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A. INTRODUCTION

The Acoustic Mid-Ocean Dynamics Experiment/Moving Ship Tomography
Experiment (AMODE/MST) was conducted in 1991-2 (Howe et al., 1991; AMODE .
Group, 1994; Howe and Worcester, 1994; Howe et al., 1994; Boyd et al., 1994)
(FIGURE A-1). The AMODE/MST experiment encompassed an area of ocean about
1000-km across mid-way between Bermuda and Puerto Rico.

The MST-proper data set, which is NOT described in this report, consists of travel
time data from the six AMODE moored transceivers to an acoustic array lowered from a
circumnavigating ship.

This report is a second generation description of the reciprocal acoustic travel times
between the moored transceivers. Peter Worcester remains the primary contact
regarding this data set. Previous reports (Worcester and Howe, 1991; Dushaw, 1992;
Worcester and Dushaw, 1993; Ganse and Howe, 1993a,b) have described the raw
acoustic, hydrographic, and bathymetric data from AMODE. This report describes the
resolved, tracked ray travel times, the mooring motion and clock corrections to those
travel times, and the editing and filtering procedures used to obtain a clean data set
appropriate for use in oceanographic studies. This discussion applies to the travel time
data derived from the four-element hydrophone arrays that were on each mooring.
Additional, deeper, single hydrophones were also deployed on moorings 3, 5a, and 6, but
these data are not discussed here.

The AMODE transceiver moorings are numbered from 1 to 6. Mooring 1 is located
at the northeastern vertex of the AMODE pentagon, and mooring numbers increase
clockwise around the array. Mooring 6 is at the center of the array. There is a mooring
number 7, which is the acoustic source which was deployed near to and on the south side
of Bermuda.

The acoustic travel times from the AMODE transceivers to Navy SOSUS arrays
located around the Western North Atlantic basin were also recorded. This report
contains the "dot plots" from these receptions; these data are only briefly discussed.

The AMODE data set is currently being used by several workers. Bruce Cornuelle et
al. (1995a, 1995b, 1996) is working on assimilating the tomographic data into a
quasigeostrophic model, and testing predictability, with promising success. Bruce is
using a slightly different data product than that described in this report; he has devised
his own data filtering and editing procedures and he uses the travel time data in its
original "one-way" form rather than the sum or difference of reciprocal travel times as
described in this report. David Chester et al. (1994, 1995a, 1995b) has examined the
mean current field (general circulation) determined from the AMODE data, as well as the
eddy variability apparent in both the sum (temperature) and difference (current and
vorticity) travel times. John Colosi has recently begun to examine the internal wave
effects on the travel times. Brian Dushaw has examined the high-frequency (> 1 cpd)
travel time variances (Dushaw et al., 1994a) as a means of checking the quality of the
data (the high-frequency variances are also of interest in their own right) and the
barotropic and baroclinic tidal signals apparent in both sum and difference travel times
(Dushaw et al., 1994b; Dushaw et al., 1995a; Dushaw et al., 1995b; Dushaw et al., 1996).

T™ 2-96 Al
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Even with this work, the AMODE data set, together with the MST data and the
AMODE-SOSUS data (FIGURES A-1, AB-2) (and data from the cotemporal Multi-
Dimensional Array (MDA) experiment (Boyd et al., 1992)), remains underutilized for its
ability to describe deep-ocean processes.
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B. OVERVIEW

In section C, the corrections to the ray travel times for the motion of the moorings
and clock drift are described. The positioning of the AMODE moorings is discussed in
section D. In section E, a description of how to calculate the absolute travel times from
the travel times recorded by the AVATARS, and after the mooring motion and clock
corrections have been made, is given.

In Section F, the determination of "final cutoff" travel times, derived from the
transmissons between transceivers 1 and 3 only, is described. To date, the "final cutoff”
travel times have been determined for the 1<~—3 path only; the task of determining
these travel times for the other 38 paths and developing a proper theoretical
interpretation of these data remains.

Section G is a description of the ray travel time data for the path between
transceivers 1 and 2. In this section, the various figures and calculations are derived and
discussed in detail. In subsequent sections (H-Z), the description of data from the other
paths is limited to notes particular to each path, since the basic procedure for data
reduction for these paths is nearly identical to that for the 1<——2 path.

In section AA, the NODC data format for the tomographic data is described.

We conclude with a brief description of the SOSUS array receptions in section AB.
The section includes the "dot plots" for these receptions. The array geometries (location,
depth, etc.) are classified, hence only travel times with an offset can be shown.

The TABLE B-1 on the next page summarizes the time series of reciprocal travel
times from each path of AMODE. FIGURE B-1 (a—¢) shows the measured barotropic
current and relative vorticity determined from each of the five equilateral triangles of
AMODE. FIGURE B-2 summarizes the high-frequency variances and correlation of the
travel times as a function of upper or lower turning depth. These data have been
determined from high-pass filtered, detided travel times as described in subsequent
sections. The short, intermediate, and long ranges refered to in FIGURE B-2 refer to the
three nominal ranges of paths in AMODE, namely 350, 410, and 660 km (TABLE D-2
gives the exact ranges). These high-frequency variances scale linearly with range,
though this would not be expected for longer range transmissions (J. Colosi, personal
communication).
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TABLE B-1. AMODE Reciprocal Travel Time Time Series.

Start Day  End Day  Record Length*  Resolved Rayf

Path (yearday) (yearday) (yeardays) Arrivals
1e~—2 80 275 195 10
-3 80 275 195 13
le—4 80 275 195 16

l——5a 80 140 60 14
1<—5b 165 275 110 12
le——6 80 275 195 9
2¢--3 80 350 270 8
2¢—4 86 250 164 10
2¢—5a 80 140 60 14
2¢—5b 165 350 185 15
2¢-—6 80 350 270 9
34 80 290 210 8
3—5a 80 140 60 13
3—5b 165 290 125 10
3——6 77 350 273 8
4—5a 79 140 61 11
4¢—5b 166 300 134 10
4¢——6 77 300 223 9
Sa¢——6 77 166 89 10
5be——6 167 430 263 10

*This is the Record Length of good data; the AMODE instruments continued to receive
until long after the acoustic sources faded for lack of energy. For some paths, the time
series of one-way travel times (i.e. without demanding a reciprocal time series) is
significantly longer than the times indicated here.

TNot all Resolved Ray Arrivals are present for the entire time series.

B2 TM2-96
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C. MOORING MOTION AND CLOCK CORRECTIONS

Bruce Howe generated the time series of mooring motion, clock drift, and mooring
tilt which are used to correct the travel times. The procedure by which these time series
are used to make the corrections is given in Bruce Cornuelle’s dissertation (1983). The
motion of the moorings is determined through a tracking system which employs four
acoustic transponders deployed on the sea floor around each mooring. The clock drift is
determined using an highly accurate rubidium frequency standard which is used
regularly to monitor the frequency changes in the AVATAR crystal oscillators (a
rubidium clock draws too much power for continual use). Timing is checked by pinging
the moorings at deployment and recovery, while they are in the water; the ping time
recorded by the AVATARS is checked against GPS timing (see Worcester and Dushaw,
1993).

For deriving travel times of reciprocal transmissions, the travel times to the receiving
hydrophones must be corrected to the depth of the acoustic source on the receiving
mooring. For this reason, and to properly apply the corrections for mooring tilt, the
corrections are dependent on the ray arrival angle. Failure to take this into account leads
to biases of 4-9 ms (which are unacceptable) in the difference of reciprocal ray travel
times.

FIGURE C-1 shows time series of clock corrections, mooring motion corrections,
uncorrected travel times, and corrected travel times for the path from mooring 1 to
mooring 2. The corrections and travel times are for the seventh resolved ray arrival
(clock corrections identical for all rays). The top two panels of this figure show the
corrections for each mooring separately (X’s refer to one mooring, O’s to the other).
FIGURE C-2 shows a small section of the time series in FIGURE C-1.

FIGURE C-3 shows time series of clock corrections, mooring motion corrections,
uncorrected travel times, and corrected travel times for path from mooring 1 to mooring
4. The corrections and travel times are for the seventh resolved ray arrival (clock
corrections identical for all rays). The top two panels of this figure show the corrections
for each mooring separately (X’s refer to one mooring, O’s to the other). Mooring 4 had
particularly energetic motion during the experiment.

The travel time net uncertainties are a combination of timing uncertainty, mooring
positioning uncertainty, absolute position uncertainty, and the uncertainty inherent to
deriving a travel time from an acoustic pulse of finite width. The uncertainties in the
positioning are dominant, but these are only one millisecond.

The travel time uncertainty associated with the signal processing only is:
6 = (2nxSNRX(RMS bandwidth))™’
The rms bandwidth for the AMODE transmissions is 27 Hz. The signal-to-noise ratios

are generally greater than 10, which gives uncertainties less than 0.5 ms.

As explained by Worcester and Dushaw (1993), receptions from all moorings at
mooring 2 were occasionally shifted by an exact integer number of seconds due to a
failing chip in the mooring 2 electronics. This is not a problem for the time series once
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the shifts have been taken into account. TABLE C-1 shows the offsets that were added to
the time series of travel times at mooring 2.

TABLE C-1. Offsets for Mooring 2 (Receiver) Travel-Time Time Series.

Source # Timeframe (yearday 1991)  Offset (s)

1&3 0-197.87 0
199.0-199.125 1
199.25-221.37 2
221.5-221.625 3
221.87—-end 4

4&5 0-197.87 0
199.0-199.25 1
199.37-221.37 2
221.5—-end 4

6 0-197.87 0
199.0-217.87 2
221.0—end 4

C2 TM2-96




Travel Time Corrections M1 => M2
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Travel Time Corrections M1 => M2

@ 100 Soococoootoooococtooooccoboooccoodooononodooccocadtooooco! '
&
N
= or -
o)
o
~x -100+ 4
3
O- 1 ! 1 1 1 | t 1 1
20960 161 162 163 164 165 166 167 168 169 170
v
E 100 , :
c
g el w@ 5 X&MW —
=
83-1 00 .
% -20 1 1 | 1 1 1 1 ! 1
§ ?60 161 162 163 164 165 166 167 168 169 170
- 100 T | T T T 1 T x T
E
= Or i
’_
5 -100t .
§ >2<><><x><><><x><><><><><>$<x><>02<><>< ><><><><>°°$< >0<>3<><>°°S<><>$<
- -20 :
?60 161 162 163 164 165 166 167 168 169 170
— 100 T T T T T T T T T
)
':E, ok |50, -
|_
= -100r .
3
-20 1 ! 1 i i 1 ! ] 1
60 161 162 163 164 165 166 167 168 - 169 170
Yearday 1991
C4 TM 296 FIGURE C-2




Clock Cort \ms)

ms)

Mooring Motion

(ms)

-

Corr TT

Travel Time Corrections M1 => M4

100 i 1 1 1 | I 1 L]
o X X X X X X X X X N X X X X X X XX
O © @ ®o ® o @
-1001 ?®0 oo o0 o g omw |
-200 1 1 1 1 1 ] 1 1
90 100 110 120 130 140 150 160 170
100 I T 1 1 1 1 1 1
© X
or x%s«%%%xx%xx%**%&%‘~
o ® o@
@ o 8;
-100 & 0 ]
(% © @ 0 8
-200 1 1 1 1 1 10 @ 8 o 1
90 100 110 120 130 140 150 160 170
100 | 1 ¥ | 1 1 i 1
OF X X% .
X y X %
-100} X X ¥, % -
X x X x X %
-200 1 1 X 1 1% X | 1 1 1
90 100 110 120 130 140 150 160 170
100 1 1 1 1 I I 1 1
-100r .
-200 ] 1 1 1 1 1 1 1
a0 100 110 120 130 140 150 160 170

Yearday 1991

FIGURE C-3 T™M 296 C5



D. ABSOLUTE MOORING POSITIONS

Since the most recent data report on the AMODE data set (Worcester and Dushaw
1993), Bruce Howe has revised the positions of transceiver moorings slightly. The
change was to set the reference position used for the mooring motion time series equal to
the locations of the mooring anchors. The idea was that using this reference would
reduce the chance (unlikely in any case) that the derivation of mooring positioning would
be affected by the nonlinear inverse procedures used on the acoustic transponder data

used to track the mooring motion.

The corrections for mooring motion correct the locations of the moorings to these

fixed positions.

TABLE D-1 shows the AMODE mooring positions and their

uncertainties. TABLE D-2 shows the ranges between the AMODE moorings (calculated
from the positions of TABLE D-1).

TABLE D-1. AMODE Positions and Their Uncertainties.

Source No. of
Latitude Uncert. Longitude Uncert.  Depth Array
Mooring (north) (m) (west) (m) (m) Elements

1 27°43.2329° 0.6 64°31.1107° 0.9 985 4
27.720549° 64.518511°

2 24°20.0499° 0.5 62°53.3477 0.8 996 4
24.334164° 62.889129°

3 21°53.9489’ 0.5 65°49.8894° 0.8 1003 6
21.899142° 65.831490°

4 23°38.2722’ 0.5 69°21.5593’ 0.8 1008 4
23.637869° 69.359321°

Sa 27°20.9623’ 0.6 68°42.3019° 0.9 1014 6
27.349372° 68.705032°

5b 27°21.1214° 0.6 68°43.5229° 0.9 979 4
27.352024° 68.725381°

6 25°00.0178’ 0.5 66°15.0826’ 0.8 992 6
25.000296° 66.251377°

7 31°54.924’ - 64°10.306° - 956 0
(Bermuda)  31.915400° 64.171767°
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TABLE D-2. Ranges Between AMODE Moorings in Kilometers

mooring # 1 2 3 4 Sa 5b 6
1 - 409.072 658345 663.725 415568 417.534 347474
2 - - 404.398 662.862 671.823  673.732  348.223
3 - - - 410.258  670.087 671.246  346.123
4 - - - - 416.389  416.361  349.675
Sa - - - - - - 357.609
5b - - - - - - 359.218
D2 TM 2-96




E. ABSOLUTETRAVEL TIMES

The AMODE receivers record travel time as "T relative,” to which the known offset
and various instrumental delays and corrections must be added to obtain the absolute ray
travel time from acoustic source to receiver. The mooring motion and clock corrections
that are applied to the data account for some of these delays. In this section, the factors
to be added to the post-mooring/clock corrected travel times to make them absolute
travel times are described. '

From a memorandum by Peter Worcester dated November 1993 the absolute travel
times are given as (with a sign change for "delta t clock" to reflect current convention)

TTabs = { (T start rec.) + 0.001 s + (TT rel.) -
(delta t clock) - (delta t rec. delay)}

- { (T start trans.) + 0.001 s -
(delta t clock) - (delta t src delay) }

- (T sequence)

The mooring motion and clock corrections include the clock corrections and the
source/receiver delays (which are, according to a memoradum from B. Howe dated Oct.
12, 1989, 13 ms and 7.4 ms, respectively), so that

TTabs = ( T APL ) + (T start rec.) - (T start trans.) - (T sequence)
= (T APL) + (344 (247 for src 6), 385,556 s) - 97 (0 for src 6) s - 24.564 s

=(TAPL) +(222.436, 263.436,434.436 s)
n<->6  n<->m n<->m
n#m+2 n=m-+2
n#m+3 n=m+3

where "T APL" are the travel times corrected for mooring motion, clock corrections, and
source/receiver delays; (n,m) refer to transceiver numbers; and "'n<->m" means "for
transmissions between transceivers n and m."

The uncertainty of the absolute travel times, including the contributions of mooring
motion and clock correction uncertainties, is 1 ms. This value is much less than the
internal wave variability, however ~ the travel time uncertainties are dominated by
physical processes over which we have no control. The measurement uncertainties are
included in the data files in NODC format to be described in section AA.
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F. FINAL CUTOFF TRAVEL TIMES: Paths 1—3 and 3—1

The "final cutoff" travel time has proved to be an important datam for resolving
sound speed variability near the sound channel axis. This was true for the 1987
Reciprocal Tomography Experiment data, and for the 1988-1989 Greenland Sea
Tomography Experiment data. This travel time is defined as the time of the latest
arriving acoustic energy. The final portion (final few seconds) of the acoustic arrival
pattern is quite complicated with unstable amplitudes, perhaps caused by a complicated,
chaotic interaction of the acoustic modes with the internal wave field. The "final cutoff”
time may perhaps be best associated with the travel time of the gravest acoustic mode;
this travel time is usually much more stable than the travel time for the final, largest peak.
(But this was not the case for the Greenland Sea data when individual mode arrivals were
resolved.) For the purposes of inversions, the "final cutoff” travel time is associated with
the latest arriving ray predicted by raytracing; this is NOT generally the ray with the
smallest angle at the source or receiver.

There are, however, many unresolved issues associated with this travel time. The ray
or mode sampling that should be associated with this travel time in an inversion is
unknown. The physical interpretation of this travel time is ill defined, at best. Further,
the internal wave effects on this travel time, both temporal variation and possible biases,
can be significant. In particular, the 1989 SLICE experiment showed that for a receiver
located off of the sound channel axis this travel time can be significantly biased because
of the diffusion of acoustic energy away from the sound channel axis by the internal
wave field.

The receiving hydrophones of AMODE were located at about 1000 m depth, while
the sound channel axis was located at about 1200 m depth. Thus, it is likely that for this
experiment the final cutoff travel times would be affected (biased) by the internal wave
field. For some applications, such as examination of tidal variability or eddy variability,
the internal wave effects, such as a time independent bias, may be inconsequential.
However, the principle applied to these data should be caveat emptor, since the full
nature of these travel times and their response to oceanic phenomena is poorly
understood. Typically these data are assigned large uncertainty to account for our lack of
understanding of them. Even with large uncertainty, these data still are an important (if
not the only) constraint in determining the sound speed variability near the sound channel
axis.

The procedure for deriving the final cutoff travel times is not routine as yet, since the
definition of the "final cutoff" requires significant "hands on" interpretation (and quite a
lot of disk space since the complete, continuous receptions are required). Only a
preliminary determination of the final cutoff travel times for the path between moorings 1
and 3 has been made to date, because the derivation of the time series is rather laborious
and time consuming. The importance of these data to resolution in the inversion argues
for the completion of this task, however.

For an acoustic reception at a single hydrophone, the final cutoff is determined by the
time at which the acoustic amplitude begins to increase (relative to a background rms
level) as travel time decreases. The latter part of receptions on yeardays 161 and 162 are
shown in FIGURE F-1 for transmissions from mooring 1 to mooring 3. Note that the
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absolute travel times are found by adding 434.436 s, as described in section E. Each
transmission has four receptions, one for each of the four hydrophones. The final cutoff
travel time for each hydrophone is indicated by a vertical line, with the hydrophone
number indicated by the height of an asterisk on that line (lowest asterisk is hydrophone
1). FIGURE F-2 shows the complete reception; it is identical to FIGURE F-1 otherwise.
The arrival pattern reciprocal to that of FIGURE F-1, viz. receptions at mooring 1 from
mooring 3, is shown in FIGURE F-3.

FIGURES F-4 (Path 1—-3) and F-5 (Path 3—1) show nine-day time series of final
cutoff travel times of the four hydrophones. The four travel times independently derived
from the four hydrophones are generally consistent, and tidal variability is evident.

The final cutoff travel time used for the inversions is given as the average of the
travel times from the four hydrophones (this procedure assumes zero arrival angle). The
astute reader will notice that the final cutoff travel times for the four hydrophones are not
always identical; oftentimes the time for one hydrophone is much different than that of
the others. Travel times from single hydrophones that are inconsistent with the other
three hydrophones are removed as outliers when the average is calculated. The complete
time series of final cutoff travel times for the paths 153 and 3—1 are shown in FIGURE
F-6. Outliers in this time series are evident. The high-frequency variability in the time
series, evident by the rapid variation of travel time for the receptions on a particular day,
is due to tidal or internal wave variability together with noise inherently introduced by
the procedure to derive the time series. These time series should be compared with the
ray travel times of section H.

With the two time series of reciprocal travel times, the sum (sound speed) and
difference (current) travel times may be formed. The results from the RTE87 experiment
have shown that it is possible to use the difference travel times calculated from these data
as a measure of current. The sum and difference travel times are separated into low-
frequency and high-frequency components by the average of travel times on each day.
FIGURE F-7 shows the low-pass filtered difference and sum travel times. Both of these
time series are similar to the results from the ray arrivals (section H); differences
between the final cutoff time series and those from the ray travel times are likely caused
by the depth dependence of the variability. FIGURES F-8 and F-9 show the high-pass
filtered sum and difference travel times. Tidal variability is evident; the detided time
series are shown in the second panel of these figures.
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G. ACOUSTIC DATA PROCESSING: Paths 1-2 and 2—1

The acoustic ray, travel time data in this report begins with the tracked ray arrival
time series (B. Cornuelle and A. Marshall tracked the ray travel times; the "dot plots”
from which the tracked data are derived can be found in Worcester and Dushaw, 1993).
There are 40 such time series, since mooring 5a was replaced with mooring 5b mid-way
through the experiment and since the transmissions were reciprocal (2 X 15 paths +2 X 5
paths for mooring 5b). [Travel time data recorded by the two additional, deeper, single
hydrophones on moorings 3, 5a, and 6 are not discussed in this report.] These travel
times (typically 10-20 arrivals were resolved on each path) are identified with specific
predicted raypaths, which associates raypath sampling, angle of departure/incidence at
the acoustic source/receiver, number of ray turning points, etc., with the resolved travel
times. The travel time data are then corrected for mooring motion and clock drift. The
correction for mooring motion is raypath dependent, since it depends on the ray angles at
the transceivers. Both the travel time data and the predicted ray properties are used to
identify reciprocal ray arrivals with each other. "Data" that are determined not to have a
reciprocal counterpart are discarded; the tracking procedure oftentimes has to contend
with considerable noise. The corrected data are used to form sum and difference travel
times.

To remove outliers, which do horrible things when they are put into an inversion, the
high-frequency components of the sum and difference travel-time time series are
examined. Because the transmissions occurred quadrihourly on every fourth day, except
during the few weeks during MST (yeardays 161-178 daily, 181-209 every other day),
the high-pass-filtered time series is derived by removing the average travel time of each
transmission day. The high-pass-filtered sum and difference travel times are dominated
by tidal signals — baroclinic displacement and barotropic current, respectively. To
identify outliers, the tides must be removed from each ray travel-time time series
separately; the procedure is iterative since the estimated tidal signal may be distorted by
the outliers. Based upon histograms of the detided, high-frequency time series, outliers
are defined to be travel times greater than 15 ms for the sum travel times and £10-12
ms (the larger value is used for the longer paths) for the differential travel times. The
variability of the detided, high-frequency time series is mainly due to internal waves;
they affect the travel times themselves and decorrelate reciprocal raypaths. Outliers
probably result from an occasional inherent inability to discern the desired ray arrival
from noise (or secondary ray arrivals) in the tracking procedure. Once the outliers are
flagged, all time series are derived again, but without the effect of the outliers.

With the general description above, the time series specific to Paths 152 and 2—1
are now described. The first panel of FIGURE G-1 shows the average sound speed
profile from AMODE CTD data (this sound speed profile is approximated well by the
Levitus sound speed), and the second panel shows the first two baroclinic (or internal
tide) modes. FIGURE G-2 shows the raypaths, roughly corresponding to FIGURE G-1,
for which travel times were resolved. The raypaths were actually determined using
range-dependent Levitus sound speed, interpolated onto the acoustic path. This figure
gives a sense of the vertical resolution that may be obtained in an inversion of the travel
time data; resolution of variability is at depths for which the rays have turning points.
Note that the "final cutoff" travel times may be available at some time in the future, these
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data correspond to a ray confined near the sound channel axis.

FIGURE G-3 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE G-2.

FIGURE G-4 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed. FIGURE G-5 shows the same time series, but during a time
of the normal transmission schedule.

FIGURE G-6 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide. FIGURE G-7
shows the same time series, but during a time of the normal transmission schedule.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE G-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE G-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7+ 7T~ >
and variance <T?> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES G-8 and G-9; the variances from
TABLE G-1 are measures of the width of these histograms.

TABLES G-2 and G-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately, and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE G-2. Tidal Current Harmonic Constants 1<—->2.

Constituent ~ Amplitude  Uncertainty Phase = Uncertainty

(mm/s) (mm/s) (°G) @)
M, 12.25 1.29 109.7 3.0
AY) 3.31 0.81 131.6 26.9
N, 3.32 0.94 91.5 15.3
K, 1.78 0.72 125.4 37.1
0, 1.18 0.74 2325 91.9
K, 1.44 0.66 206.5 36.3
P, 1.02 0.77 254.2 39.3
0, 1.23 0.84 182.2 64.3

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 60 £ 12 % of the high-frequency variance is
accounted for by the tides.

TABLE G-3. Tidal Sound Speed Harmonic Constants 1¢——2.

Constituent ~ Amplitude ~ Uncertainty ~ Phase  Uncertainty

(mm/s) (mm/s) (°G) (®)
M, 10.06 1.69 119.2 6.6
S» 1.91 0.87 324.0 29.5
N, 2.01 0.64 64.5 25.0
K, 2.16 0.70 25.9 43.8
0, 1.77 0.56 247.1 36.2
K, 3.29 0.75 80.1 14.2
Py 2.03 0.66 49.8 67.4
0, 1.68 0.41 181.4 30.5

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 41 = 8 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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H. ACOUSTIC DATA: Paths 153 and 3—1

FIGURE H-1 shows the raypaths, corresponding roughly to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times have been derived for this acoustic path only, and these data
correspond to a ray confined near the sound channel axis.

FIGURE H-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE H-1.

FIGURE H-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed. FIGURE H-4 shows the same time series, but during a time
of the normal transmission schedule.

FIGURE H-5 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide. FIGURE H-6
shows the same time series, but during a time of the normal transmission schedule.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE H-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE H-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7+ T~ >
and variance <T2> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES H-7 and H-8; the variances from
TABLE H-1 are measures of the width of these histograms.

TABLES H-2 and H-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE H-2. Tidal Current Harmonic Constants 1¢——3.

Constituent ~ Amplitude  Uncertainty = Phase  Uncertainty

(mm/s) (mm/s) (°G) )
M, 5.65 0.72 115.9 54
Sa 1.95 0.56 156.6 19.5
N, 1.54 0.35 100.1 52.0
K, 0.98 0.51 176.0 62.3
0, 1.16 0.68 253.5 37.2
K, 1.16 0.49 218.1 56.9
Py 0.96 0.54 174.2 85.3
0 0.96 0.50 166.9 98.5

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 35 + 7 % of the high-frequency variance is
accounted for by the tides.

TABLE H-3. Tidal Sound Speed Harmonic Constants 1¢——3.

Constituent ~ Amplitude  Uncertainty = Phase = Uncertainty

(mm/s) (mm/s) G) )
M, 6.00 1.34 336.4 13.8
So 1.40 0.48 176.4 54.7
N, 3.02 0.59 274.8 14.4
K, 0.85 0.40 79.8 479
0, 1.62 0.53 213.8 33.9
K, 5.70 0.71 71.0 8.1
P, 2.35 0.58 53.0 13.9
0, 0.93 0.42 108.8 79.1

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 42 + 8 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.

T™ 2-96 H3




1661 Aeplea

0117 0[0)7% 0G¢E 00g 0g¢ 00¢ 0G1 0]0]
I _ I _ T ] I 00¢g-
o 00¢-
w
c
3
. 001- 3
)
3
R
— 0
| | | | | | ! OO_.
©<=>] SoWi| [9ARI] WNS
0117 (0]0)74 0Sg 00¢g 0S¢ 00¢ 0S1 00l
T I I I _ _ I
n -0v-

| | | | |

©<=>| SOWlI] |9ABI] [enudiIalIq

FIGURE H-2

H4 TM 2-96



=>3

High Frequency Difference Travel Times 1<

(@) (@)
T il I | © I ~ T I ©
i - Q -
il L)
e =K
— foe) B,
= e 4K - 2 iR
‘_/227 N ‘,:;y -~
e —— <
i S e - L S e
e 2
VLT A\ A LI, -
S v S
e e —— :e::;,—-
R @ &5
=< e
~ = - E € r D — n E
S— - = = -
O
>
©
o —~ fQV
= - M~ o I — M~
~— T O ~—
D c
o )
-— -
> 2
© =
(oke) | o
L —4 N~ a - -1
> (]
>
3
(o 0] — (o 0]
- +© w - 4 ©
~- P -—
D
I
D
© O
L - © o L - — ©
= - l-_ '/‘,.‘ -—
- 3 S
P A e
N W
N AN
SSEDD < KD <t
R > = 13 i R 13
o ~— s = -
—— ( - )
B
P
=
=l :;;_:>_ (q\] Ql
- — - © = -
T  l *-
e 7
1 | ——— 1 | =~ | |
o (@ (@] o o o o o o o o (@) (@] o
® & - L ® & - TN @

(ooswi) -] - +'_|_

(oesw) -] - +'_|_

FIGURE H-3
T™M 2-96 HS5

Yearday 1991




:>3

High Frequency Difference Travel Times 1<

|
© ©
- -4 O - -1 0
™~ ~—
<t <
= =) = —4 O
b -
™
0
QA Vv Al
™ ™
»
@
£
|....
o o o
- 18 g | 18
-~ S ~—
p .
|_
®
L oo = QL 1o
o R o o
© = ®
© o °
© > ©
£ 2 S
N 1w o | _co>'
o > o
o
@
j -
L
-
< 2 <
- 0 L r o
yo)
D
o
|_
o
- Jau o e
» o
N 4o B lo
» o
! 0 | | Q
o o =) o o o
« : @ ® A -
(oBsw) -] -+ (ogsw) -] -+
FIGURE H4

H6 TM 2-96




=>3

High Frequency Sum Travel Times 1<

R

o L
P ave
— ’
o ST
==
o, . |
P S
™

i ] | | | ] ]
166 168 170 172 174 176 178
Yearday 1991

!
164

]
162

180

(ossw) g/(-L + +1)

-30

FIGURE H-5

DeTided High Frequency Sum Travel Times 1<=>3

| ] 1 ] | | |
166 168 170 172 174 176 178 180
Yearday 1991

|
164

!
162

o
™

o
(a\}

-201-

(osw) Z/(-L + +1)

T™ 2-96 H7

-30




::>3

High Frequency Sum Travel Times 1<

H8 TM 2-96

©
- O
et
q—
—4 O
g
™
QN A
= I
Y
-
[7)]
o
o =
48
Al @
>
®©
-
o
o £
{9~ =]
% 0p)
1S )
< [
@D Q
>_ -}
_l© o
o o
L
z
D
I
go)
_g o
Re)
]_
o)
0
Ja
o
o
»
0
(@2
@
FIGURE H-6

)

] 1 1 ] 1
98 100 102 104 106

Yearday 1991

!
96

1
92

90

o
™

]
o o o o
Q\] *~ A

(ossw) g/(-1 + +1)

|
e
o

(e 0]
o0
e




1<=>3 1<=>3

50 - 50 :

Ray 1 Ray 2
0 MWH[”WM mmlhiﬂfmﬂnﬁmﬁﬂm}nw
-20 10 0 10 20 -%O -10 0 10 20
50 ’ 50 -

Ray 3 Ray 4
-%O -10 0 10 20 -%O -10 0 10 20
50 50

Ray 5

50 ' 50 . . -
Ray 11 Ray 12
S99 70 o 10 20 %93 o 10 20
(T+ + T-)/2 (ms) (T++ T-)/2 (ms)
FIGURE H-7

T™ 2-96 H9




1<=>3

50 ,

Ray 1
0 JWII[H]M[H}I}MMM—
-20 -10 0 10 20
50 -

Ray 3
O____JMMMMNNMMMMEML_____
-20 -10 0 10 20
50 -

Ray 5
L il
-20 -10 0 10 20
50 .

Ray 7
-920 -10 20
50 - -

Ray9
—020 -10 20
50

Ray 11
0 W(Md"mmmm
-20 -10 20

T+ - T— (ms)
H10 T™ 2-96

1<=>3

50

10 0 10 20

Ray 6

Ray 10

FIGURE H-8




(T+ + T-)/2 (ms)

1<=>3

1<=>3 1<=>3
50 - 50 - -
Ray 13 Ray 14
0 f e Mwﬂﬂnhﬂm"h%m n %‘_Aaﬂ]m{d]]]{nﬂﬂ]}mm}ﬂh;mh
-20 -10 0 10 20 -20 -10 0 10 20

(T+ + T-)/2 (ms)

FIGURE H-7 (cont.)

1<=>3

50

Ray 14

O o
20 -10 0 10 20
T+ - T- (ms)

FIGURE H-8 (cont.)

TM 2-96 H11




I. ACOUSTIC DATA: Paths 14 and 4—1

FIGURE I-1 shows the raypaths, corresponding roughly to FIGURE G-1, for which
trave] times were resolved. The raypaths were actually determined using range- .
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE I-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE I-1.

FIGURE I-3 shows the high-pass filtered difference travel times for a small portion of
the time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. FIGURE I-4 shows the same time series, but during a time of the
normal transmission schedule.

FIGURE I-5 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide. FIGURE I-6
shows the same time series, but during a time of the normal transmission schedule.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE I-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE I-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7 7T~ >
and variance <T?> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES I-7 and I-8; the variances from
TABLE I-1 are measures of the width of these histograms.

TABLES I-2 and I-3 show the results of tidal analysis of the time series of difference
(current) and sum (sound speed) travel times. For these tables, the tidal analysis is
performed on each travel time time series separately and then the average and rms of the
harmonic constants are calculated. Current or sound speed amplitude is determined from
travel time by a simple scaling factor; the harmonic constants are more accurately
determined by inverting the data for current or sound speed (this is not done here).

™ 2-96 11




TABLE I-1. Travel Time Statistics 1<——4.

Number <(T++ T‘)2> <(T+—T')2> <T*T" > <T2> <TTZ" >
< >

of data (ms?) (ms?) (ms?) (ms?)

44

360

0 448

i S
o L 5 o
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TABLE I-2. Tidal Current Harmonic Constants 1<——4.

Constituent ~ Amplitude  Uncertainty Phase  Uncertainty

(mm/s) (mm/s) (°G) )
M, 2.47 0.64 248.9 15.2
S, 1.43 0.76 228.2 52.7
N, 1.22 0.80 2514 46.8
K, 0.93 0.70 217.1 88.9
0, 1.25 0.92 169.2 97.3
K, 1.08 1.03 184.1 443
P, 0.82 0.66 203.8 93.0
0, 0.69 0.49 201.5 87.3

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 15 * 4 % of the high-frequency variance is
accounted for by the tides.

TABLE I-3. Tidal Sound Speed Harmonic Constants 1¢-—4.

Constituent ~ Amplitude  Uncertainty = Phase  Uncertainty

(mm/s) (mm/s) ¢G) )
M, 3.52 0.58 3114 17.8
S» 1.42 0.66 100.3 449
N, 1.27 0.51 291.4 64.6
K, 1.33 0.57 171.1 64.7
0, 2.35 0.63 1357 17.6
K, 2.54 0.77 17.9 15.7
P, 1.25 0.64 62.4 56.0
0, 1.22 0.55 55.7 41.7

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 20 = 4 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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J. ACOUSTIC DATA: Paths 1—5a and 5a—1

FIGURE J-1 shows the raypaths, corresponding roughly to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE J-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE J-1. Note that mooring 5a had
failed by yearday 140, to be replaced later by mooring 5b.

FIGURE J-3 shows the high-pass filtered difference travel times for a small portion of
the time series. The bottom panel shows the time series after the phase-locked tidal
signals have been removed.

FIGURE J-4 shows the high-pass filtered sum travel times for a small portion of the
time series. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE J-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE J-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7+ T~>
and variance <T?> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES J-5 and J-6; the variances from
TABLE J-1 are measures of the width of these histograms.

TABLES J-2 and J-3 show the results of tidal analysis of the time series of difference
(current) and sum (sound speed) travel times. For these tables, the tidal analysis is
performed on each travel time time series separately and then the average and rms of the
harmonic constants are calculated. Current or sound speed amplitude is determined from
travel time by a simple scaling factor; the harmonic constants are more accurately
determined by inverting the data for current or sound speed (this is not done here).
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TABLE J-2. Tidal Current Harmonic Constants 1«—5a.

Constituent ~ Amplitude  Uncertainty = Phase  Uncertainty

(mmy/s) (mmy/s) (°G) ©)
M, 10.36 2.38 273.8 18.4
Ss 6.28 3.99 260.5 89.3
N, 3.66 247 246.4 60.6
K, 5.30 3.92 189.2 112.3
0, 2.07 1.13 150.8 86.6
K, 3.97 2.02 153.9 87.8
P, 4.04 1.71 262.6 97.0
0, 232 1.63 221.1 90.2

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 53 * 10 % of the high-frequency variance is
accounted for by the tides.

TABLE J-3. Tidal Sound Speed Harmonic Constants 1<——5a.

Constituent ~ Amplitude  Uncertainty Phase  Uncertainty

(mm/s) (mm/s) G) )
M, 8.29 2.10 180.5 16.7
S» 4.13 1.83 142.5 77.4
N, 6.56 2.10 110.8 17.4
K, 4.91 2.54 343.1 60.1
0, 247 2.06 284.5 83.4
K, 4.91 2.85 62.8 74.6
P, 4.02 1.60 3104 61.4
0, 5.16 1.46 2455 18.5

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 39 £ 9 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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K. ACOUSTIC DATA: Paths 1-5b and 5b—1

FIGURE K-1 shows the raypaths, corresponding roughly to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channe] axis.

FIGURE K-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE K-1.

FIGURE K-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed.

FIGURE K-4 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE K-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE K-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7* 77>
and variance <T?> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES K-5 and K-6; the variances from
TABLE K-1 are measures of the width of these histograms.

TABLES K-2 and K-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE K-2. Tidal Current Harmonic Constants 1¢<——5b.

Constituent ~ Amplitude  Uncertainty  Phase  Uncertainty
(mm/s) (mm/s) (°G) @)
M, 9.00 1.05 275.6 6.5
S» 2.53 0.87 305.5 54.1
N, 2.90 1.21 257.5 25.0
K, 1.58 0.90 331.8 62.4
0, 1.65 0.99 197.9 75.7
K, 1.81 0.98 152.3 71.9
Py 1.50 1.15 183.0 82.5
0, 1.38 0.94 173.8 74.2

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 47 * 15 % of the high-frequency variance is

accounted for by the tides.

TABLE K-3. Tidal Sound Speed Harmonic Constants 1¢~—5b.

Constituent ~ Amplitude  Uncertainty  Phase  Uncertainty

(mm/s) (mmV/s) (°G) )

M, 15.78 2.46 112.5 53

S, 1.68 0.75 177.9 138.5

N, 4.03 0.53 105.1 21.6

K, 1.48 0.91 304.2 59.4

0, 1.21 0.52 240.5 51.3

K, 4.31 1.43 98.5 23.7

P, 2.80 0.96 48.8 322

0, 1.40 0.48 174.5 45.6

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 54 + 8 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for

current.
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L. ACOUSTIC DATA: Paths 1—6 and 6—1

FIGURE L-1 shows the raypaths, roughly corresponding to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff" travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE L-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE L-1.

FIGURE L-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed. FIGURE L-4 shows the same time series, but during a time
of the normal transmission schedule.

FIGURE L-5 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide. FIGURE L-6
shows the same time series, but during a time of the normal transmission schedule.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE L-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE L-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7* 77>
and variance <T?> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES L-7 and L-8; the variances from
TABLE L-1 are measures of the width of these histograms.

TABLES L-2 and L-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE L-2. Tidal Current Harmonic Constants 1<—6.

Constituent ~ Amplitude  Uncertainty  Phase  Uncertainty

(mm/s) (mm/s) (°G) )
M, 2.50 0.56 145.5 11.6
S) 1.47 0.72 162.3 43.9
N, 0.74 0.47 145.7 76.6
K, 1.02 0.47 179.4 71.6
0, 0.92 0.54 201.9 65.7
K, 1.47 0.51 181.0 62.3
Py 0.85 0.74 123.0 90.9
0, 0.74 0.44 156.1 64.3

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 13 + 5 % of the high-frequency variance is
accounted for by the tides.

TABLE L-3. Tidal Sound Speed Harmonic Constants 1<——6.

Constituent ~ Amplitude  Uncertainty = Phase = Uncertainty

(mm/s) (mm/s) (°G) )
M, 10.09 1.60 135.4 9.6
S, 2.14 0.40 3115 33.9
N, 1.48 0.42 35.9 48.8
K, 2.10 0.95 36.1 33.8
0, 2.28 0.91 200.5 22.8
K, 6.89 1.32 455 5.2
P, 2.16 0.79 207 16.9
0, 1.19 0.43 126.6 23.8

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 38 + 8 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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M. ACOUSTIC DATA: Paths 2—-3 and 32

FIGURE M-1 shows the raypaths, roughly corresponding to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE M-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE M-1.

FIGURE M-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed. FIGURE M-4 shows the same time series, but during a time
of the normal transmission schedule.

FIGURE M-5 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide. FIGURE M-6
shows the same time series, but during a time of the normal transmission schedule.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE M-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE M-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <T* 77>
and variance <T?> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES M-7 and M-8; the variances from
TABLE M-1 are measures of the width of these histograms.

TABLES M-2 and M-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE M-2. Tidal Current Harmonic Constants 2¢—-—3.

Constituent ~ Amplitude  Uncertainty Phase  Uncertainty

(mm/s) (mm/s) (°G) )
M, 292 0.64 264.5 3.1
S) 0.77 0.40 281.1 78.5
N, 0.79 0.51 264.3 65.5
K, 0.48 0.25 207.9 87.7
0, 0.81 0.57 174.3 71.3
K, 1.02 0.45 193.6 67.0
Py 0.72 0.30 257.7 88.6
0, 0.51 0.21 181.6 102.4

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 15 + 6 % of the high-frequency variance is
accounted for by the tides.

TABLE M-3. Tidal Sound Speed Harmonic Constants 2¢-—3.

Constituent ~ Amplitude  Uncertainty = Phase  Uncertainty

(mm/s) (mm/s) (°G) ®)
M, 5.26 0.75 118.7 214
S» 1.64 0.71 359.0 21.7
N, 1.02 0.55 61.5 80.1
K, 2.77 0.58 296.6 9.8
0, 3.32 0.50 27.7 11.5
K, 4.18 0.59 140.9 10.3
P, 2.00 0.67 109.3 21.7
Q1 2.398 0.60 338.8 10.3

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 27 + 4 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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N. ACOUSTIC DATA: Paths 2—4 and 42

FIGURE N-1 shows the raypaths, roughly corresponding to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final '
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE N-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE N-1.

FIGURE N-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed. FIGURE N-4 shows the same time series, but during a time
of the normal transmission schedule.

FIGURE N-5 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide. FIGURE N-6
shows the same time series, but during a time of the normal transmission schedule.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE N-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE N-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7* T~ >
and variance <T%> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES N-7 and N-8; the variances from
TABLE N-1 are measures of the width of these histograms.

TABLES N-2 and N-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE N-2. Tidal Current Harmonic Constants 2¢——4.

Constituent ~ Amplitude  Uncertainty Phase  Uncertainty

(mm/s) (mmy/s) (°G) (®)
M, 9.28 0.54 282.8 4.4
S, 1.71 0.57 313.1 37.2
N, 2.54 0.28 267.7 14.3
K, 0.92 0.57 184.6 119.1
0, 0.87 0.58 190.8 74.8
K, 1.57 0.74 77.0 294
P, 1.09 0.45 170.8 68.7
0, 1.07 0.69 181.5 102.9

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 55 + 7 % of the high-frequency variance is
accounted for by the tides.

TABLE N-3. Tidal Sound Speed Harmonic Constants 2¢~—4.

Constituent ~ Amplitude  Uncertainty = Phase  Uncertainty

(mm/s) (mm/s) (°G) )
M, 12.75 1.97 285.5 29
So 3.63 0.83 55.6 20.5
N, 4.44 0.61 239.7 9.2
K, 1.57 1.23 5.5 67.9
0, 5.91 0.76 154.7 8.3
K, 7.84 141 252.2 4.4
P, 2.46 0.80 221.8 16.7
0, 2.28 0.37 354.9 24.1

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 64 = 5 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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O. ACOUSTIC DATA: Paths 2—5a and 5a—2

FIGURE O-1 shows the raypaths, roughly corresponding to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE O-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE O-1. Note that mooring 5a had
failed by yearday 140, to be replaced later by mooring 5b.

FIGURE O-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed.

FIGURE O-4 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE O-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE O-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7+ 7T~ >
and variance <T?> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES O-5 and O-6; the variances from
TABLE O-1 are measures of the width of these histograms.

TABLES O-2 and O-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE O-2. Tidal Current Harmonic Constants 2¢<——35a.

Constituent ~ Amplitude  Uncertainty = Phase  Uncertainty

(mm/s) (mm/s) (°G) )

M, 12.58 1.77 284.1 8.1

S) 5.46 2.38 280.8 92.6

N, 324 1.33 277.1 35.6

K, 3.46 2.14 253.8 100.2

0, 2.35 1.53 188.3 101.3

K; 4.62 2.56 43.5 57.3

P, 3.46 1.67 298.9 88.1

0 2.05 0.84 194.6 106.7

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 70 = 9 % of the high-frequency variance is
accounted for by the tides.

TABLE O-3. Tidal Sound Speed Harmonic Constants 2¢——5a.

Constituent ~ Amplitude  Uncertainty Phase = Uncertainty

(mm/s) (mm/s) (G )

M, 13.83 1.50 88.4 6.7

Ay 3.27 1.91 158.7 106.8

N, 2.37 1.04 255.5 73.0

K, 3.02 1.76 181.3 105.3

0, 1.85 0.93 199.4 56.3

K, 7.04 2.33 35.2 39.3

Py 6.93 2.04 334.4 38.0

0, 2.44 1.38 328.1 72.9

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 63 £+ 5 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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P. ACOUSTIC DATA: Paths 2—5b and 5b—2

FIGURE P-1 shows the raypaths, corresponding roughly to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE P-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE P-1.

FIGURE P-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed.

FIGURE P-4 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE P-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE P-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <T* 77>
and variance <T%> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES P-5 and P-6; the variances from
TABLE P-1 are measures of the width of these histograms.

TABLES P-2 and P-3 show the results of tidal analysis of the time series of difference
(current) and sum (sound speed) travel times. For these tables, the tidal analysis is
performed on each travel time time series separately and then the average and rms of the
harmonic constants are calculated. Current or sound speed amplitude is determined from
travel time by a simple scaling factor; the harmonic constants are more accurately
determined by inverting the data for current or sound speed (this is not done here).
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TABLE P-1, Travel Time Statistics 2¢~—5b.
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TABLE P-2. Tidal Current Harmonic Constants 2¢——5b.

Constituent ~ Amplitude  Uncertainty = Phase  Uncertainty

(mm/s) (mm/s) §S)) )

M, 11.84 1.22 284.1 7.6

Ss 3.19 1.10 308.7 18.6

N, 3.25 0.85 262.8 25.8

K, 1.94 0.84 297.9 65.4

0, 1.12 0.58 48.8 78.7

K, 1.55 0.75 66.9 56.4

P, 1.11 0.61 91.4 65.0

O 1.23 0.90 217.6 107.7

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 62 = 9 % of the high-frequency variance 1is

accounted for by the tides.

TABLE P-3. Tidal Sound Speed Harmonic Constants 2¢~—5b.

Constituent ~ Amplitude  Uncertainty = Phase  Uncertainty

(mm/s) (mm/s) (°G) )

M, 6.81 1.30 65.9 11.1

S» 3.16 1.53 223.6 20.5

N, 3.53 0.89 334.8 16.1

K, 1.45 0.55 125.3 77.6

0, 1.99 0.73 161.0 50.6

K, 1.26 0.92 37.8 78.5

P, 2.05 1.10 179.5 151.6

0, 1.25 0.51 151.1 65.6

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 36 £ 7 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for

current.
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Q. ACOUSTIC DATA: Paths 2—6 and 6—2

FIGURE Q-1 shows the raypaths, roughly corresponding to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE Q-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE Q-1.

FIGURE Q-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed. FIGURE Q-4 shows the same time series, but during a time
of the normal transmission schedule.

FIGURE Q-5 shows the high-pass filtered sum travel] times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide. FIGURE Q-6
shows the same time series, but during a time of the normal transmission schedule.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE Q-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE Q-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7T* 77>
and variance <T?> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES Q-7 and Q-8; the variances from
TABLE Q-1 are measures of the width of these histograms.

TABLES Q-2 and Q-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE Q-2. Tidal Current Harmonic Constants 2<——6.

Constituent ~ Amplitude  Uncertainty = Phase  Uncertainty

(mm/s) (mm/s) (°G) (°)
M, 12.72 0.53 283.6 4.0
S, 2.78 0.31 297.1 8.6
N, 2.99 0.51 266.7 11.9
K, 0.86 0.55 318.4 72.4
0, 0.78 0.40 46.0 354
K, 0.99 0.47 131.1 35.5
P, 1.02 0.49 108.6 52.7
0, 0.62 0.19 173.4 136.8

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 62 + 12 % of the high-frequency variance is
accounted for by the tides.

TABLE Q-3. Tidal Sound Speed Harmonic Constants 2¢——6.

Constituent ~ Amplitude  Uncertainty  Phase  Uncertainty

(mm/s) (mm/s) °G) ®
M, 7.29 0.91 275.2 19.1
Sa 252 0.50 20.0 204
N, 3.17 0.70 206.4 18.4
K, 1.17 0.63 350.5 36.0
0, 4.50 1.24 150.3 9.3
K, 9.56 0.79 265.3 5.1
P, 2.62 0.51 259.8 13.
0, 1.18 0.71 2219 58.1

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 34 = 3 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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R. ACOUSTIC DATA: Paths 3—4 and 453

FIGURE R-1 shows the raypaths, roughly corresponding to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE R-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE R-1.

FIGURE R-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed. FIGURE R-4 shows the same time series, but during a time
of the normal transmission schedule.

FIGURE R-5 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide. FIGURE R-6
shows the same time series, but during a time of the normal transmission schedule.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE R-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE R-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <T* T >
and variance <T?> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES R-7 and R-8; the variances from
TABLE R-1 are measures of the width of these histograms.

TABLES R-2 and R-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE R-2. Tidal Current Harmonic Constants 3¢«——4.

Constituent ~ Amplitude  Uncertainty Phase  Uncertainty

(mm/s) (mm/s) (°G) ®)
M, 12.18 0.54 284.4 24
Ss 242 0.84 3229 18.1
N, 3.04 0.53 270.2 10.9
K, 1.16 043 326.0 35.5
0, 1.19 0.59 56.1 67.9
K, 142 0.56 95.0 - 342
P, 1.06 0.53 93.6 90.5
0, 0.94 0.46 267.1 90.3

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 63 £ 10 % of the high-frequency variance is
accounted for by the tides.

TABLE R-3. Tidal Sound Speed Harmonic Constants 3¢-—4.

Constituent ~ Amplitude  Uncertainty  Phase  Uncertainty

(mm/s) (mm/s) (°G) )
M, 10.21 1.64 235.4 6.5
S» 2.34 0.62 339.6 20.9
N, 2.26 0.77 176.2 28.3
K, 1.43 0.75 272.4 44.9
0, 2.00 0.89 338.9 33.8
K, 4.69 0.85 107.3 10.7
P, 1.32 0.68 83.4 52.8
0 3.09 0.66 19.2 15.2

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 38 + 7 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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S. ACOUSTIC DATA: Paths 3—5a and 5a—3

FIGURE S-1 shows the raypaths, roughly corresponding to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE S-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE S-1. Note that mooring 5a had
failed by yearday 140, to be replaced later by mooring 5b.

FIGURE S-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed.

FIGURE S-4 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE S-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE S-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7* 77>
and variance <T?2> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES S-5 and S-6; the variances from
TABLE S-1 are measures of the width of these histograms.

TABLES S-2 and S-3 show the results of tidal analysis of the time series of difference
(current) and sum (sound speed) travel times. For these tables, the tidal analysis is
performed on each travel time time series separately and then the average and rms of the
harmonic constants are calculated. Current or sound speed amplitude is determined from
travel time by a simple scaling factor; the harmonic constants are more accurately
determined by inverting the data for current or sound speed (this is not done here).
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TABLE S-2. Tidal Current Harmonic Constants 3«—35a.

Constituent ~ Amplitude  Uncertainty Phase  Uncertainty

(mm/s) (mm/s) (°G) )
M, 10.66 2.32 284.9 75
S, 4.04 2.70 227.2 108.4
N, 2.03 1.29 304.4 62.2
K, 3.99 3.44 57.7 76.5
0, 1.95 0.92 17.2 68.0
K, 3.11 1.90 154.6 112.5
P, 2.98 1.75 204.4 64.9
0, 1.78 1.20 252.0 87.2

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 63 * 10 % of the high-frequency variance is
accounted for by the tides.

TABLE S-3. Tidal Sound Speed Harmonic Constants 3<——5a.

Constituent ~ Amplitude  Uncertainty Phase  Uncertainty

(mm/s) (mm/s) (°G) )
M, 6.05 3.01 288.3 254
Sa 391 2.09 190.6 66.5
N, 240 1.16 194.6 114.5
K, 3.30 1.88 202.3 93.8
0, 2.53 1.82 120.7 40.9
K, 2.63 1.91 119.4 73.2
P 2.60 1.77 137.9 77.0
0, 2.69 1.09 35.1 29.4

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 43 £ 12 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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T. ACOUSTIC DATA: Paths 3—5b and 5b—3

FIGURE T-1 shows the raypaths, corresponding roughly to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff" travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE T-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE T-1.

FIGURE T-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed.

FIGURE T-4 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals.
have been removed. This tidal variability is caused by the internal tide.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE T-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE T-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7+ T~ >
and variance <T?> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES T-5 and T-6; the variances from
TABLE T-1 are measures of the width of these histograms.

TABLES T-2 and T-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE T-2. Tidal Current Harmonic Constants 3<~=—5b.

Constituent ~ Amplitude  Uncertainty Phase  Uncertainty

(mm/s) (mm/s) (°G) (°)
M, 9.66 1.34 2834 5.0
S, 2.48 0.63 324.8 23.7
N, 241 0.83 258.0 28.1
K, 1.47 0.97 328.1 55.5
0, 1.18 1.38 48.1 69.8
K, 1.55 0.67 58.6 66.6
P 1.70 0.92 94.7 45.9
0, 1.19 0.81 153.6 3

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 57 = 8 % of the high-frequency variance is
accounted for by the tides.

TABLE T-3. Tidal Sound Speed Harmonic Constants 3¢<——5b.

Constituent ~ Amplitude  Uncertainty = Phase  Uncertainty

(mm/s) (mm/s) (°G) )
M, 5.61 241 283.5 23.1
AP 1.45 0.76 178.1 54.0
N, 1.91 0.63 258.5 43.4
K, 1.59 0.71 211.2 60.1
0, 3.07 0.94 125.1 22.3
K, 1.22 0.62 343.9 73.2
P, 1.46 0.90 356.3 65.6
0, 1.32 0.52 62.2 69.1

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 33 = 11 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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U. ACOUSTIC DATA: Paths 3—6 and 653

FIGURE U-1 shows the raypaths, roughly corresponding to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff" travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE U-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE U-1.

FIGURE U-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed. FIGURE U-4 shows the same time series, but during a time
of the normal transmission schedule.

FIGURE U-5 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide. FIGURE U-6
shows the same time series, but during a time of the normal transmission schedule.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE U-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE U-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <T% 7™ >
and variance <72%> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES U-7 and U-8; the variances from
TABLE U-1 are measures of the width of these histograms.

TABLES U-2 and U-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE U-2. Tidal Current Harmonic Constants 3¢—->6.

Constituent ~ Amplitude  Uncertainty = Phase  Uncertainty

(mm/s) (mm/s) (°G) ()
M, 8.40 0.42 290.7 45
S, 2.02 0.4 323.8 15.7
N 2.03 0.37 261.7 12.0
K, 0.81 0.41 19.8 513
0, 1.13 0.41 33.4 23.0
K, 1.49 0.35 51.2 13.1
P, 0.97 0.41 123.6 86.3
0, 0.68 0.54 2477 89.8

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 50 + 12 % of the high-frequency variance is
accounted for by the tides.

TABLE U-3. Tidal Sound Speed Harmonic Constants 3<——6.

Constituent ~ Amplitude  Uncertainty Phase  Uncertainty

(mm/s) (mm/s) (°G) (®)
M, 6.48 2.49 189.1 15.4
S, 2.06 0.52 352.2 20.6
N, 321 0.67 157.2 10.0
K, 2.13 0.52 298.2 20.6
0; 3.18 0.97 162.5 7.1
K, 5.47 0.98 58.2 34
P, 1.82 0.46 28.8 34.5
0, 1.70 0.43 81.7 19.5

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 30 + 7 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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V. ACOUSTIC DATA: Paths 4—5a and 5a—4

FIGURE V-1 shows the raypaths, roughly corresponding to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE V-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE V-1. Note that moormg 5a had
failed by yearday 140, to be replaced later by mooring 5b.

FIGURE V-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed.

FIGURE V-4 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE V-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE V-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7* T~ >
and variance <T?> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES V-5 and V-6; the variances from
TABLE V-1 are measures of the width of these histograms.

TABLES V-2 and V-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE V-2. Tidal Current Harmonic Constants 4<——5a.

Constituent ~ Amplitude  Uncertainty Phase = Uncertainty

(mm/s) (mm/s) (°G) ©)
M, 5.39 1.72 288.8 26.9
S» 3.54 1.50 184.0 124.1
N, 1.97 1.25 238.8 75.5
K, 3.65 1.26 31.6 80.4
0, 1.65 0.65 84.5 84.5
K, 3.98 2.53 192.5 127.5
Py 4.26 2.49 123.0 93.1
0 2.02 1.18 210.5 104.2

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 41 £ 9 % of the high-frequency variance is
accounted for by the tides.

TABLE V-3. Tidal Sound Speed Harmonic Constants 4<——5a.

Constituent ~ Amplitude  Uncertainty Phase = Uncertainty

(mmys) (mms) S ©)
M, 5.26 1.62 188.1 27.1
S, 6.00 2.40 3189 79.2
N, 2.79 1.49 134.3 41.2
K, 5.91 2.65 2329 89.2
0, 3.13 0.91 44.0 39.0
K, 3.15 2.06 - 187.8 89.1
P, 4.17 3.24 194.8 58.3
0 2.24 1.17 216.9 103.4

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 42 + 10 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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W. ACOUSTIC DATA: Paths 4—5b and 5b—4

FIGURE W-1 shows the raypaths, corresponding roughly to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff" travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE W-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE W-1.

FIGURE W-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed.

FIGURE W-4 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE W-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE W-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7+ T~>
and variance <T2> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES W-5 and W-6; the variances from
TABLE W-1 are measures of the width of these histograms.

TABLES W-2 and W-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE W-2, Tidal Current Harmonic Constants 4<——5b.

Constituent ~ Amplitude ~ Uncertainty Phase  Uncertainty

(mm/s) (mm/s) (°G) (®)
M, 5.54 0.75 286.1 8.4
S» 1.52 1.12 316.7 45.6
N, 1.38 0.52 248.6 314
K, 1.34 0.89 338.3 50.5
0, 0.92 0.61 205.7 119.7
K, 1.95 0.78 56.7 36.2
P, 1.03 0.56 198.8 145.1
01 1.17 0.65 56.3 98.1

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 33 + 9 % of the high-frequency variance is
accounted for by the tides.

TABLE W-3. Tidal Sound Speed Harmonic Constants 4¢<—5b.

Constituent ~ Amplitude  Uncertainty Phase  Uncertainty

(mm/s) (mmy/s) (°G) (®)
M, 8.26 1.23 147.0 10.9
S, 1.35 0.59 300.8 63.9
N, 3.92 1.00 100.8 17.6
K, 1.75 0.75 268.4 37.9
0, 1.36 1.01 4715 57.1
K, 2.43 1.02 106.5 35.3
P, 2.01 1.10 66.5 45.8
0, 1.75 0.88 345.2 30.1

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 38 *+ 8 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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X. ACOUSTIC DATA: Paths 4—6 and 6—4

FIGURE X-1 shows the raypaths, roughly corresponding to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff" travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE X-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE X-1.

FIGURE X-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed. FIGURE X-4 shows the same time series, but during a time
of the normal transmission schedule.

FIGURE X-5 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide. FIGURE X-6
shows the same time series, but during a time of the normal transmission schedule.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE X-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE X-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7% T~ >
and variance <T2> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES X-7 and X-8; the variances from
TABLE X-1 are measures of the width of these histograms.

TABLES X-2 and X-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).

™ 2-96 Xl




_____

!
v

/))
/

' /‘\K\\
'/ )

100

444444444444

TABLE X-1, Travel Time Statistics

<r
555555555555

ST w o &w o w ©  w oy n

—NtTnOo~ooan g o

X2 TM2-96




TABLE X-2. Tidal Current Harmonic Constants 4¢«—6.

Constituent ~ Amplitude  Uncertainty Phase  Uncertainty

(mm/s) (mm/s) °G) ®
M, 6.60 0.55 96.8 5.0
Ay 1.31 0.55 96.3 34.5
N, 1.76 0.49 85.7 18.6
K, 0.96 0.39 97.3 72.6
0, 0.77 0.30 138.6 83.0
K, 0.98 0.35 239.8 61.0
Py 1.10 0.47 371.0 53.4
0, 0.81 0.43 245.8 111.4

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 35 + 11 % of the high-frequency variance is
accounted for by the tides.

TABLE X-3. Tidal Sound Speed Harmonic Constants 4<——6.

Constituent ~ Amplitude  Uncertainty Phase = Uncertainty

(mm/s) (mm/s) (°G) )
M, 241 0.77 96.2 72.3
S2 1.29 0.60 163.4 135.8
N, 2.32 0.88 124.7 14.8
K, 1.12 0.41 161.6 70.3
0, 6.50 0.80 139.5 6.5
K, 6.28 1.08 279.5 1.3
P, 2.21 0.71 246.3 22.1
0, 2.07 0.56 45.2 17.7

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 27 = 7 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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Y. ACOUSTIC DATA: Paths 5a—6 and 6—5a

FIGURE Y-1 shows the raypaths, roughly corresponding to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE Y-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE Y-1. Note that mooring 5a had
failed by yearday 140, to be replaced later by mooring 5b.

FIGURE Y-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed.

FIGURE Y-4 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE Y-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE Y-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7+ 7T~ >
and variance <T?> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES Y-5 and Y-6; the variances from
TABLE Y-1 are measures of the width of these histograms.

TABLES Y-2 and Y-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE Y-2. Tidal Current Harmonic Constants 5a¢——6.

Constituent ~ Amplitude  Uncertainty Phase  Uncertainty

(mm/s) (mm/s) (°G) (®)
M, 11.22 2.06 107.2 11.2
S, 5.18 2.14 118.3 44.6
N, 3.21 1.19 55.1 73.4
K, 3.49 2.36 173.0 92.3
0 2.02 1.37 177.9 93.7
K 3.91 2.66 246.7 58.8
P, 3.31 243 103.6 84.8
0, 1.69 1.01 192.8 - 104.9

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 55 * 17 % of the high-frequency variance is
accounted for by the tides.

TABLE Y-3. Tidal Sound Speed Harmonic Constants Sa<——6.

Constituent ~ Amplitude  Uncertainty Phase = Uncertainty

(mmns) (mm/s) °G) )
M, 8.60 0.97 71.5 30.1
S) 4.22 2.34 27.7 40.3
N, 3.85 1.48 35.0 344
K; 4.43 240 230.8 88.9
0, 2.32 0.90 132.9 79.1
K, 6.25 2.55 113.0 35.5
Py 7.66 1.99 20.1 31.6
0, 3.58 1.71 35.3 49.5

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 38 + 5 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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Z. ACOUSTIC DATA: Paths 5b—6 and 6—5b

FIGURE Z-1 shows the raypaths, corresponding roughly to FIGURE G-1, for which
travel times were resolved. The raypaths were actually determined using range-
dependent Levitus sound speed, interpolated onto the acoustic path. Note that the "final
cutoff” travel times may be available at some time in the future, these data correspond to
a ray confined near the sound channel axis.

FIGURE Z-2 shows the low-pass filtered difference (top panel) and sum (bottom
panel) travel times corresponding to the rays of FIGURE Z-1.

FIGURE Z-3 shows the high-pass filtered difference travel times for a small portion
of the time series obtained during the time of more frequent transmissions during the
MST experiment. The bottom panel shows the time series after the phase-locked tidal
signals have been removed.

FIGURE Z-4 shows the high-pass filtered sum travel times for a small portion of the
time series obtained during the time of more frequent transmissions during the MST
experiment. The bottom panel shows the time series after the phase-locked tidal signals
have been removed. This tidal variability is caused by the internal tide.

After the travel time time series have been edited for outliers, high-pass filtered, and
detided, the high-frequency variances are calculated (TABLE Z-1). Note that this table
sometimes contains statistics for more rays than are indicated in TABLE B-1; some of the
ray arrivals in TABLE Z-1 have not been identified with predicted arrivals. Also,
sometimes there is initial ambiguity about the pairing of reciprocal arrivals, in which
case sum and difference travel times are calculated for all reasonable cases; later it
becomes obvious which arrivals have been improperly paired. The correlation <7* T~ >
and variance <T2> are calculated from the sum and difference travel time variances in
this table. The variance of the travel times is mainly due to internal wave variability, and
this value determines the uncertainties assigned to the travel times in an inversion. The
correlation coefficient is a measure of the reciprocity of reciprocal raypaths. This
measure is conservative, because correlation is not a necessary condition for the
determination of current from the difference of reciprocal travel times. Values of
correlation that are 0.5 or greater assure that the reciprocal raypaths are indeed
effectively identical, since good correlation implies that the reciprocal raypaths have not
separated by more than an internal wave correlation length. Histograms of the detided,
high-frequency travel times are shown in FIGURES Z-5 and Z-6; the variances from
TABLE Z-1 are measures of the width of these histograms.

TABLES Z-2 and Z-3 show the results of tidal analysis of the time series of
difference (current) and sum (sound speed) travel times. For these tables, the tidal
analysis is performed on each travel time time series separately and then the average and
rms of the harmonic constants are calculated. Current or sound speed amplitude is
determined from travel time by a simple scaling factor; the harmonic constants are more
accurately determined by inverting the data for current or sound speed (this is not done
here).
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TABLE Z-2. Tidal Current Harmonic Constants 5b«——6.

Constituent ~ Amplitude  Uncertainty Phase = Uncertainty

(mm/s) (mm/s) °G) ®
M, 12.29 0.79 105.2 3.6
S» 3.17 0.67 129.5 24.6
N, 3.26 0.85 76.8 14.6
K, 1.23 0.66 142.4 61.2
0, 0.90 0.49 313.7 71.1
K, 1.61 0.65 2519 24.5
P, 0.72 0.37 192.5 119.1
0 1.08 0.70 208.4 142.3

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 60 + 16 % of the high-frequency variance is
accounted for by the tides.

TABLE Z-3. Tidal Sound Speed Harmonic Constants 5b«—6.

Constituent ~ Amplitude  Uncertainty = Phase = Uncertainty

(mm/s) (mm/s) °G) ®
M, 6.65 1.82 72.6 18.0
S> 1.67 0.70 218.1 36.7
N, 1.90 0.69 37.8 32.6
K, 1.47 0.77 193.8 87.2
0, 2.77 0.79 157.7 153
K, 2.68 0.79 261.7 29.1
P, 1.95 0.61 341.0 43.6
0, 0.58 0.40 3477 59.6

Values and their uncertainty are determined by the average and rms of harmonic
constants from tidal analyses of the separate raypath travel time series. The amplitudes
do not include the lunar node factors. 19 + 6 % of the high-frequency variance is
accounted for by the tides. Because sum travel times are used to derive these numbers,
the amplitudes have been divided by a factor of two compared to the amplitudes for
current.
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AA. DATA IN NODC FORMAT

The AMODE reciprocal travel time data have been put into a form suitable for
submission to NODC, when it is appropriate to do so. In this section, this NODC format
is described. This format was devised by Brian Dushaw, and the format is subject to
modification.

FILE DESCRIPTION OF 1991-1992 AMODE TOMOGRAPHY DATA

This is a description of a file format for tomography travel time data applied to data
obtained during the AMODE tomography experiment. These files are intended to have a
prototype file structure for tomography data that are submitted to the National
Oceanographic Data Center. Comments on and suggestions for improvement to this file
organization are welcome. The format was modeled from (Dushaw’s interpretation of)
the NODC Users Guide.

File Structure

Each file contains all of the ray travel time data collected by a source/receiver pair
during the experiment. For the AMODE experiment, six transceivers were deployed, and
one was replaced midway through the experiment; hence there are 40 (= 15*2 + 5%2)
source/receiver pairs (and 40 data files). The data are the end product of considerable
data reduction and polishing. The raw data are NOT YET available from the principal
investigator, Peter Worcester.

The file is broken into three sections:

1) The first section is a one line text record describing the parameters of the
experiment.

2) The second section is six lines describing the properties of the resolved raypaths.
Each column of this section describes the properties of a raypath that corresponds to
the same column of travel times of the third section.

3) The third section contains the time of transmission (in yeardays) and the ray travel
times. Each line is a yearday and a set of travel times of ray arrivals. Each column is a
time series of ray travel times for the raypath which was described in the
corresponding column of the second section.
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File Format - First Section

&

PARAMETER DESCRIPTION SC
Experiment Name Name of Experiment 1
Principal Investigator Principal Investigator 8
Institution Institution of Principal Investigator 21
Start Date Start Month of Experiment 28
Start Date Start Year of Experiment 31
End Date End Month of Experiment 36
End Date End Year of Experiment 39
Source Latitude Latitude of Acoustic Source (degrees) 44
Source Latitude Latitude of Acoustic Source (minutes) 48
Source Longitude Longitude of Acoustic Source (degrees) 55
Source Longitude Longitude of Acoustic Source (minutes) 59
Source Depth Depth of Acoustic Source (m) 66
Receiver Latitude Latitude of Acoustic Receiver (degrees) 72
Receiver Latitude Latitude of Acoustic Receiver (minutes) 76
Receiver Longitude Longitude of Acoustic Receiver (degrees) 83
Receiver Longitude Longitude of Acoustic Receiver (minutes) 87
Receiver Depth Depth of Acoustic Receiver (m) 94
Number of Rays Number of Resolved Ray Travel Time Arrivals 100
Number of Transmissions Number of Recorded Acoustic Transmissions 104
Mooring Motion Correction  Travel Times Corrected for Mooring Motion (Y,N) 109
Mooring Corr. Available Time Series of Mooring Positions Available (Y,N) 111
Clock Correction Travel Times Corrected for Instrument Clock Drift (Y,N) 113
Clock Corr. Available Time Series of Clock Correction Available (Y,N) 115
Source Type Type of Acoustic Source Used for Transmissions 117
Center Frequency Frequency of Acoustic Source (Hz) 123
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File Format - Second Section

The second section of the file consists of six lines. The lines give the raypath information
about the tracked travel times. If no ray identification was found (e.g., for nongeometric
arrivals), the six numbers are all zero (this does not mean that ray trace predictions with
some other reference ocean will not give ray predictions to match these travel times — ray
identification is a black art.).

line 1:
PARAMETER  DESCRIPTION SC FL
Zero Always Zero 1 8
Travel Time* Predicted Travel Time of First Raypath (sec) 10 8

*Travel Times repeated (8 characters plus one space) for as many times as indicated by
the Number of Rays field.

line 2:

Zero Always Zero

PARAMETER  DESCRIPTION SC FL
1 8
Source Angle*  Predicted Launch Angle of First Raypath (deg) 10 8

*Angles repeated (8 characters plus one space) for as many times as indicated by the
Number of Rays field. :

line 3:

Zero Always Zero

PARAMETER DESCRIPTION SC FL
1 8
Receiver Angle*  Predicted Arrival Angle of First Raypath (deg) 10 8

*Angles repeated (8 characters plus one space) for as many times as indicated by the
Number of Rays field.

line 4:
PARAMETER DESCRIPTION SC FL
Zero Always Zero 1 8
Lower Turning Depth*  Predicted Lower Turning Depth of First Raypath (km) 10 8

*Depths repeated (8 characters plus one space) for as many times as indicated by the
Number of Rays field.
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line 5:
PARAMETER DESCRIPTION SC FL
Zero Always Zero 1 8
Upper Turning Depth*  Predicted Upper Turning Depth of First Raypath (km) 10 8

*Depths repeated (8 characters plus one space) for as many times as indicated by the
Number of Rays field.

line 6:
PARAMETER DESCRIPTION SC FL
Zero Always Zero 1 8
Number of Turning Points*  Predicted Number of turning depths of First Raypath 10 8

*Number of turning points repeated (8 characters plus one space) for as many times as
indicated by the Number of Rays field.
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File Format - Third Section

The third section of the file consists of trios of lines, with the number of line trios given
by the Number of Transmissions field.

first line of trio:

Yearday Time of Acoustic Transmission

PARAMETER DESCRIPTION SC FL
1 8
Ray Travel Time*  Measured Travel Time of First Raypath (sec) 10 8

*Number of travel times repeated (8 characters plus one space) for as many times as
indicated by the Number of Rays field.

second line of trio:

PARAMETER DESCRIPTION SC FL
Yearday Time of Acoustic Transmission 1 8
Signal-to-Noise Ratio*  Ratio of Ray Arrival Intensity to Background Noise (dB) 10 8

*Number of signal-to-noise ratios repeated (8 characters plus one space) for as many
times as indicated by the Number of Rays field. A value of zero indicates no travel time,
and a value of 999 is used to indicate unknown signal-to-noise ratio (e.g., the final cutoff
travel times).

third line of trio:

Yearday Time of Acoustic Transmission

PARAMETER DESCRIPTION SC FL
1 8
Travel Time Error*  Error Due to Mooring Positioning and Clocks (sec) 10 8

*Number of errors repeated (8 characters plus one space) for as many times as indicated
by the Number of Rays field. A value of zero indicates no travel time.

The line trios are repeated as many times as indicated by the Number of Transmissions
field.
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AB. SOSUS ARRAY RECEPTIONS: Dot Plots

In addition to the transmissions between the AMODE transceivers, the transmissions
were also recorded at four Naval Facility hydrophone arrays (FIGURE AB-1). The
locations and other information about these receivers are classified; hence FIGURE AB-
1 shows fictive locations while still giving an accurate description of the spatial coverage
of the acoustic paths. An additional acoustic source was located just south of Bermuda.
Transmissions from this source were not recorded by the AMODE instruments, however.
The area sampled by transmissions between these instruments spans about 1400 km X
1700 km. Though some initial inversions of the travel times to these Navy arrays were
calculated, little work has been done on these data.

Here only the "dot plots" and tracked data are shown. The data were beamformed
using a single azimuthal arrival angle; hence no allowance was made for any variation in
vertical arrival angle (i.e., beamforming did not take into account the conical arrival
angle.) Only peak picked data are available, and a 14 dB SNR threshold for saving
peaks was used. Owing to disk storage limitations, the raw acoustic data have been lost.
The receptions from the AMODE moorings have been corrected for the motion and clock
error of those moorings. A large travel time offset has been added to the travel times in
order to declassify them.

The "dot plots" generally show clearly resolved ray arrivals over a time period of
250-400 days. A gap unfortunately occurs in the record for some of the time series
because of technical problems at the Navy facilities. Some of the "ray" arrivals are in the
shadow zone of the predicted time front for the source/receiver geometry using the
Levitus sound speed fields. The arrivals can be identified with the caustics, however. It
is unlikely that realistic sound speed perturbations would be significant enough to enable
these "shadow zone" arrivals to be identified with direct eigenray arrivals.

The "Amplitude" panel is the amplitude predicted using the ray propagation code
"rdryt"; hence this panel may be ignored.

Including transmissions from both AMODE moorings 5a and 5b, there are 40 time
series of data recorded by the SOSUS stations. The source/receiver pairs are indicated
by the first/last two digits noted on each figure. Thus, "1007" refers to transmissions from
the Bermuda source to SOSUS array 7, while "2413" refers to transmissions from
AMODE source 4 to SOSUS array 13 (see FIGURE AB-1). AMODE source 5a is
denoted by "27."
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