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FOREWORD 

Field requirements, which have served as the objective of Textile 
Section research during the past five years, call for full utilization 
of recent developments in textile technology. New and old fibers and 
their chemical modification, fiber blending, yarn construction, fabric 
design, and control of cloth structure during processing must be studied 
and related singly or in combination if significant progress is to be 
expected in meeting the ofttime conflicting needs of service apparel, 
tentage and equipage items» 

Major research emphasis since 1945 has been placed on fabric con- 
struction and chemical finishing, with very promising results leading 
to improvement in wear resistance, water resistance, fireproofing, 
shrink resistance, and color fastness. More recently studies have 
been initiated in the area of fiber properties and translation of such 
properties into yarn and fabric structures. Work sponsored by the 
Quartermaster Corps at the Fabric Research Laboratories has centered 
on this latter phase. The paper presented here is illustrative of 
the approach of this group to the problem at hand. It involves a 
mechanical analysis of the stress-strain function at any point in a 
given yarn based upon yarn geometry and fiber behavior under tensile 
stresses, and integration of the relationship so derived to cover the 
mechanical performance of the total yarn. The implications of this 
work in the design of yarns to meet specific end requirements are 
evident. 

STANLEY BACKER 
Head, Textile Materials 
Engineering Laboratory 

July 1949 
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MECHANICS OF ELASTIC PERFORMANCE OF TEXTILE MATERIALS 

Some Aspects  of Stress Analysis of Textile  Structures* 

Continuous Filament Yarns 

Introduction 

Stress Analysis is that branch of physics concerned with the quan- 
titative determination of internal stresses and strains produced in a 
body as the result of external loads and deformations.    Methods of 
stress-analysis have found wide application in the  fields of struc» 
tural and mechanical engineering, where quantitative evaluation of 
internal forces and movements are an absolute, requirement for useful, 
economical^ and safe design»    Used in conjunction with sound design 
principals,   stress analysis  has made possible the complete blue- 
printing of engineering structures where particular  end=use proper- 
ties of these structures are desired and can be formulated» 

A moment's consideration will  show the tremendous possibilities 
inherent in the use of stress analysis for the  design of textile 
structures»    Its application to mechanical fabrics,   cords,  ropes, 
etc»,  where load-carrying capacity and/or stability of size are im- 
portant,  is  obvious»    Just as important, however, would be its appli- 
cation to the many other types of textile  structures which are used,, 
Such end«*use requirements as crush resistance of apparel fabrics, 
the combined performance of coated or laminated fabrics, etc», all 
depend to a degree on the  inherent properties of the basic fibers 
and materials comprising the structure»    However, the geometric form 
of these fibers,  and the type of construction used, determine the 
manner in which these fibers react to the  external forces applied 
in the course of use of the material,' and hence influence the utility 
of the structure to a marked degree. 

The need for  studying the influence of geometry upon the manner 
in which stresses are distributed in textile structures has been em« 
phasized by various workers in the field»    The influence of geometry 
has been termed "Form Factor Effects»M    Work of both an empirical 
and theoretical nature has already been done along these  lines, 
most of which is  related to describing the  fundamental geometry of 
certain textile structures»    These workers include Backer,  Hamburger, 
Hertel,  Hotte, Peirce, Wormersly,   and others»    However,  complete 
theoretical analysis has been limited chiefly by two properties of 
textile structures,  one inherent and the  other arising as a result 
of geometry, namely^ 

* Paper delivered at Fall meeting of the  Fiber Society,  Sept.  1947, 
Princeton, N. Jo 
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(1) Every textile fiber po&sesses a nonlinear stress-strain 
curve for the ordinary rates of loading or straining»    Hence, any 
textile structure in general will exhibit nonrHookian character- 
istics, making it impossible to describe textile performance by 
the direct use of well known engineering formulae«    This does not 
eliminate the possibility of using engineering concepts as a funda- 
mental guide in so lving textile problems»    Instead,  it indicates 
that the complete solution of a textile problem involving stresses 
depends upon a quantitative knowledge of the fundamental stress- 
strain properties of the fiber» 

(2) Every textile structure, beginning with the yarn, repre- 
sents a statically indeterminate bodye(l) meaning that stress dis- 
tribution cannot be established from merely a consideration of the 
laws of static equilibrium, but that,  in addition, the deformation 
of the structure must be considered.    A» illustration of static in- 
determinacy is furnished by comparing the  determination of the  end 
supporting forces of a two-span beam versus a single-span beam» 
These forces can always be found for a single-span beam by using 
the "law of moments" taken about either end support.    A moment's 
trial will show such a procedure to be insufficient for the two- 
span beam.    This latter case can only be solved by considering the 
deformations in the beam. 

The Office of The Quartermaster General has been sponsoring 
a long-term research program aimed towards the understanding of 
the influence of form factors  on the translation of inherent 
physical properties of fibers  into textile structures,  and the 
establishment in quantitative formulae of the relations between 
inherent properties and structure properties.    The work herein 
reported is part of this program»    Logical  sequences of construc- 
tions of fiber length,  including continuous filament, yarn twist, 
yarn size,  fabric weave,  and ends and picks per inch have been 
selected for experimental evaluation and theoretical  interpreta- 
tion and generalization. 

This paper  serves to present the influence of fiber type, yarn 
size,  and yarn twist on the translation of inherent fiber proper- 
ties  into continuous filament singles yarns.    Additional papers 
will be forthcoming on the effects of fiber length and twist on 
staple yarn properties and later,   effects of weave and fabric, geom- 
etry. 

Geometry of Singles Continuous Filament Yarns 

The first step in the stress analysis  of any structure consists 
in defining the geometry of the body, usually by assuming an ideal 
physical form.    Theoretical analysis demands the assumption of no 
variability in form,  and a compromise between duplicating actual 
average shape and the adoption of a geometry which is easy to 
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visualize and handle mathematically»    The final check for the 
rationality of any assumptions is determined partially by judg- 
ment,  and more convincingly by the agreement between the results 
arrived at using the assumptions and any experimental results» 

The following initial assumptions will be made, 

1. The yarn is uniform along its length, and its cross 
sectional outline is circular» 

2. All fibers within a yarn possess equal properties and 
are circular in cross section0 

3«    The center line of each fiber lies in a perfect helix, 
with the center of the helix located at the center of the yarn 
cross section. 

4. The fibers fall into a rotationally symmetric array in 
cro$s sectional view» 

5. The diameter of the yarn is large compared with the 
fiber diameter. 

These assumptions result in a yarn geometry illustrated by 
Figure 1.     The helix angle,Q ,     shown in (a)  represents the angle 
between yarn and fiber axes of the outside fibers only.    Assump- 
tion 4 describes this angle as equal  for all fibers which fall 
into the outer sheath of the yarn»    Any other layer of fibers, 
such as those shown in (b)  to lie at a distance  r from the yarn 
axis, possesses a helix angle designated by $r» 

A general equation relating helix angle, turns per  inch, 
and diameter can be found in the literature(2)  and will not be 
derived here»    The relationship follows* 

Tan 0  £ N If KD - ■  - --(1) 

0 = Helix angle 

N  - Yarn twist, turns per inch 

D  s 2r s Bounding diameter of layer of 
fibers,  inches 

K s Geometrical constant s    D-d 
D 

d  - Fiber diameter 
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FIBER AXIS 

LONGITUDINAL   VIEW CROSS-SECTIONAL   VIEW 
FIG. I 

IDEALIZED   SINGLES   YARN  GEOMETRY 

Equation (1)   indicates that for a given yarn twist N,, 
which is constant for all the fibers, the tangent of the helix 
angles of any layer of fibers is  linearly proportional to the 
distance of the group from the yarn center,  just so   long as K 
is constant.    By assumption 5, the ratio d/D is considered 
small relative to unity and hence except for those fibers posi- 
tioned close to the yarn axis, K will be'approximately 1.    In 
addition,  for those fibers close to the yarn axis, the helix 
angle approaches 0, and hence, as will be seen later, variations 
in K will not influence the stress distribution to any signifi- 
cant degree* 

Forces  in Fibers 

A«    Uomponent Effect 

The application of an external tensile load, P, along 
the axis of a yarn results in forces being applied to the vari- 
ous fibers.    In general, the only stresses which can possibly 
act- on the cross section of a fiber are» 

1.    A tensile force, pr, direction along the fiber axis; 
normal to the fiber cross  section. 

2.    A shear force, v, acting tangential  to the  fiber 
oross section. 



3. A bending moment, m. 

4. A torsional moment, t. 

These stresses are illustrated in Figure 2. 

It is now assumed that the fibers are perfectly flexible 
members, incapable of resisting any compressive forces. Because 
of the extremely low modulus of elasticity of textile fibers, in 
addition to the extremely large ratio of fiber length to fiber 
diameter, this ia a reasonable assumption. As a result of this 
assumption, the stresses m, v, and t vanish, and the"only fiber 
force acting is a direct tension, pr • The concept of perfect 
flexibility is not an uncommon one in engineering. The classi- 
cal design of the long cables of a suspension bridge depends 
upon the assumption of only tensile forces acting, as is the 
case for many other structures. 

Pr 

FIG URE     2 

GENERAL     STRESSES IN FIBERS 

vt+™    assumed s o. 
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Since pj., which parallels the fiber axis,  represents the only- 
force acting upon a fiber, then it is apparent that the contribu- 
tion of p  toward the total load P acting on the yarn in tension is» 

p/fiber = pr cos#r   - _ _ - - - (2) 

,\P «^  cos0r -.----.------- (5) 

Equation (3)  states that if the axial tension carried by each 
fiber be multiplied by the cosine of the helix angle of that fiber, 
and all such products summed, the total will represent the axial 
tensile  load acting on the yarn.     The completion of such a sum 
demands, knowledge of p^   for each fiber layer within which ßr  is 
constant.    Such a method would be tedious and require a new solu- 
tion for each yarn size considered, and hence a simpler mathe- 
matical form of equation (3).. has been derived. * 

It is now assumed that the individual fibers in the yarn are 
considered as consolidated into an equivalent solid continuous 
medium rather than a group of discreetly individual fibers.    How- 
ever,  it is still considered that at a distance r from the yarn 
center,  the force, p^. ..,. remains inclined to the yarn axis at the 
angle &v which the fiber at that radius possessed previously.     In 
addition the total transformed yarn denier is assumed to be un- 
changed.    The cross-sectional  area of this new yarn will be dis- 
cussed later. 

As a result  of this transformation it  is now possible to treat 
the yarn as a continuous rather than discontinuous medium, with the 
use of differential elements, of area as, opposed to individual fibers» 
Figure 3 illustrates the element of force,   dpr, acting on the element 
of area defined by the shaded annular ring. 

The magnitude of the force,   dpr,  is equal to the product of the 
stress intensity (force per unit area),   fr , and the element of area, 
dA   normal to the force.    Reference to Figure 3 will  show that this 
may be written ass 

dpr s frdA = fr(2ltr)dr« .--------(4) 

However,   it   is  apparent thats 

dr«   - dr cos$r 

Therefores 
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dr I 

axis 

(a) (i ) 
LONGITUDINAL    VIEW CROSS-SECTION 

FIGURE    3 

ELEMENTS   OF   FORCES   IN   SOLID      YARN 

dpr 
= fr2irr cos ^rdr  --(5) 

The component  of the  firce,  dp  . parallel to the yarn axis, 
dPr, may be written: 

dPr = dpr cos $r s fr21Tr cos^dr    -  - - (6) 

The sum of all forces,  dPr, represents the total axial yarn 
load and is found from: 

P    = f dPr s 2trf       f r cos2 0 dr  (7) 

In order to integrate equation  (7)   it  is necessary to express 
both fr and 6    as functions of r.    i'rom equation  (1)« 

tan ö = N1T KD 

which becomes  for the assumed solid yarn: 

tan£r « mi** ~ <*r)   2r 
2r 

tan#r = 2# Nr    - (8) 

From the identity: 

cos2$= —1 _-, 
1 ♦ tan20 
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It is apparent that 

Substituting (9) into (7) there results: 

cos2&, = -—— ,■ ,-,,'>' <i  - ~ ~ - _ '-—■  - (9) 

r 
P _ orfjT       £       ,    rQ?.,-;y-  ~^~~~.~~- do) 
- " J, . o  r (i * i*?**T*> 

The evaluation of the dependency of fy upon r is described later. 
Equation (10) was derived without any consideration of the inherent 
properties of the fibers comprising the yarn. It is dependent only 
upon yarn geometry and hence applies to continuous filament yarns made 
of any fibers which satisfy the assumptions previously given. Since 
the equation was derived from 1M.,:> of static composition of forces, 
the effect is termed the "component effect." The component effect 
results in the important fact that the higher the helix angle, the 
greater the fiber tensile stresses when a given axial load acts on a 
continuous filament yam, since from equation (10), the value of fr 
increases when N increases and P is held constant. Conversely, with 
equal fiber stresses, the most highly twisted yarn will have the low- 
est axial yarn load, since P decreases as fr is held constant and N 
increases. These effects are illustrated in Figures 4 and 5. 

B. Serigraph Effect 

Equation (10) requires for its solution expressing fr, the 
tensile stress intensity, as a function, of r, the distance from the 
yarn center. A first approximation would be to assume, f constant 
with r, i.e., equal stress intensity at all points in the yarn cross 
section. However, conditions of continuity of distortion^must be 
satisfied, and as stated previously, the solution of statically 
indeterminate structures requires a study of the deformations in- 
volved. The "serigraph effect" is. concerned with the effect of dis- 
tortions upon the stress distribution. Whereas the component effect 
was general, dependent only upon yarn geometry, the serigraph effect, 
while caused by yarn geometry, depends for its magnitude upon inherent 
fiber properties. 
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p, 

low   twist yarn 
P >P 

FIGURE  4 
EFFECT    OF  HELIX   ANGLE     ON     UTILIZATION 

OF   FILAMENT    STRENGTH     {COMPONENT EFFECT) 

low   twrsf yarn 
f,<f* 

U>) 
high   twist yarn 

FIGURE 5 

EFFECT    OF  HELIX   ANGLE   ON   FILAMENT 
FORCES   (COMPONENT EFFECT) 
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Because of the helix angle,   the actual  length of  inclined 
fibers in a given length of yarn exceeds the yarn axial length, 
the excess being functionally related to the cosine of the helix 
angle.    Figure 6  sketches a yarn with two filaments,  one inclined 
at an angle 6 to the yarn axis,   and the other parallel to the 
yarn axis.    The yarn is shown with an extension ^\L,  or 
an equivalent axial strain AJL.*    This yarn axial  strain, AJL* 

L L 
also represents the unit strain of the  center fiber which has 
a helix angle of 0.    The  inclined fiber possesses a length      L     . 

cos^7 

From Figure 6 it is apparent that the absolute elongation of the 
irclined fiber can be very closely approximated as: 

ALzi S
      AL coa 9 

Therefore, the unit  strain, £ifl,  in any fiber  inclined at an angle 
0 to the yarn axis may be determined from: 

£*=a ,0 oo"I7 " Ali cos 
coatf L 

20 (11) 

or 

£(fiber)  =   f(yarn)  cos2^ (12) 

Since cos2$ is equal to or  less than unity,   it is clear that  for all 
helix angles greater than zero, the fiber  strain is less than the 
yarn strain.    In addition, as shown by equation (9), the further 
the fiber from the yarn axis, the greater the value of $ , and 
therefore, the smaller the value of oos20 .    Hence,  the further 
the fiber from the yarn axis,  the smaller the fiber strain. 
After substituting equation (9)  into  (12)  there results» 

(■»-- 
So  * 

2vÄJS 
(13) 

i * 417  FV 

C0 s strain in fiber inclined at 
angle & to yarn axis. 

£© s yarn strain or strain in un- 
inclined fibers. 

* A more precise .expression, based on assuming-Poisson's ratio s ^j-, 
is 

. l 

Ej.-kl *£°)5 » 4ir2K2r2'       . 
*y(l*€0)(lt4ir2N2r2)   " U This equation should be used if 

very high helix angles or fiber 
elongations  are encountered. 
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FIGURE     6 

DEFORMATIONS   IN   TWISTED   YARNS 

For any textile fiber  strain   is functionally related to   stress 
for given testing conditions   such as rate of loading or  straining. 
The magnitude  of the Itress being borne by a fiber when it  is 
strained a given amount may be found  from the stress-strain diagram 
for that particular fiber.    Usually it is found that as the strain 
decreases the stress also decreases,  an exception being the dip  in 
a stress-strain curve beyond the yield point when tests are made 
slowly at a constant rate of elongation.    It has just been shown 
that the strains present  in a loaded yam vary with the position 
of the filament from the yarn axis.    The center filaments  {6 * 0°) 
are always  subjected to  greater  strains than are  any of the other 
filaments.    Hence, the center filaments can be stressed to rupture 
while the  remaining filaments are  stressed below their rupture 
loads.    As soon as the center filaments fail, there occurs a rapid 
progressive rupturing of all remaining filaments  and the yarn breaks. 
As a result, the full breaking strength of the sum of the filaments 
theoretically can never  be attained.    Instead, the maximum strength 
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of the yarn is limited by the  sum of the components of the-fiber 
forces when the center fibers have reached their ultimate elonga- 
tion.    When this yarn elongation is reached, only a portion of the 
strength of the inclined fibers contributes to yarn strength.    The 
precise amount of this  contribution depends upon the  stress-strain 
curve of the material,   in addition to the magnitude of the helix 
angle,   and will now be evaluated for 600/208 acetate yarn. 

The stress-strain diagram of 600/208/0.3 acetate yarn is 
shown in Figure 7.    The curve was obtained from a constant rate 
of load IP2 machine.    Since the yarn twist   is so  slight,   it is 
assumed that the fiber inclination is negligible. 

932 
<* A% 
k' 
<* 
^    „ 
K^ 
S   A 

^ 
780 

£   A 
k 
</> 
^ 
^ 
QC 
<0 

^ -< 

</> 
y> 
ki 
£ k. 
<o 

02/3 0.280 
STRAW  L 

FIGURE    7 

STRESS-ST RAIN    DIAGRAM\   CONSTANT    RATE 
OF    LOAD.       600/208/0.3   ACETATE    YARN 

* A * CROSS  SECTIONAL    AREA    OF    600 DENIER   YARN 
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Now,  at yarn rupture the  stress  intensity carried by the fibers 
is  equal to £££ grams  per unit area (where A is the cross-sectional 

area of the yarn)   at  a strain of 0.280.    Fibers inclined to the yarn 
axis are subjected to  a strain of? 

£ =        Q°280        - __. (14) 
1 f 4lf2u2r2 

and are carrying a stress  of p/A grams per unit area.    From Figure 
7 it  is seen that the shape of the  stress-strain curve close to 
rupture  is essentially linear»     The equation of this portion of the 
stress-strain curve may be written as: 

P/A - 780/A    : 932/A -  780/A    = 2240 
£  - 0.213 0.280 - 0o213 A 

From whichs 

f . 2240 £ » 504 (15) P  
T" * 

Substituting (14)   into (15)  there results* 
628 

f = 1  » 4TT 2*^ '<  30A      ------------  (16) 
A' •   '" 

Equation  (16)   defines the stress distribution,  f,  at yarn rupture as a 
function of yarn twist, N,   and distance of the fiber  from the yarn 
center, r»     It is apparent from this equation that for a given yarn 
twist, the further the fiber from the yarn center, the smaller the 
stress carried by that fiber at yarn rupture.     In addition,  for a 
given yarn size, the  greater the yarn twist the less the fiber stress 
at a given distance from the yarn center.    Figure 8  illustrates the 
variations of stresses within singles yarns in accordance with equation 
(16). 

The determination of the variance of stress with position as deter- 
mined by equation (16)  now permits the integration of equation (10)  for 
the 600/208 acetate yarn.    Following substitution of (16)   into (10)  the 
following expression results after  expansion of logarithmic and frac- 
tional terms into  a power series and neglecting terms possessing powers 
of R greater than 4. 

P s 4(233 - 7450 A2)     ------- -  (17) 

P - tensile strength of yarn,   gns 
N_ r yarn twist, turns/inch 
R s yarn radius,   inches 
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yarn    twist a N, turns 
per inch 

(A) 
yarn   twist* Nx turn s 

per  inch 

Nt>Nf 

FIGURE      8 

TENSILE     STRESS     DISTRIBUTION 
IN    SINGLES     YARN 

Equation (17)   defines the breaking strength of the 600/208 acetate 
yarns in terms  of the yarn radius and twist.     Similar equations have 
been derived for the various materials  as listed in the table-below. 

TABLE 1 
Equations Giving Effect of Twist on Yarn Strength 

Yarn 

150/40 viscose 
210/69 nylon 

300/l04 acetate 
6OO/2O8 acetate 

P 
P 

P 
P 

Equation * 

2(158  -  5600_NJB?) .- 
8100 P- * ar2^2 n 

|JL * 4*2« 2 j 
2  (233  - 7450 N2R2) 
4  (233  - 7450 N2R2) 

6650 In (l»4tr2N2R2) 
SlT2!2!2 

* Equations for all materials simplified by expansion into power 
series except  nylon, the series for which converges very slowly, 
and hence, the actual  equation is given for-this material. 

With respect to the use of such equations as given in Table I, 
the twist,, N, and the radius, R, should represent both these quan- 
tities at yarn rupture, »men a yarn is being strained to rupture, 
the twist per unit length is continually decreasing as the elonga- 
tion increases. If Ns is the yarn turns per inch at no lo«d, then 
at yarn rupture, the twist U is given as: 

N = ■N8 (18) 
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•wheregr is the unit  strain at rupture.     The yarn radius will also de- 
crease with strain»    Assuming, momentarily, that the yarn is composed 
of solid fibrous material  (complete packing) then for most high poly- 
mers which extend at constant volume, the square of the yarn radius is 
inversely proportional to the total length of the sample while  it is 
being stressed.    Thus,  if Eg2 is -the square of the radius at no load, 
then the square of the yarn radius at rupture, R ,  is given below? 

R2 s      Rs _--_---_.--    - (19) 

The original yarn radius. Es,   can be calculated.    It is easily shown 
that for a  solid yarn, the value Fs    in square inches is related to 
the yarn denier and the fiber specific gravity as  followsi 

R3
2 s 0.055 x 10~6 x        Yarn Denier     - - -  (20) 

fiber   specific gravity 

If the yarn denier and fiber  specific gravity are known, then equation 
(20) would give the value of Rs

2 for a solid yarn.     The bulk factor of 
the yarn,  however, must be considered before a realistic value of the 
radius can be calculated.     This is best taken care of by use of a bulk 
specific  gravity for the yarn.    Peirce(^)  has reported that for firm 
cotton and viscose yarns,  a bulk specific gravity of 0.9 gives reason- 
ably accurate results,  and although determined for staple yarns,  «hould 
apply closely to  continuous filament yarns.     Others have indicated 
acetate yarns to have a bulk specific  gravity of about 0.86.    While no 
data are available for nylon,  the value  of 0.9 has been used in the 
strength calculations. 

Utilizing the equations  given in Table I for a pedigreed  set of 
yarns,  the strength twist curves shown as Graphs  1,   2,  3, and 4 were 
determined.    Experimental values of strength are also  shown on the 
graphs.     It is to be noted that reasonably good agreement has been 
obtained between the theoretical and the experimental  strengths. 
The experimental data for all the materials  follow in general the 
same type of parabolic strength-twist curve as the calculated curves 
do,  except for the 300/l04 acetate.    This yarn is the only one of the 
group which was spun directly to different twists at the plant.    The 
other yarns were all   spun from the same lot of original low twist yarn. 
Hence, the relatively poor agreement for the data shown in Graph 3 may 
be the result of variation in fiber properties.    However,  when all of 
the calculated and actual  strengths are plotted against each other, 
a linear agreement line having a slope close to 45° results,   as ^shown 
in Graph 5. 

Influence of Fiber Properties 

It has been indicated that the shape of the stress-strain curve 
is import art  in determining the magnitude of the serigraph effect. 
Each of the equations  given in Table I,  excepting that for nylon, 
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can be written in the form: 

P = a - b N2R2 ---------------- (21) 

where a represents the zero twist strength, while N and R are the yarn 
twist and yarn radius at rupture,  respectively»    The quantity b deter- 
mines the extent  to which a given geometry affects yarn strength. 
Actually,  the ratio of b/a determines this  extent»     It can be  shown 
that this  ratio  is  functional with the stiffness of the fiber at high 
loads,  as evidenced by the shape of the stress-strain diagram.     Con- 
sider the hypothetical stress-strain diagrams of two fibers, A and B, 
as  shown in Figure 9.    Let it be assumed that both fibers A and B 
possess precisely equal properties, both geometric and inherent, 
except that the shapes  of their stress-strain diagrams are different. 
Then,   if yarns of  similar geometry are made from each of these fibers, 
it is clear that the component effects would be alike.    However, with 
respect to the  serigraph effect,   it is clear from Figure  9 that al- 
though at yarn rupture the center fibers  in both yarns would be  sup- 
porting equal stresses,  fr,  the inclined fibers in yarn A would be 
supporting stresses  (f*)A while the inclined fibers in yarn B are sub- 
jected to stresses as  low as  (f^)g.    From Figure  9 it can be seen that 
that the strength of yarn A will exceed the strength of yarn B. 

In this  connection,  it is interesting to consider the work of 
Peirce(4)   in discussing the loss in strength of cotton yarns after 
the optimum twist   is exceeded.    The  general equation for strength 
fall-off is given by Peirce as the factor; 

1 i 0e0126>j K2 

where )| is a constant depending on zone of rupture diameter and yarn 
diameter,  and K is the yarn twist multiplier,  proportional to N R. 
This factor may be approximated as: 

1. - a(0.0126TjH2R2) 

where a is the constant of proportionality relating twist multiplier 
to the-product of yarn twist and yarn radius.    This last equation 
expresses the influence of only the component effect.    Actual  experi- 
mental results check the above  equation if the value of 0.0126  is re- 
placed by 0.0140, which,  according to Peirce,   "is of the right order of magni- 
tude but greater than would be expected of the purely geometric effect 
in a regular yarn.n 
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STRAIN 

FIGURE  9 
HYPOTHETICAL     STRESS-STRAIN   DIAGRAMS 

OF   TWO      MATERIALS. 

It is clear,   however,  from what has been discussed already, 
that  the value of 0.0140 could be significantly associated with 
the serigraph effect,   since this factor has the ultimate result 
of producing a lower strength than would be expected from only 
the component effect.    The  elastic properties of the fiber can 
influence the effect of yarn geometry. 

It is interesting to consider the effect  of   increasing the 
yarn size while maintaining the yarn twist  (turns per   inch)   con- 
stant.    Equation (21)  can be written in more  general terms to 
take into consideration differences in initial yarn radiusj 

P s R2(a'   - b'N2R2) (22) 

The maximum value of P produced by varying R can be calculated 
from equation (22)  by: 

d P u 0 
a R 

or; 
2LL z 2a»R - 4b'N2R3 s 0 
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Equation (23)   indicates that for a given fiber  (a'   and b'  are material 
constants), yarn strength at  a given twist can be increased by increas- 
ing yarn weight up to the point where the product of yarn twist and 
yarn radius  satisfy equation (23).    Further increases  in yarn weight 
will result  in a decreased strength»    Moreover,  independent of what 
yarn twist  is considered, the product of this yarn twist,  N,  and yarn 
radius,  R, will be the same at the maximum strength point.    The value 
(U x R)   can. be shown to be proportional to the "twist multiplier" as 
used in staple yarn terminology)* since the yarn radius varies in- 
versely as the square root  of the yarn count (cotton  system). 

The effect of yarn size on yarn strength at different twists is 
indicated graphically in Figure 10. 

Yarn Stress-Strain Characteristics 

A»    Elongation to Rupture 

In the discussion relating to the magnitude of the "Serigraph 
Effect"  it was shown that at yarn rapture the strains  present among 
the various  fibers  in a yarn varied with the helix angle.    Yarn rup- 
ture occurred at the point where the shortest fibers,   i.e., those 
fibers which lie close to the yarn axis and hence possess »ero helix 
angle, reach their limiting extension»    This  limiting extension is 
also   the extension  of the yarn to rupture.     The effect of yarn twist 
or yarn size is merely to alter the distribution of extensions among 
the various fibers. 

Since the fibers close to the yarn axis are the first to  fail 
as a result of tension,   it can be concluded that the yarn elongation 
to rupture  should be constant,  independent   of the yarn twist  or yarn 
size.    It is true that  exceedingly high yarn twists can produce initial 
spinning tensions  in the fibers which are of sufficient magnitude to 
alter their elastic properties by,  say,  cold«workimg the fiber.    Such 
a yarn would not  be expected to exhibit the same elongation to rupture 
as a low twist yarn.    However, where spinning does not influence the 
elastic properties of the fiber, the yarn elongation  should not be 
altered by changing either the yarn twist  or yarn  size. 

* Twist Multiplier =      N        ,  where C, the cotton count, varies 

inversely as the yarn denier. 

- 23 - 



N= 0(zero   iwtst) 

focus   of 
maximum   strengths 

N=N, 

YARN     RADIUS\ R 

FIGURE   10 

EFFECT    OF    YARN    SIZE (R)       ON     YARN    STRENGTH 
AT    VARIOUS     TWISTS,    N. 

N<N<N<N„ 

LOCUS    OF   MAXIMUM    STRENGTHS    SUCH   THAT    N*R 
IS     CONSTANT. 
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Graph 6 plots the elongation to rupture of a series of 
singles yarns with various twists and yarn weights«    It can be seen 
from this  Graph that  changing the twist has not produced any sub- 
stantial changes  in the elongation to rupture,,    In addition» for the 
two acetate yarns,  the yarn elongation is substantially the same as 
the fiber elongation» 

B»    Stress"Strain Curves 

It has been shown that twist produces the following effects 
on the properties of continuous filament singles yarnss 

1, The higher the twist, the lower the yarn strength» 

2»    Yarn elongation is  independent of yarn twist  just   so 
long as  spinning does not  alter the mechanical properties  of the 
fibers» 

Figure  11 shows the theoretical relationship that might be 
expected between the  stress-strain diagrams of a group of yarns with 
successively higher twists.     These curves have been drawn so as to 
satisfy (1)   and  (2)  above.    In addition,  however, they have been 
drawn so that at any load below rupture, the elongation of the 
higher twist yarns exceeds that of the lower twist yarns«     This 
must be so since,  for the same total load on the yarns, the fibers 
in the high twist yarns are subjected to a higher axial tension 
than are those in a lower twist yarn.     Both the component and seri- 
graph effects produce this difference in fiber loads.    Since higher 
fiber tensions produce greater fiber extensions, the trends shown 
in Figure 11 are  logical. 

The change in shape as well as the change in endpoints  of 
such curves,  as shown in Figure 11, are capable of mathematical 
analysis and prediction.    The procedure is a laborious one involv- 
ing first the determination of the empirical formula of the fiber 
(or  zero twist yarns)   stress-strain curve.    The component and seri- 
graph effects are then written analytically for the whole range of 
loads from zero to rupture,   in terms  of yarn twist, N,   and yarn 
size, R.    The final expression would be the  stress-strain equation 
for a given material in terms of both BF and R.        " 

However,   it  is possible to deduce the general results of 
such an involved calculation by reference to Figure lit 

1«    The higher the yarn twist, the lower either the 
secant modulus or tangent modulus  of the stress-strain curve. 

2. The higher the yarn twist,  the lower the energy 
absorption to rupture.    This is so since the  stress-strain'curve 
for a high twist yarn lies below that of a low twist yarn and 
the ultimate elongations are equal. 
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STRAIN 

FIGURE  11 
THEORETICAL     EFFECT   OF    YARN    TWIST,  N 

ON   STRESS    STRAIN   DIAGRAMS 

Nz>Nt >N0 
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C. Elastic Characteristics of Yarns 

The performance of textile structures in end use is very 
rarely a one-time loading to rupture proposition.  Instead, most 
textile products are usually subjected to a continual repeated stress 
action, the magnitude of the stresses being below that rupture load 
which the specimen is capable of withstanding, previous to use. 
Mechanical failure of a material in end use occurs when, as a result 
of repeated loading and unloading, the structure is incapable of ab- 
sorbing and returning the imparted energy without the occurrence of 
failure as either a permanent deformation or an actual rupture of 
the component parts, depending upon the end-use requirement. One 
peculiar physical characteristic of textile materials which hereto- 
fore has identified them as unpredictable engineering materials, 
has been the fact that the elastic properties depend upon the pre- 
vious loading history» Most textiles exhibit the delayed corapon^ 
ents of deflection; primary and secondary creep, the magnitude of 
each being a function of load, time, and inherent properties. 

More specifically than actual load, the internal stresses 
govern the magnitude of the delayed deflections for a given mater- 
ial, and since the stress distribution of filamentous singles yarns 
changes with twist, it is to be expected that the repeated stress 
properties would also depend upon twist. Three criteria of repeated 
stress performance have been considered«  (a)  secondary creep, (b) 
corrected residual elongation, and (c) elastic performance. 

The data given in this section on elastic properties have 
already been reported by Hamburger^5) The graphs expressing the 
data are repeated for convenience in following the discussion. 

1, Secondary Creep 

Secondary creep i3 that portion of the delayed deflec- 
tion exhibited by a material which is not recoverable with time 
following load removal. The removal of secondary creep results in 
a change in the load-extension diagram, with an attendant loss in 
energy absorption capacity. It has been found that poor abrasion 
resistance characterizes a material most of whose deflection is 
attributable to secondary creep. Both poor crease resistance and 
poor dimensional stability also follow when most of the elongation 
possessed by a material can be ascribed to secondary creep. On 
the other hand, in order to resist rupture due to stress concen- 
trations, secondary creep can often be a valuable asset to a ma- 
terial. Hence, it can easily be seen that the determinations of 
this property is important to a textile evaluation. 

The effect of both load and twist on the secondary 
creep of 300/l04 continuous filament acetate rayon is given in 
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Graph 7, which illustrates two points*  (1) the secondary creep is 
a function of conditioning load, the greater the load acting on 
the untwisted elements, the greater the secondary creeps (2) at a 
given conditioning load, the greater the twist, the greater the 
secondary creep» 

Point (1) states an inherent property of acetate rayon. 
Other materials may or may not possess a similar char act eristic 
For example, nylon shows a much smaller change in secondary creep 
with load than does acetate rayon. However, considering acetate 
rayon, it becomes apparent why twisting increases the secondary 
creep at a given conditioning load. For a given yarn load, the 
internal filament forces are greater for a twisted than for an 
untwisted yarn«  This has been explained as being caused by both 
the component and serigraph effects. Since secondary creep in- 
creases with load on an untwisted yarn, the increase in secondary 
creep with twist at a given yarn load is explained. For the nylon 
mentioned above, one should find secondary creep to be less influ- 
enced by yarn twist than the acetate rayon. Except for such effects 
as yarn slippage due to twist removal, this should certainly be the 

case. 

2. Corrected Residual Elongation 

If a material possesses secondary creep, the process 
of mechanical conditioning generally causes a decrease in the ex- 
tensibility of the specimen. It is of value to know the extensi- 
bility of such a mechanically conditioned material, since a large 
decrease in the elongation after conditioning reflects a large de- 
crease in the energy-absorbing capacity of the material following 
repeated stressing in use. A material may show a high elongation 
to rupture on a one-time loading basis, and may be selected for a 
particular end use whenever such a large elongation is desirable. 
However, if this elongation is not attainable again, and the end- 
use requirement is not a one-time use, the choice of this material 
may not have been the best. 

The per cent corrected residual elongation delineates 
the elongation to rupture following the removal of secondary creep. 
It is termed "residual" since it represents the remaining elonga- 
tion. The expression "per cent corrected" is used since the elonga- 
tion is expressed as a per cent of the new gage length, i.e., the 
sum of the original gage length before stressing plus the added 
gage length due to secondary creep removal. 

Dependent as it is upon secondary creep removal, the 
per cent corrected residual elongation should be expected to vary 
with both load and twist. Graph 8 plots the effects of load and 
twist on the per cent corrected residual elongation. 
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Two points are worthy of note from examination of this 

Graphi 

(1) Inherently, acetate rayon shows a decrease in the 
corrected residual elongation with load. This decrease parallels 
the increase in secondary creep with load. 

(2) At a given load, the greater the twist, the less 
the per cent corrected residual elongation. The explanation for this 
effect is similar to that given for the increase in secondary creep 
with twist at a given load» 

It is interesting to note that the shapes of all the 
curves in Graphs 7 and 8 are essentially parabolic with twist at 
constant load. This same general shape resulted for the effects^ 
of twist on tensile strength. The deviation of the stress distri- 
bution from uniformity, as twist changes, is also parabolic with 
twist. Hence, the tie-in between stress distribution, as produced 
by yarn geometry, and repeated stress performance appears justified. 

3. Elastic Performance 

The preceding paragraphs have discussed certain of the 
changes in elastic properties exhibited by textiles following re- 
peated stressing. The extent to which a material duplicates its 
original stress-strain characteristics, taking into account the 
effects of both primary and secondary creep, is indicated by the 
Elastic Performance Coefficient. This coefficient can be applied 
to all types of loading, tension, bending, torsion, bulk compres- 
sion, etc., and is determined from the repeated stress data. The 
method for calculation has been described by Hamburger in "Mechanics 
of Elastic Performance.tt(5) Qualitatively, the coefficient should 
be regarded as a numerical index which expresses, as a fraction of 
unity, the degree of perfect spring-like behaviour exhibited by a 
material. 

Graph 9 plots values of the Elastic Performance Coef- 
ficient as a function of both load and twist. Gnce again, it is 
clear that two predominant effects are evidenced? 

(1) The higher the load, the smaller the elastic 
performance coefficient. 

(2) At a given load, the greater the twist, the 
poorer the elastic performance. 

Also, it should be apparent that (2) above depends 
upon the inherent property indicated by (1), since were it not 
for the fact that higher loads reduce the elastic performance, 

- 32 - 



1N3IOUJ300   30NMüOJä3d 

-  33  - 49   15634 



the effects of higher filament stresses in highly twisted yarns^ 
would not produce reductions in the elastic performance coefficient. 

Conclusion 

The concepts developed in this paper represent only a part of 
the type of quantitative "applied mechanics" of textile structures, 
the complete establishment of which is the overall long-range ob- 
jective of the research being done for the Quartermaster Corps. 
The work has been concerned with the development of rational laws 
describing the influence of geometrical factors on textile perform- 
ance, beginning with the smallest textile units with respect to size 
but the most complex from a technical point of view, namely, the 
fiber and the yarn. It is felt that the yarn form factors isolated 
and described in the main body of this paper form a necessary part 
of the logical development of geometrical effects, and just as 
fiber and yarns are the fundamental units in the construction of a 
textile product, so must their mechanical properties be regarded 
in relation to the mechanical properties of the finished structure. 
It has been shown that stress analysis permits quantitative explana- 
tion and prediction of the following effectss 

1. Rupture properties of singles continuous filament yarns. 
Both rupture load'and rupture elongation are capable of physical 
analysis and correlation with the properties of the fiber. 

2. Energy absorption. The shape of the stress-strain dia- 
gram of yarns can be quantitatively predicted from the fiber stress- 
strain diagram and the influence of yarn geometry upon the energy 
absorption properties determined. 

3. The dependency of the elastic properties of yarns upon 
yarn geometry has been described and explained. In particular, 
it has been shown how stress distribution is responsible for 
changes in the visco-elastic characteristics exhibited by yarns 
comprised of known fibers and how these changes may be calculated. 

4. Optimum yarn sizes for different twist yarns have been 
shown to be capable of quantitative determination. Rational laws 
governing the relation between yarn size and twist have been de- 
veloped. 

5. It has been shown that the extent to which yarn geometry 
influences yarn properties is partly functional with the inherent 
fiber properties. In particular, it has been shown that the rup- 
ture properties can be described in terms of constants of the 
fiber as determined by its stress-strain diagram. Future work on 
this program is concerned with the determination and classification 
of the constants for a wide variety of textile fibers. 
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In addition to yielding information on the performance of 
singles, continuous filament yarns, the broad ideas developed 
have led to the extension of certain of the concepts to other 
higher order textile structures, the results of which will be 
published in later -works, but will be briefly mentioned here*, 

1. Similar performance characteristics of staple fiber 
yarns.(6) It has been found that when fiber slippage is properly 
taken into account, many of the properties of singles staple fiber 
yarns are capable of evaluation by the same general methods as 
presented herein. The influence of staple-fiber yarn geometry on 
the translation of strength, elongation, and visco-elastic charac- 
teristics are all capable of analytic description. 

■■■•.,.-..2-.V characteristics of plied continuous filament yarns. It 
can be shown that the elastic characteristics of plied yarns, for 
example, are critically dependent upon the presence or absence of 
a core which lies in the center of the yarn. For example, for a 
seven-ply yarn, one' can show that increase in ply twist, maintain- 
ing yarn twist äs it lies in the ply constant, causes a parabolic 
decrease in the energy to rupture. On the other hand, for a three- 
ply yarn, increases in the ply twist would show a parabolic increase 
in energy absorption to rupture. 

"'""■' '"'"3. Certain of the methods developed in this work are capable 
of being translated directly into fabric geometry effects. For 
example, the effects of high fabric crimp in tightly woven fabrics, 
both on tensile strength and elongation, are capable of being 
analysed in much the same manner as given for the serigraph effect. 

From the examples it is clear that the mechanical properties 
of textile structures are capable of being analyzed and explained, 
and hence, predicted. The ability to blueprint and design fabrics 
for mechanical end uses is possible. It is felt that other end 
uses dependent upon the so-called "obscure" properties of textiles, 
such as wear resistance, drape, etc., are also capable of engineer- 
ing design, once the physical analogy of the tactile property is 
established. 
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