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Abstract 

This paper reviews the ten year history of tutor development based on the ACT theory 

(Anderson, 1983, 1993). We developed production system models in ACT of how 

students solved problems in LISP, geometry, and algebra. Computer tutors were 

developed around these cognitive models. Construction of these tutors was guided by a set 

of eight principles loosely based on the ACT theory. Early evaluations of these tutors 

usually but not always showed significant achievement gains. Best case evaluations 

showed that students could achieve at least the same level of proficiency as conventional 

instruction in one-third of the time. Empirical studies showed that students were learning 

skills in production-rule units and that the best tutorial interaction style was one in which 

the tutor provides immediate feedback, consisting of short and directed error messages. 

The tutors appear to work better if they present themselves to students as non human tools 

to assist learning rather than as emulations of human tutors. Students working with these 

tutors display transfer to other environments to the degree that they can map the tutor 

environment into the test environment. These experiences have coalesced into a new 

system for developing and deploying tutors. This system involves first selecting a 

problem-solving interface, then constructing a curriculum under the guidance of a domain 

expert, then designing a cognitive model for solving problems in that environment, then 

building instruction around the productions in that model, and finally deploying the tutor in 

the classroom. New tutors are being built in this system to achieve the NCTM standards 

for high school mathematics in an urban setting. 
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Introduction 

Over the past 10 years, our research group (the Advanced Computer Tutoring Project at 

Carnegie Mellon University) has been developing a type of computer-based instructional 

technology which we call cognitive tutors. The core commitment at every stage of the 

work and in all applications is that instruction should be designed with reference to a 

cognitive model of the competence that the student is being asked to learn. This means that 

the system possesses a computational model capable of solving the problems that are given 

to students in the ways students are expected to solve the problems. As will be elaborated, 

all decisions about delivering such instruction are made with reference to that model. These 

systems are called tutors because our initial work on them was inspired by the intelligent 

tutoring work of the late 70s and early 80s (e.g., Sleeman & Brown, 1982). Indeed, when 

we embarked on the project, we had the ill-defined goal that our systems interact with 

students like private human tutors. While we de-emphasized the emulation of the human 

tutors over the years, the term "tutor" has stuck. 

This article will survey our work on tutoring. It will describe the motivations for being 

involved in tutoring, the theoretical assumptions underpinning the work, the empirical 

evidence for the claims, and the current directions of the research. This overview will be 

organized according to its three identifiable stages: a flurry of tutor building in the mid- 

80s, a flurry of evaluations in the late 80s, and a current effort to build and deploy practical 

tutor systems. 

Stage 1: Early Tutor Building 

1982 saw the completion of the ACT* theory of learning and problem solving which was 

described in the Architecture of Cognition (Anderson, 1983). Much of that theory was 
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concerned with the acquisition of cognitive skills and we had done research testing the 

theory in the domains of proof generation in geometry (Anderson, Greeno, Kline, & 

Neves, 1981) and initial programming skills in LISP (Anderson, Farrell, & Sauers, 1984). 

The theory held that a cognitive skill consists in large part of units of goal-related 

knowledge. Cognitive skill acquisition involves the formulation of thousands of rules 

relating task goals and task states to actions and consequences. The theory employs a 

production-rule formalism to represent this goal-oriented knowledge. For example, a 

geometry proof generation rule might be: 

IF the goal is to prove two triangles are congruent 

THEN set as a subgoal to prove that corresponding parts are congruent. 

while a LISP programming rule would be: 

IF the goal is to get the second element of the list 

THEN code car and set as a subgoal to pass to car an argument which is the tail of 

the list 

It is not the production rule notation that is critical; it is the set of representational features 

that this notation enables. For instance, production rules are procedural, abstract, modular, 

directional, and goal related. See Anderson (1993, Chapter 2 and especially Section 2.4) 

for an elaboration of these features. 

A theory of the acquisition of cognitive skills should have implications for their instruction. 

We thought it would be an important test of the theory if we could use it to optimize 

learning. However, it is not a trivial matter to convert a scientific theory of a phenomenon 
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to an engineering theory of how to foster that phenomenon. We undertook our first work 

in intelligent tutoring to explore how such a conversion might take place. 

The ACT Theory 

Since the tutoring effort is so strongly tied to the ACT theories of skill acquisition (initially, 

the ACT* theory—Anderson, 1983—and now the ACT-R theory—Anderson, 1993) it is 

worth reviewing the principal tenets of that theory: 

1. Procedural-Declarative Distinction: The theory distinguishes between 

declarative knowledge (e.g., knowing the side-angle-side theorem) and procedural 

knowledge (e.g., an ability to use the side-angle-side theorem in a proof). The 

assumption of the theory is that goal-independent declarative knowledge initially 

enters the system in a form that can be encoded more or less directly from 

observation and instruction. Cognitive skill depends on converting this knowledge 

into production rules like the above which represent the procedural knowledge. 

2. Knowledge Compilation: It is assumed that the students could use various 

interpretative procedures such as instruction-following and analogy to generate 

problem-solving behavior by relating declarative knowledge to task goals. A 

learning process called knowledge compilation converts this interpretive problem 

solving into production rules. Thus, the theory assumes that production rules can 

only be learned by employing declarative knowledge in the context of a problem- 

solving activity. 

3. Strengthening: It is assumed that both declarative and procedural knowledge 

acquire strength with practice.  Application of weak knowledge can result in slips 
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and errors. Thus, even after the knowledge has been successfully encoded further 

practice produces smoother, more rapid, and less errorful execution. 

These three assumptions2 pointed us in the direction of a method of instruction in which 

students were presented with an initial brief declarative instruction and then they received 

good deal of guided practice. As stressed elsewhere (Anderson, Conrad, & Corbett, 1989; 

Anderson 1993) this conception of skill acquisition is quite simple. The apparent 

complexity of learning a cognitive skill results from the inherent complexity of the domain 

being learned. That complexity is reflected in the complexity of the rule set that has to be 

learned but the learning of each production rule is quite simple. 

The Nature of a Cognitive Skill 

We have already used the term "cognitive skill" and will continue throughout this paper to 

use the term to describe what our tutors teach. Therefore, it seems important to be clear on 

how the term relates to what one might conceive of as "competence" in a particular domain 

such as geometry. We use "cognitive skill" to refer to the set of production rules acquired 

in the domain. According to the ACT theory, there is more to domain competence than just 

these production rules. There is also the declarative structures that represent domain 

knowledge. While, in principle, it is possible to have of all domain knowledge represented 

in production rules or all domain knowledge represented declaratively (and being 

interpreted by domain-independent procedures) we do not think either is the profitable way 

to develop domain competence. If everything had to be represented as production rules, 

too many rules would be required because it would be necessary to represent each piece of 

knowledge in each way it could be used.   If everything had to be interpreted from 

2There were other ideas in the ACT* theory about production rule learning but these were abandoned in the 
ACT-R theory which is in many ways a simplification of the earlier theory. 
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declarative representations it would be too inefficient and place too great a burden on 

working memory. 

An example of a declarative structure in the domain of geometry might be the side-angle- 

side theorem. "If two sides and the included angles of two triangles are congruent, then the 

triangles are congruent." Procedural knowledge might involve skills of placing triangles 

into correspondence, determining what an included angle is, setting subgoals, and making 

inferences. It might also include some frequently encountered uses of this rule such as 

recognizing triangles as congruent which meet this condition. 

Given that competence depends on both declarative and procedural knowledge why have 

we placed the emphasis on the procedural? This is because our view is that the acquisition 

of the declarative knowledge is relatively unproblematical. However, declarative 

knowledge by itself is inert and often quite useless.3 Declarative knowledge can be 

acquired by simply being told and our tutors always apply in a context where students 

receive such declarative instruction external to the tutors. What is problematical is 

acquiring the procedural knowledge that enables this inert knowledge to become the basis 

for effective action in the context of use. Production rules cannot be learned by simply 

being told. Rather they are skills that are only acquired by doing. Thus, it is critical to set 

up contexts in which these skills can be displayed, monitored, and appropriate feedback 

given to shape their acquisition. This is the function of our tutors. 

Initial Work on Tutoring 

3While our theoretical interpretation of the phenomenon is different, this issue of inert knowledge is, of 
course, a familiar problem in education (e.g., Brown, Collins, & Doguid, 1989; Cognition and Technology 
Group at Vanderbilt, 1990; and Whitehead, 1929). 
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Our initial motivation in developing intelligent tutoring systems was mainly to learn more 

about skill acquisition rather than to produce practical classroom results. It was a 

significant test of the ACT theory to see whether we could produce successful learning by 

getting students to act like the underlying production-rule model. It was by no means 

obvious at the time whether or not there were going to be major gaps in ACT production- 

rule models when applied to such instructional situations. 

In 1983 work began on a LISP tutor and a geometry tutor (Anderson & Reiser, 1985; 

Anderson, Boyle & Yost, 1986; Anderson, Boyle, Corbett & Lewis, 1990). The former 

helped students write short programs in LISP, while the latter helped students search for 

geometry proofs and represent them in proof-graph form. The screen displays for the two 

tutors are depicted in Figures 1 and 2. These two tutors embodied a number of key ideas 

about how computer-based instruction should be realized. These ideas have been part of all 

of our subsequent tutors: 

Insert Figures 1 and 2 About Here 

(1) Model: There should be a production rule model of the underlying skill incorporated 

into the tutor. This is a model which would perform the task the student was expected to 

perform. At each point in the problem solving the model is capable of generating a set of 

production sequences which represent correct solutions of the problem. 

(2) On-Path Actions: Correct actions on the student's part are recognized if they are 

along one of the correct solution paths generated by the model. If the student is correct, the 

tutor does not comment but rather allows the student to progress with the solution. 
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(3) Off-Path Actions: If the student performs an off-path action, instruction is focused 

on getting the student back on path. Our earlier tutors required students to always stay on 

path. More recent tutors allow the student to go off path but still focus instruction on 

getting the student back on path when they are off path. 

(4) Error Feedback and Help: The tutors possess two types of instruction. If the 

student makes a recognizable error (a bug) a message can be given explaining why it is an 

error. This is generated from a buggy production that embodies the error. If the student 

asks for help, a help message is presented to guide the student to the correct solution. This 

message is generated from the information along a correct path. Both bug messages and 

help messages are generated to be specific to the particular context in which they occur by 

using the particular instantiations of the general production rules. 

This approach to tutoring is described as the model-tracing approach because it 

involves trying to relate the behavioral manifestations of the student's solution on the 

computer to some sequence of production firings in the cognitive model. This is a version 

of the plan-recognition problem which is recognized as being computationally very difficult 

in its general form because of the combinatorics of how a plan can fit onto external 

behavior. We originally dealt with this problem by insisting that each action of the student 

be on an interpretable path. When there was any ambiguity about the interpretation of the 

student's action the student was presented with a disambiguation menu to identify the 

proper interpretation of the action. If the student's action was in error, the student was to 

correct it and get back on an interpretable path. This approach, combined with an interface 

that yielded a relatively rich behavioral trace and a restriction on possible interpretations of 

the behavior, tamed the combinatorics of the problem so that we were able to follow the 

solution of the student and do so in real time. As we will discuss later in this manuscript, 
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we have subsequently relaxed the requirement that the student stay on an interpretable path 

but have done so in ways that avoided the potential combinatorial explosion. 

This technical accomplishment was no mean feat in itself. It was and still is the only 

practical automatic approach to protocol analysis. This model-tracing approach has been 

adapted to doing automatic protocol analyses of problem solving in psychology 

experiments where there is no tutorial intervention (Anderson, 1993). However, solving 

the technical problem of model tracing does not bring with it any automatic guarantee of 

instructional effectiveness. 

Interacting with the LISP Tutor 

We first need to illustrate what it is like to interact with one of these tutors. Since we report 

more empirical research from the LISP tutor than any from the others, it is the best choice 

for an illustration. This section will describe an interaction with the original LISP tutor we 

created.4 Figure 1 depicts the terminal screen at the beginning of an exercise. The original 

LISP tutor ran on Vaxes and communicated with students via a regular 24 x 80 character 

terminal. The screen is divided into two windows, and the problem description appears in 

the "tutor window" at the top of the screen. As the student types, the code appears in the 

"code window" at the bottom of the screen. This exercise is drawn from the lesson in 

which iteration is being introduced. Students are familiar with the structure of function 

definitions by this point, so the tutor has put up the template for a definition, filling in 

defun and the function name for the student. The symbols in angle brackets reify 

remaining goals—that is, they represent code components remaining for the student to 

supply. The tutor places the cursor over the first symbol the student needs to expand, 

<PARAMETERS>. 

4 As it turns out, there are a number of different LISP tutors that we have constructed. The original tutor is 
called affectionately "LISP Tutor classic" in our laboratory. 
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As the student works on an exercise, this tutor monitors the student's input, essentially on 

a symbol-by-symbol basis. As long as the student is on some reasonable solution path, the 

tutor remains in the background and the interface behaves like a structure editor. The tutor 

expands templates for function calls, provides balancing right-parentheses, and advances 

the cursor over the remaining symbols which must be expanded. If the student makes a 

mistake, however, the tutor immediately provides feedback and gives the student another 

opportunity to type a correct symbol. If the student requests an explanation or if the 

student appears to be floundering5, the tutor will also provide a correct next step in a 

solution, along with an explanation. 

Table 1 contains a record of a hypothetical student completing the code for the exercise.6 

This table does not attempt to show the terminal screen as it actually appears at each step in 

the exercise. Instead, it shows an abbreviated "teletype" version of the interaction. As 

described above, while the student is working, the problem description generally remains 

in the tutor window (except when a message to the student is being presented), while the 

code window is being updated on a symbol-by-symbol basis. Instead of portraying each 

update to the code window in the interaction, the table portrays nine key "cycles" in which 

the tutor interrupts to communicate with the student. At each of these enumerated cycles 

the complete contents of the code window are shown, along with the tutor's response. The 

tutor's response is shown below the code to capture the temporal sequence of events; on 

the terminal screen, the tutor's communications would appear in the tutor window above 

the code. In each cycle all the code which the student has typed since the preceding cycle is 

5Students are judged to be floundering at a step in the solution when they repeat the same type of error three 
times or make two mistakes that the tutor does not recognize. 
^Undoubtedly, the use of LISP creates a barrier to communication with that fraction of the readership that is 
not familiar with LISP. However, the semantics of LISP are not really necessary to understanding how the 
tutor interacts or how these interactions depend on the underlying production-rule models. 
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shown in boldface in Table 1. However, in each case, the tutor is responding specifically 

to the last symbol the student typed. 

Insert Table 1 About Here 

In the first of the cycles displayed, the student has typed in the parameter list and has called 

loop in order to iterate. The tutor reminds the student that it is necessary to create some 

local variables before entering the loop. In the second cycle, the student has called let and 

is about to create a local variable. The template for numeric iteration calls for two local 

variables in this function, so the tutor puts up a menu to clarify which variable the student 

is going to declare first. This illustrates the tutor's need to know at all times what the 

student's intentions are so that it can follow the student. If there is an ambiguity, it will 

query the student by the means of such menus. In the third cycle, the student has coded an 

initial value which would be correct if the function were going to count up. However, this 

exercise is intended to give the student practice in counting down, so the tutor redirects the 

student. In the fourth cycle, the student has made a typing error which the tutor 

recognizes, and in the fifth cycle the student is attempting to return the correct value from 

the loop, but has forgotten to call return. The tutor reminds the student that a special 

function call is required to exit a loop. The interactions between the tutor and student 

continue in this manner. Note that, for illustration's sake, this interaction shows students 

making rather more errors than they usually do. Typically, the error rate is about 15 

percent while it is approximately 30 percent in this dialogue. After each exercise, the 

student enters a standard LISP environment called the LISP window. Students can 

experiment in the LISP window as they choose; the only constraint is that they successfully 

call the function they have just defined (which the tutor has automatically loaded). 
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The Initial Incursion into the Classroom 

In 1984 we ran a few high-school students through the geometry tutor and taught a mini- 

course in Computer Science at CMU with the LISP tutor. The results exceeded our initial 

modest expectations. Students seemed to learn fairly well with the geometry tutor. The 

LISP mini course was broken up into two groups to allow for an evaluation. One group 

worked exercises with the LISP tutor and one worked the same exercises in a standard 

LISP environment. Students with the LISP tutor took 30% less time and scored one 

standard deviation higher on a final test than the students in the control condition. 

In response to these results we created a full semester course in LISP, taught to Humanities 

and Social Sciences students, which is still a successful course today but with a number of 

revisions over the period.7 We decided to try to use the geometry tutor in a real classroom 

and were able to create a classroom of 10 Xerox D-machines which were in Peabody High 

School in Pittsburgh from 1985 to 1988. 

Emboldened by the prospects of practical tutors, we set out to create a third tutor for 

Algebra I. That tutor was also implemented on the D-machine. It tutored algebra symbol- 

manipulation skills (such as solving linear equations) which had been the focus of some 

discussion in cognitive science (e.g., Matz, 1982). 

Figure 3 illustrates the appearance of the algebra tutor (for more details read Milson, Lewis, 

& Anderson, 1990). Our analysis of the algebra symbol manipulation skills revealed that 

there were clear algorithms for accomplishing all tasks and successful students had learned 

these algorithms. The algorithms were described in more or less detail in various 

textbooks. A key feature of these algorithms was that they were quite hierarchical such that 

'Currently, the course is now a combined LISP and Prolog course in which the students learn both 
languages. The tutor is now delivered on a Macintosh system. 
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to solve a linear equation one might have to get rid of embedded expressions which 

required distribution which might require multiplication of fractions which required integer 

multiplication and so on. We observed that weaker students were frequently confused 

about a lower-level operation and it was difficult to get them to identify the level at which 

their problem occurred. To facilitate this remediation we attempted to illustrate this 

hierarchical structure by a representation like Figure 3 which placed boxes representing 

suboperations within boxes representing larger operations. This would allow us to identify 

and focus instruction on the level at which the student was having difficulties. 

Insert Figure 3 About Here 

The Eight Principles 

About that time it seemed that we should try to draw a tighter connection between the ACT* 

theory and our tutoring practice. Anderson, Boyle, Farrell, and Reiser (1987) examined 

the ACT* theory and extracted what we felt were eight principles for design of tutors which 

followed from that theory and which are reviewed below: 

Principle   1:   Represent   student  competence  as  a   production   set.  The 

fundamental insight is that the tutoring enterprise should be informed by an accurate model 

of the target skill. The cognitive model allows us to set appropriate curriculum objectives 

and to properly interpret the actions of the student. This has been the essential difference 

between our approach and the more behaviorist approaches to computer-based instruction. 

The production rules define a more abstract and, we believe, more accurate representation 

of the target skill than did the behavioral objectives of a typical behaviorist analysis (e.g. 

Bunderson & Faust, 1976; Gagn6 & Briggs, 1974). However, our approach shares with 

the behaviorist approach the idea of decomposing a skill into components and organizing 
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instructions according to the componential analysis. The difference is in what the 

components are. 

This principle does not specify how to define a computer interface, how to interact with a 

student, or when to promote the student through the curriculum. This all depends on a 

theory of how such production rules are acquired. The other principles of tutoring were all 

concerned with how to take this first insight and convert it into pedagogical policy. These 

other principles were derived with varying degrees of rigor from the ACT theory of skill 

acquisition. 

Principle 2: Communicate the goal structure underlying the problem 

solving. One of the enduring assumptions of the ACT theory has been that solving a 

problem involves decomposing that problem into a set of goals and subgoals. Another 

observation was that in many domains which students had difficulty mastering (e.g., proof 

skills in geometry or writing recursive programs) the goal structure governing the problem 

solving was not adequately communicated to the student. So the reasonable assumption 

was that exposing and communicating such goals should be an instructional objective. We 

adapted an approach that has been called reification (Brown, 1985; Collins & Brown, 

1987). We attempted to develop interfaces that made explicit the goal structures which 

were only implicit in the instruction. We had at least two notable successes. This was the 

use of a proof graph in geometry to illustrate the subgoaling relationship between certain 

conclusions and the ultimate conclusion of the proof.8 The other was Singley's use of a 

subgoal tree to illustrate use of the chain rule in related-rates calculus problems (Singley, 

1986). 

8For an evaluation of the contribution of the proof graph over and above any tutoring see Scheines & Sieg 
(in press). 
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Principle 3: Provide instruction in the problem solving context. This 

principle was based on the research showing the context-specificity of learning (e.g., 

Anderson, 1990; Ch. 7). The current situated learning movement (e.g., Collins, Brown, 

& Newman, 1989; Lave & Wenger, 1990) presumably gives a new currency to this 

principle. The difficulty with this principle is that there is not a detailed theoretical 

interpretation of why it is true and so it is a little hard to know how to apply it in detail. 

Does this mean provide instruction in the same class session as the tutor is used? before 

each problem? in the midst of each problem? As it has evolved in our applications this has 

come to mean providing instruction between each new section in the tutor (a section is 

where new production rules are introduced) allowing the student to refer back to this 

instruction in the course of problem solving. We have experimented with placing 

instruction at the precise point where it is needed in a problem but students find this 

interferes with their problem solving. 

Principle 4: Promote an abstract understanding of the problem-solving 

knowledge. This principle was motivated by the observation that students will often 

develop overly specific knowledge from particular problem-solving examples. In terms of 

production rules this has meant that the conditions on the rules were not sufficiently 

general. While the problem is undoubtedly real this principle provides no guidance for 

how it is to be achieved. In practice we tried to reinforce the correct abstractions in the 

language of our help and error messages. 

Principle 5: Minimize Working Memory Load. This principle was motivated by 

the fact that learning a new production rule in ACT requires that all the relevant information 

(relevant to the condition and action of the to-be-learned production) be simultaneously 

active in memory. Keeping other information active could potentially interfere with 

learning the target information. Sweller (1988) has shown that a high working-memory 

[Manuscript] Tutor.Manuscript 16 



August 12, 1994 

load interferes with learning. This principle means minimizing presentation and processing 

of information not relevant to the target productions. This includes minimizing presentation 

of instruction while problem solving since processing this instruction poses another 

working-memory load. 

This also implies that one should try to provide instruction on specific components only 

when other components of the skill have already been relatively well mastered. This leads 

to a curriculum design in which only a few new things are taught at a time. This could be 

viewed as being at odds with the current approaches such as cognitive apprenticeship or 

anchored instruction, which advocate teaching component skills in the context of complex, 

real-world problems. However, this approach does not deny the value of learning in such 

context but rather argues that students should gradually acquire the skills required to deal 

with this complexity rather than having to acquire them all at once. 

Principle 6: Provide immediate feedback on errors. This clearly has been the 

most controversial of our tutoring principles. The ACT* theory claimed that new 

productions were created from records of problem-solving traces. Therefore, the longer 

one waited until an error was corrected the longer the span of problem solving over which 

the student would have to integrate to create a production. The current ACT-R theory 

claims that one learns from problem-solving products. Thus, the learner examines the 

resulting solution (code, proof, algebraic derivation) and builds productions from that. 

Thus, it does not matter whether all the critical steps occur together in time or not—only 

that they be represented in the final solution. Thus, the principal theoretical justification for 

immediate feedback no longer exists in ACT-R. We will later discuss evidence about 

immediacy of feedback from our tutors which is consistent with the current ACT-R 

conception. Still, we will see that immediate feedback can be beneficial in cutting down on 

time spent in error states and making it easier to interpret the student's problem solving. 
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Principle 7: Adjust the grain size of instruction with learning. This principle 

was motivated by the composition learning operator in ACT* which claimed that single 

productions would be composed into larger productions which did in one cognitive step 

what had been done in many steps. While ACT-R does not have such a composition 

learning operator it still predicts this change in the grain size of problem solution but from 

other mechanisms (Anderson, 1993, Ch. 4). Thus, it seemed reasonable to design the 

interface so that one could process the student's problem solving in ever larger units of 

analysis. There has only been one early attempt to do this, however, and this was with the 

algebra tutor (Anderson, Boyle, Corbett, & Lewis, 1990). That attempt was not notably 

successful. In retrospect, our problems here reflected some fundamental misconceptions 

about the role of the interface in problem solving. This is a topic which will be discussed at 

length later in the paper. 

Principle   8.   Facilitate  Successive  Approximations   to  the  Target   Skill: 

Frequently, when students are initially trying to perform a skill, they cannot perform all the 

steps. We had the tutor fill in the missing steps. The expectation was that with repeated 

practice this division of labor between student and tutor would change with the student 

providing more and more of the work until the tutor was completely in the background. In 

practice this successive approximation has frequently worked quite well. This principle 

seems quite analogous to "fading" in the cognitive apprenticeship terminology (Collins, 

Brown, & Newman, 1990). 

Some of these principles are similar to ideas that accompanied more behaviorist attempts at 

instructional design (Bunderson & Faust, 1976; Gagne" & Briggs, 1974). This is 

particularly true for principles 3, 6, 7, and 8 above. The difference is that these principles 

were being used in service of a different representation of the underlying skill. The places 
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where these principles add something to the standard behaviorist approach (principles 1,2, 

4, and 5 above) reflect the different representational assumptions. This is a case where 

assumptions about knowledge representation matter. 

The fact that our tutors embody cognitive models of the target competence does not need 

imply that they would always behave differently than instructional systems based on 

behaviorist principles. It depends on the domain. If we were building a spelling tutor with 

the goal of memorization, we suspect it would be much like behaviorist applications (e.g., 

Porter, 1961) which produce similar achievement gains as do our systems. However, we 

have chosen to focus our applications on much more complex skills where our cognitive 

models do lead to different instructional strategies. It is our impression that the behaviorist 

programs have not had much success in extending to such complex domains. 

Stage 2: The Evaluations and Empirical Studies 

Anderson, Boyle, Corbett, and Lewis (1990) report the state of the tutoring work in 1987, 

including the results of the first phase of research activity. This section reviews those 

results and brings the research record up to date. The first three sections describe 

summative evaluations of the geometry tutor, algebra tutor, and LISP tutor. Succeeding 

sections discuss evidence on the componential nature of skill acquisition, student modeling, 

and feedback control and content. 

The Geometry Tutor 

The geometry tutor was used in a pilot study in the 1985-1986 school year. A number of 

classes were exposed to it and all showed large achievement gains. The 1986-1987 school 

year was the major test where we compared classes with the tutor with classes without the 
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tutor but with the same teacher. We performed a number of regression analyses trying to 

predict student performance in a final paper and pencil test of proof skills. The following 

equation predicted student performance on a scale from 0-80: 

35 + 7.5* (letter grade in algebra) 

+ 14 if access to tutor one-on-one 

+ 4 if access to tutor two-on-one 

The student's letter grade in the prior year's algebra class (1 = D,...,4 = A) was the best 

measure of prior individual student differences in predicting geometry test performance 

(better than IQ, for instance). The 14 points for the tutor reflected more than one standard 

deviation in the population or more than one letter grade on the test. Because we did not 

have enough machines, sometimes pairs of students worked on the machines. In this case, 

most of the tutor benefit was eliminated and the remaining 4 point advantage of these 

students was not statistically different from the control group. 

In addition to our own assessment of the tutor there have appeared reports from third party 

observers (Schoefield & Evan-Rhodes, 1989) and the teacher (Wertheimer, 1990) 

confirming the large positive impact of the tutor on the classroom. Schoefield and Evan- 

Rhodes reported there were large improvements in the motivation of students, with 

students spending more time on task.9 Wertheimer (1990) reported that he found the 

experience satisfying as a teacher because it allowed him to focus on the specific difficulties 

of specific students. 

A more recent geometry tutor has been completed based on the cognitive model of 

geometry proof of Koedinger and Anderson (1990). It has been subject to a preliminary 

9It got to the point were fights were occurring among students for access to the tutor. 
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evaluation (Koedinger & Anderson, 1993) in which we also found a large positive result 

but only for the teacher carefully integrated into the project. Students with the tutor and the 

project teacher averaged just over 5 proofs correct out of 8 while students in each of the 

other three conditions (project teacher without the tutor, tutor without non-project teacher, 

or non-project teacher without tutor) averaged just over 3 proofs correct.10 The fact that 

the tutor had its benefit only for the project teacher highlights the issue of integrating the 

tutor into the classroom.11 

The Algebra Tutor 

An evaluation was performed of the algebra tutor in the 1987-1988 school year. There 

were no differences between experimental classes which had access to the tutors and 

control classes which did not. We think the major reason for the lack of effect was that 

there was large difference between the tutor interface and the interface used in class (i.e., 

paper and pencil). It was just not obvious how to map the boxed representation of 

algorithmic decompositions (see Figure 3) to the linear line-by-line transformations that 

were used to assess performance in the paper-and-pencil post test. A less important reason 

relates to a ninth grade algebra class in an urban school. Symbol manipulation is 

sufficiently easy that some students were mastering the skill quite well without tutorial 

intervention. Other students were just not involved in the class at all (often not attending) 

and the algebra tutor was too peripheral a part of their experience to help change their 

general pattern of behavior towards school. 

We followed up the algebra tutor with a word algebra tutor which had some large positive 

results in the laboratory (Singley, Anderson, Gevins, & Hoffman, 1989) although it was 

10This is a one standard deviation difference. 
11 Subsequent research has suggested that teachers take about a year to become comfortable with the tutor 
and second year teachers have students who show achievement gains with the tutor. 
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never tested in the classroom. We think there are two basic reasons for the success of the 

word problem tutor in the laboratory. First, the mapping from word problems in the tutor 

to the paper and pencil post test was obvious. Second, word problems are in fact a difficult 

topic for even motivated students and we were able to illuminate their instruction with our 

cognitive model for their solution. We are currently working with yet a newer algebra 

word tutor which is being used in the Pittsburgh Public Schools. Preliminary evaluations 

again suggest significant achievement gains. 

The LISP Tutor 

The LISP tutor was evaluated in a classroom setting early in its development. In the fall of 

1984 we taught a mini-course on LISP in which students attended lectures and completed a 

fixed set of programming exercises either with the tutor or in a standard LISP environment. 

Students using the tutor completed the exercises 30% faster and performed 43% better on a 

posttest. We performed a second, laboratory evaluation which more closely approximates 

the current self-paced course structure (Corbett & Anderson, 1991). Students worked 

through the lessons reading the same text and trying to solve the same set of exercises with 

and without the tutor. In this evaluation students using the tutor completed the exercises 

64% faster and scored 30% higher on posttests than students using a standard LISP 

environment. As will be elaborated later, we think that the only reason for the posttest 

difference is that students working in the standard non-tutor environment were unable to 

generate working solutions to all the exercises. Conceivably, if students in the control 

condition had put in sufficient time they could have eventually found working solutions and 

scored as well on the posttest. Nonetheless, this study supports the claim that a well- 

designed tutor can bring students to as high or higher achievement levels in no more than 

one-third the time required by traditional learning environments. 
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A more typical practice in education evaluation is to hold learning time constant and 

examine differences in achievement scores. This is what we were forced to do in our 

algebra and geometry evaluations because we could not manipulate the time students spent 

on these problems. The achievement differences are always a little hard to judge—what 

does 14 points on an 80 point test really mean? One solution is to report differences in 

achievement level measured in standard deviations (e.g., Bloom, 1984). However, 

standard deviation differences say as much about the variance in test scores as they do 

about the impact of an instructional manipulation. Such variances are substantially affected 

by test construction and inherent variability in the population. Thus, the numbers are 

virtually meaningless except to establish the direction of the difference. It is more 

meaningful to hold constant the level of mastery required and look at differences in time to 

achieve that level. This reflects the true gain of an educational technique. 

The LISP tutor has been followed up with a general programming environment in which 

LISP, Prolog, and Pascal tutors have been built (Anderson, Conrad, Corbett, Fincham, 

Hoffman, & Wu, 1993). The Pascal tutor has just started to be used in the public schools. 

This will serve as a basis for evaluation outside of the rather specialized CMU population. 

Componential Analysis of Learning 

One of the current controversies in cognitive science and education is whether it is possible 

to take a complex competence, break it down into its components, and understand the 

learning and performance of that competence in terms of the learning and performance of 

the components (e.g., Shepard, 1992). When we have addressed this question in the 

context of our tutors the answer is a resounding yes. 
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Consider the question of predicting how quickly and accurately a specific student will 

generate a particular piece of code in a particular LISP program. In a rather exhaustive 

analysis of data from the LISP tutor, Anderson, Conrad, and Corbett (1989) concluded 

that there were essentially four critical factors: 

(1) Production practice. The first factor was how often the student had applied the 

relevant production rule earlier. As students have more opportunities to use a production 

rule across exercises, their performance on the rule improves. Because there is a many-to- 

one mapping between production rules and surface code symbols (e.g., car, +, write, for, 

etc.) in different contexts, we are able to show it is the rule and not the surface construct 

which is the critical unit of practice. Similar production-specific learning has been shown 

in the case of geometry where there is a many-to-one mapping between production rules 

and surface rules like "side-angle-side" (Anderson, Bellezza, & Boyle, 1993). In the ACT 

theory this is attributed to strengthening the production rule. Figure 4 shows learning 

curves for 'new' productions being introduced in a LISP lesson and 'old' productions 

introduced in previous lessons. As can be seen both show improvement as a function of 

amount of practice within the lesson. Old productions are better off because of practice 

from previous lessons. Anderson, Conrad, and Corbett also showed that student 

performance on old productions in a new lesson starts off close to where it left off on the 

previous lesson with only a little forgetting. 

(2) Within-problem practice effects. In both LISP and geometry we were able to 

show that time and accuracy for rule application improves as the student progresses further 

into a specific problem, partialing out any effect of rule-specific practice. In the ACT 

theory this is attributed to strengthening of the declarative representation of the problem 

through repeated access. 
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(3) Acquisition factor. In a factor analysis of student performance we found that 

students varied in how well they performed on new rules that were introduced in a lesson. 

The real significance of this factor is unclear. It may reflect some profound individual 

differences or just the care with which students reviewed the material. 

(4) Retention factor. The same factor analysis identified students who did well in 

retaining productions from earlier lessons. This factor was largely orthogonal to the 

acquisition factor. Again the real significance of this factor is uncertain. It could again 

reflect some profound individual differences or just how much students reviewed material 

between lessons. 

The upshot of this analysis is the following scheme for predicting how well a student will 

do on a fragment of code: First determine if an old or new production is generating that 

code. If it is a new production one needs to use the learning curve for new productions to 

figure out the within-lesson practice effects, add in a factor to represent how much the 

student has worked on that problem, and add in an individual difference effect to reflect 

where that student stands on the acquisition factor. To predict performance on an old 

production one adds in the within-lesson practice effect for old productions, the problem 

practice effect, and an effect to reflect where that student is on the retention factor. As far 

as we could determine, these considerations captured the predictable variance. 

Knowledge Tracing 

The LISP Tutor had a student modeling facility called knowledge tracing shared by 

neither the geometry or algebra tutors.12 As a student worked through the exercises the 

12Public school teachers have been unwilling to allow students to progress at their own rate as enabled by 
the knowledge-tracing facility. Recently we have gotten Pittsburgh Public School teachers to accept such 
individual progress. 
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tutor used a Bayesian procedure to estimate the probability that the student had learned each 

of the rules in the cognitive model. Knowledge tracing was used to implement a form of 

mastery learning. Students were given sufficient practice in each section of the curriculum 

to bring them to a specified degree of mastery of the individual cognitive rules introduced in 

the section before proceeding to the next section. This feature has substantial impact on 

student achievement level (Anderson, Conrad and Corbett, 1989). Knowledge tracing is a 

regular feature of all the tutors we are currently developing (see the section on practical 

deployment in this paper). 

A more detailed examination of the knowledge tracing model provided further confirmation 

of the componential analysis in the cognitive model: The learning and performance models 

that underlie knowledge tracing in the tutor can be used to predict posttest performance. 

The probability that a student will solve each posttest exercise correctly can be accurately 

derived from the probability that the student has learned each of the necessary rules 

(Corbett & Anderson, 1992; Corbett, Anderson, & O'Brien, in press). 

These results have strong implications for instruction. They imply that we should be able 

to get students to master the overall skill by getting them to master the individual 

components. Numerous analyses have reported positive results for mastery-based 

curricula (e.g., Guskey & Gates, 1986; Kulik, Kulik, & Bangert-Downs, 1986) although 

the interpretation of these results is not without controversy (e.g., Anderson & Bums, 

1987; Guskey, 1987; Slavin, 1987). Our application of mastery principles is different than 

most other efforts in that it is done on an individual student basis and in that it applies to the 

detailed components of the target skill. 

Locus of Feedback Control 
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As prescribed by one of the original tutoring principles, our tutors conventionally employ 

immediate feedback and require immediate error correction. The LISP tutor has served as 

the vehicle for some studies that differentially distribute the control of feedback and the 

timing of error correction between the tutor and student. We developed three new versions 

that vary widely on the dimension of student/tutor control. At the far extreme from 

immediate feedback and control, we created a version which provides no advice on how to 

achieve programming goals. Students enter their code with a structure editor and have 

access to a LISP interpreter, but are largely on their own. This tutor provides just one bit 

of information: at any time in the course of problem solving students can ask whether their 

solution is correct (similar to checking an answer at the back of the book). This provides 

the best control against which to measure the effectiveness of our tutors, since it holds 

constant type of problem-solving interface, the non-tutor instruction, and the exercises 

attempted. 

The remaining two versions are capable of providing the same advice as the standard 

immediate feedback version, but do so under different circumstances. One version, which 

we call the error-flagging tutor, falls closer to standard immediate feedback. This tutor 

identifies an error as soon as it occurs, by flagging it in bold font on the screen, but 

provides no feedback message and does not require immediate correction. The student can 

ask for a feedback message (the same one that would be presented automatically in 

immediate feedback), can try to fix the error without feedback, or can continue generating 

new code and come back to the error later. We call the other version the demand tutor 

because it provides no assistance until asked by the student. This tutor appears like the no- 

feedback control version as the student works, unless the student asks for error feedback. 

At that point the tutor will identify the first error in the code (if any) and provide the same 

message as appears automatically in the immediate feedback version. In both of these 

versions the student can ask for advice on how to accomplish a programming goal, in 
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addition to error feedback. The same advice is available at each goal in these tutors as in 

the standard tutor. 

In the no-feedback, demand-feedback, and error-flagging tutors the student might generate 

a complete working solution that the tutor does not recognize (cannot generate). As a 

result, the tutor will try any code that it does not recognize on a set of test cases and will 

accept the solution if it works. In practice, this happens rarely. Only about 5% of the 

students' unrecognized solutions worked. 

We compared the four versions of the tutor across a five lesson sequence that took students 

from the easiest (introductory) lessons to the most challenging (recursion) lessons (Corbett 

& Anderson, 1991). Each student attempted a fixed set of exercises (not necessarily 

enough to reach mastery) with one of the four versions. Students completed a paper-and- 

pencil posttest and an on-line posttest in a standard LISP environment. There were no 

significant differences among the immediate feedback tutor, flag tutor, nor demand 

feedback tutor in either of these posttest environments. Mean scores across the two 

posttest environments were 55%, 55% and 58% correct, respectively. All three groups 

were reliably superior to the no-feedback control group (43% correct) in both posttest 

environments. 

The time to complete the tutor exercises is displayed in Figure 5. As can be seen, the 

conditions are ordered in terms of tutor support: immediate feedback is best and it is 

followed by error flagging, demand feedback, and no-feedback.13 Students in the three 

feedback conditions necessarily arrived at working solutions to each exercise. While 

students in the no-feedback control condition attempted every exercise, they failed to solve 

25%. Thus, the only condition to show inferior posttest performance was the condition in 

13 Subjects are taking longer in the later lessons because the exercises are longer and harder. 
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which students failed to solve all the problems. This reinforces our conclusions 

(Anderson, Conrad & Corbett, 1989) that posttest performance is primarily governed by 

the set of exercises that students successfully solve and understand. 

Figure 5 depicts the 3-1 elapsed time ratio cited earlier between immediate feedback and no- 

feedback. This ratio underestimates the true benefit since students did not solve all the 

exercises in the no-feedback condition. It may underestimate the benefit over a typical 

classroom in that students in all conditions at least had access to declarative instruction and 

problems carefully designed to communicate and teach the target productions. A typical 

classroom may well be less organized. 

An analysis of students' performance in the error flagging and demand feedback conditions 

indicated that students in these two conditions responded fairly passively to the control they 

were offered. When errors were noted immediately in the error flagging condition, 

students fixed the errors immediately 80% of the time. On the other hand, when the tutor 

did not volunteer error information in the demand-feedback condition, students rarely 

interrupted their coding activity to ask for help or evaluation. In the demand-feedback 

conditions students did not ask for feedback until they had completed a preliminary solution 

in 90% of the exercises. Finally, we asked students how well they liked the tutor and the 

feedback they received. Perhaps surprisingly there were no reliable differences across 

groups, although there was an interaction with the curriculum: The harder the exercises 

became the more students appreciated immediate help. 

Insert Figure 5 About Here 

Feedback Content 
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A key feature of a tutor is what it says to the student during a problem-solving episode. 

There are two obvious occasions for communicating to the student during problem solving. 

One is when the student makes some error and the tutor can comment on the error. The 

other is when the student asks for help or appears to need help and some help message is 

given. Obviously, if students never get any information about errors in their solutions they 

are not going to learn to avoid them. Similarly, if students never receive any help of any 

sort, they are in danger of becoming permanently stuck on some problems. However, one 

can construct a tutor in which errors are just flagged as such and correct solutions pointed 

out without any accompanying explanation. One can then ask what the potential benefit is 

of the accompanying explanations. We have performed such comparisons twice—once 

with the LISP tutor and once with the geometry tutor. 

In the LISP tutor (Anderson, Conrad, and Corbett, 1989) we took a number of measures 

of how much error messages helped. One was how well students performed on individual 

productions. We found students made fewer errors per production if they were receiving 

explanatory feedback (15% versus 22%). Also when they made an error and received 

feedback (an explanation not just that they were wrong) they were more likely to correct 

their error on the first attempt (65% corrections versus 38%). However, when we looked 

for long-term learning benefits we failed to find any significant differences. On a quiz 

immediately after the tutor exercises students with explanatory feedback got 90% correct 

and those without got 91% correct. When we looked at their performance on a final exam 

students with explanatory feedback got 76% correct while those without got 80% correct. 

Neither difference approached statistical significance. 

Thus, the impact of such instruction in the LISP tutor was to facilitate the students' 

progress through the material but did not have any permanent achievement consequences. 

This is not an insignificant outcome since speed of learning is a critical dependent measure. 
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Reasonable feedback messages also appeared to have a positive impact on the perception of 

the tutor. That is, students had numerous derogatory comments to make about the no- 

feedback tutor even if they eventually learned as much with it. 

McKendree's (1990) evaluation of the feedback messages in the geometry tutor came to 

somewhat different conclusions. In her first dissertation study (McKendree, 1986) she 

found, as in the LISP tutor, that these messages facilitated progress through the tutor but 

did not have any permanent benefit. Frustrated with this lack of permanent benefit she 

went through and specifically tuned the feedback messages to be particularly cogent to the 

specific problems. In her second evaluation (reported in McKendree, 1990) she was able 

to show a benefit in terms of both progress through the tutor and final achievement. 

McKendree performed a theoretical analysis of why her students benefited from the 

carefully crafted feedback messages. She was able to show that students had failings in 

their underlying declarative knowledge which the feedback was able to correct. Some 

students without the feedback were able to get through the tutor without really correcting 

their misunderstandings and the holes in their knowledge. The tutor had no mastery-based 

instructional curriculum and students just had to get through a fixed number of problems. 

This suggests that we have a time-achievement tradeoff and so suggests a way of 

reconciling the results with the LISP tutor. In the LISP tutor experiment, students were 

given enough problems to reach a high level of achievement and the effect of feedback was 

on their time to reach that level. In the geometry tutor, students went through the problems 

in relatively constant time (and a short amount of time in hours) and the effect showed up in 

their achievement levels. 

When one designs help messages one tends to wax on in the messages to the student both 

to make the tutor seem intelligent and to communicate one's insights into the problem. 
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Students take a rather different attitude. They realize it is just a computer which at best is 

just a tool to help them learn and they have no interest in someone else's prose. They want 

to solve the problem and are often impatient with long messages. In a study with the 

algebra tutor Lewis (1989) compared terse messages with longer messages more like 

natural English which were originally used with the tutor. He found that students actually 

did better with the shorter messages, although the effect was not statistically significant. 

Stage 3: Practical Deployment 

Despite the successful empirical evaluations of our work on tutoring, our tutors had not 

been used much. The programming tutor was regularly used at CMU and occasionally 

used elsewhere. A scaled-down version of the geometry tutor was ported to a Mac SE and 

that had been used occasionally in classrooms around the country. However, until very 

recently our software had not played a significant and permanent role in the instructional 

plans of any organization outside of our own CMU classrooms. While the machines we 

were working with were large, impractical AI behemoths, this lack of practical 

demonstration was not a salient issue. However, now our tutors can be deployed on 

machines which are conceivable in American classrooms. 

When we examined why we were so far from practical tutors it became apparent that we 

had avoided addressing a number of issues: 

(1) There was never any attempt on our part to address the curriculum that 

educators wanted to teach. There is no more apparent case of this than the situation 

with our geometry tutors which focused on teaching proof skills while mathematics 

educators were stressing more general reasoning and problem-solving skills. 
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(2) There was no thought given to what would happen to students after they passed 

through our tutors. We always took as our measure of success performance on 

some final test. However, to be educationally valuable our tutors have to fit in with 

some larger set of curriculum objectives. 

(3) The systems that we developed were inflexible in the way they had to be used 

and gave teachers no ability to tune the application of the tutors to their own needs 

and beliefs about instruction. 

(4) The was little understanding of how to support the deployment of these tutors in 

the classroom. Relevant to this is the observation that we have not had a positive 

classroom evaluation that did not involve teachers who had spent extensive time 

involved in the project.14 

Addressing these problems has caused us to go beyond our original goals of showing that 

our cognitive models can lead to successful learning. We have now begun to address the 

issues of how to develop tutors which will implement an externally specified curriculum, 

which can be deployed in a wide range of classrooms, and which leave students with a 

competence that makes a demonstrable contribution to their activities outside of the specific 

domains taught by the tutor. We have undertaken two major endeavors in response to 

these new agenda. One has been to create a development system for creating such 

cognitive tutors and to begin to work on a development discipline for their creation. The 

second has been to strike up a close relationship with the Pittsburgh Public Schools in 

14This, of course, raises interesting issues about evaluation. Since we have not gotten positive results 
simply by putting computers in the classroom, this indicates our positive results with project teachers is 
not simply a Hawthorne effect. The control classes (no tutor classes) of our project teachers do at least as 
well as the control and tutored classes of non-project teachers. Thus, there is something special about the 
combination of the tutor and the teachers' preparation to use them. We are working with the Pittsburgh 
Public Schools to try to develop an appropriate teacher training program. 
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which they serve as our clients and we try to build instructional software which can be used 

in their classrooms. 

We have three permanent classrooms of Mac IIs and Quadras in three local city high school 

and additional classrooms are currendy being planned in other city high schools. We are 

working towards supporting the city's mathematics and computer science curriculum. The 

emphasis in the mathematics curriculum is to implement the NCTM standards (National 

Council of Teachers of Mathematics, 1988) in an urban setting. A major issue here is to 

teach a curriculum which will empower students to participate in modern society. This is a 

particularly significant issue in a large urban school system with many students coming 

from economically disadvantaged families. 

We have created a succession of development systems (Anderson, Corbett, Fincham, 

Hoffman, & Pelletier, 1992; Anderson & Pelletier, 1991). We have implemented in them 

tutors for three programming languages (LISP, Pascal, and Prolog), for elementary 

arithmetic, and for Algebra I. We have plans to build a tutor for geometry in this system 

which will extend the geometry tutor of Koedinger and Anderson (1993) to combine 

construction, exploration, conjecture, and proof. A major goal in this tutor development 

system is usability. This means both facilitating the teachers' use and modification of the 

systems and enabling as many people as possible to develop software in the system. 

The actual process of developing a tutor has five identifiable stages: interface construction, 

curriculum specification, cognitive modeling, design of instruction, and classroom 

deployment. We will discuss each of these. 

Interface Construction and the Issue of Transfer 
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The first step in developing a tutor is to define the world in which the student's problem 

solving is going to take place. This will be the interface between the student and the 

computer. Placing interface design ahead of production-system design represents a major 

restructuring of our approach to tutor construction. In our early efforts we started with an 

abstract production-rule model of the cognitive skill. Interface design was a secondary 

though nontrivial task in which we considered optimal ways to depict productions and 

goals on the screen and appropriate sets of student actions. Our current view is that the 

skill we are teaching is problem solving in a particular interface. Therefore, the interface 

must be designed before we can identify the production rules. The significant issue that we 

must face in interface design is transfer. The interface students learn will have a large 

impact on where their skills will transfer. 

In designing an interface one must keep in mind the domain to which the skill is supposed 

to transfer. Often that domain is still paper and pencil. For instance, most college 

mathematics departments still expect incoming students to be proficient at paper and pencil 

algebraic manipulations. However, there is an increasing tendency for the target skill to 

involve use of computer software. Thus, part of the competence we are trying to teach in 

the current algebra tutor is how spreadsheets, symbol manipulation packages, and graphing 

routines. Having identified the target skills, one must design the interface to enable transfer 

to these target skills. The issue of transfer is one of psychology and here it is worth 

distinguishing three levels at which transfer can occur: 

(1) Identical Productions: The production rules for tutor exercises may be identical to 

those for the target domain. In this case we would expect total transfer. This might be the 

case, for instance, if the target domain were a computer system and our tutor taught how to 

use it. In other cases the tutor productions will only overlap with those for the target 

domain. In this case, Poison and Kieras (1985) and Singley and Anderson (1989) have 
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shown that the amount of transfer will be a function of the degree of production-rule 

overlap. For instance, our programming tutors focus on code selection and not syntax with 

a structure editor providing the syntax. Thus, students graduating from our tutors are 

successful coders but have some difficulty with syntax when tested without the structure 

editor since they have not acquired the necessary syntax productions. While students have 

to pick up syntax after mastering the other aspects of the language, this does not appear to 

be a major learning hurdle (Goldenson, 1989a, 1989b). 

( 

(2) Translating actions. Even if the tutor productions and target domain productions are 

different it may be apparent to the student how to convert the actions of the learned 

productions into appropriate behavior in the target domain. For instance, we find relatively 

high transfer from a tutor which has students select programming constructs by menu to a 

test environment that requires the student to recall these constructs. This is because it is 

pretty apparent to most students that if they have been selecting "writeln" from a menu in 

the tutor, they should type that in when writing code into a standard file. In the 1986-1987 

geometry tutor study we found high transfer of students from doing proofs in the proof 

graph formalism to the two-column proof formalism. This is a less obvious translation but 

the teacher had gone over with them how the proof graph related to the traditional two- 

column proof. 

(3) Declarative Transfer. Even if actions in one domain cannot be directly translated to 

actions in another, there can be declarative transfer of the underlying competence. Thus, 

we find that students who practice coding with the LISP tutor do fairly well in evaluating 

LISP expressions (although there is hardly total transfer between these activities— 

Anderson, Conrad, & Corbett, 1989). This is because both skills rest on the same 

declarative understanding of LISP and students must get their declarative representation 

right before they can acquire successful productions for coding. 
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There has been a great deal of interest of late in occasions where students fail to transfer 

across domains (Lave & Wenger, 1990). In our perspective there is nothing mysterious 

about when transfer will occur and when it will not. Transfer requires students to have 

learned production rules in the training domain which will solve problems in the target 

domain. In the cases that the actions of the rules in the training domain are different than 

what is needed in the target domain (e.g., menu selection versus writing) it must be 

apparent to the student how to map one action into another. In some writings one gets the 

impression that lack of transfer is the rule. However, our research on tutoring shows that 

transfer as predicted by production rule overlap is quite common. Every time we report a 

positive result in paper-and-pencil test outside of one of our tutors it is a case of transfer. 

There are two approaches to interface construction in our tutor development package. One 

is to build the interface ourselves. We have a set of primitives for facilitating the 

development of such interfaces and relating these interfaces to our production model. The 

other possibility is to take the existing piece of software and add hooks to it so that it is 

linked into our tutoring system. In either case, the following are the requirements for the 

interaction with the interface: 

(1) Actions taken to the interface must be passed through the tutor. The tutor needs 

to know what actions students have taken so it can follow students along the 

solution path they are pursuing and provide appropriate guidance. 

(2) The tutor must be informed about the consequences of any interface action for 

the state of the interface. Basically, the cognitive model needs to maintain in its 

working memory a representation of the interface that the students see. 
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(3) The tutor must be able to perform interface actions itself. 

Subject to these constraints, there is unlimited flexibility in the kind of interfaces we can 

tutor. We are particularly attracted to taking generally available pieces of software and 

tutoring students on problem solving within that software. When students leave our tutors, 

they will still have a useful problem-solving environment (and the transfer problem is 

minimized). So, for instance, we are doing some work on tutoring students on algebraic 

problem-solving using Excel and geometric conjecture using Sketchpad (Key Curriculum 

Press, 1991). In using such an interface, we can take advantage of the many years of 

effort that went into making it flexible, reliable, and efficient. 

Curriculum Construction 

Once having specified the environment in which the students are going to display their 

problem-solving competence we come to the issue of exactly what competence they are to 

display in that domain. Specifying the competence comes down to identifying the type of 

problems students are expected to solve in the domain and the constraints on their problem 

solving. Here our attitude is to take our specification from the educational community that 

is our client. For instance, in working with the Pittsburgh Public Schools mathematics 

educators we take their input as to what problems they want students to solve. Fortunately, 

we have chosen a client who is at the lead in trying to achieve NCTM standards in an urban 

environment. Therefore, we are confident our tutors will have broader applicability. 

Our clients also have strong input on the computer problem solving interface. So, for 

instance, in the case of geometry it was the Pittsburgh Public Schools that chose we should 

work with the Geometer's Sketchpad (Key Curriculum Press, 1991). However, the exact 

form of that problem-solving interface was already determined by other forces. They made 
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their choice of it much as they would make a textbook adoption. They cannot specify the 

microstructure of the interface any more than they can specify the exact content of a 

textbook. However, like a textbook, they can specify how the interface is to be used. 

Within a particular interface our clients have their conception of the problems they want 

students to solve and the constraints under which they want students to solve the problems. 

The issue of constraints is key here. For instance, a client may want to use a piece of 

software which has an algebraic symbol manipulation package but may want to prevent the 

student from using that package in certain parts of the curriculum to exercise that student's 

own symbol manipulation abilities. This amounts to the sorts of instructions a teacher 

might give the student about how to solve a problem. 

While our software is initially developed in response to the needs of one client, other clients 

may want to use it with somewhat other goals in mind. This means we must allow them to 

select the constraints under which the problems are solved and the problems which are 

actually solved. It is useful to have a facility so teachers can enter new problems. Also 

educators need to have access to some of the tutoring options. Earlier we described the 

variety of tutoring modes such as immediate feedback, flag tutoring, and demand tutoring. 

Our current tutor development kit permits all of these different tutoring modalities and the 

educator is able to choose among them. 

Our tutors will track the students' performance on various production rules (knowledge 

tracing) and promote students through the curriculum as they achieve mastery on these 

rules (mastery learning). Again teachers need to have the ability to turn mastery learning or 

knowledge tracing off or to override these facilities at various points. 

Production System Modeling 
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Specifying a problem-solving environment and a set of constrained problems to be solved 

in that environment amounts to a behavioral specification of the target competence. Our 

major task as cognitive modelers is to figure out what that competence means in terms of a 

set of underlying production rules that are capable of generating that behavioral competence 

in a cognitively plausible way. This is the task of constructing a student model. Such a 

student model is runnable in the sense that it can send actions to the interface which would 

constitute a correct solution to the problem. In most cases there is more than one possible 

solution path and the ideal student model must be capable of nondeterministically 

generating all the solutions. 

The production rules respond to information in working memory. Typically information in 

working memory will be of two kinds: information about what the current state of the 

problem is and a representation of what the goal is. In some cases, like the statement to be 

proved in a geometry problem, the goal representation is straightforward. However, when 

the goal is stated in natural language, as in the case of a programming problem, it can be 

quite problematical how to represent it. We do not want to represent or model the natural 

language processing that is involved in understanding the statement: this would just be too 

much to feasibly model. Therefore, we represent, in some form, what we believe to be the 

product of the natural language understanding. The problem is that it is hard to resist 

building into that representation part of the solution to the problem. Thus, we may not 

adequately represent the problem that the student faces or the skills that need to be learned. 

Once the production rules for solving the problem are specified, one needs to be able to 

match up the student's behavior with these rules. This requires augmenting the rules with 

tests that match against the student's behavior so that the tutor can determine which rules 

have fired in the student's head. In the case of ambiguities, disambiguation menus must be 

generated from templates stored with the rules. 
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The product of this effort might be viewed as an "instructionless" tutor, like the non- 

explanation tutors described in the evaluation section, that can be deployed in a number of 

tutor modalities (e.g., immediate feedback, flag, demand, no tutor). It can identify for a 

student where mistakes are and indicate correct courses of action. However, it can say 

nothing about why one action is wrong and another is correct. That awaits the construction 

of declarative instruction in the next stage. 

Declarative Instruction 

As we noted in the beginning of this paper, part of the domain competence comes from 

declarative instruction given outside of the tutor. Successful operation of the tutor assumes 

successful acquisition of this declarative knowledge. Some of this declarative instruction 

concerns general concepts (e.g., what an alternate interior angle is) and other communicates 

information that will serve as the declarative basis from which production rules are 

compiled (e.g., one way to prove lines parallel is to show that their alternate interior angles 

are congruent). This declarative instruction may come in class lectures or in text material. 

We have often provided the student with specially written material to accompany the tutor. 

Recently we have had success using hypertext facility that can be accessed in parallel with 

the tutor. The content of this instruction is informed by the production rules that are to be 

learned in the upcoming section. The instruction tries to provide examples that illustrate the 

rules and annotate those examples with comments that will highlight the significant aspects 

of the rules. A general principle in our approach to instruction is to be minimalist and not 

say more than is needed. This sensible approach tends not to be followed in most 

textbooks but is well supported by research (Reder & Anderson, 1980; Reder, Charney & 

Morgan, 1986). 
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While this tutor-external instruction is important, of more concern to the tutor development 

system is the declarative instruction delivered from within the tutor. This is of two kinds: 

(1) Error Messages. When the student makes an error one can present a 

message that attempts to tell the student something useful about that error. This 

requires writing buggy productions and attaching instruction from these 

productions. In general we do not attempt to provide any deep diagnosis of the 

cognitive origins of the error. Rather we simply try to explain why it is an error. 

(2) Help Messages. At various points in time the student can request help or be 

judged in need of help and a help message can be generated. These are generated 

from templates associated with the correct productions which would have fired at 

that point. 

There are a number of issues about how to present the help messages. We have striven for 

a system which tries to make these messages as short and to the point as possible even if 

the messages sound nonhuman. Another issue concerns modality of delivery. While we 

have always given these in the visual modality we would like to add an auditory modality 

for instruction. Instructing in the visual modality interferes with processing of the problem 

which is also in the visual modality. Instruction in the auditory modality would increase 

the premium placed on short messages (Ladday, Levine, & Suppes, 1981). 

Another issue concerns how to deal with students who overuse hints and as a consequence 

learn little (Shute, Woltz, & Regian, 1989). We find that linking knowledge tracing to help 

seeking is an effective way of dealing with hint abusers. If their progress through the tutor 

depends on eventually solving the problems without help, students will not seek help 

unless they really need it. 
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Two questions remain unresolved with respect to help messages. These are whether to 

volunteer help to students who appear to need it and whether to present students everything 

in a single message or whether to provide a sequence of successively more explicit 

messages. The current hinting discipline in the tutor was designed to let students do as 

much as possible for themselves. This was motivated by research in psychology showing 

that subjects have better memory for material to the degree they participate in the generation 

of that material (Anderson, 1990, Ch. 7). Thus, our current tutors never volunteer help 

and only provide help upon request.15 Also our current tutors use a scheme of successive 

hinting in which the initial help only gives a vague characterization and subsequent help 

messages become more specific until the student is told exactly what to do. However, 

these may not be the best choices. Some students stubbornly refuse to seek help even 

when they need it. Also, with respect to the policy of successive hinting, students are often 

annoyed with the vague initial messages and decide there is no point in using the help 

facility at all. The deployment of the tutor in courses may also influence the content of help 

messages. When students are using the tutor in a self-paced course or otherwise on their 

own, it is essential to tell students exactly what to do if necessary to allow them to proceed. 

In a classroom, it may be preferable for the students to interact with the teacher if they do 

not understand an explanation, so help messages may stop short of describing the specific 

action. 

Deployment In the Classroom 

It is interesting to consider how these tutors are actually deployed. At Carnegie Mellon the 

programming tutors are used in self-paced learn-on-your-own environments. There are 

class sessions associated with the tutor but they are largely used for administrative 

15This can be viewed as embedding opportunities within the tutors for students to discover the concepts for 
themselves. 
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purposes. Students learn successfully from reading the prepared text and doing problems. 

They can go to the teacher if they have special problems that the tutor cannot handle and 

occasionally they do. They also do larger (but still modest) projects outside of the tutor 

counting on competencies they have built up with the tutor. 

While this relatively teacherless and isolated model has worked reasonably well for our 

programming course, this model is not viable for the general deployment of tutors in public 

high schools. The Carnegie Mellon model depends on the following facts: (1) we have 

designed our programming tutors to deliver just the material we want to teach, (2) we have 

total control over our classroom, (3) we are working with relatively mature students who 

come in on their own time and are generally familiar with computers, and (4) we expect 

students in introductory programming courses to display their skills isolated from other 

students. None of these assumptions are satisfied in general. The particular nature of our 

programming class has made it an excellent laboratory for study of skill acquisition and 

issues of tutoring but it has made it non-representative for how these tutors will be 

deployed in other educational environments. 

The typical educational environment in an American high-school mathematics class 

contrasts with this situation in several ways. First, there are large curriculum variations 

across states and school districts and smaller variations across almost every teacher within a 

district. As a consequence, any mathematics tutor will likely be delivering only part of the 

curriculum that a particular teacher delivers, so the tutor will be integrated with other 

classroom activities. Second, students are not mature enough to simply show up at a 

teacherless class and learn. They will get stuck too often in ways that the tutor cannot 

remediate and discipline problems would develop. Finally, the National Council of 

Teachers of Mathematics (NCTM) has placed a major emphasis on teaching group problem 
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solving in their Standards (1989,1991), so group activities will come to replace individual 

skill performance to varying degrees across classrooms. 

Our tutors have had some successes in such classrooms. Currently, 30 classes in algebra, 

geometry, and Pascal programming are using a classroom of Mac II based tutors at a local 

Pittsburgh high school. Students in these courses alternate between working tutor 

exercises and other classroom activities, so tutor use has the flavor of going to a computer 

laboratory within the context of a conventional course, although students may spend as 

much as 2/3 of their class time in the laboratory. 

We are struck by the way students interact with these tutors and the consequences for class 

organization. Much of this was described in the early reports of Schofield and Evan- 

Rhodes (1989) and Wertheimer (1990) but the effects are even more striking in the current 

classrooms reflecting the larger class sizes and the social changes since the original 

classroom studies. When students are in the laboratory they are working one-on-one on 

machines but that hardly means they are working in isolation. There is a constant banter of 

conversation going on in the classroom where different students compare their progress 

and help one another. Peer instruction is particularly key in cases where students have to 

adapt to a new interface feature. Information about how to use that features propagates 

through the classroom much like information about how to use a new trick in a Nintendo 

game. We have come to realize that our tutors would be less successful if such peer 

assistance were not available. Peer helping may also be a good way for the helper to come 

to a deeper understanding of the material. An effective teacher is quite active in such a 

classroom, circulating about the class and providing help to students who cannot get the 

help they need from either the tutor or their peers. The tutor in effect becomes an assistant 

that can deal with the more routine learning problems allowing the teacher to focus on the 

more difficult.  By means of its knowledge tracing algorithm it also is able to monitor 
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separately the progress of individual students, providing a bookkeeping facility the teacher 

would never be able to accomplish. Teachers seem to require some time in the classroom 

before they appreciate the "tutor as teaching assistant" model and can use it to its maximum 

potential. 

Students' own attitudes to the tutor classrooms are quite positive to the point of creating 

minor discipline problems. Students skip other classes to do extra work on the tutor, 

refuse to leave the class when the period is over, and come in early. However, in net, 

discipline problems and class management problems are much less in a tutored classroom. 

There is a sense of satisfaction in progress and achievement. Visitors to the classroom are 

struck by the fact that students are absorbed in the learning tasks through the whole period. 

Teachers particularly remark on the success with minority students who are frequently 

alienated in conventional classrooms. It is our belief that students receive our tutors 

favorably to the degree that our tutors achieve their fundamental claim—to embody an 

accurate cognitive model of the details of the problem solving. If so, the interactions with 

the tutor are largely congruent with the student's thinking and when the interactions are not 

congruent they point the student in the right direction. While students do not consciously 

assess the system in terms of its cognitive fidelity, they are very aware of the resulting 

smoothness of their trajectory through learning curriculum. A sense of growing 

competence in a challenging problem domain is something that most people respond to 

positively. 

We have been impressed by the relative ease of management in our tutored classrooms. If 

one provides teachers with a couple of weeks of familiarization with the basic software, 

they seem to adapt comfortably to the tutored classroom.16 This contrasts sharply with 

many efforts at classroom reform which teachers report to be quite exhausting in terms of 

16However, it may take much longer before they really use the tutor to its full effectiveness. There is 
some evidence that achievement gains are higher the second year teachers work with the tutor. 
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the demands being placed on them. Our classrooms are relatively easy because the tutor is 

doing all of the bookkeeping and low-level instruction associated with the classroom and 

the teacher can focus on giving one-on-one tutoring to students for whom the computer is 

not adequate. They generally find this a satisfying role and one that enhances their 

classroom esteem as subject-matter experts. This works because our tutors are engaging 

and so other students are on task when a teacher is giving one student individual 

attention.17 

Reflections 

We have come a long way from our original goal of putting ACT* to a tough test. There 

certainly has been a harvest of empirical data which has played a major role in leading to the 

new ACT-R theory (see Anderson, 1993). We have totally abandoned our original 

conception of tutoring as human emulation. We now conceive of a tutor as a learning 

environment in which helpful information can be provided and useful problems can be 

selected. We are able to take actions that facilitate learning because we possess a cognitive 

model of where the student is in that task. 

While we have not abandoned our goals of contributing to the understanding of human 

cognition, we have been drawn by application to issues that are far afield. Particularly with 

the tutor development kit and large scale applications, we find ourselves addressing issues 

of software engineering. Although we have tried to place content decisions in the hands of 

our "clients," we inevitably are drawn into issues about the content and purpose of high 

17This only works if our tutors are bug-free, easy to use, and allow for error recovery from things like 
machine crashes. Typical teachers become very frustrated when their interactions with the student must 
focus on the computer or the tutor, rather than the subject domain being taught. 
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school education. Finally, there are important social phenomena in our classrooms, critical 

to the success of our tutors, which we need to understand. 

Many such issues may ultimately prove more important to the success of our tutors than 

their cognitive fidelity. However, we are impressed that ten years later the general 

cognitive modeling approach still seems viable and important in our new applications. 

The Curriculum Issue ( 

Rather than conclude this paper on this self-congratulatory note, we have been persuaded to 

address some of the senses of unease that some people have with our efforts. There are 

probably many dimensions to their unease but the reviewers of our paper have gotten us to 

focus on issues surrounding the nature of the curriculum our tutors deliver. We have taken 

the liberty of quoting three of their remarks and then commenting. 

"I would like to believe that a decade of research in this area has given the authors a 

solid perspective on what to teach, how to teach it, and how to assess the effect of 

that instruction. Instead of providing guidance to educators in these areas, the 

authors seem willing to abrogate this responsibility and to settle into the role of 

technologists, teaching what the current curriculum dictates regardless of the 

appropriateness." 

We have stated strong opinions about how to assess the effect (time to reach a prescribed 

level of achievement), but otherwise the reviewer is correct in the assertion.18 Our ten 

years of experience have in fact given us no basis for offering advice on some of the key 

18Although assenting to the reviewer's comment requires interpreting "current curriculum" to Pittsburgh's 
algebra and geometry curriculum that follows and in some ways goes beyond the NCTM standards. 
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issues facing the City of Pittsburgh in deciding about its mathematics curriculum. Some of 

these issues have been very responsibly addressed by things like the NCTM standards and 

the city has adopted these. However, frankly, these standards leave open some important 

issues facing mathematics education in an urban setting. An example of such an issue is to 

what degree should the curriculum be teaching students "employable" skills (like using 

spreadsheets) versus to what degree should the curriculum be preparing students for 

college mathematics (e.g., being prepared to understand the proof of the fundamental 

theorem of calculus). As citizens we may hold opinions on this issue, but nothing in our 

tutoring work informs us on the relative value of different educational goals. 

"Underlying the project of tutor construction is the conviction that the subject matter 

can be represented as a production set. I cannot repress the suspicion that the 

particular choices of subject matter made by the tutor authors reflect, whether 

consciously or not, this conviction and thus, that the material which lends itself less 

well to the theoretical framework is left unconsidered." 

As the first remark, this reviewer is substantially correct in the assertion although we again 

see somewhat different implications in it. Our tutors have their largest potential impact 

when there is a substantial production-rule component. Thus, we have stayed away from 

teaching simple algorithmic skills like addition and focused on high school mathematics 

because it seemed that this is where the largest impact would be. Some "advanced" 

domains are largely declarative. So, we have considered a tutor for cognitive psychology 

but have concluded that the body of knowledge typically taught in an undergraduate course 

is largely factual and very limited inferential chains are required. (We think, by the way, in 

our role as citizens of the field and as an author of a cognitive psychology text, that this 

reflects a serious indictment of instructional goals in the field). It is also the case that 

developing cognitive modeling is an expensive enterprise (we estimate 10 or more hours 
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per production rule) and it may not be economical or feasible to model all the competence 

involved within more advanced areas of mathematics. 

However, while there are these practical limitations, we do not believe that there are any 

fundamental limitations of the approach. For instance, we are currently working on 

developing a tutor for exploration and discovery in the context of geometry since these are 

typically thought to be skills outside the domain of our tutor. While we do not have any 

educational results, we can report the skills are perfectly capable of being modeled within a 

production system framework (as indeed earlier research would have indicated—e.g., 

Klahr & Carver, 1988). 

"I find the production-rule-based approach to subject matter...well...less than fun. 

It would be hard for me to believe that a student would choose to study geometry 

on his or her own—would go home and start playing with geometric shapes or 

cutouts or models or whatever—based on experience with these tutors." 

We think it is easy to underestimate the motivational gains produced by the simple 

experience of learning achievement. The principal reason for the enthusiasm for our tutors 

within the Pittsburgh Public School System is motivational gains not achievement gains. 

Perhaps our favorite anecdote is about one student in a school in another state that had the 

LISP tutor. The student, frustrated by restrictive access to the LISP tutor, deliberately 

induced a two-day suspension by swearing at a teacher. He used those two days to dial 

into the school computer from his home and complete the lesson material on the LISP tutor. 

While the issue of the content of the curriculum is essential, learning achievement is a very 

empowering experience. Thinking back on one's own learning experiences and the 

environment one learned in, it is easy to take learning for granted and only focus on what is 
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being learned. The fact that something will be learned cannot be taken for granted in many 

American schools. 
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Figure Captions 

Figure 1: The appearance of the LISP tutor screen at the beginning of a coding 

problem. 

Figure 2: A screen image from the geometry tutor showing the proof graph 

formalism. The givens of the problem are at the bottom of the screen and the statement to 

be proven at the top. 

Figure 3: The box notation for representing the hierarchical algorithmic decomposition 

in the algebra tutor. 

Figure 4: Time to write a piece of code in the LISP tutor for productions new to a 

lesson and old productions. Similar functions are obtained for error rates. 

Figure 5: Mean exercise completion time for five tutor lessons. 
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TABLE 1 

The Problem Description 

Define a function called "create-list" that accepts one argument, which must be a 
positive integer. This function returns a list of all the integers between 1 and the 
value of the argument, in ascending order. For example, 

(create-list 8) returns (12 3 4 5 6 7 8). 

You should count down in this function, so that you can just insert each new 
number into the front of the result variable. 

Cycles in which the tutor communicates with the student 

1. (defun create-list (num) 
(loop) 

You will need local variables in this function. So before you code anything else, 
there is a particular LISP operator you need to code. 

2. (defun create-list (num) 
(let (() 
<BODY>)) 

Which of the following do you want to do? 
PRES S:     IF YOU WANT TO 
1 Initialize a variable to hold the list of digits between 

1 and the value of the parameter. 
2 Initialize a counter variable to keep track of how 

many times we go around the loop. 
3 Have the tutor choose. 

Menu choice: 2 

3. (defun create-list (num) 
(let ((count 1) 
<OTHER-INrnALIZATIONS>) 
<BODY>)) 

continued 
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In this problem we won't want to start counting at the same value each time we 
call the function, so we can't initialize the counter to a constant like 1. How is the 
starting value being communicated to the function? 

4. (defun create-list (num) 
(let ((count num) 

(numlist (list num))) 
Oop)) 

Did you mean loop (y or n)? y 

5. (defun create-list (num) 
(let ((count num) 

(numlist (list num))) 
(loop 

(cond ((equal count 1) numlist)) 
<LOOP-ACTIONS2>))) 

You do want to return the variable "numlist" here, but just typing it into the code 
won't accomplish that. What LISP operator will allow you to return something 
from a LOOP? 

i. (defun create-list (num) 
(let ((count num) 

(numlist (list num))) 
(loop 

(cond ((equal count 1) (return numlist))) 
<LOOP-ACTIONS2>))) 

In numeric iteration the first thing you should do after the exit test is update the 
counter variable. You can use the function SETQ to do this. 

7. (defun create-list (num) 
(let ((count) 

(numlist (list num))) 
(loop 

(cond ((equal count 1) (return numlist))) 
(setq count (1- count)) 
(cons))) 

continued 
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You've got the right idea, since you'll need to use the function "cons", but 
remember you are trying to insert the new value of the counter into the list. What 
LISP function allows you to assign the results of this function call to a local 
variable? 

. (defun create-list (num) 
(let ((count num) 

(numlist (list num))) 
Coop 

(cond ((equal count 1) (return numlist) 
(setq count (1- count) 
(setq numlist (list))) 

If you LIST together arguments like 7 and (8) you get (7 (8)). what you want is 
(7 8). Try another function that combines things together. 

(defun create-list (num) 
(let ((count num) 

(numlist (list num))) 
(loop 

(cond ((equal count 1) (return numlist))) 
(setq count (1- count) 
(setq numlist (cons count numlist))))) 

-—YOU ARE DONE. TYPE NEXT TO GO ON AFTER-- 
—TESTING THE FUNCTION YOU HAVE DEFINED-- 

THE LISP WINDOW 

=> (create-list 10) 

(12 3 45678910) 

=> next 

Table 1. A Teletype Depiction of a Hypothetical Student Completing the Code for 
the Function create-list with the Tutor. 
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FIGURE 1 

Dehn* ■ function carted *craat*-li«t* that aecopt* on« 
argument, which muit b» ■ poiitivo intogor.   Thi» function 
rotums a list of all tha intagart botwoon 1 and tho valuo of 
tho argument, In ascending order.   For example, 

(create-Ket 6) rotumt (1 2 3 4 S 6 7 •). 

You »houtd count down in this function, M that you can just 
insert «ach now numbor into the front of tho result variable. 

CODE for ereate-list 

(dofun creste-list <parameters> 
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FIGURE 3 

Solve 3-3(X-4)=-X for D 
Cleanup    3-3(X-4)=-X   —*>  15-3X=-X 

Distribute   -3(X-4)  in    3-3(X-4)=-X —► 3-3X+12=-X 

Collect constants in    3-3X+12=-X   —+    15-3X=-X| 

Move  X    terms to one side of 15-3X=-X   —►!    | 
— i 

J 5=:4Xjis^wrong ^because §you ^dded.^X^nstead 
MMs inverse tto £X.S '-■ 
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