
REPORT NO: NAWCADPAX-96-194-TR £^~/£3>

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA

Peter R. Turner, Ph.D.
Mathematics Department
U S Naval Academy
Annapolis, MD 21402

5 AUGUST 1995

FINAL REPORT
Period Covering June 1995 to August 1995

Approved for Public Release; Distribution is Unlimited. C3~"|

Prepared for
OFFICE OF^fAVAL RESEARCH
800 N. Quincy Street
Arlington, ^A 22217

» -5 ■■ iE!i^£^.—-^

N AWCADPAX--96-194-TR

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial
products herein do not constitute an endorsement by the Government nor do they convey or
imply the license or right to use such products.

Hy. /ik CS^- 'PU^s*^ D»te: 7fifqt Reviewed ~r ■ — - -^~-
Author/COTR-^^

(J S LEVEL III Manager
Reviewed«- ^^ "/ ^^ ^ Date:- ''lf'*^

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing '™t™«'°™^"*'"9 e,«ting datasourc«
«thermalind maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect^ofthis
col Wton 3MnfS Älidl^su^ions for reducing this burden, to Washington Headquarters Services 0]^r^J^<^>0"^^^^ S?MSM
DavisWahwav Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Pr0)ect (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
5 August 1995

3. REPORT TYPE AND DATES COVERED
June 1995 to August 1995

4. TITLE AND SUBTITLE

Gauss Elimination: Workhorse of Linear Algebra

6. AUTHOR(S)

Peter R. Turner, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Air Warfare Center
Aircraft Division Wanninster
Code 455100R07
Wanninster, PA 18974-0591

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

NAWCADPAX—96-194-TR

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Mathematics Department
U S Naval Academy
Annapolis, MD 21402

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release; Distribution is Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This report brings together many different aspects of Gauss elimination. The

basic Gauss elimination (GE) algorithm is a fundamental tool of linear algebra
computation for solving systems, computing determinants and determining the rank of
matrix. All of these are discussed in varying contexts. These include different
arithmetic or algebraic setting such as integer arithmetic or polynomial rings as
well as conventional real (floating-point) arithmetic. These have effects on both
accuracy and complexity analyses of the algorithm. These, too, are covered here. The
impact of modern parallel computer architecture on GE is also included. Finally, GE
is considered within the contex of "noisy" matrices. The effect of the noise in
matrix entries on the effective rank of the matrix is the central aspect considered
here.

14. SUBJECT TERMS

Gauss elimination, Polynomial rings, Floating-point

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

52
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-I8
298-102

NAWCADPAX-96-194-TR

Table of Contents

Abstract 1
1. Introduction 1

1.1. Problem statement and notation 2
2. The Basic Algorithms 3

2.1. The ijk-form 4

2.2. Algorithmic variations '

2.3. Applications °

2.4. Elementary complexity analysis *■*■

2.5. Elementary error analysis -^
3. Gauss Elimination Over the Integers 14

3.1. Division-free Gauss elimination *■&

3.2. Growth in dynamic range 1°

3.3. Reducing the range growth *°

3.4. Effect on computation 22

3.5. Pivoting 23

3.6. Complexity revisited 23

3.7. Arithmetic with long integers 24

3.8. Should we use real arithmetic anyway? 26
4. Over the Rationals 27

4.1. Rational representations 27

4.2. GE algorithm for rational arithmetic 28

4.3. Complexity

4.4. Growth in dynamic range
5. General Rings 31

5.1. Problem definitions 31

5.2. Algorithms 32

5.3. Solvability for systems of equations 34
6. The Impact of Parallelism 36

6.1. Vector and pipeline architectures

6.2. Array architectures

6.3. Parallelism for long integer arithmetic
7. Noisy Matrices 40

7.1. Determination of effective rank 41

7.2. Other approaches
References 45

li

29

29

36

38

40

NAWCADPAX-96-194-TR

Gauss Elimination:
Workhorse of Linear Algebra

PETER R TURNER

MATHEMATICS DEPARTMENT, U S NAVAL ACADEMY, ANNAPOLIS, MD 21402

ABSTRACT. This report brings together many different aspects of Gauss elimi-
nation. The basic Gauss elimination (GE) algorithm is a fundamental tool of linear
algebra computation for solving systems, computing determinants and determining
the rank of a matrix. All of these are discussed in varying contexts. These include
different arithmetic or algebraic settings such as integer arithmetic or polynomial
rings as well as conventional real (floating-point) arithmetic. These have effects on
both accuracy and complexity analyses of the algorithm. These, too, are covered
here. The impact of modern parallel computer architecture on GE is also included.
Finally, GE is considered within the context of "noisy" matrices. The effect of the
noise in matrix entries on the effective rank of the matrix is the central aspect con-
sidered here.

1. INTRODUCTION

In some form Gauss elimination, or GE as we shall often abbreviate it here, is probably
the most widely used single computational tool in scientific computing for a very wide
range of underlying problems. These include solution of partial differential equations,
linear programming and least squares approximation in its various guises such as signal
processing and linear regression. The basic problems for which it is used are the solution
of linear systems of equations (including obtaining the solution space for underdetermined
systems), computation of matrix determinants, determination of matrix rank or detection
of singularity.

This report is intended to provide a unified treatment of one of the most important
tools of linear algebra and of scientific computing. Gauss elimination is usually to be found
as a major topic in texts on linear algebra (where the emphasis is on its theoretical basis),
numerical analysis (with an emphasis on its practical implementation, paying attention
to questions of roundoff error and numerical stability), parallel and vector computing (as
an important illustration of the potential power of parallel computers). See [l], [3], [7],
[17], [18] for examples.

Another aspect which is usually ignored in those particular texts is the interplay
between GE and the computer arithmetic being used. Roundoff error analysis covers
traditional floating-point computation for real (or complex) systems. For integer systems,
however, the problem is not roundoff error but the growth in the matrix elements as the
elimination proceeds. Recently this aspect must be extended beyond computer arithmetic
to include questions related to the computer algebra system. In addition to the texts
mentioned above, GE is included as a symbolic routine in computer algebra systems such
as Maple1 and Mathematical In this context, GE is not necessarily restricted to matrices
with numerical entries, but includes matrices with entries in other algebraic rings such as
algebraic polynomials. See [2], [27] for example. (Also note Maple linear algebra library
functions such as pffge which performs "fraction-free" GE over polynomial rings.)

1 Maple is a registered trademark of Maple Waterloo Software, IDC.
2Matheinatica is a registered trademark of Wolfram Research, IDC.

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 2

In this report we begin with a description of the basic GE algorithm and some vari-
ations of this. Section 2 also contains a brief review of the main applications and of the
complexity and error analyses for these. Section 3 is concerned with integer GE. The re-
quirements of integer arithmetic raises some different issues. Roundoff error is no longer a
problem, of course. Since the integers are not closed under division, we describe first the
division-free form of the algorithm and then the questions raised by this -most notably,
the growth of the dynamic range that is needed and what if any pivoting strategy should
be used in an integer-arithmetic setting. Some of these issues were previously discussed
for the specific context of residue number systems in the series of reports and papers [10],

[11], [21], [22], [23]. . .
Sections 4 and 5 deal with GE for matrices with entries m other fields or rings, bpecil-

ically, Section 4 discusses the use of rational arithmetic while Section 5 is concerned with
more'general rings such as rings of polynomials. The question of solvability is addressed.

Section 6 is devoted to the impact of various forms of parallel computer architectures
on the implementation and efficiency of GE. Vector and array architectures are considered.
The use of such systems for performing very long integer arithmetic for standard integer
GE is also considered here. In Section 7, we consider GE as a tool for a specific practical
problem - namely the determination of the effective rank of a matrix whose entries are
contaminated by noise. One of the key aspects here is setting the appropriate tolerance
level. This question is discussed in some detail.

1.1. Problem statement and notation. Except where specifically stated we shall
consider a square nxn matrix A although some of the problems and solutions are sim-
ilarly valid for rectangular matrices. Elements of the matrix A will be denoted by a{j.
Its determinant is denoted detA and its rank by r(A). The three basic problems we
are concerned with here are the solution of systems of equations, computing det^4 and
determining r (A). For definitions of any of these, see a standard text such as [l].

In the case of systems of equations, we use the notation

Ax = b

and the elements of the unknown and right-hand side vectors are denoted x{, b{.
The matrices L = (Uj) and U = (uy) denote lower and upper triangular matrices

respectively. Typically they will be lower and upper triangular factors of A so that
A = LU. In cases where any pivoting has been used L, U are the factors of a permuted
version of A. That is LU = PA where P is a permutation matrix indicating the order in
which the rows of A have been used. (In a practical implementation of GE. the matrix P
would usually be stored in the form of a permutation or pivot vector. We use the notation

P for either form.)
In the context of either error analysis or matrices contaminated with noise we shall

use E for the error or noise matrix. In case we wish the noise level to be explicit, we use
Ea to denote a matrix whose elements are (independent, identically distributed) normally
distributed random variables with mean 0 and standard deviation a. That is each element
of E„ is drawn from .V (0,a).

The various arithmetic and algebraic systems in which computation is taking place

are:

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA

R the real numbers
Z the integers
Q the rationals
F the floating-point, fl.p., number system
R[i] algebraic polynomials over the reals
11 a general algebraic ring

Clearly, F covers a wide range of different wordlengths, precisions and implementations of
floating-point arithmetic. For most of this work the details of the particular fl.p. system
being used are not central since the general properties are similar. Specific fl.p. systems
will be detailed as needed.

2. THE BASIC ALGORITHMS

The underlying principle of GE is that multiples of the first equation (or row of the
matrix) are subtracted from all subsequent equations (rows) to eliminate the first unknown
(element) from each of these. The process is then repeated to eliminate entries below the
diagonal of each column in turn. The system of equations is then solved by substitution
in the resulting triangular system. Alternatively the determinant of the original matrix is
given by the product of the diagonal entries in the resulting matrix. The rank is given by
counting the number of nonzero elements on the diagonal of the final array. In the case
of solving a system of equations, whatever operations are performed on the matrix must
also be performed on the right-hand side.

Of course, these statements are oversimplifications of the true situation but they con-
tain the essence of the approach.

Example 1. We illustrate the basic idea of GE for a 3 x 3 matrix.

The initial matrix
a b c

A= d t f
9 h i _

is modified by subtracting d/a times the first row from the second and, similarly, g/a
times the first row from the third to yield

ab c
0 e-*b f-ic
0 h-H i-s-c

a b c
0 e' /'
0 ti i'

say. Next h'/e' times the second row of the modified matrix is subtracted from the third
row to give

c a b
0 e'
0 0 i'-^f

a b c
0 e1 f
0 0 i"

from which we obtain, for example,

det.4 = ae'i"

Clearly there are difficulties in the event that either of a, e' are zero. If we had been
solving a system of equations then the same multipliers would have been used to adjust

NAWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA

the right-hand side vector so that the original system

a b c
d e f
9 h i

' X u
y = V

z w

would be reduced to the triangular system

a b
0 e'
0 0

/'
X u
y — v'

.w".

In the rest of this section, we present the general version of this simple GE procedure

and discuss some of the difficulties that can arise.

2.1. The ijk-form. The "ijk-form" of GE is just the general n x n version of the

algorithm used in Example 1 above.

Algorithm 1 Basic GE ijk form

Input nxn matrix A (and right-hand side b if solving a system)

Compute
for i = 1 to n - 1

for j = i 4- 1 to ti-
nt := dji/au
dji := 0
bj :=bj- mbi (if solving a system)
for fe = i + 1 to n

ajk := Ojfc - maik

Output (modified) matrix A (and b if solving a system)

Remark 1. He first operation in the middle, j- loop is the computation of the appropri-
ate multiplier so that the apparent repetition of the division d/a in Example J is «voided.
Clearly the algorithm fails if o« = 0. This is the extreme case of the need for pivoting

which is discussed below.

Remark 2. The second line of the j-loop sets the element being "zeroed" directly rather

than performing the arithmetic which should yield that 0.

Pivoting. Pivoting is the name given to altering the order in which the rows are
used in the GE algorithm. The simplest cause for the need for pivoting is the occurrence
of a 0 in the appropriate diagonal position so that Algorithm 1 breaks down. In the
floating-point, environment an almost equally difficult situation is created by a very small
diagonal entry which may be just the result of roundoff error in a quantity which would
be 0 if exact arithmetic were being used. Such a pivot element can result in large errors

in the computed solution. .
The usual pivoting strategy is partml pivoting in which the current i-th column is

searched for its element of largest magnitude on or below the diagonal. The row in which
this occurs is then interchanged with the r-th row before the elimination continues. This

form of GE is described in Algorithm 2.

NAWCADPAX--96-194-TR

GAUSS ELIMINATE: WORKHORSE OF LINEAR ALGEBRA 5

Algorithm 2 GE with Partial Pivoting ijk form

Input n x n matrix A (and right-hand side b if solving a system)

Compute
for i = 1 to n - 1

find p > i such that
|opi| = max {\aji\:i<j<n}

interchange rows i and p (including b if solving a system)

for j = i + 1 to n
m := a.ji/au
Oji := 0
öj := bj - mbi (if solving a system)

for k = z + 1 to n
Ojfe := üjk - maik

Output (modified) matrix A (and b if solving a system)

Remark 3. In practice it is usually simpler to Jceep a record of the order in which the rows
are used by storing a permutation vector (which is equivalent to storing the P^ation
matrix P) If the interchange is performed, it is of course only necessary to interchange
the entries for columns i through n since the first i - 1 eJements of both rows are already

zero.

LU factorization. For many purposes, it is desirable to make better use of the work
involved in GE. By storing the multipliers used, we obtain the LU factorization of the
original matrix A. That is we find a lower triangular factor L and an upper triangular

one U such that
A = LU

or, in the case of pivoting, L, U are factors of a permuted version of the matrix A:

PA = LU

Algorithm 3 Basic LU Factorization ijk form

Input nxn matrix A
Compute

for i — 1 to n - 1
for j = i + 1 to n

Oji := o,ji/au
for k = i + 1 to n

djk '■= ajk - Cjiuik

Output (modified) matrix A

Remark 4. For this form of the algorithm, the factors L and U are stored in the same
locations as the original matrix A. The lower /actor L has unit diagonal entries and so

these need not be stored explicitly.

Remark 5. Tliis choice of a unit Jower triangular factor is convenient but the two fac-
tors can be scaled in a variety of ways. This choice is Jcnown as Doolittle factorization.
Modifying the algorithm to yield a unit upper triangular factor is the Crout reduction.

Remark 6. If A is symmetric the factors can be scaled to share the same diagonal entries

- this is then called the Cbolesky factorization.

NAWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA

Reasons and advantages. The principal advantages of the LU factorization lie
in the fact that if multiple systems are to be solved with the same coefficient matrix
then the factorization can be done just once and each system solved using forward and
back substitution loops. This is then much cheaper computationally than, for example,
inverting the matrix. This is detailed in Section 2.4 below.

On a serial computer, inverting a matrix (of dimension greater than 2 x 2) is almost
never the right approach to a problem.

Pivoting. The LU factorization has the same need for pivoting as does the basic GE
algorithm. The determination of the appropriate pivot element is just the same as for GE.
It is necessary to keep a record of the interchanges in order to make the corresponding
changes to a right-hand side vector or to obtain the correct sign for the determinant.

For these reasons it is more convenient to simply store the permutation matrix (or
vector) P for subsequent use in the solution process. This is the form described in the

following algorithm.

Algorithm 4 LU Factorization with Partial Pivoting ijk form

Input nxn matrix A
Initialize permutation vector

for i = 1 to n
P\i]~i

Compute
for i = 1 to n — 1

find p > i such that
\ap\p\i\ = max {lapyjil : i < j < n)

interchange P [i] and P\p]
for j = i + 1 to n

aP\j}i '■= aP{j]i/aP\i}i
for k = i + 1 to n

ap\j}k ■= o.p\j]k - apu^ap^k
Output (modified) matrix A

Remark 7. The "lower" factor has elements l{j = ap^j for i > j. The "upper" factor
has Uij = op[,]j for i<j. The product of these two is PA where P is now regarded as
the permutation matrix which has O's everywhere except for l's in the positions i,P[i]

or, equivalently, pij = bp\i)j ■

Example 2. Consider the 4x4 matrix

12 3 4
2 2 3 4
3 3 3 4
4 4 4 4

The initial permutation vector is P = (1.2,3,4). Clearly the pivot element in the first
column is a41 = 4. So P is now (4.2.3.1) and the matrix resulting from the first step of

1/4 1 2 3 "

the elimination process is
1/2 0 1 2
3/4 0 0 1

4 4 4 4

None of the subsequent elimination steps

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA

alter this matrix - but they do change the permutation vector to (4,1,3,2) and finally to
(4 12 3) indicating the order in which the rows were used.

r 1 "" r A ■

Then, we have L =
1/4
1/2
3/4

U =

4
2
1

4
1
2
3

4
3
3
3

which is also PA =

0
1
0
0

0
0
0
1

2
2
3
4

4
3
2
1
4
4
4
4

and then LU =

2.2. Algorithmic variations. There are several variations on the basic ijk-form of
GE* which have merits for different computing environments. We concentrate here on
just two of these variations. For simplicity we take no account of pivoting here, and
we restrict to Gauss elimination rather than the factorization of the matrix A. (The
modifications for these are straightforward.) The rjfc-form in Algorithm 1 is well-suited
to a conventional serial computer architecture with matrices stored by rows. For other
storage schemes or processor architectures, alternatives may be preferred. A much more
detailed discussion of these aspects is included in [18]. (The reader should be aware of a
difference in notation between this report and [18]: there the pivot row is denoted by k
and the current elimination row by i so that our ijk-iorm is denoted the fcij-form in [18J.)

The ikj-form for column vector operations. The algorithm for the ikj-Iorm is

as follows.

Algorithm 5 Basic GE ikj form

Input n x n matrix A (and right-hand side b if solving a system)

Compute
for i = 1 to n - 1

for j = i + 1 to n
m.j := dji/au; ciji := 0
bj := bj - rrijbi (if solving a system)

for k = i + 1 to n
for j; = i + 1 to n

ajk '■= ajk -rrijuik
Output (modified) matrix A (and b if solving a system)

Remark 8. Now the innermost loop is performing a "colvmn + scalarxcolumn" opera-
tion where the scalar is the element aik of the pivot row and the column it multiplies is
the column of multipliers m2 computed by the initial j-loop. The corresponding operation
in tbeijk-form is a "row + scalar*rowr operation.

Both of these are examples of (in the terminology of [7]) saxpy operations. The in-
form is better for matrices that are stored by columns. The choice of optimal algorithm

is therefore system dependent.

N AWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 8

Scalar product forms. For processors which are designed for rapid execution of a
multiply-accumulate (MAC) operation such as s := s + a x b it is desirable to organize an
algorithm to utilize this. The basic linear algebra operation which is particularly intense
in its use of MAC operations is the formation of a scalar product. Further variations of
GE are therefore designed to use scalar product operations as much as possible.

To see how this fits into the general pattern, it is easiest to look at the innermost
operation of the LU factorization Algorithm 3. If the order of the loops is altered so that
the r-loop is the innermost one then the operation being performed would indeed be a
scalar product. The details are more complicated and again the reader is referred to [18]

(Appendix 1) for a full explanation.

Algorithm 6 Basic LU factorization jki (scalar product) form

Input nxn matrix A
Compute

for j = 2 to n
for fc = 2 to j

üj,k-l :=Oj,fc_l/Ofe_l,A:-l
for i = 1 to fc — 1

O-jk '■= O-jk — O^jiO-ik

for k = j + 1 to n
for i = 1 to j - 1

ajk '■= ajk — 0-jiaik

Output (modified) matrix A

Remark 9. As in the case of Algorithm 3. the output matrix contains the Doolittle

factors of the original matrix.

Remark 10. Although the loop structure of Algorithm 6 is more complicated, the arith-
metic operation count is unchanged. The k-loop is separated into two parts corresponding
to the lower and upper triangles of the matrix. The innermost loop m each of the parts
is using MAC operations to update matrix entries.

2.3. Applications.

Solving linear systems. The most frequent application of GE and LU factorization

is to the solution of a linear system
,4x = b I1)

Then the GE algorithms, Algorithms 1 and 2, result in an equivalent upper triangular

svstem Ä ,0,
C/x = b (2)

whose solution is the same as that of (1). This system is then solved using back substitu-

tion.

Algorithm 7 Back substitution — Row form

Input nxn upper triangular matrix U, n-vector b
Initialize solution x := 0
Compute

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA

for i = n downto 1
for j; = i + 1 to n

bi := bi — UijXj

H := bi/uu
Output solution x

Remark 11. Note that b has been used fin place ofb) to denote tue right hand side of

(2) in this algorithm.

Remark 12. This version of back substitution has been arranged in such a way that the
outer loop results m obtaining one further component of the solution each time. The inner
loop of this algorithm subtracts the scalar product of the i-th row of U and the current
solution vector from the i-th component of the right -hand side. It is thus well-suited to a
computational environment which is designed for efficient muitipJy-accumuiate operations

and the matrix is stored by rows.

For architectures which are well-suited to "vector plus scalar x vector" operations —
these are the soxpy's of [7] — a column-oriented version of this algorithm is probably to

be preferred.

Algorithm 8 Back substitution — Column form

Input nxn upper triangular matrix U, n-vector b
Initialize solution x := 0
Compute

for j = n downto 1

Xj--=hlui:
for i = 1 to j — 1

bi :— bi — u^Xj

Output solution x

Remark 13. Here the inner loop subtracts Xj x the j-th column of U from the entire
right-band side vector as soon as it is available.

In the event that pivoting has been achieved by using a pivot vector (or matrix) such
as in Algorithms 3 and 4 then that pivot information must be carried through to the back
substitution phase. Essentially, this means replacing all row labels in these algorithms
by P[i] or P\j}. For the column-form of the algorithm this may result in some loss of
efficiency since data will no longer be accessed in a natural order. For this reason it may
be worth performing the row interchanges for architectures where this is the preferred
algorithm. These last comments apply equally to the LU factorization solution of the

system (1). .
For the LU factorization, Algorithms 3 and 4 result in (a permuted version of) the

system
LUx = b (3)

For simplicity we ignore the effect of pivoting here. Solving (3) is equivalent to solving
Ly = b and then Ux = y. The first of these requires a forward elimination process which
is (almost) entirely equivalent to the back substitution used for the second stage. The
only differences are that the loops run in the opposite directions and. because L is a unit
lower triangular matrix the division by the diagonal element is not needed.

NAWCADPAX-96-194-TR

GAUSS ELIMINAT.ON: WORKHORSE OF LINEAR ALGEBRA 10

Remark 14. We can now see the advantage of LU factorization for solving multiple

systems with the same coefficient matrix. To solve a second or ^^^fT'Ztr,
require only forward and back substitution phases to be repeated since the toom^
would be identical. For the elementary form of GE, the elimination stage would also need
to be repeated. As we see in Section 2.4, this is the most expensive part of the whole

process.

Determinant evaluation. Whether we use GE or LU, the evaluation of det^ is
extremely simple once the elimination phase is complete. (We are taking no account of

any questions of error analysis or stability at this stage.)
In the absence of pivoting the determinant is simply the product of the diagonal

elements of U. We describe the algorithm in terms of the LU factorization.

Algorithm 9 Determinant evaluation - without pivoting

Input nxn matrix A
Compute LU factorization by Algorithm 3 (or any of its equivalent varia-

tions)
initialize D := 1

for i = 1 to n
D := D* an

Output det Ais D.
The only additional difficulty if pivoting is used is keeping track of the interchanges

that have been made (whether explicitly or implicitly) in order to get the correct sign
for the determinant. It suffices to maintain a variable s, say in the p.yotmg algorithm
which is initialized to s := 1 and is multiplied by -1 whenever i # p (in Algorithm 2)
or P\i)^P[p] in Algorithm 4. In the latter case the multiplication loop in Algorithm 9

would also be replaced by
for i = 1 to n

D := D* dpjjji

Rank and singularity detection. Again, neglecting any problems created by
roundoff errors or ill-conditioning in the matrix, once either GE or LU (with pivoting) has
been completed, singularity is detected simply by seeking a 0 entry in a pivot position.
In fact it is sufficient to examine ann since, if any pivot element is zero, then necessarily

annA=gain note we are assuming both pivoting and exact arithmetic or algebra in making
this statement. In practice, for floating-point arithmetic at least, this is not sufficient and
more care must be taken to test for near-singularity.

Extending our ideal world analysis, by counting the number of zero pivots we obtain
the rank-deficiency of the matrix. Equivalently the number of nonzero pivots yields the
rank of A This is a much more optimistic claim than even the singularity statement.
Within a computer algebra system or with exact arithmetic such statements are correct.

In our ideal world, the rank algorithm is simple:

Algorithm 10 Rank detection - for exact arithmetic or algebra systems

Input n x ?? matrix A
Compute LU factorization with pivoting by Algorithm 4 (or any of its equiv-

alent variations)

NAWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 11

initialize r := 0
for i = 1 to n

if aP[i]i r* 0 then r := r + 1
Output rank A is r. ,,.,•*••

In the domain of real numerical computation, the question of rank determination is
more difficult. The effect of roundoff error on GE has been t*0™^* ^/^ ~™
of that analysis is summarized in Section 2.5. Packages such as MATLAB (see [16] for
example) include rank as a function in their computational library and use a carefully
computed tolerance dependent on parameters of the computer system to determine the
"true" rank of the original matrix from its Singular Value Decomposition (SVD) [7J. In
the event that the matrix entries are themselves subject to error - perhaps experimental
error or the effect of noisy data, for instance - the problem becomes more difficult to
handle reliably. This is discussed further in Section 2.5 and then in Section 7.

The solution space for underdetermined systems. In the case of underdeter-
mined systems of equations, whether this is the result of having fewer equations than
unknowns or of rank deficiency in the matrix, a set of vectors spanning the solution space
is easy to obtain from the LU factorization of the matrix.

The backward substitution must be performed the same number of times as the rank
deficiency Thus if the nxn matrix has rank r, we solve the smaller system n-r times
each time with r of the unknowns specified. To guarantee linearly independent solutions
it suffices to use the standard basis vectors ei, e2,.... en-r in turn to specify the values of
xr+1,xr+2,...,x„. That is, we first set (x^x^ ,*„) = (M,--^) and solve for
the remaining unknowns. The process is repeated for (xr+i,xr+2,. • • • x„ J - ^u, l, u,..., u;
and so on until we have used (xr+i,xr+2,. •• ,x„) = (0,... ,0,1).

The algorithms are simple extensions of those outlined earlier. Similar basis vectors
could be used in more abstract settings with symbolic computer algebra systems.

2 4 Elementary complexity analysis. The computational complexity of floating-
point algorithms is often measured by the number of floating-point arithmetic operations
that are required. Traditionally, the relative efficiency of algorithms was measured by
counting multiplications and divisions and neglecting addition and subtraction opera-
tions For modern processors the time required for floating-point multiplication is not
much greater than that for addition and so it is sensible to consider all arithmetic opera-
tions Division still costs substantially more and any elementary function evaluations are
typically yet more expensive. The floating-point operation counts for GE are well-known
They can be found in almost any standard text on numerical analysis or computational

linear algebra such as [3] or [7].

Operation counts.

TABLE 1 Floating-point operation counts for GE solution of an n x n linear system

,4x = b.

Operation Forward elimination Back substitution TOTAL
To7= W-l) in(n-l) Mn-l)(2n + 5)
+ In»»-1 J«(»-U ln(n-l)(2n + 5)
/ jn(n-l) n M" + D

3MATLAB is a registered trademark of The MatbWorks, luc

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 12

If multiple systems with the same coefficient matrix are to be solved then the overall
operation count for GE is obtained by multiplying these totals by the number of systems.
In particular the inversion of the matrix A would therefore result in multiplying all these
totals by n so that matrix inversion by GE is an 0(n4) operation.

The corresponding table of operation counts, Table 2, for Doolittle factorization makes
it easy to see the practical advantage of using the LU factorization whenever multiple
systems are to be solved.

TABLE 2 Floating-point operation counts for solution of Ax = b using Doolittle LU
factorization.

Operation Factorization Forward sub Back sub TOTAL
TToT= in(n-l)(2n-l) k(n-l) *n(n-l) Jn(n-lHjJn + 5|

x Jn(n-l)(2n-l) |n(n-l) Jn(n-l) |n(n-l)(2n + o)
/ jn(n-l) 0 _n £w(n + l)

Now in order to solve several systems, the factors of the original matrix are already
known and so only the operation counts for the forward and backward substitution phases
need to be repeated.

TABLE 3 Floating-point operation counts for solution of m systems using LU factor-
ization and GE

Qp Factorization 1 system TOTAL for LU TOTAL for GE

+ or- i»(n-l)(2»-l) »(„-!) «"S^"?' f »<» - D <2» + 5)

±n(n-l)(2n-l) n(n-l) *t^V *»(«-U<2» + 5>
/ In(n-l) n jn(n-l) + mn %n(n + l)

It is immediately apparent that the savings here are potentially great for large systems
with multiple right-hand sides. For inversion of a large matrix, GE requires approximately
2n4/3 flops compared to 8n3/3 for LU factorization.

2.5. Elementary error analysis. In this section, we summarize briefly the well-
known error-analvsis of GE and LU factorization. For a more complete description see [3]
or [7]. For all the* usual error bounds, we need the notation associated with the standard
vector and matrix norms and the condition number of a matrix.

Condition numbers and norms. There are three important vector norms that
are commonly used in anlaysing numerical methods for matrix problems. These are the
Li,L2 and Loo norms which are defined for x € Rn by

x = 5>i <4)

X 2 = 5>|» (5)

x oo= mac |z,|
1<!<77

(6)

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 13

which are often known as the Umcab, Euclidean and maximum norms respectively.
Any vector norm has an associated matrix norm given by

p|| = max{||,4x||/||x||}

In particular the Lx and Loo norms can be obtained by

PHx-max^layl (?)
3 4mmr

i

PH^max^M (8)
i

which are respectively the maximum column (absolute) sum and maximum row (absolute)

sum. . . .
The condition number of a matrix (relative to whichever norm is being used) is K{A) -

\\A\\-\\A-1\\.ltis used as a measure of the inherent difficulty of a linear algebra problem.
The larger the condition number the more difficult it is to get a numerically stable solution.
Typically, a large condition number implies that A has at least one very large or at least
one very small eigenvalue. This will often result in large accumulated roundoff errors
in the solution of a system. However, if the solution to such a system has a very small
component in the direction of the eigenvector associated with such an eigenvalue, the
solution may still be obtained to high accuracy (so that the problem is well-conditioned)
despite the ill-conditioned nature of the matrix.

Computing the condition number of a matrix is of comparable difficulty (and compu-
tational complexity) to inverting the matrix in the first place. However there are good
algorithms for estimating the condition number which may be used to estimate the number
of correct digits in the solution to a linear system. These are discussed in [7].

Error estimation. The conventional way of measuring the error in the solution to a
linear system is by what we might term a "relative norm error. Recently there has been
extensive work on reanalysing methods in terms of a componentwise relative error which
overcomes some of the overestimation of errors which may arise out of a well-conditioned
problem which has an ill-conditioned matrix. (For more detail of this approach seej4].)

Suppose that the exact solution of Ax = b is x* while the computed solution is x. We
denote by r the residual vector

r = b - Ax

The relative error in the solution can now be bounded by

1 llrll -IIX-X-||£ACM)M (9)

K(.4)||b||- llx'H - " '\\b\\

(This residual vector is also useful for carrying out iterative refinement of the computed
solution by solving the system Ay = r using the LU factors and then adding y to the

original solution x.)
The other error bounds which are useful here give estimates of the effect of errors in

the original matrix and/ or right-hand side vector. The effect of an error in b is estimated
in a similar manner to the use of the residual above. If 6b is the error vector (meaning
that we have solved Ax = (b + 6b) instead of Ax' = b) then we obtain

1 ||Sb|| Ilx-x^i <KMA1M

N AWC ADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 14

which we see has just the same form as (9)
The corresponding bound for the situation where the matrix A has errors is

IFF " (' iwi

These various bounds can be combined to estimate the accuracy of a final ^uüoMe
pre^rof roundoff errors and, perhaps, noise. Again see either [3] or [7] for more details.

Effectives, ^oÄ^Ä

a . alS anX * ofthe SVD (singular value decomposition) algorithm to obtain the
Lpropriat tolerance levels in order to get reliably accurate rank informal. More
rS G^on [6] has undertaken a study of the viability of using a (^recomputed)
SSS-1 Sv o coefficients of the characteristic polynomial of the matrix in order to
Senrify the "signature" of a matrix of given rank. The idea behind these studies is to try
£ obtain the rL without the need for a full eigenvalue or singular value analysis of the

™ Gauss elimination offers a cheap alternative to these approaches which is reliable most
of th7time (This statement is contrary to that made in [12] which was based on a wasteful
and nuTericallv unstable implementation of GE. However in the case of an ül-conditioned
rTtr'TheGE approach still fails. Briefly the use of GE for effective rank determination
"Ssed on the oServation that the noisy matrix is almost surely nonsingular as a result
of üfe combination of roundoff and noise. Therefore all entries on the diagonal of the
upper tri^uTar factor will be nonzero and the algorithm will be successfully completed.
B^unringl number of these diagonal entries which are greater than some well-chosen

threshold value, the "correct" rank is obtained.
The "correct" tolerance for this algorithm appears to be approximately nS where «

is the dimension of the matrix and S is a bound for the elements of the noise matrix^
W^tTtolerance most matrix rank problems are correctly resolved - but most is not

""TTetacSfetlATLAB has a built-in rank function which can take a tolerance param-
eter XaTgorithm is based on the singular value decomposition of the matnx and^ is
therefore much more expensive to compute. There remains a question of what tole ance
to^edthSSi^g»in nS appears to be a good choice. This algorithm is very reliable
prcSeS ÄFrance ifnot comparable with the entries (and singular values)oA
An alternative algorithm [24] based on the use of least squares approbation of rows of
4 bv linear combmations of other rows is currently under investigation in anothei N A*C
project and appears to have some promise as being both rehable and of comparable cost

to GE.

3 GAUSS ELIMINATION OVER THE INTEGERS

For computation over the integers, it is necessary to make changes to the basic GE algo-
rithms dScribed in Section 2. The most obvious cause is the fact that the integers are not
do SuiX d^ision. This has the side effect that the magnitudes of integers generated
5 computation can grow rapidly. The range of integer values required or available

NAWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 15

is known as the dynamic mnge. Overflowing the integer range in binary ^«J^
often results in the phenomenon known as "integer wraparound (see [3] Chapter 1 for
exampk) which is the effect of the "clock" arithmetic modulo 2» where Ms the intege
rrdlength in bits. Further complications that arise out of integer arithmetic (however at
is performed) include choosing a good pivoting strategy.

In a Computer Algebra System (CAS) such as Maple [2] or Mathematica [27], some of
these problems are avoided at the expense of computational speed since exact arithmetic
with very long integers can be performed in software. However such computation becomes
very sbw when the arithmetic wordlength gets long - and the rate of growth of the

dvnamic range can be very rapid.
One way of overcoming some of the difficulties is the use of alternative represen aon

and arithmetic formats for the integers. The residue number systems RNS are well-suited
to some of these tasks. In such a system, an integer is represented by its residues^modulo a
number of different prime numbers. The advantage here is that the growth ^*^
range is achieved by extending the set of basis primes being used. RNS> arithmetic has
a natural short wordlength parallelism which avoids the slowdown caused by very long
wordlength arithmetic. However it brings with it other difficulties which are less easily
resolved Even if one integer divides another and both are within the dynamic range of
the system, there is no simple division algorithm which returns this result; range checking
is (at best) very difficult; comparison is not an RNS operation^

In this section, we discuss the implementation and use of GE using integer arithmetic.
Our primary focus will be on binary integer arithmetic. The use of RNS arithmetic
within the specific context of adaptive beamforming was discussed in a.series; of reports
and papers [9], [10], [11], [21], [22], [23]. Specific reference to using RNS arithmetic will
be included only where it is helpful to understanding in the present context.

3 1 Division-free Gauss elimination. The simplest way of modifying GE to inte-
ger arithmetic is to eliminate the divisions by performing «cross-multiplications•■ between
the rows of the matrix. This is the form which generates the greatest rate of growth in

the dynamic range. This corresponds to the transformation of 2 x 2 matrices ^ ß rf j to

This is achieved by multiplying the second a b
0 ad —be

instead of
a b
0 d - b{c/a)

row by a, and subtracting from it c times the first one. The overall divisionless GE algo-
rithm consists of repeating this for all the appropriate submatrices as in the basic forms
of the algorithm in Section 2.

As with the real arithmetic forms of GE there are many ways of arranging the op-
erations. We concentrate here on just the simplest - the yfc-form corresponding to

Algorithm 1.

Algorithm 11 Division-free GE ijk form

Input n x n integer matrix A (and right-hand side b if solving a system)

Compute
for i = 1 to n - 1

for j = i + 1 to n
bj := Oiibj - ajibi (if solving a system)
for k = i + 1 to n

NAWCADPAX--96-194-TR

GAUSS ELIMINATION:
WORKHORSE OF LINEAR ALGEBRA 16

an ~ 0
Outvut (modified) matrix A (and b if solving a system)

or determinant calculation. These are discussed later in Section 3.4 after the effect of this
ZSSL elimination on the resulting matrix elements has been analysed.

q 1 Growth in. dynamic range. The question of the range growth in divisionless

algorithms ior xne vawuu= VI+v0 j;v;cinnWs algorithm and the corresponding
between the matrbc entries arising from the divisionless aigonumi »
aSm using division. This question is addressed later in th« «J«*»«1;

To «1 !fad for the potential range growth in the divisionless GE algorithm, consider
fi2Z\ 2?2 matrbc lh integer^ in the range \-M,M\ Usual binary integer
refrintations hale a range of the form \-M,M - 1]; but for the present purpose we
"mSThTthe i„i4l range does not nece^arily match the available dynamic range. The
symmetric range simplifies the analysis of the growth

r " * a ° results in an
The transformation of the 2 x 2 matrix

b
d

to
b

ad —be

i ■ ♦ „w /,,f T-2M2 M21 If M = 2K - 1, this implies that the dynamic range
tTed tas'incr Jed Im a equireÖ minimum wordlength of K + 1 bits to 2K + 2
b^Ttisime exponential ratJof growth is possible at every stage of the outer loop of

^^tus^initial required wordlength is (approximately) doubled N- 1 ^es during
tte^Ä^CT elmination for an N x N matrix. The final wordlength needed is
therefore around 2»-> (K + 1). It is easy to see that this would very quickly exhaust any

normally available dynamic range. . , _,
For example, if A' were just 3 so that the initial integer range is restnrted to just [-7.7]

with N = 6 the final dvnamk range would need a wordlength of at least 2 x 4 _ 128
r^s which is aheadv double the length of any commonly found built-in integer format.
cLly or a „^realistic range for the initial data and larger matrix dimensions; this
«Sb woufd very quicklv exceed all plausible ranges even for software implementation.

toneZe of complex integer arithmetic as in [10] the growth is even slightly more
rap d LTe above analvsis suggests and, perhaps more importantly the worst «e
Zwth i acWeved in rufet* examples. Clearly it becomes necessary to find ways of
Srtoing tt"growth. We discuss this aspect shortly but first need to get a clear p,c ure
3S^m^lSe magnitudes of matrix elements resulting from the divisionless algorithm

and that using division.

Comparison between matrix entries with and without divisions In this
subSctToHe look in some detail at the relations between the matrix elemens gener-
ated tyThe divisionless form of GE and those that would be obtained with division,
ThTs ^important for the completion of the various applications especial y computing he

Sonant which was especially straightforward for the ^^£«^£
«sine division In order to make this comparison, we assume that the dnisions can be
^•mr^actW in some rational arithmetic system. Since these divisions only occur

NAWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 17

within an entirely theoretical version of the algorithm, the comparisons remain valid and

In [10] it is stated that the the growth of the matrix elements is such that the final
value of aNN at the conclusion of the elimination phase is det A This turns out to
be overoptimistic in general. The potential growth is much greater than this although
it becomes apparent from the analysis that the algorithm can be modified to have this
result. First we need some notation to distinguish between elements resulting from the
different forms of GE under consideration. For simplicity here we shall completely ignore
any pivoting and shall assume that the algorithm does not break down due to a zero pivot.

Following convention, we denote bv ay the elements of the original matrix. All refer-
ence will be to the simplest tjfc-form of GE described by Algorithm 1. By the t-th stage of
the algorithm we mean the outermost loop for the value i which performs elimination be-
low the diagonal in the t-th column. The entries resulting from the t-th GE with divisions
are denoted by o}2- The corresponding entries for the divisionless form Algorithm 11

will be denoted by &$ (j, k > i). The "final" values in the two algorithms are therefore

given by a%-'\ b%-1} (j = 0,1,..., tf - 1; * > j) where <$ = 6$ = olfc.

To see the relations between the entries bfk and e$, we look first at the transformation

of
a b
c d

to
a b
0 ad — be

as opposed to
a b
0 d-b(c/a)

It is easy to see that,

in the current notation,

4^ = ad-bc=a[d- b{c/a)} = anaQ

and that the corresponding relation would hold for all other matrix entries resulting from
the first stage. That is

bf^ = alia^ (2<j,k<N) (10)

In particular, we see that b(£ is the determinant of the top-left 2x2 submatrix. It will
be convenient to denote this by d7. In general we shall denote by d{ the determinant of
the top-left txi submatrix of A.

The next stage of the elimination, is essentially the same as this first stage operating
on the bottom-right (N-l)x (N-l) square submatrix — the "active matrix". It follows

that there is a further scaling of all affected entries by the pivot element #2 • Thus, we

deduce that
$ = an« (3 <j\k<tf) (")

and continuing in this way we obtain the general relation:

$=*i*ä'"-6ir,)fl$ (*<****> (12)

Each "final" divisionless entry is its corresponding value from Algorithm 1 scaled by
the product of all the final diagonal entries of the divisionless algorithm above it.

Remark 15. We note immediately that this analysis suggests that entries in the active
matrix have common factors which have been included by the algorithm itself. Tliese
represent one obvious way of reducing the range growth and altering the algorithm. This
modification, which is presented below, will result in each diagonal element being the
determinant d, of the principal minor of the appropriate dimension.

NAWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 18

3.3. Reducing the range growth. Before considering how to take full advantage of
the enforced common factors which result from the divisionless algorithm, we look at the
simplest range reduction technique resulting from the removal of unnecessary factors.

Greatest common divisors. The simplest approach is just to divide out any com-
mon factors in the "cross-multiplication" operations which are at the heart of the divi-
sionless GE algorithm. Again, this idea is easily understood by considering the 2 x 2

elimination beginning with A =
a b
c d

Suppose that a, c have a common factor p

so that there exist mtegers a, 7 such that a = pa, c = pj. Then the usual divisionless
r a b

0 ad - be j

a b
0 ad-try

transformation to

from a times the second to yield

can be replaced by subtracting 7 times the first row

since ac - 07 = ajn, - pcry = 0.

This suggests that it is desirable to find the greatest common divisor, gcd(o,c), of a, c
before proceeding with the elimination. This same principle can be applied at each step
of the process and it can be applied in more general settings than just integer arithmetic.
For example, this idea is incorporated into the polynomial fraction-free Gauss elimination

functions for Maple. .
Further simplification may be achievable using the gcd 111 the (perhaps unlikely) event

that a complete row of the matrix at some stage has a nontrivial common factor. This too
can be divided out, reducing the range growth in subsequent stages of the elimination.
Of course if the goal is to obtain det.4 then a record of (the product of) these factors
must be kept to multiply the final result. Finding the gcd of a complete row of a matrix
of anything more than very small dimension may be at a price which does not justify the

savings. , . .,
The simplest technique for finding gcd(a,c) is the Euclidean algorithm which is easily

implemented as follows:

Algorithm 12 Euclidean algorithm for integer gcd

Input Positive integers c<a
Initialize q := c, tmpc := a
Repeat

tmpa := tmpc; tmpc := q
q := tmpa mod tmpc

until q := 0
Output gcd(a, c) is tmpc

This can be used within the following modified divisionless GE algorithm.

Fraction-free algorithm. A fraction-free version of GE can be defined using the
gcd algorithm above to reduce the range growth effect. The resulting algorithm still needs

no divisions.

Algorithm 13 Fraction-free GE using greatest common divisors ijk form

Input nxn integer matrix A (and right-hand side b if solving a system)

Compute
for 7 = 1 to n — 1

for j = i+I ton

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 19

p :=gcd(aa,aji)
a := aa/p; 7 := aji/p
bj := abj - 7b, (if solving a system)
for k = i + 1 to n

djk := aa.jk - 7°«*
an ~ 0

Output (modified) matrix A (and b if solving a system)

Remark 16. Since we have no advance knowledge of the existence of nontrivial factors
(that isp>l) this algorithm does nothing to moderate the worst case range growth of
the analysis in Section 3.2. However, if the wordlengths grow according to the needs of
the particular application, it is likely that some savings wül materialize.

Using the gcd of complete rows can be incorporated into the algorithm at any stage.
Potentially such factors could exist in any row of the active matrix and such factors could
be sought in every row at every stage of the elimination. The algorithmic changes are
straightforward but the cost is likely to be too high and so we do not elucidate further
here — except for one very important special situation which does arise as a result of the

elimination process itself.
Prom (11) it follows, in particular, that

42
3> = an« = an (au4}) «S = a»d*

where, we recall, d3 = ana$a!g is the determinant of the principal 3x3 minor. We
remark that 0*3 is an integer. It follows that ftg> has the factor On. Using this same
reasoning, we see that bfk

] has a factor an for every j,k > 3 since each such element is
on times the (integer) determinant of a 3 x 3 minor. This known factor can easily be
removed prior to the next stage of the elimination.

Similar factors are introduced into the active matrix at each subsequent stage. These
too can be divided out. The factors introduced at the subsequent stages of the elimination
are the (modified) diagonal entries. Since these are known factors, there is no need for
any calls to a gcd function.

The removal of these factors has an obvious effect on the range growth in subsequent
stages of the elimination even though the worst case analysis is unchanged. The growth
in the required wordlength would need to be computed "on-the-fly" in order to take

advantage of this saving.
The division by these factors is incorporated into Algorithm 14 below. We observe

that this algorithm, like Algorithm 13, is fraction-free but not division-free. All divisions
that are performed are integer operations with exact integer results.

Algorithm 14 Fraction-free GE ijk form

Input n x n integer matrix A (and right-hand side b if solving a system)

Compute
for i = 1 to n - 1

for j = i + 1 to 7i
bj := aHbj - djibi (if solving a system)
for k = 1' + 1 to n

NAWC ADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 20

djk := au&jk — ffljtOifc

dji ■= 0
if i > 2 then (removal of common factors)

for j = i + 1 to n
bj := bj/oi-i,i-1 (if solving a system)

for k = »+ 1 to n
fljfc := Ojk/Ot-i.t-i

Output (modified) matrix 4 (and b if solving a system)

To gain some insight into the saving that results from this algorithm, consider just the
final value of aNN. In the division-free Algorithm 11, the analysis of Section 3.2 yields,

using (12) for t = N - 1:

u(N-l)_n 1,(1) 1,(^-2) a(N-V
bNN =aHÖ22 °jV-l,JV-l°A'AT

which in turn yields

JA-l) (1) JN-2) AN-1) jnN~2 \b bNN = °na22 •••aA-l,A-laA'A jaH [° °22
A'-3

= dAf {*•[*]"•• ,(A-3)
°A'-2,A'-2 }

,(A-3) 1
°K-2,K-2 f

The corresponding final value for Algorithm 14 is just

OAAT = detv4 = d^

(13)

(14)

which is typically very much smaller since these additional factors have been removed
during the modified elimination. Indeed it turns out for this Algorithm 14 that at the
conclusion of the elimination we have

an = di. (15)

Example 3. Comparison of Algorithms 11 and 14 for a 4x4 matrix. The results of exact
arithmetic in Algorithm 1 are also included for comparison and illustration.

Let
'8741

A =
4 6 7 3
6 3 4 6
4 5 8 2

: following sequence of modified matrices:

" 8 7
0 5/2
0 0
0 0

4 1
5 5/2

11/2 15/2
3 0

' 8 7
0 5/2
0 0
0 0

4
5

11/2
0

1
5/2
15/2

-45/1

8 7 4 1
0 5/2 5 5/2
0 -9/4 1 21/4
0 3/2 6 3/2

from which we may deduce that det-4 = (8)(5/2)(ll/2)(-45/ll) = -450.
The division-free Algorithm 11 gives:

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 21

R 7 4 1 1
r 8 7 4 1 ' 8 7 4 1

n 20 40 20 0 20 40 20 0 20 40 20

n -18 8 42 0 0 880 1200 0 0 880 1200

0 12 48 12 0 0 480 0 0 0 0 -576000

which shows the very rapid growth which is possible with this algorithm.
The fraction-free Algorithm 14 also gives

8 7 4 1
0 20 40 20
0 -18 8 42
0 12 48 12

8 7 4 1
0 20 40 20
0 0 880 1200
0 0 480 0

which in turn gives

but the active part of this matrix is then divided by the common factor 8 to yield

8 7 4 1
0 20 40 20
0 0 110 150
0 0 60 0

8 7 4 1
0 20 40 20
0 0 110 150
0 0 0 -9000

The active matrix is now just the bottom-right element which needs to be divided by the
"common factor" 20 to yield:

8 7 4 1
0 20 40 20
0 0 110 150
0 0 0 -450

The final values of the diagonal entries can easily be seen (by comparison with the partial
products of the diagonal of the final upper triangle generated by Algorithm 1) to be the
determinants of the appropriate principal minors, as predicted by (14) and (15).

Although there has been some growth in the magnitudes of the matrix elements it
has been kept in much better check. The whole of this computation could have been
achieved using standard 16-bit integer arithmetic - even including the temporary values.
The division-free algorithm in this case requires at least 20 bits even though the original
matrix has integer elements bounded by 8.

Remark 17. It is necessary to observe that the various fraction-free versions of GE are
well-suited to conventional binary integer arithmetic - but cannot easily be applied in other
integer arithmetic implementations such as RNS since the divisions can not be performed
within the RNS system itself. This is true even in the ideal situation of Algorithm 14
where all divisions ai-e known to have exact integer results.

N AWC ADP AX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 22

S 4 Effect on computation. In this section, we describe the effect of the modified
frtiof-K CT^AlgSm 14 on the solution of the various underlying problem.- From
tteZJrZL in the last section, it is plain that the evaluation^odet A is particularly
simple, provided only that no zero pivots arise during the computation.

Linear systems. For the solution of a (nonsingular) linear system using Algorithm
14 thtr^ ofcou'e no guarantee that the solution vector has only integer components^
If ihe system is known (because of the context, perhaps) to have an integer solution then
äTcSToomputed by applying the conventional back substitution (Algorithm 7 or
Ako *hm 8, for example) in which case the divisions will again have integer resuh^

OttSrii the solution can be expressed as fractions by performing rational arithmetic.
In ^ umn form equivalent to Algorithm 8, the rational arithmetic back substitution
c^n be de^ribed as follows. The algorithm below makes use of a function reduce\p,q]
which sS" reduces a rational number p/q to its normal form by removing any common

factors.

Algorithm 15 Back substitution using rational arithmetic - column form

Input n x n upper triangular matrix U, n-vector b
Initialize rational solution m := 0; n := 1 (solution will be x{ = m,/^)
Rationalize right-hand side p := b; q := 1 (right-hand side 6, = Pi/9i)

Compute
for j = n downto 1

m, :=Pj-, rij :=qj*Ujj
reduce [rrij, nj]
for i'■=■ 1 to j - 1

Pi := pi * 7i.j - Uij * rn-j * qi

qi := qi * "j
reduce [pj,9i]

Output solution [m, n]

Remark 18. Note that the inner loop call to reduce [p,, 9i] couJd be eliminated at little
txpense It's removal would have the benefit that the same denominator would be used
foreacl b] for i < j. The cost in terms of dynamic range would hkely be minimal smce
the required range would only be decreased if every call to reducefo,ft] for some value

of j results in a smaller value of qi.

Example 4. Consider the coefficient matrix of Example 3 with the original right-hand

side vector [25,20,25,20]T.

Algorithm 14 would generate the augmented matrix

8 7 4 1 25

0 20 40 20 60

0 0 110 150 260

0 0 0 -450 -450

c .. . r«,. ; — A m. — —450 7?J = —450 and the result ADolving Algorithm 15. we first get, for j - 4. mA - -lou, «4 *JU

Äce |m.6 ».] I. then „,4 = »4 = . The „a» loop. tvith the toe,« o_.edu c.
then yields p, = 24.K = 10.,., = 110 and „ = « = „ = 1. Next, «ith , - 1.

NAWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 23

get mg = n3 = 1 and then Pl = 20, pa = 0 with, still, <?i = 92 = 1. The next iteration
of the j-loop gives ma = 0,na = l,Pi = 20 and 91 = 1 from which, finally, we get
mi = 20, m = 8 which reduces to rm = 5, m = 2 so that the complete rational solution is
[5/2,0/1,1/1,1/1]T. In this particular case the reduction in the inner loop, had no effect
since the outer loop reduction resulted in 92 = 93 = 94 = 1-

Determinant. We have already seen that Algorithm 14 delivers det A automatically

as the final value of üNN .

Rank determination. In the absence of a zero pivot, again there is nothing further
to be done. In the event of such a zero, then interchanging the pivot row with any lower
row with a nonzero entry in the pivot column will allow the fraction-free algorithm to
proceed. Simply counting the number of nonzero entries on the diagonal gives the rank,
as before. This simple interchange is not necessarily the optimal pivoting strategy for
integer computation.

In the event of a rank-deficient matrix, obtaining the solution space for an underde-
termined system can be accomplished by modifying Algorithm 15 in just the same way
as was proposed in Section 2.3 for real-number computation.

3.5. Pivoting. Clearly in the event of a zero pivot some pivoting is necessary in
any good implementation of GE. The question is what is the right strategy for integer
computing? Choosing the largest element in the floating-point algorithm has the virtue of
keeping all multipliers small and therefore restricting the growth of the matrix elements.
However that restricted growth is only realized because of the divisions that are performed
in Algorithms 1 through 6.

At least intuitively, choosing the largest element in the pivot column is not necessarily
good for integer computation. Indeed a large prime pivot is probably near-worst since
that appears to almost guarantee rapid growth in the dynamic range. In (11) and then
(12) we see that each bf^ has the factor oa and each further stage has this factor and

then has it repeated in the factors ^_1). The-earlier a particular pivot is used the greater
the impact it has on subsequent range growth. This is made plain in equation (13).

In the fraction-free version Algorithm 14. however, the range growth is essentially
independent of the order of the use of the rows. In the case of a full rank matrix A,
the final entry aNN = dN as in (14) is necessarily the largest of the principal minor
determinants and this value is invariant (up to sign changes) under row interchanges. It
follows that the simplest pivoting strategy is probably the best for this algorithm. That
is, at stage i, we should use the first row for which the pivot column entry is nonzero:
choose pivot = min {p > i : ap, ^ 0}.

It is conceivable that a different ordering may represent some minor improvement on
this. For example, looking for pivots which are either powers of the binary (or other com-
putational) base may make subsequent divisions particularly simple. However, searching
for the appropriate pivot element in this regard would (almost surely) be more wasteful
than beneficial.

3.6. Complexity revisited. In this section, we begin by obtaining the basic integer
operation counts for the fraction-free GE Algorithm 14. There are two essential differences
between these counts and those for the floating-point algorithms presented in Section
2.4: the fundamental elimination loops contain no divisions but have twice as many

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 24

multiplications, and there is the additional complexity of the removal of the common

^I^S^SSSL in the elimination are easily counted. The common

factlRemoval entails onfy divisions. The total number of ^.^~£££t
loop control limits. For each i > 2, there is one division m the J-loop tself (a^ummg; we
are solving a system) which runs from j = i +1 to n. Also m this loop is the /.-loop which
ZtUme nmits and contains another division. The total division count is therefore

n-l n_2 1
£(n - i)(n - i + 1) =]T 1(1 + 1) = 3n(n - l)(n - 2)

i=2 ;=1

The total operation counts are summarized in Table 4.

TABLE 4 Integer arithmetic operation counts for the fraction-free GE Algorithm 14 for

solution of an n x n linear system Ax = b.

Operation Matrix Factorization Right-hand stde TOTAL

ln(n»-l) n(n-l) B n" ^t?
/ |(n-2)(n-l)(2n-3) I(n-l)(n-21 |n(n-l)(n-2)

Note that this operation count does not include the back substitution Algorithm lo.
What we see most importantly is that the number of multiplications has doubled and
even worse, the number of divisions has increased by a complete order from 0(n) to

0(Unfortunately this is not the end of the story. The complexity of this algorithm is
further increased by virtue of the fact that these integer divisions are typically more
dfficu t t"ian their floating-point counterparts - especially with the range growth which
we have already seen can be substantial. This is likely to necessitate the use of long
integer arithmetic for which special algorithms must be used.

3 7. Arithmetic with long integers. In this section we discuss briefly some aspects
of the long integer arithmetic which is required for integer Gauss elimination algorithms.
Long integer arithmetic can be simulated using multiple words of some basic wordlength

lor example, if the underlying integer wordlength is 8 bits (or 1 byte) then such an
integer can be regarded as a radix 28 = 256 digit. Conventionally the range of values of the
base 256 digits would be -128,-127,..., 127 so that signed integers can be represented.
For simplicity in the current description, we restrict our attention to nonnegative integers
with a digit range of 0,1,..., 255. Very large integers could then be stored using a vector
of such integers using conventional place value. _

In general, suppose the base wordlength is I bits so that the effectiver^ is Ä-2
The vector (do, d:,..., dK-1) would then be used to represent the integer A € [0. R 1]

glVenby A = dK-i^-1+dK-2fiK-2 + -+diß + rfo (16)

where each digit satisfies 0 < d, < R. For efficient arithmetic using such a representa-
tion we require an integer accumulator with 2L bits. Among other consequences of th«
are that addition can be computed in "digit-paraller with subsequent attention to an>
carries which mav be propagated. A large radix cany lookahead or conditional sum adder

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 25

could be constructed to improve the efficiency of addition. These addition algorithms are
simple generalizations of the usual binary addition algorithms which are described, for

example, in [19]. .
Alternative approaches to long wordlength integer arithmetic are provided by using

Residue Number Svstems, RNS. This is a naturally parallel integer arithmetic which does
not readily admit division. It is therefore not very suitable for use with the fraction-free
Gauss elimination, Algorithm 14. It has been considered in detail for naval applications

in [9], [10] and [11].

Convolution form of product. Multiplication of long integers can be achieved
with reasonable efficiency using the convolution form of the product working with the
component words of the large integers. Again for simplicity, we shall only consider mul-
tiplication of positive integers. The multiplication of two integers in the form (16) will
result in an integer whose representation requires at most IK L-bit words.

Suppose that we require the product of the long integers

A'-l K-l

This product is given by

(K-\ \ (K-X \ 2K-2 /K-l \

m . n = I g a,*) I £ 3:Rj J = £ (£ *A-iJ * (17)

where we use the convention ßj = 0 if j < 0. This is essentially a convolution product of

the coefficient vectors.
Now each coefficient product aißk-i can be viewed as a base-Ä2 digit which we can

write in the form cußk-i = 7k,iÄ + &,< where eBch 7*.« and **■' is a base"Ä di^1- Thus

7fcii is the most significant and 6k<i the least significant Ä-digit of Oißk-i. The product
(17) can therefore be written as

2K-2 /A'-l \ 2A--1 /K-l \

fc=0 \i=0 / fc=o \'=0 /

where 7^,, = Skti = 0 for i > k.

Remark 19. Carries beyond the Ä2A'_1 position is not possible since m*n < (RK -l)2 <

R™.

Remark 20. TJie i-esuJts of the inner sums in (IS) will usually create further carries
which must be accounted for. However, we nore that for almost any minimal degree of
parallelism in the processor, each of these inner sums can be performed simultaneously
since thev consist of at most 2K terms each less than R and we would expect 2K < R.
Therefore the sum will be less than R2 so that it will be representable in a double length

accumulator.

For the 8-bit basic wordlength the restriction is only that our integers do not exceed
/28)256 _ 22048 > 10616 which is well beyond any typical integer computing range for

linear algebra problems.

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 26

The length of the inner sums in (18) will also restrict the size of any carry and therefore
may be useful in bounding the range of the propagation of such carries. This could be
used to improve the efficiency of such a convolution product. We do not consider such

details further in this report.
What effect does such a long multiplication have on the arithmetic complexity ot

an integer algorithm? The product formula (17) entails K* basic multiplications, these
components must then be broken into their two component digits and then approximately
K* additions together with the carries these generate. In Table 4, this means that each
of the (approximately) §n3 multiplications entails something like 2A2 regular integer
arithmetic operations. For even quite moderate range growth with K = 4 this has the
effect of increasing this part of the complexity by a factor of 32.

Division. Division of long integers can also be achieved by generalizing some of the
standard algorithms which are used in binary integer hardware such as the SET division
algorithm which is based on the idea of nonrestoring division. This algorithm is well-suited
to high-radix division and so can be modified to the long integer framework.

The SRT algorithm relies on repeated addition and subtraction using signed digits.
Since we have only dealt with arithmetic of nonnegative long integers here, we do not
discuss the detailed implementation further. For details of the basic algorithm and its
implementation at least for radix 4. see [19].

3 8. Should we use real arithmetic anyway?. Unless roundoff errors are severe,
it may well be prudent to compute the solutions to integer linear algebra problems by
applying the appropriate real, floating-point, algorithm and rounding the results. All the
difficulties of range growth, avoiding divisions or additional complexity are then removed.

From the error analysis summarized in Section 2.5, we can obtain estimates of the
number of correct digits in the final result. First note that since the underlying problem
has an all-integer coefficient matrix (and right-hand side) then we may assume that we
have exact data. The onlv contribution to the error in the solution of such a linear system
therefore arises from the roundoff errors of floating-point arithmetic. Only for very ill-
conditioned matrices is the upper bound on the error given by the right-hand side of the
inequality (9) likelv to indicate that the rounded solution of an integer system may be
incorrect With the improved elementwise bounds obtained by Demmel and others even
greater confidence in the computed results would be obtained. (See [4] for an introduction

to the literature on this subject.)
We have also seen that the complexity of integer-arithmetic GE is increased relative

to the floating-point algorithms. Compare Tables 2 and 4. By its nature the fraction-
free Algorithm 14 is "row-oriented" which may render it advantageous on some parallel
architectures, for instance the removal of the common factors would be a simple array-
operation on a massively parallel array processor. However whatever advantages could be
realized for this algorithm could also be obtained for the appropriate arrangement of the
original LU factorization algorithm such as Algorithms 4. 5 or 6.

On most modern computer architectures the speed of floating-point operations is com-
parable with all but the shortest of integer wordlengths. The range growth problem of
integer computation makes such short wordlengths impractical for most problems. If,
using floating-point, the arithmetic is essentially no slower, the complexity is reduced be-
cause division is available and the accuracy of integer arithmetic can be recovered in the
final results, it seems this (real arithmetic) would be better in most circumstances.

NAWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 27

4. OVER THE RATIONALS

In this section,we consider the use of Gauss elimination in the setting of rational arith-
metic. Of course in some sense, floating-point is rational arithmetic but it uses a very
special subset of the rationals and does not comply with the axioms of conventional ratio-
nal arithmetic. We are concerned here with matrices with entries in the field Q of rational
numbers. The arithmetic operations will be similar in nature to those of Algorithm 15 for
back substitution in the integer GE solution of a linear system.

4.1. Rational representations. There are choices to be made over the way in which
rational numbers are to be stored and manipulated within the computer. The conceptually
simplest option is simply to store q € Q as a pair of integers representing its numerator
and (positive) denominator in its maximally reduced form. Alternatives that have been
extensively researched include the use of continued fraction representations and, in par-
ticular, the lexicographic continued fraction, or LCF, arithmetic of Kornerup and Matula
[13], [14], [15], for example.

[n/m] form. The standard representation of rational numbers is as a quotient of two

co-prime integers

where n,m € Z have no common factors and m > 0. Arithmetic operations are then
defined according to the usual rules of rational arithmetic with reduction to this "normal-
ized" form after each arithmetic operation.

It is immediately apparent that many of the range growth problems which plague
integer GE will reappear here with comparable severity. Of course the divisions which are
inherent in the basic forms of GE and LU factorization can be performed here and restrict
the range of values of the rational numbers being represented - but these divisions do not
necessarily reduce the range of integers needed for the numerators and denominators
separately.

The chief virtue that would be derived here is the elimination of any rounding errors
and therefore definitive answers to questions such as the rank of the matrix and exact
values for the determinant and for the solution vector of a linear system.. This last would
be computed using the (obvious and minor) modification of Algorithm 15.

Use of continued fractions. An alternative representation of rational numbers is
provided by using continued fractions. This possibility has been extensively explored by
Kornerup and Matula in a substantial series of papers including [13], [14] and [15]. In the
later papers in this series, techniques are described for performing rational arithmetic in
a bit-pipelined manner. This has the effect of allowing many simple rational functions of
arguments expressed in continued fraction form to be computed much more quickly than
might otherwise be the case. This is based in part on the use of a particular encoding of
the numbers which has retains the natural ordering of the representations. This is called
the lexicographic continued fraction representation or LCF. Its details are not important

here. . .
The continued fraction representation of a positive rational number is given by

<? = ao+ , 1 , - <19)
°i + i

where the integers do > 0, and a, > 1 for i > 1.

NAWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 28

The manifestation of the range growth problem here lies not in the ™**^J*
the vario" coefficients so much as in the number o them; that ***£#*«*£
string flo.ox.oa,... used to represent a particular rat,onal number. For details of LCF
ShmSkits implementation and its use the reader is referred to the original papers.
SÄ* Suded solely to increase awareness of the existence of alternate forms

of rational arithmetic which could be used.

4 2 GE algorithm for rational arithmetic. The algorithm for performing the
factorization of a rational matrix can be any of the wants discussed in Section 2 with
STreaTarithmetic operations replaced by rational arithmetic^ There ,s no benefit n
detaüing all these algorithms explicitly. In order to discuss the dynamic >^B^th»
this context however it is helpful to have at least the basic zjfc-form descnbed for this
context. We shall denote the original matrix elements by

n -Es.
aij - K

and those of the right-hand side vector by

where all fractions are assumed to be in reduced form.

Algorithm 16 Basic GE for rational arithmetic ijk form

Input nxn matrix rational A (and right-hand side b if solving a system)

Compute
for i = 1 to n — 1

for j = i + 1 to n

reduce [m,ji,nji}
Tj := rjnjiSi - Sjmjiri-, Sj = sjU^Si (for system)
reduce [rj,Sj]
for k = i +1 to n

pjlc := pjktijiqa- - qjkm.jiPik\ Qjk = QjkTijiqik

reduce \pjk-Qjk)
Pji := 0; ft, •= 1

Output (modified) matrix A (and b if solving a system)

Remark 21. Algorithm 16 is just the basic Algorithm 1 modified for rational arithmetic.
It is plain that the arithmetic complexity has been increased considerably as a result of
storing each element as a quotient of integers and by the need for reduction of these

rational numbers to their "normalized" form.

\o pivoting has been incorporated here and as with the standard integer setting it is
not obvious what the optimal pivoting strategy would be. In the above algorithm it is
simplv assumed that no zero pivots are encountered. If such a pivot element does in fact
arise we can simply interchange the pivot row with a row which has a nonzero entry m

the pivot column.

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 29

From the point of view of range growth there may be some merit in choosing pivots to
be as "simple" as possible. Simple here would correspond roughly to having the smallest
denominator (or maybe the denominator whose largest prime factor is minimum) Such a
search for the simplest pivot may well be more expensive than is merited by any reduction
which may be achieved in the dynamic range. The conventional argument for pivoting
(apart from avoiding zero pivots) is not relevant to either integer or rational arithmetic
since roundoff error, and the associated question of numerical stability, are not concerns.

4 3. Complexity. The most obvious increase in the complexity in Algorithm 16 arises
out'of the mere fact that it is performing rational arithmetic and so every arithmetic
operation entails manipulation of both the numerator and denominator. There is also
the further complication arising from the reduction of each ordered pair to represent
an irreducible fraction. This requires either that each integer is stored as a product
of its prime factors, or more reasonably, that the Euclidean algorithm, Algorithm 12,
for finding the gcd of two integers is employed and followed with two integer divisions.
Because the Euclidean algorithm is iterative we cannot determine the number of integer
mod operations that are required. (Also any bounds which could be derived would be

hopelessly pessimistic.)
In Table 5, we list the numbers of conventional integer arithmetic operations together

with the number of gcd's that are needed. Typically we might expect that a gcd would
be equivalent to several integer divisions and that these divisions are, in turn, equivalent
to several multiplications. However it should also be noted that, because of the range

• growth, the multiplications may involve long wordlength integers. On the other hand
we may expect the gcd to be much smaller so that the divisor wordlengths may be less
extreme. In the operation counts in Table 5, no attempt is made to account for dynamic
range considerations or the relative weights to be given to the different operations.

TABLE 5 Integer arithmetic operation counts for the rational GE Algorithm 16 for
solution of an n x n linear system Ax = b.

Operation Matrix Factorization Right-hand side TOTAL
^To7= \n(n2-l) *n(n-l) \n (n - I) (2n + 5)
x 2n2(n-l) 3n(n-l) n (r, -1) (2n + 3)

/ 1«("2-1) n(n-l) ?nin""J!!ÜÜ"!"K
gcd

|n(n2-l) n(n-l) ±n{n-l)(Zn + i>)
ln(n*-l) jn(n-l) U (n - 1) (2n + 5)

Again the biggest single effect is that the number of divisions has increased to 0(n)
in addition to the O (n3) gcd operations. This time the number of multiplications has
also increased by a substantial factor. The overall operation counts suggest that the cost
of rational computation may be too high to justify the increased stability and accuracy —
especially when the range growth and resulting additional complexity of these operations

is considered too.

4.4. Growth in dynamic range. In attempting to analyse the potential growth in
the necessary dynamic range for implementing Algorithm 16, we cannot assume any useful
reduction in the rational quantities other than that which is a necessary consequence of the
elimination procedure itself. For simplicity in this setting, we make the assumption that
the original matrix A is in fact an integer matrix. This allows us to compare the results
of the (rational) Algorithm 16 with those that would be obtained using the divisionless

N AWC ADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 30

integer version Algorithm 11. In much the same way as was described for the fraction-free
ktorithm 14, we shall see that this comparison reveals certain common factors winch^
be Loved by the various reduction steps. This has the effect of reducing the potent*!
range growth in a similar manner to that which we observed in Algorithm 14.

As for the analvsis in Section 3.3, we shall concentrate on the matrix *se* Similar
analysis is valid for" the right-hand side of a linear system but adds nothing to the overall
picture Again following the earlier analysis, we shall denote by <* the integer e ements
c^he original matrix. The results of the i-th stage of the integer Algorithm 11 will again
be denoted by b$. The corresponding rational values will be denoted by cjk. These

are of course just' rational representations of the quantities a« generated by the original

A1SDurinmg \he first stage of the elimination, the multipliers used are (irreducible rational

representations) of

Except in the unlikely event that all elements in the first column of A share a common
factor, the range for the denominator cannot be reduced. The results of the first stage are

and again unless there is some general cancellation the range growth for the numerator is
identical to that for Algorithm 11 at this stage.

Similarly the second stage results in

c(1)

cjfc -c>k M 2k

°22

and we observe that in light of (20) the multiplier here is the same as would be used with
the integer matrix. Indeed, substituting (20) into the last equation we get

1,0) tSUhW h^hw-bwb(1) b(2J
(2) _ bJ]L _ * 2k = 22 ik j2 2k = } (21)

Cjk ~ an b%an *&«» tä*"

However, we recall from Section 3.3 that each b$> has the factor o„ which will therefore
be removed by the rational reduction step. That is the only guaranteed factor which can
be used to help control the dynamic range growth. The range required for teh numerator
at this stage is therefore precisely the same as that for teh fraction-free Algorithm 14.
The denominator (assuming no further general common factor is present) is b22 - th, the

determinant of the 2x2 principal minor. .
Because of this common denominator, the next stage is again essentially equivalent

to that for Algorithm 14 since fc& becomes a common factor in the remaining active
matrix. Ultimately then the range growth for Algorithm 16 is identical to that which
is encountered in the fraction-free Algorithm 14. The inference to be drawn from this
analysis is that if the initial matrix is an integer matrix, using rational arithmet,c yields
no benefit relative to the fraction-free algorithm.

If the original matrix consists of rational entries, the range growth problem becomes
potentially even more critical since, the "cross-multiplications" needed for the eliminate

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 31

do not appear to generate any obvious and general common factors. Unless the original
denominators are small and have similar factors it seems unlikely that any purely rational
algorithm will be practical and the best solution would almost certainly be to use real
(floating-point) arithmetic.

5. GENERAL RINGS

In this section, we consider the applicability (and application) of GE in a more general
algebraic setting. There are at least two fundamental questions which arise immediately:

"When do the problems have solutions?" and
"When do the algorithms make sense?"
We are interested here in matrices with entries in a general ring 71. In order to answer

the fundamental questions, we shall need to impose further conditions on this ring. For
details of the definitions and properties of the various algebraic structures see [5] or any
standard text on abstract algebra. The key properties which are being used will be
summarized as they are introduced here.

In essence a ring 71 is a structure which has both "addition" and "multiplication"
defined on it. The addition has all the properties associated with the various number
systems. The multiplication need not have all the properties of the real number system.
In a general ring, all we may assume is that the multiplication is associative and that it
is distributive over addition. "Vector spaces" over rings are called modules. The concepts
of linear independence, basis and scalar multiplication carry over in a natural way to
modules.

Special cases of rings include fields of which the rational, real and complex numbers
Q, R and C are the most important examples, and integral domains such as the integers
Z and the ring of polynomials over the real numbers R[x]. In a field, multiplication and
division (except by zero) are defined and have the expected properties. In an integral
domain, the multiplication is commutative, there is a multiplicative identity, 1, and there
are no divisors of zero. The integers themselves have further properties which are relevant
to the above questions. Specifically, the integers form a unique factorization domain
which is to say that every positive integer n ^ 0,1 can be written as the product of prime
numbers.

Associated with every integral domain is its field of fractions. For the integers this
field is just Q, the rational numbers. The field of fractions Q for a general integral domain
Z is a field which results from the analogous construction and consists of ordered pairs
(m,n) where m,n € Z with its "arithmetic" defined just as for real fractions. As was the
case in Section 3.4, it may be the case that a linear system of equations has no solution
in Z but does have a "rational" solution in its field of fractions Q.

5.1. Problem definitions. Before discussing any algorithms or the algebraic struc-
tures within which they make sense, it is necessary to reconsider the definitions of the
various linear problems under discussion and to determine when the questions themselves
are well-defined.

Since the concept of linear dependence carries over to arbitrary modules, we may
define the rank of a matrix A with entries in a general ring 71 by the maximum number
of linearly independent rows of A. The question of determining the rank of A therefore
can be addressed for a completely general ring 71. We shall also see that using (a minor
modification of the divisionless) Algorithm 11 will solve this problem.

NAWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 32

Similarly the determinant can be defined for matrices over a general ring using the
"permutation-based" definition for the expansion of a determinant. However, the divi-
sionless GE algorithm does not readily yield the det A even for the integers Z due to the
growth of the elements resulting from the elementary row operations performed. More
structure is needed in the ring ft if we are to be able to obtain det .4 using GE. The
fraction-free Algorithm 14 can be performed in any unique factorization domain. The ba-
sic GE Algorithm 1 can be modified to solve the problem in a (noncommutative) division

ring-
Something similar to division is clearly needed in order that a system of linear equations

can be solved. Even when such a system is well-defined, it may be necessary to go to the
field of fractions in order to obtain the solution. So for the solution of systems of linear
equations, the underlying algebraic ring must have most of the properties of the integers
and the familiar number systems.

5.2. Algorithms.

Rank. The division-free GE Algorithm 11 is well-defined for any commutative ring.
For a completely general ring Tl the only modification needed is that the order of the
various products must be consistent. The notion of rank is also well-defined. The following
algorithm is a simple modification of Algorithm 7.

Algorithm 17 Division-free GE in a general ring Tl

Input n x n matrix A with entries from TZ
Compute

for i = 1 to n - 1
for j = i + 1 to n

for fc = i + 1 to n
o-jk ■= auo-jk - a»fcOji

a,-,- := 0
Output (modified) matrix A

Remark 22. The order of the products in the elimination step is chosen to be consistent
with the elimination of Oj,-.

Remark 23. In order to obtain the (row) rank of A, pivoting must be included if a pivot
element is 0. The pivot row can be interchanged with a row of the active matrix with a
nonzero entry in the pivot column. If no such exists then the elimination proceeds to the
next column. The rank is given by the number of nonzero elements on the diagonal of
the output matrix.

Determinant. The determinant of a matrix with elements in U can be defined using
permutations and using that definition it is at least feasible [5] to define the idea of an
inverse matrix when V, is a commutative ring with a multiplicative identity element 1.
(The existence of 1 is needed in order even to define an identity matrix. Commutativity
is necessary for the identity det AB = (det .4) (det B) to hold.)

However these conditions are not sufficient for the computation of the determinant
using GE. The division-free algorithm does not readily yield det A. The general ring
equivalent of (13) clearly demands division in order to extract the determinant. The
fraction-free Algorithm 14 however is well-defined for any unique factorization domain.
UFD, since "division"' by a common factor is now available.

NAWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 33

Algorithm 18 Computation of det A by fraction-free GE in a unique factorization do-

main

Input n x n matrix A with entries in a UFD 72.
Compute

for i = 1 to n — 1
factor an
for j = i + 1 to n

for k = i + 1 to n
Ojfc := aijOjjfc — Oj,Oit

Qj, := 0

if i > 2 then (removal of common factors)
for j = i + 1 to n
for fc = i + 1 to 7i

factor ajt
replace ajk by product of all its factors except those of a,_i,i_i

Output det J4 = onn

Remark 24. Tie factorization of o^, ajk and the repiacement of the latter with a reduced
product is the equivalent of division in the integer version, Algorithm 14.

Remark 25. Such an algorithm as this could be used for example in the polynomial ring
R[x].

Remark 26. Pivoting is needed in the event that any zero-pivot is encountered. This
can be done in the usual way by interchanging the pivot row with any suitable active row
— and negating the final determinant value.

For a noncommutative division ring — that is a ring with all the properties of a field
except that multiplication is not commutative — the original Algorithm 1 can be modified
to provide a determinant.

Algorithm 19 Computation of det A by GE in a division ring 11

Input n x n matrix A with entries from H
Compute

for i = 1 to n — 1
for j = i + 1 to n

for k = j: + 1 to n
O-jk ■= O-jk - (<Wau)a;i

a,; := 0
Output det A = f|"_j a"

Remark 27. Again, of course, some pivoting must be included in the event that any
pivot is zero.

NAWCADPAX--96-194-TR ,

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 34

5.3. Solvability for systems of equations. The first question to be addressed is
"For what types of ring can we solve such systems?' In [5] we see that the notion of an
inverse matrix is definable for any commutative ring 11 with 1. However, in such a general
setting, the definition of a matrix being nonsingular can be confused.

The usual (though not computationally useful) cofactor definitions can be used to
obtain both detA and a matrix B satisfying

AB = BA = (det A) I (22)

and if det ,4 is a unit in K then (det^l)"1 B is the inverse of a A. (Recall that a unit u in
11 is an element which has a multiplicative inverse u-1 such that uu 1 = u lu - 1.) In
such circumstances, the system Ax = b has a solution.

We already see that the notion of nonsingularity is open to many interpretations. In a
more general ring still, we can define and compute the rank of a matrix using Algorithm
Rl for example which allows nonsingularity of A to be defined by its having full rank.
This definition applies even when det 4 is not well-defined. However, if det A is well-
defined and is nonzero, then A has full rank and so there is no confusion between these
two definitions of nonsingular when they both make sense. From (22) it is apparent that
nonsingular and invertible need not be equivalent since det A could be nonzero but not a
unit.

We have already seen that for det^4 to be computed by GE, we require that TZ is a
UFD. In such circumstances (and assuming A is nonsingular) it follows that a system
Ax = b has a solution in the field of fractions Q. This solution would be computed by
Algorithm 15 modified to the "arithmetic" of 11 and Q with the operation reduce being
interpreted as removal of any common factors using the unique factorization property
rather than the god. If H is a Euclidean domain, then (a suitably modified form of) the
Euclidean algorithm for obtaining greatest common divisors can be used.

Unique factorization domains. In order to obtain the solution of a system in the
field of fractions Q of a UFD U we can use the following approach.

Algorithm 20 Solution of a system by GE in the field of fractions Q of a UFD H

Input nxn matrix A and an n-vector b with entries in a UFD H

(Fraction-free forward elimination as in Algorithm UFDdet
modified for right-hand side)

Compute
for i = 1 to n — 1

factor an
for j = i'+lton

bj :=■ a-ubj - cijibi

for k = i + 1 to n
ajk ■= audjk - OjiQiA-

Ojj := 0
if i > 2 then (removal of common factors)

for j = i + 1 to n
factor bj
replace bj by product of all its factors except those of ai_i,t_i
for k = i + 1 to n

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 35

factor Ojfc
replace djk by product of all its factors except those of ai_lt,_i

(Back substitution as in Algorithm 15 modified for 72., Q)

Initialize rational solution m := 0; n := 1 (solution will be i, = mi/ni)
Rationalize right-hand side p := b; q := 1 (right-hand side 6< = pn'qi)
Compute

for j = n downto 1

reduce[mj,^] (factor both arguments, remove all common factors)

for i = 1 to j - 1
Pi := pi * Tij - Uij * rrij * qi
Qi := qi * nj
reduce \pi, qi]

Output solution [m,n]

Integral domains. Using the division-free Algorithm 11 for the forward elimination
would allow the UFD solution to be extended to the case where 11 is a general integral
domain. Again a solution will exist in the field of fractions Q provided the matrix is
nonsingular. In this situation, just as with divisionless integer arithmetic, the problems
of range growth become potentially severe.

Algorithm 21 Division-free solution of a system by GE in a the field of fractions Q of
an integral domain It

Input 7?. x n integer matrix A and right-hand side b
Compute (Division-free forward elimination)

for i = 1 to n - 1
for j = i + 1 to n

bj := aubj - ajfo
for A; = i + 1 to n

Qjfc := auCLjk — o.jjaik
aji := 0

Initialize rational solution m := 0; n := 1 (solution will be x, = mi/ni)
Rationalize right-hand side p := b; q := 1 (right-hand side b, = Pi/qi)
Compute ("Rational" back substitution)

for j = n downto 1
rrij :=pj\ nj :=qj*Ujj
for 7 = 1 to j — 1

Pi ■= Pi * nj ~ uij * mj * 9i
q{ := q, * T?.J

Output solution [m, n]

Remark 28. The potential for range growth is shown very cleai-ly by the absence here
of any reduction of the fractions generated in the back substitution phase.

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 36

Solution in 11. Just as with the integers themselves, it may be that a particular
system has a solution in the original ring H without the need to go to the field of fractions
and rational "arithmetic". In the case where H is a UFD the "integer" solution, if it
exists, would be delivered since the various reductions and factorizations would result in
all denominators being 1. However, if we know in advance that a particular system has
a solution in 11, then at least the back substitution phase can be simplified since there is
then no need to introduce the fractions at all.

The simplifications to the above algorithms are then obvious and we do not detail

them here.

6. THE IMPACT OF PARALLELISM

The recent expansion in parallel computing has had profound effects on many areas of
computation - but perhaps nowhere has this impact been so marked as in numerical linear
algebra. There are many different parallel architectures including many special purpose
processors for tasks such as signal processing. In this section, we restrict attention to two
basic types of parallelism: vector processing and array processors.

The former are characterized by the highly optimized vector pipeline processors of the
Cray XMP series. These machines also typically featured some "true" parallelism in that
several such processors are available to be used simultaneously working on different data.
The latter class of (massively parallel) array processors is characterized by machines such
as the Connection Machines and the MasPar MP-1 and MP-2 series.

Each individual architecture has its own particular properties but there are some gen-
eral properties which can usefully be discussed here. For much more detail on the use of
vector machines for solution of linear systems see [18]. For further details on parallel algo-
rithms and array processors, [17] provides an excellent introduction with special reference
to linear algebra problems. The discussion of basic linear algebra operations in [7] does
not pay particular attention to any one architecture but does address architecture-related
issues "through discussions of saxpy and other special operations and their relations to
storage schemes. An introduction to some of these ideas and to performing basic linear
algebra operations on an array processor can also be found in [3].

6.1. Vector and pipeline architectures. By a "vector" architecture, we mean a
computer which is designed to perform operations on vector quantities at high speed. This
is most frequently achieved through efficient use of a pipeline processor. In such a machine
the operation of adding two vectors for example is greatly enhanced by allowing certain
subtasks (such as reading form memory, adding, rounding and normalizing, and writing
to memory) to be performed simultaneously. From the point of view of programming a
vector machine, it is usually valid to think of the operation

for i = 1 to n
Cj := a* +bi

as a single vector operation
c := a + b

where each component of c is computed at the same time.
There are some occasions when it is necessary to pay more careful attention to the

pipelined nature of such a vector operation but for the most part thinking of it as a vector
operation is appropriate. In fact most vector machines are designed to perform a typical
saxpy operation such as v := ax +y ("scalar a x plus y") very efficiently.

NAWCADPAX--96- 194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 37

Note that the innermost loop of the basic ijk form of Gauss elimination, Algorithm 1,
is performing a row-saxpy. this implementation of GE would therefore be well-suited to a
vector computer in which matrices are stored by rows. Similarly the ikj form, Algorithm
5, also has a saxpy at its heart - but this time a column-saxpy making this version of GE
better suited to a vector processor with matrices stored by columns.

To see the real effect of the vector processing here, we consider the column-oriented
version. For notational convenience we denote that part of the i-th column of A below the
main diagonal by c^ so that the fc-th component of this column vector is c.' = ai+fcii.
The part of the right-hand side vector below the i-th position is denoted b^. With this
notation the vector form of Algorithm 5 is

Algorithm 22 Basic GE: Column vector form

Input nxn matrix A (and right-hand side b if solving a system)
Compute

for i = 1 to n — 1
mW := cW/o«
a« := 0
bW := bw - &im(i) (if solving a system)
for k = i + 1 to n

c<*) := c<fc) - Oifcm«
Output (modified) matrix A (and b if solving a system)

The major impact on the complexity of the algorithm is immediately apparent: the
replacement of the j-loop by a single vector operation reduces the overall complexity
to 0(n2). Computation of the multiplier vector is consists of division of a vector by a
constant which can be achieved with a single (scalar) reciprocation followed by a saxpy
in which one of the vectors is 0. Similarly the update of the right-hand side vector is a
column-saxpy.

The vector operation counts for this algorithm are summarized in Table 6 along with
those for the back substitution phase which is a similarly vectorized version of Algorithm

■8.

TABLE 6 Vector floating-point operation counts for column GE solution of an n x n
linear system Ax = b.

Operation Forward elimination Back substitution TOTAL
Scalar / n -1 " (2n -1)
saxpy \ (n - 1) (n + 2) n-1 £(n-l)(n + 4)

In the case of a pipeline computer as opposed to a truly parallel vector machine, some
of the vector lengths would become too short to justify using the pipeline. Nonetheless we
see that the potential saving achieved by even the most elementary parallelism is great.
In the case of a "true"' vector processor, we have made an implicit assumption that the
limit on the vector length is at least n.

We see that adding a "vector dimension" to the processor power has reduced the
algorithmic complexity by an order of magnitude. In the case of an array processor with
at least n2 processors we might therefore hope to reduce the Gauss elimination algorithm
to O (n) parallel floating-point operations, or paraflops.

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 38

6 2 Array architectures. In this section, we consider the use of massively parallel
arrav processors for Gauss elimination. Such a computer architecture consists of a (typi-
cally" square or rectangular) array of processing elements operating in the SIMD paradigm.
That is to sav that, at any given time, each processor is either performing the same in-
struction on its own data or is idle. (SIMD is an acronym for Single Instruction Multiple

a TheTdTvidual processors in such an array are usually much less powerful than would
be encountered on a serial machine. The power of the parallelism comes from its scale.
Even if individual operations are much slower, adding two matrices using a single pararlop

with the instruction
C:=A + B

is likely to be significantly faster than the conventional double loop

for i = 1 to n
for j = 1 to n

Cij ■= aij + bij
with its n2 flops — especially when n gets large. ,,*,«»•

Typical parallel arravs have at least 1024 = 32 x 32 processors. Arrays of at least 4096
are now more common. On such an array the comparison for matrix addition is therefore
between one (slow) paraflop and 4096 (fast) serial floating-point operates. Even if the
individual arithmetic operations are slower by a factor of 32, the overall performance
would be speeded up by a factor of 128 which is certainly worth achieving. Many linear
algebra operations can be readily modified to be performed on an array processor with
close to the maximal speed-up. Matrix multiplication, for example can be reduced to just

0(n) paraflops on an n x n array. _
For simplicity, we shall suppose throughout this section that the matrices under con-

sideration fit the arrav — so that both are n x n arrays. For larger matrices, the sort of
algorithms discussed here can be modified to deal with the matrices in pieces. For smaller
matrices, the algorithms described can be used but will not necessarily take full advantage

of the processor array.
The biggest new cost associated with implementing algorithms such as Gauss elimi-

nation or LU factorization on an array processor comes form the inter-processor commu-
nications which are needed. This cost must be weighed alongside all the arithmetic and
other costs in deciding what architecture should be used for a particular problem. In this
section we are concerned onlv with implementing GE on such a processor

In keeping with the notation of the previous section, we shall denote by r^ the 2-th row
of the current matrix A. We shall also define two logical arrays rows and columns which
are used to control which processors perform particular operations. For the t-th stage of
GE, these sets will are rows = {j : j > i} and columns = {k : k > i}. The "active" part
of the matrix would then be identified with the mask

if (rows) and (columns) ...
which has the effect that only those processors for which both j > i and k > i would
perform the instructions covered by this test.

In Algorithm 23. below, for the case of linear systems we consider the situation oi

solving a matrix system
AX = B

where B can have as manv as n columns. There is no additional cost associated with this.
We shall denote the 7-th row of the current matrix B by b">. (Note this is different from

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 39

the notation for Algorithm 22 for a vector processor which was column-oriented.) The
notation m(i).c(i) used in the last section is retained.

The other point to be emphasized before detailing the algorithm is that arithmetic
operations referred to here are array operations not matrix operations. Thus the product
MA refers to the elementwise product of these two arrays.

Algorithm 23 Basic GE: Array processor form

Input nxn matrix A (and right-hand side B if solving a system)
Compute

for i = 1 to n — 1
rows := {j : j > i}
columns := {k : k> i}
copy aW to all rows to generate the array rowa
copy b(*> to all rows to generate the array rowb
m<*> := cW/o«
copy m(') to all columns to generate the array M
if (rows)

B :— B — M * rowb (if solving a system)
if (columns) A — A-M* rowa

Output (modified) matrix A (and B if solving a system)

Remark 29. The arithmetic complexity of this algorithm is easy to compute: There are
just 5 paradops used at each stage so that the total count is 5 (n — 1) paraflops consisting of
(n - 1) parallel divisions, 2 (n - 1) parallel multiplications and 2 (n - 1) parallel additions.

It is also easy to see that Algorithm 23 is wasteful. At stage i, all processors in
the first i rows are inactive. However, at no additional cost, the elimination could be
performed above the diagonal simultaneous with the triangular factorization. That is we
could perform the Gauss-Jordan algorithm for the same cost as GE. (Recall that for a
serial machine, Gauss-Jordan is twice as expensive as GE.) The effect of this is that the
back substitution is replaced by solving a diagonal system - a very simple task - especially
on a parallel computer. The only change needed is to modify the definition of the row
mask to rows := {j : j r '}■

The solution of the resulting diagonal system would be achieved by simply copying the
diagonal entries across their respective rows and then using the single parallel division:

A* := B/diag
This even raises the possibility that there may be circumstances in which computing

a matrix inverse may be a practical and desirable computation. Of course, it should be
recalled that the Gauss-Jordan algorithm is numerically less stable than Gauss elimina-
tion. For ill-conditioned matrices, therefore it may be better not to use this variation -
however for such matrices we would probably want to use a more stable algorithm than
GE, too!

Pivoting. As in all other cases of GE, it is possible that zero or small pivots will be
encountered and that pivoting is needed. In most parallel programming languages there
is a built-in reduction algorithm for locating the maximum element in an array. Therefore
finding the conventional pivot element for GE is a simple task. The choice between row
interchanges and storing a pivot vector is much the same as for serial implementations.
The pivot vector could easily be replaced in this context with another mask used so that

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 40

the search for the pivot element would only consider rows which had not yet been used

as a pivot row.

6.3. Parallelism for long integer arithmetic. As a final comment on the impact of
parallelism on performing Gauss elimination, we return to the question of integer compu-
tation and the need for long integer arithmetic to accommodate the growth in the dynamic
range. In Section 3.7 we considered the requirements of such long integer arithmetic and,
in particular, the convolution form of the product of such integers.

The problem was described as finding the product of

A'-l K-i

i=0 »=o

where Ä is the effective radix resulting form breaking a long wordlength integer into
shorter integer pieces. Recall that in (17), the product is given by

(K-i \ (K-\
m

,i^ö / \j=o

{K-\ \ K-\ \ vx-v /"ZJ \ ■

which is a convolution product of the coefficient vectors. Each coefficient product a{ßk-i
is a base-Ä2 "digit which we write as oaßk-i = 1k,iR + Sk,i where each -ikyi and 6k<i is a
base-Ä digit. The product (17) can therefore be written as

2A-2 /A'-l
m

2A-2 /A'-l \ 2A-1 /A-l \ .

where ^k,i = <5fe,t = 0 for i > fc.
An array processor could be used to accelerate this algorithm greatly. Firstly, all the

coefficient products in the inner sum in (17) can be computed simultaneously. The re-
alignment of the upper and lower halves of these products needed for the inner summation
in the last equation is then a simple shift of data to a neighboring processor and these
sums could then also be performed simultaneously. The final carries would be the only

part that requires serial processing. . .
These arithmetic-algorithmic considerations are analogous to the design decisions

which are used with R = 2 in the design of hardware arithmetic units where bit-parallelism

is exploited wherever possible.

7. NOISY MATRICES

In this section we address the problem of computing with "noisy" matrices. That is we
shall assume that the underlying matrix A is contaminated with a noise matrix E so that
the matrix with which we must compute is

A = A + E (23).

We shall also assume here that the level of the noise can be estimated so that we have

bounds on the elements of E such as

|e«|<5 (24)

NAWCADPAX-96-194-TR

GAUSS ELIMINATION? WORKHORSE OF LINEAR ALGEBRA 41

or that we know the elements of E are normally distributed random variables with mean
0 and standard deviation a. In the latter case, it follows that for each i.j

\eij\<2a (25)

with probability about 95%. (See any standard text on Statistics such as [8].) From
the similarity in (24) and (25) it appears that the Gaussian noise situation can be well-
modeled by the uniform noise model at least in terms of trying to estimate error bounds
or tolerances. For the remainder of this section, we use the uniform noise model (24).

Provided that S is not too large, the effect of using A rather than A is covered by
the standard error analyses for all the basic linear algebra problems with matrices of full
rank. Essentially S becomes a bound on the absolute errors of the original data or E plays
the role of 6A in the error analysis described in Section 2.5. (See [3] or, for an extensive
treatment, [7] for more details of this error analysis.) One situation in which the noisy-
matrix (23) can be expected to yield substantially different results from A is when A is
rank deficient. The determination of the "effective" rank of rank deficient matrices is an
important aspect of several naval applications.

7.1. Determination of effective rank. By determination of the effective rank, we
mean finding rank(A) even though we are given only A and the bound (24) on the noise
matrix. We assume here that all matrices have dimension nxn and that A has rank less
than n. Typically, we would expect A to be of full rank since the noise matrix is unlikely
to reflect the same linear dependencies among its rows (or columns) as those of A.

In the no-noise situation, Algorithm 10 delivers the rank of a matrix simply by counting
the number of nonzero elements on the diagonal of the upper triangular factor U result-
ing from LU factorization with partial pivoting. Of course, even roundoff errors mean
that testing these diagonal elements against zero is inadequate. For very ill-conditioned
matrices, this effect could be severe. But for other matrices, we may expect that these
zeros will be replaced with small values and that the true nonzero diagonal entries are
substantially larger.

In [12], it is stated that GE (or LU factorization) cannot satisfactorily distinguish
between the "true" nonzeros and the "should-be-zeros". However this conclusion ap-
pears to be based on an example in which a divisionless version of Gauss elimination is
applied to a small example. If Algorithm 10 (even without pivoting) is applied to this
example the results are very clear. In their application the diagonal entries are given
as 2.998, -12.922,0.577 which should be compared with singular values 10.331, 2.644 and
0.0064. However, with or without pivoting, conventional GE yields a diagonal with entries
2.998,4.315, -0.014 which shows a much clearer break between the "large" values and the
small one. In this particular example, S = 0.01 so that the "zero" has been preserved to
the same order of magnitude as S.

The question is how well can GE do as a rank determination algorithm in the presence
of noise? Clearly one 3x3 example does not justify its general applicability. Some
experiments were conducted using MATLAB with randomly generated noisy matrices
where the bound S was small relative to the range of values for the elements of A.

Generation of random noisy matrices. In order to generate random noisy matri-
ces with known effective rank r. first a set of r linearly independent vectors with random
entries in a specified interval was generated. Next random linear combinations of these
row vectors were used to generate the rows of the matrix A The coefficients of these linear

N AWC ADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 42

combinations were also from a specified range. Finally a complete n x n noise matrix with
random elements in the interval [-S, 5] was added to yield A.

Of course there is a remote possibility that the underlying matrix A could have rank
less than r. This never happened. An example of the MATLAB code used for this is:

function A = testmat(n.r);
a=20*rand(n)-10;
A=zeros(n);
for i=l:n

for j=l:r
A(i,:)=A(i.:)+(6*rand-3)*a(j,:);

end
end

function E=noisemat(n,s);
E=s*(2*rand(n)-1);

Ahat=testmat(n,r)-rnoisemat(n,s);

The tolerance level. With partial pivoting, all multipliers used in the LU factor-
ization are necessarily less than 1. Assuming that the noise is significantly greater than
the roundoff error effect but significantly smaller than the range of the matrix entries , it
follows that its effect on the LU factors is bounded by nS and so this could be used as a
likely tolerance for determining the effective rank of the matrix.

The MATLAB experiments that were performed suggest that this is indeed a satis-
factory tolerance to use most of the time. Some experiments were carried out using the
MATLAB LU factorization routine. The initial tests were based on perturbations of a
7x7 matrix which was used as the basis of the analysis in [12]. This matrix is

A =

3 2 1 7 4 5 3
1 4 2 6 5 10 3
8 1 5 13 5 7 0
4 2 7 15 11 11 4
1 2 1 3 2 5 1
2 1 3 5 3 5 0
3 10 1 5 2 21 1

(26)

which has true rank 4.
The MATLAB function randn was used to generate noise matrices whose elements

were normally distributed and with specified standard deviation. The first phase of the
experiment was to obtain the effective rank of many such perturbations by counting the
number of diagonal entries in U which exceeded some threshold absolute value. Two
hundred perturbations were used in each test. The value of the standard deviation and
the tolerance used were varied between runs.

It quickly became apparent that choosing a tolerance close to no provided the best
results. The following table of results for o = 0.3 illustrate this point.

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE DF LINEAR ALGEBRA 43

TABLE 7 Rank tests using LU factorization. 7x7 matrix (26). a = 0.3

<
Shows number of times each rank was obtainec with 200 perturbations for each tolerance

Tolerance Rank=3 Rank=4 1 Rank=5 Rank=6 Rank=7
•

a 0
1 o

5a 0
10a 50

0
60
155
150

10
97
43
0

72 118
39 4
2 0
0 o

Whpn thp test, was reDeated for (7 = 0.1.1001 D perturb rations using tolerance 10a yielded VV UCll tllC LCOt WOO ivy»-«uvu *w* v «.*. -~~~ j _

rank 4 996 times and rank 5 just 4 times. With a smaller value of a the results were even
more successful. For both these small noise levels, using tol = bo gave approximately 75%
success. These experiments suggest that GE with the appropriate tolerance could be the
basis of a successful rank determination algorithm when the noise level is known. It is
also already apparent that finding the right tolerance to use is of critical importance and
the results may be highly sensitive to this choice.

One way of reducing this effect is to use the LU factorization as a basis for a proba-
bilistic approach to the problem. To this end a second set of tests was run in which the
original matrix A is perturbed. The LU rank test used in the previous experiments is
then applied to a number of perturbations of this matrix. The effective rank would then
be determined by the most frequent "rank" for these and some estimate of the confidence
we should have in the result is provided by the complete array of results. Thus a single
test would produce results similar to a row of Table 7.

In the experiments 200 perturbations were again used. Clearly this would be too
expensive since for even a poorly conditioned example we would expect to be able to
complete the singular value decomposition of A with much less effort than 200 LU factor-
izations. The reason for using so many test runs here is to try to eliminate falsely positive
results based on small samples.

The tests were performed using three different noise levels a = 10" ;0.1,0.3 each with
two tolerance levels la and 10a. The combined results of four runs of each case are
summarized in Table 8. Each run uses a different underlying perturbation of the basic

7x7 matrix.

TABLE 8 Hank tests using LU factorization. Perturbations of the 7x7 matrix (26).

Table shows percentage for each rank was obtained in each case and the resulting
estimated rank.

Std Deviation Tolerance Rank=3 Rank=4 Rank=5 Rank=6 Est Rank

10" b 7a 0 71.0 28.0 1.0 4

0.1 7a 0 76.25 23.38 0.38 4

0.3 7a 2.88 75.25 20.5 1.38 4

10"6 10a 0 91.5 8.5 0 4

0.1 10a 0 92.63 7.38 0 4

0.3 10a 5.5 88.13 6.38 0 4

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 44

This evidence suggests that for a matrix of this dimension a tolerance of 10a is likely
to prove very reliable in predicting the effective rank of a matrix from the LU factorization
of even a small number of perturbations of the original matrix. As would be expected the
performance appears to be beginning to deteriorate as the noise level rises.

The biggest drawback to using GE in this context is that setting the appropriate
tolerance is difficult and especially as the dimension of the matrices increases the cost of
performing several LU factorizations of perturbed copies may be too expensive. Other
approaches to this problem may be more successful for higher dimensions.

Limited further experiments were conducted with matrices of higher dimension and
without the probabilistic element. Specifically within the context of low rank matrices of
larger dimension, the instability of LU factorization becomes apparent. On experiments
using randomlv generated 20 x 20 matrices with rank 4, there were examples in which
the effective rank was correctly predicted by the LU factorization. These typically had

moderate condition numbers.
One particular example generated using the functions described above with n = 20, r _

4 s = 0.5 had condition number reported by MATLAB as 2.4 x 106. The LU factorization
using a tolerance of ns yielded an effective rank of just 2. (The SVD gave the correct
result as did a least squares based algorithm.) Studying the diagonal entries of U it was
apparent that there was no readily recognizable alternative tolerance was available. The
two "large" entries were approximately -39 and 31, the next four were 7.0, 6.8, 5.7 and
4.5 followed by three between 2 and 2.5 and all except one were greater than 0.5.

Trying repeated perturbations of the matrix as in the second phase of the above
experiments did not provide any clear conclusion either. After 28 such perturbations had
been tested, the results indicated rank=4 17 times, rank=3 10 times and rank=2 once.
With a mean rank estimate of 3.57 this is clearly not conclusive. Note too that 28 LU
factorizations of different 20 x 20 matrices required approximately 140,000 flops which
does not compare favorably with the 31,000 required for the SVD for this same matrix.

Gauss elimination may be the answer to many linear algebra problems but effective
rank determination for low rank matrices of even moderately large dimension in the pres-
ence of noise is probably best approached by alternative techniques.

7.2. Other approaches. The most reliable and commonly used technique for this
problem is based on the SVD. This algorithm too is sensitive to the tolerance level and
that is the main point of [12]. However in general the singular value decomposition is
usually expensive to compute.

The work of [6] is based on an alternative which makes use of the coefficients of the
characteristic polynomial of the matrix. This is a statistical approach which relies on a
finite algebraic algorithm - but one which is also likely to be expensive computationally
since it is most naturally suited to working from full rank downwards until the effective
rank is revealed. The problem here is that the full rank determination requires the com-
putation of the determinant and so is already as expensive as the LU factorization. There
may be alternative arrangements of the algorithm which would overcome this difficulty.

A further alternative currently being investigated uses least squares approximation
[24]. The idea here is to have an algorithm which works upwards from rank 1 to determine
the rank of a matrix which is known to be of low rank more quickly. The basic idea is
to approximate each row of the matrix, in a least squares sense, with a multiple of the
largest row. If the residual matrix is small enough then the effective rank is 1. Otherwise
the process is repeated with the remaining rows. The early results with this approach are

NAWCADPAX-96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 45

encouraging and the investigation is continuing. For the specific example quoted above
the correct rank was determined using just 8000 flops representing a saving of nearly 75%
compared with the SVD-based algorithm.

REFERENCES

[1] H.Anton, Linear Algebra 4th Ed, Wiley, New York, 1984

[2] N.R.Blachman and M.J.Mossinghoff, Maple V Quick Reference, Brooks/ Cole, Pacific

Grove, CA, 1994

[3] J.L.Buchanan and P.R.Turner, Numerical Methods and Analysis. McGraw-Hill, New-

York, 1992

[4] J.W.Demmel, Trading off parallelism and numerical stability, Linear Algebra for
Large-scale and Real-time Applications (G.Golub, M.Moonen & B. de Moor, eds)
Kluwer, 1993, pp 49-68

[5] D.S.Dummit and R.M.Foote, Abstract Algebra, Prentice-Hall, 1991

[6] R.Gleeson, Using the coefficients of the characteristic polynomial for effective rank
determination, NAWC-AD Tech Rep. 1996

[7] G,H.Golub and C.F.van Loan, Matrix Computations 2nd Ed, Johns Hopkins Press,
Baltimore, 1989

[8] R.V.Hogg and A.T.Craig, Introduction to Mathematical Statistics, 5th Ed, Prentice-
Hall, 1995

[9] B.J.Kirsch, High throughput signal processor for C3 applications, NAWCADWAR-
95021-4.5, 1995

[10] B.J.Kirsch and P.R.Turner, Modified Gaussian elimination for adaptive beamfonning
using complex RNS arithmetic. NAWCADWAR 94112-50, 1994

[11] B.J.Kirsch and P.R.Turner. Adaptive beamforming using RNS arithmetic, Proc
ARITH11, IEEE Computer Society. Washington. DC, 1993, pp36-43

[12] K.Konstantinides and Kung Yao, Statistical analysis of effective singular values in
nmtrix rank determination, IEEE Trans ASSP 36 (1988) 757-763

[13] P.Kornerup and D.W.Matula, Finite precision lexicographic continued fraction num-
ber systems, Proc ARITH7, IEEE Computer Society, Washington DC, 1985, pp 207-

214

[14] P.Kornerup and D.W.Matula, An on-line arithmetic for bit-pipelined rational arith-
metic, J Parallel and Dist Comp 5 (1989) 310-330

[15] P.Kornerup and D.W.Matula, Exploiting redundancy in bit-pipelined rational arith-
metic, Proc ARITH9, IEEE Computer Society. Washington DC. 1989, pp 119-126

[16] The MathWorks, Inc., The Student Edition of MATI AB Version 4, User's guide,
Prentice-Hall, Englewood Cliffs. NJ. 1995

NAWCADPAX--96-194-TR

GAUSS ELIMINATION: WORKHORSE OF LINEAR ALGEBRA 46

[17] J.J.Modi, Parallel Algorithms and Matrix Computations, Oxford University Press,

Oxford, 1988

[18] J.M.Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum,

New York, 1988

[19] N.R.Scott, Computer Number Systems and Arithmetic, Prentice-Hall, 1985

[20] P.H.Sterbenz, Floating-point computation, Prentice-Hall, 1974

[21] P.R.Turner, An Improved RNS division Algorithm, Report NAWCADWAR-95002-

4.5,1995

[22] P R Turner and B.J.Kirsch, An analysis of Gauss elimination for adaptive beamform-

ing, Report NAWCADWAR - 95003-4,5, 1995

[23] PR Turner and B.J.Kirsch, Operation complexity for integer or RNS Gaussian elim-

ination, Report NAWCADWAR - 95004-4.5, 1995

[24] PR.Turner, Low rank determination using least squares, NAWC-AD Tech Rep 1996

[25] J.H.Wilkinson, Rounding Errors in Algebraic Processes, HMSO, London, 1963

[26] J.H.Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford,

1965

[27] S.Wolfram, Mathematica 2nd Ed, Addison-Wesley, New York, 1991

Distribution List
Report No. NAWCADPAX- -96 - 194 - TR

No. of Copies
Office of Naval Research 2
800 N. Quincy St.
Arlington, VA 22217
Marine Corps Research Center
2040 Broadway Street
Quantico, VA 22134-5107

Marine Corps University Libraries 2
Naval Air Systems Command
Air-5002
Washington, DC 20641-5004

Technical Information & Reference Center 2
Naval Air Warfare Center, Aircraft. Division
Building 407
Patuxent River, MD 20670-5407

Naval Air Station Central Library , 2
Naval Air Systems Command (NAVAIR)
Jefferson Plaza Bldg 1., 1421 Jefferson Davis Hwy
Arlington, VA 2243-5120 .

Director Science & Technology (4.0T) 2
Naval Sea Systems Command
2531 Jefferson Davis Hwy
Arlington, VA 22242-5100

Technical Library, (SEA04TD2L) 2
Defense Technical Information Center
Cameron Station BG5
Alexandria, VA 22304-6145

DTIC-FDAB 2
U.S. Naval Academy
Annapolis, MD 21402-5029

Peter R. Turner (Mathematics Department) 10
Dr. Richard Werking (Nimitz Library) 2

Naval Air Warfare Center
Weapons Division
China Lake, CA 93555-6001

Head Research & Tech. Div. (NAWCWPNS-474000D) 2
Computational Sciences (NAWCWPNS-474400D) 2
Mary-Deirdre Coraggio (Library Division, C643) 2

Distribution List, cont.

Report No. NAWCADPAX- -96- 194 - TR

No. of Copies

Naval Postgraduate School
Monterey, CA 93943-5002

Dudley Knox Library 2

Naval Research Laboratory(NRL)
4555 Overlook Ave, SW
Washington, DC 20375-5000

Center for Computational Science (NRL-5590) 2
Superint., Lab. for Comput. Phy k Fluid Dynamics

(NRL-6400) 2

Ruth H. Hooker Research Library (5220) 2

Naval Command, Control k Ocean Surveillance Center
200 Catalina Blvd
San Diego, CA 92147-5042

Technical Library (NRAD-0274) 2
Signals Warfare Div (NRAD-77) 2

Analysis k Simulation Div. (NRAD-78) 2

Director of Navigation k Air C3 Dept. (NCCOSC-30) 2

Naval Air Warfare Center
Aircraft Division Warminster
Warminster, PA 18974-0591

Warfare Planning Systems (4.5.2.1.00R07) • 2
Tactical Inf. Systems (4.5.2.2.00R07) 2
Mission Comp. Processors (4.5.5.1.00R07) 2
Dr. Robert M. Williams (4.5.5.1.00R07) 20
Acoustic Sensors (4.5.5.4.00R07) 2

RF Sensors (4.5.5.5.00R07) 2

EO Sensors (4.5.5.6.00R07) 2

Inductive Analysis Branch (4.10.2.00RS6) 2
TACAIR Analysis Division (4.10.1.00R86) 2
Operations Research Analysis Branch (4.10.1.00R86) 2
Advanced Concepts Branch (4.10.3.00R86) 2
Nav. Aval. Sys. Dev. Division (3.1.0.9) , 2

Anthony Passamante (4.5.5.3.4.001107) 2
Elect. Systems BR (4.8.2.2.00R08) 2
Dr. Richard Llorens (4.3.2.1.00R08) 2
Advanced Processors (4.5.5.1.00R07) • • • • 2

Mission k Sensors Integrations (4.5.5.3.000R07) 2
Applied Signal Process BR (4.5.5.3.4.00R07) 2

