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1    Introduction 

Since the publication of the seminal note, Kullback and Leibler (1951), there has been 

continual endeavor in statistics and related fields to explicate the existing statistical methods 

and to develop new methods based on the logarithmic information of Shannon (1948). There 

are many fine collections of information-theoretic methodologies and their applications to 

the related fields such as Kullback (1954, 1959), Lindley (1956), Jaynes (1957, 1968, 1982), 

Theil (1967), Akaike (1973), Gokhale and Kullback (1978), Shore and Johnson (1980), Kapur 

(1989), Brockett (1991), Cover and Thomas (1991), Csiszar (1991), Zellner (1991), Maasoumi 

(1993), and Soofi (1994). 

During the last four decades numerous information theoretic regression methods have 

been developed. Kullback and Rosenblatt (1957) pioneered the information theoretic ap- 

proach to regression by explicating the usual regression quantities such as sums of squares 

and F-ratios in terms of information functions. We have now information theoretic meth- 

ods for model and predictive density derivation, parameter estimation and testing, model 

selection, collinearity analysis, and influential observation detection which can be used in 

sampling theory and Bayesian regression analyses. 

The logical foundation, elegance, and versatility of the information theoretic approach 

have been increasingly attracting the attention of researchers in various fields. However, the 

available entropy-based methods are not yet commonly used in the mainstream regression 

analysis. Many information-theoretic regression methods are developed disjointly in the 

context of providing alternatives to particular problems rather than as integral parts of a 

system of regression analysis. Information-theoretic interpretation of many of the available 

methods and the relationship among them have not yet been fully explicated. The purpose 

of this paper is to integrate the existing entropy-based methods in a single framework, to 

explore their interrelationships, to elaborate on information theoretic interpretations of the 

existing entropy-based diagnostics, and to present information theoretic interpretations for 

some traditional diagnostics. 



2    Information Functions 

In this section, the basic information functions used in regression analysis, their properties, 

interpretations, and relationships with the Fisher information are reviewed. 

2.1    Entropy 

The entropy of a continuous random variable X is defined as 

/oo 
f(x) log f(x)dx, 

•oo 

where f(x) is the probability density function for the absolutely continuous distribution F. 

The differential entropy may be negative or infinite. Boundedness of f(x) implies H(X) > 

-oo (Ash 1965, p. 237). For a distribution with finite variance, the entropy is finite, but 

the converse may not hold. 

The conditional entropy is obtained by using the conditional density in the entropy 

expression, H(Y\x) = H[f(y\x)}. A conditioning may increase or decrease the entropy. The 

expected conditional entropy is defined by 

H(Y\X) = Ex[H{Y\x)\ < H(Y); 

the equality holds if and only if the two variables are independent.   That is, on average, 

conditioning decreases the entropy. 

The entropy of an n-dimensional random variable X = (Xi, ■ • •, Xn)' is obtained by using 

the joint density f(x) in the entropy expression. For the joint entropy of an n-dimensional 

random variable, we have 

H{X„---,Xn) = J2H{Xi\Xi-X,---,X,)<Y,H{Xi). 
i=l i=l 

In the last relation, the equality holds if and only if the random variables Xu ■ • • ,Xn are 

independent. 

The differential entropy is not invariant under one-to-one transformations of X. For any 

continuous random variable Z = g(X), 

d 
H{Z) = H(X) - E log 

dZ^
z) 

(2.1) 



A random variable X with a location parameter \i and scale parameter a may be written 

as X = aZ + ß, where the distribution of Z is independent of fj, and a. Using (2.1), we find 

H{X\ß,a) = H{Z) + loga. 

Thus the entropy is location invariant but not scale invariant. 

H(f) is concave in /. The Maximum Entropy (ME) model f*(x\0) is the density that 

maximizes H[f(x\0)] subject to the information moment constraints, 

EficnWlO] = 6m, m = 1, • • •, M, (2.2) 

where Cm's are integrable with respect to / and 0 = (01? • • • ,8M) is the vector of moment 

values. The moment values might be known quantities (e.g., computed from the data) or 

unknown parameters. The ME solution, if it exists, is in the form of 

f*{x\0) = C{0)eniCl(-x)+-+r>MCM(x\ (2.3) 

where C{9) is the normalizing constant for the ME density and r/m = r)m(0),m = 1, • • •, M 

are Lagrange multipliers for enforcing the information constraints (2.2). Multivariate ME 

distributions are found similarly. 

The entropy measures the "uniformity" of a distribution and provides a measure of in- 

formation in the following sense. H(X) increases as the concentration of probabilities over 

subsets of the support of the distribution decreases. This feature makes H(X) a suitable 

measure of uncertainty associated with f(x). The term uncertainty describes the difficulty 

of predicting an outcome x of a random variable X with the probability distribution f(x). 

A distribution fi(x) with a large entropy is less concentrated (more difficult to predict its 

outcomes) than a distribution ^(2;) with a smaller entropy. Thus, fi(x) is less informative 

as compared with f2(x). Some authors have interpreted —H(X) as an information criterion 

in the context of developing least informative probability distribution; see, e.g., Zellner 1971) 

The ME distribution is the least informative distribution since it does not include any 

information that is not explicitly formulated as a constraint in (2.2). The information content 

of each moment constraint in (2.2) is reflected in the uncertainty reduction power of that 

constraint (Jaynes 1968, 1982; Soofi 1992, 1994).  Suppose that the ME distributions exit 



for all M constraints in (2.2) and for a subset of £ constraints, £ < M. Then the amount of 

information provided by the additional constraints Ef[ci+i(X)\0] — 61+1, • • •, Ef[cM(X)\0] = 

6M, is quantified by the amount of entropy reduction, 

Atf(/r,.,„ K,..,M) = H(fl..,e) - H(fl..M) > 0,    0 < / < M. 

Information indices are constructed by mapping the entropy reduction to the unit interval. 

The information index of M - £ additional constraints on a continuous ME distribution 

may be computed by the following exponential transformation of the entropy reduction 

I*c(ct+l, ■ • • ,cM) = 1 - c-
Aff(/i.-."/f.-.»)

>    0<£<M. 

An Ic(ce+i, • •', cM) « 0 indicates that the additional constraints are redundant for concen- 

trating the probabilities. An I*c(cM,- ■ • ,cM) » 1 indicates that the first set of constraints 

are redundant. In particular, for £ = 0, the ME distribution over an infinite support is 

improper uniform with infinite entropy, thus, Ic(cir '' > C
M) = 1- 

An information index of distributions in a specific class is defined in Section 2.2. 

Example 2.1 

(i) The n-variate ME density subject to the information constraints 

E(X) = /i,      E(X - n)(X - /x)' = E (2.4) 

is the n-variate normal N(ß, E). The entropy of N(p, E) is 

n 1 
H(X) = -/o^(27re) + -log |E|, 

where |E| denotes the determinant of the covariance matrix, 

(ii) Consider the following constraints for a bivariate random variable, X: 

Ci(X)=X?t E(Xf) = a2,    t = l,2. 

The ME distribution subject to these constraints is the bivariate normal f*(x;a2) = 

N{0, a2I2), where In is the identity matrix of order n. Note that since the constraint 

Ci(X), i = 1,2 only include information about the marginal moments, the ME solution 



is independence between the components of X. That is, when the information about 

a relationship between the components of a random variable is not present in the 

information constraints, the ME solution reflects the absence of a relationship. 

(iii) Now consider the additional cross-product constraint 

c3(X) = X1X2, E(X1X2) = pa2. 

The ME distribution subject to C\, c2 and c3 is the bivariate normal distribution 

\ 
r(x;a2, p) = N   0,a2 1   P 

P   lj/ 

Hence, the ME solution reflects the information specified in terms of the correlation in 

the cross-product constraint. 

The entropy reduction due to C3 is 

//[/*(X; a2)]-//[/*(X;<r2, p)) = -\log{\ - p2) > 0. 

The partial information index of the additional constraint is 

rc(xlx2) = i-(\-P
2f2. 

Thus, for example, for p = .6 the uncertainty reduction is 20% and for p = .8 the 

uncertainty reduction is 40%. 

2.2    Discrimination Information 

The most widely known information theoretic measure of discrepancy between two distri- 

butions is the Kullback-Leibler discrimination information function 

=   -H[f(x)] - Ef{log[g(X)}}. 

K(f:g)   =    r f{x) log i^-dx (2.5) 
J-00 g(x) 

The discrimination information function between two multivariate distributions is defined 

similarly. K(f : g) is well-defined as long as g(x) = 0 only if f(x) — 0. 



K(f : g) is the entropy of F relative to G.   It is also referred to as the cross-entropy 

between the two distributions.   In general, there is no relationship between K(f : g) and 

H(g). 

If f{x\9) is a distribution in the class üg of distributions that satisfy (2.2) and f*(x\0) 

is the ME distribution in Üg, then (Soon, Ebrahimi, and Habibullah 1995) 

K(f:r\O) = Hir(x\9)]-H[f(x\0)}. 

The Information Discrimination (ID) index of a distribution in Q,g is defined by 

//}(/: /*|0) = l-e-*(/:/*|0). 

A distribution / G tig is said to be ID distinguishable with the ME model if 

ID(f:f*\9)>ID(r:f*\0) = O. (2.6) 

The properties of K(f : g) for discrete and continuous distributions are the same. Some 

properties of K(f : g) are as follows (Kullback 1959): 

(i) K{f :g)>0; the equality holds if and only if f(x) = g{x) almost everywhere. 

(ii) For mutually independent random variables Xx,-- •, Xn, 
n 

K[f(xu ■■-,xn): g{Xl, ■ ■ ■ ,xn)] = Y/K[f{xi) : gfa)]. 
i=\ 

(iii) For any two random variables X and Y, 

K[f(x,y) : g{x,y)]   =   K\f{x) : g(x)] + Ex {K\f(y\x) : g(y\x)}} 

=   K[f(y) : g(y)\ + Ey {K\f(x\y) : g(x\y)]} . 

Thus, for example, K[f(x,y) : g{x,y)} > K[f(x) : g(x)\; the equality holds if and 

only if the expected discrimination information between the respective conditional 

distributions is zero, 

(iv) Let Y = T(X) be a transformation and let fY{y) and gY{y) denote the distributions 

induced by T on fx{x) and gx(x). Then K(fY : gY) < K{fx : gX) with equality if 

and only if 
fY(T(x)) _ fx(x) {27) 

gv(T(x))     gx(xY 
for almost all x. If condition (2.7) holds, T is a sufficient statistic for discrimination. 



(v) When f(x;9) and g(x;0), K(fY : gY) < K{f : g) with equality if and only if T is a 

sufficient statistic for 6. 

(vi) K(f : g) is convex in / and in g. 

The Minimum Discrimination Information (MDI) model reference to a distribution g is 

obtained by minimizing K(f : g) with respect to / subject to the information constraint 

(2.2). The MDI density, if it exists, is given by 

f*{x;g,0) = C(0)g(x)emCl{x)+-+VMCM(x). 

When K(f : g) = K(f : g; 9) where 9 is the unknown parameter of one of the distribu- 

tions. The parameter may be estimated by an MDI procedure; see Section 4. 

Example 2.2 

(i) The discrimination information between two n-dimensional normal distributions / = 

N(ßf, £/) and g = N{ßg, Ep) is 

K(f : g) = llTrpfZ-1 - log]^1] -n] + Ifcx, - ß,)'^1^, - /i,),        (2-8) 

where Tr denotes the trace of a matrix. The first term in (2.8) gives the information 

discrepancy due to two different covariance structures and the second term gives the 

information discrepancy due to two different means. For S/ = tfln and Efl = cgIn, 

(2.8) gives 

K{f:g) = l i-»®-< ,  (ft - M„)'(f/ ~ f,) ,„ „> 

(ii) Let g(y\ ßg, T,g) = N(ßg, T,g) be an n-variate normal density. Then the MDI distribu- 

tion reference to g subject to the mean information constraint 

Ej{Y) = pf (2.10) 

is the n-variate normal /* = N(ßf,T,g); proof is given in Soofi (1985). Thus, the 

minimum information discrepancy between the class of distributions that satisfy (2.10) 

and N(fig, E5)is given by the second term in (2.8). 



2.3    Mutual Information 

The entropy difference, 0{Y\x) = H(Y) - H{Y\x) measures the information provided 

by the value x about the random variable Y. A particular value of x may or may not be 

informative which is indicated by the sign of fl(Y\x). The mutual information between two 

random variables is defined by 

ti(YAX)   = Ex\d{Y\x)] 

= H(Y)-H{Y\X) 

= H{X)-H{X\Y) 

= H(X) + H(Y)-H(X,Y). (2.11) 

In terms of the discrimination information, the mutual information is given by 

ti(YAX)   =   K\f(x,y):f(x)f(y)} (2.12) 

=   Ex{K[f(y\x):f(y)}} 

=   Ey{K\f(x\y):f(x)]}. 

Thus tf{YAX) = d{X AY) > 0 with equality if and only if f(x,y) = f{x)f(y). Accordingly, 

d{Y A X) is a measure of stochastic dependency between the two variables. 

A useful normalization of #(Y A A') for the continuous case is 

Ic(YAX) = l-e-WyAX\ 

IC(Y A X) is an index of functional relationship between the two variables. It generalizes 

the correlation coefficient; see Example 2.3, part (iii). An IC{Y A X) = 0 indicates that 

two variables are independent. An IC{Y A X) = 1 indicates that the two variables are 

functionally dependent; see Joe (1989) for details. 

d{Y AX) is invariant under one-to-one transformations of each variable. But $(Y AX) is 

not invariant under rotation of the coordinate system because (2.7) does not generally hold 

under rotations; see Example 2.3, part (ii). 

In multivariate case, various mutual information functions may be obtained. The mutual 

information between the components of a p-dimensional random variable X = (Xi, • ■ •, Xp)' 

8 



is found by the multivariate extensions of (2.12) or (2.11) as: 

0{XAXu---,Xp)   =   K[f(x):f(x1)---f(xp)} 

=   Y,H{Xj)-H{Xu---Xv). 
i=i 

Mutual information functions for measuring other types of multivariate dependencies are 

found similarly. 

The mutual information between a random variable Y and a p-dimensional random vector 

X is given by 

ti(YAX)   =   K[f(y,x):f(y)f(x)} 

=   f>(y A XJIXJ.!,-.-,*!). (2.13) 
3=1 

The partial mutual information function i9(Y A Xj|X,-_i,- ■ ■ ,Xi) measures the conditional 

dependency between the pair (V, Xj) given Xi, • ■ • ,Xj-\. In general, the decomposition 

(2.13) depends on the order of the variables 1,- • • ,p. The partial mutual information may 

be interpreted as a measure of relative importance of Xj in a given order. 

Example 2.3 

(i) If X = (Xlr ■ • ■, Xp)' has multivariate normal distribution A^(/x, E), then 

tf(X A Xlt ■■■,*„)   =   \JZlog ajj-hogm 
1 3=1 Z 

1     P IP 

where o3]- = Var(Xj) and A^ is the fth eigenvalue of E. 

(ii) Let W = TX be the rotation of the coordinates of X by the matrix T of the eigen- 

vectors of E. The components of W are uncorrelated and Var{W() — Xf. Thus 

${W A Wi, • • •, Wp) = 0 < tf(X A Xi, • • •,Xp), with equality if and only if X/s are 

uncorrelated. 

(iii) If (y, Xi, ■ • •, Xp) are jointly normal, then H[Y\(xi, ■ • ■, xp)\ is a function of the vari- 

ances and covariances, and is functionally independent of (xi, • • •, xp). Thus the mutual 



information is equal to the entropy difference 

0[Y/\(Xu---,Xp)\   =   H{Y)-H[Y\{xu---,xp)} 

=   -log[l-(?<y;X1-Xp)]1'2 

= t-mi-Ay^ife-,,-,^)]1/2, 
3=1 

where p2(Y; Xi ■ • • Xp) is the square of the multiple correlation between Y and Xx, • • •, Xp 

and p2{Y; XJ\XJ-I, ■■•,x1)is the square of the partial correlation between Y and Xj. 

The partial mutual information -log\\ - p2(Y; XJ\XJ-U • • •, Xi)}1/2 gives a measure of 

relative importance of Xj in regression analysis (Theil 1987, Theil and Chung 1988). 

(iv) The normalized index of dependency is IC[Y A (Xi, ■ ■ • ,XP)] - p2(Y; Xi ■ ■ ■ Xp). 

2.4    Information About A Parameter 

Quantification of uncertainty about predicting an outcome of a random draw from a 

distribution f(x) and comparison of the uncertainties about the outcomes of two probability 

distributions f\ and f2 are of prime interest in many econometrics problems. Examples 

in regression analysis include comparing the uncertainties associated with: the prior and 

posterior distributions of the coefficient vector, two posterior distributions of the regression 

coefficient vector or the sampling distributions of two estimators of the regression coefficient 

vector based on two different regression matrix structures, etc. 

Traditionally, the variance is used for measuring the uncertainty. The widespread use of 

variance for measuring uncertainty is rooted in the statistical estimation (Fisher 1921). In 

statistical estimation, Fisher's information is defined as 

T{6)=T[f{x\e)) = -Ex\e 

F{0) is a measure of information in X, i.e., in f(x\6) about the parameter 9, in the sense 

that T{6) quantifies "the ease with which a parameter can be estimated" by x (Lehmann 

1983, p. 120). Inherent in this interpretation is the facts that: (a) X is an unbiased and 

efficient estimator of 6, so V{X\9) = [^(ö)]"1, and (b) under f{x\9), the probabilities are 

concentrated around the mean value 9. 

10 

gf2logf(x\9) 



From the information-theoretic view point, the Fisher information T is a second order 

approximation to the discrimination information function K(fe : /O+AB) where 6 and 6 + A8 

are two neighboring points in the parameter space and the two distributions fe and fe+A6 

belong to the same parametric family. 

The interpretation of variance as an uncertainty measure about the prediction of an out- 

come of a random draw from a distribution requires caution. Consider two random variables 

X and Y with probability distributions fx and fy on the same support. If fx is flatter 

than fy which assigns high probabilities to the extreme values of Y, then V(X) < V(Y) ; 

e-g-> fx = Beta(l.b,1.5) and fy = Beta(.5,.5) are Beta distributions. The outcomes of Y 

are more volatile, but easier to predict than the outcomes of X. Note that H(X) > H(Y). 

Ebrahimi and Soofi (1996) showed that for many well-known parametric families of distri- 

butions the variance and entropy order similarly in terms of the distributions parameters. 

The interpretation of the entropy as a measure of uncertainty about an unknown pa- 

rameter requires cautions. H[f(x\9)] is a measure of uncertainty about an outcome x, not 

about 6. Sometimes, rr is a suitable estimate of 9, e.g., when 9 is a location parameter. 

Ebrahimi and Soofi (1990) interpreted the entropy of the maximum likelihood estimator of 

a parameter as a measure of information about the parameter being estimated. In such 

cases, information about x may be interpreted as information about 9. Such indirect uses of 

entropy as a measure of information should be interpreted accordingly. 

In Bayesian statistics involving a parameter 6, the information about the parameter is 

measured by a discrepancy between the posterior and prior distributions; see, e.g., Goel and 

DeGroot (1979) and Goel (1983). The difference between the prior entropy H[n(0)] and the 

posterior entropy #[7r(0|:r)] measures the contribution of data x to the amount of uncertainty 

about the parameter; see Abel and Singpurwalla (1994) for an interesting example. 

The mutual information $(0 A X) provides a measure of expected information in data 

x about the parameter (Lindley 1956) and has been used in regression problems; see, e.g, 

Stone (1958), and Soofi (1985, 1990). For Y = T(X), 0(0 A X) > 0(0 A Y), with equality 

if and only if T(X) is a sufficient statistic for 9. For a fixed f(x\6), 0(0 A X) is concave in 

7r(0). However, maximization of 0(0 AX) with respect to IT(6) is usually intractable. Lindley 

(1961) showed that ignorance between two neighboring values 9 and AÖ in the parameter 

11 



space implies that 0(0 A X) « 2(A0)2JF(0), T being the Fisher information. According to 

this relationship, Jeffreys prior for 9 is an approximate solution to the density that may be 

obtained by maximization of 0(0 AX). Bernardo (1979a, 1979b) developed limiting solution 

to the maximization of 0(0 A X) with respect to TT(0). Hill and Spall (1987) and Spall and 

Hill (1990) provided approximate solution for the maximization problem. 

Zellner (1971) defined an information function for quantifying the information in the data 

x about a parameter 9 with the prior 7r(0), which may be written as: 

G\n(0)}   =   EAH\<K(0)}-H[f(x\8)}} (2.14) 

=   EAK\f(x\8) : TT(0)]} 

=   0{Q/\X) + H{Q)-H{X). 

Zellner proposed G\TT(0)} as a criterion function for developing prior distributions that 

are maximally committed to the data. The prior ir*{0) that maximizes G\K{9)\ is referred to 

as the Maximal Data Information Prior (MDIP). The first equation in (2.14) is the a priori 

expected information in the data-generating density (likelihood function) which is "purified" 

from the information in the prior. The second equation in (2.14) shows that G\n(0)\ is the a 

priori expected information for discrimination between the data-generating distribution and 

the prior. The third equation indicates that G[ir{9)] is a "broader" information criterion for 

developing prior as compared with 0(0 A X). Furthermore, MDIP gives explicit solutions in 

many problems and is capable of including side information in terms of moment constraints 

on TT(0); see Zellner (1991) and Soofi (1996) for details. 

3    ME Distributions for Regression 

In this section, ME distributions for the error terms, coefficients, and precision of a given 

linear regression are presented. An ME procedure for derivation of regression function is also 

briefly discussed. 

12 



3.1    ME Distributions for Linear Regression 

Consider the linear equation: 

y = Xß + e, (3.1) 

where y is the n x 1 vector of observations, X is an n x p full rank matrix of given regressors, 

ß is the pxl vector of regression coefficients, and e is the nxl vector of error terms. 

In order to obtain an ME distribution for the error term for inferential purposes, we need 

to specify a variation function, V(e) > 0 for the error process. The maximum mean value 

of the variation function v, signifies the degree of accuracy and its inverse ip = v_1, signifies 

the precision of a specified regression in (3.1). 

Table 1 gives examples of variation functions and the corresponding ME error distribu- 

tions obtained using (2.3). As shown in Table 1, the square error variation gives the normal 

distribution and the absolute error variation leads to the Laplace (double exponential) error 

distribution which has a heavier tail than the normal. The logarithmic variation gives the 

generalized Student-t distribution for the error terms (Soon 1996); the term generalized refers 

to the fact that the degrees of freedom parameter v may not be an integer for all precision 

values v{y). For regression analysis with the Student-t error distribution see Zellner (1976) 

and Lange, Little, and Taylor (1989). 

Table 1. Variation Functions and Maximum Entropy Distributions for Regression Error 

Variation Function MaxE[V(e)} ME Error Distribution 

V(e) = A 

i = 1, • • • ,n 

a2 Normal 

V(e) = N 

i = l,---,n 

a Laplace 

V(e) = M" + £i), 

v > 1,     i = !,••• ,n 
^(i+D-^GO Generalized t 

f*(ei) = 5(J, I)"V-^l + ?)-(-«>/» 

V(e) = ee' £ Normal 

/*(e) = (27r)-"/2|E|-1/2e-i£'lsl~l£ 

Notes: ip(u) — r'(u), F is the gamma function; B(u,v) is the Beta function. 
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Diagnostics for assessing suitability of a variation function as the description of the error- 

generating distribution may be developed using the ID distinguishability index (2.6) along 

the lines of Soofi, Ebrahimi, and Habibullah (1995). 

Suppose that we use square error variation 

Ef(e*)<c\      t = l,.-.,n. (3.2) 

Then the ME gives the following multivariate normal model for the vector of error terms: 

f*(e-y)=:N(0,a*In), (3.3) 

where In denotes the identity matrix of dimension n. 

The independence among the components of e in (3.3) is the result of considering solely 

the marginal variations (3.2) as the information constraints in the ME computation. If there 

are information available about the interrelationship between the error components, they 

should be taken into account by formulating appropriate covariation functions (cross-product 

moments constraints). The ME solution for the error distribution subject to covariation 

functions and/or nonhomogeneous maximum average variations across the n-dimension will 

be JV(0, £) given by (2.4). 

Given that ß and X in (3.1) are not subject to variation, the ME error distribution (3.3) 

gives the conventional normal regression model 

r{v\ß,o*) = N(Xß*oaIn). (3-4) 

In the ME procedure, the simpler moment assumption (3.2) replaces the more stringent 

assumption of normality usually made in the traditional regression analysis. But as we have 

seen, the ME procedure is versatile in producing more general regression models. 

Let's now consider variation of ß in (3.1). Table 2 shows examples of the variation 

functions for the regression coefficients ßj around the arbitrary constants rrij, j = 1, • • • ,p. 

If we only incorporate the range of variation of the regression coefficients, then the ME 

solution is a uniform distribution which is improper when a = b = oo. 

For the quadratic variation function V(ßj) = (/?,■ - ra,)2, the information constraints are 

E(ßj - rrij)2 < r2, j = 1, • • • ,p. These constraints give the ME distribution 

7r(/3; m, r2) = N(m, r2/p), (3.5) 
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where m = (rax, • • •, mp)'. 

The ME distribution (3.5) is the conjugate prior frequently used in Bayesian analysis for 

ß\a2 of the likelihood function (3.4). 

The classical random effects model is obtained with the combination of (3.4) and (3.5) 

when rrij = 0 for all j = 1, • • •,/?. The ME distributions such as (3.5) developed for ß are 

also useful for modeling heterogeneity of the regression coefficients among a population of 

interest which is an important concern in some fields such marketing. 

As in the case of error distribution, the lack of incorporating covariation information in 

the ME computation results in the prior independence among the coefficients. In order to 

incorporate a covariance structure ^ as the prior information, then we use E(ß — m)'(ß — 

m) = ty as the constraints in the ME computation. This constraint gives multivariate 

normal prior shown in the last row of Table 2. 

For example, if wish to use the data covariance structure ty = {X'X)~l and r2 oc a~2, 

then we obtain 

Tr(ß;m,T2) = N{m,T2(X'X)-1l (3-6) 

which is the g-prior proposed by Zellner (1982). 

Table 2. Variation Functions and Maximum Entropy Distributions for Regression Coefficients. 

Variation Function MaxE[V(ß)\ ME Distribution for Coefficient 

V(ßj) = 6(mj -a < ßj < rrij + b) 1 Uniform 

f*(ß) = (b-a)-P 

V(/?i) = (&-m;)2 T2 Normal 

f*(ß) - (2TTT2)-P/2e-^(ß-Tn)'^-m) 

V(ß) = (ß-m)(ß-m)' TH Normal 

f*(ß) = (27rr2)-P/2|*|-1/2e-^^-m)'*"1(/3-m) 

Note: £(•) is the indicator function 

<Hmi — a < ßj < rrij + b) = < 
1   if ßj e {rrij - a, rrij + b),   j 

0   otherwise. 

= !,-••, p 
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Next I incorporate variation of the precision parameter (p = a"2 in (3.4). Because ip is 

positive with probability one, we can consider the types of information constraints shown in 

Table 3 and obtain the corresponding ME distributions. Except for log ip, the constraints 

shown in Table 3 may interpreted as variation functions; log <p may also be interpreted as a 

variation function if P{<p > 1) = 1. 

Like for the case of the regression coefficients, the ME distributions derived for the preci- 

sion parameter are useful in the Bayesian and frequentist analysis. The uniform distribution 

for log (p is the Jeffreys prior. The first three ME distributions shown in Table 3 are spe- 

cial or limiting cases of the Gamma distribution which is ME using a pair of information 

constraints. In Bayesian analysis, the Gamma distribution is the conjugate for the normal 

regression model (3.4). The Gamma distribution is also used in frequentist analyses for 

modeling is heterogeneity of the regression precision among individuals. 

Table 3. Information Constraints and Maximum Entropy Distributions for Regression Precision. 

Information Constraint MaxE[c(ip)} ME Distribution for Precision 

c(ip) = 8(a < log <p < b) 1 Uniform 

f*(<p) = (b -a)"1 

c(ip) = (p a Exponential 

f*(<p) = ae~« 

c((p) = log <p,    (p > a I 
a 

Pareto 

f*(<p) = aattv"tt_1 

ci(<p) = V , 

c2{ip) = log <p 

OLV 

if>(a) - log{u) 

Gamma 

Notes: tp(u) = r'(u), T is the gamma function. <$(•) is the indicator function: 

6(a <log <p < b) 
1   if  log (p G (a, b) 

0   otherwise. 
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3.2    ME Regression Functions 

A regression function is defined by the conditional expectation and is given by: 

y(x)   =   E(Y\x) 
fyf{y,x)dy f a i \A    Jyj\y>x)dy 

= PMx)dy= U{y,*)dy' 

where x = (xi, • ■ • ,xp) is the vector of regressors assumed to be subject to variation. Thus, 

in principle, one can find the ME joint distribution f*(y, x) that satisfies a set of information 

moment constraints, and then find the conditional expectation y(x). 

Ryu (1993) considered the special case when y(x) > 0 and noted that y(x) is an averaged 

density with respect to f(x)dx. Ryu showed that many well-known regression functions can 

be derived as solutions to 

max - I y(x)log[y(x)]f(x)dx 

subject to constraints 

J CmAXl) • ■ • cmPMy{x)f(x)dX = 0mi>...,, 

4    Regression Estimation and Prediction 

In this section I discuss information theoretic procedures for estimating regression coef- 

ficients and developing forecast distributions. 

4.1    MDI Estimation 

We have a set of observations J/J, • • •, yn generated from an n-variate distribution f(y). Our 

objective is to estimate 6 of the ME distribution f*(y; 0) implied by the linear relationships 

(3.1) and the associated variation function V(e). Here 0 denotes the vector of p coefficients 

and all the parameters related to V(e). 

We explicitly differentiate between a convenient mathematical function f(y; 0) termed as 

model which we utilize in practice as an approximation to the unknown true data-generating 
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f(y).   "It may be very likely that the true distribution is in fact too complicated to be 

represented by a simple mathematical functions such as is given in ordinary textbooks." 

(Sawa 1978). 

Given linear relation (3.1), the variation function V(e), and 0, we derive the ME distribu- 

tion f*(y; 0) and use it as our estimate for the parametric family of the model f(y; 0). The 

symbol /* underscores the fact that the ME model is being used only as an approximation for 

f(y). According to the entropy concentration theorem (Jaynes 1982, van Campenhount and 

Cover 1981) and the ID distinguishability result of Soofi, et al. (1995), the approximation 

should be satisfactory if / is a "typical" distribution in the class which /* is the ME model; 

i.e, if ID{f : /*; 0) » 0, thus / is not ID distinguishable with /*. 

Therefore, it is natural to estimate the model parameter 0 based on a criterion that im- 

proves the model approximation for the data-generating distribution. The MDI or minimum 

relative entropy loss estimation procedure serves this purpose. [For MDI estimation in other 

contexts see, e.g., Kullback (1959), James and Stein (1961), Gokhale and Kullback (1978), 

Haff (1980), Ghosh and Yang (1988), and Soofi and Gokhale (1991a).] 

The loss of approximating f(y) by an ME model f*(y; 0) with its parameter estimated 

by 0 is measured 

2K\f(y) : r(y;0)] = lK[f(y) : r(y;~0)\- 
ft 

The MDI or minimum relative entropy loss estimate 0MDI of a parameter 0 is defined 

by: 

0MDJ = zTgmmK[f(y):r(y;0)\. 
0 

The Bayesian risk of approximating f(y) by an estimated ME model f*{y,0) is computed 

by the posterior expectation 2E{K[f(y) : f{y\0)]\y}- 

The MDI Batjes (MDIB) estimate of 0 is defined by 

0MDIB = argminE{K[f(y : /(y;ö)]|y). 
0 

The frequentist risk of approximation is found by computing the expected loss with 

respect to the sampling distribution, 2E0{K\f(y) : f{y;0)]}- 
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Decomposing the log-ratio in (2.5) gives 

2K[f(y) ■ /(!/; 0)\ = 2Hf\f*(y; 0)] - 2H[f(y)}, (4.1) 

where 

Hf\r(y, *)] = ~Ef[log f*(y; 9)]. (4.2) 

The entropy of the data-generating distribution is free of 0, so H[f(y)] in (4.1) is sometimes 

ignored, the loss is measured by expected log-likelihood (4.2), and the MDI estimate may 

be obtained by 

ÖMDI = arg max Ef[log f*(y,0)]. (4.3) 
0 

Here the cumbersome problem of minimizing the information discrepancy between the un- 

known data-generating distribution and the ME model is reduced to the simpler problem 

of maximizing the expected value of a log-likelihood function. But unlike the conventional 

statistics in which the parameters are often estimated solely by considering a postulated 

model, the MDI estimation includes both the model and the data-generating distribution. 

However, at this point the problem is not yet completely solved. 

Akaike (1973) proceeded with an MDI parameter estimation by first estimating the ex- 

pectation in (4.3) using the empirical distribution which assigns a mass of £ to each data 

point 2/j, i — 1, • • •, n. In this case, 

1   n _ 
6MDI = arg max - V log /*(y<; 0) = 0, 

0   nf^i 

where 0 is the Maximum Likelihood Estimate (MLE) of 0 under the model /*. Thus from 

an information theoretic view point, the MLE minimizes an estimated information discrep- 

ancy between the data-generating distribution f(y) and the ME distribution /*. Akaike 

interpreted this approach as an extension of the MLE principle. 

Under the assumption that the data-generating distribution is also in the same parametric 

family as f*{y; 0), Akaike (1973) estimated the information discrepancy for 0 by 

KA[r(y, 0): nv\ 0)\ = ^log^&Q. (4-4) 
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The consistency of the MLE implies that (4.4) is a consistent estimate of K[f*(y,0) : 

f*{y;0)}. Akaike computed an approximate frequentist risk function for the purpose of 

model selection which will be discussed in Section 5.2. 

Consider estimation of the normal ME regression model, f*(y\ß,cr2) = N(Xß,a2In). 

The normal model is plausible for approximating the data-generating when f(y) possesses 

at least the first two moments, say, // and Q; i.e., f(y) = f(y;fi,Q). Note that the normal 

ME regression model uses the specific form fj, = Xß, but the data-generating distribution 

f(y) = /(y; /x, 0.) is not as restricted. 

The loss of approximating f(y; /A, Q) by the normal regression model with its parameters 

estimated by ß and <r2 is given by 

2K[f(y;ß,Q) : f(y;ß,ä2)} = 2Hf[r(y;~ß,ä2)}-2H[f(y;tJ,,n)}. 

For the case of 0, = u2In, the expected log-likelihood can be evaluated and the estimation 

loss is given by 

2K[f(y;ß,u):f(y;ß,ö2)}   =   -2H[f(y;n,u)]+log{2*e) 

+log <r + TX H —* • I4-5) 

Various Bayesian schemes have been suggested for finding the risk of approximating 

f(y;ß,u2In) by an estimated normal regression model. Learner (1979) used the posterior 

distribution of (p,u2). Expanding the quadratic form in (4.5) and taking expectation gives 

2E(ß^)lyK[f{y;ß,u):f(y]ß,ä2)}   =   2H[f(y;p,u)] + log{2v) 

,2 , E(u2\y)     E(ß'ß) 
+   loga + ___ + ___ 

+   -L[ß'x'Xß-2E(ß'\y)Xß}.       (4.6) 
no1 

The MDIB estimates that minimizes the expected loss (4.6) with respect to ß and ä2 

are: 

'MDIB =   {X'X)-lX'E{ß\y) (4.7) 

=   E(u2\y) + -E(ß'ß\y) - -E{ß'\y)X{X'X)-lX'E{^\y). (4.8) 
VMDIB —-     n    »   ■ —     n 
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In a given problem these MDIB estimates can be evaluated by using the unrestricted ME 

distribution f*(y; ß,u2In) = N(fj,,u2In) and some types of ME priors for (/z,a>2). When 

the prior is weak, the MDIB estimates (4.7) and (4.8) are approximately equal to the MLE 

of ß and a2 under the normal ME model, 

ßMDiB   «   (X'X)-'X'y = b (4.9) 

ÖMDIB   «   -(y-Xb)'(y-Xb) = ä2 

ft 

Sawa (1978) assumed that f(y) = N(ß,u2In), and defined a risk function in terms of 

the posterior distributions of the parameters of the normal regression model f*(y;ß,o~2). 

Using diffuse priors ß and a2), he found that 

2E(ß^)\y {Hf\r(y;ß,ä2)]} > log(2n) + log ä2 + ^^ (l + £) ~ (4.10) 

where, s2 is the mean square error of the least square regression. 

Young (1987) defined a risk function as E(v,,«>2)\yE{ß,<T->)\y K\f(V'i /*»w) '■ /(?/;j^,Ö"2)]; see 

Section 5.2. 

Sawa (1978) also found an approximation for the frequentist risk of ß and <r2. He showed 

that if the components of y are symmetrically distributed with the same kurtosis as the 

normal distribution, then the frequentist risk of ß and ä2 is approximately, 

2Ep_2K[f(y;»,u):f(y;ß,ö2)}   =   2H[f(y; /z,u,)] + log(27re) (4.11) 

^t + zllte).^ ,2       _ 

r2 The quantity <TQ is defined below. 

The solutions to the minimization of K[f(y;ß,Q) : f*{y;ß,o"2)] with respect to the 

model parameters ß and a2 are: 

A, = (x'xy'x'ß 

a2 = -ß'iin-xix'xy'x'^ + u2. 
ft 

These quantities are referred to as pseudo-true parameter values. The MLE of ß is unbiased 

for the pseudo-true parameter value ß0, and the MLE of a2 is asymptotically unbiased for 

the pseudo-true parameter value cr2,, Sawa (1978). 
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4.2    MDI Method of Moments 

The MDI moment (MDIM) estimate of 0 is defined by the solution to the following 

constrained relative entropy loss problem: 

mmK[f(y):r(y;0)) 
0 

subject to 

JTrn(y)f(y)dy = fj(y),    m = l,---,M, 

where fj(y) is a sample moment of interest. 

As an specific example, we construct MDIM estimates for the parameters of the normal 

regression model f*(y;ß,(T2) = N{Xß,a2In) ■ 

Suppose that our data consist of 

2/ifci,---,Z/nfc„,    h = l,---,ni > 1,    t-1,- 

The MDIM estimates of ß and a2 are found by the solutions of: 

,n. 

subject to 

where 

min K\f(y):r(y;ß,a2)} 
ß,°* 

J{yi-Vi)2f{y)dy = sl   » = i,- 

Vi = — £ Viki 

-I Tlj 

,n, 

(4.12) 

(4.13) 

(4.14) 

n. 
■« fcj=i 

Assuming f(y) satisfies the regularity conditions required for taking the derivative to inside 

the integral sign, the MDIM estimates are found as: 

(4.15) 
'MDIM 

aMDIM 

(X'Xr'X'y 
l-y'[In-X(X'Xr'X'}y + lf:sl 
n n 

(4.16) 
i=i 
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where y = (ya,• • •,%)'. The MDI estimate (4.15) was introduced in Soon (1985). 

In the MDIM procedure, the unknown values //» are estimated by xji using constraint 

(4.13). This is in line with the common practice of using the regression estimate of y* as 

the point estimate of the conditional expected value corresponding to x{. Then, the mean 

variation function in each dimension is estimated by s\ using constraint (4.14). Finally, 

the information discrepancy between the unknown data-generating distribution and the ME 

regression model is minimized. 

The results obtained using the MDIM procedure is akin to those obtained using the 

conventional techniques. The two components in the MDIM estimate of the error variance 

are related to the well-known quantities in regression analysis. The first term in (4.16) is the 

component of variance due to lack of fit of the regression (3.1) to the data and the second 

term is the component of variance due to pure error. 

For the case of a single observation per dimension, rij = 1, & = yi, s2 = 0, the MDIM 

estimates (4.15) and (4.16) are equivalent to the usual MLE of ß and a2. Thus, the MDIM 

estimates of the parameters of the normal regression model possess all the properties of the 

MLE. 

The relationship between the MDIM and MLE is similar to a duality that exists between 

the MLE and the Internal Constraint Problem (ICP) formulation of Gokhale and Kullback 

(1978), an estimation method extensively used in the information-theoretic analysis of con- 

tingency tables. In the ICP formulation, the discrimination information function between 

an unknown distribution / and a known distribution g, K(f : g), is minimized with respect 

to / subject to constraints (2.3) with the information moment values 6j obtained from the 

data. When g is uniform, then the MLE of /* and the MDI estimate of / are equivalent. 

The above MDIM procedure is similar to ICP in that the constraints use the data moments, 

but in (4.12), the reference distribution is not completely known and is not uniform. When 

the reference distribution is not uniform, the equivalence with MLE is problem-specific, thus 

may not always hold. 

The MDIM procedure is also in line with the approach of Sawa (1978). In the MDIM 

procedure, ß and a2 are estimated directly, instead of first developing the MDI model with 

the pseudo-true parameters and then estimating them by the MLE. 
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The usual frequentist inference can be done using the sampling properties of the MDIM 

estimates (4.15) and (4.16) under the normal ME model f*(y,ß,<r2) = N(Xß,a2In). The 

usual Bayesian inference can be done using the normal ME likelihood function, selecting 

a prior for ß from the ME distributions in Table 2, and selecting a prior for the precision 

parameter from the ME distribution shown in Table 3. 

Application of MDIM to other ME error distributions such as those shown in Table 1 

will lead to new regression analyses. The use of other ME error distributions as likelihood 

functions, and other ME priors will lead to new Bayesian regression analysis. 

4.3    An MDI Predictive Density 

Let yN\X\ be an mx 1 vector of forecasts corresponding to the m new vectors of explanatory 

variables arranged in the rows of Xm. The normal ME regression model (3.4) implies that 

the ante-data forecast distribution 

r(yN{Xm};ß,a2) = N(Xmß,a2Im). (4.17) 

Since the parameters are unknown, the ante-data forecast distribution (4.17) is not usable. 

Several frequentist and Bayesian procedures for developing predictive distributions free of 

unknown parameters are available, see Geisser (1993). 

Many of the known Bayesian and frequentist predictive distributions are in the class 

G = {g(yN[Xm]\D): g(yN\Xm}\D) = h (y"^*"b) } , 

where g(-) is a density and h(-) is a sealer function and D refers to the observed data (X, y); 

Levy and Perng (1986) and Keyes and Levy (1996). 

Levy and Perng (1986) considered the following minimization of the expected discrimi- 

nation information function: 

min Ey{K(r(yN[Xm}) : g(yN[Xm]\y))h (4-18) 

where the expectation is with respect to the normal ME model f*(y,ß,v2) = N(Xß,a In) 

and f*(yN[Xm}) is the ante-data forecast distribution (4.17). The solution is the m-dimensional 
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Student-1 distribution with n — p degrees of freedom, 

g* = t(n-p, Xmb, na2[Im + Xm{X'X)~l X'J) , (4.19) 

where Xmb is the location parameter and a2[Im + Xm(X'X)~1X^n] is the dispersion matrix. 

Keyes and Levy (1996) extended this result to multivariate linear models. 

The predictive distribution (4.19) is the one obtained in Bayesian regression based on 

the Jeffreys prior 7r(/3,cr2) oc 1/<T
2
 and the normal ME likelihood. This coincidence is due 

to the fact that in (4.18) the objective is to find the predictive density which, on average, 

has the least information discrepancy with the ante-data ME density f*(yff[Xm]). That is, 

in (4.18), we search for the member of Q which is closet to the least informative ante-data 

density and we find the one based on the Jeffreys non-informative prior as the solution. 

4.4    Bayesian Method of Moments 

The Bayesian Method of Moments (BMOM), recently proposed by Zellner (1994), combines 

the use of sample moments and ME procedure. The BMOM combines the least square with 

the ME procedure and produces posterior (conditional on data) results without a need for 

introducing likelihood functions and prior densities; i.e., the BMOM bypasses the Bayes 

Theorem. 

Zellner considered the linear equation (3.1) in which y, X and ß are defined as before, 

and e = u is the vector of the realized error terms. The data D = (y, X) is given, thus the 

quantities X and y are not subject to variation. But the quantities ß and u are unknown 

and subject to variation. 

The posterior means of ß and u are obtained based on the first moment assumption of 

BMOM: 

X'E(u\D) = 0. (4.20) 

Note that if (3.1) includes an intercept term, then E{u\D) = n~l YH=\ E(ui\D) = 0. Taking 

the expectation of ß and u in (3.1) gives 

E(ß\D)   =   (X'X)-1X'y = b (4.21) 

E(u\D)   =   y-Xb = u, (4.22) 
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where ü is the vector of least square residuals. 

The use of (4.21), (4.22), and (4.20) gives 

Var(ß\D)   =   E(ß-b)(ß-b)' 

=   {X'X)-lX'E{u-ü){u-ü)'X{X'X), (4.23) 

where the covariance structure of u is a solution to the functional equation, 

E(u - u)(u - Ü)' = X{X'X)-xX'E{u - u){u - u)'X{X'X)-lX'. 

Zellner proposed the following solution to the functional equation as the second moment 

assumption of BMOM: 

Var(u\D,a2) = E[(u - u)(u - u)'\a2) = X{X'X)X'a2. (4.24) 

Using (4.24) in (4.23) gives the posterior covariance matrix of ß conditional on a2 as 

Var{ß\D,a2) = {X'X)-1a2. 

When (3.1) includes an intercept term, some algebraic manipulations of (4.24) gives the 

posterior expectation of a2 as the mean square error of the least square regression, 

B(AD)=ly-XbYiV-Xb)=*- n — p 

The forecast for a new vector xN is given by yN[xm] = x'mß + um. Thus as a function of 

ß and um, the forecast is subject to variation. Conditional on a2, the mean and variance of 

the forecast are: 

E(yN[xm\)\D,a2)   =   x'nb 

Var(yN[xm})\D,a2)   =   [\ + x'm{X'X)~l xm\a2. 

Posterior and predictive distributions of various quantities of interest for BMOM regres- 

sion analysis are shown in Table 4. The normal and exponential distributions are obtained 

directly by the ME procedure based on the BMOM derived in terms of the data. The Laplace 

(Double Exponential) distributions are derived by integrating out a2 from the joint density 
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Table 4. Maximum Entropy Posterior and Predictive Distributions for BMOM Regression. 

Quantity ME Distribution Mean Variance 

ß 1 D, a2 Normal b {X'X)-la2 

Ui | D, a2 Normal Üi x^x)-1^ 
YN[xm] | D, a2 Normal X'mb [1 + x'm(X'X)-lxm]a2 

a2 \D Exponential s2 s4 

ßi\D Laplace bj s2j = (j,j)th element of {X'X)'^2 

l'ß 1 D Laplace e'b (.'{X'XyHs2,   £' = (^,...,£p) 

Ui\D Laplace Üi x^X'X^XiS2 

YN[xm] | D Laplace <fi [1 + x'm(X'X)-"xm)s2 

Notes: D refers to the data (X,y). The density of the Laplace (Double Exponential) distribution 

with mean v and variance us2 is: 

f{z\v,u) 1 

\/2u 
■g\>-»\ 

given by the product of the respective normal conditional density and the exponential density 

for a2\D. 

The Laplace predictive distribution, derived based on BMOM, generally gives wider 

intervals than those obtained using the normal and the Student-£ predictive distributions 

found in the conventional Bayesian and frequentist regression approaches. 

4.5    ME Estimation With Undersize Sample 

An undersize sample refers to the situation when n < p in the linear relationship (3.1). 

In the science and engineering fields related to image reconstruction, the problem is referred 

to as ill-posed inverse problem and ME inversion method is available to solve the problem 

(Gull and Daniell 1978, Skilling and Bryan 1984, Gull 1989). In the ME inversion method, 

the image ß is a high dimensional vector of positive elements that are reconstructed based 

on the noisy data vector y which has a dimension much lower than the rank of the linear 

operator X; i.e., n <g.p. 
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The ME inversion method solves the ill-posed problem using the following formulation: 

max - J2 ßjlogißj)     subject to     (y - Xß)'(y - Xß) < 9. (4.25) 
ß      j=i 

The ME estimate is given by 

Wr?) = argmin   X>Mß) +Vi(V ~ Xß)'(V " Xß). (4.26) 
ß     j=i 

The solution is found using an optimization routine. Skilling and Bryan (1984) have devel- 

oped special routine for the ME inversion method. 

Strictly speaking, £j=i ßjlog{ßj) in (4.25) is not a bona fide entropy because the normal- 

izing constraint £j=i ßj = 1 is not included. But this causes no problem since the solution 

of (4.26) are positive and can be normalized if so desired. 

In the traditional terms, the solution to the dual of (4.25) is the following constrained 

(regularized) least square estimate 

v 
bME(v) = bLS(v) = ^g min   (y - Xß)\y - Xß) + 7y2 £ ß0log{ßj). 

ß 3=1 

The solution depends on the parameter 77 = r}(6) which may be chosen based on some 

statistical criteria such as cross-validation; for more detail see Donoho et al (1992) and 

discussions following that article. 

Next I discuss two ME estimation methods, proposed by Theil and Laitinen (1980) and 

Vinod (1982), that avoid singularity of X'X when n < p. These methods are based on 

viewing the rows of X in (3.1) as samples from a p-dimensional random variable x. 

Under the assumptions that ß is not subject to variation, X is subject to variation, and 

E(X'e) — 0, the regression coefficient is given by 

ß = K^vx, 

where T,x = [ajk] is the covariance matrix of the explanatory variables Xi,---,XP and 

(Tyx = {py,i,- • ■, o"y,p)' is the vector of the covariances of y with Xk, k = 1, • • • ,p. 

In the case of random regressors, X'X and X'y are estimates of the cross-product mo- 

ments E(xx') and E(xy) obtained by the sample second order moments. 
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Theil and Laitinen (1980) proposed estimating Sx by the second order moments of the 

ME distribution that they developed for x by assuming that F(x) is continuous. Let x] < 

x2. < ■ • ■ < x7- denote the order statistics for the sample Xji, ■ • ■, xjn, and let the intermediate 

points £} be defined as x) < £} < xfA, i = l,---,n-l. The set of all intermediate points 

partitions W into np regions. The partitions are either bounded hyper-rectangular regions 

with sides given by the interval segments connecting the pairs (£], £}~ ), i = 1, • • • ,n— 1, or 

semi-bounded hyper-rectangular regions that have open-ended intervals of types (—oo, £|] 

and/or [£"~\ oo) for a number of their sides. There are n regions #i, • • •, Rn each containing 

one data point X{ and all other regions are empty. Theil and Laitinen constructed the ME(£) 

distribution of x subject to the mass-preserving constraint 

/. 
f{x)dx=-,    i = l,---,n, (4.27) 

Ri n 

and the mean-preserving constraint 

jxjf(x)dx = xj   j = h---,p. (4.28) 

The constraints (4.27) and (4.28) produce a p-variate ME(£) distribution F* with the 

following properties: 

(i) The ME(f) density, f*(x) > 0 if and only if x 6 Ri for an i = 1, • • •, n. 

(ii) The ME(£) distribution, F*(x) is the product of piecewise uniform marginals when 

x e Ri, Ri is a bounded hyper-rectangular region. F*'(x) is the product of uniform 

and exponential marginals when x G Ri, Ri is a semi-bounded hyper-rectangular 

region. 

(iii) The mean-preserving constraint makes the intermediate points £} to be the primary 

midpoints fj = x) = \(x)+xfl), i = l,----,n-l. The mean of the individual intervals 

are given by the secondary midpoints 

far}- + \x) fari = l 

E(Xi\X e Ri) = x) = liCT'+Cj) = I  Ixy1 + \x) + \xfl       far i = 2,• • • ,n- 1 
2 

i^"1 + §a# fori = n, 
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where £° = x1- and £? = xn,. Thus the sample mean Xj is also the mean of the secondary 

midpoints, xj, • • •, x". 

(iv) The covariance matrix of f*(x) is S* with elements defined by 

1^ s*jk   =   -Y,(xji-xj)(xki-xk) 
»=i 

JIJ 

12n E(Ö-Ö_1)2 + 2(Ö-^)2 + 2(^-^_1) 
Li=l 

(4.29) 

(4.30) 

where Xß are the secondary midpoints rearranged according to the original data index 

and 8ij is the Kronecker delta. The ME(£) variance s*^ is smaller than the sample 

variance and the amount of shrinkage is given by 
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— 2_^\Xji — Xj) 

1 
24n 

n-l 

E 
i=l 

eE^r-^+E^r1-^1) 
n-l 

i=2 

„i-l\2 

The ME(£) covariance matrix may be written as S* = S + D$, where S is the covariance 

matrix of the secondary midpoints whose elements are given by the expression (4.29) and 

D^ denotes the diagonal matrix with elements shown in the expression (4.30). The ME(£) 

covariance S* is positive definite. 

The ME(£) estimate of the linear regression coefficient is 

WO = S^'Kx = (^ + Di)~%x, (4.31) 

where s*x is the vector of ME(£) covariances between y and the explanatory variables 

computed using the secondary midpoints y{ and Xß. The last expression in (4.31) shows 

that bME{0 may be computed as a ridge estimate of the secondary midpoints. The ridge 

values are given by the secondary midpoints as shown in (4.30). Because of this ridge 

structure, bME(() can be computed for undersize samples. 

Meisner (1980) compared the risks of bME(0 and the ordinary least square estimate b 

under the quadratic loss when the data is generated from a multivariate normal distribution. 

Because of complications, he only considered n = 2 and p = 2,3. For p = 2, bME(£) compares 

favorably with b over most of the parameter space. For p = 3, b does not exist. 
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Vinod (1982) developed ME(d) estimate for linear regression coefficient using the above 

procedure but relaxing the assumption of continuity for F(x). He formulated the problem 

in terms of the data being subject to rounding errors of magnitudes dj > 0. Thus F(XJ) is 

locally continuous in the neighborhood Vi of the data points defined by V = Rxi x • • • x R^ 

where 

Rji = [xß - dj, Xji +dj],    dj > 0,    j = 1, • • • ,p,    i = 1, • • •, n. 

The mass preserving constraint is given by 

I f{x)dF{x) = -,    t = l,...,n. (4.32) 
Vi n 

The ME(d) distribution subject to the mass-preserving constraint (4.32) and the mean- 

preserving constraint (4.28) is the product of uniform marginals if x £ Vi. For dj = 0, F*(XJ) 

is the usual empirical distribution. 

The covariance matrix S** of the ME(d) has much simpler structure than that shown in 

(4.29) and (4.30) for S*. The elements of S** are given by 

** _ 1 ^/      _ - \(      _ - \ i  Sjkdjdk Sjk ~~        / AXH       xj)\xki       %k) + r,        > 
71 i=\ ö 

where 8jk is the Kronecker delta. 

The ME(d) covariance matrix may be written as S** — Sx + Dd where Sx is the matrix 

of the usual sample second order central moments Sjk, and Dd is the diagonal matrix with 

elements d2j in the diagonal. Thus, S** is positive definite. Note that s*£ = Sjk, j / k. 

The ME(rf) estimate of the linear regression coefficient is 

t>ME{d) = S**~ SyX = (Sx + Dd)~ syX, 

where syx is the vector of usual second order central moments between y and the explanatory 

variables. Thus, syx also has a ridge structure and may be computed for undersize samples. 

The ridge values are given by the magnitudes of the rounding errors. When the variables 

are not subject to measurement error, bME{d) reduces to the ordinary least square estimate. 
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5    Discriminating Between Alternative Models 

In this section I consider the problem of discriminating between alternative linear rela- 

tionships 

Mk:y = Xkßk + ek     Är = 1,2,--- (5.1) 

where y and ek are the n x 1 vectors, Xk is n x pk full rank matrix, and ßk is pk x 1. 

The issue of regression models being nested or non-nested often arises in discussions of 

discriminating between alternative models. Pesaran (1987) operationalized the concept of 

nested and non-nested hypotheses in terms of the discrimination information. As an example, 

Pesaran discussed the issue for regression models using the usual normality assumption and 

the concept of "true" parameter. I adapt Pesaran's approach and discuss the issue along the 

lines of the ME and MDI developments of the previous sections. 

Let Vfc(efc) be the variation function for the error, (fk be the corresponding precision 

parameter, and fk(ek) be the implied ME model for the error term in Mk. If 9k = (ß'k,<Pk) 

and X are not subject to variation, then each ME model for the error term in (5.1) implies 

an ME distribution fk{y,Xk,0k) for y under Mk. 

A model Mk is said to be nested in the model M£, denoted by Mk ^ Mt, if and only if 

K(ek(h 01; Xk, Xt) = - min K\füv\ Xk, 0k0) : //(v; Xt, 9t)] = 0 (5.2) 
n 0eeet 

for all admissible pseudo-true parameter values 0kO in the parameter space 0fc of Mk. If 

(5.2) holds for some but not all admissible pseudo-true parameter values, then Mk is said to 

be partially non-nested with respect to Me. If (5.2) does not hold for any admissible pseudo- 

true parameter value, then the Mk is said to be globally non-nested with respect to Me. If 

Mfc :< Me and Me ^ Mk, then the two models are said to be observationally equivalent. 

If we use quadratic variation function and (pk = ok , then 

Mk : A*(y;Xhßk14) = N(Xkßk,a
2

kIn). (5.3) 

Using (2.9) with nf = Xkßk and ßg = Xeße, and minimizing with respect to {ß'e, a]) gives 

ß\   =   (X'eXe)" XeXkßk0 

of   =   40 + (Xkßk0y[ln-Xe(X'eXe)-1X'e]xkßk0. (5.4) 
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These MDI parameters give 

K(ßk0,al0,ß;,ar;Xk,Xe) = hog (£-) . 
akO, 

Therefore, Mk ■< Mi if and only if of = al0. That is, the second term in (5.4) is identically 

equal to zero, which holds when ßk0 = 0 or when [In-Xe(X'tXe)~
lX'e]Xk - 0. The first case 

is trivial. The second condition implies that Mk ■< Mi if Xk is in the linear space spanned 

by the columns of Xi. The usual case of Xk being a submatrix of Xi is in accord with this 

result. Also in accord with this result is the case in which columns of Xk are constructed by 

linear transformations (e.g., principal components) of a subset of the columns of Xg. When 

all columns of Xi are also linear functions of all columns of Xk, then Mi ■< Mk and the two 

models are observationally equivalent. This is the case when, for example, Xk is the matrix 

of all the principal components of Xi. 

In general, the normal linear regression models (5.3) are either nested or partially non- 

nested, but not globally non-nested (see Pesaran 1987 for more detail). This is not necessarily 

true when the error variation function for one of the alternative models is not quadratic. For 

example, consider discriminating between the following models: 

Mfc :   y = Xkßk + ek,        Vk{ek) = |ew| 

Me :    y = Xeße + e/,        Vt{et) = e\. 

From Table 1 we find that the ME error distribution for the absolute error variation function 

is Laplace. The implied ME distribution for y under Mk is Laplace with mean Xkßk and 

variance u\. It can be shown (using equation (5.3) of Soofi and Gokhale 1991a) that 

K{ßk0,olQ,ßluT;Xk,Xi) = \log ^|-) - \log (i) , 

where uf = erf* is given by (5.4). Therefore, Mk < Mt if and only if u%*/<JIQ = e/7r. But 

this is impossible because uf > of0 by (5.4) and e < 7r. Thus, Mk is globally non-nested 

with respect to Mi. Pesaran (1987) showed a similar result for the case when the distribution 

of y under Mk is lognormal. 
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5.1    MDI Tests 

Information theoretic testing of linear hypotheses regarding a regression coefficient vector 

was considered by Kullback and Rosenblatt (1957). They followed the common practice of 

assuming normality of y under various hypotheses and explicated the usual F statistic in 

terms of the discrimination information function. But the problem can be approached using 

the ME and MDI developments. 

Consider the problem of discriminating between two linear relationships Ma and M2 in 

(5.1) when Xk = X, k = 1,2, ßx is known, and ß2 is unknown. Based on quadratic variation 

function with o\ -a2, k = 1,2, we find two ME models for M\ and M2 as shown in (5.3). 

In this case, the two models are observationally equivalent. 

We evaluate (2.8) for the two ME models and find the discrimination information function 

Kir    r   ,2\    (ßi-ß2)'X'X(ß1-ß2) 

This is the information discrepancy due to the two different means of the two multivariate 

normal ME distributions under M\ and M2. 

An information statistic is found by estimating the unknown parameters in (5.5). Kull- 

back and Rosenblatt (1957) suggested replacing the unknown parameters ß2 and a2 in (5.5) 

with their best unbiased estimates, the ordinary least square estimates. Using b2 = b in 

(4.9) and the variance estimate 

(y-Xb2)'(y-Xb2) 
s2 - — -, (5.6) 

n-p 

gives the information statistic 

(bt-ßJX'Xibi-ßJ 
*2 

Pfp,n-p- 

As indicated in the last expression, the discrimination information statistic follows a multiple 

of the F distribution with the usual degrees of freedom. 

Kullback and Rosenblatt (1957) also developed a discrimination information statistic for 

discriminating between a normal regression model and its submodel which is a multiple of 

34 



the usual F ratio. In terms of the ME and MDI developments of this paper, the problem is 

formulated as follows. 

Suppose that Mi ■< M2 with columns of X\ being a subset of columns of X2. Without 

loss of generality, let /3X = (/9l5 • • •, ßPl, 0, • • •, 0)', 0 < pi < p2. Thus ßx is partially known 

and ß2 is completely unknown. 

Based on the quadratic variation with o\ = a2, k = 1,2, the ME model Mk is given by 

(5.3). According to the result given in Part (ii) of Example 1.2, the normal ME model for Mi 

is also the MDI model reference to the normal ME model for M2, subject to the constraint 

E{Y) = Xlß1. 

The MDI statistic for discriminating between the two models is given by 

2K(rßi:ffc a2)   =   2K(f{)i:rb2,al) (5.7) 

b2X2X2b2 
— b1X[X\bi 
s2 

(P2-PI)F, 

where s\ denotes the unbiased variance estimate (5.6) under M2 as suggested by Kullback 

and Rosenblatt (1957). The last equation indicates that the MDI statistic (5.7) is a multiple 

of the usual F ratio obtained by the likelihood ratio method or in the analysis of variance 

procedure. The MDI derivation of the F ratio is further discussed in the next section. 

5.2    MDI Diagnostics 

Let fk{y;0k) be the ME distribution implied by the variation function H(£fc) associated 

with the linear relationships Mk in (5.1). Here, 0k is v* x 1 vector containing the pk coefficients 

and all the parameters related to Vfe(efc). Alternative models are compared according to the 

minimum information discrepancy between the unknown data-generating distribution f(y) 

and fk(y;Ok). 

Among a set of alternatives, Mk, k — 1,2, • • •, the model Mfc. is information optimal if 

*[/(!/):/*.(!/;**•)]   <   K\f(v) ■ rk{y-A)i    forall  k= 1,2,- •• (5.8) 

where K is an estimate of the MDI function and 9k is an estimate of the model parameter. 

The subscript k of /£ underscores the fact that different parametric families may be under 

consideration. 
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The partial F ratio is commonly used in search for selecting a submodel Mk of a normal 

regression model ML. Examples include selecting the number of lags, stepwise regression, 

etc. The use of F as a model selection diagnostic sharply differs from the use of F as a test 

of hypothesis which requires a priori specification of a model. The difference between the 

casual use of F and the formal statistical inference is not generally recognized in common 

practice. 

The MDI statistic (5.7) gives the usual partial F ratio the interpretation of an information 

criterion for discriminating among the submodels of a normal regression model ML. 

Define FIC{k) as 

 £* EL*  (5.9) 
PL-Pk 

FICVk) 
PL-Pk 

Ph-Pk 
(n-pL)(&i-ä2

L) Mk r< ML. 
(PL-Pk)vl 

In the last expression, the variance estimates denote the MLE's under the normal models. 

According to (5.9), FIC(k) is an estimate of the information loss per variable omitted 

from the largest model. A submodel Mk is favored over another submodel Mt whenever 

FIC{k) < FIC(£). 

The FIC(k) interpretation of the partial F ratio follows from the Kullback and Rosen- 

blatt (1957) derivation of the F ratio in (5.7). This interpretation allows the use of the 

partial F statistic as a diagnostic for subset selection. Apart from the philosophical issues, 

in practice, there are generally a number of subsets whose F's are above a threshold; the 

one with the minimum F will be selected according to the FIC(k) criterion. 

In general, estimation of the minimum discrimination information function (5.8) when 

the data-generating distribution H[f(y)} is unknown is a difficult problem. The equivalent 

expression (4.1) has been used for estimating the discrimination information function in a 

number of other contexts and may prove to be useful for the present problem in future 

research in regression context; see, Soofi et al. (1995) and references therein. 

In the regression model selection, the estimation of K[f{y) : f£{y; Ok)] is often bypassed 

and models are compared according to an estimate of the expected log-likelihood function 
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(4.3). The information criterion (5.8) holds if and only if 

Hf\tt,(y;Ök.)}<Hf{my]ek)}    far all   k = l,2,--- (5.10) 

Akaike (1973) estimated the expected information discrepancy under the assumption 

f(y) — fkiV't^L) with 0'L = {O'k,0„k+\,--- ,0VL). He developed the following approximate 

frequentist risk for 0k: 

2EÖ {K\rk(y,0L)} : rk(y;ek)} « -^SMH + 2J± - V±. (5.11) 
Vk n      f*(y-eL)       n        n 

This approximation is obtained using the second order relationship between relative entropy 

and Fisher information, the asymptotic normality of the MLE, and asymptotic Chi-square 

property of some quadratic terms. 

Akaike proposed using the approximate risk (5.11) as an estimate of the information 

criterion (5.8) for selecting a submodel of fk{y\0L).   In a given problem, n, v^, and the 

likelihood function fl{y,0L) remain constant. Thus models with various *Vs are compared 

according to the information criterion (AIC) 

AIC(k) = -2logfZ(y;ek) + 2vk,    vk = 1,2,-•• 

The quantity, n~1AIC(k) is an almost unbiased estimate of the expected log-likelihood 

2Hf[fk(y;ßk,&1)} in (5.10). The model that minimizes AIC(k) is approximately minimum 

risk and satisfies the MDI criterion (5.8). 

For the case of normal regression models (5.3), vk — pk + 1 and AIC(k) is given by 

AIC{k)   =   n[log{2TTe) + loga2
k} + 2{pk + l) (5.12) 

=   2Hirk(y;ßk,a$)} + 2(pk + \). (5.13) 

The constants n and log(2ire) in expression (5.12) are ignoreable in applications. The expres- 

sion (5.13) shows that AIC(k) discriminates among alternative normal models by combining 

the model uncertainty, estimated by the normal regression model entropy, and the number 

of the parameters k, giving them equal weights. 

Sawa (1978) proposed two diagnostics for discriminating among normal regression models 

based on (5.10). A frequentist diagnostic is obtained by inserting estimates u2 and a2 in the 
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expected log-likelihood component of the approximation (4.11), and is given by 

BIC(k) = -2/05 my;ßk,al) + 2(pk + 1) \^J - 2 ^J  ■ 

If C? -J1 is stochastic of order n~1/2, then BIC(k) is an asymptotically unbiased estimate 

of 2Hf\fZ(y] ßk, (J2.)] in the risk function (4.11). The issue of inserting an estimate for u2 in 

the risk function has been criticized by. Learner (1979). 

The variance ratio 0"2/u>2 decreases in pk and is interpreted by Sawa as a "discounting 

factor" for the penalty of increasing the number of variables. For vl/CJ2 = 1, BIC(k) reduces 

to AIC(k). Estimation of a;2 is the main problem with the implementation of BIC(k) 

For the normal regression models BIC(k) is 

~9\ / * 2\ 2 

BIC(k)   =   n\log{2ne) + logal} + 2{Pk + l)\^J-2lj 

=   2H[n(y]ßk,al)} + 2(pk + l)(^-2^   . 

For discriminating between two nested normal models Mk ■< ML with columns of Xk 

being a subset of columns of XL, Sawa suggested using u2 = a\. Under the assumption 

of f(y) = N(ß,u2In), model selection based on BIC{k) is equivalent to that based on 

the magnitude of FIC(k) statistic defined in (5.9). The submodel Mk is favored over ML 

whenever BIC(k) < BIC(L), with the condition in terms of the variance ratio is given as 

niosg)_2(pt+2)(|)+2(|)
2
+2(p1+i)<o. 

The BIC(k) decision rule is based on the magnitude of FIC(k) due the fact that 

&l n-pL 

Sawa (1978) also developed a Bayesian diagnostic for discriminating between nested nor- 

mal regression models based on the lower bound (4.10). He found that the Bayes estimate 

that, under Mk, minimizes the lower bound in (4.11) is 

-2 n + pk      2 

'**= ^p7=2a- 
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The Bayes estimate gives the minimum attainable risk 

2E<ßk,°D\y{#/[/*(?/;#>*)]} = ~ll°9ttivAA) + log( "^p* )•     (s.i4) 

For the case of two nested normal models Mk ^ ML with columns of Xk being a subset of 

columns of XL, Sawa showed that the reduced model is favored by the minimum attainable 

risk (5.14) if and only if 

FIC(k)<    2(w-1)("-^) 
{n + pk)(n -pL - 2)' 

Young (1987) developed an information criterion for discriminating between normal re- 

gression models by defining risk as Eyi^yEß^y K\f(y;ß,u) : f(y;ß,ä2)}. Young 

assumed f(y) = N(ß,u!2In), and used the following prior distributions for the parameters: 

TT(H\U
2
)   —   N(m,u~2W~l), ir(u~2) = Gamma(a,v) 

AßkWl)   =   N{mk,al2W^), Tr(a^2)^=Gamma{ak,uk). (5.15) 

When the priors are weak ( i.e., W —> 0, a —» 0, v —> 0, Wk —* 0, ak —»■ 0, vk —* 0), 

the Bayes estimates of ßk and a2 are approximately equal to the MLE under the model Mk. 

If the priors are weak, then the risk is approximately minimized by the model that minimizes 

CIC(k) - n log&l + pk. 

Comparing with expression (5.12), we note that CIC(k) gives one half as much weight to 

the dimension of the model as that given by AIC(k). 

5.3    Other Discrimination Information Diagnostics 

Ibrahim and Laud (1994) used discrimination information function for model selection in 

the context of a Bayesian predictive approach. In this approach, the model Mk is evaluated 

based on the predictive density for a set of n new observations. Let yN[Xk] denote the vector 

of new observations taken at the design matrix Xk. Then using the normal ME distribution 

(5.3) as the likelihood function under Mfc, the predictive density is given by 

f(VN\Xk]\y) = I jf(y\ßk,a
2Mßk,a

2\y)dßk da\ 
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These authors considered the normal-gamma prior (5.15) for the model parameters. The 

prior mean for ßk was chosen by the pseudo-parameter value mk = (X'kXk)~
lX'kß0 where 

H0 is a "guess" value for //. The prior precision matrix was chosen as Wk = X'kXk. 

Alternative normal models are compared with the largest model ML according to the 

symmetrized discrimination information function 

Kk,L = K[f(yN[Xk}\y) : f{yN\XL\\y)\ + K[f(yN[XL)\y) : f(yif[Xk]\y)]. 

Computation of this expression involves the evaluation of the discrimination function 

between two multivariate t distributions which does not have a closed form. Ibrahim and 

Laud found an approximate expression for the symmetrized information function and showed 

that for the case of vague priors, it is a monotone function of FIC(k). 

Carota, Parmigiani, and Poison (1996) used discrimination information function in the 

context of "model elaboration". In their approach, a model M is embedded in a larger 

family of models Mc; i.e., M = MCo for a specific value Co- The discrimination information 

between the posterior and prior of the elaboration parameter K\^{C\y) : 7r(C)], is used as 

the diagnostic for the elaboration. When K[ir((\y) : 7r(C)] is small, the elaborated model is 

not supported by the data. These authors developed the following linearized approximation 

KMCiV) ■■ *(0] « log{B) + S Ec]y(<; - Co), 

where B is the Savage density ratio which is equivalent to the Bayes factor under certain 

conditions and S is the score function defined as follows: 

These authors discussed a regression example in which the elaboration is defined by the 

inclusion of an additional variable in the model. That is, the elaboration parameter is the 

coefficient of the additional variable. The normal likelihood function (5.3) and the normal- 

gamma prior (5.15) are used. In the prior, the elaboration parameter has mean zero and 

is uncorrelated with the other coefficients. In this problem, K{iv((\y) : 7r(C)] is also the 

discrimination information between two Student-i distributions and does not have a closed 

form. Carota, Parmigiani, and Poison (1996) showed that the linearized version provides an 

accurate approximation when compared with the case of known error variance. 
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5.4    Complexity Diagnostics 

We have already seen that the MDI diagnostics AIC(k), BIC(k), and CIC(k) discriminate 

among the alternative models based on model fit as indicated by the log-likelihood term and 

the model complexity as indicated by a term involving pk\ see also Poskitt (1987). Some 

authors (Rissanen 1986, 1987a, 1987b; Bozdogan 1990; Bozdogan and Haughton 1995) have 

proposed model selection criteria with emphasis of model complexity. 

Rissanen defined stochastic complexity for a given class of models as "the number of 

binary digits with which the observations can be described" (Rissanen 1987a). Let the 

model class be defined by the pair of density functions: 

cf,* = {[f(v\PkM, 7r(0*bk)], pfc = o,i,...}, 

where pk is the number of free parameters in the model pair. Then stochastic complexity of 

the data points yi, ■ ■ •, yn is measured by 

Vk      1       r 
SC(k) = -log J2 —-T / f(y\P"> Ok)dir(0k\Pk),    pk < n. (5.16) 

trrn Pk + l J 

The prior is assumed to be concentrated near the MLE estimate Bk. The model that mini- 

mizes (5.16) in C/j7r is preferred. 

For sufficiently large n, an approximate upper bound for SC(k) is minimized and the 

criterion is referred to as the Minimum Description Length (MDL). Ignoring the non-essential 

terms, MDL(k) compares the models according to: 

d2logf(y\0k) 

del 
MDL{k)   w   -logf(y\0k) + -log 

«   -logf[y\Ok) + -^log n. 

For the normal regression model, MDL(k) may be written as 

MDL{k) « n\log(2ire) + log a2
k\ + —9-^ pk. 

Thus, the weight (log n)/2 given to the dimension of the model pk is larger for MDL(k) in 

comparison with the MDI diagnostics. 
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Bozdogan (1990) defined the complexity of a p-variate normal distribution with covariance 

£ by the maximal mutual information 

C[£(X)]   =   ma,xd[TX/\(TX)1,---,{TX)p] 

= P, p*a) _ \log |E|, (5,7) 
where T is the set of all orthonormal transformations in W. This measure is motivated by 

the fact that the mutual information d{X A Xu • • ■, Xp) is not invariant under axis rotations 

(see Example 2.3), whereas (5.17) is invariant under axis rotations. 

Bozdogan and Haughton (1995) defined Informational Complexity of a model as 

ICOMP(k) = -2logf{y-0k) + 2C[E(0*)], 

where E(0fc) is the covariance matrix of the estimated parameters. These authors also 

discussed attaching a weight an to the complexity term. 

Two alternative methods proposed by Bozdogan and Haughton (1995) for estimating the 

complexity term. One method uses a sample version of the covariance matrix, T,(0k). A 

second method uses the inverse of the estimated Fisher information matrix [.F(ö)]_1. In this 

case, the informational complexity criterion is 

ICOMPIFIM{k) = -2logf(y; 6k) + 2C[{^(öfc)}"1]. 

For the normal regression model, ICOMP(k) is computed as 

ICOMP(k)   =   -2log[f*(y]ßk,Ö-l)\ + 2C{t(ßk)\ 

=   n[log(27re) + log a2
k}+pklog (l^^^j - log \X'kXk\-\ 

The second version of the complexity criterion is computed as 

ICOMPIFIM(k)   =   n[log{2ire) + log &l\ 
Mt     , U].jTr(X'kXk)-

i+2äj/n\ + (Pk + \)iog y — J 

-log \X'kXk\-
1 - log {^ . 
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6    Collinearity Analysis 

The existence of a near linear relationship among the columns of the regression matrix X 

is referred to as (near) collinearity. When X is collinear, the inversion of X'X is problematic 

and creates computational and conceptual problems in regression analysis. The compu- 

tational issue is that the solution to the least square equations, b = (X'X)~1X'y, changes 

drastically with a slight perturbation of X. The conceptual aspects of the collinearity are the 

problems associated with the inference based on a distribution that depends on a collinear 

regression matrix. 

Often the subject of inference is the regression coefficient vector, ß. The traditional 

literature has casted the collinearity problem as the lack of adequate "information" in the 

data for estimating ß, but has not gone beyond the semantic notion of information. Formally, 

the effects of collinearity on information about ß can be measured in terms of the entropy, 

relative entropy, and mutual information functions discussed in Section 2 (Soon 1988, 1990). 

Consider the normal ME regression model f*(y;ß,a2) = N(Xß,a2In). In the Bayesian 

framework, ß is subject to variation and the posterior distribution of ß, given the data 

is the vehicle of inference about the regression coefficients. In the frequentist approach, 

the inference about the regression coefficient is based on the distribution induced by the 

sampling variation of the data on an estimate of ß. However, as will be seen, there are some 

information dualities between the two approaches. 

The following reparametrization of (3.1) is useful for collinearity analysis. 

y = (XT)(r'ß) + £ = Wcx + e, (6.1) 

where T = [7i,-">7P] is the orthogonal matrix of the eigenvectors of X'X and W = 

[Wi, • ■ • ,Wp] is the transformed regression matrix in the directions of the principal compo- 

nents of X. Note that 

( Aj    0    • • •    0 \ 

0    A2   •••    0 
W'W = A = 

\ 0    0    • • •   Xp i 

(6.2) 

Ai >,•••,> Ap being the eigenvalues of X'X. 
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6.1    Collinearity Diagnostics for Least Square Regression 

The solution to the least square equation, b = (X'X^X'y, is justified as an estimate of 

ß according to various estimation criteria. It is the MLE of ß under normal ME regression 

model.   In Section 4, b was seen as the MDIM, an approximate MDIB, and the BMOM 

estimate of ß. 

Consider the case when the only prior information used about ß is the ranges of the 

variations of /?/s. As shown in Table 2, the ME prior ir*{ß) is uniform. The prior entropy 

is an increasing function of the ranges of the variations. If the ranges are very large, then 

the prior is noninformative about predicting the regression coefficients; i.e., H[ir*{ß)] is a 

large constant. Given the data and a2, the conditional posterior distribution is ir(ß\y, a2) = 

N\b,cr2{X'X)-1}. 

The amount of uncertainty in predicting a value of ß is measured by the posterior entropy 

Hx(ß\y,<r2) = \log{2-Kea2) - lo9\X'X\^. (6.3) 

Since the prior is noninformative, the effects of collinearity on the information content of the 

data about the regression coefficients are examined based on Ix{ß\v2) = -Hx{ß\y,v )• 

The advantage of the representation (6.1) is that ir(oc\y,a2) = N(a,a2A~1), a = T'b 

and A is defined in (6.2). That is,the regression coefficients in the directions of the principal 

components CCJ = ■j'jß are uncorrelated normal, hence are independent. Writing the deter- 

minant in (6.3) as the product of the eigenvalues, the posterior entropy is decomposed in 

terms of the entropies of the independent components of a, 

M/V)   =  ElogXf-fyogfreo2) (6.4) 

V 

= EM0;!0-2) 
=   Iw{oc\a2). 

The components of information in (6.4) are comparable only when the columns of X are equi- 

librated. Henceforth, assume that the columns of X are scaled so that X'X is in correlation 

form. 
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Given the error variance a2, the information quantities IWj(ctj\a2) are ordered according 

to the eigenvalues of X'X, with the first element ax — ~f[ß being the most informative (min- 

imum entropy); i.e. the least difficult to predict. Note that "given a2" implies the presence 

of all the components in the regression equation. Thus the components of information in 

(6.4) are not criteria for reducing the model. They display the information spectrum of the 

regression matrix as a whole. 

The explanatory variables are most informative (minimum entropy) about the regression 

coefficients when the regression matrix is orthogonal. Thus, a measure of information loss 

due to collinearity of X is given by the information difference 

ILx(ß\a2)   =   Imax(ßW2) ~ IxißW2) (6-5) 

=   IXo(ß\a2)-Ix(ß\a2) 

=   -log\X'X\1'2 

v 

where X° denote an orthogonal reference regression matrix. 

The information indices of a regression matrix are defined by the information differences: 

- -ar 
=   log Kj{X),     j = l,---,p, 

where Kj{X), j = 1, • • • ,p are the condition indices of the regression matrix (Belsley, Kuh, 

and Welsch 1980). 

The information number of a regression matrix is defined by the information range 

/A \1/2 

A(X) = logl^-\     =logK(X), 

where K(X) is the condition number of X. 

The information spectrum of X° is uniform and Aj(X°) = 0 for all j = 1, • • • ,p. There- 

fore, the origin of measurement for the information indices is the orthogonality. For example, 

A(X) directly measures the maximum extent of the collinearity of X in relationship to the 
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orthogonality. Other consequences of the logarithmic transformations of \X'X\ and K are 

discussed Soofi (1990). 

In the least square regression, a computed b is viewed as an outcome of the sampling 

distribution f{b\ß, a2) = N\ß, a2{X'X)-l\. The entropy of the sampling distribution is also 

given by (6.3). Therefore, all the statements made regarding the posterior entropy (6.3) 

also have frequentist interpretations. In the sampling theory inference, (6.3) quantifies the 

amount of uncertainty in predicting a value of the least square estimate b. 

The effects of collinearity on the least square estimation may also be measured by the 

discrimination information function between the actual sampling distribution fx(b\ß,a ) = 

N[ß,a2(X'X)~l] and the sampling distribution of the estimate as if the regressors were 

orthogonal. In collinearity analysis, traditionally it is assumed that the artificial refer- 

ence sampling distribution based on the orthogonal regression matrix has mean ß, i.e., 

fXo(b°\ß,a2) = N(ß,a2Ip). Consequently, the discrimination information between the two 

sampling distributions is given by the information discrepancy due to the covariances of two 

normal distributions: 

K(b:b°)   =   K[fx(b\ß,a2):fXo(b°\ß,a2)} 

=    ^-[TriX'Xr'-loglX'Xl-'-p 

1 
2 

p   I       P 

j=l *3       j=\ 

Since K(b : b°) > 0, with equality if and only if X is orthogonal and K(b : b°) -> oo 

as X descents to perfect collinearity, K{b : b°) measures the loss of information in the least 

square estimation due to the nonorthogonality of X. 

Tr(X'Xyl and \X'X\ are collinearity diagnostics with traditional statistical interpre- 

tations. K(b : 6°) is composed of the trace, determinant, and the rank of (X'X)'1. The 

information loss is measured by a comprehensive summary of the covariance matrix of the 

sampling distribution and is inclusive of the traditional measures . 

The discrimination information function between the actual posterior distribution of the 

regression coefficient vector, irx(ß\y,a2) = N\b,a2(X'X)-1] , and the posterior distribution 
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as if the regressors were orthogonal, ^xo{ß\Vi °"2) = N(&°, &2IP) is 

The second term is the information discrepancy due to two different posterior means. This 

term is a measure of the effect of collinearity on the solutions to the least square equations 

which is ignored in the traditional collinearity diagnostics. 

It is well known that when X is near-collinear, the least square solutions are sensitive to 

small perturbations of X. The discrimination information function between the perturbed 

posterior distribution and the actual posterior distribution is 

K(nx. : irx\y,a2)   =   I \TV{X'X){X*'X*)~l - log\X'X{X*'X*yl\ -p 

{b-b*)'X'X(b-b*) 
+ W 

where X* = X + dX is the perturbed regression matrix and b* is the perturbed least 

square solution. The first term measures the effect of the perturbation on the covariance 

structure. This term may also be interpreted as the effect of the perturbation on the sampling 

distribution of the least square estimate. The second term is the effect of perturbation on 

the solutions to the least square equations. 

6.2    Collinearity Diagnostics With Prior Information 

Consider the case when the prior information assumed about the regression coefficients is in 

the form of the quadratic variation functions V(/3) = (ßj — m,j), j = 1, • • • ,p. Table 2 gives 

the ME prior 7T*(/3|ra,r2) = N(m,r2Ip). The prior independence among the regression 

coefficients is due to the fact that no information about the interrelationships between were 

used in the ME computation. 

The prior uncertainty about the regression coefficients is given by 

H(ß\r2) = ^log(2ire) + P-log r2. (6.6) 

Based on the ME normal likelihood, the posterior distribution given the error variance 

is TT(/%, a2, m, r2) = N[b{<f>, m), a2(X'X + (f>IPY
x] where 
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b{4>, m) = (X'X + <j>Ip)-\X'y + 4>m). (6.7) 

and 

°1 
T2 

is the prior to model precision ratio. 

The posterior entropy is 

Hx{ß\y,a2,T2) = P-log{2<Ke) + ^log a2 + log\4>Ip + X'X\^2. (6.8) 

The sample information about the regression coefficients is given by the entropy difference 

4x{ß\4>)   =   H(ß\T2)-Hx(ß\y,o2,T2) (6.9) 

=   log\Ip + <t>-lX'X\112. 

In fact, tix(ß\<P) is the mutual information between y and ß, flx{ß\<f>) = ^x{ß ^y\4>)- Here, 

taking the expectation with respect to the distribution of y is not needed because the entropy 

difference (6.9) is functionally independent of y. (More generally, every sample drawn from 

a normal distribution is informative about the mean which is also drawn from a normal 

distribution.) 

Although the prior entropy (6.6) depends on the prior variance and the posterior entropy 

(6.8) depends on the prior and error variances, the sample information (6.9) depends on the 

precision ratio (ß, which is the pivotal quantity in the collinearity analysis in the presence of 

prior information. The sample information is decomposable as: 

v 

=   log\Ip + r^\112 

=   i9iy(a|0). 

Thus given <f>, the components of the sample information tiw.faty) are ordered according 

to the eigenvalues. 
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The mutual information is maximum when the regression matrix is orthogonal. In the 

presence of prior information, a measure of information loss due to collinearity of X is given 

by the information difference 

= 0Xo(ß\4>) - tx(ß\4>) 

- w&r 
The sample information loss ■dLx{ß\4>) has the following properties, 

(i) dLx{ß\4>) is monotonically decreasing in 4>.   Given <x2, -dLx{ß\4>) 1S monotonically 

decreasing in the prior precision r-2. 

(ii) Given a2, tfLx(ß\4>) < ILx{ß\a2) for all r2 > 0; and dLx{ß\<f>) -> ILx{ß\a2) as 

r2 —> oo. 

Given the precision ratio (ß, the information indices of X are obtained by the information 

differences 

Ajpr,*)   =  <MTW) - MTJ/W (6-11) 

=   log Kj[<f>Ip + X'X],     j = l,-'m>P, 

Aj(X, 4>) generalizes Aj(X) which is given by (p = 0. Further generalization may be obtained 

by using ^, j = 1, • • • ,p in (6.11). 

The information indices (6.11) are also interpretable in the sampling theory framework. 

By letting m = 0 in (6.7) we obtain the ridge estimate of the regression coefficients with 

the ridge parameter, (j). The entropy of the sampling distribution of the ridge estimate is 

also given by (6.8). By the second equality in (6.11) the information indices display the 

information spectrum of the sampling distribution of the ridge estimate b(4>). 

Another measure of information loss due collinearity in the presence of prior information 

is given by the discrimination information function between the actual posterior distribu- 

tion 7Tx(/3|2/,o'2,m,T2) and the posterior distribution as if the regressors were orthogonal, 
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nx°{ß\y, 0-2,m,T2). This discrimination information loss due to collinearity is given by 

K{irx ■■KX°\y,cr2,m,T2) = 

\ {Tr [(1 + <f>)(X'X + cßlp)-1] - log |(1 + <f>){X'X + (t>Iv)-
l\ -p] 

2 

+ {-^p-\b(^m) - b°(<ß,m)}'[b(<f>,rn) - Vfam)]. 

The discrimination information loss has the following properties, 

(i) For all 0 > 0, K(nx ■ 7Tx°|2/,0-2,ra,T2) is finite for all X. 

(ii) For a given X, K(irx : nx°\y,a2,m,T2) is monotonically decreasing in (p. 

(iii) For all r2 > 0, K{irx : <KXo\y,a2,m,T2) < K{irx : TTXo\y,a2). 

We have seen that the information loss due to collinearity, measured by ■dLx(ß\4') or 

K(nx : irXo\y,a2,m,T2) is always less than the loss when no prior information regarding 

the variation of the regression coefficients is used. Therefore, one can compensate for the 

sample loss of information due to collinearity by acquiring nonsample information in order 

to decrease the maximum average variation of the regression coefficients, r2; i.e. to increase 

the prior precision. A collinearity information graph may be constructed by plotting various 

information functions against 4> or r2, see Soon (1990). The graph is useful for determining 

the prior precision needed for a certain amount of collinearity loss reduction, 

Note that the form of prior information used is important for the collinearity analysis. 

The normal ME prior 7T*(/3|m,r2) = N(m,r2In) is obtained based on the information 

regarding the variations of the individual regression coefficients. The diagnostics discussed 

above are based on the prior ignorance about the interrelationships among the regression 

coefficients. If we wish to include information regarding the interrelationships among the 

regression coefficients in the prior, we should use the variation function of the form V(/3) = 

(ß -m){ß- m)'. Then Table 2 gives the ME prior 7r*(/3|m,r2,il0 = AT(m,r2^). In this 

case, the sample information about the regression coefficients is given by 

0xW,*) = log\Ip + <f>-lyX'X\112- 

As an example, consider Zellner's #-prior (3.6) which uses * = (X'X)-\ Based on this 
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prior, the sample information about the regression coefficients is given by 

/v\-u .-Pi-J1+<^ dx(ß\<P,V) = (X'X)-l) = tlog 

Because the sample information regarding the correlation structure of the regression coef- 

ficients has already been used in the prior, the sample does not add any new information 

about the correlation. This fact is reflected in the sample information function being free 

from X. The two cases, ^ = Ip, and # = (X'X)'1 are two extremes in their impacts 

on the collinearity effects. The prior independence reduces the effects collinearity on the 

information about the regression coefficients, whereas ty = {X'X)~l leaves the collinearity 

problem intact. 

6.3    A Collinearity Diagnostic for Random Regressors 

Consider the case when the explanatory variables X = (Xi, • • ■ ,XP)' are jointly normal. 

Then the information about each Xj provided by the set of other explanatory variables X(_j) 

is given by the entropy reduction 

WXAXM)   =   H(Xj)-H(Xj\X^j)) 

where p2{Xj] X(__,)) is the square of multiple correlation between Xj and the other explana- 

tory variables. 

As indicated in Example 2.3 (iii), the entropy reduction tf(X,|X(_.,•)) is also the mutual 

information function between Xj and the other explanatory variables, "d(Xj A .X (_,)). As 

such, fl(Xj\X(_j)) measures functional dependency between Xj and the other explanatory 

variables. For the multivariate normal case the functional dependency is linear. Therefore, 

i9(-Xj|-X"(_,•)) is an information measure of collinearity. 

The sample version of fl(Xj\X(-j)) is related to the traditional variance inflation factor 

(VIF) as 

D(Xj\XH)) = log VIF]'2. (6.12) 

The VIF is a useful and widely-used collinearity diagnostic. Traditionally, VIFj is inter- 

preted as the inflation factor of the variance of the sampling distribution of the least square 

51 



estimate 6,-, as compared with the case of orthogonal regressors. It is also interpreted as 

a transformation of the multiple correlation R). The relation (6.12) gives an information 

theoretic interpretation to VIF. 

6.4    Principal Component Regression 

Principal Component Regression (PCR) refers to selecting a subset of the transformed 

regressors in the reparametrized model (6.1) and estimating ß based on the reduced model. 

The purpose of PCR is to reduce the effects of collinearity on the regression coefficients. 

Let Q be a subset of the index set {1, • • • ,p} containing q elements. Let TQ denote the 

submatrix containing the q eigenvectors -yp j € Q of X'X. Then the model (6.1) may be 

reduced as 

y = (xr)(r'ß) + e 

= (xrQ)(r'Qß) + (XTQ)(r'Qß) + e 

=   WQaQ + sQ, (6-13) 

where Q is the complement of Q in the set of the first p integer; WQ and ctQ contain Wj 

and «j, j e Q, respectively. The error term in (6.13) is defined by eQ = WQOLQ + e. If the 

specification of the full model is correct, then for q < p, £Q does not have the covariance 

structure a2In. In the sampling theory approach OLQ is set to zero which contradicts the full 

model specification. In Bayesian analysis the issue is of no concern when the prior expected 

value is Eißj) = 0; see Soofi (1988)for details. 

Given an estimate &Q, a PCR estimate of ß is obtained by ßQ = TQÖCQ. The Bayes 

PCR estimate of ß based on the ME normal likelihood and the ME normal prior TT*(/3|T
2
) = 

7V(0, T2IV) is given by 

ßQ(<fiQ) = rQ[AQ + WV». (6-14) 

where (j)Q is the precision ratio for the reduced model and AQ = W'QWQ which is the subma- 

trix of (6.2) with diagonal elements Xj, j eQ. 

The PCR estimate (6.14) is a general class representation of several well-known regression 

estimates. For q = p, (6.14) gives the Bayes estimate b{<f), 0) which is also the ridge regression 
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estimate &(</>). When 0Q = 0 and q = p, (6.14) gives the ordinary least square estimate b 

which is the posterior mean under uniform prior. The traditional PCR estimate is found by 

letting 0 = 0. 

The main issue in PCR is selection of Q. The information functions (6.4) and (6.10) can 

be used to measure the amount of information about ß retained in a reduced model. In 

the previous sections, the collinearity diagnostics were developed as if the regression error 

variance a2 and the prior variance r2 were known. In practice these quantities are estimated 

for computing the information functions. 

Let Cq be an estimate obtained using the reduced model (6.13). Then the amount of 

information (6.4) retained in the reduced models about ß are compared according to 

7~QEE2/VVQ(OQ|<7
2
,)   =   2IWQ{V'Qß\ä%) 

= E^f^-)-^27re)- (6-15) 
j€Q \aQ/ 

Similarly, using an estimate f2, the amount of information (6.10) retained in the reduced 

models about ß are compared according to 

dQ = 2dWQ{ocQ\^Q)   =   2ßWQ{Y'Qß\4>Q) 

=   EMHf1^) 
ieo 

=   E^fl + ^-f2). (6.16) 

The information criteria (6.15) and (6.16) compare models based on the relative informa- 

tional value of WQ within the set of regressors Wi,---,WP as measured by the eigenvalues 

•\/> 3 ^ Qi an<i the precision of the model as estimated by 1/CTQ. 

The merits of the information functions for PCR are best seen in the case of simple regres- 

sion models that include a single transformed variable Wj\ i.e., Q = {j}. The components 

of information (6.4) about the parameters aj = *y'jß are compared according to 

It = 2IW. (Y^lcrJ) = log (!±) - log(2ne),     j = 1, • • • ,p, (6.17) 

where aft is the error variance for the estimated simple regression. 
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The components of sample information (6.10) are compared according to 

0j = 2öWjh'jß\4>j)   -   logil + frXj) 

=   logU + ^A     j = l,--,p. (6.18) 

Both information functions (6.17) and (6.18) compare components based on the ratio 

\j/a2-. The eigenvalue signifies the relative informational value of Wj within the set of re- 

gressors Wu ■ ■ •, Wp, and the error variance indicates the relative strength of the relationship 

between the Wj and the dependent variable. These information functions favor components 

that are strong on the balance of these two features. 

6.5    MDI Selection of Prior (Ridge) Parameter 

In the presence of severe collinearity, the least square procedure often produces meaningless 

estimates for regression coefficients. The signs and/or the magnitudes of the least square 

estimates or of some functions of the estimated coefficients may not be meaningful. If the 

problem is due to collinearity, it should be corrected by reducing the effects of the collinearity 

in estimation. For example, when the regression matrix is orthogonal, the signs of the least 

square estimates correspond to the signs of the simple correlation coefficients between the 

regressors and the dependent variable. In the case of severe collinearity the signs of the least 

square coefficients may differ from the orthogonal case. Thus reduction of the extent of the 

collinearity should correct the problem. Since the least square estimates do not satisfy some 

constraints that the regression coefficients should satisfy, it should be corrected. 

Consider the family of estimates constructed by the linear transforms of the least square 

estimate 

V = {bD = T'DFb : D = diag[du ■ • • ,dp], dj > 0, j = 1, • • • ,p} , 

where T is the matrix of the eigenvectors of X'X. 

The elements of the diagonal matrix dj, j = 1, • • • ,p are the altering coefficients. Their 

role is more directly seen in estimation of the coefficient a of the reparametrized model (6.1). 

The estimate of a corresponding to bD is given by the simpler linear transform 

dp = Da, 
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where a = Tb is the least square estimate of a. 

A well-known subfamily in V is defined by 5$ = T'a^ with 

a* = (A + $)_1Aa (6.19) 

where A is the diagonal matrix defined in (6.2) and $ is a diagonal matrix with diagonal 

elements <f)j > 0, j = 1, • • • ,p. The altering coefficients in (6.19) are 

o<rfJ = Y4r^1'   j = i,••-,?• 

For 4>j = (j>, j = l,---,p, (6.19) gives the Bayes estimate &(</>,0) shown in (6.7) which 

is also referred to as the ordinary ridge estimate. The posterior mean based on the normal 

likelihood and the normal prior 7r*(a) = JV(0,\I'), \P = diag[rf, ■ ■ ■ ,r%] is in the form of 

(6.19) with (f)j = cr2/Tj. In the ridge regression,(6.19) is referred to as the generalized ridge 

estimate (Hoerl and Kennard 1970). 

When the least square is transformed in order to circumvent the ill-effects of collinearity, 

then it is natural to seek the minimal amount of alteration required. The alteration is 

considered as a perturbation of a distribution associated with the least square estimate for the 

inferential purposes. In Bayesian analysis, b is the Bayes estimate under the noninformative 

prior and the posterior distribution is altered with the use of prior. Thus the search is for 

identifying the minimum prior precision r? required for an adequate estimation of ß (Soofi 

and Soofi 1989). In the sampling theory approach, the sampling distribution is perturbed. 

Thus the problem is to select, for example, a ridge procedure that gives adequate parameter 

estimates with minimal perturbation (Soofi and Gokhale 1991b). 

More formally, suppose that the regression coefficient is constrained as ß G B, where B 

is a subset of W. Then b*D E V is chosen such that: 

(i) b*D E B; 

(ii) K(b*D : b) < K(bD : b) for all b G V, where K(bD : b) is the discrimination information 

function between the distributions associated with the two estimates. 

For the case of normal ME likelihood and the normal ME prior, the discrimination 

information function is: 
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K{bD:b\b,a2)   =   K{aD : a\a,a2) 

1 
TrD2 + log\D2\-p 

a'(D - IP)A(D - Ip)a 
+ 2a2 

2 L 

K(aD : a\a, a2) is a convex function of the altering coefficients with the global minimum 

at D = Ip. Thus, it may minimized with respect to the altering coefficients. In practice 

a2 are estimated and the minimization is iterative. For the case of (6.19), the minimization 

is with respect to $. In some applications the formal minimization may be replaced with 

simpler search methods. For a Bayesian application see Soofi and Soofi (1989) and for a ridge 

analysis see Soofi and Gokhale (1991b). In the sampling theory approach K(aD : a\a,a2) 

is the MLE estimate of the discrimination information function between the distributions of 

the ridge and the least square estimates. 

7    Influence of Observations on Information 

In this section I present diagnostics for measuring influence of an observation on the 

distributions associated with the regression coefficients and on the predictive distribution. 

Consider the case of the noninformative prior for the coefficients of the normal ME 

regression model (3.4). The influence diagnostics for this case are interpretable in terms 

of the ordinary least regression. The extension to the informative priors may be developed 

similarly. 

Let X-i and y_t denote the data with the ith observation deleted. Then the change in 

the amount of uncertainty in predicting a value of ß due to the presence and absence of the 

ith observation is given by the posterior entropy difference 

AH, = Hx_My^2)-Hx(P\y-i,(r2) 

hj \x'x\ y/2 

= lo9{\xüx-\) 
=   -log(l-hu)l/2>0, 

where ha is the ith diagonal element of X_i(XiiX_i)-
1X_i; see Poston (1995) for the proof 

of the last equality.   It is well-known that 0 < hü < 1, thus A{ is well defined.   The last 
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inequality indicates that the an observation reduces uncertainty, hence is informative. The 

influence is negligible when ha fa 1. 

A Hi measures the influence of an observation on the extent of the collinearity. Another 

measure of influence on the collinearity is obtained using the change in the information 

number of the regression matrix 

A( = A(^-A(X)=tesfgi>)1/2 

where K(X) is the condition number of X. 

The discrimination information function between the two posterior distributions is 

2tf(7rx_i:7rx|y,<r2)   =   [Tr{X'X){XjX^ - log^'XiX^X^l -p 

(b-b_i)'X'X(b-b_i) 
a2 

The second term is the influence on the posterior mean which is the least square estimate. It 

may also be written in terms of the fitted values of y. This term when the error variance is 

estimated by the regression mean square error equals to a multiple of the Cook distance. The 

discrimination information is more comprehensive then the traditional diagnostics because 

of the first term which measure the influence of the ith observation on the posterior variance 

(or variance of the sampling distribution). 

Johnson and Geisser (1983) developed diagnostics for assessing the influence of observa- 

tions on predictive distribution of n new observations yN\X] corresponding to the regression 

matrix X. The predictive influence of a subset of observations is measured by the following 

discrimination information functions predictive densities: 2K[f(yN[X]\y_a) : /(j/jvl-^llj/)] 

or 2K\f(yN[X]\y) : f{yN[X]\y_s)]t where y_s denotes the data exclusive of the subset under 

consideration. 

For the normal ME model (3.4) with noninformative prior, the conditional predictive 

density is 

f(yN[X]\y,a2) = J r(y\ß,a2)ir(ß\y,<j2)dß = N(Xb,Va2), 

where V — X(X'X)~lX'. Similarly, the conditional predictive density when the ith observa- 

tion is deleted is found to be f{yN[X\\y_i, a
2) = N{Xb_h V{a

2) where V{ = XiX'^X^^X'. 
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Then an influence measure of the ith observation is given by 

2K[f(yN[X}\y-i):f(yN[X]\y)}=   =   [Tr{VVr')-log\VV^\-p 

+ <r2 

The first term quantifies the influence on the predictive covariance. The last term, when a2 

estimated by the mean square error, is proportional to the Cook distance. 

Johnson and Geisser (1983) also developed influence diagnostics for the case of unknown 

variance. They used Jeffreys prior which gives the multivariate t distribution (4.19) for the 

predictive density. Since the discrimination information function between two t densities does 

not have a closed form, the influence diagnostics are developed based on an approximation. 

These authors extends their results to the case of normal-gamma prior (5.15). Carlin and 

Poison (1991) extended this line of work to case of nonlinear models. 
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