypothesis, the program utilizes a Monte-Carlo simulation of 2,000 trials to generate an 

averaged set of NR linked vectors in the UV plane, as shown in Figure 3.1. Using the 

standardized sample order statistics of the data, the program then creates a second system 

of NR linked vectors in the UV plane. The terminal points of the linked vectors, as well 

as the shapes of their trajectories, are used in determining whether or not to accept the 

null hypothesis. The null hypothesis is the distribution against which the sample data is to 

be tested. 

V 

Confidence 
Ellipse 

Linked 
Vectors 

Accept 
Reject 

Figure 3.1 - Goodness of fittest 

The algorithm provides quantitative information as to how consistent the sample 

data set is with the null hypothesis distribution by use of confidence contours where each 

contour is derived from a specified probability that the end point falls within the contour 
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given that the data comes from the null distribution. An example of these contours is 

shown in Figure 3.1 for probabilities of 0.9, 0.95, and 0.99. If the end point of the sample 

data linked vector locus falls within a contour, then the sample data set is said to be 

statistically consistent with the null hypothesis at a confidence level based on the 

probability specified for that contour. If the sample data set is truly consistent with the 

null hypothesis, the system of sample linked vectors is likely to closely follow that for the 

system of null linked vectors. 

3.2.2 - Approximation Chart Mode 

The approximation chart mode is simply an extension of the goodness of fit test 

mode. Following a similar approach to that outlined in the section for the goodness of fit 

mode, random samples are generated from a library of different univariate probability 

distributions. In the goodness of fit test mode, the locus end point was obtained for the 

null hypothesis and sample size, NR. For the approximation chart mode we go one step 

further by obtaining the locus end point for each distribution from the library of 

distributions for the given sample size, NR, and for various choices of the shape 

parameter(s). Thus, depending on whether it has a shape parameter or not, each 

distribution is represented by a trajectory or point in the two dimensional UV plane. 

Figure 3.2 shows an example of the approximation chart. Note that every point in the 

approximation chart corresponds to a specific distribution. That point closest to the 

sample data locus end point is chosen as the best approximation to the PDF underlying 

the random data. This closest point is determined by projecting the sample locus end 

point to all points on the approximation chart and selecting that point whose 

perpendicular distance from the sample point is the smallest. Once the PDF underlying 

the sample data is selected, the shape, location and scale parameters are then 

approximated. 

3.3 - Outliers 

Outliers that may exist in a set of reference pixels would seriously change the 

statistical distribution of the set of data under examination. Outliers can cause a problem 
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Figure 3.2 - Approximation Chart, N=Normal, U=Uniform, E=Negative 
Exponential, A=LapIace, S=Logistic, C=Cauchy, V=Extreme Value, T=GumbeI 

type-2, G=Gamma, P=Pareto, W=Weibull, L=Lognormal, K=K-distributed, 
B=Beta, and SU=Su-Johnson 

in correctly approximating the PDF underlying a set of data by significantly altering the 

set of linked vectors generated by the Ozturk algorithm. This has been illustrated through 

an example in9 where a set of NR=100 reference data, referred to as set A, were generated 

from the Lognormal distribution with shape parameter 0.01. Also, another set, referred to 

as set B, was formed which contained 97 data points from set A and three data points 

9 M. A. Slamani, "A New Approach to Radar Detection Based on the Partitioning and Statistical 
Characterization of the Surveillance Volume," Ph.D., Syracuse University, December 1994. 
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with very small values to constitute the outliers in the set. The two sets were processed by 

the Ozturk algorithm and have their locus end points (indicated by the arrow) reproduced 

in the approximation charts of Figures 3.3 and 3.4. Note how the end 

0.5 

Figure 3.3 - Approximation chart for the end point of set A 

point in Figure 3.4 for the set containing outliers (set B) is far removed from the 

Lognormal PDF from which 97 out of the 100 data points of set B were generated. 

Investigating the cause, it was noted that the linked vectors in set B are smaller than those 

of set A causing the locus end point for set B to fall way below the end point for set A 

and, therefore, outside the confidence ellipses. This is due to the fact that the amplitudes 

of the linked vectors are proportional to the magnitude of the standarized data which 

depend on the mean and standard deviation of the set. The three outliers do not affect 
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significantly the mean of the set but do increase the variance tremendously causing the 

standardized data and, therefore, the amplitudes of the linked vectors to become smaller. 

In that example, the mean and standard deviation for set A are equal to 32.54 and 4.69, 

respectively, while the mean and standard deviation for set B are equal to 31.63 and 

18.08, respectively. This example illustrates what can happen when three LP pixels with 

small data values are misidentified and associated with a set of RPs pixels. 
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Figure 3.4 - Approximation chart for the end point of set B 

Outliers may be due to (1) misidentified LP pixels in the RPs or vise-versa, (2) pixels 

having data values of very low probability of occurrence, (3) pixels with non- 

representative data, and (4) pixels containing signals from strong targets. One way to 

identify outliers within a region composed of a set of 100 reference pixels is to compute 
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the mean m and the standard deviation s within that region and designate as an outlier any 

pixel whose data value falls outside the interval [m-ks,m+ks] where k is an empirical 

parameter (usually between 1.5 and 3) to be set by the user. In our case k is set equal to 2. 

3.4 - Test pixel selection 

In order to approximate the PDF of a given RPs patch, a set of test pixels is 

chosen in that RPs patch. Also, 100 reference pixels are identified for each test pixel that 

belong to the selected RPs patch and are the closest to the test pixel in order to obtain the 

approximating PDF for each test pixel. This will provide information on how the data is 

distributed in the selected RPs. Thus it is important to know how to select the test pixels 

and their corresponding reference pixels. Test and reference pixels selection involves 

three steps: 

1. A RPs patch is chosen from among the declared RPs patches. This can be done 

automatically by the program since at this stage every RPs patch has been labeled 

with a unique number. 

2. A set of NT test pixels is then chosen in the RPs patch being processed where the 

value of NT depends upon the extent to which the patch needs to be characterized. 

Note that any pixel in the RPs patch can be a test pixel. The best choice for the test 

pixels is when they are evenly spread throughout the entire area of the RPs patch. 

3. Finally, for each test pixel, a set of reference pixels is selected. The reference pixels 

must be in the same RPs patch as the test pixel and should be the closest to it because 

of the assumption that the reference pixels are representative of the test pixel. 

In order to select the reference pixels for a given test pixel, the program starts by 

centering a 3x3 mask around the test pixel and choosing as reference pixels those 

neighboring pixels within the mask that are declared to be in the same RPs patch as the 

test pixel. If the desired number of reference pixels are not obtained, the program 

increases the size of the mask by adding one row and one column to each boundary of the 

3x3 mask. This results in a 5x5 mask where only the pixels in the augmented rows and 

columns need to be examined. The process of adding one row and one column to each 
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boundary of the previous mask continues until the desired number of reference pixels 

have been obtained. 

3.5 - Strategy to Sub-Patch Investigation Using the Statistical Procedure 

The statistical procedure is applied to every patch and subpatch that has been 

declared as being homogeneous by the mapping procedure. For each patch or subpatch, a 

set of test pixels evenly spread throughout the patch and their 100 closest reference pixels 

are first selected. Let each set of 100 pixels be referred to as a tile. As explained in the 

previous Section, note that the sets of 100 reference pixels are chosen to be disjoint, the 

closest to and belonging to the same patch as their respective test pixels. As shown in the 

block diagram of Figure 3.5, the statistical procedure consists of four steps that are 

performed as follows: 

1. Using the goodness of fit test of the Ozturk algorithm, a Gaussianity check is 

performed on every tile to ensure whether the data in the tile are Gaussian or not. This 

results on every patch having its tiles labeled as either Gaussian or non-Gaussian. 

/ \ 
First Gaussianity Check 

c 
V. 

Outliers Location 

I 
PDF Approximation 

Second Gaussianity 
Check with 

excised Outliers 

J 
Figure 3.5 - Statistical Procedure 
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2. Existing outliers are located in those tiles declared as non-Gaussian. 

3. For every non-Gaussian declared tile, pixels with outliers are excised from the tile and 

replaced with the closest pixels to the tile whose data are not outliers. Next, the 

Gaussianity check is performed once again as in step (1). At the end of this step, each 

patch will have tiles declared as Gaussian or non-Gaussian and pixels with outliers. 

4. Using the Ozturk algorithm, the (U,V) coordinates of the locus end point is obtained 

for every tile declared as non-Gaussian in step (3). Next, a check is made to ensure 

whether or not the data of the set of tiles which constitutes a sub-patch can fit within a 

confidence ellipse. This is done by first declaring a subpatch every set of contiguous 

non-Gaussian tiles. Then, computing the average (Uav,Vav) coordinates of all test 

pixels of the same subpatch and getting its best approximating PDF and the 

corresponding confidence ellipse. Finally, a check is made whether all (U,V) 

coordinates of the test pixels are within the confidence ellipse of the average 

coordinates (Uav,Vav). If not, the tiles are regrouped so that all (U,V) coordinates for 

each group of tiles can fit within the same ellipse as their corresponding average 

(Uav,Vav) coordinates. Each group forms then a subpatch. 

When the statistical procedure ends, each pixel in every patch is declared as 

Gaussian, non-Gaussian, or outlier. In addition, existing subpatches formed by the sets of 

contiguous tiles, whose (U,V) coordinates fit under the same confidence ellipse as their 

corresponding average (Uav,Vav) coordinates, are detected. 
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4 

Expert System Shell IPUS 

4.1 - Introduction 

The expert system shell used to control the different stages of the mapping and 

indexing procedures is the Integrated Processing and Understanding of Signals (IPUS) 

developed jointly by the University of Massachussets and Boston University. IPUS 

architecture utilizes the fact that signal processing theories supply the system designer 

with a signal processing algorithm (SPA) that has adjustable control parameters. Each 

instance corresponding to a particular set of fixed values for the control parameters is 

referred to as an SPA instance. The IPUS architecture is designed to search for 

appropriate SPA instances to be used in order to accurately model the unknown 

environment. The search is initiated by detection of a discrepancy at the output of a given 

SPA due to the fact that the signal being monitored by the SPA does not satisfy the 

requirements of the SPA instance. Once a discrepancy has been detected, a diagnosis 

procedure is used to identify the source of the distortion that may have led to the 

discrepancy. Then, either parameters of the same SPA can be readjusted or a different 

SPA can be chosen to reprocess the data. 

In our case of interest, each block in the different stages of the A'SCAPE 

processor consists of an SPA and SPA instances. Rules have been developed which 

enable the detection of discrepancies at the output of the SPAs, and identification of 

different possible distortion sources that would cause the discrepancies. Note that the 

arrows connecting different blocks in Figures 1.4, 2.8, and 3.5 are bi-directional. This is 

to allow for a system to assess its decisions, correct any discrepancies, and adapt to any 

changes in the environment being monitored. 

4.2 - IPUS 

The IPUS architecture has evolved from research on the design of a sound 
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understanding system10. The goal of such a system is to identify the origins of various 

sound sources (such as telephones, vacuum cleaners, crying infants, etc.). The complexity 

of the sound understanding problem arises because of two factors: 

1. The need to process a tremendous variety of signal types due to the situation 

dependent nature of the input. For example, not only may the input of a sound 

understanding system include different types of signals, such as narrow-band, 

impulsive, harmonic signals, but may also include various combinations of these 

signals. 

2. The need to change processing goals in a context dependent way. For example, the 

goal of a signal understanding system might be to respond to either the sounds of an 

infant or a ringing telephone and to ignore other sound sources. If an infant sound is 

detected, the system would then ignore the telephone and would switch its main goal 

to determining whether the infant is laughing, crying or choking. 

These two factors also arise in the image processing problem addressed in this report. 

Specifically, complexity is encountered because of: 

1. The need to process a tremendous variety of signal types due to the situation 

dependent nature of the input. For example, the PDFs of the random data in the pixels 

may be Gaussian, Weibull, K-distributed, etc., with various values for the scale, 

location, and shape parameters. 

2. The need to change processing goals in a context dependent way. For example, the 

usual operational mode in imaging is the enhancement and segmentation of regions. If 

a region has suspicious characteristics (e.g., isolated tiny region that may be a target, 

or signs of a tumor in medical imaging) the operational mode should change into 

isolating the area and investigating its nature. 

10 H. Nawab, V. Lesser, et al., Integrated Processing and Understanding of Signals in Symbolic and 
Knowledge-Based Signal Processing. Edited by A.V. Oppenheim and H. Nawab, Prentice Hal, 
Ennglewood RPsiffs, N.J., 1991. 
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The algorithms employed in the IPUS architecture to identify the mathematical 

models for all operations of A'SCAPE (e.g., partitioning, detecting edges, approximating 

PDF) are referred to as signal processing algorithms (SPA's). 

Because of the two factors mentioned previously, it is very difficult, or even 

impossible, to design a single mathematically derived signal processing algorithm that 

can be applied to all possible input signals to produce the desired information for each 

input. To deal with such complexities, the approach taken in the IPUS architecture is for 

the signal understanding system to have access to a "data-base" of mathematically 

derived algorithms. For the imaging problem, examples are partitioning algorithm, edge 

enhancement and detection algorithms, goodness of fit test algorithm, and the PDF 

approximation algorithm. This data base is indexed by the type of assumptions made 

about the input signal and the type of output information desired in accordance with the 

current goals of the signal understanding system. 

For example, it may be assumed that the region under investigation is Gaussian. A 

goodness of fit test algorithm would be applied to determine whether the data is 

statistically consistent with the Gaussian assumption. If the Gaussian assumption is not 

rejected, then the desired output information would be the location and scale parameters. 

The IPUS architecture utilizes the fact that signal processing theories often supply 

a system designer with a signal processing algorithm that has adjustable control 

parameters (sampling period of data samples, number and location of reference pixels, 

etc.). SPA denotes a data base of SPA "instances", each instance corresponding to a 

particular set of fixed values for the control parameters. The IPUS architecture is 

designed to search for appropriate SPA instances to be utilized in particular situations in 

order to accurately model the unknown environment. 

Two basic approaches for carrying out the signal processing are: 

1. Process the incoming signal with all the SPA-instances that are potentially relevant to 

the entire class of possible input signals in the application domain and then choose the 

output data that has the most consistent interpretation. This approach requires vast 
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amounts of signal-processing output data to be examined by the higher level 

interpretation processes. 

2. Process the incoming signal with one or a small number of the possibly relevant SPA 

instances, then use some mechanism to recognize if incorrect processing has taken 

place. This is followed by determining the nature of the incorrect processing through 

a diagnostic reasoning process, and finally changing the parameter settings of the 

SPA with the goal of obtaining an SPA-instance which is appropriate for the 

processing of the input signal. The SPA-instance with adjusted control parameter 

settings is then used to reprocess the input signal. 

In order to select appropriate values for the SPA control parameters, the system 

must consider the current system goals as well as knowledge about certain characteristics 

of the particular input signal. This leads to the dilemma that choosing the appropriate 

control parameter values requires knowledge about the signal, but this knowledge can 

only be obtained by first processing the signal with an algorithm with appropriate control 

parameter setting. The IPUS architecture uses an iterative technique for converging to the 

appropriate control parameter values. The technique begins by using the best available 

guess for the SPA control parameters values. The SPA instance output is then analyzed 

through a discrepancy detection mechanism for indicating the presence of distorted SPA 

output data. A diagnosis is then performed for mapping the detected discrepancies to 

distortion hypotheses. A signal reprocessing phase then proposes a new set of values for 

the control parameters of the SPA with the goal of eliminating the hypothesized 

distortions. The SPA instance corresponding to the new control parameter values is then 

used to reprocess the input signal. The output from the reprocessing once again undergoes 

discrepancy detection and if necessary is followed by diagnosis, signal reprocessing 

planning, and further reprocessing of the input signal. 

The signal data and the interpretation hypotheses derived from that data are stored 

on a blackboard with hierarchically organized information levels. The hypotheses on the 

blackboard fall into two basic categories: hypotheses posted to explain the signal data and 

hypotheses posted to specify expectations about the nature of the signal data. The 
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inferencing on the blackboard is performed by different knowledge sources (KS's) for 

tasks such as discrepancy detection, diagnosis and reprocessing, and data interpretation. 

These tasks are presented in the following sections. 

4.2.1 - Discrepancy Detection 

Ideally, application of an SPA instance to input data results in undistorted output 

data. However, if the control parameters of the SPA instance are not appropriately 

chosen, distorted output data may result. The key to discrepancy detection is the ability to 

recognize and Classify discrepancies due to distortion introduced by the SPA instance. 

Three types of discrepancies are possible: 

1 - The first type of discrepancy is referred to as a violation. A violation occurs 

when the SPA output data implies the presence of a signal that is not a member of the 

allowable Class of input signals. For example, disturbances arising from pixels in a clear 

region are always modeled as Gaussian processes because of the expectation that 

background noise is Gaussian. Suppose that the output data from an SPA instance implies 

that the disturbance from a pixel in the Clear region is non-Gaussian. This constitutes a 

violation type of discrepancy. 

2 - The second type of discrepancy is referred to as a conflict. A conflict occurs 

when the current SPA output data is inconsistent with expectations arising from 

interpretations of past data. There are two types of conflicts depending upon whether all, 

or only a portion, of the current SPA output data is inconsistent. For an example of the 

first type of conflict, suppose previous SPA output data arose from disturbances in the 

clear region while current SPA output data is arising from disturbances in a patch. A 

conflict of the first type occurs if all of the current SPA output data, such as an increase in 

variance and non-Gaussianity of the data, conflict with previous interpretations from the 

clear region: For an example of the second type of conflict, suppose that previous SPA 

output data has resulted in the interpretation that the disturbance is from the Clear region. 

This might be implied by the SPA output data indicating Gaussian statistics, zero mean, 

and a variance level in the range of the background noise. A conflict of the second type 

occurs when, even though Gaussian statistics are confirmed by the current SPA output 
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data, they also reveal that the mean is no longer zero and the variance level has increased 

significantly. This could happen if the disturbance is now coming from a Gaussian patch 

where the data is highly correlated. 

3 - The third type of discrepancy is referred to as a fault. A fault can also arise in 

two different ways. The first kind occurs when two or more different SPA's that are 

applied to the same data result in different output interpretations. The other kind occurs 

when two or more instances of a single SPA (i.e., the same SPA with different parameter 

values) result in different interpretations when applied to the same data. An example of 

the first kind of fault would be the situation where SPA # 1, a power level detector, 

indicates a power level consistent with the background noise while SPA # 2, Ozturk's 

distribution identification algorithm, indicates a non-Gaussian distortion. This is a fault 

because the background noise is assumed to be Gaussian. An example of the second kind 

of fault would be the situation where use of Ozturk's algorithm based on 100 and 200 

samples from the same patch result in a different interpretation. 

4.2.2 - Diagnosis and Reprocessing 

When the signal being monitored does not satisfy the requirements of the SPA 

instance, the output of the SPA is distorted resulting in a discrepancy. Once a discrepancy 

has been detected, a diagnosis procedure is used to identify the distortion that may have 

led to the discrepancy. Knowing the distortion, then either the appropriate parameters of 

the same SPA can be adjusted or a different SPA chosen to reprocess the data. In a sense, 

the diagnosis procedure maps symptoms (discrepancies) to hypothesized underlying 

causes (distortions). For example, assume the sample mean of a patch is repeatedly being 

evaluated by processing 100 samples at a time. Although, the first eight trials result in 

values close to zero, the nineth trial produces a large negative value for the mean. This 

represents a conflict of the first kind. The diagnosis procedure may surmise that the 

conflict may be due to the presence of one or more outliers. Consequently, the 

reprocessing procedure concludes that the data from the ninth trial should be reprocessed 

using a median detector. 
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4.2.3 - Interpretation Process 

The interpretation process is a search through a space of sets of interpretation 

models for modeling signals. When a possible combinatorial explosion in interpretation 

models does not exist, the interpretation process may be viewed as just a straight forward 

classification process. Otherwise, the search must be carried out as a constructive 

problem solving process. The IPUS architecture employs the constructive problem 

solving approach which reduces to the classification approach in the absence of a 

combinatorial explosion. 

Constructive problem solving techniques must be used when the set of possible 

solutions is too large to be enumerated. For example, although the set of PDF types is 

finite in the radar problem, there are an infinity of different PDF's possible because of the 

infinity of values that can be assumed by the scale, location, and shape parameter. 

Consequently, constructive problem solving is needed to approximate the underlying 

probability distribution of the data. 

4.3 - Use of IPUS in A'SCAPE 

The IPUS architecture is suitable when a single SPA-instance cannot correctly 

process all the input signals that can potentially arise in a signal understanding 

application. In the scene understanding problem, the variety of average magnitude levels 

in patches and probability distributions underlying the data along with the different tasks 

to be carried out in A'SCAPE during the monitoring the environment (mapping, 

statistical processing, and pixel indexing) necessitates more than one SPA-instance. 

Hence, IPUS is suitable for the scene understanding problem. Next, use of IPUS to 

control the mapping and statistical procedures is discussed. 

4.4 - IPUS and the Mapping procedure 

Observations are made next on the different control parameters to set the stage for 

the design of the different rules to enable IPUS to control the mapping procedure. 
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4.4.1 - Observations on Setting the Control Parameters 

In this section, different effects of the control parameters are discussed. Note first 

that the intervals for the allowable values of the control parameters are given in Chapter 

2.0 and are equal to, 

0% < LPQP < 100% 

5<NCQ<8 (4.1) 

1 < NCC < 4 

Recall that LPQP represents the fraction of LP pixels in the quantized volume. It 

is used to determine the threshold q for which all pixels with data amplitudes below q are 

identified as LP and all pixels with data amplitudes above q are identified as RPs in the 

quantized volume. 

Also, NCQ is the minimum number of neighboring pixels in the quantized 

volume required to be identified as RPs pixels for a test pixel to be declared as a RPs 

pixel in the first-corrected volume. Finally, NCC is the minimum number of neighboring 

pixels in the first-corrected volume required to be identified as RPs pixels for a test pixel 

to be declared as a RPs pixel in the second-corrected volume. 

LPCQP and LPCCP are computed parameters which represent the LP percentages 

in the first and second-corrected volumes, CQV and CCV, respectively. 

Define LPQPt to be the true value for the fraction of LP pixels in the generated 

scene. 

As explained in Chapter 2 the mapping processor begins by setting a threshold 

that results in a specified fraction of LP pixels equal to LPQP. The mapping processor 

iterates until it is satisfied that the latest scene is consistent with the last specified value of 

LPQP. When the iteration process ends, it is assumed that 

LPQP = LPQPt (4.2 ) 
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4.4.1.a - Observations on the Setting of LPQP 

1. Setting LPQP much smaller than LPQPt: Many pixels have data amplitudes larger 

than the threshold resulting in a large number of LP pixels being declared as RPs 

pixels in the quantized volume. 

2. Setting LPQP much larger than LPQPt: RPs patch pixels may be misclassified due 

to the fact that some RPs patches have data amplitude values below the threshold. 

This results in many RPs pixels being identified as LP pixels in the quantized volume. 

Conclusion: The threshold is always set very low at the beginning so that LP 

information is gained as the process iterates. Because (1) the objective of the mapping 

procedure is to separate between LP and RPs patches, (2) the average power of the LP is 

the lowest among all regions, and (3) the threshold is set adaptively by the assessment 

stage, the threshold, controlled by the assessment stage, is raised adaptively until 

LPQP = LPQPt. 

4.4.1.b - Observations on the Setting of NCQ 

Recall that NCQ controls which test pixels in the first-corrected volume are to be 

declared as RPs. NCQ is said to be large when its value approaches 8 and small when its 

value approaches 5. The following observations relative to NCQ take into consideration 

that the initial setting of LPQP is low and then is increased until LPQP approximates the 

true value LPQPt. Depending on the setting of LPQP with respect to LPQPt, four cases 

exist: 

1.   LPQP much smaller than LPQPt: 

a) Setting NCQ small: In this case, because many RPs declared pixels exist in 

the quantized volume due to the low threshold, small NCQ results in the 

building of a multitude of RPs patches which are likely to be so close that they 

form a single big RPs patch in the first-corrected volume. 

b) Setting NCQ high: Here, even though many RPs declared pixels exist in the 

quantized volume due to the low threshold, high NCQ results in the building 

of fewer RPs patches than when NCQ is small. This is due to the fact that 
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there must be at least NCQ RPs pixels neighboring the test pixel in the 

quantized volume, where NCQ is large, in order for the test pixel to be 

declared as a RPs pixel in the first-corrected volume. In this case, corrections 

are made and some of the pixels previously declared as RPs pixels in the 

quantized volume are now declared as LP pixels in the first-corrected volume. 

2. LPQP close to LPQPt: When LPQP is close to its true value, the threshold is high 

enough to separate between the LP region and RPs patches. With either small or large 

values for NCQ, the RPs regions are well approximated. In this case, the choice of 

NCQ affects the classification of the inner pixels of the RPs regions. This results 

because, even though the data amplitudes of RPs pixels are higher than those of the 

LP pixels, in general, some RPs pixels with data amplitudes lower than those of the 

highest LP data values exist and may be lower than the threshold. 

a) Setting NCQ small: All test pixels in the quantized volume that have at least 

NCQ neighboring pixels are declared as RPs pixels in the first-corrected 

volume. Small NCQ helps to correctly classify the inner RPs pixels. However, 

note that small NCQ also results in misclassifying LP pixels that are 

surrounded by at least NCQ declared RPs pixels. 

b) Setting NCQ high: Every test pixel must have a large number of neighboring 

RPs declared pixels in the quantized volume for it to be declared as a RPs 

pixel in the first-corrected volume. This causes the procedure to misclassify 

some of the inner RPs pixels when too many of the neighboring pixels have 

their data amplitudes falling below the threshold. In this case, the identified 

RPs regions are not homogeneous and contain LP declared "holes". 

Conclusion: The value of NCQ should be chosen as large as possible at the 

beginning of the iterative process when the threshold is set very low to correctly 

reclassify the maximum number of LP pixels misidentified at the 

thresholding/quantization stage. When the threshold reaches a level where it is close to its 

convergence value, NCQ should then be chosen small to avoid non-homogeneous RPs 

regions. 
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4.4.1.C - Observations on the Setting of NCC 

Because NCQ truncates the boundaries of the RPs regions, NCC is used to 

augment the edges of the RPs declared regions. NCC is said to be large when its value 

approaches 4 and small when its value approaches 1. In the following discussion it is 

assumed that the conclusions previously reached on the settings of LPQP and NCQ are 

taken into consideration so that LPQP is initially set low to be increased until it 

approaches its true value LPQPt, while NCQ is initially set to a large value, to be 

decreased as LPQP approaches its true value. Four cases are then identified: 

1. LPQP much smaller than LPQPt and NCQ large: Because NCQ is set large, many 

RPs edge pixels are misclassified and associated with the LP region. 

a) Setting NCC small: When NCC is set small, many of the edge pixels are 

correctly reclassified from LP pixels to RPs pixels in the second-corrected 

volume. 

b) Setting NCC large: In this case, only a few misclassified RPs edge pixels are 

correctly reclassified in the second-corrected volume. 

2. LPQP close to LPQPt and NCQ small: Because NCQ is small, only a few RPs edge 

pixels are associated with the LP. 

a) Setting NCC small: Small NCC causes not only RPs edge pixels to be 

recovered but also LP pixels to be misclassified in the second-corrected 

volume. 

b) Setting NCC large: In this case, most of the RPs edge pixels are correctly 

classified in the second-corrected volume and only few LP pixels are 

misclassified as RPs pixels. 

Conclusion: NCC results in the recovery of RPs edge pixels and the 

misclassification of some LP pixels close to the RPs edge pixels. In order to maximize 

recovery of the RPs edge pixels and minimize the misclassification of LP pixels, NCC 

should be set small when NCQ is set large in order to recover many of the RPs edge 

pixels that were lost in the first-correction. On the other hand, NCC should be set large 
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when NCQ is set small because, in this case, only a few RPs edge pixels need to be 

recovered. 

4.4.2 - Resolution of Discrepancies 

In this section, rules are developed to enable the resolution of discrepancies. The 

assessment stage of the mapping procedure consists of comparing at each step of the 

iteration the value for LPCCP with the corresponding LPQP. When LPCCP is not 

sufficiently close to LPQP, the assessment stage is said to fail. This initiates the 

discrepancy detection stage. Diagnosis identifies the distortion that may have caused the 

discrepancy and adjusts one or more of the mapping control parameters for reprocessing 

of the data. 

The strategy behind the iterative process of the mapping procedure employs two 

stages. In the first stage, referred to as the threshold approximation stage, LPQP is varied 

iteratively by the mapping processor until, as explained later, it is expected that LPQP is 

within 10% of its true value LPQPt. The second stage, referred to as the threshold fine- 

tuning stage, consists of iteratively varying LPQP until it converges to within 1% of the 

last computed value for LPCCP. The two stages are now discussed in detail. 

4.4.2.a - Discrepancies in the Threshold approximation stage 

During this stage, two sets of SPA instances are used on the same data of the 

surveillance volume. For both sets LPQP and NCC are the same whereas NCQ is equal to 

7 for one set and 8 for the other. 

In order to understand how the rules are set in this stage, it is important to 

subdivide the problem into two cases. Case I describes the situation where the LP and 

RPs patches have histograms with large area of overlapping whereas case II describes the 

situation where the LP and RPs patches have histograms with small area of overlapping 

to non-overlapping. 

Case I - LP and RPs whose histograms have large area of overlap 

Recall that NCQ is used to recognize the RPs patches in the surveillance volume. 

First consider the situation where LPQP approximately equals LPQPt. Here the threshold 
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is such that it is possible to do a good job of separating between the LP region and RPs 

patches. Steps are then taken to correct misclassified LP and RPs data. Note that 

misclassifications are due to large LP data exceeding the threshold and small RPs data 

falling below the threshold. At this point, setting NCQ to 7 and 8, respectively, results in 

very close values for LPCQP and LPCCP due to the facts that (1) the two masks are very 

similar (NCQ=8 requires that 8 neighboring pixels be declared RPs in the quantized 

volume for a test pixel in the first-corrected volume to be declared RPs whereas NCQ=7 

requires that 7 neighboring pixels be declared RPs in the quantized volume for a test pixel 

in the first-corrected volume to be declared RPs), (2) only a few pixels are misclassified 

in the quantized volume. 

Now consider that LPQP is significantly smaller than LPQPt. In this case many 

LP pixels are misclassified after quantization. Even though masks with NCQ equal to 7 

and 8 are similar, they result in LPCQP and LPCCP being considerably different due to 

the fact that the large number of misclassified LP pixels are so many that they tend to 

group together. Consequently, changing NCQ from 8 to 7 simply results in additional LP 

pixels grouping together to form additional RPs regions and more edges. Because of this, 

LPCQP|NCQ.7<LPCQP|NCQ.8 

and (4.3) 

LPCCP|NCQ=7 < LPCCP|NCQ=8 . 

Because the second-corrected volume represents the scene where RPs patches and 

their edges are assumed to be properly recovered had the threshold LPQP been chosen 

properly, LPCCP tries to converge to LPQPt. Thus, it is logical to begin each iteration by 

assigning to LPQP the latest computed value of LPCCP|NCQ=8. The very first value 

assigned to LPQP is simply a guess. This value should be such that the threshold is low. 

In all of our examples, the first value of LPQP is chosen equal to 10%. 

Using different scenes with different values for LPQPt, it has been determined 

near convergence that whenever the difference between LPCCP|NCQ=7 and LPCCP|NCQ=g is 

within 10%, then LPQP is likely to be within 10% of its true value. This is confirmed in 
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Figure 4.1 where plots of the quantities LPCCP|NCQ=8 - LPCCP|NCQ=7 versus LPQP-LPQPt 

are shown for different values of LPQPt. Note that 

- i - for different values of LPQPt, all plots are such that near convergence the 

difference LPCCP|NCQ=8 - LPCCP|NCQ=7 approaches zero when LPQP-LPQPt also 

approaches zero, 

- ii - for different values of LPQPt, when LPQP-LPQPt > -10%, the difference 

LPCCP|NCQ=8 - LPCCP|NCQ.7 < 10%. 

As a result of the above, the threshold approximation stage iterates until it is 

satisfied that 

LPCCP|NCQ=8 - LPCCP|NCQ=7 < 10%.   (4.4 ) 

Case II - LP and RPs whose histograms either have a small area of overlap or do not 

overlap at all 

Equation 4.4 is mostly valid when the histograms of the different patches overlap 

noticeably. When the histograms do not overlap or have a very small region of overlap, it 

is noticed that the difference in Equation 4.4 is even less than 10% for all settings of 

LPQP, when LPQP is significantly smaller or larger than LPQPt many LP pixels are 

misclassified after quantization. Even though masks with NCQ equal to 7 and 8 are 

similar, they result in LPCQP and LPCCP being considerably different due to the fact 

that the large number of misclassified LP pixels are so many that they tend to group 

together. Consequently' changing NCQ from 8 to 7 simply results in additional LP pixels 

grouping together to form additional RPs regions and more edges causing the difference 

of LPCCP|NCQ=8 - LPCCP|NCQ=7 to be large. On the other hand, when LPQP is very close to 

LPQPt the threshold is set so that it is possible to separate between the LP and RPs, the 

setting of NCQ to 7 and 8, respectively, results in the difference of LPCCP|NCQ=8- 

LPCCP|NCQ=7 being very small due to the fact that only a few pixels are misclassified in 

the quantized volume. 
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Using the observations above, it is concluded that in order to find the threshold to 

separate between LP and RPs when their histograms do not overlap it is sufficient to look 

for the minimum in the difference LPCCP|NCQ=8 - LPCCP|NCQ=7 as LPQP is varied. 

In summary, a guess for the initial value of LPQP is followed by the execution of 

the mapping procedure using two different SPA instances. The outputs of the two SPA 

instances are compared by means of the computed values of LPCCP. If LPCCP|NCQ=8- 

LPCCP|NCQ=7 is more than 10%, a discrepancy is detected and it is concluded that the 

value of LPQP differs from its true value by more than 10%. LPQP is then increased to 

the latest computed value of LPCQP|NCQ=8. LPQP is varied from one iteration to the next 

while NCC is kept equal to 1. This choice for NCC agrees with the observations made 

-80 -70 -60 -50   -     -40 -30 -20 -10 

Figure 4.1 - Plot of LPCCPI^^ - LPCCP|NC0=7 Versus LPOP-LPOPt for Different 

Values of LPOPt 

previously where it was concluded that NCC should be set small when NCQ is set large. 

In this case NCQ has a large value equal to either 7 or 8. 
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The discrepancies that may arise in the threshold approximation stage are due to 

the fact that two instances of the same SPA result in different interpretations when 

applied to the same data. As defined in Section 4.2.1, such a discrepancy is typified as a 

fault. 

Four fault-type discrepancies are readily identified in the threshold approximation 

stage. These are as follows: 

1. LPCCP|NCQ=8 - LPCCP|NCQ=7 > 10%: As discussed above, the goal of the 

threshold approximation stage is to obtain a threshold LPQP that is within 

10% of its true value. As shown in Figure 4.1, this is likely only when 

LPCCP|NCQ=8 - LPCCP|NCQ=7 < 10%. When the difference between the 

computed thresholds LPCCP|NCQ=8 - LPCCP|NCQ=7 is more than 10%, a fault 

type of discrepancy is detected during the assessment stage. The diagnosis 

process identifies the fact that LPQP-LPQPt < -10% as the source for the 

distortion causing the discrepancy. The remedy, in this case, is to increase the 

value of LPQP during the reprocessing stage to the latest computed value for 

LPCCP|NCQ=8. 

2. initial LPQP set too low: In some cases, when the initial guess for LPQP is 

too small, the number of LP pixels with data exceeding the threshold is so 

large that when corrections are made, the second-corrected volume results in 

many RPs declared patches or, in the worst case, a single big RPs patch. This 

results in the values of either LPCCP|NCQ=8 or LPCCP|NCQ=7 being even smaller 

than LPQP. In this case, it is possible to obtain a value for the difference 

LPCCP|NCQ=8 - LPCCP|NCQ=7 that is smaller than 10%. The IPUS control must 

be suspicious of such a case and declare LPQP-set-too-low as the source for 

the distortion causing the discrepancy. The remedy, in this case, is to increase 

the initial value of LPQP during the reprocessing stage. In our examples, we 

choose to increase LPQP by 10% every time an initial-LPQP-set-too-low fault 

is obtained. 
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3. LPCCP|NCQ=8 - LPCCP|NCQ=7 < 10% even when LPQP is increased: The 

IPUS control must be suspicious of such a case and declare the fact that the 

histograms of the LP and RPs do not overlap as the source for the distortion 

causing the discrepancy. The remedy, in this case, increase LPQP by 10% 

steps until a minimum value for LPCCP|NCQ=g - LPCCP|NCQ=7 is obtained. 

4. It is noted that during the threshold approximation stage it is possible that the 

inequality in Equation 4.4 will be satisfied with PLCCP| NCQ=7 or 8 =100%. 

This means that the subpatch with the smallest average power occupies 100% 

of the RPs patch area. Consequently, the RPs patch is homogeneous. When 

the inequality in Equation 4.4 is met with PLCCP|NCQ=7 =100%, there is no 

need for the threshold fine-tuning stage. This is because the initial value of 

PLQP in the threshold fine-tuning stage would be equal to 100% and any 

more processing would also result in PLCCP=100% regardless of the values 

chosen for NCQ and NCC. 

Table 4.1, summarizes the discrepancies that may occur during the threshold 

approximation stage. 

Discrepancy 

(Fault Type) 

Diagnosis Reprocessing 

LPCCr|NCQ=8   -   LrCCr|NCQ=7 

is more than 10% 
PLQP-PLQPt>-10% Assign to PLQP the latest 

value of PLQP|NCQ=8 

LPGCP|NCQ=8  -  LPCCP|NCQ=7 

is less than 10% in the early 
stages of iteration 

Initial value of PLQP is 
too low 

Increase PLQP by 10% from 
its initial value 

LrCCr|NCQ=8   -   LrCCr|NCQ=7 

is   less   than   10%   in   all 
iterations 

LP and RPs histograms 
do not overlap 

Search for the PLQP that 
results in a minimum value 
LrCCr|NCQ=8 - LrCCr NCQ=7 

Inequality  in Eq.  (VII.4-1) 
will     be     satisfied     with 
PLCCP|NCQ.7or8=100% 

The          scene          is 
homogeneous 

Declare that no LP exist. No 
threshold fine-tuning is 
needed 

Table 4.1 - Discrepancies in the Threshold Approximation Stage 
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4.4.2.b - Threshold fine-tuning stage 

At the end of the threshold approximation stage LPQP is likely to be within 10% 

of its true value LPQPt. During the threshold fine-tuning stage, LPQP is varied until 

LPCCP is within 1% of the corresponding value of LPQP. 

During the threshold fine-tuning stage, NCQ is lowered to avoid holes in the RPs 

patches caused by misclassified RPs pixels whose data values are lower than the 

threshold. For the same reason LPQP is assigned the latest value of LPCCP|NCQ=7 rather 

than the latest value of LPCCP|NCQ=8. In addition, the value of NCC is raised to avoid 

misclassification of LP pixels close to the RPs edges. These choices for NCQ and NCC 

agree with observations mentioned in Section 4.4.1. 

The following observations on LPQP, NCQ, and NCC are necessary to 

understand how these parameters should be automatically set in order for LPCCP to 

converge to within 1% of LPQP. 

1 - When LPQP is increased while both NCQ and NCC are kept constant, the 

number of LP pixels in the quantized volume is increased and, therefore, both 

LPCQP and LPCCP are likely to increase. 

2 - When NCQ is increased while both LPQP and NCC are kept constant, the 

requirement on a test pixel to be declared as a RPs pixel in the first-corrected 

volume becomes more stringent and, therefore, the number of RPs pixels in both 

corrected volumes are likely to decrease. This tends to increase the number of LP 

pixels causing both LPCQP and LPCCP to increase. 

3 - When NCC is increased while both LPQP and NCQ are kept constant, the 

requirement on a test pixel to be declared as a RPs pixel in the second-corrected 

volume becomes more stringent and, therefore, the number of RPs pixels in this 

volume is decreased. Thus, the number of LP pixels in the second-corrected 

volume increases and, consequently, LPCCP increases. 

Using the above observations, the following strategy is used by the assessment 

stage to control the threshold fine-tuning stage, 
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1 - Because LPQP is within 10% of its true value at the beginning of the threshold 

fine-tuning stage, the threshold is likely to be relatively high. Thus, NCQ should 

be set to its smallest value of 5 while, as needed, NCC should be incremented 

iteratively from its minimum value of 1 up to its maximum value of 4. 

2 - When the inequality in Equation 4.4 is not satisfied, LPQP should be increased 

in small steps. Otherwise, the iterative process diverges when the same rule from 

the threshold approximation stage is used. The approach taken in this work during 

the threshold fine-tuning stage consists of assigning a value to LPQP that is half 

way between its latest value and the latest value of LPCCP, i.e. 

LPQP = LPQP^' + LPCCP'°"»i (4.5) 

3 - The condition set forward for ending the threshold fine-tuning stage is given 

by 

|LPQP-LPCCP|<1% (4.6) 

Two cases are possible when the inequality in Equation 4.6 is not satisfied: either 

LPQP < LPCCP or LPQP > LPCCP. 

4 - When the inequality in Equation 4.6 is not satisfied and LPQP < LPCCP, the 

control parameters should be varied by the diagnosis procedure such that LPCCP 

is decreased. In this case, NCQ should be made smaller. If none of the allowable 

values for NCQ result in the inequality in Equation 4.6 being satisfied, then LPQP 

is varied according to Equation 4.5. 

5 - When the inequality in Equation 4.6 is not satisfied and LPQP > LPCCP, the 

control parameters should be varied by the diagnosis procedure such that LPCCP 

is increased. In this case, NCC should be made larger. If none of the allowable 

values for NCC result in the inequality in Equation 4.6 being satisfied, then LPQP 

is varied according to Equation 4.5. 
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6 - If the threshold fine-tuning stage results in PLCCP=100% at any iteration, the 

threshold fine-tuning stage should end because, as in observation 2-, any more 

processing will end with PLCCP=100% regardless of the values chosen for NCQ 

and NCC. This, in turn, will make PLQP equal to 100%. 

Note that during the threshold approximation stage note that only LPQP was 

varied whereas, in the threshold fine-tuning stage, any of the parameters LPQP, NCQ, 

and NCC may be varied. 

In summary, the threshold fine-tuning stage begins by assigning to LPQP the 

latest value of LPCCP|NCQ=7. Once quantization, first-correction, and second-correction 

stages are completed with pre-selected values for NCQ and NCC, the assessment stage 

diagnoses the results according to the strategy discussed above, and, depending on the 

outcome, decides either that reprocessing is necessary with adjusted values for any of the 

LPQP, NCQ, and NCC parameters, or the threshold fine-tuning stage is completed. 

At the end of each iteration of the threshold fine-tuning stage it is expected that 

the computed value of LPCCP will be within 1% of LPQP. When the inequality in 

Equation 4.6 is not satisfied, a conflict type of discrepancy is detected based on the 

inconsistency in the expectation that LPCCP will be within 1% of LPQP. Table 4.2 

summarizes the discrepancies that may occur during the threshold fine-tuning stage. 

Discrepancy 

(Conflict Type) 

Diagnosis Reprocessing 

|PLQP-PLCCP|>1%        and 
PLQP<PLCCP 

Either NCQ or PLQP 
are not well adjusted 

Decrease NCQ, otherwise 
update LPQP 

|PLQP-PLCCP|>1%        and 
PLQP>PLCCP 

Either NCC or PLQP 
are not well adjusted 

Increase NCC, otherwise 
update PLQP 

Table 4.2 - Discrepancies in the Threshold Fine-Tuning Stage 
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It has been determined through examples that the initial setting of NCQ=5 is 

adequate for the threshold fine-tuning stage to converge (i.e., in the different treated 

examples, it was never necessary to decrease NCQ from the value of 5). 

4.5 - IPUS and the Statistical Procedure 

Recall that the objective of the statistical procedure is to separate between 

contiguous non-homogeneous patches based on their data distributions. A four step 

strategy for the statistical procedure stage was presented in Chapter 3. The steps are: 

1. Using the goodness of fit test of the Ozturk algorithm, a Gaussianity check is 

performed on every tile to ensure whether the data in the tile are Gaussian or not. This 

results on every patch having its tiles labeled as either Gaussian or non-Gaussian. 

2. Existing outliers are located in those tiles declared as non-Gaussian. 

3. For every non-Gaussian declared tile, pixels with outliers are excised from the tile and 

replaced with the closest pixels to the tile whose data are not outliers. Next, the 

Gaussianity check is performed once again as in step (1). At the end of this step, each 

patch will have tiles declared as Gaussian or non-Gaussian and pixels with outliers. 

4. Using the Ozturk algorithm, the (U,V) coordinates of the locus end point is obtained 

for every tile declared as non-Gaussian in step (3). Next, a check is made to ensure 

whether or not the data of the set of tiles which constitutes a sub-patch can fit within a 

confidence ellipse. This is done by first declaring a subpatch every set of contiguous 

non-Gaussian tiles. Then, computing the average (Uav,Vav) coordinates of all test 

pixels of the same subpatch and getting its best approximating PDF and the 

corresponding confidence ellipse. Finally, a check is made whether all (U,V) 

coordinates of the test pixels are within the confidence ellipse of the average 

coordinates (Uav,Vav). If not, the tiles are regrouped so that all (U,V) coordinates for 

each group of tiles can fit within the same ellipse. Each group then forms a subpatch. 

IPUS is primarily needed in the fourth step of the statistical procedure where a 

grouping of contiguous tiles whose (U,V) pairs can fit under a single ellipse is to be 

performed to form subpatches. This step necessitates rules to enable the diagnosis process 
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to acknowledge that a discrepancy exists that is caused by the distortion due to the 

contiguous non-Gaussian tiles not being all homogeneous. This distortion is displayed 

when a set of contiguous non-Gaussian tiles cannot have all of their (U,V) pairs fit under 

the same ellipse. 

Then, reprocessing takes place to find sets of homogeneous non-Gaussian tiles 

whose (U,V) pairs can fit under the same ellipse and declare each set as a subpatch. This 

is done under the constraint that a minimum number of ellipses should be used. Note that 

the discrepancy in this case is of conflict type because the expectation that a set of 

contiguous non-Gaussian tiles should be homogeneous is not met. Table 4.3 summarizes 

the discrepancy in the statistical procedure. 

Discrepancy Diagnosis Reprocessing 

(Conflict Type) 

A set of contiguous non- Not all of the Find sets of homogeneous 
Gaussian tiles cannot have contiguous non- tiles whose (U,V) pairs can 
all of their (U,V) pairs fit Gaussian tiles are fit under the same ellipse and 
under the same ellipse homogeneous declare each set as a 

subpatch. 

Table 4.3 - Discrepancy in the Statistical Procedure 

4.6 - Conclusion 

The expert system IPUS is used to guarantee the convergence of both the mapping 

and statistical procedures. Through its rules for reprocessing IPUS controls all feed- 

forward and feed-back connections between the different blocks of A'SCAPE. 
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Application of A'SCAPE to real IR data 

5.1 - Introduction 

In this chapter, real data of an IR image are processed through A'SCAPE. Section 

5.2, discusses how the data is collected. Sections 5.3 through 5.6 present the results of 

processing the IR scene through the different stages of A'SCAPE. Finally, section 5.7 

consists of a conclusion for real data processing. 

5.2 - Data Collection 

The data processed in this work consist of real' airborne data of infrared (IR) type 

collected over lake Michigan. As shown in Figure 5.111 (reproduced from the reference 

mentioned in the footnote), the airborne data is collected through an m-7 line scanner 

which consists of an optical telescope with its narrow field of view (ground resolution 

element) redirected by a rotating flat mirror causing the system to scan in a plane 

perpendicular to the longitudinal axis of the aircraft. A radiation detector in the focal 

plane of the telescope converts the focused beam of radiation to an electrical signal. The 

optical system's field of view first scans laterally across the aircraft. Then, before making 

the next ground scan, it scans radiation references which are internal to the scanner. By 

the time the next scan begins, the aircraft has moved forward; thus subsequent line scans 

build upon one another to produce a continuous strip image of the terrain beneath the 

aircraft. Figure 5.1 shows the scanner looking directly downward. 

5.3 - Preprocessing Stage 

Because the univariate approximation chart of the Ozturk algorithm is used to 

approximate the PDF of different regions the collected data is therefore required to result 

11 A. J. La Rocca and D. J. Witte, "Handbook of the Statistics of Various Terrain and Water (ICE) 
Backgrounds From Selected U.S. Locations," Final Report. Environmental Research Institute of Michigan. 
Contract No. N60530-79-R-0036. January 1980. 
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Figure 5.1 - Airborne Scanner Operation 

in independent samples. Since there are no tests available to determine the statistical 

independence of a set of data, the best solution is to ensure that the data are spatially 

uncorrelated in both width and length. This is done in the preprocessing stage of the 

A'SCAPE procedure. 

The autocovariance function has been calculated for both sets of data in the width 

direction and the length direction. Examples are shown in Figure 5.2 of the lag centered 

at the 10th width pixel for all pixels in the width direction for the 10th length pixel and in 

Figure 5.3 of the lag centered at the 50th pixel for all pixels in the length direction for the 

10th width pixel. It has been determined that in order to obtain uncorrelated data, 

decimation is necessary where only 1 sample out of every 5 samples is retained in the 

width direction and 1 sample out of every 4 samples is retained in the length direction 

reducing the scene size from a high resolution 383x646 one to one with a lower 96x130 

resolution. 
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Figure 5.2 - Autocovariance Function in Width for the 10th Length Pixel Centered at 

the 10th Width Pixel 

Figure 5.3 - Autocovariance Function in Length for the 50th Width Pixel Centered at 

the 10th Length Pixel 
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Note that the decimation is necessary for the statistical procedure part of this work 

and is not necessary for the mapping procedure. Nevertheless, only the data in the 

decimated scene are treated in this work for the sake of processing time. 

The data processed in this work and shown in Figure 5.4 is collected over lake 

Michigan and consists of a 2829 ft wide by 1650 ft long scene that contains two major 

regions: lake and land. The data is 8 bits and the resulting image size when the pre- 

processing stage is completed is 96x130. Furthermore, the three dimensional magnitude 

plot of the scene, shown in Figure 5.5, reveals that the data in the lake is regular and 

similar in magnitudes whereas the data in the land region is irregular and bears a lot of 

discretes especially near the boundary between the land and the lake. This latter fact is 

due to the non-homogeneity of the land region which contains a lot of non-homogeneous 

regions due to the presence of trees, roads, etc. 

Once the pre-processing stage is completed, the data is forwarded to the mapping 

stage for partitioning. 
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Figure 5.4 - Original Scene (Over Lake Michigan) 
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Figure 5.5 - Three Dimensional Magnitude Plot of the Original Scene 

5.4 - Mapping Procedure Stage 

After the preprocessing block has identified the uncorrelated data in the scene, the 

mapping procedure is used to separate contiguous non-homogeneous regions with 

different average magnitudes. 

When the iterative procedure starts, the diagnosis procedure detects a discrepancy 

due to the fact that the difference LPCCP|NCQ=8 - LPCCP|NCQ=7 is less than 10% in all 

iterations. In this case, and as shown in Figure 5.6, LP (Lake) and RPs (Land) histograms 

have a small area of overlap. As summarized in Table 4.1, the system searches for the 

PLQP that results in a minimum value LPCCP|NCQ=8 - LPCCP|NCQ=7. 

After seven iterations of the "Identification of LP and RPs" stage the threshold is 

accepted and the assessment passes. Table 5.1 summarizes the values of the different 

parameters set in the Thresholding/Quantization, First and Second Correction stages as 

described in Chapter 4. Note that the minimum value for LPCCP|NCQ=g - LPCCP|NCQ=7 is 
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Figure 5.6 - Histogram of the Original Scene 

obtained for PLQP=40% (step 4). Note also that steps 1 to 5 are part of the threshold 

approximation stage whereas steps 6 and 7 are part of the threshold fine-tuning stage. 

Figures 5.7 to 5.11 show the plots of the QV (top right), CQV (bottom left), and 

CCV (bottom right) scenes for steps 1, 2, 3, 4, and 7, respectively. Note how the 

quantization results more and more in a correct separation between the lake and land as 

PLQP is increased. The "Identification of LP and RPs" stage is followed by the 

"Detection of Patch Edges" stage for which the steps of the last CCV (top left), SV (top 

right), enhanced edges volume (bottom left), and detected edges volume (bottom right), 

are shown in Figure 5.12 resulting in the segmentation of the scene into three different 

patches and their respective boundaries. Note that in addition to patches 1 and 2, 

corresponding respectively to land and lake, the mapping procedure detected a third 

region, labeled 3. This region can be sighted in the original scene of Figure 5.4 and is not 

large. In fact Table 5.2 shows that patch 3 contains only 15 pixels as opposed to patches 1 
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Step LPQP 

(%) 

NCQ NCC LPCCP 

(%) 

LPCCP|NCQ=8 - LrCCP|NCQ=7 

(%) 

1 10 8 24.59 8.72 

2 20 8 35.82 6.93 

3 30 8 43.96 4.91 

4 40 8 46.57 1.67/ 

5 50 8 56.31 5.98 

6 45 5 45.14 - 

7 45 5 2 45.63 - 

Table 5.1 - Setting of the Parameters in the Thresholding/Quantization. First and 

Second Correction stages 

Patch 1 Patch 2 Patch 3 

Number of pixels 6680 5337 15 

Mean 87.61 49.47 34.4 

Variance 420.20 4.13 7.41 

Average Power (dB) 39.08 33.89 34.40 

Table 5.2 - Mapping Procedure Assessment 
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Figure 5.7 - Step 1 of the Identification of LP and RPs 
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Second Iteration Quantized Volume at 20 % 
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Figure 5.8 - Step 2 of the Identification of LP and RPs 
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Third Iteration 
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Figure 5.9 - Step 3 of the Identification of LP and RPs 
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Fourth Iteration 
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Figure 5.10 - Step 4 of the Identification of LP and RPs 
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Last Iteration 
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Figure 5.11 - Step 7 of the Identification of LP and RPs 
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Figure 5.12 - Detection of Patch Edges Stage 
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and 2 which contain 6680 and 5337 pixels, respectively. Furthermore, the values in Table 

5.2 of the variance, mean and average power of patch 3 are closer to those of the lake than 

those of the land. This indicates that patch 3 is more related to the lake than the land and 

may be for example a small body of water. Next, the mapping procedure is used to 

investigate the presence of any subpatches in every previously detected patch (i.e., 

patches labeled 1, 2, and 3). In this case, no subpatches are detected and all three patches 

are declared as homogeneous. 

5.5 - Statistical Procedure Stage 

The statistical procedure is applied to every previously declared homogeneous 

patch in order to separate further between any existing contiguous subpatches that may 

have similar power levels but different data distributions. Following the steps developed 

in Chapter 3, the data of the scene is processed as follows: 

Stepl 

Test pixels and their respective tiles (sets of 100 reference pixels) are selected, 

spread throughout the patch, to be tested for Gaussianity using the goodness of fit test of 

the Ozturk algorithm. Note that the sets of 100 pixels are chosen to be disjoint, the closest 

to and belonging to the same patch as their respective test pixels. This results in the sets 

being shaped as 10x10 square tiles inside the patch and tiles tracking the shape of the 

boundary near the boundary of the patch. The result of this step is shown in Figure 5.13, 

where the Gaussian and non-Gaussian tiles are shaded in gray and white, respectively. 

Note that many non-Gaussian sub-regions exist in patches 1 and 2. Note also that patch 3 

is not processed by the statistical procedure due to the fact that it is composed of only 15 

pixels while a minimum of 100 pixels are needed for the Ozturk algorithm to result in a 

meaningful approximation for the distribution of the data. 

Step 2 

Once the Gaussian and non-Gaussian regions are determined in each patch, pixels 

with outliers are determined in the non-Gaussian declared tiles (sets of 100 pixels) and 

excised. 
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Figure 5.13 - Scene After Step 1 of the Statistical Procedure 

Step 3 

Step 3 of the statistical procedure proceeds by re-checking for Gaussianity the 

previously non-Gaussian declared tiles when their outliers are excised. The result is 

shown in Figure 5.14. Note that even though a lot of non-Gaussian previously declared 

tiles are now declared Gaussian, non-Gaussian tiles still exist particularly in the land 

region near the boundary with the lake. This is because, as stated previously, many non- 

homogeneous regions due mainly to trees and roads exist in that region causing discretes 

to appear in the data thus making it non-Gaussian. Figure 5.15 shows the location of 

outliers (black dots). Comparing Figures 5.15 and 5.4, note that outliers tend to have a 

physical significance and might represent string-like patches such as road-ways. 

The results of the statistical procedure (steps 1 to 3) are summarized in Table 5.3. 

Note that: 

70 



r 
Gaussian 

20 40 60 80        100       120 

Figure 5.14 - Scene After Step 3 of the Statistical Procedure 
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Figure 5.15 - Scene After Step 3 of the Statistical Procedure and 
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(1) the outliers occupy a small percentage of the scene (1.63%), 

(2) Gaussian regions occupy the largest part of the scene, and 

(3) non-Gaussian regions exist and occupy about 16% of the scene. 

Percentage of 
Gaussian 

Pixels (%) 

Percentage of 
Non-Gaussian 

Pixels (%) 

Percentage 
of Outliers 

(%) 

Tiles   with   present 
outliers 

61.81 38.19 - 

Tiles    with    excised 
outliers 

82.43 15.94 1.63 

Table 5.3 - Percentages of Gaussian and Non-Gaussian regions 

Step 4 

In this step, the following procedure is followed, 

1 - non-Gaussian tiles are numbered as shown in Figure 5.16. 

2 - contiguous numbered tiles are then grouped in sets as shown in column 1 of 

Table 5.4. 

3 - Using the Ozturk algorithm, the (U,V) coordinates of the locus end point is 

obtained for every tile. 

4 - The average (Uav,Vav) coordinates is computed for every set of contiguous 

non-Gaussian tiles and the average approximating PDF corresponding to the pair 

(Uav,Vav) is obtained. The PDF type along with the first and second shape parameters 

are shown in columns 3, 4, and 5 of Table 5.4, respectively for every set of tiles. Note 

that a set can consist of a single tile if the tile is not contiguous to any other non-Gaussian 

tiles. 
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Tile 

Number 

Fitting under 

same ellipse 

PDF Type 1st Shape 

Parameter 

2nd Shape 

Parameter 

1 - Beta 6.0 1.6 

2 - Beta 1.0 3.2 

3 - SU-J 1.2 -0.2 

4,5 Yes Beta 1.0 3.2 

6,7,8 No Beta 2.0 3.2 

9 to 16 Not all Beta 1.0 3.2 

17 - Beta 1.0 0.8 

18 - Beta 2.0 0.8 

19 - Beta 2.0 1.6 

20,21 Yes Beta 2.0 1.6 

22 - SU-J 1.2 -0.2 

23 - Beta 1.0 1.6 

Table 5.4 - PDFs to approximate the Different Subpatches 

5 - A check is made to ensure that all (U,V) pairs of every set fit withing the same 

confidence ellipse as (Uav,Vav). The result of this check is reported in column 2 of Table 

5.4. Note that two sets, consisting of tiles numbered 6 to 8 and 9 to 16, do not pass the 

check. 

6 - For those sets that do not pass the check above, the tiles are regrouped so that 

all (U,V) coordinates for each group of tiles can fit within the same ellipse. Each group of 

contiguous tiles form then a subpatch. Table 5.5 shows the result of this step. Note that 

column 1 displays the sets of contiguous tiles whereas column 2 allocates numbers to the 

subpatches obtained by the statistical procedure. Note also that each subpatch has its PDF 
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Tile 

Number 

Sub-patch 

Number 

Fitting under 

same ellipse 

PDF Type 1st Shape 

Parameter 

2nd Shape 

Parameter 

1 1 - Beta 6.0 1.6 

2 2 - Beta 1.0 3.2 

3 3 - SU-J 1.2 -0.2 

4,5 4 Yes Beta 1.0 3.2 

6 5 - Beta 1.0 0.8 

7 6 - Beta 1.0 1.6 

8 7 - Lognormal 0.6 N/A 

9 to 15 8 Yes Beta 1.0 3.2 

16 9 Beta 0.6 0.8 

17 10 - Beta 1.0 0.8 

18 11 - Beta 2.0 0.8 

19 12 - Beta 2.0 1.6 

20,21 13 Yes Beta 2.0 1.6 

22 14 - SU-J 1.2 -0.2 

23 15 - Beta 1.0 1.6 

Table 5.5 - PDFs to approximate the Different Subpatches 

approximated as shown in columns 4 to 6 of Table 5.5. 

At the end of the statistical procedure, subpatches within the lake and land regions 

are isolated. Outliers which represent tiny patches such as road ways are located and for 

every pixel in the scene, the PDF to approximate the data is readily known. 
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Figure 5.16 - Numbering of the Non-Gaussian Tiles 
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Figure 5.17 - Scene after the Statistical Procedure 
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5.6 - Indexing Stage 

The statistical procedure stage is followed by the indexing stage in which every 

pixel in the scene is assigned a set of descriptors to indicate, for each pixel, (1) its 

identification number which is the same as the identification number of the homogeneous 

patch or subpatch to which the pixel belongs, (2) whether the pixel is an inner pixel or 

edge pixel, (3) its type (Gaussian, non-Gaussian, or outlier), (4) for a non-Gaussian pixel, 

its best approximating PDF. 

Up to this point, patches 1, 2, and 3 have been identified, outliers have been 

located in patches 1 and 2. Also, subpatches have been defined within every one of 

patches 1 and 2 and PDFs to approximate the different non-Gaussian subpatches are 

determined using the application chart mode of the Ozturk algorithm. All of this 

information is readily available and stored in the indexing stage. 

5.7 - Conclusion 

The processing of the real IR data by A'SCAPE has resulted during the mapping 

procedure in the partitioning of the scene into three main patches, lake, land, and a 

subpatch within the land. Then, the statistical procedure partitioned further the lake and 

land into main Gaussian patches and a total of fifteen non-Gaussian subpatches. Also, 

outliers representing tiny patches such as roads have been located and approximating 

PDFs have been determined for the non-Gaussian subpatches. Finally, if A'SCAPE is to 

be followed by a detection stage, all information pertaining to what type of detector 

should be used and what the parameters should be is readily available. 
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A'SCAPE Demo Package 

6.1 - Introduction 

A demo package is built in Matlab which describes in detail the different stages of 

A'SCAPE. The package has a friendly mouse driven graphical user interface (GUI) and 

consists of two main sections. The first section presents the detailed steps of the real IR 

data example of Chapter 5. The second section is subdivided into two subsections where 

in the first one a set of examples is presented which illustrate the need .for A'SCAPE, 

whereas in the second, a detailed description is given for every stage of A'SCAPE. The 

views can be displayed manually or in an automated way as a slide-show. A movie is 

included which shows the steps in the mapping procedure. The next sub-sections describe 

in detail the different parts of the demo package. 

As shown in Figure 6.1, note that the A'SCAPE demo consists of three windows 

referred to as the menu window (top right), plot window(top left), and command window 

(bottom left). These are described next. 

6.2 - Menu Window 

The menu window consists of a main menu and sub-menus formed each of a set 

of vertically aligned push buttons. Each button when pressed either generates another 

menu or plots in the Plot Window. The first menu to appear in the demo is referred to as 

the Main Menu. As shown in Figure 6.2, the first three buttons of the main menu are 

labeled Original Scene, Mapping Procedure, and Statistical Procedure, respectively. 

These buttons run the example of the real IR data scene treated in chapter 5. The fourth 

button, labeled A'SCAPE Tutorial, offers a tutorial on A'SCAPE. The fifth button, 

labeled About A'SCAPE, gives credit to the author and sponsors of the work. Finally, the 

button labeled end stops the demo and closes all windows. 

All of the first four buttons generate sub-menus labeled as summarized in Table 

6.1. 
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Figure 6.1 - A'SCAPE Demo. 

Menu Window (top right). Plot Window (top left), Command Window (bottom left) 

Original Scene: 

Mapping Procedure i 

Statistical Procedure j 

A-SCAPE Tutorial 

>.*«*. 
About A-SCAPE 
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End £«*&-' 

Figure 6.2 - A'SCAPE Demo: Main Menu 
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Main Menu 
Button Number 

1 

Effects 

Sub-menu of Figure 6.3 labeled Original Scene Menu 

Sub-menu of Figure 6.4 labeled Mapping Procedure Menu 

Sub-menu of Figure 6.5 labeled Statistical Procedure Menu 

Sub-menu of Figure 6.6 labeled A'SCAPE Tutorial Menu 

Table 6.1 - Effects of Buttons 1 to 4 of the Main Menu 

Effects of the buttons in each of the sub-menus, generated by buttons 1 to 4 of the 

main menu and shown in Figures 6.3 through 6.5, are summarized in tables 6.2 to 6.5, 

respectively. 

Image 

Contour 

Magnitude 

Histogram 

AH of A* Above 

Main Menu 

Figure 6.3 - Original Scene Menu 
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Quantization 

Correction 

Edge Enhancement 

Last Iteration 

Mapping A**e*#ment 

Sub-Patch Investigation 

All of the Above 

Summaxy 

Movie of Mapping 

Main Menu 

Figure 6.4 - Mapping Procedure Menu 

Wo n-Gaussian Regio its 

Region PDF Approximation 

fe:-.r--3h Assessment 

All of the Above; 

Sununaiy 

Main Menu! 

'; «>• -.%-• \.\. u*r****, .* \ 

Figure 6.5 - Statistical Procedure Menu 
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Original Scene 
Menu 

Button Label 

Image 

Examples 

A SCAPE 

Mapping Procedure; 

Statistical Procedure 

Approximation Chart 

IPUS 

AH of the Above 

Main Menu 

Figure 6.6 - A'SCAPE Tutorial Menu 

Contour 

Magnitude 

Histogram 

All of the Above 

Main Menu 

Effects 

Displays the image of the original scene 

Displays the contour plot of the original scene 

Displays the 3 dimensional plot of the original scene 

Displays the histogram of the original scene 

Displays all of the above in a single window 

Closes Original Scene Menu and opens Main Menu 

Table 6.2 - Effects of Buttons in the Original Scene Menu 
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Mapping Procedure 
Menu 

Button Label 

Effects 

Quantization Displays the quantization steps 

Correction Displays the correction steps 

Edge Enhancement Displays the edge enhancement steps 

Last Iteration Displays the steps in the last iteration 

Mapping Assessment Displays the steps in the assessment of the Mapping 
Procedure 

Sub-Patch 
Investigation 

Displays the steps of the investigation of sub-patches 

All of the Above Displays all of the above in a sequential manner 

Summary Displays all of the above in a compact manner 

Movie of Mapping Displays the mapping procedure as a movie 

Main Menu Closes Mapping Procedure Menu and opens Main 
Menu 

Table 6.3 - Effects of Buttons in the Mapping Procedure Menu 

Statistical Procedure 
Menu 

Button Label 

Effects 

Non-Gaussian 
Regions 

Displays the search for Gaussian and Non-Gaussian 
region steps 

Region                PDF 
Approximation 

Displays the search for PDFs approximating Non- 
Gaussian region 

Assessment Assessment of the Statistical Procedure 

All of the Above Displays all of the above in a sequential manner 

Summary Displays all of the above in a compact manner 

Main Menu Closes Statistical Procedure Menu and opens Main 
Menu 

Table 6.4 - Effects of Buttons in the Mapping Procedure Menu 
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A'SCAPE Tutorial 
Menu 

Button Label 

Effects 

Examples Displays examples to justify the need for A'SCAPE 

A'SCAPE Displays block diagram of A'SCAPE 

Mapping Procedure Displays block diagram of the Mapping Procedure 

Statistical Procedure Displays block diagram of the Statistical Procedure 

Approximation Chart Displays an example of an approximation chart 

IPUS Displays a summary of the expert system main 
definitions 

All of the Above Displays all of the above in a sequential manner 

Main Menu Closes A'SCAPE Tutorial Menu and opens Main 
Menu 

Table 6.5 - Effects of Buttons in the Mapping Procedure Menu 

6.3 - Plot Window 

All plots displayed by the different buttons are presented in the Plot Window. The 

plots are either full sized one plot at a time or compact four plots at a time. 

6.4 - Command Window 

When there is more than one plot to be displayed by a single button in any of the 

menus, buttons appear in the Command Window as shown in Figure 6.7 which consist of 

four push buttons and two sliders. Effects of the buttons are described in Table 6.6. 

Stop Stop 

Figure 6.7 - Buttons in the Command Window 
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Command Window 
Button Label 

Effects 

Step Displays frame by frame at the request of the user 

Auto Displays the frames automatically with a pause 
between the frames defined by the Pause slider 

Stop Stops the automatic display of the different frames 

Done Clears the command window and returns command to 
the menu window 

Pause (slider) Shows the pause in seconds between the frames being 
displayed automatically. Also enables choice of the 
pause in seconds when the slider is moved 

Frame (slider) Shows the number of the frame being displayed. Also, 
enables display of any desired frame when the slider 
is moved 
  

Table 6.6 - Effects of Buttons in the Mapping Procedure Menu 
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Part II 

Performance Analysis of Multichannel Parametric 

Detection Algorithms 
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Introduction 

In many signal processing techniques, the number of signals, say q, is assumed to be 

known a priori. This is needed for further processing of the received data vector. However, 

in practice, q is unknown and therefore needs to be estimated. This problem is often referred 

to in the literature as a "Detection Problem". For simplicity, we review the basis of the 

subspace approaches. This is needed for a good understanding of our work. Let the number 

of elements in an array of sensors be denoted by m, where m is assumed to be greater than q. 

The received signal vector can be expressed as 

X=AS+N (1-1) 

where X and N are (mxl) complex vectors, S is a (qxl) complex vector and A is an (mxq) 

complex matrix containing information about the signals of interest. S refers to the random 

signal vector while N is a noise vector. All signal and noise wave forms are assumed to be 

zero-mean random narrow band processes. Moreover, for simplicity, the additive noise vector 

is assumed to have a diagonal covariance matrix given by o^lm, where Im is the (mxm) 

identity matrix. The case of correlated noise is considered in section 2.2.2. We also assume 

that the signal and noise vector are statistically independent. Note that the analysis considers 

the spatial domain only. 

It follows from the signal model represented by Equation (1-1) and the above 

assumptions that the covariance matrix of X is given by 

Rx =E[X«XH] = ASAH +RN = RS +RN = Rs + a2Im (1-2) 

where Rs is the covariance matrix of the signal vector S and H denotes the complex conjugate 

transpose operation. In an eigen-decomposition, note that the rank of the (mxm) matrix Rx is 

q. Therefore the smallest eigenvalues of Rx are identical and are equal to a2. If the 

eigenvalues of Rx are ordered in descending order with respect to their magnitudes, such that 

A., >X2 >---X,q >•••> A,m , it follows that the q largest eigenvalues of Rx have magnitudes 

greater than a2. Specifically, 
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^>G* ;i=l,2,...,q (1-3) 

and 

X, = 02
N ; i = (q+1), (q+2),..., m. (1-4) 

If the exact eigenvalues of the covariance matrix Rx of the received signal were 

available to us, the solution to the problem of detection (estimating q) would be 

straightforward in that we would simply have to count the multiplicity of the smallest 

eigenvalue. In practice, however, the covariance matrix Rx and its eigenvalues are unknown 

and they have to be estimated from a finite set of data samples. Due to the noisy nature of 

these estimates, we find that the exact multiplicity rule does not hold. Hence, this simple rule 

for determining the number of targets has to be dropped in favor of a more robust approach. 

The first technique to be used in the detection problem was based on a statistical 

analysis of the received data. Various criteria are described in the literature for determining 

the number of targets.   The two most commonly used are the Akaike information criterion 

(AIC) introduced by Akaike1, which was first introduced in Direction Finding (DF) problems 

by Wax et al2, and the Minimum Descriptive Length (MDL)   criterion of Shwartz3 and 

Rissanen^. 

In both approaches, the signals and m additive noise wave forms are assumed to be 

ergodic Gaussian processes. Let Rx denote the Maximum Likelihood (ML) estimate of the 

covariance matrix Rx. Also, let {lk ;k = l,2,---,m, 1, > 12 >--->lm} be the eigenvalues of 

Rx. The cost function for both the AIC and MDL criterion takes on the form 

1 H. Akaike, "A New Nook at the Statistical Model Identification," IEEE trans. Automat. Contr., Vol. AC ■ 
14, pp. 716-723, Dec. 1974. 

2 M. Wax and T. Kailath, "Detection of Signals by Information Theoretic Criteria," IEEE Trans. Acoust., 
Speech. Signal Processing, Vol. ASSP-33, pp. 387-392, Apr. 1985. 

3 G. Schwartz, "Estimating the Dimension of a Model." Anna. Stat., Vol. 6, No. 22, pp. 461-464, 1978. 

4 J. Rissanen, "A Universal Prior for Integers and Estimation by Minimum Descriptive Length," Ann. Stat., 
Vol. 11, No. 2, pp. 466-471, 1983. 
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j(k) = L(k)+p(k) (1-5) 

where the log-likelihood function, L(k) is given by 

V 1 m       \m~k 

L(k)=N-Ln- 

IT, 
i=K=l 

(1-6) 

with N being the number of time samples (snapshots) used in evaluating Rx, and the penalty 

function, p(k), is given by 

p(k)=a(N)[k(2m-k)], (1-7) 

with a(N), the penalty coefficient, being a function of the number of samples. 

The choice of a(N) depends on the criterion used. For the AIC, a(N) = l whereas for 

the MDL criterion, a(N) = (l/2)ln(N). The number of signals q is then determined as that 

value of k for which J(k) is minimized. 

Let Hq denote the hypothesis that the true number of targets is q. Then, the 

probability of underestimating and overestimating the number of targets, given Hq, are 

PM=p(q<a/Hq) 

PF=p(q>q/Hq) 

(1-8) 

(1-9) 

PMandPF are called the miss and false alarm probabilities, respectively.   It has been 

shown5 that the probability of missing for both the AIC and MDL criterion can be reduced to 

zero by either increasing the signal-to-noise ratio (SNR) or by increasing the number of 

samples N. However, for both these parameters, the decrease is much faster for AIC than for 

MDL. This indicates that the AIC is more efficient in reducing the probability of missing than 

5 Q. Zhang, K. Wang, Y. Yin, J. Reilly, "Statistical Analysis of the Performance of Information Theoretic 
Criteria in the Detection of the Number of Signals in Array Processing," IEEE Trans. Acoust., Speech, Signal 
Processing, Vol. ASSP-37, pp. 1557-1567, Oct. 1989. 
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is the MDL criterion. On the other hand, for a moderate number of samples the probability of 

false alarm using the MDL criterion approaches zero with increasing values of N, whereas that 

for the AIC remains constant. This shows that the MDL criterion is more efficient in reducing 

the probability of false alarm than is the AIC. Under low SNR's, both the AIC and the MDL 

necessitate a large number of samples, which may be very hard to meet in practice. 

Research is needed to determine whether the performance of the information theoretic 

criteria can be improved for specific applications by selecting other functions for oc(N) and/or 

log-likelihood functions L(k). 

Another technique6, based on the AIC and the MDL, has been applied on the singular 

values of the covariance matrix instead of the eigenvalues of the covariance matrix. The 

reason is that there is a direct relationship between the eigenvalues of the covariance matrix 

and its singular values. The advantage of this technique over the previous one is that it 

benefits from the numerical efficiency and stability of the SVD technique. 

Recently, a new procedure7 for the detection of the number of targets was introduced, 

within the framework of model selection, and established the strong consistency of the 

procedure. This procedure is referred to as the Efficient Detection Criterion (EDC) 

procedure. According to this procedure, q is estimated with q where 

EDC(q) = min{EDC(0),   . . . , EDC(m-l)} (1-10) 

where 

EDC(k)=-2Ln(k) + v(k,m)C(N) (1-11) 

and C(N) satisfies the following conditions: 

.}  lim[c(N)/N]=0 (M2) 

N ->oo 

6 V. Shamirian and S.. B. Kesler, "Detection of Signals by SVD-Based Information Theoretic Criteria," Proc. 
30-th Midwest Symposium on Circuits and Systems, pp. 567-570, Syracuse, NY 1987. 

7 L. C. Zhao et al., "Remarks on Certain Criteria for Detection of Number of Signals," IEEE Trans. ASSP. 
Vol. ASSP-35, No. 11, pp. 129-132, Feb. 1987. 

89 



ü)  lim{c(N)/Ln[Ln(N)]}=0 (113) 

N -400 

A very general and elegant method^ to estimate the number of targets was recently 

introduced. This method depends on choosing a function f defined on all finite sequences, 

called r-regular functions. The previous methods used only 1-regular functions (r = 1). It was 

shown that actually this is the worst case. It was eventually shown that as r increases, the 

convergence is even faster. 

From the above discussion, we notice that most techniques are non-parametric. It was 

our belief that parametric techniques are better suited for this type of detection since they have 

more degrees of freedom and eventually will prove very efficient. 

Our interest in the parametric techniques and LeCadre's technique" in particular is two 

fold. First, we evaluated and studied its performance against several parameters such as order 

determination of the AR model, number of incoming signals (targets), signal-to-noise ratios, 

and the presence or absence of clutter. We also studied the effects of a limited data sequence, 

computational complexity, algorithm convergence and implementation feasibility. This step 

could be referred to as a complete assessment of the proposed technique. In the second 

phase, we mainly restrict ourselves to the software development of appropriate detection and 

estimation algorithms for insertion in the Rome Lab Space Time Signal Processing (RLSTAP) 

software. 

8 Y. Q. Yin and P. K. Krishnaiah, "On Some Non-Parametric Methods for Detection of the Number of 
Signals," IEEE Trans. ASSP, Vol. ASSP-35, No. 11, pp. 1523-1538, Nov. 1988. 

9 J. P. LeCadre, "Parametric Methods for Spatial Signal Processing in the Presence of Unknown Colored 
Noise Fields," IEEE Trans. ASPP. Vol. 37, No. 7, pp. 965-983, July 1989. 
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LeCadre's Technique 

In this section, we will derive the detection algorithm defined by LeCadre and provide 

insights into the models used in the derivation. 

2.1 - Introduction 

Let Xj be the i-th stationary, m-dimensional random vector constituted by the narrow- 

band outputs of an array sampling a homogeneous random field, where m is the number of 

sensors.  X; can be written as 

X^x.C)    x2(i)   ...   xm(i)f. (2-1) 

Let Rx be the covariance matrix of the outputs vector Xj • Rx can De written as 

Rx=E[xi»X,H]. (2-2) 

It can easily be shown that Rx can be expressed as 

RX=RS+RN, (2-3) 

where Rs and RN are the covariance matrices of the sources and noise, respectively. 

The objective is to obtain an accurate estimation   of RN, based on the availability of an 

estimate of the covariance matrix Rx . The method relies on 3 facts: 

1. The likelihood functional may be expressed as a function of the eigenvalues of the 

whitened covariance matrix of the outputs. 

2. The inverse N~! of the noise covariance matrix admits an explicit formulation in 

terms of the AR(MA) coefficients of the noise model. 

3. The derivatives of the likelihood functional may be computed using (1) and (2) and 

classical results for perturbations of eigenvalues. 
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2.2 - Calculation of the Likelihood Functional 

The derivation of the likelihood functional depends upon which type of interference 

(i.e.; thermal white noise only or correlated clutter plus additive white noise) is being used. 

The first case will be devoted to the white noise interference and the second case will be 

devoted to the non-white case. 

2.2.1 - White Noise case 

In this case, we assume that RN is of the form RN =A,NIm, where XN is a positive 

constant and Im is the (mxm) identity matrix. Moreover, assume that the number of sources 

is denoted by q. Let {X, ,X2 ,---,XN} be a sequence of N independent complex Gaussian 

vectors with covariance matrix R. Note that R is given by 

Rx^ix.-X,", (2-4) 

where H denotes complex conjugate transpose. 

Given Rs and A,N, the pdf of any spatial vector snapshot X; is given by 

f,feA„.Rs)=^^e*p{-ä»R^}, (2-5) 

where independence was assumed from sensor to sensor and over the sequence of N samples. 

The conditional density of the received sequence is then given by 

fx(xAN,Rs) = nU&AN.RsK Ul     /   MNH-I^R;
1
^   . (2-6) 

i=i   "" W     [det(RjJ I    i=i J 

To simplify this expression, we study the following example. Consider the case where 

Xi=[xj    x2]   andletR~' = 
a   b 

c   d 

Notethat ^x^R^Xj is equal to 
i=l 
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IsTCs^IK   4] 
i=l i=l 

a   b 

c   d M2. 

,axnxn +bxi2xn + cxnxi2 +dxi2xi2 (2-7) 
i=l 

On the other hand, note that 

N N 

NRX=SX,.X1
H=X 

i=l i2. 
[Xil       Xi2] = Z 

i=l 

xnxn    xnxi2 

Xi2Xil       Xi2Xi2. 

(2-8) 

Therefore the product NR x R x'   is given by 

NRXR? = JL 
i=l 

xnxu    xnxi2 

Xi2Xil       Xi2Xi2 

a   b 

c   d -X 
i=l 

axnx*, + cxnx*2    bXjjX,*! + dxnx*2 

ax^+cx^x*,    bxi2x*i+dxi2x*2i 

(2-9) 

Recall that the trace of a matrix A is defined as the sum of its diagonal elements; i.e., 

tr(A) = Xaü • Note in tnis case that the trace of NRxRx' is §iven bY 

N 

^(NR^^^Ntr^R^^XaXnX^+cXnX^+bXj^+dXi^ . (2-10) 
i=l 

Note that Equations (2-7) and (2-10) are identical. Hence, Equation (2.2.1-3) can be written 

as 

fx(xAN>RsK L{    /  ^expfNtr^^;1)}. (2-11) 
W     [det(RjJ 

The next   step is to find the value of XN and Rs which maximize the likelihood 

functional. Note that Ln[f ^ (x / XN, Rs )] is given by 

^[^(xA^Rs^-NJmLn^ + Lnfde^RjJ + t^R.R;1)}. (2-12) 

It can be shown10 that maximizing this function with respect to A,N results in the following 

equation 

10 T. W. Anderson, "Asymptotic Theory for Principal Component Analysis," Ann. J. Math. Stat.. Vol. 34, pp. 
122-148, 1963. 
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m 

maxJLnJfx (x/lN, Rs)]} = Nj - mLn(re) - Ln[det(Rx)] + X Ln^) - (m - q)Ln 
i=q+l 

Let C be the following constant 

C = - mLn(7t) - Ln[det(R x)], 

1       m 

— Z*. m-qi=q+I 

(2-13) 

(2-14) 

then, the above equation can be expressed as 

1 m    , ^   i 

max{Ln[fx(x/A.N,Rs)]}=N C + fm-qJ^-^-Ln fj^i) 
(m-q) i=q+l 

- (m - q)Ln 
1 m      /v 

m-q i=^i 

(2-15) 

This last equation can also be written as 

max{Ln[f^(xAN,Rs)]}=N C + (m - q)Ln ftf) l=q+l 

(X m-q 

- (m - q)Ln 
1        J2, - 

m-qifqt, 

(2-16) 

Therefore, it can easily be seen that maximizing the likelihood amounts to maximizing the 

functional 

Lq(A,N,Rs)=(m-q)Ln[ge(q)]-(m-q)Ln[ar(q)], (2-17) 

where ge(q) and ar(q) are given by 

gel <q)= n(*,) 
i=q+l 

(/-H.) 
(2-18) 

and 

1      m 

ar(q)= X^-i m-qi=q+, 
(2-19) 
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ge(q) and ar(q) are referred to as the geometric and arithmetic means, respectively. Note also 

that in the previous derivation, we have assumed that the eigenvalues of Rx are ordered; i.e., 

£,£A,2>—>£m. (2-20) 

We now consider the case of unknown correlated noise. 

2.2.2 - Unknown Correlated Noise 

In this case, the likelihood functional is given by 

Lq(RN,Rs)=-Ln[det(Rx)]-tr(R;,Rx). (2-21) 

Note that RN is a positive definite matrix, therefore it admits a Cholesky decomposition in the 

form of two triangular factors (matrices). Let RN be given by RN =L.LH . Consider then the 

transformed matrix of the exact covariances (after application of L); i.e., 

Rw = L-'RL"" = L"1 (Rs + XNRN )l7H = L"1
(RS + ?iNLLH )L"

H
 , (2-22) 

which can also be written as 

Rw = L-'RgL-" +?iNL-,LLHL-H = L-'RSL-H +A,NIm. (2-23) 

Furthermore, let Sw be the transformed source's matrix; i.e., Sw = L_1RSL"H. Then the 

factor tr(Rx'Rx) becomes 

tr(Rx
1Rx) = tr[(L-HR-w

1L-')(LRwLH)] = tr(L-HR-w
1RwLH). (2-24) 

For simplicity, let A and B be the following matrices, A = L~HR^ and B = RWLH. Also, 

recall that given two matrices A and B, it is known that tr(AB)= tr(BA). Therefore Equation 

(2-24) becomes 

tr(R;1Rx) = tr(L-HR;1RwLH) = tr(RwLHL-HR;^tr(RwR;0 = tr(R;1Rw). (2-25) 

Note also that the determinant of Rx, det(Rx), can be written as 

95 



det(Rx) = det(LRWLH) = det(L) • det(LH) • det(Rw) = det(RN) • det(Rw), (2-26) 

since RN = L.LH and det(RN) = det(L) • det(LH). Therefore Ln[det(Rx)] is given by 

Ln[det(Rx)] = Ln[det(RN)] + Ln[det(Rw)]. (2-27) 

Thus, Equation (2-21) becomes 

Lq(RN»Rs)=-Ln[det(Rw)]-tr(R;,Rw)-Ln[det(RN)]. (2-28) 

Let Lw(q) be the quantity 

Lw (q)=- Ln[det(Rw)] - tr(R;!Rw), (2-29) 

then Equation (2-28) becomes 

Lq (RN, Rs )=LW (q) - Ln[det(RN)]. (2-30) 

Note also that the rank of the matrix Sw is given by 

rank(Sw) = rank(S),withRw =SW +A,NIm. (2-31) 

Thus, the maximization of Lq (RN, Rs) is the same as the maximization of Lw (q), relative to 

the source's subspace. This question was raised before and the solution is known to be given 

by 

max Lw (q) = - (m - q)Ln[arw (q)] + (m - q)Ln[gew (q)] - Ln[det(Rw )] + C,, (2-32) 

where arw(q)andgew(q)are the arithmetic and geometric means of the (m-q) lowest 

eigenvalues of Rw, respectively and Q is a constant given by C, = -mLn(7u). Then, using 

Equation (2-30), it can easily be seen that 

maxLq(RN,Rs) = -Ln[det(RN)]-(m-q)Ln[arw(q)] + (m-q)Ln[gew(q)]-Lnfdet(Rw)] + C1 

(2-33) 

However, recall from Equation (2-27) that 
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- Ln[det(Rw)] =- Ln[det(RJ] + Ln[det(RN)], (2-34) 

which implies that Equation (2-33) becomes 

maxLq(RN,Rs) = -(m-q)Ln[arw(q)] + (m-q)Ln[gew(q)]-Ln[det(Rx)] + C1. (2-35) 

Note in this last equation that the last two terms do not depend on RN or Rs.  Therefore in 

the remainder of this report, we will only consider the following expression 

Lq (RN )=- (m - q)Ln[arw (q)] + (m - q)Ln[gew (q)]. (2-36) 

The problem now is how to maximize Lq(RN) (for a given number of sources q), 

relative to parameters defining the noise matrix RN . This of course will depend on the noise 

parameterization, which is discussed next. 

2.3 - Noise Parameterization 

Consider first the case of an AutoRegressive (AR) modeling of the noise. This means 

that noise received on a sensor can be "predicted" from noise received on other sensors. This 

assumption applies for the general case that we are considering, since usually we are dealing 

with an array of sensors. We will show later, that actually all noise may be described by 

AR(MA) modeling. Assuming an AR type modeling, it can be shown (Gohberg)11 that the 

inverse of the covariance matrix is given by 

RN=^(A1.A;-A3.A;), (2-37) 

where A, and A3 are two triangular (mxm) Toeplitz matrices given by 

1' T. Kailath et. al., "Inverse of Toeplitz Operators, Innovations and Orthogonal Polynomials," SIAMRev., 
Vol. 20, pp. 106-119, Jan. 1978. 
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A, 

0 

0    a„ a,    1 

and A, 0 

ai       a2 

(2-38) 

Note that this formula is valid for any real stationary AR noise of order p with coefficients 

a{ ;i = l,2,--,p and a2 is the input driving noise power. Define the matrix Z1, where 

z,(j.k)= 
T if (j-k) = i ;   l<j<m 

0        else l<k<m' 
(2-39) 

Notice that this matrix has the property that Z1+ =Z'Z, where Z is the identity matrix.   Then 

the matrices A, and A3 can be written as 

A, =XaiZ' and A3 =ZaiZm_i ' (2-40) 
i=0 i=0 

where a0 = 1, by convention. 

In the case of an MA process, unfortunately, there is no explicit formulation of the 

inverse of the noise covariance matrix. However the following expression may be used 

RN = 5>.Y,    IbiYi 
Vi=0 Ai=0 J 

(2-41) 

where t denotes transpose and the b; ;i = l,2,---,p are the MA coefficients and { Yi} are 

rectangular (mx2m) matrices defined by 

Y,0.k)=- 
[1 if (k-j)=i 

0       else 
(2-42) 

By combining Equations (2-38) and (2-41), we obtain an expression for the parameterization 

of an ARMA process 

R, 
p "\ 

2>.Y, 
Vi=o J 

R AR 
Vi=0 J 

(2-43) 
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where RAR is the extended (2mx2m) matrix of the AR process as defined in Equation (2- 

37), but in dimension 2m. 

The noise model used previously assumes that the noise is equal in each sensor and 

moreover that it has equal power. In the case where this assumption is not valid, the 

following noise model is better suited 

Xm+a1Xm_1+apXm_p=ßmwn, (2-44) 

where wm is a sequence of independent white noise and ßm is an additional parameter which 

has to be optimized. 

There are several types of parameterizations for the noise covariance matrices, 

however, the ones which we consider have the advantage of defining a parameterization of 

RN (or R"1) with a small number of parameters. 

In the next section we discuss ways of maximizing the likelihood functional in the case 

of an AR model. 

2.4 - Maximization of the likelihood functional in the case of a real AR model 

The maximization of Lq requires, in general, an iterative technique. A general form of 

the gradient algorithm is given by 

Ak+I=Ak-pkGk, (2-45) 

where Ak=|Gk , ak , ••• , akl is the estimated vector of parameters at the k-th 

iteration, Gk is the gradient vector at the k-th iteration and pk is the step size of the 

algorithm. 

Recall that if Ak and A3 are given, the inverse of the noise covariance matrix is 

obtained by 

R^^K-tAf)1 -A3
k.(A3

k)t],whereA1
k=Xa1

kZi . (2-46) 
G i=0 
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The problem now is reduced to the computation of the gradient vector Gk   whose i-th 

component is given by 

Gk(i)=-^-L(q,k), (2-47) 
dai 

where L(q,k) is the log-likelihood functional conditional to q sources and RN k. 

It can be shown that computation of Gk amounts to computation of partial derivatives 

of the eigenvalues of Rw k. We will first derive some properties in the case of simple 

eigenvalues and compute the desired partial derivatives. 

• First recall that RN k andRxcan be written as R^,k =Lk
HLTk andR = LkRwLk.   Also the 

identity matrix I can be written as Im = Lk
HLk. Therefore 

det^A -XNIm) = det(L-k
HL-k

,LkRwL^ -XSL?L») = det[L"k
H(Rw -A,NIm)L»] 

(2-48) 
= det(L-k

H)det(Rw>k -XNlm)dct(hH
k) = det(Rw,k -XNlm) 

This clearly shows that the eigenvalues of Rw k and R^kRx are identical. 

• Second, note that since Rx is a positive matrix, it can be decomposed in triangular 

factors; i.e., R = TTH . Consider then the same determinant as above 

det^A - Vm) = det(T-HTHR-'!kTTH -^NTk"HTk
H) = detk^R"^ -^NIm)Tk

H] 
,(2-49) 

= det(Tk-H)det(R-,
]k -XNIm)det(Tk

H) = det(R-,,k -XNIm) 

which means that the eigenvalues of Rw k and T RN kT are identical. 

From the two properties seen above, it can be deduced that the computation of the 

partial derivatives (dXjdaA reduces to the computation of the partial derivatives (d^iJdaA, 

where the |i:'s are the eigenvalues of the Hermitian matrix THR^'kT.   This result is very 

important in the sense that the inverse of the noise covariance matrix is directly related to the 

AR coefficients. 
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A classical result in linear algebra states that given a matrix A with its simple 

eigenvalues Xi and its corresponding eigenvectors Vj; the partial derivative (dXjda^ is 

given by 

3*J   _WH     3 —^Vf—AVi,where 
da;    -

J 3a,    _J 

'3     ^ 

V9ai     J 
(k,l)=^-[A(k,l)]. (2-50) 

da. 

We are now ready to present all the steps involved in the determination of the maximum 

likelihood functional. 
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Algorithm 

• Computation of partial derivatives Ak (0 < i < p) of N ' relative to the parameters {aj}, 

Ak= — RN
1
,^— [zi(A^)t+A1

k(Zi)t-Zm-i(A3k)t-A3
k(Zm-i)t]forl<i<p.     (2-51) 

Note that 

Ak
0=-2(ok)-

lRjM. (2-52) 

• Computation of the derivatives of the matrices (Ak) ; i.e., 

(Ak)' = — (T^R^T) = THAkT ; 0 < i < p. (2-53) 

• Computation of partial derivatives of the (simple) eigenvalues of Rw k; i.e., 

^■=(Uk)H(Ak)'(Uk), (2-54) 

where Uk is the eigenvector associated to the eigenvalue A,k of the matrix THR^kT. 

• Computation of the gradient vector Gk, defined by its component Gk (i); i.e., 

Gk(i) = 1 fr))-1 £-K -[ark(q)]" 2 ^X), (2-55) 
j=q+l "ai      J j=q+l °&- 

where 

ark 1      m 

(q) = 2>-- (2-56) 
m-qAt, 

In the above algorithm, we have shown all the steps necessary for the computation of 

the gradient vector Gk, in the case of a real AR model.   However, as noted previously, the 

algorithm requires the knowledge of the eigensystem of THR^kT.   The eigenvalues and 

eigenvectors of this matrix can be computed exactly using standard algorithms or they may be 
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estimated as discussed later. It is important to note that this algorithm depends on a 

computation of a satisfying step size p for the gradient algorithm to ensure convergence. This 

will be achieved by use of a first (or higher)-order approximation to the change in eigenvalues 

of the whitened matrix. More precisely, let Ak be the vector of partial derivatives of A,k; i.e., 

k\t 
(A-) 

( d  ^ d  1^ 
3a"^'""'aa  ^ (2-57) 

Then, to a first order approximation, the j-th eigenvalue of the whitened matrix Rw k  or 

K^P)]"'* with 

Nk    a2 A1
k(p)[Af(p)],-A3k(p)[A3

k(p)],l (2-58) 

and 

A1
k(p) = Z[a

i-PG
k(

i)lzi (2-59) 
i=0 

is given by 

^(pMj-pGLAj. (2-60) 

Making these substitutions into the likelihood functional and by means of a uni-dimensional 

method, an approximation for p is determined. 

A second order approximation may also be used. In practice, however, a first order 

approximation seems to be sufficient to ensure convergence of the algorithm. Moreover, it is 

less computationally extensive. 

2.5 - Extensions 

In this section, we extend the above analysis to include different parameters and check 

how the technique performs. First, we extend the technique to include what is referred to as 

Reflection Coefficients. 
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2.5.1 - Parameterization using reflection coefficients 

The parameterization of the matrix RN may also be expressed in terms of reflection 

coefficients.  In this way, the stability of the AR model is ensured.  Specifically, the Levison 

recursion can be written in matrix form as 

Ap+1 =(lp+2-kpj)AAp, (2-61) 

where A is the [(p+2)x(p+l)] matrix defined as 

A = 

"1  • ■ Q" 

o • •  l 

0   • • °. 
(2-62) 

J is the reflection matrix (J2 =1) and Ap is the vector of AR coefficients of the noise model; 

i.e.,   AP=[l,a,,"-,a ].    It is then possible to express  A   ,   in terms of the reflection 

coefficients [1, k,, • • •, kp ] which leads to 

Ap+1=(l-kpj)A(l-kp_j)A-.(l-kj)A.L (2-63) 

Hence, the partial derivatives of the log-likelihood functional can be expressed with respect to 

the reflection coefficient as 

AT   =VAT    A 
dk, q £aaj 

q'ak;
aj (2-64) 

Therefore,  the partial derivatives   (dLq/dkj)   can easily be obtained since the partial 

derivatives (dhq/daiJ have been already derived in the previous section and (da^/dk) can 

be obtained from Equation (2-63). The test of stability for the polynomial A(z) reduces to the 

condition 

0< k; <1. (2-65) 
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2.5.2 - ARMA Case 

The fact that an MA model is included now leads us to replace the matrix A) by the 

matrix 6f defined by 

8ik=-(RN.k)" 

/ 

Y. 
p 

Vi=o ) 
l 

\\=o J 
Yl •(RNk)-'. (2-66) 

The ARMA case is obtained by derivation of Equation (2-43).   Note that the MA model is 

assumed to be minimum phase. 

2.5.3 - Multiple Eigenvalues 

In the case where some eigenvalues have multiplicity greater than 1, the formula giving 

the eigenvalues' partial derivatives no longer holds. In this case, up to the first order, the 

eigenvalues of the perturbed (R+8R) are the same as the eigenvalues of the matrix 

A=UH-(R + 5R)-U, (2-67) 

where U is the matrix of an eigenvector basis associated with the multiple eigenvalue.   This 

leads us to replace Equation (2-43) by the computation of the eigenvalues of the matrix 

UH • (A)) • U. The other steps of the algorithm remain the same. 

2.5.4 - Complex Case 

The fact that the noise field is non symmetric with respect to the array broadside 

results in complex AR(MA) coefficients for the noise model. However, nothing changes as 

far as the procedure is concerned. 

2.6 - Convergence Analysis 

In this section, we study the convergence of the gradient algorithm defined in the 

previous section. For instance, consider a second order AR model. Its covariance matrix can 

be computed using Equations (2-37) and (2-38). It is then possible to determine the 

functional La a (q) as defined in Equation (2-36), where X{ 's are the eigenvalues of the 

matrix R:,1   „    Rv and  ai and a2 are the AR parameters.   Note that L„    (q) is the exact 
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log-likelihood functional subject to the condition on {apa2}. A 3-dimensional plot of - 

L (a) as a function of the AR parameters; i.e. a, anda2, shows that its maximum is 

attained at the exact values of the AR parameters (see Figures 1-1 and 1-2). However, notice 

that the function is not concave, however the following properties do apply to the function 

Laa,a2(q): 

1. The log-likelihood function is negative. It equals 0 if and only if the noise model is 

estimated perfectly. 

2. The gradient vector of the log-likelihood function is null if and only if A is equal to 

A0, which represents the exact values of the coefficients. 

In previous sections, we assumed that the number of sources (q) and the AR order (p) 

are fixed. Next, we will look at the consequences of misadjustment of these parameters. 

2.6.1 - Number of sources (q) 

Using property 1 above, it is possible to overestimate the number of sources q, as long 

as the order of the AR model p in less than (m-q) without degradation in the asymptotic 

case. In practice, the covariance matrix is estimated, therefore the overestimation of q will 

lead to slightly inferior performances of the method. However, the degradation is quite 

acceptable. The question, however, is: what would be a good strategy for choosing the value 

of q. Recall that the classical information criteria such as those developed by Akaike and 

Rissanen do not provide a satisfying estimation of the number of sources. This is due to the 

fact that they make use of the eigenvalues of the estimated covariance matrix Rx and they do 

not separate between the uncorrelated sources and (highly) correlated sources. To solve these 

problems, we present the following solutions 

a)   Source over-determination: 

Trying consecutive values of q and then choose the value which maximizes the log- 

likelihood function will lead us to the right answer. 
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b) Modifications of information criteria: 

The information theoretic criteria are based upon log-likelihood determination and its 

statistical behavior. These statistics are characterized by a number of "free" parameters. 

The fact that we have an AR noise model enables us to add some "free" parameters. 

More specifically, assume that Rissanen's criterion is used, in which case, the following 

function is considered 

MDL(p,q) = -L(p,q) + -I^^-[p(2m-p) + q + 2], (2-68) 

where N is the number of independent samples, p is the number of sources and q is the 

noise model order.    L(p,q) is the likelihood function conditional on the following' 

hypotheses: p sources and noise model order q. 

c) Statistical properties of the eigenvalues of a "corner" of matrix R (MA case): 

This original approach has been presented by Fuchs12 and gives an accurate estimate of 

the number of sources in the presence of correlated noise. 

d) Use of a State-Space Approach for Sensor Outputs Modeling (ARMA Case): 

Using an information criterion such as the predictive efficiency criterion13, it is possible to 

obtain satisfactory estimates of the number of sources without a priori knowledge about 

the noise model. 

2.6.2 - Noise Order Model 

In the asymptotic case, noise model over-determination leads to very slight 

degradation of the results in terms of noise spatial density. We will show later, through 

computer simulations that it is possible to overestimate the order of the noise model, without 

12 J. J. Fuchs, "Estimation du Nombre de Sinusoids Dans du Bruit Colore," Actes du Onzieme Collogue 
GRETSI. Vol. 1, pp. 197-200, June 5, 1987. 

13 K. S. Arun and S. Y. Kung, "Generalized Principal Components analysis and its applications in 
Approximate Stochastic Realizations," in Modeling and Applications of Stochastic Processes, U. B. Desai, Ed. 
Boston: Kluwer Academic, 1986, pp. 75-105. 
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dramatic effects.  As shown previously, it is obvious to note that the parameters p and q may 

be estimated simultaneously. However, a separate estimation of p seems rather difficult. 

Another point to consider is the stability of the AR model obtained by the maximizing 

of the log-likelihood function. It is possible to compute the roots of Ak(z), where Ak(z) is 

the polynomial associated with Ak, and to adjust the step size of the gradient method. 

However, it can be shown that the parameterization by reflection coefficients is best suited in 

this case. It is interesting to note that in practice, if the noise poles approach the unit circle, 

then the noise covariance matrix tends towards singularity. This leads to the log likelihood 

functional approaching infinity. However, if the step is not very important, this avoids any 

stability problems. 

2.6.3 - Estimation of Source Parameters 

Assume that an estimation of the AR parameters has been obtained after several runs 

of the algorithm described earlier. Let A'= [l   ,   a{    ,   •■■   ,   apj be this estimate. 

An application where the above problem arises would be the estimation of Angles Of 

Arrival (AOA) of some sources as well as their powers at a given frequency. The derivation 

of source powers estimation is a fundamental tool for the minimization of the whiteness 

functional. The whitened matrix Rw given by RW=LRLH, with R"1 = LLH, is 

considered for source bearing estimation. Note that Rw, is not generally a Toeplitz matrix 

(even if Rx is Toeplitz), however, we can remedy this problem through a filtering process. 

The steering vectors De, corresponding to bearing 9, becomes whitened; i.e., (L. De). 

The MUSIC method for AOA estimations consists of computing the sine of the 

steering vector (L.   De) on the source subspace (space spanned by the eigenvectors 

corresponding to the largest eigenvalues of Rw, 

1 L-Dj L-De 

sin2(0)    |(I-n)-L-De|r     IKJ-L-D 

2 II-,      -^    l|2 

(2-69) 
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where || | is the Euclidean norm, II is the projection matrix, n = V • VH and v(mxq) is the 

matrix constituted by the greatest eigenvectors of Rw. 

Pisarenko's method has also been considered.     Let   W{    ,   •••   ,   0qj  be the 

estimated angles of the sources. Consider the (mxm) associated matrices; i.e., 

. Then for each of these sources, we pick the sub-matrices 
i=i 

'e,,i 

au       a'i.2       •••   a' l.p+i 

ai+p,l       ai+p,2     .'"      ai+p,P+l 

(2-70) 

where aj k is the 1-th row, k-th column element of the matrix JD§. -D? | for i = l,2,---,s and 

l = l,2,---,(m-p). All the sub-matrices S& are Toeplitz, but non-Hermitian. Then the 

transformed covariances of sources are given by 

sw(e,1) = AH-s(ei,1)-A = sw(ei,i). (2-vi) 

The covariance matrices of the sources swf0j ,lj correspond to the covariances of the 

sources after whitening by the inverse filter A as will be seen later. Covariances of 

transformed array outputs fw (1) are defined by the same method as previously shown, using a 

Toeplitz estimate of the covariance matrix of the outputs. This estimate is obtained by 

averaging along the diagonal and is the same as an orthogonal projection on the Toeplitz 

subspace. Pisarenko's method can then be used for estimating the power of the sources. 

Assuming spatial whiteness of the additive noise, the estimates of the source powers 

(g,, ■ ■ •, gq } are the solutions of the following over-determined linear system 

sw(e,.i)    -     sw(eq,i) 

sw(§1,m-p)   ••■   sw(eq,m-p) 

gl 

gq 

rw(D 

fw(m-p) 

(2-72) 
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It is important to observe that the procedure described above is similar to the case of 

uncorrelated sources which means that the source matrix is given by 

S = £&Dei-D?. (2"73) 
i=l 

and theoretically is independent of the noise level since it uses covariances fw (1) with 1 > 1. 

2.7 - Plane Wave Hypothesis, Whiteness Functional 

In this section, we will focus on the case of a linear equispaced array of sensors. We 

will derive the expressions for the likelihood functional in the case of an AR system, using 

Pisarenko's technique for harmonic retrieval. 

We assume that the covariance matrix R is Toeplitz and that the source parameters are 

perfectly known and define the function 

J = X|r(l)-rs(l)|2;(L>l) . (2-74) 
1=1 

Note that J is null in the case of white noise. In the case where the noise is correlated, 

it is possible to use whitening to reach a similar conclusion. 

We will only consider the case of an AR model. Let A be the vector of coefficients of 

this model and let |A(Z
_1
)|    be the associated filter.  The whitened filter is A(z_1) and the 

covariances of whitened data can be written as 

rw(1) = E1  XaixM   • Eaixt-i-i    -where a0=l. (2-75) 
[Vi=0 )    Vi=0 )) 

Therefore, 

rw(l) = AH-R,-A, (2-76) 

where R, is the (p+l)x(p+l) matrix given by 
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R.= 

'   r(l) r(l-l) 

r(l + l) r(l) 

r(l + p)   r(l + p -1) 

r(l-p)  ■ 

r(l-p + l) 

r(l) 

(2-77) 

Note that the above matrix is Toeplitz but non-Hermitian. Define the function 

UA) = t|rw(l)-rs(l)|\ (2-78) 
1=1 

where rw(l) was defined earlier and rs(l)  are the exact covariances of sources after the 

mapping A. Then when A is equal to A0, where A0 is the exact model, we can show that 

rw(l) = ri(l) + E 
A0(z"M A0(z

_1) 

A0(z   ) A0(z   ) 
= r.(l), (2-79) 

where e(t) is the input white noise sequence for the AR model. Therefore 

Jw(A0) = o. 

For practical applications, one uses the whiteness function defined by 

UA>i|rw(l)-?s(l)|\ 

(2-80) 

(2-81) 
i=i 

where rw(l) was defined earlier, but using the available covariance matrix R, instead of the 

exact matrix R,, and fs(l) is estimated using Pisarenko's method or any other high resolution 

technique applied to the whitened data in the following manner 

m 

f,d)=Xqiexp{-J7cÄ}' 
i=l 

(2-82) 

where m is the number of sensors, g; and fi are the power and spatial frequency of the i-th 

source, all of which were estimated using a high resolution technique. Note that L is usually 

chosen to be L = (m- p -1). 

Ill 



We will now deal with the minimization of the function defined by Equations (2-81) 

and (2-82). This minimization is done in terms of AR coefficients vector A only, but is 

relative to the terms rw (1) and rs (1). The general procedure is summarized below: 

•    Iteration 0, (Starting Parameters): 

A£=[l,0,-,0] 

g° and f° obtained by spatial analysis of R 

rw(l) = r(l) 

• Iteration k: 

Ak =[l>ai >'">apJ 

gf and f;k obtained by spatial analysis of Rk 

rk(l) = AH-R,-A. 

Note that the number of sources may be corrected at each iteration. 

• Iteration k—> (k+1): Computation of the gradient vector Gj (Ak) 

Ak+I = Ak -pk • Gj(Akj,wherepk is the gradient step size. 

2.7.1 - Whitening Invariance Properties 

Recall that rw (1) can be expressed in matrix form asRw=ARxA
H, where 

A. 

1 al 
... 

ap 
0    •   ...   . ••   0 

0 

0 

0 

1 ... 0 1 al  • •• ap 0    ■ ■■   0 

(2-83) 

Here A is the directional matrix and therefore should not be confused with the gradient vector 

discussed in section 2.7.  Note also that the matrix Rw defined earlier is a Toeplitz positive 
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matrix.  Moreover, we have RW(U) = rw(l).  This matrix transformation allows us to study 

the effect of whitening on the covariance matrix. 

Next, we will study the effect of whitening on a plane wave whose associated steering 

vector is given by 

D^ = 1   ,   e 
ja ,   e j(n.,-')a (2-84) 

It can then easily be seen that the covariance matrix Rw is given by 

Rw(e) = ADe-De
HAH. (2-85) 

Note that the product ADe is given by 

ADe = 

l + aie
ja+...+ape

j(p-1)a 

eJa+a1e
2Ja+...+a„ejpa 

ej(L-1)a+aie
j(L)a+...+ape

j(L+p-1)a 

(2-86) 

which can also be written as 

ADe=(l + a,eja+...+ape j(p-l)0t);De
H, (2-87) 

where De is and (Lxl) vector obtained by selecting the first L components of the vector De. 

Hence, it can easily be shown that the covariance matrix can be expressed as 

Rw(e) = q(e)DeD», (2-88) 

where 

q(6) = l + a^+.-.+ape j(p-l)a (2-89) 

The above properties lead to the following: 

•    Let  Rx be a Toeplitz covariance matrix, then RW=ARXA
H   is a Toeplitz 

matrix. 

113 



•    The  procedure   transforms   a   steering   vector  into   another   steering   vector 

corresponding to the same angle of arrival. 

In practice, the exact angle of arrival of the sources are unknown. The above 

properties state that only these angles are invariant under the whitening procedure. These 

angles may be estimated using any high resolution technique. It is well known, however, that 

these estimates will never be exact. Using the whiteness function, the intent is to define an 

iterative method which will minimize the differences between the off-diagonal terms of the 

whitened matrix and the corresponding terms of the source matrix. 

2.7.2 - Calculation of the Gradient Vector of the Whiteness function 

Using Equations (2-81) and (2-83), we can show that the gradient vector is given by 

GI(A) = 2RejX[R,A-Gri(l)lA
H < -A-r^l)]}, (2-90) 

where Grs(l) is the gradient vector of rs(l,A) relative to A.  The hardest part of the problem 

is to determine this last quantity. Note that Grs (1) is defined by 

Gr.(D = XGgi(A)-e-*df' -}ia-$igfi™ -Gf,(A). (2-91) 
i=l i=l 

Note that the computation of Grs(l) amounts to the computation of Gf;(A) and 

Gg; (A). This will be achieved in two steps. First, we compute the partial derivatives of the 

eigenvectors of Rw. Then, derivatives of the source parameters are computed using a 

perturbation analysis of a high resolution technique. 

1. Partial Derivatives of Eigenvectors of Rw 

Denote by RA the (L+l)x(L+l) Toeplitz matrix defined by 

RA(i-J) = rA(i-j), (2-92) 

with fA(l) = AH  R,  A and {yi,---,yL+,;Ä,1 >••> XL+1] is the eigensystem of RA .  In the 

case of a simple eigenvalue, it can be shown that 
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L+l 

3a, Ji-S 
j#k 

U^R./aa^.U, 

A,k-fcj 
Up (n + l<k<L + l. 

The matrix (3RA/3aj) is a Toeplitz matrix which can be defined by its first row as 

3  ä RA(m,l) = E1
H-Rm_,-A + AH-Rm_1-Ei, 

(2-93) 

(2-94) 

with 

H(l) = 
'l;l = i 

0;else 
(2-95) 

2. Derivatives of Source Bearings 

Recall that the i-th source is characterized by its power and spatial frequency g\ and f{, 

respectively. The problem now consists on computing their partial derivatives with respect to 

the parameters {a;}. In the case where the MUSIC algorithm is used, recall that the 

estimates of the angles of arrival are obtained by minimizing the projection of vector De on 

the noise subspace: II = U • UH, where U = [Un+, , ■ ■ • , UL ] ("lowest" eigenvectors of 

Rw). 

The projection of De on the noise sub-space is given by: 

n(8) = DB
H-n-De. (2-96) 

Letz|=[l    ,    Z;    ,    ■••   ,   z^JwithZj = expj-JTif;}.   Then the derivative of this vector 

with respect to the spatial frequencies is given by 

df. 
■z;=-jrc[0   ,   Zi    ,   ■■■   .   Lz^]. (2-97) 

Then an expression of the partial derivatives of the spatial frequencies with respect to the AR 

coefficients is expressed as 
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9a 

3    AH    r,   A AH    „       3     ~ " H       3 z   nz;+z   n—z;+z •—z;=o 
3a, 

So far we have shown how to compute the partial derivatives of the eigenvectors using 

equation (2-93), the spatial frequencies fj using a high resolution technique and the partial 

derivatives (dfJdaA. If the projection of the whole noise subspace is considered, the 

derivative of the projector n is given by 

Re 

9a, ■f, =-- 

-U 
v3a,    j 

•Z, 
^ * 
z, u 

"        Im{(u».zi).(z;.u)} 

and 

(2-98) 

3a, 
■n(8)= 

v3a,      j 
■n-D'e+D'e"- —n 

v3a,    j 
D'e+De

Hn- 
f 3     *N 

v3a,      j 
(2-99) 

The next step will involve computing the partial derivatives of the projector IX   To do this, 

. we take a second order of II as given by 

n8=(U0+5U + 52u)-(l-|5u||2)-(u>5UH+52UH), (2-100) 

where 

and 

u,*(u0o+(5ul)+(sau1) 

(U0 + 8U + 82U)H • (U0 + 5U + S2U) = I + ||8U||2 

(2-101) 

(2-102) 

From Equations (2-100), (2-101) and (2-102), we can get a first order expansion of II5 as 

n6=n + u-5uH+5uuH, (2-103) 

Therefore 
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3a, 
n = u 

vaa,   j 
+ —u 

v3a,    j 
UH, (2-104) 

from which we obtain 

Re 

3-f. =■    _1 

f d 

vda,      j 

AH 

Z. 
[" H z, -uk 

3a,   '     (L-n)Tt k=n+l ^{(uM.Hzr.u,)} 
(2-105) 

It was possible to have used a second order expansion. However, in most practical situations, 

a first order expansion yields good results. 

3. Derivatives of Source Powers 

Let F be an (Lxq) matrix, obtained from elementary theoretical covariances of 

estimated source; i.e., 

F = 

8(6,,I)   -   s(eq,i)" 

<ex,L) ••• s(eq,L) 
withs(ek,l) = -sin(7dfk). (2-106) 

Moreover, let J be the (Lxq) vector obtained from the imaginary parts of whitened output 

covariances; i.e., 

r=Im[fA(l),-,rA(L)], (2-107) 

where fA(l) and A were defined previously.   Also, let Y be the vector of source powers 

defined as 

rl=[gl    ,   -   ,   gq]- (2-108) 

In the white noise case, the vector Y is the solution to the following linear system 

F-r = J. (2-109) 

The gradient vector G, where 
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GJ = 
3q, 
3a, 3a, 

(2-110) 

is obtained by differentiating Equation (2-109) and is given by 

G, =- ,_,   3F,F, 
3a i        J v3a,y 

(2-111) 

where 

-\ -\ 
 F is obtained from Equations (2-93) and (2-105), -—J is given by Equations (2- 
3a, 3a, 

94) and (2-95) and F-1 is the pseudo-inverse matrix of F.  The vectors G- (A) are obtained 

from the vectors G,. 
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Computer Simulations and Results 

In this section, we present the results of the computer simulations which we carried 

out. The goal of the simulations is to demonstrate the effectiveness of the proposed 

techniques. Note that at this stage only the Parametric beamforming algorithm based on 

LeCadre's technique was evaluated. Note also that only spatial processing was considered. 

Recall that the objective of the proposed method is to determine the number of targets 

present in the environment. Therefore the detection problem which we undertook in this 

effort is different from the classical detection problem which we usually refer to in the 

literature as a decision making about the presence or absence of a target. LeCadre's technique 

is believed to improve the detection of targets, especially for cases of low signal-to-noise 

ratios. This is of great interest to us since in most applications the targets are buried in the 

environment consisting of clutter, jammers and thermal noise. Also, by being parametric, the 

technique shows great promise in the overall detection scheme such as computational 

efficiency. 

3.1 - Likelihood Functional 

The first goal of the computer simulations was to duplicate the results presented in [1], 

and then extend the technique to more complicated scenarios. Preliminary computer 

simulated results show that the technique performs as expected, since we were able to 

duplicate most of the results presented by J. P. LeCadre. For instance, we showed that the 

likelihood functional defined in the paper is minimized (or maximized, depending on which 

quantity we are using) with respect to the Auto Regressive (AR) coefficients of the noise 

model and this was done for a fixed and known number of sources. The scenario used in this 

case was as follows. It consisted of three (q = 3) targets with parameters as shown in the 

table below: 
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Target e SNR (dB) 

1 40 -5 

2 50 -10 

3 70 -15 

Table 3-1. Target Parameters 

The AR model was assumed to be of order two (p = 2) with the following AR parameters: 

a0=l, a, =-0.9, a2=0.2. 

We considered a linear uniformly spaced array consisting of 14 sensors ( m = 14), spaced at 

half wavelength d = X,/2, such that cod/c=27u(d/l)=7t. 500 samples (snapshots) were 

used in the computation of the sample covariance matrix. The value of the likelihood 

functional was found to be L = 0.1582. We varied the values of ai from -2 to +2 and the 

value of a2 from -1 to +1. Note that throughout the analysis as well as the computer 

simulations, the value of ao is assumed to be equal to unity (ao = 1). Figures 3-1 and 3-2 show 

the variations of the likelihood functional as a function of ai and a2. 
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Figure 3-1. Likelihood Functional as a Function of at and a2 
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Figure 3-2. Likelihood Functional (in dB) as a Function of ai and a2 
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From the above figures, it can be seen that the minimum of the likelihood functional is 

attained at the exact values of the AR parameters, namely ai and a2.   This shows that the 

algorithm performs exactly as expected. 

3.2 - AR Parameters Estimation 

Another aspect of the technique is to accurately estimate the order as well as the 

coefficients of the AR model used to characterize the noise. In the next simulation, the same 

scenario as previously described is used. We also assume that the order of the AR model and 

the number of sources have accurately been estimated. The following figures show the AR 

coefficients estimates as a function of the step size (p) used and the number of iterations 

needed for convergence. Note that in all cases, we have assumed a total number of 50 

iterations. However, as can be seen from these figures, convergence was attained much faster 

than 50 iterations depending on the value of the step size. In the figures below, the value of p 

was varied from 0.4 to 0.7 with increments of 0.05. As can be seen from these figures, the 

bias errors seem to have a sinusoidal relation to the step size. 
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Figure 3-3. AR Parameter Estimates (step size = 0.4) 
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Figure 3-6. AR Parameter Estimates (step size = 0.55) 
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Figure 3-7. AR Parameter Estimates (step size = 0.6) 
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From Figures (3-3) to (3-9), the following observations were made. With a step size 

of 0.4, convergence was attained after 5 iterations (very fast). However, there is a bias of 

about 0.02 for both ai and a2. This is not bad, depending on whether the technique is robust to 

errors in the AR parameters or not. This will discussed later. Note that with a step size of 

0.45, convergence was attained after 15 iterations, however with still a bias of about 0.18 for 

ai and 0.05 for a2. With a step size of 0.5, convergence was attained after 20 iterations, 

however again with a bias of approximately 0.05 for both ai and a2. With a step size of 0.55, 

convergence was attained after 15 iterations for both ai and a2, with a very large bias of about 

0.25 for ai and a small bias of about 0.02 for a2. With a step size of 0.6, convergence was 

attained after 15 iterations, however with a very small bias of approximately 0.0005 for ai and 

a bias of about 0.02 for a2. With as step size of 0.65, convergence was attained after 5 

iterations for a2 with a bias of 0.002 and after 10 iterations for ai with a bias of approximately 

0.003. When the value of the step size was 0.7, convergence was attained after 12 iterations 

for both a! and a2, however with bias of about 0.0015 for ai and about 0.25 for a2. From the 

above discussion, it is clear that the best results were obtained when p was equal to 0.6. This 

value should be the one to be used in further processing of the received signals. 

3.3 - Number of Signal Estimation 

Next, we show that an extension of the MDL algorithm can also be used to determine 

the number of sources and the order of the AR model. Computer simulations have shown that 

the minimum of the functional was attained at the exact values of these parameters. Again, as 

in the previous case, we considered the same scenario as before. We applied the modified 

MDL criterion as defined earlier. Note that these results were achieved through whitening of 

the covariance matrix of the received vector. Table 2 shows the results of the computer 

simulation. 
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Process Order 0 1 2 3 4 5 

Number of Signals 

1 45.2716 29.4954 3.0568 3.4702 3.8657 4.2586 

2 45.2431 29.4668 3.0283 3.4417 3.8372 4.2301 

3 45.2336 29.4573 3.0188 3.4322 3.8277 4.2206 

4 45.3001 29.5239 3.0853 3.4987 3.8942 4.2872 

5 45.4997 29.7235 3.2849 3.6983 4.0939 4.4868 

6 46.5264 30.0113 3.6747 4.0881 4.4836 4.8765 

Table 3-1. Values of New MDL Criterion 

As expected, the minimum value of the new MDL criterion was obtained when we 

reached the exact value of the AR order model and the exact number of sources. From this 

table we deduce both the order of the AR model (p = 2) and the number of sources (q = 3) for 

subsequent analysis. It is important to note here the efficacy of the algorithm in estimating 

these two important parameters. Without the knowledge of these two parameters, it would be 

extremely hard to process the data any further, especially if we are interested in estimating the 

locations of the sources. 

3.4 - Angle of Arrival Estimation 

With the above knowledge in hand, we applied two different algorithms to locate the 

targets involved in the scenario, namely MUSIC14 and ESPRIT15 .   It is important to note 

here that two different simulations were carried out. 

3.4.1 - Signal Plus Noise Case With Known Whitening Functional 

First, we assumed that the received signal was of the following form: 

Y=AS+CN, 

14 R. O. Schmidt, "Multiple Emitter Location and Signal Parameter Estimation," IEEE Trans. Antennas and 
Propagation. Vol. AP-34, pp. 276-280, March 1986. 

15 A. Paulraj, R. Roy and T. Kailath, "Estimation of signal parameters via rotation invariance technique- 
ESPRIT," Proc. 19-th Asilomar Conf. on Circuits. Systems and Computers, pp. 83-89, Pacific Grove, CA, 
Nov. 1985. 
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where A is the directional matrix (representing the array manifold), S is the impinging signal 

vector and C is the noise driving term and N is the additive white noise vector assumed to be 

independent from the signals. As described earlier, C was obtained from the Cholesky 

decomposition of the AR covariance matrix and thus provides the specified cross-channel 

correlation. We refer to this matrix as the whitening functional. At first, we assumed this 

matrix to be known a priori, which means that the AR covariance matrix was computed 

exactly knowing the exact values of the AR parameters. 

3.4.1.1 - MUSIC Operator 

Figure 3.10 shows the result of the MUSIC algorithm. The solid line shows the 

transformed MUSIC algorithm, while the dotted line shows the un-whitened MUSIC 

algorithm. It is very clear from the above figure that whitening does improve the location of 

the signals. Without any whitening, one sees that MUSIC was unable to resolve all targets. 

Recall that the signals are completely buried in the clutter (SNR of-5, -10 and -15 dB). These 

results clearly show the need for the whitening functional. 
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Figure 3-10. MUSIC Algorithm 
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3.4.1.2 - ESPRIT Operator 

In the previous section, we concentrated on using LeCadre's technique in 

conjunction with the MUSIC algorithm. It is well known that one of the disadvantages of 

MUSIC is the computational load required to execute the algorithm as well as the amount of 

memory needed to store the array manifold. For these reasons, we shifted our attention to 

another technique which is computationally less intensive and does not require a lot of 

memory space. This technique is referred to as ESPRIT (Estimation of Signal Parameters via 

a Rotational Invariance Transformation). In this technique, two sub-arrays are formed. Then, 

we form the covariance matrix of the first sub-array, call it Mi, and the cross-covariance 

matrix of sub-array 1 and sub-array 2, call it M2. It can then be easily shown that the 

information of the locations of the targets is contained in the rank reducing values of the 

matrix pencil (Mi-AM2). These rank reducing values are shown to be the generalized 

eigenvalues of the same matrix pencil. In the initial phase, we assumed that the whitening 

transformation is known a priori. We have selected the same scenario as described previously 

in which we considered an array consisting of 14 sensors spaced at half wavelength and 3 

targets located at 40°, 50° and 70°, with an SNR of 0 dB, each. The AR process was still 

assumed to be of order 2 with parameters 1, -0.9 and 0.2. The following show the mean, the 

variance and the mean-squared error of the estimates obtained after 50 trials. 

e,=4o° 92=50° 03=7O° 

Mean 41.0609 51.3136 70.6455 

Variance 0.0036 0.0030 0.0057 

MSE 56.2737 86.2731 20.8348 

Table 3-3. ESPRIT Estimates 

We can also visualize these results by looking at the angle estimates as a function of the 

number of iterations and the histograms of the estimates. 
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Even-though the angle estimates have a small bias, the variances of these estimates are 

very small. This clearly shows the effectiveness of the proposed technique. 

3.4.2 - Signal Plus Noise Case With Estimated Whitening Functional 

In this case, we estimate the whitening likelihood functional using the method derived 

in section 2. Recall that the first step in this method is to estimate the order of the AR model 

used to describe the noise and the AR parameters, along with the number of signals. Once 

these parameters have been estimated, we generate the AR covariance matrix from which the 

whitening functional is derived. This functional is then applied to the covariance matrix of the 

received data. 

3.4.2.1 - MUSIC Operator 

In this section, we ran the same scenario as described previously. However, in this 

case the whitening functional was estimated whereas in the previous case the true whitening 

functional was used. The following figure shows the result of the MUSIC operator. Again, 

the solid line shows the case of whitening case whereas the dotted line shows the un-whitened 

case. 
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Figure 3-17. MUSIC Algorithm 
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Note that the results are not as good as in the previous case. However, one can see 

that after several iterations, the locations of the targets are clearly estimated using MUSIC in 

conjunction with the whitening functional. Again as in the above case, the solid line shows the 

results of the whitening process while the dotted line shows the results of the un-whitened 

case. 

3.4.2.2 - ESPRIT Operator 

We have selected the same scenario as previously in which we considered an array 

consisting of 14 sensors spaced at half wavelength and 3 targets located at 40°, 50° and 70°, 

with an SNR of 5 dB. The AR process was assumed to be of order 2 with parameters 1, -0.9 

and 0.2. The following are the results of 50 runs. 

01=4O° 62=50° 63=70° 

Mean 41.1016 51.3700 70.6565 

Variance 0.0018 0.0026 0.0046 

MSE 60.6799 93.8408 21.5495 

Table 3-4. ESPRIT Estimates 

Note again that the bias in the estimates is very small. However, the variances of these 

estimates are extremely small. Therefore, one can see the advantages of this technique as 

compared to other techniques such as MUSIC. Note also that these estimates are very good 

because of the fact the we used an SVD decomposition on the two sub-matrices involved in 

the matrix pencil. Again as we did before, we can visualize these results by looking at the 

angle estimates as a function of the number of iterations and the histograms of the estimates. 
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Even-though the angle estimates have a small bias, the variances of these estimates are 

very small. 

3.4.3 - Signal Plus Clutter Plus Noise With Estimated Whitening Functional 

In the following figures, the signal was assumed to be of the form 

Y=AS + CN1+N2, 

where Ni and N2 are independent white noise processes. We only consider the case where we 

estimated the functional and applied it to the AOA algorithms being used. To achieve this, we 

first estimated the AR parameters and computed the AR covariance matrix from which the 

whitening functional was obtained. The following figures show the results of the computer 

simulations. Note that from each case, we first present the values of the AR parameter 

estimates used in the estimation of the angles of arrival, then the corresponding plots or tables. 

3.4.3.1 - MUSIC Operator 

In this section we present the results of the MUSIC algorithm. 
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Figure 3-24. AR Parameter Estimates (p = 0.6) 
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Figure 3-26. AR Parameter Estimates ( p = 0.7) 
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Figure 3-27. MUSIC Algorithm with p = 0.7 
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Figure 3-28. AR Parameter Estimates ( p = 0.6) 
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Figure 3-29. MUSIC Algorithm with o = 0.6 
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Figure 3-30. AR Parameter Estimates (o = 0.7) 

141 



MUSIC Algorithm (Estimated Whitening Functional) 
10 

m 0 
TJ 

F 
3 

Ü 
CD <-> 

C/J -b 

-10 

-15 10 20 30 40 50 
Angle (Degrees) 

60 70 80 90 

Figure 3-31. MUSIC Algorithm with o = 0.7 

Because the AR parameters have been estimated using the technique described above 

as well as the corresponding covariance matrix from which the whitening functional was 

derived, one would expect the results to be slightly different than those of the known 

likelihood functional. To our surprise, the results are not as bad as one would expect as can 

be seen in Figures (3-24) through (3-31). The locations of the signals were estimated quite 

accurately, except for small biases. This clearly shows the efficacy of the proposed technique. 

3.4.3.2 - ESPRIT Operator 

We have selected the same scenario as previously in which we considered an array 

consisting of 14 sensors spaced at half wavelength and 3 targets located at 40°, 50° and 70°, 

with an SNR of 0 dB. The AR process was assumed to be of order 2 with parameters 1, -0.9 

and 0.2. The following are the results of 50 runs. 
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ei=40° 92=50° e3=70° 

Mean 39.8638 49.9485 69.9631 

Variance 0.2689 0.1285 0.2760 

MSE 0.9268 0.1327 0.0679 

Table 3-5. ESPRIT Estimates 

Note again that the bias in the estimates is very small. However, the variances of these 

estimates are extremely small. Therefore, one can see the advantages of this technique as 

compared to other techniques. Note also that these estimates are very good because of the 

fact the we used an SVD decomposition on the two sub-matrices involved in the matrix 

pencil. Again as we did before, we can visualize these results by looking at the angle 

estimates as a function of the number of iterations and the histograms of the estimates. 
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Figure 3-32. Angle = 40° as a function of iteration number 
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Figure 3-33. Angle = 50° as a function of iteration number 
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Figure 3-34. Angle = 70° as a function of iteration number 
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Even-though the angle estimates have a small bias, the variances of these estimates are 

very small 

3.5 - Effects of Correlation in the AR coefficients 

We then investigated the performance of the technique in estimating the AR 

parameters. It was observed that the estimation of these parameters depends greatly on the 

correlation between these parameters. For example, in the case where the parameters are 

uncorrelated ( or very small correlation), the algorithm (minimization of the whitened 

likelihood functional with respect to the AR parameters) performed very well in the sense 

good estimates were obtained just after few iteration (10-15) depending on the scenario used. 

However, in the case where the AR parameters were strongly (or highly) correlated, the 

algorithm did not perform as well, since over 100 iterations are needed to get good estimates 

of these parameters. Furthermore, the estimates are biased. 
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Conclusions and Future Recommendations 
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A new procedure referred to as A'SCAPE has been introduced in the first part of this 

report. The goal of A'SCAPE is to partition a scene into homogeneous regions and 

characterize statistically the different regions. As explained in Chapters 2 and 3, two 

procedures are used to partition the scene. First, a Mapping procedure is used to separate 

between regions of different average magnitude levels. This procedure is a new adaptive 

thresholding technique which proves to be very effective at separating regions even when 

their average magnitude levels are very close to the point that the area of overlapping 

between their histograms is large. Then, when all regions of different average magnitude 

levels have been separated, a Statistical procedure is used to separate between sub-regions of 

different data distributions within each region declared as homogeneous by the Mapping 

procedure. The Statistical procedure is based on the Ozturk algorithm which needs only 100 

samples to properly approximate the PDF of a region. In the Statistical procedure, Gaussian 

and non-Gaussian regions are formed within each region declared as homogeneous by the 

Mapping procedure. Outliers are detected which may represent small patches with not 

enough pixels to be characterized as sub-regions. Also, contiguous non-Gaussian regions that 

can be approximated by the same PDF are grouped to form the subpatches within each region 

previously declared as homogeneous by the Mapping procedure. Furthermore, PDFs of the 

non-Gaussian regions are approximated. 

Though using two procedures, A'SCAPE needs four stages to achieve its aim at 

separating the different contiguous non-homogeneous regions that may exist in a scene. 

These stages consist of a Preprocessing stage where classical time-frequency processing of 

the data is performed, a Mapping procedure stage, a Statistical procedure stage, and an 

Indexing stage which assigns a set of descriptors to every pixel in the scene under 

investigation. When A'SCAPE is followed by a detection stage, all information is available 

with respect to which detector should be used for every pixel in the scene. 

Interactions between the different stages of A'SCAPE are controlled through an 

expert system shell, IPUS. This is important because the goal behind A'SCAPE is to monitor 

an environment which is unknown a priori. Thus, IPUS is needed to ensure that the setting of 

the control parameters of the different algorithms in A'SCAPE is well suited with the type of 

data being analyzed. If not, a discrepancy is detected and IPUS searches for the distortion that 
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may have caused it. This results in the choice of another setting of the control parameters and 

in the reprocessing of the data. 

The A'SCAPE procedure is illustrated through an example of real IR data collected 

over a lake and land regions. First, the preprocessing stage selects those pixels in the scene 

that result in uncorrelated data and feeds them to the mapping procedure. Then, the mapping 

procedure partitions the scene into three main patches: lake, land, and a subpatch within the 

land. By analyzing the statistics of the three regions it is concluded that the sub-patch within 

the land may be a body of water. Following that, the statistical procedure partitions further 

the lake and land into main Gaussian patches and a total of fifteen non-Gaussian subpatches. 

Also, outliers representing tiny patches, such as roads, have been located and approximating 

PDFs have been determined for the non-Gaussian subpatches. 

A demo package built in Matlab is included which describes in detail the different 

stages of A'SCAPE. The package has a friendly mouse driven graphical user interface (GUI) 

and consists of two main sections. The first section presents the detailed steps of the real IR 

data example. The second section is subdivided into two subsections where in the first one a 

set of examples is presented which illustrate the need for A'SCAPE, whereas in the second a 

description is given for every stage of A'SCAPE. The views can be displayed manually or in 

an automated way as a slide-show. A movie is included which shows the steps the scene goes 

through during the mapping procedure. This demo package is among the deliverables. 

Work under investigation and future work include: 

(1) Tailoring/tuning of the edges for subpatches detected by the statistical procedure 

which is limited by the requirement of 100 reference pixels for the Ozturk algorithm. 

Note that when the subpatches have more than 100 pixels it is possible to do more 

processing to fine tune the edges. 

(2) Study of the performance improvement of the non-Gaussian detectors over the 

Gaussian detector in different types of environments and under different 

circumstances. 

(3) development of more expert system rules to enable ASCAPE to be applied to 

different types of data (e.g., radar, IR, sonar, medical imaging, etc.). 
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(4) Application of A'SCAPE to medical imaging (e.g., detection of tumors in lung), to 

law enforcement (e.g., detection of concealed weapons underneath clothing) and to 

other areas. 

(5) Design of a detection stage. As mentioned before, if A'SCAPE is to be followed by a 

detection stage, the type of detector is selected according to the approximating PDF 

found for the patch under investigation and parameters for the sufficient statistic of 

the detector are determined from the pixel descriptors available at the indexing stage. 

Work needs to be done to test the detection stage, study its performance, and define 

expert system rules to overcome any possible discrepancies. 

(6) Incorporation of A'SCAPE into Rome Laboratory Space-Time Adaptive Processing 

(RL/STAP) algorithms to enable the characterization of the scene under investigation 

prior to any detection. As mentioned in this report, when A'SCAPE is done 

processing the scene all information is available at the indexing stage for every test 

pixel in the scene with respect to which PDF can approximate the data in the pixel, 

which patch does it belong to, which pixels can be chosen as reference for the test 

pixel, etc. All this information is necessary to enable proper choice of the detector 

type and its corresponding parameters at the detection stage. 

The work presented in Part II of this report can be summarized as follows: First, we 

introduced the problem of detection using non-parametric techniques and showed the 

disadvantages that are inherent in these techniques. Then we introduced the concept of 

Parametric detection schemes and demonstrated the need to use such techniques because of 

the number of degrees of freedom they add. We derived the beamforming algorithm based 

on LeCadre's work and extended to include both clutter and additive white noise. It is the 

parameterization of the clutter which gives us the driving factor to include the added degrees 

of freedom from which the order of the AR(MA) model used is estimated and then estimate 

the AR(MA) coefficients to obtain the AR(MA) covariance matrix. This matrix will be used 

to "whiten" the covariance matrix of the received vector. Then the number of desired signals 

present in the environment is estimated using a modified version of the so-called MDL 

algorithm.  Once these parameters have been estimated, then any direction finding operator 
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could be used to determine the locations of the signals. Note that only spatial processing has 

been done at this stage. 

In the simulations, we started by checking the convergence of the technique and its 

ability to estimate correctly the AR(MA) parameters. We found that the technique is very 

efficient in obtaining good estimates of the AR(MA) parameters with few iterations. Note 

that this was the case of uncorrelated AR(MA) coefficients. In the case of highly correlated 

coefficients, as many as 500 iterations are needed to get good estimates of the AR(MA) 

parameters. Note also that in order to get these estimates, the order of the AR(MA) model 

has to be known a priori. In most cases, it is estimated from the data set along with the 

number of signals present in the environment. We actually showed that an extension of the 

MDL algorithm gave the exact model order and number of signals present. 

We then tested the new technique in location estimation. For this, we used two 

operators, namely the MUSIC operator and the ESPRIT operator. The reasons for choosing 

these operators is purely arbitrary. Recall that the first operator is called a "search procedure" 

operator since we have to search over the entire array manifold to obtain the DOA estimates. 

This may be very computationally extensive and the amount of memory needed to store the 

results may be very high. For these reasons, we chose an alternative technique, referred to as 

a "non search procedure" to estimate the DOA's of the signals. It is well known in ESPRIT 

that the DOA estimates are obtained from the generalized eigenvalues of the a matrix pencil 

obtained from the received data. 

We ran both algorithms and as expected, we obtained excellent results when using the 

"whitening functional". Failure to do so results in poor estimation of the DOA's. We have 

even missed some targets as can be seen from the results presented in section 3. 

It is our belief that the newly developed technique has great potential in detecting the 

number of signals as well as determining their locations. It is our recommendation that it be 

incorporated into the Rome Laboratory Space-Time Adaptive Processing (RLSTAP) 

capabilities. 
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In the future, we will include all the temporal effects to the technique to make it a full 

space-time adaptive technique. It is also our intent to include the effects of mutuals coupling 

which are inherent when considering an array of sensors. It is our hope and belief that 

compensation technique will definitely improve the quality of the estimates under study. 

J.S. GOVERNMENT PRINT!NG OFFICE:        1996-710-126-47012 
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