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DEDICATORY FOREWORD 

THIS PAPER IS REVERENTLY DEDICATED TO THE MEMORY OF 

GEORGE UDNY YULE, 1871-1951 

When this paper was half written, the authors learned of the death of George 
Udny Yule. His death closed the early epoch of the development of the theory of 
statistics—an epoch marked by the names of F. Y. Edgeworth, W. S. Gösset 
("Student"), Major Greenwood, Karl Pearson, W. F. Sheppard, and Yule, himself. 

The contributions of Yule were numerous and were concerned with a number of 
aspects of statistical research, frequently in advance of his contemporaries. For 
many years, Yule was best known as the author of the book, An Introduction to the 
Theory of Statistics. First published in 1911, this book has had fourteen English 
editions (since 1937, revised editions have appeared under the joint authorship of 
G. U. Yule and M. G. Kendall) and for a long time was the only worthwhile book 
on statistics; several translations have also been published. 

In more recent times, owing to the number of entirely new developments, the 
relative importance of the Introduction decreased and the name of George Udny 
Yule, as its author, began to slip into oblivion. At the same time, however, his name 
began to appear in the literature in various other connections—particularly in 
connection with what is now known as the theory of stochastic processes. Although 
by-passing the Introduction, modern statistical thought eventually caught up with 
a number of fruitful ideas published by Yule in the 1920's. At the time these ideas 
went hardly noticed but now proved aere perennius. Yule's own attitude towards 
mathematical statistics was distinctly nonmathematical, and it is, therefore, re- 
markable that his nonmathematical writings should now become a source of inspi- 
ration in the mathematical theory of stochastic processes. To us, this is the finest 
possible testimony to Yule's great scientific talent, and it is hoped that the frequent 
references to Yule by such authors as William Feller, Hermann Wold, and others 
may have cheered the aged scholar during the last years of his life. 

In 1931 Yule felt that he was too old to hold the position of Reader at Cambridge 
University and retired. At the same time he felt young enough to learn to fly. 
Accordingly, he went through the intricacies of training, got a pilot's license, and 
bought a plane. Unfortunately a heart attack cut short both the flying and, to a 
considerable degree, his scholarly work. 

Most of Yule's active life (roughly from 1897 to 1938) coincided with a tumul- 
tuous period in the development of mathematical statistics, when true scholarly 
achievements were accompanied by outbursts of personal animosities, noisy self- 
glorifications, and bitter disputes. Yule was an active scholar and it was natural for 
him to be under attack from time to time. However, to our knowledge, nothing 
Yule ever wrote conflicted with the dignity of the spirit of research, and his name 
enters history unmarred. 

The range of Yule's scientific contributions was very broad. Among other things, 
he did pioneering work on accident proneness, in collaboration with Greenwood. In 
fact, the first line of the Introduction of the present paper contains a reference to 
their fundamental memoir. It is fitting that this paper be dedicated to the memory 
of George Udney Yule. 

[iii] 



CONTRIBUTIONS TO THE THEORY OF 
ACCIDENT PRONENESS 

I. AN OPTIMISTIC MODEL OF THE CORRELATION BETWEEN 

LIGHT AND SEVERE ACCIDENTS 

BY 

GRACE E. BATES AND JERZY NEYMAN 

1. Introduction. Since the pioneer work of Greenwood and Yule [l]1 and of Miss 
Newbold [2], the following assumptions regarding accident proneness are customar- 
ily made: 

a) To each individual exposed to a certain system of risks and to each kind of 
accident there corresponds a Poisson frequency function, 

(1) px(fc|X)=e-x^ 

of the number X of accidents of this particular kind incurred by this individual per 
unit time. 

b) The value of the parameter X varies from one individual of the population to 
another and characterizes his specific accident proneness. 

c) More specifically, it is frequently assumed that for an individual randomly 
selected from a given population exposed to a fixed system of risks, the parameter X 
is a particular value of a random variable A with probability density function 

(2) PA(X) = ^ or1 «-* 

where the constants a > 0 and ß > 0 depend on the population considered and 
on the kind of accidents. 

d) It is customary to assume that, although with the passing of time the value 
of X corresponding to a given individual may change, this change is slight only and 
an individual who is particularly prone to accidents in his youth remains a bad risk 
more or less indefinitely. 

The evidence in favor of (a), (b) and (d) frequently appears quite convincing. 
Therefore, in selecting personnel for certain hazardous occupations, attempts are 
made (Farmer and Chambers [3]) to eliminate individuals who are particularly 
accident prone by employing only those who in the past had no accidents of the 
particular kind under consideration or only a few such accidents. Also (Ove Lund- 
berg [4]) attempts are made to use records of accidents sustained and of cases of 
illness to adjust the premiums in accident and health insurance to actual risks 
attached to particular individuals. In each instance, attention is directed to acci- 
dents or cases of sickness occurring in two different periods of time (past and future 

This work, begun under contract with the School of Aviation Medicine, U.S. Air Force, was 
completed with the partial support of the Office of Naval Research. Dr. Bates, a member of the 
faculty of Mount Holyoke College, worked at the University of California on this project. 

1 Numbers in brackets refer to references at the end of the paper. 
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experience) but belonging to the same category. The problem studied is essentially 
whether or not the number of accidents of a specified kind observed in the past has 
a predictive value for the number of accidents of the same kind to be observed in 
the future. 

This question is very relevant in many cases. However, for certain purposes it is 
not completely relevant and must be modified. Such, for example, is the case when 
it is desired to select appropriate personnel for highly hazardous occupations (for 
example, airplane pilots) where the first accident observed is frequently also the last. 
For this very reason, in selecting the personnel it is impracticable to judge the indi- 
viduals on their past experience with respect to the particular severe accidents and 
the most one can do is to see whether or not the frequency of mild accidents incurred 
in the past is relevant from the point of view of severe accidents to which the indi- 
vidual may be exposed in the future. 

Pursuing this direction of thought we shall study not one but two (or more; 
further generalization is immediate) random variables, say X and F, representing 
the numbers of accidents incurred by the same individual, either within the same 
period of time or in two different periods. The variable F will mean the number of 
"predictor" accidents, which we may hope to be able to observe prior to the decision 
of whether or not the given individual is suitable for the particular employment. 
On the other hand, the random variable X will be interpreted as the number of severe 
accidents to be observed in the future. 

As in the theory of Greenwood, Yule, and Newbold, we shall postulate that, for 
each individual, the variables X and F are independent and follow two distinct 
Poisson distributions with parameters X and p which characterize the proneness of 
this individual to the two kinds of accidents. Furthermore, we shall postulate that 
the values of X and p vary from one individual to another. 

In order that the value of F can serve as a predictor regarding the value of X it is 
necessary that X and p be correlated in the population considered and the closer the 
correlation, the greater the value of F as a predictor. Whether or not the constants 
X and p, corresponding to two different kinds of accidents, are closely correlated is a 
question of fact and can be answered only by using appropriate empirical data. 

The main purpose of the present paper is to study the distribution of X and F on 
the following somewhat far-reaching hypothesis. This hypothesis will be frequently 
referred to in this paper so it will be conveniently labeled the fundamental hypothesis. 
It involves two assumptions: 

i) the expectation p of the number of predictor accidents is a fixed multiple of the 
expectation X of the number of severe accidents, p = aX, where a is a constant; 

it) in the population studied the distribution of A follows the Pearson type III 
law assumed by Greenwood, Yule and Newbold, as described in (c) above. 

It will be seen that assumption (i) is very strong and, a priori, one is inclined to 
doubt whether it could ever be exactly satisfied. Surprisingly enough, the theoretical 
joint distribution deduced from the fundamental hypothesis was found to give a 
satisfactory fit to several empirical distributions. It follows, then, that the measures 
of success of the selection for small values of X using F as predictor, deduced in this 
paper, may not be far off in relation to real practical problems. Needless to say, 
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practical applications of these formulae must be preceded by an empirical test of the 
validity of the model studied with respect to the particular accidents which may 
come under consideration. 

Assumption (it) is also very strong. However, any other assumption specifying 
the distribution of A would be equally strong but, if one wants to obtain numerically 
a frequency function of X and F, it is unavoidable to ascribe a definite form to 
the distribution of A. The adoption of the Pearson type III law is justified both by 
its flexibility as an interpolation formula and by the tradition established by Green- 
wood, Yule, and Newbold. However, in the course of the study it appeared that 
some properties of the multivariate distribution of the numbers of accidents satis- 
fying assumption (z) are independent of the actual form of the distribution of A. 
Also, they have an immediate bearing on the problem of selection of personnel and 
for these two reasons are particularly interesting. 

Part II of the paper deals with the possibility of a deeper insight into the nature 
of the mechanism behind the observed frequency distribution of the number of 
accidents from one individual to another. 

The specific problem considered is that of the distinction between the Greenwood- 
Yule-Newbold model described here and the model of Polya (slightly generalized), 
assuming that the probabilities of accidents in a specified time interval not only vary 
with the duration of this time interval, but depend upon the number of accidents 
previously sustained ("contagion") and on the length of exposure to accidents 
which is interpreted as a measure of the experience gained in the particular kind 
of work. 

The details of the plan of Part I of the paper are as follows. 
In section 2, the problem of the joint distribution of severe and light accidents is 

considered in a form which is a little more general than that envisaged above. 
Assuming the fundamental hypothesis, we consider not two different kinds of acci- 
dents but an arbitrary number s S; 2, of which the first is treated as "severe acci- 
dents" and the remaining s — 1 as different kinds of light predictor accidents. 

Let X], X2, • • • , X, be the numbers of accidents of each kind. It is found that 
these random variables follow a joint distribution which the authors do not re- 
member having seen before and which they propose to term the multivariate nega- 
tive binomial distribution. This distribution possesses several remarkable proper- 
ties, similar to those of the multivariate normal distribution. The more important 
of these properties refer to any group of m < s variables out of the s considered. 

i) Whatever the group of m variables, for example, Xi, X2, • • •, Xm, the marginal 
joint distribution of this group is an m-variate negative binomial. 

ii) The joint distribution of Xh X2, • • •, Xm and of the sum, say x = Xm+i 
+ Xm+2 + ■ • • + X8 is an (m + l)-variate negative binomial distribution. 

iii) The conditional joint distribution of Xh X2, • • •, Xm, given that the other 
s — m variables have assumed specified values, is an m-variate negative binomial 
distribution and depends only on the value x of the sum %■ 

iv) The regression of Xi on Xm+], Xm+2, • • •, Xs is linear, for m =1,2, •••,&— 1. 
Because of property {iii), the general case of s — 1 = 1 kinds of light accidents 

reduces to the simplest case involving only two categories of accidents, severe acci- 
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dents and light accidents, with the latter category embracing all the s — 1 different 
categories of light accidents originally considered. 

Section 3 contains formulae leading to the estimates of the parameters in the bi- 
variate negative binomial distribution. 

Section 4 is given to an empirical test of the fundamental hypothesis. As men- 
tioned above, the basic idea is that, for particular individuals in a population, the 
expected number of light accidents in an earlier period is a fixed multiple of the 
expected number of severe accidents in a subsequent period. Unfortunately, no 
empirical data were available with which the authors could test directly whether or 
not it is safe to assume this. The best that could be done was to study certain anal- 
agous situations for which the data could be obtained. On the whole, the results 
of this empirical study are promising. 

The fundamental hypothesis is tested on two sets of data, one of which is new. 
Because of the scarcity of published empirical material of this particular kind, the 
new data are reproduced in this paper in several tables which may be useful for 
further work. 

Section 5 is given to the following practical question: assuming the admittedly 
far-reaching fundamental hypothesis regarding the close connection between light 
and severe accidents, what are the prospects of success in the selection of personnel 
using the records of light accidents? It is shown that, in certain cases at least, the 
effect of selection must be substantial. 

Section 6 outlines methods to be used if and when data on light and on severe 
accidents are available. The study of severe accidents differs from that of light 
accidents by the fact that severe accidents are frequently not survived by the 
victims. Consequently, even if the model treated in this paper is strictly applicable 
to light and severe accidents, because of the distortions caused by fatal accidents, 
the joint distribution of the numbers of light and severe accidents will not be the 
bivariate negative binomial. Therefore, any empirical study relating to light and 
severe accidents will require an appropriate distribution. Such a distribution, based 
on the assumption that the probability of surviving an accident is constant, is given 
in section 6. 

Throughout the paper the notation adopted is that of J. Neyman's recent book 
[7]. 

2. Multivariate distribution of the numbers of accidents. The subject of this 
section is the joint distribution of an arbitrary number s of random variables Xh 

Xit ■ ■ ■, Xs, where Xt- represents the number of accidents of the ith kind, incurred 
by an individual randomly drawn from a population. 

The method used is that of probability generating functions, introduced by La- 
place. A modern presentation of the theory is given by Feller [6]. The probability 
generating function is defined for sets of random variables all capable of assuming 
only nonnegative integer values. It will be denoted by G with subscripts indicating 
the random variables to which it refers. The arguments of G will always be assumed 
not to exceed unity in absolute value so as to insure the convergence of the series 
representing G. When dealing with conditional distributions, the hypotheses on 
which these distributions are based will be symbolized to the right of the vertical 
bar that follows the arguments of the probability generating function. Thus the 
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conditional probability generating function of the random variables Xh X2, • • •, X„ 
given a hypothesis H will be denoted and denned as 

(3) G xl ,x2 
(Ui, Ui, s\H) = E H 

=      E       P{(Xi =m)(Z, =nt) (X. o) n 
where the summation extends over all nonnegative values of each n; = 0, 1, 2, • • •, 
fort = 1, 2, ■ ■ -,s. 

In the following, we shall use several properties of probability generating functions 
which are direct consequences of the above definition. 

Generalizing the conditions of the problem studied by Greenwood, Yule, and 
Newbold, we assume that to the population studied and the s different kinds of 
accidents there correspond s positive numbers a} = 1, a2, ah • ■ ■, as. Thus, these 
numbers are the same for each individual of the population. We assume further that 
to every individual of the population there corresponds a positive number X, 
measuring his particular proneness to accidents. For an individual to be randomly 
drawn from the population, this number is interpreted as a particular value of a 
random variable A. The distribution of A will be denoted by F(\) = P{A ^ X}. 
Some of the results obtained are independent of any assumption regarding F(\) 
except that F(0) = 0 so that A is necessarily a positive random variable. However, 
most of the results are based on the assumption that the distribution function of A 
has the particular form postulated by Greenwood, Yule, and Newbold, representing 
the integral of the probability density (2). 

Given a particular individual of the population, that is, given a fixed value of X, 
we shall assume that the numbers of accidents Xh X2, • • •, Xs are mutually inde- 
pendent and that each follows a Poisson law with the expectation of X< equal to a<X, 
i =1.2.- ■ •, s. It follows that, given X, the conditional joint probability generating 
function of Xi, X2 

(4) G X1 ,x2 

,Xsis 

x (wi, w2, 
/      s 1 X) = exp A X 2 ai{ui — 1) r. 

Replacing in (4) X by the random variable A and taking the expectation with 
respect to the distribution of this variable, we obtain the absolute probability gener- 
ating function, 

(5) 6, ■ (Mi, lh, -,«.) =E[GXl,. ,x, (Mi, U2, A)] 

■r 
/ 

exp A A X) ai(ui - !) ( dF W 

X) alui - 1) 
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where <j>(t) is the Laplace transform of the distribution F(\), 

(6) 4>(t) =  f°Vx dF (X) . 
Jo 

It will be seen that for t < 0 the function 4>{t) is indefinitely differentiable. 
The Laplace transform of the distribution defined by (2) is, say 

(7) <t>*(t) =   I    etXp (X)d\ = 
J 0 A 

1   - 

Thus, on the assumption that (2) represents the probability density of A, the joint 
probability generating function of Xh X2, ■ ■ -, X, is, say 

(8) Gx,,x2 xSUl'U2> -,«.)=!+ 2>.d -«0 

where, for the sake of simplicity in formulae, bi = at/ß, i = 1,2, ■ ■ ■, s. 
Owing to the particular form of the probability generating function (8), the cor- 

responding distribution of Xh X2, • ■ ■, Xs will be called the s-variate negative bi- 
nomial distribution. Easy expansion of (8) in powers of Wi, w2, • • -,u, gives 

(9) P{(X1 = ni) (X2 = n2) • • • (X. = ns)} 

= 1 + ti( 
i=l 

- r(« + n)  A ^ 
r(«)      ijn,! 

where n = Mi + n<i +  • • • + ns and 

(10) 
bi                    a{ 

1 + Z 6y      (3 + E as 
J=I i=i 

The distributions defined by (5) and (8) possess the following remarkable properties. 
Let rh r2, • • ■, r, be any permutation of numbers 1, 2, • ■ •, s and let m be any 

positive integer less than s. 
THEOREM 1. If the random variables Xx, X2, ■ ■ •, X, follow the multivariate nega- 

tive binomial distribution (8) then the joint distribution of Xri, Xn, ■ ■ ■ ,XTm is also 
negative binomial. 

The probability generating function of the marginal distribution of Xn, Xr„ ■ ■ •, 
XTa is obtained from (8) by substituting uTm+l = urm+2 = ■ ■ ■ = ur, = 1. It is easily 
seen that the result of this substitution is a function of the same type with the sum 
of m terms 

(11) £ Kß - %) 

replacing in the square brackets the sum of s similar terms and the theorem is proved. 
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THEOREM 2. Whatever the distribution F(\) of A, given that the sum, say 

221 

(12) = T,xit 

has assumed a value n, the conditional joint distribution of Xh X2, • • • Xs-i is the multi- 
nomial distribution with the probability generating function 

(!3)        GZiiIf x.-, 

with 

(«i, Ui, ■ ■ ■, Us-i | x = n) = X) d{Ui + ds 

(14) di = i = 1, 2, 

X>y 

Starting with the definition, the generating function 

(15) ^x,,x2 x8-,,x (Mi) M2, • • • ,u,-i,v) 

= E 

= E 

" x  "-1 

v n>f< 

s-1 

^ II («»*) X,- 

= (? xx xx (uiv,u2v, ■ ■ -,us-iv,v), 

and, therefore, because of (5) 

v ~%2 anii — ^2 a* 

In order to obtain the probability generating function (13) it is sufficient to ex- 
pand (16) in powers of v, to select the coefficient of vn and to divide this coefficient 
by its value corresponding to Ui = w2 = • • • = w«-i = 1. It is easy to see that the 
result of this operation coincides with (13). 

THEOREM 3. Whatever be the distribution function F(X) of A, given that Xn = nn, 
i = m + 1, m + 2, • • •, s, the conditional distribution of Xrj, forj = 1, 2, ■ • •, m, 
depends only on the sum 

(17) n =    X) nr, 
i=m+l 

but not on the numbers nTi taken separately. 
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This theorem describes a very important property of the joint distribution of acci- 
dents satisfying assumption (i). Owing to this property, the problem of predicting 
the number of severe accidents, say, the number Xi of accidents of the first kind, 
using the numbers, e.g., Xm+i, Xm+i, ■ ■ ■, X„ of accidents of some s — m other 
kinds reduces to that of predicting Xi using the value of the sum, say 

(18) Y=   X)X,-. 
i=m-\-l 

Thus, whatever be the relative frequency of the predictor accidents as measured by 
the constants am+1, am+2, • • ■, as, in order to predict the value of Xx no weighing of 
the numbers of these accidents is necessary, and this irrespective of the actual form 
of the distribution of A. 

Obviously, it will be sufficient to prove theorem 3 for r{ = i, i = 1,2,- • •, s. By 
examining the definition of the probability generating function it is easy to see that 
the conditional probability generating function of Xh X2, • • •, Xm given that the 
other variables Xm+h Xm+2, ■ ■ ■, Xs have assumed some specified values nm+1, nm+2, 

■ ■ -,ns, respectively, is obtained from (5) as a result of the two following operations. 
a) Expand (5) in powers of um+h um+2, ■ ■ -,u3 and obtain the coefficient C of the 

product 

(19) I! «y • 
i=m+l 

Obviously, C is a function of ux, u2, ■ • •, um. 
b) Divide C by the value of this coefficient corresponding to Ui = u2 = • • • = 

um = 1. 
Performing these operations on (5), we obtain 

a"' 
(20) c = 0<»)(o n 

i—m.-\-\ n,\ 

M (0 

where <£<n)(0 denotes the nth derivative of </> with respect to t and where 

m s m 

(21) t = • X a«(Wf - 1) -   23   ai =  23 o,i{ui - 1) + r ,     say 
1 = 1 i=m+l t=l 

It follows that 

(22) Gx,x,        x   N) M2> ' '  ■> u™ I (Xm+i = nm+i) • •  • (X, = n„)] = -—. . . 
m <p^   >{T) 

It is seen that the right-hand side depends on the sum n of the values assumed by 
the variables Xm+1, Xm+2, • • •, Xs but not on these values taken separately, which 
proves theorem 3. 

THEOREM 4. // the variables Xh X2, • • •, X„ follow the multivariate negative bi- 
nomial distribution (8) then, given XTi = nrJor i = m + 1, m + 2, • ■ •, s, the condi- 
tional distribution of Xn, Xr2, ■ • •, XTm is also a negative binomial distribution depend- 
ing on the sum n defined by (17). 
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It will be sufficient to prove theorem 4 assuming r,- = i for i = 1, 2, • • •, s. The 
proof may either be direct, starting from (8) or take into account (22) and evaluate 
the nth derivative of (7). We have 

(23) 

and it follows that 

(24) G x„x 

dtn 
! r(a + n) 
ßn    r(a) 

-(o+n) 

 x   [«I, Ui,   ■ \Xm+l — nm+\) (Xs = n.)] 

- t 
- (a+n) 

with 

1 + X) e;(l - M<) 
- (a+n) 

(25) e* 

j'=m+l 

which proves the theorem. 
As a result of theorem 3, the conditional distribution of Xh X2, ■ ■ -, Xm, given 

Xm+i = nm+i, ■ ■ •, X, = n„ will be identified with the conditional distribution of 
the same variables, given that the sum Y defined in (18) has assumed the value n 
of (17). In particular, the multiple correlation coefficient of Xi and Xm+i, Xm+2, • • •, 
X„ say p, coincides with the ordinary correlation coefficient of Xi and F as defined 
in (18). In order to study the regression of Xl on Xm+l, Xm+i, ■ ■ ■, Xs or the multiple 
correlation p, it will be sufficient to consider the probability generating function of 
X, and Y obtainable either from (5) or from (8) by substituting ux = u, w2 = u3 = 

. . . = Um = 1 and um+i = um+t = ■ ■ ■ = u, = v. Thus formula (5) gives 

(26) 

where, for short, 

(27) 

GXiY(u, v) = <t>[ai(u - 1) + A{v - 1)] 

A   =     X)   a' 
i=m-\-1 

THEOREM 5. Whatever the distribution function F{\) of A, -provided it possesses two 
first moments, the square of the correlation coefficient p2 between Xi and Y is given by 

(28) P2 = 1 - 
E{X,) 

4, 
l - 

E{Y) 1  + Ml 

where m is the expectation of A and a[ its variance. 
In order to deduce formula (28) we use the familiar relations between the moments 
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of the random variables and the derivatives of their probability generating function 
evaluated at the values of arguments equal to unity. In particular 

dG 
(29) 

(30) 

E(X0 = 
XVY 

du 

d*G 
E(Xf) - E(Xt) = 

x„y 

du2 

= ai<t>'(0) = aiMt , 

= a\<j>"(0) = a^A2) 

and it follows 

(31) 4, = ayA + «I**! • 

Also, 

(32) E(Y) = Aßl ,           4 = AVA + Aßl 

and 

(33) = aiA E(A2) . 
du dv 

Finally, we get 

(34)             p2 = 
[E{XU Y)-E{X1)E{\ 

4,4 
/)]2                        ^AaA 

(ayA + Ml) (Aa\ + Ml) 

which coincides with the second part of (28). In order to obtain the first part of this 
formula, we notice that 

(35) 
a.cr 

1 A j _E(XA _   
4,      ai4 + /*! 

and a similar relation for Y. 
Theorem 4 implies important conclusions regarding the possibility of predicting 

the value Xi by using the values assumed by X2, Xa, ■ ■ •, X,. 
COROLLARY 1. If p is taken as a conventional measure of precision in -predicting the 

value of Xx from the observed values of Xm+h Xm+2, ■ ■ ■, Xs, then, whatever be F(\), it 
is advantageous to use as many predictors as possible, that is, it is advantageous to 
takem = 1. 

This conclusion is the immediate result of the fact that p is an increasing function 
of A as defined in (27). 

COROLLARY 2. Whatever the distribution function F(\), and whatever the number of 
predictor variables Xm+h Xm+i, ■ ■ -, X„ the correlation p must be smaller than the 
upper bound 

(36) p < ("i - ffi 
L        4, 

depending only on the expectation and on the variance of the predicted variable Xx. 
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Formula (36) is an immediate consequence of the first part of (28). The practical 
conclusion is that, before attempting to use the numbers of any accidents in order 
to predict the value of Xi, one should estimate the expectation of Xi and its variance. 
If the right-hand side of (36) is close to zero then the prospects of attaining a good 
prediction, at least by means of a linear regression equation, are slim. 

THEOREM 6. If the random variables Xh X2, • • •, X, jointly follow a multivariate 
negative binomial distribution, then the regression of Xi on the sum Y as defined by 
(18), is linear, and namely 

(37) flCXx | Y = ») = J±±± . 

ß + E aj 

Under the hypotheses of the theorem, the conditional probability generating 
function of Xi, given Y = n, is obtained from (24) by substituting M2 = u3 = ■ ■ ■ = 
um = 1 and we have 

(38) GXi («,|F = n) = [l + ei(l - Mi)]"(°+n) . 

The regression function of Xi on Y is obtained by differentiating (38) and by setting 
ui = 1. The result is (37). 

Theorems 1, 4, and 6 describe interesting properties of the multivariate negative 
binomial distribution whereby it is somewhat similar to the multivariate normal. 
Naturally, however, the analogy is far from complete. Thus, for example, the condi- 
tional variance of Xi given F, or given any single variable Xt-, i ^ 1, is not constant 
but increases linearly with the value of the fixed variable. Furthermore, the sum of 
two independent negative binomial variables may but need not be a negative bi- 
nomial, etc. 

3. Estimation of parameters in the bivariate negative binomial distribution. In 
section 2 it was shown that, when the model considered applies, the s-dimensional 
problem may be reduced to a two-dimensional problem. In particular, if formula (2) 
adequately represents the probability density function of A, then, in order to treat 
the problem of predicting the number, say X = x, of severe accidents using any 
number of categories of light accidents, it is sufficient to study a bivariate negative 
binomial distribution of X and F, where F stands for the total number of light 
accidents embracing all the s — 1 different categories originally considered. Re- 
membering the convention ax = 1, the joint probability generating function of X 
and F may be written as 

(39) G** (M' V) = [ß + (1 - u) + A(l - „)]« 

with A = a?. + a3 + • • • + a3. By expanding (39) in powers of u and v, we obtain 
as the coefficient of ukvm 

(40) vz, Y fa, m) =    k]m]T{a)    ßA(ß + A + l) 



226 University of California Publications in Statistics 

We shall suppose that n independent observations on the pair (X, Y) will be made. 
The letter nk,m will then denote the random variable representing the number of pairs 
[(X = k), (Y = m)]. The joint frequency function of all the nk,m is represented by the 
product, say 

CO CO 

(41) / = CniI VKm (fc, m) , 
k=0     m=0      X'Y 

where C stands for a factor depending on the nk,m but not on the parameters a, ß, and 
A, and where 

CO CO 

(42) £   ]C nk ,m = n . 

Our problem is to deduce formulae for the maximum likelihood estimates, say an, 
ßn and Än of these three parameters. Recent results [8] imply that these estimates 
possess the following properties: (i) the estimates are functions of the relative fre- 
quencies nk,m/n but do not depend otherwise on n; (ii) the estimates possess continu- 
ous partial derivatives with respect to each relative frequency; (in) as n-*-«>, the 
estimates are consistent and asymptotically normal about the true values of the par- 
ticular parameters; (iv) the asymptotic variances of the estimates a„, ßn, and A„ de- 
crease as n"} and do not exceed the asymptotic variances of any other estimates 
possessing the properties (i), (ii) and (Hi).2 

Substituting (40) into (41), taking logarithms and dividing by n, we obtain 

(43) - log J = Ci + a log ß - (a + X + Y) log 08 + A + 1) + Y log A 

where Ci represents a term independent of the parameters and where 

  -(CO CO 

X = 1 £ k £ 
n 

nk m   j 

k=Q m=0 

CO CO 

(44) F = - £ m X nk,m , n m=0 k=0 

1r - 
1     V — /_,   nk,(r^k)   . 
n  ,n k=0 

2 Until recently it was believed that the asymptotic variances of the maximum likelihood esti- 
mates cannot exceed those of any other consistent and asymptotically normal estimates. A con- 
jecture to this effect is usually ascribed to R. A. Fisher, who, since 1921 [10], has repeatedly pro- 
claimed the above statement as a property of maximum likelihood estimates. In this connection, 
see also F. Y. Edgeworth who enunciated in his paper [9] of 1908 essentially the same conjecture 
(with a vague restriction on the nature of the estimate). Although the proofs of both Edgeworth 
and Fisher obviously lack precision, this conjecture was generally taken for granted and quoted 
in many articles and books. Recently J. L. Hodges, Jr. [11] has produced examples of consistent 
and asymptotically normal estimates, not having the properties (i) and (ii), whose asymptotic 
variances never exceed those of the maximum likelihood estimates and, for some values of the 
parameter, are actually smaller. 
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Obviously, qr represents the relative frequency of pairs (X, F) which have their sum 
X + Y = r. The maximum likelihood equations are obtained by differentiating (43) 
with respect to a, ß and A and by equating the derivatives to zero. We have: 

(45) log ^ + E   = 0 , 
ß + A + 1 <=°      a+ t 

(46) * - « + X+Y - 0 , 
^ ' A A A 

0      /? + A + 1 

(47) £-«±1+1-0. 
> ' A A A 

A      0 + A + 1 

Equations (46) and (47) imply 

(48) a = Xß , 

(49) Y = li , 
and then equation (45) gives 

(50) 

The problem of computing the maximum likelihood estimates a, /^and A_is thus 
reduced to the following operations. First we calculate the means X and Y of the 
observed values of X and Y, respectively, and the relative frequencies qT as indicated 
in formulae (44). Upon substituting them into (50) the trial and error method gives 
the value of a. Next 

a Y 
(51) ß=   -, A=--. 

X X 

In trying to obtain a it is well to notice that the two sides of equation (50) tend to 
the same limit zero as a is indefinitely increased. The first trial value, say a0, may 
be conveniently obtained as follows. We notice that the result of substituting a, 
ßand A in 

(52) Vx y (0, 0) Kß + A + 1, 

should give a result comparable to q0. Using equations (48) and (49) we have 

ß OL 
(53)  = = • 

ß + A + I      a + X + Y 
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Thus, the first trial value of a can be taken to satisfy the equation 

(54) ( 5! V° = go 

which is equivalent to 

(55) log(l+z) = -J^^L* 
X + Y 

with z = (X + Y)/a0. In order to obtain a0 we make a graph of the logarithmic 
function 

(56) y = log (1 + z) . 

Next we plot the straight line 

(57) V--J**L,. 
X + Y 

The two lines have two points in common, one at Z\ = 0 and the other at Zi = 
(X + Y)/a0, which is obtained graphically. When z2 is obtained, we get a0 = 
(X + Y)/zt. 

4. Empirical test of the fundamental hypothesis. As mentioned before, the validity 
of the fundamental hypothesis considered in this paper and, in particular, of the 
joint bivariate negative binomial distribution (40), should be tested with respect 
to the particular types of accidents that may come under study. Thus, for example, 
if it is attempted to apply the conclusions of this paper to the selection of airplane 
pilots through the use of an individual's record of minor accidents during the years 
before the training in order to obtain individuals with low proneness for aviation 
accidents, then the validity of the fundamental hypothesis should be tested on obser- 
vations regarding the numbers X and Y of each kind of accident actually suffered 
by a number of individuals. Owing to the lack of data, no such test is possible at 
present. However, because of the far-reaching character of the fundamental hypoth- 
esis, it is of interest to inquire whether or not there are any accidents at all with 
respect to which this hypothesis is at least approximately true. 

To investigate this point, formula (40) was tried in connection with the following 
two sets of data. The first set was obtained through the courtesy of Dr. Rosedith 
Sitgreaves and Dr. W. M. Gafafer, to whom the authors are deeply indebted. Special 
thanks are due to Dr. J. G. Townsend, Chief, Division of Industrial Hygiene, 
Public Health Service, Federal Security Agency, who released the data collected by 
the Division of Industrial Hygiene. 

The data are concerned with two different categories of employees of an industrial 
establishment: Group 1 = office workers, and Group 2 = industrial workers. For 
each of these two groups the data list the numbers of cases of incapacity suffered 
during a period of time due to the following causes: 

Cause 1 = Respiratory disease 
Cause 2 = Digestive disease 
Cause 3 = Nonindustrial injury 
Cause 4 = Industrial injury 
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Each case of incapacity from any of the four causes was treated as an accident of a 
special category. 

The other set of data on which the test of the fundamental hypothesis was made 
is taken from the publication of Farmer and Chambers [3]. This is concerned with 
accidents incurred by 166 London bus drivers during five successive years of service. 
On these data, two tests of the model were made, once taking the experience of the 
first four years of service of each man as one variable and the experience of the fifth 
as the other and then treating the number of accidents in the first year of service 
as one of the two variables and the number of accidents in the subsequent four years 
as the other. 

TABLE 1 
TEST OF THE VALIDITY OP THE FUNDAMENTAL HYPOTHESIS ON TWO SETS OF DATA 

Estimated parameters 
No. of in- 
dividuals 

Degrees 
of 

freedom 
P(x!) 

a ß A 

Employees of an industrial 
concern 

Cause 1 vs 2, Gr. 1  1.452 1.407 4.729 407 37 .10 
Cause 1 vs 2, Gr. 2  1.471 1.050 3.798 1272 95 Practically zero 
Cause 1 vs 3, Gr. 1  1.657 4.750 13.986 407 39 .090 
Cause 1 vs 3, Gr. 2  1.686 4.734 15.075 1272 58 .00053 
Cause 2 vs 3, Gr. 1  0.922 2.662 2.979 407 16 .0017 
Cause 2 vs 3, Gr. 2  0.846 2.377 3.978 1272 30 Practically zero 
Cause 3 vs 4, Gr. 1  1.309 28.046 8.421 407 3 .59 
Cause 3 vs 4, Gr. 2  1.385 3.888 0.740 1272 11 Practically zero 

London bus drivers 
Fifth year vs four first 

3.490 2.021 4.125 166 38 .35 
First year vs last four 

5.596 3.086 3.419 166 32 .21 

Table 1 gives the results of all these tests. The first three columns give the values 
of the estimated parameters of the distribution (40), the fourth column gives the 
number of individuals to whom the particular observations refer, the fifth the num- 
ber of degrees of freedom in applying the x2 test and the sixth the value of the prob- 
ability P (x2) of obtaining a value of x2 exceeding that observed. 

Tables 2 to 11 give the bivariate distributions and the details of comparisons 
between the theory and the observations summarized in table 1. Thin lines indicate 
the boundaries of the particular cells. Heavy lines indicate the grouping adopted in 
the application of the x2 test. Observed frequencies are written in the upper left 
corner of particular cells. The two other figures, each with one decimal digit, are the 
expected frequency (on the left) and the contribution to x2 of one particular cell 
(if the expected frequency for that cell is 3 or more) or for a group of several adjoin- 
ing cells. If the expected frequencies of several cells are found to be less than 3, then 
they are grouped and the expected frequency is given for the entire group of cells 
only. 
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TABLE 6 
COMPARISON OP OBSERVED AND THEORETICAL DISTRIBUTIONS OP INCAPACITIES 

Cause 2 vs. Cause 3, Group 1 (Div. Ind. Hyg.. U.S. Pub. Health Serv.) 
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TABLE 7 
COMPARISON OF OBSERVED AND THEORETICAL DISTRIBUTIONS OF INCAPACITIES 

Cause 2 vs. Cause 3, Group 2 (Div. Ind. Hyg., U.S. Pub. Health Serv.) 
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It will be seen that in three out of the ten cases studied the fit provided by the 
bivariate negative binomial is excellent. In two additional cases, the fit is not very- 
good but still passable. In the remaining five cases the fit is poor. 

The data summarized in table 1 refer to three groups of workers and the three 
samples contain 166, 407, and 1272 individuals, respectively. Cases of good and of 
bad fit are unevenly distributed and, in fact, in all cases relating to the largest 
number the fit is bad. This suggests that, probably, the true distribution of numbers 

TABLE 8 
COMPARISON OF OBSERVED AND THEORETICAL DISTRIBUTIONS OF INCAPACITIES 

Cause 3 vs. Cause 4, Group 1 (Div. Ind. Hyg., U.S. Pub. Health Serv.) 

4 

^3 
<u   - 
in 2 
D    - 
(0   / 
U   - 

0 

0.0 

16 
ie.i 0.2 

80 
76.9 

O.I 

288 
288.6 0.0 

A.I 0.6 

3 
4.0 

0.7 

10 
I0.A 

0.0 

0 / 2 
Cause 4- 

3 

of accidents does not coincide with the negative binomial in any of the cases studied. 
However, the divergence between the actual distribution and the negative binomial 
must be only slight and to detect it one needs a substantial number of observations. 

Furthermore, a closer examination of tables where the fit is poor suggests that this 
may be due to the coexistence of two distinctly different subgroups of individuals, 
one large and one relatively small, with two different machineries behind the distri- 
bution of accidents. Owing to the difference in weights, the bivariate negative bi- 
nomial approximates the actual distribution in the larger subgroup. However, the 
presence of the divergent smaller subgroup spoils the fit. 

This conclusion is suggested by all the tables but the suggestion is particularly 
strong in the short table 9. It will be seen that the greatest contributions to the x2, 
namely 13.9 and 8.0, come from the two cells (3 S X, Y = 0) and (3 £ X, Y = 1), 
with the total expected number of individuals 6.9 as against the observed 19. How- 
ever, if these two cells are combined with the two corresponding cells in the same 
rows, the contributions of the combined cells to the x2 become 1.2 and 0.1 respec- 
tively and the total x2 sinks to a value just exceeding the 5 per cent point. Noticing 
that the grouping performed concerns the total of 46 individuals as against the 
sample of 1272, one is led to believe that, as far as the bulk of this sample is con- 
cerned, the fundamental hypothesis is not seriously wrong and that the disagree- 
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ment noted is due to a relatively small admixture of individuals with an accident 
proneness machinery different from that in the main body of data. 

The general tentative conclusion is that cases do exist in which (a) the funda- 
mental hypothesis applies approximately to accidents of two different types in- 
curred during the same period of observation and (6) to the same kind of accidents 
incurred in two successive periods of observation. In these circumstances it is plau- 
sible that the fundamental hypothesis may be satisfied by two kinds of accidents 
incurred during two different periods of observation. 

TABLE 9 
COMPARISON OP OBSERVED AND THEORETICAL DISTRIBUTIONS OP INCAPACITIES 

Cause 3 vs. Cause 4, Group 2 (Div. Ind. Hyg., U.S. Pub. Health Serv.) 
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39.7 
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1.4 

S.I 

7 
13.1 

2.8 

20 
21.7 

0.) 

4.7 

3.6 

2 3 A 
Cause A 

6.0 

/3.9 

5 6 

Keeping in mind that the subject of the present paper is the possibility of using 
accidents of one kind to predict the number of accidents of another kind, it was 
thought useful to reproduce the regressions of the number of accidents of one kind 
on the actual number of accidents of another kind. These regressions are given in 
figures 1 to 5. In each the straight lines correspond to the linear equation (37) of re- 
gression based on the fundamental hypothesis. 

When inspecting these figures one should bear in mind that regression points 
corresponding to large values of the independent variable depend upon very 
moderate numbers of observations. Furthermore, as we have seen, the conditional 
variance of one variable, say Y, given a fixed value of the other, say X, increases 
with an increase in the value of X. 

It will be seen that in many cases the fit is excellent. This is particularly true for 
regressions of the numbers of the less frequent accidents on those of the more fre- 
quent ones. Furthermore, the observed regression points are generally closer to the 
theoretical line for small values of the independent variable than for larger ones. 
This circumstance is important because if and when the selection of personnel is 
made on the ground of the number of accidents, one would naturally select those 
individuals who in the past had few accidents. The graphs of the regressions suggest 
that the results of this kind of selection will be in a reasonable agreement with pre- 
dictions based on the fundamental hypothesis. 
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TABLE 11 
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WHERE X = NO.   OF ACCIDENTS   IN   FIRST   YEAR 

Y = NO.   OF ACCIDENTS    IN   NEXT  4   YEARS 

10 

X(Y) 

WHERE X =N0.   OF ACCIDENTS   IN  FIFTH   YEAR 

Y = NO.   OF ACCIDENTS   IN   FIRST  4 YEARS 

10 15 20 
Y 

Fig. 1. Regression of X on Y and of Y on X. 
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GROUP   I 

Fig. 2. Regression of X on Y and of Y on X. Where X = number of cases of digestive 
disease, and Y = number of cases of respiratory disease. 
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6R0UP  Z 

25 30 
Y 

Fig. 3. Regression of X on Y and of Y on X. Where X = number of cases of nonindustrial 
injury, and Y = number of cases of respiratory disease. 

GROUP   2 

GROUP   I 

Fig. 4. Regression of X on F and of Y on X. Where X = number of cases of nonindustrial 
accident, and F = number of cases of digestive disease. 
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5. Measures of success in selection of personnel. In this section we study the 
following question. Suppose that the fundamental hypothesis applies to certain 
types of light and of severe accidents. Suppose further that the number Y of light 
accidents incurred in the past is adopted as a criterion for selecting personnel in 
order to diminish the number X of severe accidents to be incurred in the future. 
Specifically, we shall assume that the individuals selected for the particular hazard- 
ous employment will be all those for whom the number of light accidents Y < k 

Y(x) 
5 

X(v) 
5 

GROUP    2 

X(Y) 
5 

GROUP   I 

Fig. 5. Regression of X on Y and of Y on X. Where X = number of eases of industrial 
injury, and Y = number of cases of nonindustrial injury. 

and a certain proportion Q of those for whom Y = k, where k and Q are so adjusted 
that the total number of individuals selected for employment represent a predeter- 
mined proportion P of available candidates. 

In these circumstances, the interesting question is: what is the probability that 
in the following period of observation an individual selected for employment will 
have no severe accidents at all? This probability, say 

(58) P{X = 0 \P} 

compared with the probability P{X = 0} in the unselected population, appears to 
be a suitable measure of the success of the selection against severe accidents. 



248 University of California Publications in Statistics 

In order to obtain P{X = 0} we use the probability generating function (39) of 
X and Y and substitute in it u — 0 and v = 1. The result is 

(59) P\X = 0} = ß 
+ 1 

This, then, is the probability of no severe accidents during the forthcoming period 
of observation for the nonselected population. 

In order to compute (58), we first determine k and Q to satisfy the conditions 
imposed. The probability generating function of Y is obtained from (39) by substi- 
tuting u = 1. Expanding the result in powers of v we get 

(60) Vy{m) = 
ß    V r(q + TO) A 

\ß + A)   m! r(a)     \ß + A 

The number k is determined by the condition 

(61) 

Then 

(62) 

Z) Py(m)   ^P   <   YJ Py(.m) 

Q = p _   £ p (m) . 

Once ä and Q are found, then (58) is computed by a simple application of the 
formula of Bayes with the use of (40). 

P{X = 0\P} =£ 

(63) 

P{{X = 0) (Y < k)} + Q 
P{(X = Q)(y = k)\ 

P{Y = k] 

1 
P 

'(      ß      V yi r(a+m) /      A      \ 
A/3+A + 1/   ±^nm!r(a) V/3+A + 1/ + e ß+A 

J+A + l 

Suppose that for a given population of candidates for employment and for a given 
pair of kinds of accidents the values of a, ß and A have been determined. Suppose 
further that the proportion P of candidates to be selected for employment is also 
determined. In order to estimate the prospective success of selection of candidates 
we first compute the standard of comparison (59) and then determine k and Q to 
satisfy (61) and (62). Then these values are substituted into (63). 

Naturally, the effect of selection of candidates depends on all four parameters 
involved, on a and ß characterizing the distribution of A in the population of candi- 
dates for employment, on the number A and on the proportion P of those to be 
selected. In the unselected population the expectation of A and its variance are 

(64) E(A) = E(A) 2       a 

°"A ~ ß2 ß 



Bates-Neyman: Accident Proneness. I 249 

If the variance al is very small—and this will happen when ß is a larger number- 
then even a very sharp selection will give practically no result. In the cases consid- 
ered in table 1 the values of ß are moderate and, therefore, the prospects for selection 
are promising. Turning to the other factors involved, it must be obvious that the 
smaller P is the sharper must be the selection and, therefore, the greater its effect. 
Finally, the effect of selection depends considerably on the value of A, which is the 
ratio of the average frequencies of light and of severe accidents, 

(65) A = 
E(Y) 
E(X) 

in the unselected population. Because of this interpretation the quotient A may be 
called the modulus of the relative frequency of light accidents. 

TABLE 12 

CORRESPONDING VALUES OP k AND Q FOR A SET OF INCREASING VALUES OF THE MODULUS 

OF RELATIVE FREQUENCY A 

a = 3, 0 = 2 a = 3, /3 = 1 

A P = .125 P = .250 P = .125 P-- = .250 

k Q k Q k Q k Q 

1   0 
1 
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2 
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.0139 
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.0220 
.0172 

0 
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.0401 

.0203 

.0252 

.0282 

.0038 

1 
2 
3 
4 
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11 
17 
24 

0.0 
.0139 
.0215 
.0261 
.0292 
.0174 
.013 
.0004 

1 
3 
5 
6 
8 

17 
25 
34 

.125 

2  .0401 

3  .0065 

4  .047 

5  .025 

10  .0038 

15   .014 

20  .0054 

The actual numbers characterizing the possible effect of selection are of practical 
importance. With this in mind table 12 and figures 6 and 7 were constructed. They 
illustrate two hypothetical situations. In one of them the values of a = 3 and ß = 2 
approximately coincide with those corresponding to the experience of the London 
bus drivers (see table 1). In the other case, a = 3 and ß = 1, so that both the expec- 
tation of A and its variance are increased. The figures are intended to illustrate the 
effect of selection corresponding to two different levels of sharpness of selection. In 
one case we assume P = .125 and in the other P = .250. The value of the modulus 
A varies from A = 1 to A = 20. For a succession of increasing values of A, table 12 
gives the corresponding values of k and Q with which the proportion of selected 
candidates will be equal to P. Figures 6 and 7 give the corresponding values of 
P{X = 0[Pj. The horizontal dashed line indicates the standard of comparison 
P{X = 0}. It is seen that in both cases, when A is small, the effect of selection is 
already noticeable. When A is substantial, say A ^ 5, then the probability of 
avoiding severe accidents is considerably increased by selection. The practical con- 
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Fig. 6. Effect of selection against high accident proneness (a = 3, ß = 2). 
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Fig. 7. Effect of selection against high accident proneness (a = 3, ß = 1). 



252 University of California Publications in Statistics 

elusion suggested by this result is that, in order that the selection of personnel on 
the basis of light accidents incurred in the past be successful, it is desirable that the 
average number of light accidents during the period of observation be large. This 
may be achieved either by taking a long period of observation (which may be im- 
practicable) or by using some artifice to increase the exposure to light accidents 
during a relatively short period of observation. 

6. Joint distribution of the number of light accidents and of the number of sur- 
vived severe accidents. As mentioned in the introduction, even if the fundamental 
hypothesis assumed in this paper is strictly satisfied with regard to a category of 
light accidents and a category of severe accidents, if these latter accidents are really 
severe, then their number incurred during a fixed period of time will not follow the 
negative binomial distribution. The reason is that from time to time a severe acci- 
dent, occurring at the early part of the period of observation, will prove fatal to the 
individual concerned. As a result, there will be no exposure of this individual to 
possible further severe accidents during the same period of observation. Thus, if 
and when statistics relating to light and to severe accidents sustained by the same 
individual become available, then in order to be able to verify the fundamental 
hypothesis and to estimate the constants involved, a new type of distribution will 
be necessary. This must take into account the fact that each severe accident may 
lead to invalidism or to death for the individual concerned. The purpose of this 
section is to consider this distribution. Our basic assumption, supplementing the 
fundamental hypothesis, will be that each individual involved in a severe accident 
has the same probability 0 of surviving the accident and continuing the employment 
with all its hazards. The alternative to such survival will be either death or retire- 
ment from the particular employment. However, this distinction may be ignored 
and we shall speak of two possibilities only: survival (in good health) or death (the 
latter meaning either actual death or retirement). 

In connection with the change in the problem, we shall need new notation. The 
letter Y will be used, as formerly, to denote the number of light accidents incurred 
by an individual during a period of observation. On the other hand, the letter X will 
be used to denote the number of severe accidents that this individual will survive, 
incurred by the individual during the same or a different period of observation. 
Thus, if an individual incurs three severe accidents and dies at the third, then for 
this individual X = 2. In order to distinguish between deaths and survivals we 
shall need a third random variable Z. This variable will be defined to be equal to 
zero if the particular individual survives all the period of observation, and unity 
if the individual does not. 

The statistics of light and severe accidents may be divided into two categories. 
First we postulate the availability of the numbers of light and of severe accidents 
for those individuals who survived the entire period of observation of severe acci- 
dents. The figures obtainable from these statistics will be the empirical counterpart 
of the theoretical probabilities P {(X = k) (Y = m) | Z = 0}. The second part of the 
statistics contemplated would refer to individuals who died as a result of a severe 
accident during the period of observation. The figures obtainable from such statistics 
would correspond to probabilities P {{X = k) (Y = m) | Z = 1 j. The formulae for 
the probability generating functions for these relative probabilities arise as limiting 
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forms of generating functions deduced under the general hypotheses considered in 
Part II of this paper and are as follows: 

(66) Gx,r\z=Mv) = (/3+1i
H

flu
1+A(l-t;))   ' 

(67) GXYU=1{U,V) 

=      (/3+1-0)"        1-0 
_ (ß+i-ey-ßa 'i-8u .[ß+A(l-v)]a      [ß+l-6u+A(l-v)]"J ' 

It is seen that for individuals who survive the period of observation of severe 
accidents the joint distribution of the number Y of light accidents and of the num- 
ber X of survived severe accidents is again a bivariate negative binomial. On the 
other hand, for individuals who die as a result of a severe accident, the joint distri- 
bution of X and Y is more complicated, with probability generating function given 
by formula (67). 

If and when the data on light and severe accidents are available, formulae (66) 
and (67) could be used to test the validity of the fundamental hypothesis assumed 
in the present paper. 
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