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Dear Tom: 
Attached to this letter is the report of our second year's efforts under Grant No: N00014-93-1- 

0763, entitled: "Stochastic Nonlinear Dynamics of Floating Structures". This work was carried out by 

me and ONR Grant-supported Graduate Assistant, Patrick Bar-Avi. 

Following up on two papers submitted for publication: 

1. Nonlinear Dynamics of an Articulated Tower in the Ocean, has been accepted for publication by 

the Journal of Sound and Vibration. 
2. The van Kampen Expansion for a Linked Fokker-Planck Equation of a Duffing Oscillator Excited 

by Colored Noise, has been accepted for publication by the Journal of Sound and Vibration. 

Both papers will appear in 1996. 

OTIi QTJAUTY INSPECTED 8 
Manuscripts attached to this letter are the following: 

1.   Stochastic Response of a Two DOF Articulated Tower. This was presented at the Puerto Rico 

Stochastic Dynamics Symposium in January 1995, and is under review for publication in the 

IntJ. Nonlinear Mechanics. 



2. Dynamic Response oj an Articulated 1 ower to Kandom Wave and Current Loads, i nis is a Dneier 

and slightly different version of the above, to be published in the Puerto Rico Proceedings. 

3. Dynamic Response of Offshore Articulated Towers. This state-of-the-art paper has been submitted 

for publication to Applied Mechanics Reviews. 

4. Response of an Articulated Tower to Loads due to Slamming, Wind, and Coriolis Acceleration. 

This paper considers new forces, and was presented at the AIAA Structures and Dynamics 

Conference (New Orleans Apr 1995). It appeared in a Conference Special Volume. Attached are 

copies of the overheads used in the presentation. 

5. Response of a Two DOFArticulated Tower to Different Environmental Conditions. This is the 

substance of the presentation I made by invitation at the EUROMECH Symposium on Nonlinear 

Stochastic Dynamics, April 1995. It has been submitted for review for publication in the IntJ. 

Nonlinear Mechanics. 

As before our approach to the problem has been, and continues to be, based on an examination of the 

physics of the environment and its interaction with the structure. This allows us to proceed along a 

research path that best examines the importance of each force component, each nonlinearity, and 

helps us decide which terms in our analytical model can be ignored or must be retained. In addition, 

by going back and forth between analytical model and simulation, we are able to estimate the loss in 

accuracy resulting from any particular approximation. 

It is in this manner that we have proceeded with the work you see before you on the 

articulated tower. We have explored various behavior regimes, including a chaotic one and a friction 

damping effect. New forcing has been considered in the second year of our work. I am very pleased 

with our progress and the level of the analytical modeling that has been achieved. We continue to 

utilize commercial codes: MAPLE, ACSL, and MATLAB. Patrick is an exceptional graduate student 

who has worked very hard and very capably. He will complete his doctoral studies next academic 

year. 

As usual, I would be pleased to visit you to provide you with more details, and you are 

welcome here for a working visit. 

Thank you for your interest in our work. Your support is appreciated. Best regards. 

Sincerely yours, 

Haym Benaroya 

cc: Administrative Grants Officer 

Director, Naval Research Laboratory 
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Stochastic Response of a Two DOF Articulated 

Tower 

P. Bar-Avi and H. Benaroya 

Department of Mechanical and Aerospace Engineering, Rutgers University 

Piscataway, N.J. 08855 

January 2, 1995 

Abstract 

In a previous paper [1], the response of an articulated 

tower in the ocean subjected to deterministic and random 

wave loading was investigated. The tower was modeled as 

an upright rigid pendulum with a concentrated mass at 

the top and having one angular degree of freedom about 

a hinge with coulomb damping. In this paper, which is 

an extension of the previous one, the tower is modeled as 

a spherical pendulum having two angular degrees of free- 

dom. The tower is subjected to wave, current, and vortex 

shedding loads. Geometrical nonlinearities as well as non- 



linearities due to wave drag force, which is assumed be pro- 

portional to the square of the relative velocity between the 

tower and the waves, were considered. The governing cou- 

pled differential equations of motion are highly nonlinear, 

and have time-dependent coefficients. The tower's aver- 

age response is evaluated for uniformly distributed random 

fluid constants CD,CM,CL, friction coefficient n and current 

direction a. This accomplished computationally via Monte- 

Carlo simulations with the use of 'ACSL' software. The 

influence on the tower's response of different parameter 

values is investigated. 

Key words : Articulated tower, Dynamics, Random 

1    Introduction 

Compliant platforms such as articulated towers are economically 

attractive for deep water conditions because of their reduced struc- 

tural weight compared to conventional platforms. The foundation of 

the tower does not resist lateral forces due to wind, waves and cur- 

rents; instead, restoring moments are provided by a large buoyancy 

force, a set of guylines or a combination of both. These structures 



have a fundamental frequency well below the wave lower-bound fre- 

quency. As a result of the relatively large displacements, geometric 

nonlinearity is an important consideration in the analysis of such a 

structure. The analysis and investigation of these kinds of problems 

can be divided into two major groups: deterministic and random 

wave and/or current loading. Most workers have considered the 

tower to be an upright rigid pendulum attached to the sea floor via 

a pivot having one or two degrees of freedom. 

Bar-Avi and Benaroya (1994) [1] investigated the nonlinear re- 

sponse of a single degree of freedom articulated tower. The equa- 

tion of motion was derived via Lagrange's equation. Nonlinearities 

due to geometry and wave drag force are considered. A combined 

wave and current field, coulomb friction force, and vortex shedding 

force are included in the analysis. The influences on the response 

of current velocity and direction, significant wave height and fre- 

quency, and damping mechanism were analyzed. The response to 

sub/superharmonics and harmonic excitation demonstrate beating, 

and for certain excitation frequencies a chaotic behavior was ob- 

served.   Current has a large influence on the response and on the 



equilibrium position of the tower. 

Other studies of the response of a single degree of freedom were 

performed by Chakrabarti and Cotter [2], Gottlieb et al. [7], Muhuri 

[8], Datta and Jain [9], [10], [11]. Two degree of freedom models were 

analyzed by Chakrabarti and Cotter [3] and Jain and Kirk (1981) 

[4]. A detailed description of these studies is given in [l]. 

Vortex induced oscillation of tension leg platform tethers was an- 

alyzed by Dong and Lou 1991 [5], and Dong et. al. 1992 [6]. The 

tether was modeled as a uniform tension beam under combined ac- 

tion of wave and current. Only the response normal to the direction 

of the wave and current was considered. A numerical solution was 

obtained to find the response and to perform stability analysis. They 

found out that for small drag and lift coefficients the system may 

become unstable.  For moderate drag and lift coefficients multiple 

equilibrium positions occur, one of them is unstable. The region of 

multiple solutions, where the response can jump from one branch to 

the other, is reduced as the drag and/or lift coefficient are increased. 

When the frequency of excitation was not exactly the fundamental 

frequency, beating phenomenon was observed, however chaotic mo- 



frequency, beating phenomenon was observed, however chaotic mo- 

tion was not detected. 

1.1    New Study 

In this paper, the stochastic response of a two degree of freedom 

articulated tower submerged in the ocean is analyzed.   The non- 

linear differential equations of motion are derived, including Non- 

linearities due to geometry, coulomb damping, drag force, added 

mass, and buoyancy.  All forces/moments are evaluated at the in- 

stantaneous position of the tower and, therefore, they are not only 

time-dependent, but also highly nonlinear. The equations are then 

numerically integrated and Monte-Carlo simulations are performed 

to evaluate the tower's average response and scatter. Effects of var- 

ious parameters such as the fluid constants, significant wave height, 

coulomb and structural damping coefficient, and current direction 

are then investigated. 



2    Problem Description 

A schematic of the structure under consideration is shown in Fig. 1. 

It consists of a tower submerged in the ocean having a concentrated 

mass at the top and two degrees of freedom; 6 about the z axis and 

4> about the x axis. The tower is subjected to wave, current, and 

vortex shedding loads. As can be seen from Fig. 1, two coordinate 

systems are used: one fixed x,y,z and the second attached to the 

tower x',i/,z'. All forces/moments, velocities, and accelerations are 

derived in the fixed coordinate system. 

This problem has similarities to that of an inverted spherical 

pendulum with additional considerations; 

• Buoyancy force is included. 

• Drag forces proportional to the square of the relative velocity 

between the fluid and the tower need to be considered. 

• Fluid inertia and added mass forces due to fluid and tower 

acceleration are part of the loading environment. 

• Current and vortex shedding forces are considered. 



Figure 1: Model and Coordinate Systems 



3    Equations of Motion 

The equations of motion are derived using Lagrange's equation for 

large displacements. Certain assumptions have been made and they 

are listed below. 

3.1    Assumption 

• The tower stiffness is infinite: El = oo. 

• The hinge consists of coulomb friction. 

• The tower has a uniform mass per unit length, fh and is of 

length I and diameter D. 

• The tower diameter is much smaller then its length, D <SLl. 

• The tower is a slender smooth structure with uniform cross 

section. 

• The end mass M is considered to be concentrated at the end 

of the tower. 



• The structure is at static stable position due to the buoyancy 

force. 

• The waves are linear having random height. 

• Morison's fluid force coefficients CD, CM, and Ci are random 

uniformly distributed parameters. 



3.2    Lagrange's Equations 

The general form of the Lagrange's equations is 

d (dKE\     dKE     dPE     dDE 

dt { dq{ )       dQi  
+  dQi  

+  dQi       **" U; 

where KE is the kinetic energy, PE is the potential energy, DE is 

the dissipative energy and Qqi is the generalized force related to the 

qi generalized coordinate. 

The model consists of two degrees of freedom, thus, we have 

two generalized coordinates; 6 and <f>. The generalized forces in the 

relevant direction are derived using the principle of virtual work. 

We first derive the general form for the forces assuming an external 

force per unit length having three components, 

Fe = Fxx + Fyy + F2z. (2) 

From Fig.  2 we can find the virtual work done by Fe due to a 

virtual displacement 66, 

10 



Figure 2: Generalized Force for 6 

F06e   =   Fxx'[cos(6 +66)-cos6] + 

Fvx' cos <p[s'm(6 + 66) - sin 6} + 

Fxx'sm4>[sm(e + 66) - sin0], (3) 

11 



and using appropriate trigonometric identities we find 

Fe 66   =   Fxx' [cos 6 cos 66 — sin 6 sin 66 — cos 9) + 

Fyx' cos <j>\s\n 6 cos 66 + cos 6 sin 66 — sin 6} + 

Fr x' sin ^>[sin 0 cos 66 + cos 0 sin 66 — sin #], (4) 

Since we deal with virtual work, we set the virtual displacement 

66 <^C 1, and replace x' = ~j, thus, the generalized force per unit 

length for the 6 coordinate is 

Fg = — Fxx tan 0 + F„x cos <f> + Fzx sin <f>. (5) 

From Fig. 3 we can find the virtual work done by Fe due to a 

virtual displacement <50, 

F^6(t)   —   Fyx' sin 0[cos($ 4- 6$) — cos <f>] + 

Fzx' sin 6[sm((p + 6(f>) — sin 4>], (6) 

and going through the same procedure described for Fe, we find the 

generalized force per unit length to be 

F<i> =—FyX tan 6 sin (f> +Fzx tan 6 cos ((). (7) 

12 



Figure 3: Generalized Force for <p 

13 



Finally, the generalized moments are evaluated by integrating Fe 

and F0, 

Me= j (-Fx tan 0 + F„ cos <ß + Fz sin <f))xdx, (8) 

and 

1^4=      (-Fy tan 6 sin <j> + Fz tan 0 cos <ß)xdx. (9) 

where L is the projection in the x direction of the submerged part 

of the tower. It depends on the angle 6 as follows : 

I cos 0 if d > I cos 6 
L=l (10) 

d + T}(y,t)   ifd<lcos6, 

and r)(y,t) is the wave height elevation to be defined later. 

3.3    Tower, Wave and Current Kinematics 

To derive the equations of motion using Lagrange's equations, the 

kinetic, dissipative, and potential energies need to be evaluated, as 

well as the generalized forces. In this subsection, the tower's linear 

and angular absolute velocities and accelerations are determined in 

the fixed coordinate system x,y,z. 

14 



3.3.1    Tower Kinematics 

The tower is assumed to be oriented along a unit vector 1 with the 

following directional cosines (see Fig. (1)) 

1 = cos 6x + sin 0 cos (fry + sin 0 sin <pz (11) 

so that the tower's the radius vector R is 

R = x'l = x' cos Ox 4- x' sin 0 cos (fry + x' sin 0 sin 4>z.       (12) 

Its velocity V, relative to the wave's velocity, is found by taking 

the time-derivative of the radius vector 

rfR 
—   =   V = -a;0sin0i;4-:E'(0cos0cos0- 0sin0sin0)y + 

:r'(0cos0sin0 — 0sin0cos0)i, (13) 

and the acceleration V by taking the time-derivative of the velocity, 

dV .. 
—   =   V =-x'(0sin0 + 02cos0)£ + (14) 

x'{6 cos 0 cos 4> — <p sin 0 sin (f> - (02 -f </>2) sin 6cos(f>- 200 cos 0 sin 0]y + 

x'[0cos0sin 0 + 0sin 0 cos 0 - (02 + <p2) sin 0 sin 0 + 200cos0 cos 0]i. 

Since the equations are derived in the fixed coordinate system x, 

t/, z, we replace a/ = ^^ to find, 

R   =   xx + x tan 0 cos (fry + x tan 0 sin 0£ 

15 



V   =   -xQ tan Bx + x(9 cos <f> - <j> tan 6 sin 4>)y + x(6 sin 4> + j> tan 9 cos 0)i 

v = -x{e\&xie + e2)x + 

x[0 cos <£ - ^ tan 6 sin <£ - (02 + </>2) tan 0 cos 0 - 200 sin <£]y + 

x[6sm<f> + 0tan0cos^- (02 + <£2)tan0sin<£ + 200cos<£]i.     (15) 

Finally, the tower's angular velocity is 

Q = 4>x + 6z. (16) 

3.3.2    Wave and Current Kinematics 

In this study linear wave theory is assumed, therefore, the wave 

vertical and horizontal velocities are (Wilson [12] pp. 84): 

1TT  sinhfcx  .   ., 
ww   =   -HUJ , sm(£y - u;*) 

2      smhfca 
1 rT   cosh kx      ,, 

"* = 2HlJ7^kdcos^-ut^ W 

and the respective accelerations: 

1 „  osinhfcx 
wv =   -2^sinnrfCOs(A:2/-^ 

1 __ ocoshfcx  .   ., 
""   =   2HU ^hkdSm{ky-^ W 

where H is the significant wave height, UJ the wave frequency, k the 

wave number, and d the mean water level, which are related by 

16 



L)2 =gktaxih(kd). (19) 

Without losing generality we assume that the wave propagates in 

the y direction so that the horizontal velocity u is in that direction, 

and w is in the x direction. We are aware of the fact that random 

waves are not unidirectional, but this consideration is out of the 

scope of this study. 

Current velocity magnitude is calculated assuming that the cur- 

rent is made up of two different components (Issacson (1988) [13]): 

the tidal component, XJ\, and the wind-induced current Uf. If both 

components are known at the water surface, the vertical distribution 

of the current velocity Uc(x) may be taken as 

*.(*)-I*(§)* + D?(f). (20) 

The tidal current Ul
c at the surface can be obtained directly from 

the tide table, and the wind-driven current U™ at the surface is 

generally taken as 1 to 5 % of the mean wind speed at 10 m above 

the surface. 

When current and wave coexist, the combined flow field should 

17 



be used to determine the wave loads. The influence of an assumed 

uniform current on the wave field is treated by applying wave theory 

in a reference frame which is fixed relative to the current. For a 

current of magnitude Uc propagating in a direction a relative to the 

direction of the wave propagation, the wave velocity, CQ = ^ for no 

current, is modified and becomes 

c   =   Co + Uccosa, 

u   =   ck. (21) 

The velocities then used to determine the wave loads are the 

vectorial sum of the wave and current velocities 

w   =   ww 

U    =    Uyj + Uc cos Q 

v   =   Ucsina, (22) 

where u, v and w are the total velocities in x, y and z directions, 

respectively. 

To consider geometric nonlinearities, the velocities and accelera- 

tions are evaluated at the instantaneous position of the tower. Re- 

placing y = x tan 6 cos <p in the velocity and acceleration expressions 

18 



(equations (22) and (18)) yields velocities, 

1 __   sinh kx  .  , , 
w   =   — Hu———— sm(kxtv*\6cosq> — ut) 

2 sinhkd     v ^        ; 

1 cosh lex 
u   =   —Hu . ,  , , cos(kx tan 6 cos d> —ut)+ UC cos a 

2 sinhfca 

v   =   Ucsina, (23) 

and the accelerations 

1 rT    /           -kxeosep      ■ n .     \ sinhfcrr       ., „ , 
w   =   -HuI—u + 6 — (bkxtan Vsm. (b )——-—cos(kxtan 8 cos d>— ut) 

2 \ cos2 6 ) sinh «a 

Irr    ( -kxcos4>      • . .    ,\ coshkx  .   ., „        , N u   =   — -iiu;   — u; + 0 — wkxtanflsm<p     . , , , sin(fc:ctanflcos<z> — ut) 
2        y cos20 J sinh «a 

v   =   0. (24) 

The influence of current on the wave height depends on the man- 

ner in which the waves propagate onto the current field. An ap- 

proximation to the wave height in the presence of current is given 

by Isaacson (1988) [13], 

H = HoJ-^—2, (25) 
V 7 + 7 

where Ho, H are the significant wave heights in the absence and 

presence of current, respectively, and 7 is 

/      4UC AUC 7=4/1-1 -cos a    for     —-cosa> — 1. (26) 
V Co Co 

19 



3.4    Fluid Forces and Moments Acting on the Tower 

Fig. 4 depicts the external forces acting on the tower: 

1. To is a vertical buoyancy force. 

2. Ffi are the vertical and horizontal fluid forces due to drag, 

inertia, added mass and vortex shedding. 

3. Mg, fhig are the forces due gravity. 

We next describe and develop explicit expressions for these forces 

and moments. 

20 



3.4.1    Buoyancy Moment 

The buoyancy force provides the restoring moment, 

Mb = T0lb. (27) 

To is the buoyancy force, and lb is its moment arm; both are time- 

dependent, where 

D2 

T0 = pgV0 = pg-K—L,. (28) 

Vo is the volume of the submerged part of the tower, p is the fluid 

density and La, which is the length of the submerged part of the 

tower, is 

cos 0 v     ' 

where rj(y,t) is the wave height elevation evaluated at the instanta- 

neous position of the tower and at x = d with y = d tan 6, 

T](e,t) = -Hcos(kdt&ne-ut + e). (30) 

The buoyant force acts at the center of mass of the submerged 

part of the tower. If we consider the tower to be of cylindrical cross- 

section then the center of mass in the x'^y1 ,z' coordinates is 

21 



Figure 4: External Forces Acting on the Tower 
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<>' - liran2
2

ö 

It   =   ^ + 3^tan20 (31) 

Transforming to x, y,z coordinates, we find the moment arm / b 

D2 (\ D2 \ 
lb = — tan2 6 cos 6 + f -L, + — tan2 0 j sin 0,       (32) 

and finally the buoyancy generalized moment is then 

$ tan2 0(2 cos 0 + sin 0) + £ flt^M) * sin * 
oz 2 \     cos 0     / 

(33) 

3.4.2    Wave Forces/Moments 

In general, the fluid forces acting on a slender smooth tower are of 

three types: drag, inertia, and vortex-shedding. In this section these 

forces are derived. 

Drag and Inertia Forces - Morison's Equation The drag and inertia 

forces per unit length are approximated by Morison's equation. The 

drag force is proportional to the square of the relative velocity be- 

tween the fluid and the tower, and the inertia force is proportional 

23 



to the fluid acceleration, 

F/i = CDP- | Vre, | Vrel + CMfm—Uw> (34) 

where F/j is the fluid force per unit length normal to the tower. 

Vrei is the vector of the relative velocity between the fluid and the 

tower in a direction normal to the tower, and Uw is the fluid accel- 

eration normal to the tower. CD and CM are the drag and inertia 

coefficients, respectively. The relative velocity and fluid accelera- 

tion normal to the tower can be decomposed to their components 

as follows, 

Kx
el 

Ki 

K2
el 

ux 

Uv 

uz 

=   1 x (Uw - V) x 1 

=   1 x Uw x 1. (35) 

Using Morison's equation (34), the tower velocity equation (15), 

and fluid velocity and acceleration equations (23), (24), the fluid 

24 



force components are the drag force 

px 

Fl = CDP^iv^y + ^y + iv^y 

vz, 
Ki 

K2el 

and the inertia force, 

Ff 

F» 

r       D* 
4 

w 

u 

(36) 

(37) 

Vortex Shedding Moments The lift force FL due to vortex shedding 

is acting in a direction normal to the wave velocity vector and normal 

to the tower. Different models of lift force exist in the literature; see 

especially Billah (1989) [14]. We will initially use a simple model 

given in a paper by Dong (1991) [5] 

FL = CLp— cosuat 11 x UT | (1 x UT), (38) 

where Ux, the vector of the maximum fluid velocity along the tower, 

is 

25 



w 
u§. 

2 sinh kd 

iHu>&g + Ue cos a 

£/.. sin a 

(39) 

Cx is the lift coefficient, and u)a is the vortex shedding frequency 

(Issacson (1988) [13]) 

CL = 0.6 to 2, us = %J. (40) 

Total Fluid Moment The moment due to fluid forces (drag, inertia, 

and lift) is evaluated by substituting the sum of all fluid forces, 

defined by equation (41), 

Xfl FZ + Ff + FZ 

FV/1 = n+Fj+n 

*i„   =   F>D + Ff + Fl (41) 

into equations (8) and (9). Therefore the moments Mft and Mfl are 

Me
fl   =    /   (—Ffix tan 8 + F/iv cos <f)+F/iz sin 4>)xdx 

Mf,   =    f   (-Fflv tan 6 sin (p + Fflz tan 6 cos <f))xdx.      (42) 

26 



3.4.3    Added Mass Moment 

The fluid added mass force per unit length Fad is 

F«, = CAfm!jV (43) 

where CA = CM — 1 is the added mass coefficient. Substituting the 

expression for the tower acceleration, equation (15) into equation 

(43) leads to the expressions for the forces in the x,y, z directions, 

K,   =   CA(m¥-(-x{etane + e2j) (44) 

F^t   =   CAp-n— (x[6cos4>-<f)t&ndsm<p- (62+ 4>2)tan6cos<f>-26(f>sin<f)f} 

Fit   =   CAP*—-(z[0sin0 + <£tan0cos<£- (02 + 02) tan0sm<£-|-20<£cos0]) . 

Substituting the added mass forces (equation (44)) into the gen- 

eralized moment equations (8) and (9), and integrating, result in 

the generalized moments due to fluid added mass, 

Kt   =   ^p7r^L3(0'(l + tan20)+02tan0) 

1 D2 

Mtd   =   -ZCAPK—L3(^tan20 + 2^tan0). (45) 
12 4       ^ ' 
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3.4.4    Friction Moment 

Dissipation in the tower hinge is assumed to be modeled as coulomb 

friction. In this section this friction/damping moment is evaluated. 

The damping force is equal to the product of the normal force N 

and the coefficient of friction fx. It is assumed to be independent 

of the velocity, once the motion is initiated. Since the sign of the 

damping force is always opposite to that of the velocity, the differ- 

ential equation of motion for each sign is valid only for half cycle 

intervals. The friction force is 

F°fr   =   Nß[sgn(e)] 

Ffr   =.Nß[sgn^)}. (46) 

The normal force is 

N = ^TFxcos6 + J^FyCostpsmO + Y1F* sinking,        (47) 

where J2 Fx, £ Fy and H Fz are the total forces due to gravity, buoy- 

ancy and tower acceleration in the x, y and z directions respectively. 

The fluid forces; drag, inertia and vortex shedding, do not influence 

the friction force since they are perpendicular to the tower. Thus, 

£FS   =   To-F9 + F* 
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EFv   =   ^ (48) 

where T0 is the buoyancy force given in equation (33), Fg is the 

gravitational force, 

Fg = (ml + M)g, (49) 

and the forces due to the tower acceleration F*c, F%c, F*c are 

F£   =   [|^^^2^2 + |(|^ + M)7]^((9tanö + ö2)      (50) 

FZ*   =   [lOA^L^\(lM + M)\^e. 

• (-6 cos (f> + <j> tan 6 sin <f> + (02 + 02) tan 0 cos 0 + 200 sin 0) 

*i = [i^^G™)7]^' 
• (Öcos<t>- 0tan0sin0- (02 + 02) tan 0 cos 0 - 200sin0) . 

where T is the projection of the tower's length / in the x direction, 

i.e., 1 = I cos 6. Assuming a hinge radius Rh, and rearranging 

Me
fr   =   RhNn[sgn(6)\ 

Mfr   =   RhsmeNß[sgn(<fi)], (51) 
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where TV, the normal force is 

N   = \c«"*-&9+\ (hl+M) z](*2+¥2) -     (52) 

^CApTrD2L2 +1 (hid + M\ I cos 2ß\ h>2 + (T0 - Fg) cos 6. 

We can see that the only terms remaining in the acceleration forces 

are the centrifugal ones which are along the normal, that is, Id2. 

3.5      Dynamic moments 

The dynamic moments M%y, and M$y, those which are evaluated 

in the left hand side of Lagrange's equation (1), are found using 

expressions for the kinetic, potential, and dissipative energies 

KE = ±(ixn
2

x + ivtfv + i2tf2) 

PE   =   (-ml+ M)gl cos 6 

DE = |c (nj + n; + nf), (53) 

where C is the structural damping constant and Jx, Iy, Iz are the 

moments of inertia of the tower, given by 

1 ID2 

Ix   =   (-ml + M)l2 sin2 8 +-(ml + M)—cos2 6 

30 



Iy   =   {\fhl + M)l2 cos2 e + hfhl + M)^- sin2 e 
o 2 2 

h   -   (-fhl + M)l2. (54) 

Substituting equations (54) and (16) into (53) leads to the expression 

for the kinetic and dissipative energies, 

KE   =   U (±ml + M)l2 sin2 6 + l(fhl + M)Y cos2 o) j>2 

+ \{\ml + M)W 

DE   =   \C(4? + P) (55) 

Substituting the kinetic, potential and dissipative energies into equa- 

tion (1) leads, after some mathematical manipulations and rearrang- 

ing, to Me
dy, M$v 

Ky   =   (fhl + M)l26 + C0- 0-fhl + M\ gl sin 6 + 

(I2 1 D2 \ ■ 
(I(3mZ + M)~ lf(m/ + M) U2sin20 

M%,   =   (i^ml+ M)l2 sin2 6+ ^(ml + M)D2 cos2 e)]> + C<]> + 

(I2 1 D2 \ ■ ■ 
l-(-ml + M)-—-(ml+ M)\<t>6 sin 26. (56) 
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3.6    Governing Equations of Motion 

The governing nonlinear differential equations of motion are found 

by equating the dynamic moments to the applied external moments 

K = K 
<   =   M*v. (57) 

The applied moments are found by adding equations (33),(42),(45) 

and (51) 

M'"   =   M' + Mlt + Mjr-Mlt 

M*p   =   Mf + Mfi + Mfr-M^ (58) 

Substituting equations (58) and (56) into (57) and rearranging 

terms leads to the governing nonlinear differential equations of mo- 

tion for the tower; 

j*effe + ce + igj>2+Me
gb 

=    I   (-Ffix tan 6 + FJlv cos 4> + Ffiz sin </>) xdx - M)T 
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(59) 

Jiffö+ct + igje 

=    I   (—Ffiv tan 6sin <f> + Fftl tan 0cos <p) xdx — Mfr, 

where J%jj and Jefj are the effective position dependent moments 

of inertia about z and x axis, respectively 

QmZ + M) Z2 + -^CUp7rZ)2Z,3(l + tan2 6) 

(hhl + M\ Z2 sin2 e + 2 (fnl + M) D2 cos2 0 + 

—CApTrD7L3 tan2 6 

Ig is a constant depending on the system parameters, 

(60) 

/Z2 1 D2 \ 
Ig= l-(-fhl + M)-—(fhl + M)\sm2e 

and Mgb is the moment due to gravity and buoyancy 

(61) 

M6
gb   =   pgn— 

Dl 
4 

^tan2ö(2coSö + sinö) + if^±%^V-nö 
62, 2 V      cost?      / 

(-ml + M\ gl ml + M IpZsinö. (62) 
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4    Monte-Carlo Simulations 

In this section, the stochastic response of the tower due to uniformly 

distributed random parameters, is evaluated utilizing Monte-Carlo 

simulations.   The governing nonlinear differential equation of mo- 

tion (59) is repeatedly solved using 'ACSL'. At each run different 

values are assigned to the parameters and the average response is 

calculated until a convergence is achieved, i.e., the change in the av- 

erages between the current and previous runs is less than 1%. The 

analysis is performed using a PC with a Pentium processor (un- 

bugged).   About 20 cycles are needed for the average to converge 

and each run takes about one hour. The results are then analyzed 

using 'MATLAB'. The fluid's coefficients, the wave height, and the 

wave frequency used in the simulations are taken from Hogben et 

al.   1977 [15].   The following physical parameters are used in the 

simulation: 

Deterministic Physical Parameters 

• I - Length of tower = 400 m 
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• D - Tower diameter = 15 m 

• M - End mass = 2.5xl05 Kg 

• m - Tower mass per unit length = 20x10s Kg/m 

• Rh - Pivot radius = 3 m 

• d - Mean water level = 350 m 

• p - Water density = 1025 Kg/m3 

• C - Structural damping = 0.02 

• Ul
c, U? - Current velocities = 0.5, 1.5 m/s respectively 

Random Parameters 

• CD - Drag coefficient = 0.6 to 2.0 

• CM - Inertia coefficient = 1.4 to 2.0 

• CL - Lift coefficient = 0.6 to 2.0 

• H - Significant wave height = 1 to 3 m 

• a - Angle between current and wave propagation = 0° ±10° 

and 90° ± 10° 
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• fj, - Friction coefficient = 0.05 to 0.2 

All random parameters are assumed to be uniformly distributed 

between the limits above. In our study the wave height H is much 

smaller the mean water level d, i.e. H <g.d. Therefore, the relation 

between the wave height and the wave frequency, given in Hooft 

(1981) [16] is used. This relation with the deep water simplification 

tanh kd = 1, leads to 

»-&• (63) 

where u is the wave frequency. The tower's average deflection an- 

gles 6av and <j)av, and their bounds, 6av ±a and <f>av ± a, where a 

is the standard deviation, are calculated and plotted, for different 

parameters. 

4.1    Random Fluid Parameters 

In this run all parameters are kept constant except for the fluid 

constants CD,CM,CL that were set to be random. First we looked 

at free vibrations. The wave height is set to zero, and a velocity 

initial condition on the deflection angle is given, 8(t = 0) = 0.001 

36 



rad/s. Fig. 5 shows the deflection angle in the time domain (a) and 

in the frequency domain (b). The parameter that causes a change 

in the natural frequency is CM because it is related to the tower's 

moment of inertia through CA = CM - 1. The average fundamental 

frequency is about un = 0.026 Hz. 
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Figure 5: Damped Free Vibration Response, (a) Time Domain, (b) Frequency 

Domain 
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Next, waves are included. The wave height is H = 2 m, the wave 

frequency u> — 0.5 rad/s, the coulomb friction coefficient // = 0, 

and the current velocity Uc — 0. Fig. 6 (a) depicts the average 

deflection 0av of the tower and its bounds of 6av ±a, and Fig. 6 

(b) depicts the average rotation angle <f)av and <pav ± a. From the 

figure we see that the average steady state deflection 6av is about 

zero since the current velocity is zero, and it is bounded —0.005 rad 

< 6av < 0.005 rad. The rotation average angle <f>av is much larger 

and grows continuously with time. 
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Figure 6: Tower Response to Random Fluid Parameters.(a) Deflection Angle 

6av (solid line), 6av±a (dashed line), (b) Rotation Angle <pav (solid line), 4>av±cr 

(dashed line). 
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The tower's end displacements in the z and y directions is de- 

scribed in Fig. 7 (a). It can be seen that the displacement in the 

y direction is larger then the one in the z direction since the wave 

propagates in this direction. Also we see that the motion is oscilla- 

tory about zero position. Fig. 7 (b) shows the displacements (y, z) 

in the frequency domain. 
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4.2    Influence of Current Direction 

The influence of current direction is next investigated.   The fluid 

parameter are constant CD = 1.2, CM = 1.5 and d = 1.0. All 

other parameters are the same as in the previous run. Fig. 8 shows 

the tower's response for current direction is a = 0° ± 10°. It can be 

seen that both angles oscillate about an equilibrium position which 

is not zero.  The standard deviation of the average rotation angle 

<ßav is larger than the average deflection angle 6av, primarily due to 

the fact that the rotation angle 4>av can be much larger than the 

deflection angle. 
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Fig 9 (a) describes the tower's end displacements, and its fre- 

quency response (b). We see the tower's steady state (after the 

transient decays) motion oscillates about an equilibrium position 

(y, z) = (b± 0.5, 4.6 ± 0.1) m. The shift of the equilibrium posi- 

tion is due to current. From the frequency response (b), the wave 

frequency u> = 0.08 Hz and the vortex-shedding frequency which is 

2a; = 0.16 Hz are clearly seen. 
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Figure 9: Influence of Current Direction - a = 0° ± 10°. (a) Tower's End 

Displacements, (b) Tower's Response in the Frequency Domain; y-solid line, 

2-dashed line. 
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The response for a = 90° ± 10° is shown in Figs. 10 and 11. 

We see that the tower's steady state response oscillates about an 

equilibrium position (y, z) = (-4.5 ± 0.5,5.5 ± 0.2) m. The change 

in the equilibrium position is due to current direction. 
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Figure 10: Influence of Current Direction - a = 90° ± 10°. (a) Deflection Angle 

6av (solid line), 6av±a (dashed line), (b) Rotation Angle 4>av (solid line), 4>av±o 

(dashed line). 
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Reducing the drag coefficient to CD - 0.6 changes the tower's 

response as can be observed from Fig. 12. The equilibrium position 

is different than with CD = 1.2 due to the fact that it depends 

on CD \Uecosa\ £/ecosa as explained in the paper by Bar-Avi and 

Benaroya [1]. 
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The influence of current and drag coefficients on the average re- 

sponse is summarized in the next two figures. Fig. 13 (a) depicts 

the average deflection 6av and Fig. 13 (b) shows the average rotation 

angle $„, for a = 0°,90° with constant drag coefficient CD = 1.2. It 

can be seen that for a = 0°, the average response 6av =0.02 rad, and 

4>av = 0.77, while with a = 90°, 6av = -0.02 rad and 4>av = -0.85 

rad. The direction of the current velocity causes a change in the 

direction of the lift force, which results in different equilibrium po- 

sitions. 
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Fig.   14 (a) depicts the average deflection 6av and Fig.   13 (b) 

shows the average rotation angle <f>av for CD = 1.2,0.6 with a = 90°. 
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Figure 14: Tower's Average Response for CD = 0.6,1.2 with a = 90°. (a) Ba 

and (b) <j>av with Cp = 0.6 dashed line and Co = 1.2 solid line 
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4.3    Coulomb Friction and Wave Height 

The influence of coulomb friction on the average steady state re- 

sponse 6av and <ßav is very small. As can be seen from Fig. 15 the 

transient response is smaller with friction, but the steady state is 

the same. 
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Fig. 16 describes the tower's average response 6av and <pav due 

to random wave height in the presence of current. The results are 

similar to those with constant wave height H = 2 m which is the 

average height in this run. 
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Finally, Figs. 17 and 18 describe the tower's response with pa- 

rameters H,CD,CM,CL,H modeled as random variables with zero 

current velocity. Fig. 17 shows 9av and 6av ± a, and (pav and 4>av ± a, 

while Fig. 18 (a) depicts the tower's end average displacement and 

Fig. 18 (b) shows the average response in the frequency domain. 
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5    Discussion and Summary 

The nonlinear differential equations of motion for a two degree of 

freedom articulated tower submerged in the ocean are derived in- 

cluding coulomb and viscous damping. Geometric and force nonlin- 

earities are included in the derivation. The fluid forces, drag, inertia 

and lift due to waves and current, are determined at the instanta- 

neous position of the tower. The equations are solved numerically 

for uniformly distributed random parameters such as, wave height, 

current direction, fluid coefficients and coulomb friction coefficient. 

Monte-Carlo simulations are performed, using 'ACSL', to determine 

the tower's average response and standard deviation. 

From the analysis it is found that the standard deviation of the 

rotation angle <f>av is larger than that of the deflection angle 6av. 

The average equilibrium position (9av,(t>av) depends on the drag co- 

efficient, and current velocity and direction, CDUC cos a \ Uccosa \. 

Coulomb friction is found to have a very small effect on the average 

steady state response, but a larger one on the transient response. 
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The motion of the tower (sway) oscillates about the equilibrium 

position. 

At the present time the two degree of freedom model with vortex- 

shedding loads and wave slamming forces coupled to the structure 

is being analyzed. The response due to wave, current (colinear and 

otherwise), impact and earth rotation is investigated and results 

will be published in the near future. Work is also proceeding on an 

elastic articulated tower. 
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Dynamic Response of an Articulated Tower to Random 
Wave and Current Loads 
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ABSTRACT 
In a previous paper [1], the response of an articulated tower in the ocean subjected 

to deterministic and random wave loading was investigated. The tower was modeled 
as an upright rigid pendulum with a concentrated mass at the top and having one 
angular degree of freedom about a hinge with coulomb damping. In this paper, which 
is an extension of the previous one, the tower is modeled as a spherical pendulum 
having two angular degrees of freedom. The tower is subjected to wave, current, and 
vortex shedding loads. Geometrical nonlinearities as well as nonlinearities due to wave 
drag force, which is assumed be proportional to the square of the relative velocity 
between the tower and the waves, were considered. The governing coupled differen- 
tial equations of motion are highly nonlinear, and have time-dependent coefficients. 
The tower's average response is evaluated for uniformly distributed random fluid con- 
stants CD,CM,CL, friction coefficient n and current direction a. This is accomplished 
computationally via Monte-Carlo simulations with the use of 4ACSL' software. The 
influence on the tower's response of different parameter values is investigated. 

Key words : Articulated tower, Dynamics, Random 



I.    INTRODUCTION 

Compliant platforms such as articulated towers are economically attractive for deep water condi- 
tions because of their reduced structural weight compared to conventional platforms. The founda- 
tion of the tower does not resist lateral forces due to wind, waves and currents; instead, restoring 
moments are provided by a large buoyancy force, a set of guylines or a combination of both. These 
structures have a fundamental frequency well below the wave lower-bound frequency. As a result 
of the relatively large displacements, geometric nonlinearity is an important consideration in the 
analysis of such a structure. The analysis and investigation of these kinds of problems can be 
divided into two major groups: deterministic and random wave and/or current loading. Most 
workers have considered the tower to be an upright rigid pendulum attached to the sea floor via 
a pivot having one or two degrees of freedom. 

Bar-Avi and Benaroya (1994) [1] investigated the nonlinear response of a single degree of 
freedom articulated tower. The equation of motion was derived via Lagrange's equation. Nonlin- 
earities due to geometry and wave drag force are considered. A combined wave and current field, 
coulomb friction force, and vortex shedding force are included in the analysis. The influences on 
the response by current velocity and direction, significant wave height and frequency, and damping 
mechanism were analyzed. The response to sub/superharmonics and harmonic excitation demon- 
strate beating, and for certain excitation frequencies a chaotic behavior was observed. Current 
has a large influence on the response and on the equilibrium position of the tower. 

Other studies of the response of a single degree of freedom were performed by Chakrabarti 
and Cotter [2], Gottlieb et al. [3], Muhuri [4], Datta and Jain [5], [6], [7]. Two degree of freedom 
models were analyzed by Chakrabarti and Cotter [8] and Jain and Kirk (1981) [9]. A detailed 
description of these studies is given in [1]. 

In this paper, the stochastic response of a two degree of freedom articulated tower submerged 
in the ocean is analyzed. The nonlinear differential equations of motion are derived, including 
nonlinearities due to geometry, coulomb damping, drag force, added mass, and buoyancy. All 
forces/moments are evaluated at the instantaneous position of the tower and, therefore, they are 
not only time-dependent, but also highly nonlinear. The equations are then numerically integrated 
and Monte-Carlo simulations are performed to evaluate the tower's average response and scatter. 
Effects of various parameters such as the fluid constants, significant wave height, coulomb and 
structural damping coefficient, and current direction are then investigated. 

II.   EQUATIONS OF MOTION 

A.    Problem Description 

A schematic of the structure under consideration is shown in Fig. 1. It consists of a tower 
submerged in the ocean having a concentrated mass at the top and two degrees of freedom; 6 
about the z axis and <f> about the x axis. The tower is subjected to wave, current, and vortex 
shedding loads. As can be seen from Fig. 1, two coordinate systems are used: one fixed x,y,z and 
the second attached to the tower x',y',z'. All forces/moments, velocities, and accelerations are 
derived in the fixed coordinate system. 

The equations of motion are derived using Lagrange's equation for large displacements. To do 
so, the kinetic, dissipative, and potential energies need to be evaluated, as well as the generalized 
forces. A full and detailed derivation can be found in a paper by Bar-Avi and Benaroya [10]. The 
two generalized moments are derived using the virtual work concept and are given by, 

and 

Me= I (-Fx tan 6+ Fy cos <j> + Fz sin <j>)xdx, (1) 
Jo 

M<t,= (-Fy tan 6 sin (j>+Fz tan 6 cos 4>)xdx, (2) 
Jo 
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Figure 1: Model and Coordinate Systems 

where Fx,Fy,Fz are the external forces in the x,y,z direction and L is the projection in the x 
direction of the submerged part of the tower. In this study, linear waves combined with uniform 
current Uc is assumed. The current propagates in a direction a relative to the direction of the wave 
propagation. Thus, the velocity and acceleration field is expressed at the instantaneous position 
of the tower (see Wilson [11] pp. 84): 

1 „  sinhfcx  .   ., a .. 
2 sinhfcd     v 

-HUJ . , , . cos(fcrtanflcos# — ut) + Z7ccosa 
2      sinhfcd 

u 

v =   Ucsma, (3) 

-kxcos<j>     • „ .   ,\ sinhfci      ,, „ .. 
+ 6 7T7, 0fcxtan0sin0 1 -r-j^^jcos(fcitanecos0 — wt) 

cos20 

• fcxcos^ 

sinh kd 
w   =    -HuI— u 

1 /           ifcxcosd) . .     \ coshfci  .  ,, -       ,        .. 
ü   =    —Hu l-v + 6 irr- -#xtan0sm0 \-—-rr G\n(kx tan Ocas <j>-ut) 

2 \ cos20 / sinhfcd 

0, (4) 

where u, v and w are the total velocities in x, y and z directions, respectively. H is the significant 
wave height, u the wave frequency^ fc the wave number, and d the mean water level. 

B.    External Fluid Forces and Moments Acting on the Tower 

The external forces acting on the tower are; buoyancy, fluid force due to drag, inertia, added mass, 
vortex shedding, gravity and friction. 



1.    Fluid Forces 

In general, the fluid forces acting on a slender smooth tower submerged in the ocean are of four 
types: drag, inertia, vortex-shedding and wave slamming. The drag and inertia forces per unit 
length are approximated by Morison's equation. The drag force is proportional to the square of 
the relative velocity between the fluid and the tower, and the inertia force is proportional to the 
fluid acceleration, 

F« = CMPK¥-\ X ÜW X l+CDp% |1 x (Uw - V) x 1| (1 x (Uw - V) x 1), 
4 I 

(5) 

where F/j is the fluid force per unit length normal to the tower. Uw is the wave velocity vector, 
V is the tower's velocity vector, and Üw is the fluid acceleration vector. CD and CM are the 
drag and inertia coefficients, respectively, D is the tower diameter, p is the water density, and 
1 is a unit vector of the directional cosines along which the tower is oriented. The lift force FL 

due to vortex shedding is acting in a direction normal to the wave velocity vector and normal to 
the tower. Different models of lift force exist in the literature; see especially Billah [12]. We will 
initially use a simple model given in a paper by Dong (1991) [13], and Issacson (1988) [14], 

FL = CLp^ cos2urt 11 x UT | (1 x UT), (6) 

where UT is the vector of the maximum velocity, along the tower, CL is the lift coefficient, and u 
is the gravity wave frequency. 

The moment due to fluid forces due to drag, inertia, and lift Me
}l, Mft are evaluated via the 

virtual work principle to be 

M°}i   =     /    (-Fflltan6 + Ffli)cos<t> + Ffl,sm<l>)xdx 

Mft   =     /    (-Ff lv tan 6 sin <j> + Ffi. tan 6 cos <t>)xdx, 

where L is the projection in the x direction of the submerged part of the tower. 

2.    Additional External Moments 

There are three additional moments acting on the tower, these are: buoyancy, added mass, and 
friction moment. The buoyancy moment is 

(7) 

D2 

M% = P9*-r ^t^e{2cose+sn,e)Md-±^S 
32 2 \    cosß     ) 

sinö (8) 

where 77 is the wave height elevation. The added mass moments are 

where CA = 

A&    =    ^CAPTt^-L3{e(l+tan2e)+^tan6) 

M*     =    — CApn—W<Ätan20 + 20<Ätan0), (9) 
°" 12 4       V ' 

CM - 1 is the added mass coefficient. Finally the coulomb friction moments is 

K    = RhNp\sgn{e)) 

Rhsm6Nn[sgn{4>)}, (10) 



where Rh is the hinge radius, and TV the normal force given by, 

N ic^D,£-e
+\(\™+M)'}^+¥2)- (»» 
\(J«U + M). ^CAfmD2L2 + ^[^fhl + M) lcos26 i^.2 + (To -Fg) cos6. 

C.    Governing Equations of Motion 

The governing nonlinear differential equations of motion are found by equating the dynamic mo- 
ments to the applied external moments, 

rL 

Jfff6 + Ce + Ig4>2+M^b   =     I   (-Fflltan6 + Fflvcos<l> + FflMsm<t>)xdx-Me
fr 

JO 

(12) 
rL 

J*ff<t> + C<j> + Ig<j>6   =     /    (-FflvUinOsm<j> + Ffi, tanßcos<t>)xdx- Mfr, 

where J%ff and J*ff are the effective moments of inertia which are position dependent, Ig is 
a constant depending on the system parameters, and Mgb is the moment due to gravity and 
buoyancy. 

III.   MONTE-CARLO SIMULATIONS 

In this section, the stochastic response of the tower due to uniformly distributed random parame- 
ters is evaluated utilizing Monte-Carlo simulations. The governing nonlinear differential equation 
of motion (13) is repeatedly solved using 'ACSL'. At each run different values are assigned to the 
parameters and the average response is calculated until a convergence is achieved, i.e., the change 
in the averages between the current and previous runs is less than 1%. The analysis is performed 
using a PC with a Pentium processor (unbugged). About 20 cycles are needed for the average to 
converge and each run takes about one hour. The results are then analyzed using 'MATLAB'. The 
fluid's coefficients, the wave height, and the wave frequency used in the simulations are taken from 
Hogben et al. 1977 [15]. The following physical random parameters are used in the simulation: 
CD = 0.6 to 2.0, CM = 1.4 to 2.0, CL = 0.6 to 2.0, H = 1 to 3 m, and a = 0° ±10° and 90° ± 10°, 
where at each instance, the random variable is uniformly distributed within the range given. The 
tower's average deflection angles 6av and <j>av, and their bounds, 6av ±cr and <pav ±<r, where a is 
the standard deviation, are calculated and plotted, for different parameters. 

A.    Random Fluid Parameters 

In this run all parameters are kept constant except for the fluid constants Cp, CM, CL that were 
set to be random. The wave height is H = 2 m, the wave frequency ui = 0.5 rad/s, and the current 
velocity Uc = 0. Fig. 2 (a) depicts the average deflection 6av of the tower and its bounds of 6av ±a, 
and Fig. 2 (b) depicts the average rotation angle <j>av and 4>av ± a. From the figure we see that 
the average steady state deflection 6av is about zero since the current velocity is zero, and it is 
bounded -0.005 rad < 6av < 0.005 rad. The rotation average angle <j>av is much larger and grows 
continuously with time, as expected. 

The tower's end displacements in the z and y directions are described in Fig. 3 (a). It can be 
seen that the displacement in the y direction is larger than the one in the z direction since the wave 
propagates in this direction. Also we see that the motion is oscillatory about zero position. Fig. 3 
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Figure 2:  Tbwer Response to Random Fluid Parameters.(a) Deflection Angle 6av (solid line), 
6av ±cr (clashed line), (b) Rotation Angle c6or (solid line), <f>av ±cr (dashed line). 

(b) shows the displacements (y, z) in the frequency domain from which the average fundamental 
frequency wn = 0.026 Hz and the excitation frequency u> = 0.08 are seen. 
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Figure 3:  Tower Response to Random Fluid Parameters,   (a) Tower's end Displacements,   (b) 
Tower's Response in the frequency Domain; j/-solid line, z-dashed line. 

B.    Influence of Current Direction 

The influence of current direction is next investigated. The fluid parameter are constant CD = 1.2, 
CM = 1-5 and CL = 1.0. All other parameters are the same as in the previous run. Fig. 4 shows 
the tower's response for current direction a = 0° ± 10°. It can be seen that both angles oscillate 
about an equilibrium position which is not zero. The standard deviation of the average rotation 
angle <j>av is larger than the average deflection angle 6av, primarily due to the fact that the rotation 



angle <pav can be much larger than the deflection angle. 
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Figure 4: Influence of Current Direction - a = 0° ± 10°. (a) Deflection Angle 6av (solid line), 
6av ±a (dashed line), (b) Rotation Angle </><,„ (solid line), <j>av±v (dashed line). 

The response for a = 90° ± 10° is shown in Figs. 5 and 6. We see that the tower's steady state 
response oscillates about an equilibrium position (y, z) = (—4.5 ±0.5,5.5 ±0.2) m. The change 
in the equilibrium position is due to current direction. 
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Figure 5: Influence of Current Direction - a = 90° ± 10°. (a) Deflection Angle 6av (solid line), 
6av±a (dashed line), (b) Rotation Angle 4>av (solid line), <j>av±a (dashed line). 

The influence of current direction on the average response is summarized in the next figure. 
Fig. 7 (a) depicts the average deflection 6av and Fig. 7 (b) shows the average rotation angle 4>av 

for a = 0°, 90° with constant drag coefficient CD = 1.2. It can be seen that for a = 0°, the average 
response 6av =0.02 rad, and 4>av = 0.77, while with o = 90°, 6av = -0.02 rad and <pav = -0.85 
rad. The direction of the current velocity causes a change in the direction of the lift force, which 
results in different equilibrium positions. 
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Figure 6: Influence of Current Direction - a = 90° ± 10°.  (a) Tower's End Displacements,  (b) 
Tower's Response in the Frequency Domain; y-solid line, z-dashed line. 

Figure 7:  Tower's Average Response for a = 0°,90° and CD = 1.2. (a) 6av and (b) <t>av with 
Q = 0° ± 10° dashed line and a = 90° ± 10° solid line 



C.    Wave Height 

Fig. 8 describes the tower's average response 6av and <f>av due to random wave height in the 
presence of current. The results are similar to those with constant wave height H = 2 m which is 
the average height in this run. 
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Figure 8: Response (a) 6av and (b) <j>av in the Presence of Current. Uc = 0 solid line, a = 0° ± 10° 
dashed line, and a == 90° ± 10° dashed-doted line 

IV.   DISCUSSION AND SUMMARY 

The nonlinear differential equations of motion for a two degree of freedom articulated tower sub- 
merged in the ocean are derived including coulomb and viscous damping. Geometric and force 
nonlinearities are included in the derivation. The fluid forces, drag, inertia and lift due to waves 
and current, are determined at the instantaneous position of the tower. The equations are solved 
numerically for uniformly distributed random parameters such as wave height, current direction, 
fluid coefficients and coulomb friction coefficient. Monte-Carlo simulations are performed, using 
'ACSL', to determine the tower's average response and standard deviation. 

From the analysis it is found that the standard deviation of the rotation angle <f>av is larger 
than that of the deflection angle 6av. The average equilibrium position {6av>4>av) depends on the 
drag coefficient, and current velocity and direction, CoUccoBa \ Uecosa |. Coulomb friction is 
found to have a very small effect on the average steady state response, but a larger one on the 
transient response. The motion of the tower (sway) oscillates about the equilibrium position. 

At the present time the two degree of freedom model with vortex-shedding loads and wave 
slamming forces coupled to the structure is being analyzed. The response due to wave, current 
(colinear and otherwise), impact and earth rotation is investigated and results will be published 
in the near future. Work is also proceeding on an elastic articulated tower. 
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ABSTRACT 

Offshore compliant structures such as guyed platforms, tension leg platforms 

and articulated towers are economically attractive for deep water conditions be- 

cause of their reduced structural weight compared to conventional platforms. 

The foundations of these kinds of structures do not resist lateral environmental 

loads forces; instead, restoring moments are provided by a large buoyancy force, 

a set of guylines or a combination of both. These structures have a fundamental 

frequency well below the ocean wave's lower frequency-bound. As a result of the 

relatively large displacements, geometric nonlinearity is an important consider- 

ation in the analysis of such a structure. 

This paper presents a literature review on offshore articulated towers. The 

review focuses on the static and dynamic response of the tower due to various 

environmental conditions, such as wind, waves and current. Emphasis is placed 

on modeling techniques and methods of solution. 



INTRODUCTION 

During the past 15 to 20 years, a need for deep water structures that would exploit energy 

resources such as oil and carbon has arisen. When deep water combined with hostile weather 

conditions are considered, conventional fixed offshore structures require excessive dimensions 

to obtain the stiffness and strength needed, and therefore are very costly. Thus, special 

deep water platforms called compliant offshore structures had to be considered. This kind 

of structure is flexibly linked to the sea-floor and is free to move with the waves. Since 

the foundation of the structure cannot resist lateral forces due to waves, current and/or 

wind, the restoring moment is provided by a large buoyancy force, a set of guylines or a 

combination of both. The structure's natural frequency is designed to be well below the 

wave lower frequency-bound in order to avoid resonances. That results in relatively large 

displacements, and thus geometric nonlinearity is an important consideration in the analysis 

of such structures. Three types of platforms fall into the category of compliant structures: 

guyed tower, tension leg platform and articulated tower. 

S. Fjeld and S. Flogeland (1980) [1] discussed the feasible applications for each of the 

different types of structures, and their conclusions are summarized in Table 1. 

Guyed Tension leg Articulated 

Predrilling Possible Possible Possible 

Drilling and production Possible Possible Not feasible 

Subsea installation Feasible Feasible Feasible 

Table 1: Platform Concepts, Areas of Feasibility 



The first type of compliant structure is the guyed tower which is shown in Fig. 1. It 

consists of a tower connected to the sea-floor via a universal joint. An array of cables 

restrain the tower to the ocean floor and provides a restoring lateral force to overcome the 

environmental forces. Many studies have been done on these kind of structures. Among 

them, Hanna et al. (1983) [2] analyzed the nonlinear dynamics of a guyed tower using a 

lumped parameter model. Wilson and Orgill (1984) [3] presented a study which deals with 

the methodology for selecting the parameters for the best cable mooring array. The idea was 

to find a cable configuration so that the tower's root mean square deflection is minimized. 

Kanegaonkar and Haldar (1988) [4] investigated the nonlinear random vibration of a guyed 

tower. 
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Figure 1: Schematic of a Guyed Tower 



The second type of compliant structure is the tension leg platform depicted in Fig. 2. It 

consists of a platform (deck), which is connected to the sea-floor via several tethers/cables. 

The cables are pretensioned, and kept in tension through buoyancy that is part of the deck. 

This structure, as opposed to the guyed tower, cannot be assumed to be a rigid body, and 

continuous elastic models have to be considered. Many researchers investigated the response 

of the tension leg platform (TLP). Haritos (1992) [5] studied the response of the TLP, 

modeled as a lumped mass, to random wave, wind and current. Kareem and Li, (1990) [6] 

and (1993) [7], investigated the response to wind, wave and current, using the frequency- 

domain approach. Dong (1992) [8] investigated the response due to vortex shedding. Patel 

and Park, (1991) [9] and (1992) [10], investigated the dynamic response and stability of a 

TLP where the cables are in low tension. 
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Figure 2: Schematic of a Tension Leg- Platform (TLP) 



II.    ARTICULATED TOWER 

This review focuses on the third kind of compliant structure, the articulated tower. The 

articulated tower consists of a vertical column to which a buoyancy chamber is attached 

near the water surface and to which a ballast is usually added near the bottom. The tower 

is connected to the sea-floor through a universal joint connected to a base. The tower itself 

may be either a tubular column or a trussed steel latticework. The structure's fundamental 

frequency is designed to be well below those wave frequencies with high amplitudes. Ar- 

ticulated towers are typically designed for water depths of 100 to 500 m and are used as 

single point mooring or as loading terminals, control towers and early and/or full production 

facilities. 

This review is divided into two main section, one describes the design and construction, 

and the other discusses the dynamic response. 

A.    Design and construction 

Very few papers discussing the design and construction aspects of articulated towers are 

found. The first articulated tower ever built was designed in response to an industry call, 

in 1963, for innovative offshore structures. A full scale experimental structure, for a water 

depth of 330 feet, was constructed and installed in 1968. The tower remained on site for 

three years during which time many measurements were done for a wide variety of weather 

conditions. This experiment demonstrated that the articulated tower concept can be utilized 

in the offshore industry. 



Burns and D'Amorim (1977) [ll] discussed the development, design and construction 

of two articulated towers that provide mooring facilities and house flow lines from subsea 

equipment to surface facilities. The towers were designed for a water depth of 420 feet. 

Environmental loads due to waves, current and wind were considered in the evaluation of 

the tower's dynamic response and the reaction forces in the base. The tower is constructed 

of the following major parts (see Fig. 3). Base - connects the tower to the sea-floor and 

keeps it from lifting or sliding. Universal joint - has two degrees of freedom, one can tilt 

30° and the other 90°, so that the tower can be constructed horizontally. It is designed to 

withstand horizontal loads of 1000 kips, and downward loads of 2000 kips. Ballast chamber - 

it is located above the joint and is 32 feet in diameter. During towing it is pressurized to give 

buoyancy, but it is flooded when installed. Shaft - its diameter is 18 feet. It connects the 

ballast and the buoyancy chamber and it is full of water during service. Buoyancy chamber 

- the 32 feet in diameter chamber provides the vertical force that keeps the tower upright. 

Hays et al. (1979) [12] discussed the operation of an articulated oil loading tower in 

the North Sea at a water depth of 400 feet. The reasons for selecting the articulated tower 

concept were simplicity of design, that it could remain as an unmanned facility during loading 

operations, its superior underwater reliability and motion characteristics. The structure 

consists of a steel body which oscillates about a universal joint connected to the sea-floor via 

a concrete ballast. The head of the tower rotates, so when a tanker is moored to the tower, 

the orientation of the head is determined by the weather conditions. The tower was built 

and tested and, according to the authors, it fulfilled their expectations. 
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Figure 3: Schematic of an Articulated Tower 



In two papers by Smith (1979) [13] and Smith and Taylor (1980) [14], the applicability, 

function and performance of an articulated tower was examined. The construction program 

covered the following aspects; hydrodynamics, materials, economic assessments and inter- 

action between the structure and the fluid. The tower was designed for a water depth of 

250 m, and its predicted cost was approximately $700 million, while a conventional fixed 

structure would have cost on the order of $1.5 billion. An analysis of the response due to 

waves and wind was performed and the results were compared to a 1:64 scale model. A fairly 

good correlation between the analytical model and the experimental one was found. From 

the analysis and testing, the authors concluded the following; 

• Articulated towers can perform in a range of functions in offshore production. 

• A good analytical model to predict the tower's response is important. 

• A close collaboration with the oil industry, in order to address real problems, is needed. 

In a paper by Butt et al. (1980) [15], a large-scale test program for a concrete articulated 

tower was presented. The tests were planed to be performed in the vicinity of a research 

platform called 'Nordsee'. The aim of the test program was to demonstrate the technical 

feasibility of the CONAT (Concrete Articulated Tower) concept. The special features of this 

concept are the bottle-shaped concrete tower and the ball joint which creates the articulated 

connection. The problems of oscillating platforms and basic design steps were discussed. 

And finally the scheduled program tests was briefly discussed. 

Naess (1980) [16] presented the results of an extensive scale 1:70 model test of an ar- 

ticulated tower.  The model, 20 m in length, was built of steel and aluminium to give the 
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necessary strength and polyurethane foam to give the correct outer dimensions. The tests 

were done with and without a tanker moored to it. The tests included the following mea- 

surements; wave elevation, pitch and roll of the tower were measured with accelerometers, 

axial and lateral (shear) forces were measured at the universal joint by strain gauges, bend- 

ing moment near the buoyancy chamber and tension force at the mooring cable were also 

measured by strain gauges. The system was tested under wind of 24 m/s, waves with sig- 

nificant wave height of 5.5 m and frequency 0.12 Hz, and current velocity 0.5 m/s. From 

the tests they found the natural period to be 58.6 s and the damping ratio £ = 0.46. The 

pitch angle was about 10 deg. An attempt to measure the natural period in the presence 

of current failed because the free oscillations were immediately damped out, a phenomenon 

which is explained in Bar-Avi and Benaroya [17]. 

The paper (1990) [18], describes the world's largest single-point-mooring (SPM) terminal. 

It was hooked up in December 1989, in the Timor Sea off Australia's northwest coast. The 

tower was designed to survive conditions of significant wave height up to 9 m, wind velocity 

of 47 m/s and current velocity of 2 m/s. The operational environmental conditions were; a 

significant wave height of 3 m, wind velocity of 14.5 m/s and current velocity of 1 m/s. The 

main components of the SPM are the same as in any other articulated tower; a ballast, a 

universal joint, a tower and a mooring yoke. 

B.    Dynamic Response 

Since articulated towers comply with the environmental forces, they can undergo large dis- 

placements. Therefore, the dynamic response of these kinds of structures is very important. 

Most of the studies considered the tower as a rigid body having a one or two angular degrees 
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of freedom about a universal joint. Structures having multiple articulations in planar or 3D 

motion were also analyzed. Very few studies considered the tower as a flexible structure and 

those that did, used lumped mass or finite element methods and not the classical methods 

of continuum mechanics. The external forces considered by most studies were due to waves, 

current and wind. Linear wave theory was applied, and the forces were approximated by 

Morison's equation (1950) [19]. This subsection summarizes the literature on the dynamic 

response of articulated towers. It is divided to three sections; 

• Single degree of freedom systems - The tower is assumed rigid and only planar motion 

was considered. 

• Two degrees of freedom system - Rigid body and 3D analysis of motion and loads. 

• Multiple articulation and flexible systems - Planar or 3D motion of multi-articulated 

towers or towers that were considered flexible. 

1.    Single Degree of Freedom Systems 

Chakrabarti and Cotter (1978) [20] developed a mathematical model to analyze the dynamic 

response of a tower-tanker system. The tower was assumed rigid, connected to the tanker 

via a spring with stiffness K. Forces due waves, current and wind are considered collinear. 

First the static equilibrium state due to only current and wind was found. Then small 

perturbations about the equilibrium position were assumed in the formulation of the equation 

of motion. The tanker was assumed to have two degrees of freedom; one linear (surge), and 

the other angular (pitch). The equations for the tower and the ship were derived and coupled 

through the spring connecting the tower to the tanker, 
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It$ + FDt + CBi/> + Frlcos{6 + #)   =   Mte^-^ 

mx + FDl3-Fr cos6   =   Fte**-ot) (1) 

Iaii + FD2s + CB»-Fr(H3cos6 + ^sm8)   =   M9^"-at\ 

where V,^,/-1 are the tower's deflection angle, the ship's surge and pitch, respectively. Fr is 

the spring force which couples the tower to the ship, CB is buoyancy term, FDt,FDls,FD2s 

are the drag forces proportional to the square of the relative velocity between the fluid and 

the structure, and a is the wave frequency. The equations were solved numerically and the 

solution was compared to experimental results obtained from a model that was built with a 

scale of 1:48. Good correlation between the test results and theoretical predictions for small 

displacements was found. When soft spring-mass systems are considered, irregular waves 

produce a drift (static) force that the model did not predict. 

In a later paper, Chakrabarti and Cotter (1979) [21] investigated the motion of an ar- 

ticulated tower fixed by a universal joint having a single degree of freedom. They assumed 

linear waves, small perturbations about an equilibrium position, and that the wind, current 

and wave are collinear. Their resulting equation of motion is 

1$ + B{iP) + Dip + C*P = Moe^-M, (2) 

where I is the total moment of inertia including added mass, B(ip) is the nonlinear drag 

term, Dtp is the structural damping, Cip is the restoring moment due to buoyancy and M0 

is the magnitude of the wave moment. A linear equation was obtained by assuming a linear 

drag force and an analytical solution was obtained.   The solution was then compared to 
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experimental results, showing good agreement as long as the system is inertia dominant, and 

not drag dominant. 

Kim and Lau (1981) [22] evaluated the response of an articulated loading platform in 

regular waves. The objective of the study was to develop a reliable technique to predict 

the loads and motion of the tower. The following assumptions have been made; rigid single 

degree of freedom body, linear drag force, small deflection angle, and deep water. In the 

derivation of the equation of motion, the tower was assumed to be in its upright position 

so that geometrical nonlinearities were not included. The analytical solution of the linear 

equation of motion was obtained, 

ib0 cos(u;i + e^) - — ^jj- cos(ut + £M), (3) 
±ty, — a; it, 

where Vo represents the displacement angle, with phase shift et. M^ is the total moment 

acting on the tower due to inertia and linear drag forces, and its phase shift is eM. B*,IV 

are the moments of inertia of the tower and added mass. The equation was then solved 

numerically and the solutions were compared to the experimental results presented by Naess 

[16] to show only qualitatively similarity, although using the same physical parameters. The 

authors concluded that a better model for the fluid forces, as well as not assuming deep 

water, will result in better predictions. 

Muhuri and Gupta (1983) [23] investigated the stochastic stability of a buoyant platform. 

They used a linear single degree of freedom model as follows 

x + 2cx + (l + G{t))x = 0, (4) 

where x is the displacement, c is the damping coefficient and G(t) is a stochastic time- 
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dependent function due to buoyancy. It is assumed that G(t) is a narrow-band random 

process with zero-mean. A criterion for the mean square stability is obtained from which the 

following results are found: for c > 1 the system is always stable, and for 0 < c < 1 there 

are regions of stability and instability. 

Thompson et al. (1984) [24] investigated the motions of an articulated mooring tower. 

They modeled the structure as a bilinear oscillator which consists of two linear oscillators 

having different stiffnesses for each half cycle, 

mx + ex + (ki,k2)x = F0 sin u)t, (5) 

where klf k2 are the stiffnesses for x > 0 and x < 0, respectively. The equation is solved nu- 

merically for different spring ratios and, as expected, harmonic and subharmonic resonances 

appeared in the response. A comparison between the response and experimental results of 

a reduced-scale model showed good agreement in the main phenomenon. 

Chantrel and Marol (1987) [25] presented a study on a tanker moored to a single degree of 

freedom articulated tower. The objective of the study was to identify the relative importance 

of the different nonlinear terms in the equation of motion, especially the terms that cause 

subharmonic response. A few assumptions were made in deriving the equation of motion; 

• In the restoring moment due to buoyancy quadratic terms were neglected. 

• The drag force due water velocity was neglected. 

• Forces /moments were evaluated at the upright position of the tower. 

• The force in the mooring cable was assumed to have a cubic form. 
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Applying these assumptions resulted in the equation of motion 

16 + CXB + C26 \e\ + KHYDO - p(60 - 6)3 = M0 cos{ut + e), (6) 

where / is the moment of inertia that includes the added mass, C\,C-i are the linear and 

quadratic damping coefficients, KJJYD is the hydrodynamic restoring stiffness, p(60 - Of is 

the moment due to the mooring cable which is set to zero for 60 > 9 and finally M0 cos(ut+e) 

is the external wave moment that includes only inertia terms. Linearization of the equation 

by assuming small perturbations about an equilibrium position resulted in 

ü + 2yunü + w„ (1 + fv cos{ut + e)) u = -j- cos(ut + e). (7) 

This equation is actually the Mathieu equation, and stability analysis was performed to 

show an unstable region around the first natural frequency of the system. This region, as 

expected, gets smaller when linear damping is added to the system. Equation 6 was then 

solved numerically for regular and irregular waves having the Pierson-Moskowitz spectra and 

the following conclusions were drawn, 

• The subharmonic response is due to the nonlinear characteristic of the mooring cable's 

stiffness. 

• The subharmonic response occurs for very precise environmental conditions. 

• A region of parametric instability that depends on the system's damping was found. 

Datta and Jain (1987) [26], and (1990) [27] investigated the response of an articulated 

tower to random wave and wind forces.   In the derivation of the single degree of freedom 
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equation of motion the tower is discretized into n elements having appropriate masses, vol- 

umes and areas lumped at the nodes, and there is viscous damping. The equation of motion 

is 

7(1 + ß{t))6 + c6 + R(l + v(t))0 = F{t), (8) 

where Jß(t) is the time varying added mass term, Rv(t) is the time varying buoyancy moment 

and F(t) is the random force due to wave and wind. The Pierson-Moskowitz spectrum is 

assumed for the wave height and Davenport's spectrum is assumed for the wind velocity. The 

equation is solved in the frequency domain using an iterative method, which requires that 

the deflection angle 6(t) and the forcing function F(t) be decomposed into Fourier series. 

The coefficients of the sin and cos are then found iteratively. From their parametric study, 

they concluded the following; 

• Nonlinearities such as large displacements and drag force do not influence the response 

when only wind force is considered. 

• The random wind forces result in higher responses than do only wave forces. 

• The root mean square response due only to wind forces varies in a linear fashion with 

the mean wind velocity. 

In a later paper, Jain and Datta (1991) [28] used the same equation and the same method 

of solution to investigate the response due to random wave and current loading. The wave 

loadings (drag, inertia and buoyancy) are evaluated via numerical integration. The following 

results were obtained from the parametric study; 

17 



• The dynamic response is very small since its fundamental frequency is well below the 

wave's fundamental frequency. 

• Nonlinear effects (drag force, variable buoyancy) have considerable influence on the 

response. 

• Current velocity has a large influence on the response. 

Virgin and Bishop (1990) [29] studied the domains of attraction (catchment regions) for 

a single degree of freedom articulated tower connected to a tanker. This was done using 

numerical techniques based on Poincare mapping ideas. A basic bi-linear oscillator model 

was assumed, the equation of motion was the same as equation (11). This equation can 

exhibit multiple solutions, but in the example solved, the coefficients (stiffness arid mass) 

were chosen so that only two solutions may coexist, depending on initial conditions; harmonic 

and 4th order subharmonic. The equation was solved numerically and it was shown that a 

domain of attraction could be found. 

Choi and Lou (1991) [30] have investigated the behavior of an articulated offshore plat- 

form. They modeled it as an upright pendulum having one degree of freedom, with linear 

springs at the top having different stiffnesses for positive and negative displacements (bilin- 

ear oscillator). The equation of motion is simplified by expanding nonlinear terms into a 

power series and retaining only the first two terms. They assumed that the combined drag 

and inertia moment is a harmonic function. The discontinuity in the stiffness is assumed 

to be small, and thus replaced by an equivalent continuous function using a least-squares 

method to get the following Duffing equation 

ie + ei) + kxe + k2e
2 + k3e

3 = M0 cos^, (9) 
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where k\, k2, k$ are spring constants depending on buoyancy, gravity and the mooring lines. 

The equation of motion is solved analytically and numerically, and stability analysis is per- 

formed. The analytical solution agrees very well with the numerical solution. The main 

results of their analyses are that as damping decreases, jump phenomena and higher subhar- 

monics occur, and chaotic motion occurs only for large waves and near the first subharmonic 

(excitation frequency equals twice the fundamental frequency); the system is very sensitive 

to initial conditions. 

Gottlieb et al. (1992) [31] analyzed the nonlinear response of a single degree of freedom 

articulated tower. In the derivation of the equation, the expressions for the buoyancy moment 

arm, added mass term, and drag and inertia moments are evaluated along the stationary 

upright tower position and not at the instantaneous position of the tower. The governing 

equation is of the form 

<9 + 70 + Ä(0) = M(M), (10) 

where R{6) = asinö and a is linear function of buoyancy and gravity, M(6,t) is the drag 

moment. Approximate harmonic and subharmonic solutions are derived using a finite Fourier 

series expansion, and stability analysis is performed by a Lyapunov function approach. The 

solution shows a jump phenomenon in the primary and secondary resonances. 

Gerber and Engelbrecht (1993) investigated the response of an articulated mooring tower 

to irregular seas. It is an extension of earlier work done by Thompson et al. (1984) [24]. 

The tower is modeled as a bilinear oscillator 

mx + cx + (k1,k2)x = F(t). (11) 

The random forcing function F(t) is assumed to be the sum of a large number of harmonic 
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components, each at different frequencies, a procedure similar to that proposed by Borgman 

(1969) [32]. The equation is then solved analytically since it is linear for each half cycle. 

The solution is obtained for different cases; linear oscillator (both stiffnesses are the same), 

bilinear oscillator, and for the case of impact oscillator (a rigid cable) in which oscillation 

can occur only in one half of the cycle. For future study they suggest including of nonlinear 

stiffness and/or using a different spectrum to describe the wave height. 

Bar-Avi and Benaroya (1994) [33] investigated the nonlinear response of a single degree 

of freedom articulated tower. The equation of motion was derived via Lagrange's equation. 

Nonlinearities due to geometry and wave drag force are considered. A combined wave and 

current field, coulomb friction force, and vortex shedding force are included in the analysis. 

The governing equation of motion is, 

J{6)d + C6 + Mgb(0,t) = Mfl(6,t) - M/r(0), (12) 

where J{6) is a position-dependent moment of inertia that includes added mass terms, C is 

the structural damping coefficient, Mgb(6, t) is a time and position-dependent moment due to 

buoyancy and gravity, M//(0, t) is the fluid moment due to inertia, drag and vortex shedding 

force, and Mjr{6) is the friction moment. The influence on the response of current velocity 

and direction, significant wave height and frequency, and damping mechanism was analyzed. 

The following observations were made; 

• The equilibrium position is proportional to the product of the current velocity squared 

and the drag coefficient. 

• The highest response is when the current direction is perpendicular to the wave. 
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• The response to sub/superharmonics and harmonic excitation demonstrate beating. 

• For most excitation frequencies, the response is quasiperiodic, but for certain frequen- 

cies chaotic behavior was observed. 

• Damping (friction, structural) has a stabilizing effect. 

A simplified equation for a single degree of freedom articulated tower was presented in 

Bar-Avi and Benaroya [34]. The equation was derived using the Taylor expansion of the 

fully nonlinear equation derived in [33]. Terms of second power or less were kept and the 

solutions of both, the fully nonlinear and the simplified equations were compared. From 

the comparison it was found that the simplified equation predicts the tower's response very 

well over a broad regime of behavior. Analytical expressions for the natural frequency and 

equilibrium position due to current were presented. It was also shown that current causes an 

additional damping mechanism in the system that can be expressed as ^CupDd3Uc6. This 

result agrees with the experimental results presented by Naess (1980) [16]. 

2.    Two Degree of Freedom Systems 

Kirk and Jain (1977) [35] investigated the dynamic response of a two degree of freedom 

articulated tower to noncolinear waves and current. The two equations of motion were 

obtained via Lagrange's equation. The waves were assumed linear with current modification 

of the frequency and amplitude. Forces due to buoyancy, wave drag and inertia, and added 

mass were considered. The equations were solved numerically, and the influence of drag 

coefficient and wave direction was analyzed. From the solution they concluded that; 

• Higher drag coefficients result in lower response. 
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• The maximum deflection occurs when the current and the waves are in the same 

direction. 

When vortex shedding forces are included the last conclusion is not correct as shown in 

Bar-Avi and Benaroya [33]. 

Olsen et al. (1978) [36] evaluated the motion and loads acting on a single-point mooring 

system. The tower was modeled as a rigid body connected to the sea-floor via a universal 

joint. The equation for the tower and the tanker were derived separately. To derive the 

equations of motion for the tower, it was divided into N elements having two degrees of 

freedom each; a horizontal and vertical displacement and the forces due to wave, current and 

wind were evaluated at each element. Hence, 27V nonlinear differential equations were found 

N 

£ {(fiv -z0-k)x FiV + fiH x FiH) = 0, (13) 

where fiV, fiH are the displacements of element i in the vertical and horizontal directions, FiV, 

FiH are the environmental loads acting on element i in the vertical and horizontal direction, 

z0 • k is the motion of the universal joint in the z direction. The tanker was modeled as 

a rigid body having three transverse degrees of freedom. The equations are derived in the 

tanker coordinate system and then transformed into the tower's coordinate system to yield 

[M] {x} + [C] {x} + [K] {x} = [F], (14) 

where [M], [C], [K] are the mass (including added mass terms), damping and stiffness ma- 

trices of the tanker, [F] is the force vector acting on the tanker and {x} , {x} , {x} are the 

acceleration, velocity and position vectors of the tanker. The tanker's and tower's equations 
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are coupled by applying a constant mooring force [FM] at each time step of the integration. 

The solution gives the low frequency motion of the tanker as well as the tower's response. 

The high frequency motion of the tanker was assumed to be unaffected by the fact that the 

tanker is moored. Therefore the tanker's high-frequency amplitudes were calculated indepen- 

dently from the low frequency, and then the responses were added together. The equations 

were solved numerically and compared to test results to show a reasonably good correlation, 

but according to the authors, a more accurate model should be developed. The effect of the 

tanker on the surrounding wave field was also investigated to find a 0-10% change in the wave 

velocity and acceleration. The effect of these changes on the response was not investigated. 

Chakrabarti and Cotter (1980) [37] investigated transverse motion, the motion perpen- 

dicular to the horizontal velocity. The tower pivot is assumed to have two angular degrees 

of freedom and is taken to be frictionless. It is also assumed that the motion is not coupled, 

so the in-line solution is obtained (the same as in the previous paper), from which the rel- 

ative velocity between the tower and the wave is obtained. The lift force (in the transverse 

direction) can then be obtained and the linear equation of motion is solved analytically and 

compared to experimental results. The comparison shows good agreement, especially when 

the drag terms are small. 

Schellin and Koch [38] calculated the dynamic response due to waves and compared 

results with model tests. The calculation of the response was done for three different sets 

of fluid coefficients; coefficients that depend on the wave period, coefficients selected from 

experimental data and coefficients that are calculated using diffraction theory. The tower 

was assumed rigid and connected to the sea-floor via a two degree of freedom universal joint. 
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Forces due to wind, wave and current as well as nonlinearities due to geometry and wave 

drag force are considered. The tower was divided into TV elements for which the following 

force was found; 

F; = CMiUwi + CoiUvi \Urei\ +FBi+FGi+FWi-miri-CDiTi \urel\, (15) 

where F* is the vector of the total force acting on the element due fluid inertia force CMiuwi, 

fluid drag force C^u^ \urei\, buoyancy, gravity and wind forces; FBi, FGi, F^, inertia force 

due to tower's acceleration m^, and drag force due to tower velocity CDiTi \Ura\. Summing 

all forces on each element and multiplying by the moment arm leads to the equations of 

motion 

^{(ri-//i)xFi} = 0, (16) 
t=i 

where H is the distance in the z direction between the universal joint and the mean water 

level. The equations of motion were solved numerically for an idealized tower that consists of 

a series of circular cylinders. The numerical solutions were compared to experimental results 

of a model which has been built to a scale of 1:32.75 and the following conclusions have been 

drawn; 

• Proper choices of the drag and the added mass coefficients results in good correla- 

tion between the theoretical and test results, for the tower's deflection and horizontal 

reaction force on the universal joint. 

• The correlation of the vertical reaction force is not good. 
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• The added mass coefficient has a predominant effect on the dynamic response and the 

drag coefficient almost none. 

• The theoretical results for waves having small period (high frequency) do not correlate 

as well as results for waves with large period. 

Liaw et al. (1989) [39] formulated the equations of motion for a two degree of freedom 

articulated tower using Lagrange's equations, and then solved and analyzed the large motion 

of the structure. This was done using Euler's theorem, which states that 'if a body has one 

point O fixed, then any displacement of the body from one given position to another is 

equivalent to a rotation about a unique axis through 0\ The equation was solved for three 

cases. First, the static equilibrium inclination of the tower due to current was obtained. 

Next, the response due to linear waves with height of 3 m and period of 17 s was evaluated. 

Finally, the previous waves along with orthogonal current were applied and the solution was 

found. All three cases were compared to the solution obtained by Leonard and Young (1985) 

[40], who used a finite element method, and the results matched quite well. 

In a paper from 1992, Liaw et al. [41] showed that the subharmonic phenomenon, which 

occurs in articulated towers, is due to the coupling between the wave force and the structure. 

They used the equations that were developed in their previous paper [39], but resduced 

from 2 degrees of freedom to a single degree of freedom syste. The equation was solved 

them numerically and harmonic and subharmonic responses were obtained. The following 

observations were made; 

• The amplitude of the response in the subharmonic region can be as high as the one in 

the harmonic region. 
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• The initial conditions determine the final steady state response. 

Similar results for a single degree of freedom model were obtained in a study presented 

by Bar-Avi and Benaroya [33], although, for a two degree of freedom system (see [42]) it was 

found that the subharmonic response is not as pronounced as in the single degree of freedom 

model. 

Bar-Avi and Benaroya [17],[42], investigated the response of a two degree of freedom 

articulated tower to deterministic loading. The nonlinear differential equations of motion 

were derived using Lagrange's equations. The tower was assumed to have the same dynamic 

properties as an upright spherical pendulum with additional effects and forces; 

• Coulomb friction in the pivot (hinge) 

• Structural viscous damping 

• Drag fluid force due to waves and current, and wind coupled to the structure 

• Inertia, buoyancy and added mass fluid forces 

• Vortex shedding loads due to waves and wind 

• Wave slamming that was modeled as a periodic impulsive force 

• Gyroscopic moments due to the rotation of the earth (Coriolis acceleration). 

All fluid forces due to waves, current, and wind are determined at the instantaneous posi- 

tion of the tower, resulting in two, highly nonlinear, coupled, ordinary differential equations 

with time-dependent coefficients, with rotation angle 4>, and deflection angle 6 
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Je
ef/(0)e + C8 + Ig(0)P+M$

gb(0)   =   1^,(0,1)+ M9
m(e,t) + Ml{0)-Me

Jr(6,t) 

(17) 

Jtff(e)4> + Cj> + Ig(8)j>e   =   M;,(M) + MKM) + M*(0)-M;r(M), 

The equations of motion were numerically solved and the following observations were 

made; 

• An analytical expression for the equilibrium position due to current and wind was 

found. 

• The response due to wave slamming is very small since an impulsive force is attenuated 

when the pulse duration is shorter than the system's fundamental duration, which is 

the case here. 

• Wind loads and current loads affect the equilibrium position of the tower. 

• The Coriolis acceleration force has a small but important influence on the response, 

since it causes a coupling so that planar motion is not possible under real conditions. 

• The regions in which the beating phenomenon occurs are very small and it is not as 

pronounced as in a single degree of freedom system. 

• Due to the system nonlinear behavior chaotic regions exist. 

Later, Bar-Avi and Benaroya [43], [44] analyzed the response of a two degree of freedom 

tower, where key parameters were taken to be random variables.   The wave height, drag, 
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inertia and lift coefficients, and coulomb friction coefficient were assumed to be random 

uniformly distributed variables. The nonlinear differential equations of motion (18) were 

numerically solved and Monte-Carlo simulations were performed to evaluated the average 

response and the standard deviation. It was found that the standard deviation for the 

rotation angle is larger than that of the deflection angle. The value of the friction coefficient 

has a very small influence on the average response, unlike the wave height and the drag 

coefficient. 

3.    Multiple Articulations and Flexible Systems 

In a paper by Jain and Kirk (1981) [45], a double articulated offshore structure subjected to 

waves and current loading was analyzed. They assumed four degrees of freedom, two angular 

degrees for each link. The equations of motion were derived using Lagrange's equations. In 

deriving the equations of motion the following assumptions were made: drag and inertia 

forces tangent to the tower are negligible, and the wave and current velocities are evaluated 

at the upright position (small angles assumption). The linearized equations were solved to 

find the natural frequencies of the system and then numerically solved to find the response 

due to colinear and non-colinear current and wave velocities. They found that when the 

wave and the current velocities are colinear, the response of the top is sinusoidal, while for 

noncolinear velocities the response is a complex three dimensional whirling oscillation. 

Seller and Niedzwecki (1992) [46] investigated the response of a multi-articulated tower in 

planar motion (upright multi-pendulum) to account for the tower flexibility. The restoring 

moments (buoyancy and gravity) were taken as linear rotational springs between each link, 

although the authors state that nonlinear springs are more adequate for this model.  Each 
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link is assumed to have a different cross section and density. The equations of motion are 

derived using Lagrange's equations, in which the generalized coordinates are the angular 

deflections of each link. The equations in matrix form are 

\M){0} + [K]{6} = {Q} , (18) 

where [M] is a mass matrix that includes the actual mass of the link and added mass terms, 

while the stiffness matrix [K] includes buoyancy and gravity effects. Damping and drag forces 

are not included in the model. The homogeneous equations for a tri-articulated tower are 

numerically solved to study the effects of different parameters, such as link length, material 

density and spring stiffness, on the natural frequency of the system. 

In two papers, one by Havery et al. (1982) [47], and by McNamara and Lane (1984) [48], 

a finite element method is used to calculate the response of a planar flexible multi-articulated 

tower. Examples of the response of single point mooring, .bi-articulated and multi-articulated 

towers were presented. In order to derive the equation of motion, the displacement was 

decomposed into a rigid body motion and a deformed motion. Two coordinate systems were 

used. One fixed and the other attached to the tower's rigid body motion. The deformation 

were first expressed in the rotating system and then transformed into the fixed coordinate 

system in which the equation of motion was expressed for each element, to find 

Mw + Kw = Kwrb + F, (19) 

where M is the mass matrix, K is the stiffness matrix, w,wrb are the total and rigid body 

displacements, respectively, and F is the force due to wave and current, calculated by the 

Morison's equation.   For random wave, the Pierson-Moskowitz spectrum was transformed 
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into the time domain using Borgman's method [32]. The equations were solved numerically 

using a finite difference method in which artificial damping was introduced which, according 

to the authors, does not significantly influence the response. It was found that the finite 

element solution using 21 elements was stable up to a time step of 0.7 s. A solution for the 

same problem, based on numerical integration of the Lagrange's equations (not presented), 

was compared to the finite element solution and the results agreed exactly except for a few 

initial cycles. The method presented can be extended to more realistic problems such as two 

degree of freedom universal joints. 

The objective of the paper by Leonard and Young (1985) [40] was to develop a solution 

method to evaluate the dynamic response of an articulated tower. The method is based 

on three dimensional finite elements. The tower was subjected to wave and current and 

nonlinearities due to geometry and drag force were included. The equations of motion are 

M {Q} + [C\ {</) + [K] {q} = {F(t)} , (20) 

where [M], [C], [A'] are the mass, damping and stiffness matrices, {q} , {q},{q} are the 

generalized acceleration, velocity and displacement vectors and {F(t)} is the generalized 

force vector due to wave and current. The response was evaluated numerically for steady 

current only and then for waves. The results were compared to those presented by Jain and 

Kirk (1981) [45]. From this comparison it was concluded that the three dimensional finite 

element method is adequate. For linear analysis it requires more time than other linear 

computer schemes, but when nonlinearities are included the method actually requires less 

time. 
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Hanna et al. (1988) [49] investigated the dynamic response of tri-articulated tower sub- 

jected to wave, wind and current. The tower geometry and dynamic characteristics were 

optimized such that: tower periods fall outside the 5 to 20 s range, and reaction forces and 

weight are minimized. The model consisted of three rigid segments with different lengths 

and mass, with total length of 3000 feet. Each segment had a single degree of freedom and 

they were connected via a rotational spring. Thus three linear ordinary nonlinear differential 

equations were obtained for small angles 

[M] {*} + [K] {*} = {F} , (21) 

where [M], [K] are 3 x 3 mass and stiffness matrices, respectively, {F} is the forcing vector 

due to wave, wind and current, and {x} is the displacement vector. Equations (21) were used 

to determine the static stability due offsets of the deck weight. Values for segment length, 

weight and joint stiffness were found for the highest critical load. To analyze the dynamic 

response and the stresses, large angular deflections were considered. The tower was divided 

into N elements each having a single degree of freedom. Nonlinearities due to geometry and 

drag forces were included resulting in 

[M] {Ü} + [C] {Ü} + [K] {u} = {P(t,u,u)}, (22) 

where [M], [C], [K\ are the mass, damping and stiffness matrices, and {P(t,u,ü)} is the 

vector of the forces due to waves and colinear current approximated by the Morison's equa- 

tion, and due to static wind loads. Numerical solutions were obtained for deterministic and 

irregular waves having the Pierson-Moskowitz spectra. From the analysis it was concluded 
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that compliant towers with multiple articulations provide an attractive concept to optimize 

the dynamic response without penalizing the structure's weight. Furthermore, the method 

of analysis can be utilized for 3D structures and also other similar compliant towers with 

multiple articulations. 

Helvacioglu and Incecik (1988) [50] described analytical models to predict the dynamic 

response of a single and bi-articulated tower subjected to waves and wind. The analytical 

solutions were compared to test measurements. The effects of changes in the buoyancy 

position, joint location and deck weight on the bi-articulated tower response were studied. 

In both models planar motion was assumed, and although it wasn't mentioned in the paper, 

fluid drag forces were not included, and therefore simple equations were derived that resulted 

in simple analytical solutions. In both models the equations were simple oscillators with 

damping subjected to harmonic forces, 

[M] {§} + [C] {e} + [K] {u} = {MF} smut, (23) 

where [M], [C], [K] are scalars for a single articulation or 2x2 matrices for the bi-articulated 

system. From the parametric study it was found that the buoyancy tank position has a 

significant effect on the natural frequencies. According to the authors, the mathematical 

model for the bi-articulated tower correlated reasonably with the test results. 

Active control of offshore articulated towers was discussed in a paper by Yoshida et al. 

(1988) [51]. A preliminary attempt was to control the dynamic response of an articulated 

tower subjected to regular waves. Two models were used; one was a rigid body having a 

single degree of freedom, and the other was a flexible tower fixed at the bottom. The control 
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scheme was expressed as a combination of feedforward control based on the disturbance and a 

feedback control. The feedback control copes with the higher order noise remaining after the 

compensation of the feedforward control. Two feedforward control schemes were discussed. 

One is to compensate for the whole wave force acting on the structure, while the other was 

on-off control to compensate for the principle Fourier components of the wave force. The 

simulation results for both models showed that the response of the controlled structure was 

reduced to about 30% of those of the uncontrolled system. 

In a later paper, Yoshida and Suzuki (1989) [52] discussed the experimental results of the 

response of an actively controlled tri-articulated tower. The application of active control to 

offshore structures is advantageous, increasing strength (stiffness) and reducing weight. The 

structure can be artificially stiffened and damped by means of active control according to the 

environmental conditions. Ultrasonic sensing systems were used to measure the deflection 

of each segment of the tower. The data from the measuring system was processed and the 

signals for the controllers were obtained. The control force was generated by thrusters which 

were built into each segment. Optimal control was applied to several cases; 

• A neutral model, in which the buoyancy and gravity forces are equal, was controlled. 

The response of the model against an imposed displacement was controlled. The 

thrusters had a phase delay, and therefore vibrations in high frequency could not be 

controlled. 

• An unstable model, in which the buoyancy force was less than the gravity force was 

controlled. In this case the structure was stabilized but again high frequency vibrations 

could not be controlled. 
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• Static deflection due to current was controlled successfully, but with large deflection 

angle the high gain necessary to control the structure caused some instability. 

Ganapathy et al. 1990 [53] developed a general finite element program for the analysis 

of the nonlinear statics and dynamics of articulated towers. The tower was modeled as a 

three-dimensional beam element, which includes axial shear and bending deformations. The 

equations of motion have the standard finite element formulation 

[M] {Ü} + [C] H + [K] {u} = {F(t)}. (24) 

Linear wave theory was assumed and the wave force was evaluated via Morison's equation. 

The equations were numerically solved and the effects of the water depth, buoyancy force 

magnitude and position, and wave and current loads were investigated and the following 

conclusions were drawn; 

• For moderate water depth (100 m), the maximum bending moment occurs at the 

position of the chamber, while for deep water (300 m), the maximum bending moment 

can occur at the mid span or at the buoyancy chamber, depending on the chamber's 

position. 

• Larger buoyancy forces cause a decrease in the tower's deflection and an increase in 

the bending moment. 

• Current load has a significant effect on the deflection and the bending moment. 

• There is a nonlinear relation between the total force and the deflection. 
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Mathisen and Bergan (1991) [54] outline a general approach to large displacement static 

and dynamic analysis of an interconnected rigid and deformable multibody system submerged 

or floating in water. The system's equations of motion were generated by combining the 

equation of motion derived for each subsystem, which can be either rigid or deformable. 

The investigation is based on the Lagrangian description of motion in which the current 

coordinate of a material point is described in terms of its initial material point and time. The 

equation of motion of each part was derived using variational methods, and then combined 

with a nonlinear finite element displacement formulation. The formulation was applied to a 

bi-articulated tower, and the purpose was to find the response of the top of the platform, as 

well as to evaluate the distribution of the axial force and bending moment along the tower. 

The equations were solved for deterministic wave height of 30 m with a period of 30 s, and 

irregular (random) waves having the Jonswap spectrum. 

III.    SUMMARY AND CONCLUDING THOUGHTS 

The important class of offshore structures known as articulated towers has been studies over 

the past two decades. Such structures have found primary offshore application in the oil 

industry, but also for cases where a stable ocean platform is needed for communication and 

mooring. 

This paper summarizes the literature focused on articulated towers. Forces on these struc- 

tures due to ocean and atmosphere include ocean waves and current, wind, buoyancy, and 

friction at the base. Various models have been developed for these forces, with a spectrum 

of sophistication. Similarly, the complex equations of motion governing structural response 
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find numerous methods for their solution. 

The interested worker will find here the necessary backround on this problem, and will 

be able then to proceed with the research litarature. 
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Abstract 

In a previous paper [1], the stochastic response of a 

two degree of freedom articulated tower in the ocean 

was investigated. The governing coupled differen- 

tial equations of motion are highly nonlinear, and 
have time-dependent coefficients due to fluid forces 

and geometrical nonlinearities. The tower's average 

response was evaluated for uniformly distributed 

random fluid constants, friction coefficient, and cur- 

rent direction. In this paper additional terms due 

to wave slamming loads and earth angular velocity 

(Coriolis force) are added to the equations of mo- 

tion. The equations are then solved numerically. 

Introduction 

Compliant platforms such as articulated towers are 

economically attractive for deep water conditions 

because of their reduced structural weight compared 

to conventional platforms. The foundation of the 

tower does not resist lateral forces due to wind, 

waves and currents; instead, restoring moments are 

generated by a large buoyancy force, a set of guy- 

lines or a combination of both. These structures 

have a fundamental frequency well below the wave 

lower-bound frequency. As a result of the relatively 

large displacements, geometric nonlinearity is an 

important consideration in the analysis of such a 

structure. The analysis and investigation of these 

kinds of problems can be divided into two major 

groups: deterministic and random wave and/or cur- 

rent loading. Most works consider the tower as an 

upright rigid pendulum attached to the sea floor via 

a pivot having one or two degrees of freedom. 

Bar-Avi and Benaroya (1994) [2] investigated 

the nonlinear response of a single degree of freedom 

articulated tower. The equation of motion was de- 

rived via Lagrange's equation. Nonlinearities due 

to geometry and wave drag force are considered. A 

combined wave and current field, coulomb friction 

force, and vortex shedding force are included in the 

analysis. The influences on the response of current 

velocity and direction, significant wave height and 

frequency, and damping mechanism were analyzed. 

The response to sub/superharmonics and harmonic 

excitation demonstrate beating, and for certain ex- 

citation frequencies a chaotic behavior was observed. 

Current has a large influence on the response and 

on the equilibrium position of the tower. 

In later papers, Bar-Avi and Benaroya (1995) 

[3],[1] investigated the stochastic response of a two 

degree of freedom articulated tower submerged in 

the ocean. The nonlinear differential equations of 

motion were derived, including nonlinearities due 

to geometry, coulomb damping, drag force, added 

mass, and buoyancy. All forces/moments were eval- 

uated at the instantaneous position of the tower 

and, therefore, they are not only time-dependent, 

but also highly nonlinear. The equations were then 

numerically integrated and Monte-Carlo simulations 

performed to evaluate the tower's average response 

and scatter. Effects of various parameters such as 

the fluid constants, significant wave height, coulomb 

and structural damping coefficient, and current di- 

rection were then investigated. 

Other studies on single degree of freedom mod- 

els were performed by Chakrabarti and Cotter [4], 

Gottlieb et al. [5], Muhuri [6], Datta and Jain [7], 

[8], [9]. Two degree of freedom models were ana- 

lyzed by Chakrabarti and Cotter [10] and Jain and 

Kirk (1981) [11].   A detailed description of these 
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studies is given in [2]. 

New Study 

In this paper the response of a two degree of free- 

dom articulated tower to deterministic loads is in- 

vestigated. The nonlinear differential equations of 

motion are derived using Lagrange's equation. They 

are similar to those discussed in the previous paper 

by Bar-Avi and Benaroya [1] but with additional 

terms due to wave slamming loads, wind loads and 

Coriolis forces generated by the rotation of the earth. 

The equations are then solved numerically using 

ACSL software to determine the influence of these 

forces on the tower's dynamic response. 

Equations of Motion 

Problem description 

The structure is modeled as a tower submerged in 

the ocean having a concentrated mass at the top 

and two degrees of freedom; 6 about the z axis 

and 4> about the x axis. The tower is subjected 

to wave, current, vortex shedding, wind force, and 

wave slamming loads. This problem has similari- 
ties to that of an inverted spherical pendulum with 

additional considerations, 

• additional fluid and buoyancy forces 

• earth angular velocity is included. 

The equations of motion are derived using La- 

grange's equation. The equations are derived for 

large displacements. Only key terms are shown 

here. A full derivation of the equations of motion 

without the earth rotation effect and wave slam- 

ming force can be found in Bar-Avi and Benaroya 

(1994) [1]. Only the additional terms will be de- 

rived here. 

The derivation of the equations of motion us- 

ing Lagrange's equations requires that the kinetic, 

dissipative and potential energies be evaluated, as 

well as the generalized forces. In this subsection, 

the tower absolute velocities, linear and angular, 

and accelerations are determined in the fixed coor- 

dinate system x,y,z attached to earth. Fig. 1 de- 

scribes the earth coordinate system from which the 

tower's absolute angular velocity can be evaluated. 

Figure 1: Earth and Tower Coordinate Systems 

The system X, Y, Z is an inertial coordinate 

system, X', Y', Z' is attached to earth, where X' 

is normal to earth, Y' is directed to east and Z' is 

directed to the north. The coordinate system x, y, 

z is attached to earth. Its origin is at the tower's 

pivot, and it is rotated with an angle ß about the X' 

direction with its y coordinate in the direction of the 

wave propagation. Therefore the tower's absolute 

angular velocity is, 

fiT   =    (fisinA + </>)x + (1) 

(ficosAsin/?)y + (ficosAcos/? + 0)z, 

where A is the altitude angle and fi is the angular 

velocity of earth. 
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External Fluid Forces and Moments 

Fig. 2 depicts the external forces (except for grav- 

ity) acting on the tower. Those are; buoyancy, fluid 
forces due to drag, inertia, added mass and vortex 
shedding, wave slamming force and wind loads. 

Figure 2:     External Forces Acting on the Tower 

Fluid Forces 

is the tower's velocity vector, and Uw is the fluid 

acceleration vector. CD and CM are the drag and 

inertia coefficients, respectively, D is the tower di- 

ameter, p is the water density, and 1 is a unit vector 

of the directional cosines along which the tower is 

oriented. 

The lift force FL due to vortex shedding is acting 

in a direction normal to the wave velocity vector 

and normal to the tower. Different models of the 

lift force exist in the literature; see especially Billah 

[12]. We will initially use a simple model given in 

a paper by Dong (1991) [13], and Issacson (1988) 

[14], 

FL = CLP^ cos2u>< 11 x UT | (1 x UT),       (3) 

where Ux is the vector of the maximum velocity, 

along the tower, and CL is the lift coefficient, and 

u) is the gravity wave frequency. 

The parts of a structural member that are above 

the mean water level are exposed an impulsive force 

caused by wave slamming and wind loads. The 

wave slamming force per unit length has a simi- 

lar form as the drag force (see Chakrabarti (1990) 

pp. 142-143 [15]), 

In general, the fluid forces acting on a slender 

smooth tower submerged in the ocean are of four 

types: drag, inertia, vortex-shedding and wave slam- 

ming. The drag and inertia forces per unit length 

are approximated by Morison's equation. The drag 

force is proportional to the square of the relative 

velocity between the fluid and the tower, and the 

inertia force is proportional to the fluid accelera- 

tion, 

D2 

Ffi    =    CMfm—-\ x Uw x 1+ 
4 

CDp^|lx(Uw-V)xl| 

(2) 

• (1 x (Uw - V) x 1), 

where F// is the fluid force per unit length normal 

to the tower, Uw is the wave velocity vector, V 

F.m = C5p||lxUsxl|(lxUsxl),       (4) 

where Cs, the slamming coefficient, has a theoret- 

ical value of 7T, but a typical mean value may be 

taken as 3.5 even though considerable scatter in 

this coefficient has been found in laboratory experi- 

ments. Us is the relative velocity between the fluid 

and the tower on the wave front at the point of im- 

pact. This force is assumed to be a periodic impulse 

with the wave period, and duration of TS = 0.01 s, 

as described in Faltinsen pp. 282-285 [16]. 

The fluid moments due to drag, inertia, and lift, 

M6jt, Mt, are evaluated via the virtual work prin- 

ciple to be 

Mji 
—Ffix tan 6 + Fjiy cos <f>+ 

F}ix sin (j) 
xdx 
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M Ji -r{ —Fjiv tan0sin</>+ 

Ffit tan 8 cos <p 
xdx, (5) 

where L is the projection in the x direction of the 

submerged part of the tower. The moments due 

to wave slamming is evaluated by integrating the 

slamming force along the exposed part of the tower, 

from the mean water level d to the wave height 

d+±H, 

Additional External Moments 

There are three additional moments acting on 

the tower, these are: buoyancy, added mass, and 

friction moment. The buoyancy moment is 

* - r ( 

•^ tan2 0(2 cos 6 + sin 6)+ 

tan 8 + FSmv cos 0+ 

sin0 

-■F»m„ tan 0 sin <H- 
F8m,tan0cos0 

xdx 

xdx. 

Wind Loads 

Wind loads are similar to current forces, i.e., 

drag and lift (vortex shedding). Both, the drag and 

lift force expressions are similar to those of the fluid. 

The drag force is, 

(11) 
where n is the wave height elevation.   The added 

mass moments are 

(6) 

AC   =   icA/J7r^X3(0(l + tan2ö)+<Ä2tanö) 

M^   =   —CAfm—W<Ätan20 + 2Ötf>tan0) (12) 

where C& = CM — 1 is the added mass coefficient. 

Finally the coulomb friction moments are, 

F£ = C°Dp
a D |1 x (u„ - V) x 1| ■ 

(lx(u„-V)xl) 
(7) 

where Cp is the air drag coefficient, p° is the air 

density and u^ is the wind velocity vector given by 

uw = 11*0, cos uy + Um sin uz, (8) 

where v is the direction between the wind propaga- 

tion and the y axis. The lift force is, 

F£ = Clpa^u}w cos t 11 x u„, | (1 x uw),      (9) 

where C£ is the air lift coefficient. The vortex shed- 

ding frequency uw is 

0.2u„ 
IJJ-W = 

D 
(10) 

The moments due to wind loads Af£, M* are found 

in a similar way as the fluid moments (eqn. (5)), 

but with the integral going from d to I cos 6. 

M%    =    RhNii[sgn(Ö)) 

Mfr   =   Rhsiii6Nfi[sgn(4>)}, (13) 

where fi/, is the hinge radius, and N the normal 

force. 

Governing Equations of Motion 

The governing nonlinear differential equations of 

motion are found by equating the dynamic mo- 

ments, M%y and M$y, that are evaluated in the left 

hand side of Lagrange's equations, to the applied 

external moments, that are found by adding equa- 

tions (11),(5),(12), and (13), 

Jljf'9 + C6 + Ig sin 20 

Me
}l + Me

am-Me
gb-Me

fT 

(Qcos Asin/3)2 

(14) 

Jtff<t> + c<t> + 4(n sin x + J>)e sin 2e 

M*l + M+m-M*r, 
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where J^ff and jfff are the effective moments of in- 

ertia which are position dependent, Ig is a constant 

depending on the system parameters, and Mgb is 

the moment due to gravity and buoyancy. 

Numerical Solution 

In this section, the influence of the rotation of the 
earth, wind loads, and wave slamming loads, on re- 

sponse of the tower is determined. The governing 

nonlinear differential equations of motion (17) are 

solved using 'ACSL' and the results are then ana- 

lyzed using 'MATLAB'. The fluid's coefficients, the 

wave height, and the wave frequency used in the 

simulations are taken from Hogben et al. 1977 [17] 

and the wind drag and lift coefficients are taken 

from Van Nunen et al. [18]. The following physi- 
cal parameters are used in the simulation: CJ, - Air 
drag coefficient = 0.8, C£ - Lift coefficient = 0.4, uw 

- Wind velocity = 20 (m/s), Cs - Wave slamming 

coefficient = 3.5. All other parameters can be found 

in the previous paper by Bar-Avi and Benaroya [2]. 

In our study the wave height H is much smaller the 

mean water level d, i.e., -j < 0.01. Therefore, the 

relation between the wave height and the wave fre- 

quency, given in Hooft (1981) [19] is used. This rela- 

tion with the deep water simplification tanh kd = 1, 
leads to 

cJ ■ 
IT 

2H 
(15) 

where OJ is the wave frequency. 

Wave Slamming 

As mentioned earlier, the wave slamming force is a 

periodic impulsive force. The pulse duration is set 

to be rs = 0.01 s and the period is the same as the 

wave's period. The response due to an impulsive 

load depends on the pulse duration, and it can be 

twice as high as a quasistatic load having the same 

magnitude. In this study the wave period is much 

higher than the impulse duration, ■■■*■  = 0.0026, 
'n 

(T„ = —), hence the deflection angle response due 

to wave slamming is attenuated and expected to 

be 100 times lower than if the load was quasistatic 

(see Shock [20]). For an articulated tower modeled 

as an elastic beam that has high frequencies, wave 

slamming can cause higher deflections especially if 

its period coincides with one of the tower's modes. 

Fig. 3 shows the response in the time domain 
due to wave slamming only; (a) is the deflection an- 
gle response 6 and (b) is the rotation angle response 

<t>. In this run the fluid coefficient CD,CM,CL, are 

set to zero. The deflection angle 6 is very small, on 

the order of 10"5, as expected. 

Figure 3:       Tower's Response due to Wave Slam- 

ming,   (a) Deflection Angle 6. (b) Rotation Angle 

Fig. 4 depicts the tower's end motion (a) and the 

frequency response (b). The tower oscillates about 

(y, z) = (0,0) since there are not any constant mo- 

ments that cause a shift in the equilibrium posi- 

tion. From the frequency response two frequencies 

are seen; one is the natural frequency un = 0.026 

Hz, and the wave frequency u) = 0.11 Hz that cor- 

respond the one calculated by eq. 15 for H = 3 

m. 
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Figure 4: Tower's Response due to Wave Slam- 

ming, (a) Tower's End Motion, (b) Tower's Fre- 

quency Response. 

Coriolis Force 

Figure 5: Tower's Response Due to Coriolis Force, 

(a) Deflection Angle 6. (b) Rotation Angle <t>. (c) 

Tower's End Motion. 

Wind Loads 

The rotation of the earth causes an additional mo- 

ment, due to the Coriolis force. Hence it affects the 

response of tower. These maximum moments are 

M^    =     J,sin20(n + ^y (16) 

M* Igsin26{n + <p)6 

where M^M^ are the generalized gyroscopic mo- 

ments for 6 and 4> coordinates, respectively. These 

moments are small (~ 104 N-m) and their effect 

on the response is expected to be small, but the 

uniqueness of this load is that it couples the two 

generalized coordinates, so that a motion in one di- 

rection will cause a response in the other. Fig. 5 

describes the tower's response due to Coriolis force 

only. Fig. 5 (a) shows the deflection angle 6, (b) 

is the rotation angle and (c) its motion in the y, z 

plane. It is clearly seen that the response is not 

planar (0^0), due to the gyroscopic moments. 

Out of the three different types of loading discussed 

in this paper, wind loads have the largest effect on 
the tower's response. Although the magnitude of 

this load is close to wave slamming (both are ~ 

5 x 107 N-m), its influence is much higher because 

of its quasistatic nature while the other is impulsive 

with a very short duration relative to the tower's 

natural period. Figs.6 shows the tower's response 

due to wind propagating in the y direction, i.e., 

v — 0 deg. The deflection angle 6 (a,c) oscillates 

at the natural frequency, u>„ = 0.026 Hz, about 

a nonzero position caused by the wind drag force, 
while the rotation angle <p oscillates at the natural 

frequency and the vortex shedding frequency given 

by eq. 10, which in this case is uiw = 0.042 Hz, as 

can be seen from Fig. 6 (b,d). 

When v = 90 deg, the situation is reversed, as 

shown in Fig. 7 (a,b,c,d). The deflection angle 6 

oscillates in both, the natural and vortex shedding 

frequencies and the rotation angle <p undergoes a 

DC motion with a low amplitude oscillations in the 

natural frequency. 
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Fig. 8 describes the tower's end motion for v = 0 
deg (a), and for v = 90 deg (b). The difference 

between the responses is seen. 

Figure 6: Tower's Response Due to Wind Load, 

v = 0. (a,c) - Deflection angle 6 in Time and Fre- 

quency Domain. (b,d) - Rotation angle <\> in Time 

and Frequency Domain. 

Figure 7: Tower's Response Due to Wind Load, 

v = 0. (a,c) - Deflection angle 6 in Time and Fre- 

quency Domain. (b,d) - Rotation angle <j> in Time 

and Frequency Domain. 

Figure 8:     Tower's End Motion, (a) For v = 0 deg. 

(b) For v = 90 deg. 

Discussion and Summary 

The nonlinear differential equations of motion for a 

two degree of freedom articulated tower submerged 
in the ocean are derived. Coriolis force, due to earth 

rotation, wave slamming, and wind loads are in- 

cluded in the derivation. All forces are evaluated 

at the instantaneous position of the tower. The 

equations are solved numerically using 'ACSL' to 

determine the tower's response to wave slamming, 

Coriolis and wind loads. 

Although the magnitude of the wave slamming 
load is almost the same as the wind load, the later 

has a larger effect on the tower's response. The rea- 

son is that the impulse duration of the wave slam- 

ming force is very short compared to the natural 

period of the structure. Hence the response is at- 

tenuated. 

The Coriolis force due the earth rotation, al- 

though of small influence on the response, is im- 

portant since it causes a coupling between the two 

angles; that means that pure planar motion is not 

possible under real conditions. 
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At the present time, a parametric study is being 

performed on the two degree of freedom model. The 

response due to combination of forces such as wave, 

current (colinear and otherwise), impact, wind and 

earth rotation is investigated and results will be 
published in the near future. Work is also proceed- 
ing on an elastic articulated tower. 
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ABSTRACT 

In a previous paper [1], the response of an articulated tower in the ocean 

subjected to deterministic and random wave loading was investigated. The tower 

was modeled as an upright rigid pendulum with a concentrated mass at the top 

and having one angular degree of freedom about a hinge with coulomb damping. 

In this paper, which is an extension of the previous one, the tower is modeled 

as a spherical pendulum having two angular degrees of freedom. The tower 

is subjected to wave, current, vortex shedding, wind and Coriolis acceleration 

loads. Geometrical nonlinearities as well as nonlinearities due to wave drag force, 

which is assumed be proportional to the square of the relative velocity between 

the tower and the waves, were considered.   The governing coupled differential 

1 



equations of motion are highly nonlinear, and have time-dependent coefficients. 

The tower's response to the external forces is found, that is equilibrium position 

due to wind and current and response to wave excitation. Resonances (harmonic 

and subharmonic) and also chaotic response are investigated. 

Key words : Articulated tower, Dynamics, Resonance 



I.    INTRODUCTION 

Compliant platforms such as articulated towers are economically attractive for deep water 

conditions because of their reduced structural weight compared to conventional platforms. 

The foundation of the tower does not resist lateral forces due to wind, waves and currents; 

instead, restoring moments are provided by a large buoyancy force, a set of guylines or a 

combination of both. These structures have a fundamental frequency well below the wave 

lower-bound frequency. As a result of the relatively large displacements, geometric nonlin- 

earity is an important consideration in the analysis of such a structure. The analysis and 

investigation of these kinds of problems can be divided into two major groups: deterministic 

and random wave and/or current loading. Most workers have considered the tower to be an 

upright rigid pendulum attached to the sea floor via a pivot having one or two degrees of 

freedom. 

Bar-Avi and Benaroya (1994) [1] investigated the nonlinear response of a single degree 

of freedom articulated tower. The equation of motion was derived via Lagrange's equation. 

Nonlinearities due to geometry and wave drag force are considered. A combined wave and 

current field, coulomb friction force, and vortex shedding force are included in the analysis. 

The influences on the response of current velocity and direction, significant wave height and 

frequency, and damping mechanism were analyzed. The response to sub/superharmonics and 

harmonic excitation demonstrate beating, and for certain excitation frequencies a chaotic 

behavior was observed. Current has a large influence on the response and on the equilibrium 

position of the tower. 

Other studies of the response of a single degree of freedom were performed by Chakrabarti 



and Cotter [2], Gottlieb et al. [3], Muhuri [4], Datta and Jain [5], [6], [7]. 

Two degree of freedom models were also studied by several researchers. Kirk and Jain 

[8], [9] investigated the dynamic response of a two degree of freedom articulated tower to 

noncolinear waves and current. The two equations of motion were obtained via Lagrange's 

equation. The waves were assumed linear with current modification of the frequency and 

amplitude. Forces due to buoyancy, wave drag and inertia, and added mass were consid- 

ered. The equations were solved numerically, and the influence of drag coefficient and wave 

direction was analyzed. From the analysis they concluded that; 

• Higher drag coefficient results in lower response. 

• The maximum deflection occurs when the current and the waves are in the same 

direction. 

Olsen et al. (1978) [10] evaluated the loads acting on a single-point mooring system and 

the resulting response. The tower was modeled as a rigid body connected to the sea-floor 

via a universal joint. The equation for the tower and the tanker were derived separately. 

To derive the equations of motion for the tower, it was divided into N elements having two 

degrees of freedom each; a horizontal and vertical displacement and the forces due to wave, 

current and wind were evaluated at each element. The tanker was modeled as a rigid body 

having three transverse degrees of freedom. The solution gives the low frequency motion of 

the tanker as well as the tower's response. The high frequency motion of the tanker was 

assumed to be unaffected by the fact that the tanker is moored. Therefore the tanker's 

high-frequency amplitudes were calculated independently from the low frequency, and then 

the responses were added together.  The equations were solved numerically and compared 



to test results to show a reasonably good correlation, but according to the authors, a more 

accurate model should be developed. The effect of the tanker on the surrounding wave field 

was also investigated to find a 0-10% change in the wave velocity and acceleration. The 

effect of these changes on the response was not investigated. 

Chakrabarti and Cotter (1980) [11] investigated transverse motion, the motion perpen- 

dicular to the horizontal velocity. The tower pivot is assumed to have two angular degrees 

of freedom and is taken to be frictionless. It is also assumed that the motion is not coupled, 

so the in-line solution is obtained (the same as in the previous paper), from which the rel- 

ative velocity between the tower and the wave is obtained. The lift force (in the transverse 

direction) can then be obtained and the linear equation of motion is solved analytically and 

compared to experimental results. The comparison shows good agreement, especially when 

the drag terms are small. 

Vortex induced oscillation of tension leg platform tethers was analyzed by Dong and Lou 

1991 [12], and Dong et al. 1992 [13]. The tether was modeled as a uniform tension beam 

under combined action of wave and current. Only the response normal to the direction of the 

wave and current was considered. A numerical solution was obtained to find the response and 

to perform a stability analysis. They found out that for small drag and lift coefficients the 

system may become unstable. For moderate drag and lift coefficients multiple equilibrium 

positions occur, one of them is unstable. The region of multiple solutions, where the response 

can jump from one branch to the other, is reduced as the drag and/or lift coefficients are 

increased. When the frequency of excitation was not exactly the fundamental frequency, a 

beating phenomenon was observed.  However chaotic motion was not detected.  A detailed 



description of these studies and other is given in [14]. 

A.    Current Study 

This paper is the second part of a comprehensive study on the nonlinear dynamic response 

of a two degree of freedom articulated tower submerged in the ocean. In the previous study 

the stochastic response was investigated (see Bar-Avi and Benaroya [15]), and here the 

deterministic response is analyzed. The nonlinear differential equations of motion are derived, 

including nonlinearities due to geometry, coulomb damping, drag force (waves, current and 

wind), added mass, Coriolis acceleration, wave slamming and buoyancy. All forces/moments 

are evaluated at the instantaneous position of the tower and, therefore, they are not only 

time-dependent, but also highly nonlinear. The equations are then numerically solved using 

'ACSL' software. The effects on the response of the various forces and parameters such as 

the fluid constants, wave height, coulomb friction, and current and wind magnitude and 

direction are investigated. 

II.   PROBLEM DESCRIPTION 

A schematic of the structure under study is shown in Fig. 1. It consists of a tower submerged 

in the ocean having a concentrated mass at the top and two degrees of freedom; 6 about the 

z" axis and 0 about the x" axis. The tower is subjected to wave, current, wind and vortex 

shedding loads. As can be seen from Fig. 1, three coordinate systems are used; one fixed 

(x,y,z), the second attached to the tower (x',y',z') and the third is rotating about x at <p 

(x",y",z"). All forces/moment velocities and acceleration are derived in the fixed coordinate 

system. 
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This problem has similarities to that of an inverted spherical pendulum with additional 

considerations, 

• Buoyancy force is included 

• Drag force proportional to the square of the relative velocity between the fluid and the 

tower needs to be considered 

• Fluid inertia and added mass forces due to fluid and tower acceleration are part of the 

loading environment 

• Vortex shedding and wave slamming forces are considered 

• Current and wind forces are included 

• Earth angular velocity is included. 

III.    EQUATIONS OF MOTION 

The equations of motion are derived using Lagrange's equation for large displacements. 

Certain assumptions have been made and they are listed below. 

A.    Assumptions 

• The tower stiffness is infinite: El = oo. 

• The hinge consists of coulomb friction. 

• The tower has a uniform mass per unit length, m and is of length I and diameter D. 

• The tower diameter is much smaller then its length, D <C I. 



• The tower is a slender smooth structure with uniform cross section. 

• The structure is at static stable position due to the buoyancy force. 

• The waves are linear having random height. 

• Wave forces are approximated via Morison's equation. 



B.    Lagrange's Equations 

The general form of Lagrange's equations is 

d (dKy\   dKE , dPE , apE   ^ 
dt{dgi )       dqt   

+   dqt   
+   dQi   ~ **«> ^ 

where KE is the kinetic energy, PE is the potential energy, DE is the dissipative energy and 

Q9i is the generalized force related to the g, generalized coordinate. 

The model consists of two degrees of freedom, thus, two generalized coordinates are used; 

6 and <f). The generalized forces in the relevant direction are derived using the principle of 

virtual work. First the general form for the forces is derived assuming an external force per 

unit length having three components, 

Fe = Fxx + Fyy + Fzz. (2) 

From Fig. 2 the virtual work done by Fe due to a virtual displacement 66 is found to be 

Fe66   =   Fxx'[cos{6 +66)-cos 0] + 

Fyx' cos <t>[sm(6 + 66) - sin 9} + 

Fzx' sin <£[sin(0 + 66) - sin 6), (3) 

and using appropriate trigonometric identities 

Fe66   =   Fxx'[cos6cos66-sin 6 sin 66 -cos0] + 

Fyx' cos 0[sin 6 cos 66 + cos 6 sin 66 — sin 6} + 

Fzx' sin 0[sin 6 cos 66 + cos 6 sin 66 — sin 6). (4) 



By setting the virtual displacement to 66 «C 1, and replacing x' = ^5, the generalized 

force per unit length for the 6 coordinate is formed 

Fe = -Fxx tan 6 + Fyx cos 0 + Fzx sin (p. (5) 

From Fig. 3 the virtual work done by Fe due to a virtual displacement 6<p is derived, 

F^dcj)   =   Fyx'sin 9[cos(4> +6<f))-cos (fi] + 

Fzx' sin 6[s\n(4> + 6(f)) — sin 4>], (6) 

and going through the same procedure described for Fe, the generalized force per unit length 

is found to be 

Fs = —FyX tan 6 sin (f) + F2x tan 6 cos (f>. (7) 

Finally, the generalized moments are evaluated by integrating Fe and F^, 

M6 

rL 
= /   (-Fx tan 6 + Fy cos (f> + Fz sin <f))xdx, 

Jo 
(8) 

and 

M4,= f {-Fy tan 0 sin <f> 4- F2 tan 0 cos <j>)xdx, (9) 

where L is the projection in the x direction of the submerged part of the tower.   L is a 

function of the deflection angle 6 as follows : 

L= I 
I cos 6 if d > I cos 6 

d + r)(y,t)   ifd<lcos6, 

(10) 

and T](y, t) is the wave height elevation to be defined later. 
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C.    Tower, Wave and Current Kinematics 

To derive the equations of motion using Lagrange's equations, the kinetic, dissipative, and 

potential energies need to be evaluated, as well as the generalized forces. In this subsection, 

the tower's linear and angular absolute velocities and accelerations are determined in the 

fixed coordinate system x,y,z. 

1.    Tower Kinematics 

The tower is assumed to be oriented along a unit vector I with the following directional 

cosines (see Fig. (1)) 

1 = cos Ox + sin 0 cos <fry + sin 6 sin <f>z (11) 

so that the tower's radius vector R, velocity V, and acceleration V are 

R   =   xx + x tan 6 cos (py + x tan 6 sin <$>z 

V ■=   — xötanöf + :r(0cos<£ — 0tan0sin0)y + a;(ösin0 + 0tan0cos</>)£ 

V =   -x(etane + Ö2)x + 

x[6 cos <f> — <j) tan 6 sin <f> — (62 + (/>2) tan 6cos<f>- IQfy sin <f>]y + 

x[6sin 4> + (f>tan 9cos(f>- (02 + 4?) tan 6 sin 4> + 26<pcos<f>)z. (12) 

Fig. 4 describes the earth coordinate system from which the tower's absolute angular 

velocity can be evaluated. 

The system X, Y, Z is an inertial coordinate system, X', Y', Z' is attached to earth, 

where X' is normal to earth, Y' is directed to east and Z' is directed to the north.   The 

11 



coordinate system x, y, z is attached to earth with origin at the tower's pivot. It is rotated 

with an angle ß about the X' direction, and its y coordinate is in the direction of the 

wave propagation. To simplify the calculations, the earth angular velocity is expressed in a 

coordinate system, x",y",z", that rotates about x with the tower's angular rotation velocity 

(t>. The earth angular velocity is 

Qe = nZ = Üsin XX' + ftcosAZ\ (13) 

where A is the altitude angle. Transforming the earth angular velocity to the rotating 

coordinate system yields, 

ne = n sin Ax" + n cos A sin ß cos <py" + fi cos A cos ß sin #". (14) 

The tower's angular velocity relative to the earth rotation is 

nt = j>x" + 6z". (15) 

Finally the absolute angular velocity of the tower is, 

nr = nt + ne = (n sin A + 4>)x" + (n cos A sin ß cos (f>)y" + (n cos A cos ß sin <j> + 6)z".   (16) 

2.    Wave and Current Kinematics 

In this study linear wave theory is assumed, and therefore, the wave vertical and horizontal 

velocities are (Wilson [16] pp. 84): 

1 sinh/crr  .,,.-> 
ww   =   -Hui . sm{ky-ut) 

2 sinh kd 

uw   =   -Hw . cos{ky-ut), (17) 
2      smh kd 

12 



and the respective accelerations: 

1 rj  2smhkx 
ww   =   —-Hu   .  , ,    cosUzy — iüt) 

2 smh kd 
1 TT  ,cosh kx  . 

^   =   ^iinhfcd5111^-^' (18) 

where // is the significant wave height, u> the wave frequency, k the wave number, and d the 

mean water level, which are related by 

u2 = gktanh(kd). (19) 

Without losing generality we assume that the wave propagates in the y direction so that 

the horizontal velocity u is in that direction, and w is in the x direction. We are aware of the 

fact that random waves are not unidirectional, but this consideration is beyond the scope of 

this study. 

Current velocity magnitude is calculated assuming that the current is made up of two 

different components (Issacson (1988) [17]): the tidal component, £/', and the wind-induced 

current U™. If both components are known at the water surface, the vertical distribution of 

the current velocity Uc(x) may be taken as 

The tidal current V\ at the surface can be obtained directly from the tide table, and the 

wind-driven current U? at the surface is generally taken as 1 to 5 % of the mean wind speed 

at 10 m above the surface. 

When current and wave coexist, the combined flow field should be used to determine 

the wave loads.  The influence of an assumed uniform current on the wave field is treated 

13 



by applying wave theory in a reference frame which is fixed relative to the current. For a 

current of magnitude Uc propagating in a direction a relative to the direction of the wave 

propagation, the wave velocity, CQ = ^ for no current, is modified and becomes 

c   =   Co + Uc cos a, 

u   =   ck. (21) 

The velocities then used to determine the wave loads are the vectorial sum of the wave 

and current velocities 

u   =   uw + Uc cos a 

v   =   Ucsma, (22) 

where u, v and w are the total velocities in x, y and z directions, respectively. 

To consider geometric nonlinearities, the velocities and accelerations are evaluated at 

the instantaneous position of the tower. Replacing y = ztan0cos</> in the velocity and 

acceleration expressions (equations (22) and (18)) yields velocities, 

1 sinri koo 
w   =   —Hu . sin(fcxtanflcos<ft — u)t) 

2 smh kd 
1 cosh k^ß 

u   =   -Hu———cos(kx tan 6 cos <f> —ut)+ UC cos a 
2 smh kd 

v   =   C/Csina, (23) 

and accelerations 

1 TT    (           -kxcoscf)      ■ n .    ,\ smhkx       ., .        , . 
w   =   —Hu   — LJ + 6 — (pkx tan 6 sm q>\———r-;cos(kx tand cos <p — ut) 

2 V cosz6 I sinh kd 

14 



Irr    / -kxcoscp      ■ n .     \ cosh/cx  .   ,, .        .        ,, 
u   =   —HuJl—uj + U — <pkx tan 6 sin (p\—-——simkxt&nvcoscp — ijjt) 

2        \ cos^ö J smh kd 

v   =   0. (24) 

The influence of current on the significant wave height depends on the manner in which 

the waves propagate onto the current field. An approximation to the significant wave height 

in the presence of current is given by Isaacson (1988) [17], 

V 7 + 7 

where Ho, H are the significant wave heights in the absence and presence of current, respec- 

tively, and 7 is 

I4UC                     AUC . 
7=wlH COSQ    for      cosa>—1. {2b) 

V Co Co 

D.    Fluid Forces and Moments Acting on the Tower 

Fig. 5 depicts the external forces acting on the tower: 

• To is a vertical buoyancy force 

• Ffi are the vertical and horizontal fluid forces due to drag, inertia, added mass and 

vortex shedding 

Mg, mlg are the forces due gravity 

• Fw is the wind force 

• Fam is the wave slamming load. 

We next describe and develop explicit expressions for these forces and moments. 

15 



1.    Buoyancy Moment 

The buoyancy force provides the restoring moment, 

Mb = Toh. (27) 

To is the buoyancy force, and It is its moment arm; both are time-dependent, where 

D2 

T0 = pgV0=pgTT—Ls. (28) 

Vo is the volume of the submerged part of the tower, p is the fluid density and La, which is 

the length of the submerged part of the tower, equals 

1,-ttaM, (29) 
cosö 

with wave height elevation T)(y, t) evaluated at the instantaneous position of the tower where 

T)(0,t) = -# cos(kd tan 6-ut + e). (30) 

and at x = d with y = d tan 6. 

The buoyant force acts at the center of mass of the submerged part of the tower. If we 

consider the tower to be of cylindrical cross-section then the center of mass in the x',y',z' 

coordinates is 

1 D2 

2La + 32Ls 
It   =   ^La + ^rt^2e. (31) 

Transforming to x,y,z coordinates, we find the moment arm lb 
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D2 (\ D2 \ 
/fc = —tan20cos0 + I -Ls + — tan20 1 sin0, (32) 

and finally the buoyancy generalized moment is then 

MO D2 

2.    Wave Forces/Moments 

— tan20(2cos6 + sin9) + Ud + r)^t))  sin0 
32 v '     2        cosfi 

(33) 

In general, the fluid forces acting on a slender smooth tower are of four types: drag, inertia, 

vortex-shedding, and wave slamming. In this section these forces are derived. 

Drag and Inertia Forces - Morison's Equation The drag and inertia forces per unit length 

are approximated by Morison's equation. The drag force is proportional to the square of the 

relative velocity between the fluid and the tower, and the inertia force is proportional to the 

fluid acceleration, 

F/i = CDpj | Vrel | Vrel + CMPTT^UW, (34) 

where F// is the fluid force per unit length normal to the tower. Vrei is the vector of the 

relative velocity between the fluid and the tower in a direction normal to the tower, and 

Uw is the fluid acceleration normal to the tower. CD and CM are the drag and inertia 

coefficients, respectively. The relative velocity and fluid acceleration normal to the tower 

can be decomposed to their components as follows, 

V^ 

V& 

Vr'et 

=   1 x (Uw - V) x 1 
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uy 

u*w 

—    1 X Üw x 1. (35) 

Using Morison's equation (34), the tower velocity equation (12), and fluid velocity and 

acceleration equations (23), (24), the fluid force components are the drag force 

FxD 

FvD 

tzD 

= Cody/iv*,)* + (KVJ2 + (Vft)2 

VrXel 

Kl 

vr\t 

(36) 

and the inertia force, 

Ffl rxl 
= CMP* 

D2 w 

u 

(37) 

Vortex Shedding Force The lift force FL due to vortex shedding is acting in a direction 

normal to the wave velocity vector and normal to the tower. Different models of lift force 

exist in the literature; see especially Billah (1989) [18]. We will initially use a simple model 

given in a paper by Dong (1991) [12] 

FL = CLPJ cosu3t |1 x (UTw - V)| (1 x (UT - V)), 

where UT, the vector of the maximum fluid velocity along the tower, is 

(38) 

Uf 1 TJ. .sinh fci 
2HUsinhkd 

VV
T = i^Stg+I/cCOSQ 

u$ Uc sin a 

(39) 
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CL is the lift coefficient, and uis is the vortex shedding frequency (Issacson (1988) [17]) and 

is given by 

u. = (40) 
StUr 

D H = 0 

where St is the Strouhal number, which varies slightly with Reynolds number but is roughly 

0.2 over a wide range in Re. 

Wave Slamming Force The parts of a structural member that are above the mean water 

level are exposed an impulsive force caused by wave slamming. The slamming force per unit 

length has a similar form as the drag force (see Chakrabarti (1990) pp. 142-143 [19]), 

F8m = Csp^ | lx Us xl|(lxUsXl) (41) 

where Cs, the slamming coefficient, has a theoretical value of 7r, but a typical mean value 

may be taken as 3.5 even though considerable scatter in this coefficient has been found in 

laboratory experiments. Us is the relative velocity between the fluid and the tower on the 

wave front at the point of impact. The point of impact will be assumed to be at the mean 

water level. Therefore, substituting x = d in the wave and tower velocity equations (23), 

(12) yields, 

U§ ^Hu + dO tan 6 

W = 2Hu>lS£kd + Uccos Q - d(Ö cos 0 - ^ tan 6 sin 0) 

Uzs Uc sin Q — d(6 sin 4> + <\> tan 6 cos 4>) 

(42) 
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This force is assumed to be a periodic impulse with the period of the wave, and a duration 

of milliseconds as described in Flatinsen pp. 282-285 [20]. 

Total Fluid Moment The moment due to fluid forces (drag, inertia, and lift) is evaluated 

by substituting the sum of all fluid forces, defined by equation (43), 

Fn  =  F& + FS + FÜ. 

F?   =   F& + FS + FS. 

F?   =   F/i, + F// + F/i (43) 

into equations (8) and (9). Therefore the moments Mft and Mft are 

Me
fl   =    f (-F*1 tan 6 +Ff cos <f> + Fz

fl sin <f>)xdx 

Mfi   =    /   (-F/'tan0sin<£ + F/'tan0cos<£)a;d:r. (44) 

The wave slamming moments are evaluated by integrating the slamming force along the part 

of the tower onto which the waves are slamming. Since the exact length is very complicated 

to determine, an approximated length is used; from the mean water level d to the wave 

height d+ \H, which was suggested by Chakrabarti pp. 142-143 [19], hence 

1    (^-F^1 tan 6 + F^m cos <P + Fr sin 4>)xdx (45) 

Mfm   =    f+i    (-FJf
mtan0sin4>+ Ff" tan 0 cos ^) xdx, 

where F^m, F*™, F/"1 are the wave slamming forces in the x,y, z direction. 

3.    Wind Load 

Wind loads are similar to current forces, i.e., drag and lift (vortex shedding). Both, the drag 

and lift force expressions are similar to those of the fluid. The drag force 
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FS = C>°| [|1 x (u„ - V) x 1| (1 x (u„ - V) x 1)], (46) 

where C£ is the air drag coefficient, p° is the air density and u^ is the wind velocity which 

is assumed to propagate in an arbitrary direction 

Uu, = uw cos vy + uw sin vz, (47) 

where v is the direction between the propagating wind and the y axis. The lift force 

F£ = ClPa^ ™suLwt |1 x K, - V)| (1 x K - V)), (48) 

where C£ is the air lift coefficient. The vortex shedding frequency U>LW is 

U>LW = —p-. (49) 

The moments due to wind loads M^, M* are found in a similar way as the fluid moments 

(eqn. (44)), but integrating along the exposed part of the tower 

flooeO ricoBtt . 

=    I        (-F? tan 6+ F™ cos (f) + F? sin <j>)xdx (50) 

rlcoeB   . . 
Mt   =    / (-i^tanösin^+i^tanöcos^Wdx, 

where F™,  F™, F^, are the wind forces in the x,y,z direction, due to drag and vortex 

shedding. 
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4.    Added Mass Moment 

The fluid added mass force per unit length Fad is 

Fad = CAPK^V, (51) 

where CA = CM — 1 is the added mass coefficient. Substituting the expression for the tower 

acceleration, equation (12), into equation (51) leads to the expressions for the forces in the 

x,y,z directions, 

FZ   =   CApK^(-x(OtanO + Pj) (52) 

F%,   =   CAP*—(x[6>'cos0-</itan0sin0- (02+ <£2) tan0cos<£-20<£sin0]) 

£)2 . . . x 
*ld   =   CApn—(x[d sm <f) + <i> tan 6 cos 4>- (02 + <£2)tan0sin0 +200cos0]J . 

4 

4 

Substituting the added mass forces (equation (52)) into the generalized moment equations 

(8) and (9), and integrating, result in the generalized moments due to fluid added mass, 

ML   =   ^C^7r^L3((9(l+tan2ö)+02tanö) 

Mti   =   ^Cy4/>7r^L3(<£tan20 + 2^tan0). (53) 

5.    Friction Moment 

Dissipation in the tower hinge is assumed to be modeled as coulomb friction. In this section 

this friction/damping moment is evaluated. The damping force is equal to the product of 

the normal force at the hinge iV and the coefficient of friction \i which is assumed to be 

independent of the velocity, once the motion is initiated. Since the sign of the damping force 

is always opposite to that of the velocity, the differential equation of motion for each sign is 
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valid only for half cycle intervals. The friction force is 

F]r   =   Nn\sgn(B)} 

Ffr   =   Nn[sgn(4>)}. 

The normal force is 

(54) 

N = ^FIcosö + ^Fj,cos^>sinö + ]PF2sin0sin0, (55) 

where £FX, H-^v an<^ HFz are the total forces due to gravity, buoyancy and tower accel- 

eration in the x, y and z directions, respectively. The fluid forces; drag, inertia and vortex 

shedding, do not influence the friction force since they are perpendicular to the tower. Thus, 

En 

-  To-F. + F: 

pv 

IX 

ac 

=   F2 
-* ac> 

where To is the buoyancy force given in equation (33), Fg is the gravitational force, 

(56) 

Fg = {ml + M)g, (57) 

and the forces due to the tower acceleration F£c, F%c, F£c are 

F1    = •* ac 

F*    = ± ac 

F*    = * ac 

lcApnD2L2 + I (\ml + M) ll —5- (O tan 6 + 92) 
.8 2 \2 / J cos0 v ' 

\CAP-KD
2
L

2
 +1 (\fhl + M) ~l\ -^-j • 

.8 2 \2 / J cos0 

(-6 cos 4> + 4> tan 6 sin 0 + (02 4- </>2) tan 6 cos 0 + 200 sin 0) 

^p7r£>2L2 + i (\ml + M)~1\ — - 
.8 2 \2 y J cos0 

(# cos 0 - 0 tan 0 sin 0 - (02 + 02) tan 0 cos 0 - 200 sin 0J , 
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where I is the projection of the tower's length / in the x direction, i.e., I = I cos 9. Assuming 

a hinge radius Rh, and rearranging 

M%   =   RhNfx[sgn(6)] 

Mfr   =   Rhsin6Nfi[sgn(4>)], (59) 

where N, the normal force is 

N   = 

\cAfrKD2L2 + \ ßfhl + M) I cos 20J \fi + (To - Fg) cos 6. 

The only terms remaining in the acceleration forces are due to centrifugal acceleration which 

is along the tower, that is, 102. 

E.     Dynamic moments 

The dynamic moments M$y, and M$y, which are in the left hand side of Lagrange's equation 

(1), are found using expressions for the kinetic, potential, and dissipative energies 

pE   =   (-fhl + M)gl cos 6 

DE = lc(nl + nl + nl), (6i) 

where C is the structural damping constant and Ix», Iy», Iz» are the moments of inertia of 

the tower, given by 
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/«•' 

lyll 

(\ml + M)l2 sin2 6 + \(ml + M)2- cos2 6 
o Z 4 

(\ml + M)l2 cos2 6 + \(ml + M)^- sin2 6 
o Z 4 

I2„   =   rimZ + M)/2. (62) 

Substituting equations (62) and (16) into (61) leads to the expressions for the kinetic and 

dissipative energies, 

KE   =   ^ ((^ffd + M)l* sin2 0 + hm + M)^ cos2 e)(n sin \ + 4>)2 + 

1   / 1 1 D2 \ 
-   I (-ml+ M)l2 cos2 0 +-(ml + M)—sin2 6} (tlcos \ sinßcos<f))2 + 

1 ,1 ^ (^m/ + M)Z2(ficosAcos/3sin<£ + 0) 
Z    o 

3\2 

DE = \c(i>2 + e2). 

(63) 

(64) 

Substituting the kinetic, potential and dissipative energies into equation (1) leads, after some 

mathematical manipulations and rearranging, to M$y, M%y 

Ky   =   (^rhl + M)l26 + C8- Q-fhl + M\ glsin0 + 
,1 

I2 1 D2 

-(-ml + M)-—(ml + M) 

M*dy   =   ((Iml + M)l2sin2e + l(ml + M)D2cos26\4> + C(i> 
8 

I2 1 D2 

-(-ml + M) - T(ml + M) 

—lyii (ft cos A sin ß) sin 20 + / 

sin 20 [ (ft sin A + </>) 2+ (ft cos A sin ß cos 0)2 

+ 

sin 20 ft sin A + <p 0- (65) 

:- Q« cos A cos /? sin 2(f) 4- Oft cos A cos ß cos (^(66) 

F.    Governing Equations of Motion 

The governing nonlinear differential equations of motion are found by equating the dynamic 

moments to the applied external moments 
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K = K 
K   =   M*,. (67) 

The applied moments are found by adding equations (33),(44),(53) and (59) 

M;   =   MS + Ml + Ml + M^-K-M« 

K   =   Mt + M^ + Mt + Mt-M^-Mi,. (68) 

Substituting equations (68) and (65) into (67) and rearranging terms leads to the gov- 

erning nonlinear differential equations of motion for the tower; 

Jlff6 + Ce + Ig [(ft sin A + $) 2+ (fi cos A sin ß cos 4>f\ +Me
gb 

=   Mtt + M^ + Mi-M}, (69) 

J*fJ4> + C<j> + Ig [n sin A + ^] 6 + -Iyn (f2 cos A sin ßf sin 20 + 

h" ( -ft cos A cos ß sin 2(f> + 60. cos A cos ß cos <f) J 

=   Mft + M^ + Mt-Mfr, (70) 

where J^,, and J*// are the effective position dependent moments of inertia, 

reff   =   (±ffü + M^l2 + ^CAP^L* (I + tan2 6) 
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Je/f   =    (^ml + M) I2 sin2 6+ ^{fhl + M)D2 cos2 6 + 

1_ 
12 

CAPTTD'L
0
 tan'6. 

Ig is a constant depending on the system parameters, 

(71) 

(I2  1 D2 \ 
I9= l-(-ml + M)-—(ml + M)\sm2e 

and Mgb is the moment due to gravity and buoyancy 

(72) 

ML   =   pgv 
D* 

^ tan2 0(2 cos 6 + sin 0) + ± f**1^'*^* sin 0 
32 v y     2 I     cos0     / 

— (-mZ + M j #Z sin 6. (73) 

The equations can be simplified by neglecting the Coriolis acceleration terms due to earth 

rotation. That results in the following equations of motion that are similar to those derived 

by Kirk and Jain [8], 

J»effe + Ce + Ig<t>2+Me
gb   =   M^ + M^ + Ml-M6^ (74) 

IV.   NUMERICAL SOLUTION 

The governing nonlinear differential equations of motion (69), (70) are numerically solved 

using 'ACSL' and the results are analyzed using 'MATLAB'. 

The physical parameters used in the simulations are, 
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• / - Length of tower, = 400 m 

• D - Tower diameter = 15 m 

• M - End mass = 2.5xl05 Kg 

• m - Tower mass per unit length = 20xl03 Kg/m 

• Rh - Pivot radius = 3m 

• d - Mean water level = 350 m 

• p - Water density = 1025 Kg/m3 

• C - Structural damping = 0.02 

• CD - Drag coefficient =1.2 

• CM - Inertia coefficient = 1.5 

• Ci - Lift coefficient = 1.0 

The equations of motion are solved for the following cases: 

• Free vibration and damping (drag, viscous and friction) effect 

• Equilibrium position of the tower in the presence of wind and/or current 

• Response to wave, wind and current 

• Superharmonic, harmonic and subharmonic resonances 

• Response due to wave slamming and Coriolis acceleration 

• Chaotic Response. 

28 



1. Free Vibrations 

To find the fundamental frequency, the wave height and current and wind velocities were set 

to zero. The initial condition is set to 0O = 0.01 rad/s. Figures 6, 7 and 8 depict the free 

vibration of the tower in the presence of different damping mechanisms; structural viscous 

damping, coulomb friction and drag force, respectively. As can be seen from the figures, the 

natural frequency is un = 0.028 Hz. The response in the presence of drag force and coulomb 

friction is nonlinear, and the tower vibrates in the natural frequency and its odd multiples 

(see Figs. 7 (b) and 8 (b)), while the response in the presence of structural damping is linear 

and only the natural frequency appears, see Fig. 6 (b). Figs. 6 (c), 7 (c) and 8 (c) show 

the phase plane of the response. The decaying characteristics of each mechanism are clearly 

seen from the time domain figures, i.e., exponential, hyperbolic and linear for viscous, drag 

and friction damping, respectively. 

2. Equilibrium Position 

As was shown previously by Bar-Avi and Benaroya [1] for the single degree of freedom model, 

the equilibrium position depends on the current velocity and the drag coefficient. In this 

section, the equilibrium position due to current and wind is found and also the effect of 

vortex shedding force on the response is investigated. The wave height is H = 0 m, the 

current velocity is Z7C = 1 m/s and the wind velocity is uw = 20 m/s. Fig. 9 shows the 

response due to current and wind propagating in the y direction, i.e., a = 0, v = 0 deg. with 

lift coefficient CL = 0. After the transient, the tower remains at a point where all forces are 

in equilibrium, about 2.4 m in the y direction. When the current is in the z direction, the 
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equilibrium position is at y « 0.4 m and 2 w 2.0 m as can be seen from Fig. 10. The reason 

is that the total force due to wind and current is a vector summation, and so the equilibrium 

position can be simplified to 

1 J(CDP DcPU?)2 + (C°Dp° D(l - d)h£f 
eq 2 pgnD2d2-2gl{fhl + 2M) {   ' 

4>eq     -    tan       yCDpDd2U2cosa + CaDpaD^_d^u2iCOSl/)- 

Setting the lift coefficient to CL = 1, changes the response of the tower to current and 

wind as can be seen from the next two figures. Fig. 11 depicts the response when both the 

wind and current are in the y direction. The tower's top oscillates about y ■=■ 2.4 m in the 2 

direction. The oscillations are in the vortex shedding frequencies due to current u„ = 0.002 

Hz and due to wind uLw = 0.04 Hz as can be seen from Fig. 11 (c). When the current is 

in the z direction, the tower oscillates about y w 0.4 m and z « 2.0 m, but now in the y 

direction as shown in Fig. 12 (b). The frequencies of oscillation are the same as those in 

Fig. 11. 

3.    Response to Waves, Current and Wind 

In this study the wave height H is much smaller the mean water level d, i.e. H < d. 

Therefore, the relation between the wave height and the wave frequency u, given in Hooft 

(1981) [21] is used. This relation with the deep water simplification tanh kd = 1, leads to 

u = W — • (76) 
"2H 
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The fluid parameters used are CD — 1.2, CM = 1.5 and CL = 1.0, and the wave height is 

H = 3 m. First, the response due to waves without current and wind is depicted in Fig. 13. 

The deflection angle 6 oscillates about zero equilibrium position in the wave frequency given 

by equation (76), u = 0.12 Hz. 

Fig. 14 shows the response due to waves, current and wind propagating in the y direction. 

The oscillations are now about an equilibrium position y « 2.4 m, z = 0, that can be 

calculated from equation (75). The response PSD contains several loading frequencies, as 

shown in 14 (c). These are; the natural frequency un = 0.028 Hz and its multiples, wave 

frequency u = 0.12 Hz, the vortex shedding frequency due to waves us — 2u = 0.24 Hz, and 

the vortex shedding frequency due to wind uw = 0.04 Hz. 

The effect of wind in the z direction is depicted in Fig. 15. The tower oscillates in the 

same frequencies as for the case of Fig. 14, but now about an equilibrium position of y « 2.2 

m and z « 0.04 m. 

Finally, setting the vortex shedding coefficient to zero results in a response described 

in Fig. 16. The vortex shedding frequencies disappeared as expected and only two main 

frequencies remain, the natural frequency and the wave frequency. 

4.    Resonance Response 

Next the tower's response to harmonic, subharmonic and superharmonic excitation is inves- 

tigate and compared to the response of the single degree of freedom model. Figs. 17, 18 

show the tower's response to wave excitation at the natural frequency of the system u> « un. 

The wave height is H = 1 m, the drag coefficient CD = 0. From the time domain response, 

Fig. 17 (a) the beating phenomenon is clearly seen. Fig. 18 describes the tower response in 
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the phase plane (a), and the tower's top motion (b). 

Superharmonic response is depicted in Figs. 19, 20. Here the excitation frequency is 

nearly twice the natural frequency of the system u « 2un. From the time domain it can be 

seen that the beating phenomenon is not as pronounced as in the harmonic response and 

the amplitude is much smaller. 

From the phase plane (Fig. 20 (a)), we see that the trajectories do not repeat, but 

investigating this point further showed it to be a quasiperiodic response and not a chaotic 

one. 

Superharmonic response, in which the excitation frequency is about one half of the natural 

frequency, i.e., u » \un, is depicted in Figs. 21 and 22. The amplitude of the response is 

small and there is no beating. The response, like in the superharmonics, is a quasiperiodic 

motion. 

Comparing the resonance responses for the two degrees of freedom with those of the 

single degree of freedom (see Bar-Avi and Benaroya [l]), it is found that the regions about 

the resonance frequencies (^u;n,u;n,2u;n) in which beating occurs, are much smaller and less 

pronounced for the two DOF system. 

Finally, the harmonic response in the presence of drag force, with CD = 1-2. The beating 

phenomenon vanishes and the trajectories in the phase plane repeat as shown in Figs. 23 

and 24 

5.    Wave Slamming, Coriolis Acceleration and Wind Effects 

The tower's response due to wave slamming, Coriolis acceleration and wind loads are inves- 

tigated next.  Wave slamming and Coriolis acceleration, although having a small influence 
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on the response, are important. The first, due to its high frequency characteristics that can 

cause fatigue, and the later due the coupling it causes between the two degrees of freedom. 

Wave slamming response is shown in Fig. 25. The significant wave height is H = 5 m, 

the wave frequency is nearly the natural frequency of the tower, i.e., u ta un, and all fluid 

parameters set to zero. The motion is in the y direction only, since there is no transverse 

force, and is of very small amplitude. As can be seen from the figure the response beats 

since the impulsive force frequency is very close to the tower's natural frequency. 

When earth rotation is added to the model, a transverse (gyroscopic) moment causes a 

coupling between the two degrees of freedom so the response due to wave slamming is not 

planar any longer, as shown in Fig. 26 (c). 

Fig. 27 shows the response due to waves and Coriolis effect. The vortex shedding 

coefficient CL = 0, but as can be seen from the figure, there is a transverse force (like the 

vortex shedding) caused by the rotation of the earth. 

Wind has a larger effect, on the response, than the previous two loads. Figs. 28 and 29 

describe the tower's response due to wind in the y, z directions, respectively. 

6.    Chaotic Response 

Due to the nonlinearity in the model, chaotic response is expected to be possible. Investiga- 

tion of the chaotic response, and mapping its regions of occurrence is beyond the scope of 

this study. Nevertheless for completeness, a chaotic response is shown. Fig. 30 depicts the 

towers's response for wave height H = 5 m with u = 0.1 rad/s and zero initial conditions. 

The trajectories in the phase plane do not repeat. 

Fig. 31 depicts the same response but with nonzero initial conditions. The responses are 
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different as can be seen by comparing the figures. 

The proof that the response is chaotic is given by the Poincare map shown in Fig. 32. 

For CD — 0, Fig. 32 (a) the points are scattered in an erratic fashion, but for CD — 1-2, Fig. 

32 (b) the points are much more organized, almost as in a quasiperiodic response. 

V.    SUMMARY 

The nonlinear differential equations of motion for a two degree of freedom articulated tower 

submerged in the ocean are derived using Lagrange's equations. The tower is shown to have 

the same dynamic properties as an upright spherical pendulum with additional effects and 

forces; 

• Coulomb friction in the pivot (hinge) 

• Structural viscous damping 

• Gyroscopic moments due to the rotation of the earth 

• Drag fluid force due to waves and current, coupled to the structure 

• Inertia and added mass fluid forces 

• Drag wind load on the exposed part of the tower 

• Wave slamming force 

• Vortex shedding loads due to waves and wind 

• Buoyancy force. 
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All fluid forces mentioned above, due to waves, current, and wind, are determined at 

the instantaneous position of the tower, resulting in two, highly nonlinear, coupled ordinary 

differential equations with time-dependent coefficients. The equations are numerically solved 

using 'ACSL' software, and the results are analyzed with 'MATLAB'. From the simulations 

the following observations and conclusions are drawn; 

• The equilibrium position depends on the current and wind magnitude and direction. 

An analytical expression that matches the numerical results is found. 

• The resonance response for harmonic, subharmonic and superharmonic cases are eval- 

uated and beating is shown. The regions in which the beating occurs are very small 

and are not as pronounced as in the single degree analysis performed by Bar-Avi and 

Benaroya [l]. 

• The system can exhibit chaotic behavior depending on the wave's frequency and am- 

plitude. 

• The response to wave slamming is very small since an impulsive force is attenuated 

when the pulse period is shorter than the system fundamental period, which is the case 

here. 

• The Coriolis acceleration moment has a small but important influence on the response, 

since it causes a coupling so that planar motion is not possible under real conditions. 
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Figure 2: Generalized Force for 6 
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Figure 3: Generalized Force for <f) 
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Figure 4: Earth and Tower Coordinate Systems 
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Figure 5: External Forces Acting on the Tower 
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