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1.   Introduction 

The advent of rare-earth permanent magnets (REPMs) has brought the realization of novel 

magnetic structures that are not practicable otherwise.1'2 So different are these remarkable materials 
from the earlier magnets that conventional design wisdom is inadequate to fully exploit their unique 
characteristics. Indeed, the conventional wisdom can lead to error or to the employment of cumbersome 
procedures that are quite unnecessary for REPMs. The salutary characteristics stem from two basic 
attributes of the rare earth materials: 1) large intrinsic moments per unit volume; 2) extraordinarily high 
resistance to demagnetization by external or internal demagnetization fields. 

The magnetization offers high flux density; the coercivity enables the magnets to maintain this flux 
density in the face of very high demagnetizing fields engendered by flat aspect ratios. Thus, REPMs can 
be fashioned, with impunity, into shapes that would cause demagnetization of alnico materials. This 
point is illustrated in Fig. 1, which shows the second quadrant of the hysteresis loop of a typical REPM. 
Note that the constancy of magnetization in reverse fields of more than 1.3 Tesla (T) results in a linear 
B versus ßgH curve of slope one throughout the entire quadrant. This linearity of the magnetization 
curve makes possible magnetic structures in which the magnet is exposed to demagnetizing fields in 
excess of the remanence. The importance of this property to design simplification will become obvious 
from the following discussions in which HQH and HQM will be written B0 and / respectively for 
convenience in curve plotting and calculations. This procedure has the advantage that in the relationship 
between field, flux density and magnetization, B =B 0 + J, all three of the principal quantities 
involved are of the same kind and measured in T. 

Magnetic circuit design with the older magnetic materials, such as alnico, is largely an intuitive hit- 
or-miss affair, as is clear from the B vs B0 curve for alnico in Fig. 1. Flux densities are low except for 

geometries with the very highest B to BQ ratios, that is, those with the very lowest demagnetizing 

factors. Because the state of magnetization of each magnet depends upon the geometry of the structure 
in which it is placed, exact analytic solution for all but the simplest configurations is very difficult or 
impossible. Hence, much reliance is placed on numerous approximations, actual physical models, 
electric analogues, or rules of thumb. 

Because of the analytical simplification afforded by the magnetic rigidity of the REPMs, the range 
of applicability of traditional approaches to magnetic design has been greatly extended. These 
approaches fall into four broad types: 1) analogy of magnetic configurations to electrical circuits; 2) 
analytical solutions through Maxwell's equations; 3) reduction of permanent magnet arrays to 
distributions of equivalent pole densities or current sheets and the insertion of those distributions into 
Coulomb's law or the Biot-Savert law; and 4) brute-force computer solution of a tentative configuration, 
the plausibility of which is previously established by one of the other approaches, usually the first. In 
this work we will discuss these approaches and employ them to solve illustrative problems. 

2.  Magnetic Circuit Design 

2.1  Magnetic Analogue to Ohms Law 

In the past, elementary courses in general physics often included a brief treatment of magnetic 



circuits that featured a magnetic analogue of Ohm's law. In this scheme, the role of electric current / is 

played by the magnetic flux 0, that of the electromotive force V by the magnetomotive force F, the 
electric conductance G by the magnetic permeance P, and the resistance R by the reluctance R, so 

that the magnetic Ohm's law reads: 

&=PF = F/R 

in respective correspondence to 

I=GV=V/R (1) 

Permanent magnets can then be regarded formally as magnetic "batteries," and materials of high 

permeability, such as soft iron or permalloy, as near-perfect flux conductors, in analogy to the near- 

perfect current conductor, copper, in electrical circuits. Air gaps and materials of low permeability play 
the role of magnetic resistors. The analogy is completed by the identification of electrical solenoids 
wound about permeable circuit members as flux "generators," which can be either ac or dc, depending 

upon the currents sent through them. 
Although this approach, like most analogies, is philosophically and mnemonically gratifying, it was 

rarely used in practice as outlined, and has now been dropped from the elementary courses. The barrier 
to more general usefulness was essentially twofold. In the first place, unlike electric currents, magnetic 
fluxes are not confined to neat, analytically tractable paths like wires, but fill virtually all of space. This 
difficulty is not too serious, because, in many cases, the space around a magnetic circuit can be divided 
into flux paths of which the boundaries are planes, cylindrical arcs, or segments of spherical surfaces 
that emanate normally from the surfaces of the circuit to connect points of different magnetic potential. 
The permeances of these simplified paths can be calculated approximately through standard formulae, 
and if the division is made judiciously, surprisingly good approximations to the true fluxes can often be 
obtained. Figure 2 shows some frequently used flux paths together with the formulae used to calculate 

their permeances. 
The second, and more serious, difficulty that has prevented a simple, direct application is that 

magnetic materials, such as alnicos, generate no unique magnetomotive force (mmf), because the mmfs 
depend upon the circuit into which they are inserted. The great value of REPMs in the simplification of 
circuit design arises because these materials exhibit the same total circuital mmf, regardless of the nature 

of the circuit in which they find themselves. Although this advantage has been discussed previously,1"3 

it is still not as widely appreciated as are the high energy products and coercivities of the REPMs; 
consequently, circuits employing these materials are still often analyzed by unnecessarily cumbersome 

procedures. 
To illuminate the origins of these difficulties and to highlight the contrasts between the rare earths 

and their predecessors, it is useful to consider the derivation of the magnetic Ohm's law. We begin by 

writing the circuital form of Ampere's law 

JHds = ±1 (2) 
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Figure 1. Demagnetization curves for NdFeB and alnico 5 magnets. 

where the magnetic field H is in amps/meter, the current I, linked by the loop integral, is in amperes, 
and the sign depends upon whether the current direction in the coils produces an mmf aiding or opposing 
that of the magnet. Assuming Hm is the average field over the length of the path in the magnet Lm, we 

can write 

HmLm+\BHLds=±I (3) 

where A and B are the ends of the magnet, the line integral is along a flux line outside of the magnet, 

and HL is the field along that line.   Outside the magnet, ßLHL=BL, therefore 

HL + I B BLds 
= ±I (4) 

but 

BL = A0/AA 

where M is a differential element of area normal to a flux line of differential length ds and A 0 is the 
element of flux passing through it. Consequently, 
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±1 = HmLm+ \B-^- ds = HmLm+ A0 f-^— = 1 (5) 
m m   *AnLM m m JApLAA 

Of course, the area AA and permeability ßL associated with flux A& may vary with progression 

along the flux line, that is, they are functions of s. We recognize that the expression in the integral is just 
the differential reluctance 

dR=   ds 

ßLAA 
so that 

f-*- = A^=    * (6) 
^LAA        '     APt

E 

where APt   is the permeance of the tube enclosing flux AO exclusive of the permeance of its path 
within the magnet. Upon integration over s, Equation (5) becomes: 

A0 
—E = ±I-HmLm 

**t (7) 

Since these tubes are all in parallel and fill all of space, their summation and that of their fluxes yields 

0m/PE = ±I-HL m        t mm 
(8) 

where &m is the total flux emanating from the magnet; therefore, using, 

*m = BmAm (9) 

where Bm is the average flux density within the magnet, we obtain 

Bm=Pt
E\±I-HmLm]lAm (10) m t   [_ m    m J        m 

For NdFeB the demagnetization curve is reversible, linear, and of the form 

Bm=ßrHm + Br (11) 

where fir is the recoil permeability and Br is the remanent flux density, ß()Mr .   Solving   for Hm, we 

obtain 

Hm=(Bm-Br)/fir=^JßrAm-Br/ßr (12) 



Multiplication of (10) by Am and combination of the results with (12) yields 

*m = Pt
E[-®mLJliAm + BrLJfir ± I] (13) 

0mJV^Jl (14) 

This is the magnetic form of Ohm's law where the total flux <Pm is analogous to the total current and the 

reluctances Rf = \/PE and Rm =Lm/jirAm correspond to the total circuit resistance external to the 

battery and the battery internal resistance, respectively. Corresponding to the battery emf is LmBrl ßr 

or -LmHc and ±1 is the analogue of the emf from a zero impedance, constant voltage source. This 

simple and useful formula is applicable to cobalt-rare earth magnets because of the linear relationship 
between Hm and Bm expressed by Eq. (11) which, in turn, is a consequence of the constancy of 

magnetization in all parts of the magnet, regardless of stimuli arising from the rest of the circuit or the 
magnet's own shape. In contrast, alnicos do not have reversible demagnetization curves that are 
expressible in simple analytical form. Therefore, in dealing with circuits containing such magnets one 

must proceed less directly and with recourse to B-B0 graphs such as those shown in Fig. 3.3 For 

simplicity, we consider as an example a circuit with no electromagnetic sources of flux. In such a case, 
Eq. (10) can be written: 

Bm'Hm = LmPt
E/Am (15) 

Then, one must calculate PE which, together with the use of magnet length and the cross-sectional area 
in (15), yields BmIHm. Next, a load line with slope Bmlii0Hm =BJBQm is drawn through the origin 

and its intersection with the second quadrant B-B0 curve determines Bm. The product BmAm then 

yields <Pm, which is the total flux output of the magnet; &m is distributed among the various flux paths 

in the circuit in accordance with Ohm's and Kirchoffs laws. 
If the demagnetizing field of the alnico magnet is lessened by an increase in Pt

E resulting from the 
narrowing of an air gap within the circuit, the operating point of the magnet moves along an 
approximately linear minor loop to point B in Fig. 3, in accordance with the new value of BJB0m. 

When changes in the circuit are such as to move the operating point from left to right on the minor loop, 
we can use an expression such as (11) with the intercept of the minor loop with the B axis, B( in place 

of Bn and the slope of the minor loop pt ///0in place of y.rlp0. Consequently, one may define a 

magnet mmf of the same form as that for the rare earth magnets, i.e., 

F = BiLm/ßi (16) 

However, should the demagnetizing field increase due to a widening of an airgap, temporary removal of 
the magnet from the circuit, or application of an external demagnetizing field, the operating point would 



move to the left along the demagnetization curve to C, the base of a new minor loop CD. The magnet 
would also have a new mmf given by the new line constants B[ and ß\l ßQ 

F=B;LJ^ (17) 

Hence, we see that no unique mmf can be assigned to a conventional permanent magnet, and if the 
useful magnetic field is to be modulated by variation of gap length or electrically generated mmf s, the 
magnet mmf will always be that corresponding to the lowest point on the demagnetization curve reached 
in the course of the modulation cycles. An additional complication in determining the mmf of an alnico 
magnet is that the lengths Lm appearing in Eqs. (16) and (17) are effective rather than actual lengths. 

Because of demagnetizing fields, the magnetization tends to be nonuniform, so that different parts of the 
magnet lie on different load lines, and therefore produce different mmf s and inhomogeneous fields. 
This causes effective lengths to be shorter than actual ones and all the other germane quantities, such as 
Hm and Bm, to have only a rough average significance. This problem exists for Rare Earth Magnets as 

well but to a lesser extent because only H can vary from point to point while for alnicos, both H and 
M vary. For some configurations, use of geometrical lengths and average field values can cause 

significant errors, and estimations of effective lengths must be made.1 Magnetic quantities and their 
electric analogues are summarized in Table 1. 

2.2  Example of Magnetic Gap Field Calculations 

In Fig. 4(a) is pictured a simple magnetic circuit with the space around it divided into permeance 
paths as described in the introduction. The flux and field of interest are those in the magnet gap PQ. 

To calculate these quantities we must first find the permeances associated with the fourteen external flux 
paths. All are of standard form and can be calculated by means of formulae found in Fig. 2 and in Refs. 
3-6. To aid in the visualization of the forms of these paths, brief descriptions of each are summarized in 
Table 2. The fourteen permeances are in parallel with each other and in series with the internal 
permeance Pm of the magnet. (See Fig. 4(b).) Almost rigid magnets (Br / B0c = 1.05) of Br = 1.32 T 

are employed. From the values of the quantities shown, the total circuit reluctance is calculated to be Rt 

= Rm + Rf = 3.333 + 0.345 = 3.678 m'1. The mmf: F = LmB0 = L„Brl 1.05 = 0.4 Brl 1.05 = 

0.381 Br = 0.503 T-m. Here, as previously stated, we use B0 rather than H so that F = LmBQ.is really 

a quasi-potential measured in Tesla-meters. There is no difficulty involved when this value is used to 
obtain a flux via the formula 0 = P F because: 

F(true) = BJLIji0 = F(pseudo)/ß0 

and 

P(true) = fi0ßpA/L = ß0 P(pseudo) 

where jj.p is the permeability relative to that of empty space. 
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Figure 3. Determination of Bm in an alnico 5 magnet. The load line OA is determined from the total external 
permeance as described in the text. Bm is the value of B at intersection A. A decrease in Pt

E would lower the 
operating point to C, the base of a new reversible minor loop CD. The reversible linear demagnetization curve for 

NdFeB magnets of 14.2 T is shown for comparison. 

Now, 0 = P(true) F(true) = [F(pseudo)/ß0\n0P(pseudo)] 

0 = F(pseudo)P(pseudo) 

so that when BJL is used for the potential F, and the relative permeability, fipA/L, for P the same 

results are obtained as from the true values of F and P. In most problems /2p is either equal to 1.0, as 

in air gaps and in rigid permanent magnets, or to oo , as in iron yokes and pole pieces. Rarely do 
paramagnetic substances occur in design problems but they present no special difficulties, as their ^,'s 
are between unity and infinity in the permeance formulae. When passive materials such as iron are 
operated close to or above saturation the approximation /J-p=°° does not hold and the method of 
permeance estimation is not readily practicable. 

Therefore we find the total flux emanating from the magnet: 

0t = FPt =(0.503)(0.272) = 0.137 
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Since all permeances in Pt
E are in parallel, the gap flux is given by: 

0g=Pg0t/Pt
E = (1X0.137)/(2.90) 

and the average field in the gap 

Bg= &^A = 0.047/0.2 = 0.236 T. 

If the calculation were to be made for the same configuration with the NdFeB replaced by alnico V, one 
would proceed as follows: 

(1) Calculate the total external permeance Pt
E = 2.901 m and total circuit permeance Pt = 0.2719 

m. 

(2) Find the ratio Bn/B0m via the formula 

Bn/B0m = -LmPt
E I Am = -(0.4)(2.901)/(0.12) = -9.67 

(3) Draw the line Bm/BQm = -9.67 together with the second quadrant of the alnico V 

demagnetization curve (Fig. 3). 

(4) Find the magnet operating point at intersection (A) and the value of Bm at that point, i.e., Bm = 

0.514 T, as in Fig. 3. 

(5) Calculate total flux ®t = B^^ 0.062 Webers. 

(6) Find ®G = PG&t/Pt
E = 0.021 Webers. 

(7) Find BG = &G/AG = 0.107 T, less than half the field obtained when NdFeB is used. 

We see that the first and last two steps in this calculation must also be completed for NdFeB and &f 

obtained from <Pj = F/Rt in lieu of step (5). But the time-consuming steps, (2) to (4), are unnecessary 

when REPMs are used, and no external aids such as graphs are needed. 
Magnetic circuit design by means of the electric circuit analogue, although seemingly crude, yields 

valuable qualitative guides to design adjustment and, in many cases, good quantitative results as well. 
The latter are often surprisingly accurate, especially when the calculated quantities of interest involve 
averages over large areas, as is the case of magnetic flux calculation. If a local field or flux density 
calculation is made, agreement of calculated values with actual values is not as good. These points are 

illustrated in Fig. 5.6 Note the remarkable agreement in geometric detail between the rough permeance 
calculations and the computer plot of Fig. 5. Point A is the point which, according to the calculations, is 
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(a) 

All dimensions in meters 
Cross hatching denotes magnets 

ML 

(b) 

F= 0.503 Tesla-meters 

I  
R = l/Pt

E= 0.345 m"1 

/ 

Pf= Z PZ = 2.951m 
t xy 

t 
R. = 0.300 m 
M 

R= 1/P, = 3.333 m 
M M 

-1 

Rt=   RM+ Rt =3.678 nr1       Pt = 0.272m 

Figure 4. (a) Division of space around magnetic circuit into approximate flux paths, (b) Schematic of equivalent 
electric circuit. 

the demarcation between the flux lines which go from limb to the iron plate and those which return to 
the other end of the magnet. Point B is the calculated effective equator of the magnet. Note how it is the 
approximate symmetry center for the P0 flux lines. Point C is the calculated point that marks the 

switching of the center post flux lines from the permeable plate to the ring magnet. Point D is the 
predicted switch-over point from Pr paths to Pb paths.   Point E is the demarkation between fluxes 

emanating from the ring magnet to the iron and to the center post. The <£ obtained from these 

calculations was 2.12 x 10"5 Webers, compared with the 2.18 x 10"5 Webers yielded by our longhand 
permeance calculations, agreement to within less than two percent. In contrast, calculations of the flux 
density at Point G yield 0.39 T for the analogue method and 0.30 T for the computer, an approximately 

30 percent agreement. 
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Figure 5.  Computer plot of flux lines produced by a cylindrically symmetric speaker magnet of E-shaped cross 
section in proximity with an iron plate. 

2.3  Flux Confinement by Cladding 

Experience in magnetic design teaches us that, in most magnetic circuits, much of the flux 
generated by the permanent magnets is wasted by distribution among unwanted flux paths exterior to the 
work space of interest. The electric analogue method suggests a solution to this problem. In an 
electrical circuit, current can be kept from flowing along extraneous paths either by insulation or by 
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employment of compensating or bucking potentials, as in a potentiometer. Magnetic insulation is not 
practicable at present pending the arrival of room temperature superconductors with sufficiently high 
lower critical fields (Hcj). However, with rigid rare earth permanent magnets such as the NdFeB, the 

potentiometric method has proved to be very fruitful in magnetic design. 

Magnetic Circuits Electrical Analog 

BASIC CIRCUIT 

/* r/\ IN 
F 

s k 
w 

V >i 
F 
s 

V 

CLAD CIRCUIT 

Figure 6. Gap field intensification through cladding. 

In illustration, let us consider the simplest of magnetic circuits, the horseshoe-like configuration of 
Fig. 6. Clearly, much of the generated flux leaks into regions PL. The equivalent current in the electric 

analogue would flow through wires GL. The analogy is not exact, since the GL are discreet, while the PL 

are continuous. However, this slight discrepancy is irrelevant to illustrating the principle of cladding. In 
the electric circuit, batteries Vc of the appropriate EMF are placed in GL, so that no current flows there. 

To effect the analogous suppression of flux in PL of the corresponding magnetic circuit, it is clear that 

permanent magnets Fc analogous to the batteries Vc must be placed there. We begin by assuming that 
this goal has been accomplished and then work backwards to find the appropriate magnet configuration. 
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By hypothesis, the total flux furnished by the magnets flows exclusively within the cross section of the 
circuit and is given by the magnetic Ohm's law: 

0 = F/Rt = -2LmB0c/(Rm + Rg)=   2 LmBr/(Rm + Rg), (18) 

where Lm is the length of a single magnet, Br is the magnet remanence, Rm and R are the reluctances 

of the magnets and gap, respectively, and B0c is the coercivity, which for our perfectly rigid magnets is 

equal to -Br The reluctivity of the magnets is assumed to be unity, and that of the yoke, zero. For 

total flux confinement to be effected, every point on the surface of, or exterior to the final configuration, 
must be at the same potential. This condition is fulfilled automatically for points on the equipotential 
surface of the iron yoke. Therefore, cladding must be placed around the magnets and the gap so that its 
outer surface potential is everywhere equal to that at the yoke surface. Therefore, the potential 
difference between any point C on the cladding surface and point A on the yoke must be equal to zero 
and given by the line integral along any path connecting A and C. We consider the path ABC shown in 
Fig. 7. 

FABC = FAB + FBC = ° (19) 

Now FAB = F^xg / 2Lm, where Fm is twice the mmf across one of the magnets, and FBC = 
Body^O where Bod is tne radial magnetic field in the cladding and vBC is the cladding thickness at 

pointB. Since Fm=<PRm Eq. (19)becomes 

0 = 0RmKB 12Lm + BodyBC ^20) 

Substitution of 18 in 20 yields 

?BC= FBC/Bod = -FAB/Bod = -0Rn^B/2LmBod (21) 

Since, by hypothesis, no flux flows to the exterior, the radial flux density in the cladding magnet must 
also be zero. From the demagnetization curve of a magnetically rigid material, we know that at zero flux 
density, the field is equal to the coercivity B0c = - Br Substitution of this value for Bod in Eq. (21) 
yields 

yBC = ^mB^^Bf^B0c(Rm+V = 7Vm^\- (22) 
[Rm+Rg) 

and the outer surface of the cladding about the supply magnet is a truncated cone, whose half angle is 
tan" [Rm l(Rm +Rg)]- The cladding thickness v reaches maximum at the end of the magnet, which is at 
the gap edge. The thickness declines beyond the edge because the field in the gap B0g is in the direction 
opposite to that ofB0m and it is given by 

B0g = B8 = Bm= ®<\n • (23) 
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Supply 
Magnet 

Cladding Magnets 

Figure 7. Determination of cladding thickness of a horseshoe magnet in the gap region. 

where A   is the cross-sectional area of the gap. The potential declines with distance, z, from the gap 
m 

edge as 

AF= -zB0g =zBm = zO/A m 
(24) 

Inserting (18) for 4> we obtain 

AF= -2zLmBr/Am[Rm+Rg] (25) 

At midgap, AF is equal to -F at the gap edge so that F is zero there and takes on increasingly 
negative values beyond. The negative potentials are balanced by cladding of opposite polarity, which 
increases in thickness up to the other gap edge, after which it declines linearly to zero. The resulting 
antisymmetric structure is shown in Fig. 7. In practice, the gap cladding is sometimes omitted for easier 
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access.   This results in a reduction in gap field and some bowing of the field lines which is often 
tolerable, but becomes more serious as the gap length, g, increases. 

The efficacy of cladding is demonstrated by a consideration of the unclad structure and its identical 
clad counterpart in Fig. 6. The latter has a gap field of 2 T, as compared with only 0.8 T for the unclad 
structure. Mass efficiency of the cladding is demonstrated by the 7 kg mass of such an assembly 
compared to the 55 kg required to produce only 1.6 T in an unclad configuration. The 2.2 T delivered 
by the clad version also compares favorably with that usually delivered by electromagnets that are many 
times as large, and is generated without power supply or current source. Cladding is especially effective 
when the leakage permeances are a large fraction of the total external permeance. When the same 
horseshoe-like structure has no tapered pole pieces as in Fig. 7, most of the external permeance is in the 
gap, and cladding raises the gap field from 0.5 T to only 0.8 T. 

2.4 Clad Permanent Magnet Solenoids 

Traditionally, uniform magnetic fields extending over distances that are long, compared to the 
diameter of a cylindrical working space, are produced by electrical solenoids. These are cumbersome, 
requiring power supplies which often entail the expenditure of considerable energy. The rare-earth 
materials provide solenoidal fields with permanent magnet structures. A particularly useful and 

ingenious design for such a configuration was conceived by Neugebauer and Branch7 to focus the 
electron beam in a microwave klystron (Fig. 8). The required flux density was to have a magnitude of 
0.15 T in a direction parallel to the axis of a cylindrical space 21.6 cm long and 6.99 cm in diameter. 

The REPM magnet used to supply the flux is in the form of an axially magnetized annular shell with ßr 

approximately equal to unity forming the perimeter of the work space. Abutting against its ends are 
disks of a passive ferromagnet of high permeability and saturation magnetization, such as iron or 
permalloy. These disks serve as pole pieces to guide the flux produced by the magnet into the 
cylindrical work space. Again, we require that all of the flux generated by the magnet pass through the 
work space. To accomplish this, the magnet must have a cross-sectional area Am dictated by 

conservation of flux, viz: 

BrrAm  = »A = B
OMAW (26) 

where Bm is the flux density in the magnet and Bw that in the work cavity, and where Aw is the cross- 

sectional area of the cavity. If, as we assume, flux confinement has been accomplished, and since the 
end discs are equipotential surfaces, the field in the magnet B0m must equal Bw. Bm can then be 

determined from (26) and from the equation for the demagnetization curve of a rigid magnet: 

Bm = Bom + BR = Bw + Br (27) 

Substitution of this expression into (26) yields Am: 

Am = VA + V = *y/V + Br/BJ (28) 
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To find the cladding thickness necessary for flux confinement, we take our zero potential to be at 
the left pole piece in Fig. 8. For any point C on the outer surface of the cladding to be at zero potential, 
the line integrals of H from A to B and from B to C must be equal and opposite, that is 

Bwx =-BoCfB (29) 

Since no flux flows radially through the cladding, Bmc is zero; and the rigid-magnet demagnetization 
curve shows that BoC is equal to the coercivity B0c which in turn is equal to -Br . Therefore, from 

(29) we see that the thickness, t, anywhere must be 

t = Bwx/Br (30) 

Figure 8. Permanent magnet solenoid of the Neugebauer-Branch type. a. Flux supply magnet, b. Pole pieces, 
c. Cladding magnets. 

Again, t is linear in x and a conical surface results, as shown in Fig. 8. Because it is at the same 
potential as the right end of the supply magnet, the pole piece on the right must also be encased in 
cladding of maximum thickness. 

The actual structure of Neugebauer and Branch employed two tandem chambers with oppositely 
directed fields, so that cladding of the bases of the high potential pole pieces was unnecessary; a single 
iron disc served as a common high potential pole piece for the two chambers. 

A single-chambered structure can be made less bulky than the Neugebauer configuration by taking 
the plane midway between pole pieces to be at zero potential.8'9 Then, the cladding is in the form of 
two conical structures of half the base thickness of the Neugebauer structure. (See Fig. 9.) The cladding 
to the left is oriented outward and that to the right inward.  In the Neugebauer structure, shift of zero 
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potential from chamber end to chamber center results in an approximately 60 percent reduction in mass. 
Figure 10 shows a computer plot of the magnetic flux produced by the improved structure. There is 

some leakage due to imperfect cladding at the ends. Figure 11 shows the axial field as a function of 
distance from a chamber end and the much improved field uniformity obtained after a simple correction 
to the cladding slope is made. The correction consists of an increase of cladding thickness At according 
to the formula: 

At = (Hd-Ha)t/Ha (31) 

where Hj is the desired field and Ha is the actual field. 

Figure 9. Solenoidal magnetic field structure with zero potential reference in center. 

Axis of Rotation 

Figure 10. Flux plot of magnetic field of the structure of Fig. 9. Apparent flux crowding towards the periphery is 
because each line represents a unit of flux in an annular ring of given thickness. 
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Figure 11. Axial magnetic field profile of the structure of figure 10. 

Figure 12 shows the impracticality of alnico for permanent magnet solenoids. Since the cladding 
thickness is inversely proportional to the coercivity, it must be ten times as thick for alnico as for even 
the very modest properties of the REPM of Fig 12. This translates to an approximately hundredfold 

increase in mass. 
There are many useful variants of the permanent magnet solenoid. For example, the internal field 

need not be constant but can be varied along the axis by appropriate adjustments in the supply magnet 

and cladding thicknesses.8-10 As an example, if the field is to increase linearly with progression along 
the axis, the cross-sectional area of the supply magnet must also increase linearly while the cladding 
thickness is parabolic. In such a structure, the most efficient placement of zero potential is at the 
magnetic center C of the configuration, that is, where the line integral of the field along the axis over the 

length of the chamber attains half its value i.e., J HdJ = j HdJ where 0 and L are the ends of the 

working space. Clearly C lies on the high field side of the geometric center and the cladding is concave 

on the high field side and convex on the low field side. 
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Fig. 12 Demagnetization curves and operating points for the magnets in a solenoidal field source. 

Figure 13 Permanent magnet annular field source. 
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Figure 14. Transverse field source for a rectangular cavity(a) and its sectional flux plot(b) in the cavity. The large 
arrow indicates the field in the rectangular central cavity, the medium sized arrows the orientations of the 
permanent magnets and the small arrows, the directions of the flux lines. The supply magnets are marked by the 
heavy lines. All other magnets in the flux plots are cladding. Note the efficiency of the cladding in the flux 
confinement as evidenced by the negligible leakage only at the comers. 
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The structural variations necessary to obtain the desired fields can be effected parametrically as well 

as geometrically, i.e., material properties of the magnets can be varied rather than their dimensions.8"10 

This procedure is not as efficient with regard to weight and bulk of the structure because the uniform 
cladding thickness must be the maximum thickness in the geometric structure. On the other hand, the 
ring magnets are all of the same dimensions and are easier to manufacture. 

The outlined principles can be applied to other field configurations such as in the cylindrical 
structure of Fig. 13 in which the field is confined to an annular ring by the placement of cladding on 

both the inner and outer boundaries of the working space.11 In this arrangement, the supply magnets 
can be located at either the inner or outer boundary of the working space, or both. Of course the 
specified requirements must be such that the inner hollow is spacious enough to accommodate both the 
inner cladding and all of the supply magnet. Clad rectangular structures with fields normal to the axis 

can be produced as in Fig. 14.9 Such configurations are useful for Magnetic Resonance Imaging (MRI). 
MRI application will be discussed more fully in the next section. 

All clad structures lose some of their field uniformity if access holes are drilled into their interior 
cavities. Such holes can often be made to be axially symmetric so that the field distortions are also 
axially symmetric and can be at least partially compensated for by methods similar to that employed in 
the compensation illustrated in Fig. 11. 

If only one hole is needed in a structure that has its zero of potential at an end, it is usually better to 
drill the hole at that end since then no penetration of a cladding magnet is necessary and there is no field 
reversal in transit. 

3. Linear Structures Composed Entirely of Rigid Permanent Magnets 

Iron flux guides or yokes to shape and intensify the field in a working space can be used with the 
alnicos but for many working-space geometries, it would be better to arrange magnetic poles so that 
maximum field is produced where it is wanted. Of course, there are no free magnetic poles; they are 
always accompanied by a like number of opposite poles of equal strength. It is the goal of yokeless 
magnet design to place the component magnets so that their poles are as effectively placed as possible to 
produce the desired field where needed while the opposite poles are more remotely placed or negated. 
Because the optimal arrays often entail very strong demagnetizing fields, the art of yokeless magnet 
design has very limited applicability with the older magnets of low coercive force. 

Simple all-magnet structures that produce extraordinarily high fields can be obtained through 

considerations of symmetry and a very useful theorem.12-13 The latter states that if the magnetization of 
an infinite line source oriented perpendicular to its axis is rotated about that axis, the field it produces 
remains everywhere constant in magnitude and is everywhere rotated by the same angle in the opposite 
sense. This is easily demonstrated. For an infinite line dipole 

He=PsinO/r2 (32) 

Hr = Pcos6/r2 (33) 

23 



Therefore the magnitude \H\ is 

\H\ = (H2
e+H?f = P/r2 (34) 

and is independent of dipolar orientation. P is the moment per unit line length and 6 is measured from 
the dipolar axis. Equations 32 and 33 indicate that the field orientation angle a is twice 0. If we then 
widen 0 by a rotation of the magnetization, a must change by the same amount in the opposite 
direction to preserve the relationship a = 26. This principle has been used extensively by Halbach in 

his design of various particle beam devices.12"15 

As an example of this principle's application, we consider a cylindrical cavity of infinite length in 
which it is desired to generate a uniform field transverse to the principal axis.   If this is to be 
accomplished with permanent magnet material in the form of a circumscribed cylindrical shell, it is clear 
that the orientation of magnetization must have reflection symmetry, as in Fig. 15. Also by symmetry, 
the magnetization of the infinitesimal sector, A, must be radially oriented in the direction of the desired 

field. 
If all the other sectors of the annular magnet ring were also pointed radially inward, each would 

contribute a field, dBw, at the center of the cavity equal to that of A in magnitude, but oriented at an 

angle of 0 to that of A, where 0 is the azimuthal angle. Of course, this would result in mutual 
cancellation of all the dBw's. According to our theorem, if the orientation of each segment is now 

changed by -0 , the fields of the individual segments would all be in the same direction everywhere and 
hence would add without cancellation. Therefore, the prescription of the theorem is that the orientation 

of magnetization y be in the direction 

Y = 20 (35) 

The magnetic field in the cavity can then be found either by determination of the surface, os, and 

volume, crv; pole densities arising from the magnetization M and insertion of the results into 

Coulomb's law; or by application of Maxwell's equations to the boundaries of the magnetic material.17 

The pole densities are given by os = n-M and av = -VM, respectively, where n is the unit vector 
normal to the surface under consideration. The resulting field in the cavity (w) is uniform and given by 

Bw = Brln(R2/Rj) (36) 

where Rj and R2 are the inner and outer radii and Br is the remanence of the magnet. Thus it is seen 

that there is no limit to the magnetic field that can be obtained in such a structure provided only that the 
outer radius R2 be made large enough. Due to the logarithmic dependence of B0 on R2, material bulk 

quickly becomes prohibitively large with relatively small field increments. Nevertheless, fields of twice 
the material remanence should be practicable, namely 2.0 to 2.5 T for the highest energy product 
materials used, e.g., Nd-Fe-B. If, for example, Br = 1.2 T, the working space is 2.5 cm in diameter and 

the outer structural diameter is 15 cm, the internal field will be given by 
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Figure 15. Cylindrical dipolar field source, (a) If a cylindrical dipolar source is to produce a uniform field in a 
cylindrical cavity as shown above, it is clear from symmetry that the infinitesimal elements A and A'must be 
oriented as shown. The large arrow indicates the field in the inner cavity, (b) Ideal structure resulting from 
rotation theorem, (c) Segmented structure approximating (b). 

Bw= 1.2 In (15/2.5) = 2.1 T (37) 

which is an impressive field to be generated in so large a working space by a structure that can be 
packed into a cylinder 15 cm in diameter and which generates no stray field. 

Ease of manufacture can be facilitated by approximation of the cylindrical boundaries with 

circumscribed polygons so that the structure is made of trapezoidal segments as in Fig. 15c. 13 If this is 
done, the expression for the field becomes 

Bw = Br 
sin(2n/N) 

2JT/N ln(V^) (38) 

where N is the number of sides of the polygons. Even polygons with as few as eight sides still generate 
a field 90% ofthat obtained with ideal circular cylindrical surfaces. 

Figure 16. Wiggler made from slices of octagonal cylindrical transverse field sources. 
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Structures of this type are useful for any application in which high transverse fields are required in 
elongated cavities as in nuclear magnetic resonance imagers, biasing fields in electronic filters and 
general utility laboratory magnets. Cross-sectional slices of the structures can be used as segments of 
wigglers and undulators of free electron lasers to provide higher fields with less bulk and mass than is 

possible with conventional structures (Fig. 16).12"16 Use of such structures and of their quadrupolar 

forms in particle beam guidance and MRI has been pioneered by Halbach12"15, Holzinger16 and 

Zijlstra.17 

The cylindrical structures can also be made to be mechanically adjustable.19 This is done by 
fabrication of the magnet in two rings with one nested inside the other as in Fig. 17. Then the field 
within the central cavity will be the vector sum of the fields produced by the individual rings. If the 
rings are dimensioned so that each produces one half the field individually and are rotated with respect 

to each other by an angle a, the magnitude of the field within the cavity is just 

BJa) = Bw(0)cos(a/2) (39) 

Figure 17  Adjustable circular-cylindrical transverse field source. 

where BJa) is the maximum field, which occurs at a = 0. Thus any field in the range ± Bw is easily 

available. For field equality of the individual rings, the radius R3 of the boundary between them must be 

the geometric mean of the outer and inner radius of the device: 

&i - 4Rl^2 (40) 

Variable flux sources of the type shown in Fig. 17 can be approximated with only eight segments in each 
ring. They are very useful in laboratory instrumentation where a variable field is required. For example, 
a compact vibrating sample magnetometer has been described where a variable field of 0 to 1.2 T is 

generated in a 26 mm bore by a Nd-Fe-B structure.20'21 

Fields of higher multipole value than dipole can also be generated by an appropriately faster change 
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in variation of orientation, y, with (j), so that 

y = ((n/2) + l)0 (41) 

where n is 2 for a dipole, 4 for a quadrupole, and so on.13 

To make a ring of this type it is not necessary to make the many pieces with different orientations 
individually.22 For example, in the manufacture of a dipolar source, it is only necessary to orient a ring 
in a single unidirectional field, as in Fig. 18a. The ring is then cut into as many sectors as the desired 
approximation to a perfect ring demands. The pieces are interchanged according to the prescription 
6 ±^ -6 as shown in Fig. 18b and glued together to form the desired structure in Fig. 18c. This is 
possible because every possible orientation of magnetization with respect to the local radius is contained 
in the structure of Fig. 18a. They need only be reassembled to yield the dipolar source of Fig.l8c. The 
same result can also be obtained by a 180° rotation of each segment about its local radius. 

A similar procedure can be used to make higher pole sources, but then n structures such as that of 
Fig. 18a are required to yield the n of the desired n-poled arrays. The sequence of assembly of a 
quadrupolar source is shown in Fig. 19. 

4.  Flux Confinement to Polygonal Cavities 

It is often desirable to produce a strong transverse magnetic field in a cylindrical cavity of 
equilateral polygonal cross section. It is sometimes further required that the magnetic field be 
completely confined to within the outer boundaries of the structure with said boundaries being parallel 
and similar to the cavity boundaries. The latter requirement is to ensure the possibility of successive 
nesting of similar structures within each other to take advantage of the additive property of such fields to 

produce a large interior field equal to the sum of the components. Because of its usefulness in MRI,19,23 

a square cross section due to Abele will be considered as an example of the method of determination of 
the structure. 

I 

t 

t 

4 t 

I 

t 
(c) (a) (b) 

Figure 18. Construction of circular-cylindrical transverse field source, (a). Structure is magnetically aligned (small 
arrows) in a uniform magnetic field (big arrows) and sliced into segments (dotted lines), (b). Pieces are 
interchanged as shown and bonded to form the finished structure (c). 
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We begin with a consideration of the top segment of the square magnet. It is of trapezoidal cross 
section with 45° base angles. Because of square symmetry, only one half of it need be considered. For 
simplicity, it is desirable to have fields, magnetization and flux density constant over any of the 
segments into which the half trapezoid is to be divided. It is not possible to accomplish this together 
with flux confinement and generation of the desired field with a single piece. Accordingly, to attempt to 
fulfill all the requirements, we divide the segment into two triangular pieces 1 and 2 as shown in Fig. 
20.The strength of magnetization J = Br is the same for both. Since it is clear that the orientation of 

the magnetization in segment 1 should be in the direction of the desired flux density Bw, we need only 

determine the thickness t and the orientation of the magnetization in segment 2 that will fulfill the 

requirements: 

(1) That there be no flux exterior to the structure. 

(2) That the specified uniform flux density, Bw, be generated in the interior cavity. 

(3) That the exterior boundary of the structure be a square. 

The first condition applied to the circuital form of Ampere's law dictates that 

j H.dl = 0 = ß0JH.dl = j B0dl 

%y +8(^(^0+ Bwr1=0 (42> 

or if paths of integration ab or cd of Fig. 20 are chosen 

Boi^V^-Vl W 

so that 

B01 = B02y (44) 

The second condition applied to Gauss' law at the cavity boundary yields 

Bl = Bw (45) 

And since 
Bl = B0l + J = B01+Br (46) 

Eq. (45) becomes 
B0l=Bw-Br (47) 

and insertion of (47) into (43) determines t viz 
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Figure 19. Formation of two quadrupole sources from two dipole sources. A. Start with two dipolar structures A. 
and B. Separate every other segment from adjacent segments to form two new structures for each original 
structure. C. Compress structures B in direction of circular arrows to form structures C. D. Assemble structures C 
to form structures D. 
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Figure 20. Determination of configuration of upper segment A square dipolar field source. 

Field 

Figure 21. (a) Side segment of square if relative magnetic orientation were that of Fig. 20.  (b) After -90° rotation 

of all magnetizations. 
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t = iiLL = i\ (48) 
Bw — Br       BwIBr-\ 

t = rrxl(\-r) (49) 

where r = Z?w / Bx, that is, the fraction of the remanence flux density of the magnet that is manifested 

as useful flux density in the cavity. The fraction r cannot be chosen arbitrarily if the outer boundary is 
to be a square. To demonstrate this, we apply Ampere's and Gauss' laws to the outer surface. For B and 
H to be zero everywhere exterior to the outer boundary, these laws require that BQ2X = 0 and B2Y = 0 

so that BQ2 and B2 must be mutually perpendicular and respectively normal and parallel to said 

boundary and since BQ2 + Br = B2 

(B02)2 + (B2)2 = B2
r (50) 

Since the outer boundary is a square with its sides parallel to those of the inner boundary, application of 
Gauss' law at the boundary (1,2) yields 

B2 sin (j) = Bj cos <j) (51) 

B2 = B1ctn<j) (52) 

where 0 is the angle between (1,2) and the inner boundary. 
If we insert (51) and (52) into (50), we get 

Bl
2ctn1<l> + Bl2=B2

2 (53) 

but 
B01 = B02y = B02,ctn(t> = rj/t,Bj= Bwand £jj = Bwrj/t (54) 

so that (53) becomes 

2Bl(rilt)2=B2
2 (55) 

2(rrI/r)2 = l (56) 

4lrrx=t (57) 

From (49) and (56) we get 

V2-1 r=^/r"=a293 (58) 
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If (58) is inserted into (56) we obtain the ratio of ^ to t, 

^ = ^7=2.41 
t    0.293 

(59) 

Because from (50), (54) and (55) we have that B02 = B2, and the angle cc between Br2 and£2 is 

B„ 
a = tan -1 -"02 _ 

B-, 
45c 

so that the direction of Br2 is parallel to the boundary AB of Fig. 20. By symmetry, the directions of 
magnetization in the side forming the bottom of the configuration are just the inverse mirror images of 
those just formed for the top side. The magnetization orientations in the other two sides are found by the 
dipolar rotation theorem. If the side shown in Fig. 21 had its magnetization vectors arranged relative to 
its sides as in the top side, the resulting field would point to the left as in Fig. 21(a). For the field to re- 

enforce that of the top side it must be rotated 90° to make it point straight down as in Fig. 21(b) and 
therefore the magnetization must all be rotated -90°. The complete resulting configuration is shown in 
Fig. 22. A permanent magnet material of remanence 1.0 T produces a flux density of Bw = 0.293 T in 

the square cavity and there is no limit to the intensity that can be attained by successive circumscription 
of similar structures so that the total flux density is 0.293n T where n is the number of layers used. 

Such square structures are particularly useful as MRI magnets because they can be compensated for 
small random defects incurred in manufacture and assembly.24 This is accomplished by the placement 
of small dipoles at the inner or outer periphery of the structure, usually in the inner corners. The magnet 
is constructed from sectional slices that are compensated individually. The field that an ideal slice 
should generate is calculated and then compared with the measured actual field. The deviation field is 
then Fourier analysed to determine the magnitudes and directions of the compensating dipoles needed. 
Fortunately, satisfactory compensation can usually be achieved with terms no higher than the dipolar. 

See references 24, 25 for details. 

Figure 22. Square dipolar field source.  Large arrow shows field in cavity.  Small arrows show orientations of 
constituent magnets. 
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Figure 23. Triangular dipolar field source. Large arrow shows field in cavity. Small arrows show orientations of 
constituent magnets. 

Table 3. Comparison of cylindrical confined flux sources with similar inner and outer boundaries. BW(T) is the 
field produced in a 1 cm cavity, AT(cm2) is the cross-sectional area of the structure, AM(cm2) is the cross- 
sectional area occupied by material, and Br is the 1 T magnetic remanence used in all cases. 

Structure Bw Bw/Br At •A-m VAt Bw/Arr 

Triangular 0.50 0.50 5.2 3.9 0.96 1.3 

Square 0.29 0.29 2.0 1.0 1.5 2.9 

Octagonal 0.32 0.32 1.7 0.83 1.9 3.9 

Circular 0.35 0.35 1.6 0.78 2.2 4.5 

The same procedure can be used to find a triangular structure such as that of Abele26 which fills the 
same requirements as those specified for the square structure (Fig. 23). Table 3 compares the triangular, 
square, octagonal, and circular configurations with regard to structural parameters. The triangular 
structure produces a higher field with a single layer than does the square. The circular structure 
produces a higher field than either with the same amount of magnetic material but requires more pieces 
for a near approximation (99%) to its theoretical performance. Therefore, if simplicity of manufacture is 
the prime consideration, the triangular section is best, but it is the worst in field strength produced for a 
given quantity of magnetic material. The circle is best in the latter regard but, as noted, is the most 
complex. The square is intermediate and can be easily dipole-compensated for structural defects. The 
octagonal approximation to the circle is simple and produces a strong field but does not afford total flux 
confinement. 

Uniform fields can be provided in cylindrical cavities of any cross section. The shape need not be 
symmetrical or even externally convex.  The details of the generation of such fields can be found in 
references 23-29. 

If the required fields are less than about half the remanence, open compact sources for fields in 
axially finite cavities can be made from such sections and the open faces then clad according to the same 
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principles described in the discussion of permanent magnet solenoids. A clad section of an octagonal 
source is illustrated in Fig. 24. 

Figure 24. Section of an octagonal pyx. The source of the field is the octagonal ring. The rest of the magnets are 

cladding to keep the field in the interior (large arrow) confined and uniform. 
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Figure 25. Transverse field along the axis of an octagonal approximation to a magic ring, with I.D. = 2 cm, O.D. 

4 cm. 
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End effects arise in unclad structures of finite length.27 This is illustrated in Fig. 25 for octagonal 
magic cylinder approximations of different length, /. The field is essentially that of an infinite cylinder 
except where an end is approached to within a distance approximately equal to the structural diameter, 
d, where they begin to decline reaching about one half maximum at the end. For l=3d, the constant 
portion of the curve is still essentially at full field. For l=2d there is no region of constant field but the 
maximum is nearly as great as in the longer structure. For l=d the maximum field is smaller. Similar 
end effects are present in transverse field structures of different cross-sectional geometry. 

Since permanent magnet MRI imagers are open ended, it would seem that their axial length would 
have to be prohibitive to provide a sufficiently large region of space with the required magnetic field 

uniformity. Abele27 has provided an ingenious solution wherein by a judicious removal from the 
magnet cross section of slices of the proper thickness and location, the field harmonics that constitute the 
end effects are largely removed. A typical case cited is for a magnet with a length of twice its bore in 
which the field inhomogeneity over a central sphere of one quarter bore diameter is reduced by two 
orders of magnitude by the removal of five slices. 

Other examples and details of the procedure can be found in reference 27 beginning on page 336. 
In finite structures, the rotation theory holds only approximately, because of the change in problem 

dimensionality. As a result, in structures of squat aspect ratio, the formula y = 26 does not yield the 
most efficient configuration,17 but the approximation is still a good one for l/d>3. 

The fields in all such arrays can be made to taper in magnitude with progression along the axis. The 
field plot in Fig. 26 is for one in which the field has a linear taper which is imposed by a like taper in the 
magnetic remanence of the tube. The graph shows end effects similar to those of the taper free 
structures. Tapered fields of this type are useful in MSW channelizers. 

0.30 

-6-4-2 0 2 4 6 

Distance from the center of the ring in centimeters 

Figure 26. Transverse field along the axis of an octagonal approximation to a magic ring with a tapered field. 
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5.  Rod Ensembles 

Particularly useful but simple configurations can be assembled from transversely magnetized rods 
arranged in circular, cylindrical arrays.20'21 Figures 27a and 27b show two such configurations of four 
and six rods respectively. The field magnitudes can be varied by rotation of the individual rods and the 
field profiles of Fig. 28 are for the maximum and minimum fields obtainable for the four rod 
configuration or the magic "mangle." The mangle has been used by Coey et al. to apply magnetic fields 
to specimens examined on optical microscopes. The two prototype models produce variable fields over 
±0.035T and ± 0.25T and uniform over a volume of radius 3 mm. 

The more rods that are in such an ensemble, the more closely the field approximates that of a magic 
cylinder. For example, the qualitative resemblance of the axial field of the six rod "magic colt" of figure 
29 to that of a magic cylinder is obvious. 

(b) <§gTl 

Figure 27.   Variable flux sources composed of four and six rotatable rods. The orientations shown correspond to 
the maximum field position. 
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Figure 28. Field profiles for the structures of Fig. 27. 
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Figure 29.   Field profile for the 6-rod magnet or magic colt configuration at maximum field. 
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6.   Three Dimensional Structures 

If a thin section of any cylindrical transverse flux source is rotated 180° about its polar axis, its 
locus forms a closed chamber in which, of course, there are no end effects as in a finite cylinder and in 
which the fields are greater than in the corresponding cylinders. For example, the spherical source 
pictured in Fig. 30a produces a uniform field in its cavity that is four-thirds as great as that in a cylinder 

with the same inner and outer radius.17'22 If Br is 1.2 T and a flux density of 2.0 T is desired in a cavity 

2.5 cm in diameter, the outer diameter of the sphere need be only 10 cm. Figure 31 shows the fields 
attainable as a function of the outer radius for different values of Br. This figure also illustrates the 
importance of obtaining higher Br's for the production of higher fields at still lower material masses than 

the very affordable ones already available. 
The fields produced in the spherical cavities are not only high but remarkably uniform along the 

axis even when axial tunnels are bored through the poles. Figure 32 shows the computer calculated field 
profiles for a sphere with r^rj = 2 and with axial tunnels of varying diameter. It is clear that for 

tunnels up to one-fourth the internal cavity diameter, the internal field profile is negligibly affected in 
amplitude and only slightly in uniformity. This suggests great utility for short Faraday rotators and 
possibly in-tandem periodic structures for particle beam focus. The latter is attractive because the field 
in the tunnels can be made to be nearly the reverse of those in the cavities. Because the square wave 
field configurations have higher axial field amplitudes than are possible in conventional periodic magnet 
stacks and because the squareness results in an average field value close to maximum, better focussing 
should result than from the conventional sinusoidal configuration. 

Ideal 
Structure 

Actual 
Structure 

(a) (b) 
Figure 30. Spherical magnet structure. The field in the central cavity is given by BQ =(4 ß^ln (r/rj where 
Br is the magnetic remanence and r2 and r1 are the outer and inner radii respectively. 
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Figure 31. Plot of field vs outer radius for the magic sphere with 1 cm cavity. 

A drawback of the spherical structure is that it does not confine magnetic flux completely,19 but 
generates a small dipolar field outside of its outer surface. If this field is troublesome for a particular 
application, it can be easily cancelled by means of a uniformly magnetized shell on the outer surface of 
the spherical source. The shell is mounted with its magnetic orientation in opposition to the external 
field produced by the spherical source and is given just sufficient magnetic moment to cancel it. Since a 
uniformly magnetized spherical shell produces no field in its interior, it does not alter the specified field 
produced by the spherical source in the working space. 

As in the permanent magnet solenoid, longitudinal field taper can be built into both magic spheres 

and magic cylinders.29 Because of the very high fields and gradients produced by these structures they 
seem promising for use in ore and slurry separators where magnetic species are to be extracted. The 
figure of merit of such devices is the product of field strength with its gradient. The former induces 
large moments in particles of passive species and the latter provides the force that acts on those moments 
to pull the particles through the medium. 

The gradients are provided parametrically with the remanence of the cylinder or sphere varying 
directly with the polar angle 6. Such a remanence provides a corresponding linear field gradient in the 
direction of the polar axis in the sphere and the polar plane in the cylinder. 
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Figure 32. Axial field profile of the magnet structure of Fig. 30. Note the constancy of field in the cavity and also 
the relative insensitivity to the diameter of the access holes. 

Magic spheres can also be made to produce even higher fields than those of Fig. 31 if only a portion 
of the interior cavity is needed for a working space. For example, the structure of Fig. 33a requires only 
a thin tunnel-like structure as in a Faraday rotator or magnetometer. In that case, the field in the tunnel 
can be augmented by a spherical permanent magnet in the unused portion of the cavity oriented counter 
to the field of the sphere. The resulting demagnetization field is then added to the original field. For a 
solid sphere, the augmenting field is B/3 which is over 0.4 T for some materials. 

The structure of Fig. 33b is suitable for a working space in the form of an equatorial slot. In this 
case, the unused space in the cavity is filled with a passive ferromagnetic material such as iron which, if 
saturated by the magic sphere, adds to the original field a value of 2B/3 which for some iron alloys is as 

great as 1.6 T. 
Such structures are suitable for various particle beam devices such as synchrotron radiators; or free 

electron lasers - if the iron is inscribed with radial notches on the slot faces to give rise to an azimuthally 

periodic field. 
If a working cavity of less extreme aspect ratio is needed, both of the above augmentation methods 

may be combined to form a cylindrical cavity of any desired aspect ratio. Figure 34 illustrates such a 
structure and Fig. 35 shows how the field at the center of the cavity varies as aspect ratio at a constant 

volume of 101 cm3, an inner radius of 6.6 cm, an outer radius of 26.6 cm and a Br of 1.2 T. The 
extreme fields attained are those of an equatorial slot and of an axial tunnel, 3.3 T and 2.5 T 
respectively. Figure 36 compares the various magic sphere types with regard to fields obtainable as 
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functions of their outer radii. All types offer unprecedently high fields in proportion to structural size. 
For example, a design projected for use in a microwave tube employs a doubly augmented magic sphere 
with a cylindrical working space of aspect ratio 1.35. It produces a field in that space of 0.8 - 1.0 T 
depending on the Br of the material chosen. Its mass is an order of magnitude less than those of 
electromagnetic or conventional permanent magnet designs and its iron pole pieces offer shielding of the 
field-sensitive electron gun as well as field distortion-free access for the rather large gun chamber and 
collector.  Figure 37 shows the access of a standard sphere as compared to that of a doubly augmented 

a b 

Figure 33. Two types of augmented magic sphere, (a) Tunnel working space, (b) equatorial working space. 

Figure 34. Doubly augmented magic sphere; Y/A Iron, HI Permanent Magnet and 1-^1 Magic Sphere. 
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Figure 36. Fields of different types of magic spheres. 
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one. Figure 38 shows the contrast in field distortion caused by polar penetration of the two designs. The 
doubly augmented sphere shows near-zero field in the gun while producing a constant field of the 
required magnitude in the working space which is large enough to contain the microwave structure. 

Unaugmented magic spheres can also be altered to provide relatively distortion-free access via the 
following consideration. A uniformly magnetized spherical shell produces no magnetic field in its 
interior. If, therefore, the magnetization of such a spherical shell is vectorially added to that of a magic 
sphere, the resultant would produce the same field in the interior as the magnetization of an unaltered 

Gun Collector       Gun 

Figure 37. Magic spheres with electron guns and collectors, (a) Basic sphere, (b) Doubly augmented sphere. 
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Figure 38. Field profiles in the working spaces of the structures of Fig. 37. 
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sphere. The resultant can be made to be zero anywhere within the spherical shell by the proper uniform 
addition. Figure 39a, for example, shows how the required magnetization can be made to be zero at the 
poles. Then, since no magnetization is required at the poles, the material there can be removed with 
impunity thereby affording access. Figure 39b shows the provision of similar distortion-free access in 
the equatorial plane. 

a 

+ 

+ 

Figure 39. Production of distortion-free access for magic spheres; (a) for polar access, (b) for equatorial access. 

This method has the disadvantage that the magnitudes of the largest magnetizations required in the 
altered sphere are twice that of the original sphere. If the original sphere already employed the highest 
magnetizations available, the altered sphere could not be built.  One can circumvent this difficulty by 
increasing the outer radius in accordance with the formula of equation 35 and Section 6. Of course, this 
would entail a considerable increase in mass but would be worthwhile where field integrity is more 
important than light weight. Figure 40 shows the improvement of field profile when this procedure is 
used on magic spheres with large access ports. 
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Figure 40. (a) Polar and (b)Equatorial axis field profiles for normal and altered spheres with 22.5° equatorial gaps. 

44 



To effect the same results without a large increase in mass, we note that much of the access- 
compensated sphere employs magnets of less remanence than that available. If we were to use the 
maximum available remanence everywhere, we could pare off material in sectors where less than 
maximum remanence is called for so that the product Br In (r0 / r) remains the same everywhere. If this 
is done, the structures of Fig. 41c and 41e result for polar and equatorial access, respectively. 

li 

Axis of 
Rotation 

^ 

Axis of 
Rotation 

Figure 41. Geometric conversion of parametrically distortion-free access spheres to reduce mass. 

For the polar access, the mass is still larger than for an uncompensated sphere but not as large as for 
one compensated geometrically. For the equatorial access, the geometrically compensated sphere is 
actually less massive than the uncompensated sphere by about 5%. 

Geometric compensation is strictly valid only for the field at the center of the sphere and hence the 
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"bumps" in the axial field profile of Fig. 42. These, however, are a small price to pay for maintenance 
of the full field near the ends of the profile. In any case, the bumps are tolerable for most beam focusing 
purposes and may be reduced by parametric means when greater precision is needed, 
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Figure 42. Field profiles of standard sphere geometrically converted for distortion-free access at the poles. 

7.  Structural Simplification with Magnetic Mirrors 

All of these dipolar structures have anti-mirror symmetry in the equatorial plane perpendicular to 
their polar axes. For this reason, any of them can be cut at the equatorial plane and have either half 
placed on a high-permeability, high-saturation slab of material such as iron or permalloy to produce the 

same field in the interior that is produced in the cavity of an entire structure.30 This works because the 
anti-mirror image of the half-structure formed in the slab produces the same field in the hemispherical 
cavity that is produced by the missing half. Such a procedure affords a non-trivial structural 
simplification since only slightly more than half as many different magnet segments of complex form 
need be manufactured for the semi-structure. The working volume is reduced by half, but if the full 
volume of the working space of the whole structure is needed, it may pay to use a larger half-structure to 
furnish it. Although more magnetic material would then be used, this drawback may be compensated by 
the increased simplicity afforded by use of fewer pieces. 

An igloo-like structure made of half a sphere and a slab of iron is pictured in Fig. 43. Such a source 
made of Nd-Fe-B could provide a working flux density of 2 T in a 2.5 cm cavity with an outer diameter 
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of only 9 cm and a weight of 3 kg of permanent magnet material of 14 T remanence. This is an easily 
portable source and is potentially a very convenient general-use laboratory magnet. It also has the 
advantage of an easily accessible interior as lead holes can be drilled through the expendable iron slab 
rather than through expensive magnet material as in the sphere. This advantage affords greater 
flexibility with regard to modes of operation as iron slabs with different numbers, positions and sizes of 
holes would be easily interchangeable. Another advantage of the igloo is that transit through the iron is 
effected without encounter of field reversals. This is important for some electron-beam and Faraday 
rotator applications. 

Figure 43. Section of a hemisphere of a spherical field source like that of Fig. 30 rests on an iron slab which takes 
the place of the missing hemisphere. 

Figure 44. An eighth-sphere structure that produces the same field as a complete sphere with magnetic mirrors 
(superconductors), and anti-mirrors (iron). For simplicity, only the exterior and direction of polarity are shown. 

If room-temperature superconductors of sufficiently high lower critical field were ever to become 
available, it would be practical to further simplify such structures by providing actual rather than anti- 
mirror images in an axial plane.30   With various combinations of perfectly diamagnetic (B=0) 
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superconducting mirrors combined with perfectly paramagnetic (B0=0) iron anti-mirrors, many 

configurations would be possible. The octant structure is an especially impressive example as it reduces 
the practical minimum of 120 segments needed to approximate a spherical source to only 15, as shown 
in Fig. 44. 

8.  Periodic Permanent Magnet Stacks (PPM's) 

8.1  Travelling Wave Tubes 

Travelling wave tubes are sources of microwave/millimeter wave radiation that employ an electron 
beam which is focussed and guided by an axial magnetic field. Sometimes the field is furnished by an 
electric solenoid but solenoids tend to be bulky and depend on cumbersome power supplies. In military 
devices, especially airborne and ballistic ones, mass and bulk must be minimized.   To obtain the 

(e) ' (f) 

Figure 45. a. Simple PPM stack, b. Stack with indented pole pieces, c. Stack with tapered pole-pieces, d. 
Radially oriented magnets, e. Hybrid PPM stacks, f. Version of e with triangular magnet cross sections. Small 
arrows show magnet orientations. Large open arrows show the working fields in internal cavities. The long 
arrows at the ends show electron beams. Darkly shaded areas are iron pole-pieces. 
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necessary high field intensities in small-bore cylindrical structures, the fields are usually made periodic 
and are supplied by appropriate permanent magnet stacks. 

The simplest configuration is of the form shown in Fig. 45a where axially oriented magnets supply 
magnetic flux to the interior by way of interspersed iron pole pieces. Unfortunately, most of the the flux 
leaks to the exterior rather than passing through the bore where it is wanted. The pole pieces can be 
indented or tapered at their external boundaries to increase the reluctance of the external flux paths to 

reduce the flux there as in figures 45b and 45c, respectively. This is what is usually done,31 however the 
rigid permanent magnets make alternatives to this arrangement possible. An obvious stratagem is to use 
permanent magnets that are magnetized radially and are stacked to alternate between inward and 
outward orientations as in Fig. 45d. Such a stack is compared with the conventional array with regard to 
field and size in Fig. 46. The comparison shows a significant advantage in favor of the radial magnet 

a 

I 
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Desired Field (Teslas) 

Figure 46. Comparison of bulks of structures of Fig. 45. 

stack, especially in the technologically interesting region between 0.25 to 0.50 T where a conventional 
stack must be three times as massive to attain equal field with the same bore and period. An even better 
structure may be achievable by the use of the principle employed in the transverse circular cylindrical 
magnets already discussed. There large fields are obtained through gradual linear variation of the 

magnetization orientation with the coordinate angle (|). If the change in orientation of the magnetization 
with distance x along the axis of the radial magnet stack is made to be more gradual rather than in abrupt 
180° jumps, the much improved field-bulk curve of Fig. 46 results. Here the size advantage over the 
conventional stack at the fields of interest is of an order of magnitude and more, while at the higher 
fields it rises by two orders of magnitude. However, gradual variation of magnetization is not 
technologically feasible. Fortunately, as in the case of the rings, rather coarse orientation increments of 
90° between adjacent segments, as in Fig. 45e, produce a field ninety-four percent of that produced by 
the continuous variation. It is this insensitivity that changes the concept of gradual variation of 
orientation from an interesting speculative concept to a powerful technological tool. 
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Although the hybrid TWT magnets have impressive mass and field advantages over the 
conventional designs, they are more difficult to build for two reasons. First, it is hard to manufacture 
small-bore radially oriented ring magnets because of the difficulty of guiding sufficient flux through 
their bores to radially align and magnetize the high coercivity materials. Secondly, because there are no 
iron pole pieces through which small amounts of perturbing flux can be conveniently led to compensate 
for small field irregularities incurred in manufacture and assembly, all-magnet stacks are much harder to 

balance. 
A simple and very effective alternative is to make pole pieces of triangular toroidal cross section as 

in Fig. 45c.31'32 This increases the magnetic permeance of the bore relative to that of the exterior so 
that more flux flows through the former. It also increases the average effective length of the axially 
oriented magnets, thereby increasing the magnetomotive force that drives the magnetic circuits. Both 
effects increase the field amplitude in the bore. 

While it does not afford the spectacular mass and bulk advantages of the hybrid stack, the triangular 
poled array is still smaller by a factor of two than that of a conventional stack with indented poles at a 
bore field amplitude of 0.5 T. Moreover, it has none of the manufacturing and balancing difficulties 
associated with the hybrid stack. It is probably the best all-around practical alternative at present. 

8.2   Wigglers and Undulators 

Periodic transverse field sources are called wigglers and are used to provide lateral oscillatory 
motion to electron beams in free-electron lasers. It is this lateral acceleration that causes the electron to 
radiate. If the product of the flux density in T and the wiggler period in centimeters is of the order of 
one or less, the beam will radiate coherently and laser action results. When this occurs, the wiggler is 

called an undulator.13'33 

The resonance condition is easily derived. If Gaussian units are used the cyclotron frequency of an 
electron is given by 

f = eB/270nc 

and for the usual relativistic beam the frequency of the field oscillation is 

fc=dl 

where / is the period of the wiggler. For resonance to occur these must be equal: 

Jc ~ Jw 

Bl = Imic11 e = 10,700 G-cm 

or if B is in T 

5/ = 1.07«lT-cm 

an easy to remember condition. 
As usual, when magnetic fields with a rapid spatial variation are required, permanent magnets offer 
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the best solution. The simplest permanent magnet wiggler is just a series of bar magnets arranged as in 
Fig. 47a. More efficient would be planar arrays of magnets of alternately longitudinal and transverse 
orientation (see Fig. 47b). The principle used here is that of the hybrid TWT structure and, as in that 
structure, a high field-to-mass ratio results. But like the TWT hybrid, it is somewhat difficult to adjust 
because of its lack of iron pole pieces to which one can attach compensating shims. For this reason, the 
less bulk-efficient but more tractable arrangement of Fig. 48 is often used.13 It can produce very high 

E-beam 

E-beam 

(a) (b) 

Figure 47.   Simple wiggler structure, (a).   High field structure with 180° change in orientation of successive 
magnets, (b). Hybrid structure with 90° change in orientation of successive magnets. 

fields, is simple, relatively easy to adjust and probably the most practical choice where minimum mass 
and bulk is not a consideration. It has the advantage over the similar arrangement of Fig. 47a in that its 
indented pole pieces allow less flux leakage. 

Axial arrays of cross-sectional slices of any of the cylindrical transverse structures already 
discussed have the advantages of high-field capability and minimal flux leakage to the structural 
exterior, but they also suffer from relative complexity and are not readily adjusted by shims. 

Figure 48. Simple wiggler stack with alternately oriented longitudinal magnet interspersed with iron pole pieces. 
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8.3  Twister Structures 

• TO c BASES d TO f IDEAL STRUCTURES  g TO i ACTUAL STRUCTURES 

Figure 49. The three twister structures (d-f) with their respective transverse cylindrical bases (a-c) and their 
practical embodiments (g-i). 

The radiation from wigglers and undulators is polarized in the plane of the oscillatory motion of the 
electron beam.   Sometimes it is desirable that the radiation be circularly polarized in which case a 
different magnetic array is needed to impart the necessary helical motion to the electron beam. This can 
be accomplished by employment of either a bifilar helical electric solenoid or by stacking a series of 

wiggler elements so that successive elements differ in orientation by a small angle <(). This results in a 
field that is constant in magnitude but whose orientation changes continuously with progression along 
the beam axis. Figure 49 shows such arrays together with those with untwisted cylinders from which 
they are derived and the stacks of finite segments with which they are approximated in practice.   The 
structures shown in Figs. 49b and 49c will be recognized as ones having already been discussed in 
cylindrical form. The structure in Fig. 49a is a simple, transversely magnetized bar magnet with a hole 
bored along its axes to accommodate the electron beam. The magnetic field in the hole is generated by 
the dipolar distribution on the inner surface that arises from the constant magnetization of the material. 
This field is slightly reduced by the presence of the more remote poles that the magnetization forms on 
the rectangular ends. The field is also progressively reduced with rate of twist and coarseness of twist 
increments. Fortunately, the effect of the latter is small for reasonable increments. For example, the 36° 
change between successive segments used in a prototype results in a field diminution of the order of 
only one percent.   Figures 50 and 51 compare the properties of the three structures with regard to 
parameters of interest.   Although not quite so desirable as the structure of Fig. 49b, the simple bar 
magnet of Fig. 49a was chosen for a prototype design for a high powered radar source which is still far 
superior to the solenoid it will replace and less expensive than the other structures. The only advantage 
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of the configuration in Fig. 49c is that the iron equipotential it forms tends to smooth aberrations in the 
material and structure to give a more uniform field. The twister design was chosen over the wiggler 
because circularly polarized radiation affords better discrimination on some military targets. Also, in a 
twister the magnetic field is at maximum throughout its length while a wiggler produces an average field 
of approximately 0.707 maximum. 
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Figure 50. Maximum field attainable in three twister structures as a function of twist period to working space ratio. 
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Figure 51. Maximum field attainable as a function of segment thickness/period ratio for the octagonal structure of 
Fig. 49b. 
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PINS, 

ALIGNMENT RODS 

Figure 52. Exploded view of a twister prototype. 

Figure 53. Addition of fields of two nested twisters to form a wiggler field. 

The prototype was built and found to deliver the theoretical field of 0.13 T compared to the 0.06 T 
delivered by the presently employed solenoid with current of 200 amperes. Structural details are shown 
in Fig. 52. The magnet slices are mounted in brass discs for mechanical protection. Rods through holes 
near the periphery of the brass mounts offer the proper alignment and provide flexibility in twist rate so 
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that pitch can be adjusted or even varied with progression along the axis. The field strength and 
distribution agrees with the design specifications to about one percent. 

A wiggler made up of field adjustable nested rings discussed in the previous section affords an 
intriguing possibility. 19 if the inner stack of such a structure is rotated by 90° and displaced one quarter 
period along the axis, its field will add vectorially with that of the outer ring to form the helical pattern 
of a twister (see Fig. 53). Thus, the adjustable ring wiggler is not only quantitatively adjustable, but can 
be operated as a twister of the same frequency as well. 

A recent development in free-electron laser technology is that of the CHIRON-type wiggler. It was 
invented by Freund and Jackson at NRL to produce higher periodic field amplitudes in short-period 
wigglers by employment of the high saturation magnetization of iron alloys. Figure 54 shows a 
simplified version of the design actually made. 
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Figure 54 Simple CHIRON type wiggler. V/A is iron,  (a) iron vanes in applied field, (b) arrows show resulting 
polar distribution 

The iron vanes in the drawing are saturated by a strong externally applied field so that the pole 
distribution shown in the lower part of the drawing is formed. Since the pole density in the polar sheets 
is proportional to the magnetization which forms them and the 2.4T saturation value of the strongest iron 
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alloys is twice the 1.2 T of a high remanence permanent magnet, the charge sheets of the iron will be 
twice as dense. The vanes are staggered on opposite sides of the gap so that opposite polarities face each 
other across it. In the NRL wiggler, the structure is cylindrical and the gap is of annular shape, so that a 
hollow electron beam travels in the axial direction and vibrates azimuthally in the process. Hence, the 
name CHIRON wiggler for Coaxial Hybrid-Iron. At the Physical Sciences Directorate of the Army 
Research Laboratory, it was recognized that a simple twister structure could be made by employment of 

the same principle. A hollow iron pipe has a helical slot cut through its wall so that the half-period, A72, 

of the resulting helical bar of rectangular cross section is equal to its axial thickness x. When the bar is 
placed in an axially applied saturating field, magnetic poles with surface pole density form on left and 
right surfaces as shown in Fig. 55.   The result is two parallel oppositely poled ribbons separated 

a 
Applied Field 

Figure 55. (a) Iron helix in applied saturating field, (b) resulting polar distribution. 

by distance x so that opposite poles are at the ends of any inner diameter. The on-axis field generated by 
this distribution is diametric in direction and constant in value and undergoes a rotation of 2n with an 
advancement of X,=2x along the axis. Such a field is that of a helical free-electron laser or twister. 
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Figure 56 shows the field produced for two different twist-to-radius ratios A/rj where rj is the inner 
radius of the structure as a function of twister mass per unit length. The figure also compares this 
structure with a more conventional twister designed for NRL. The field-to-mass advantage of the former 
is obvious. Figure 57 compares the two twisters with regard to maximum field attainable at a range of 
twist values and again the CHIRON-type enjoys a substantial advantage except at the lowest twist ratios 
although it is marginally better even there. 

The CHIRON-type structure can also be formed from a permanent magnet but then the field would 
be reduced by approximately half because of the relative magnetization ratio of approximately 2:1 of the 
iron to permanent magnet. Figure 58 shows how two twister structures of opposite polarity can be 
threaded together to form pole layers of twice the density of a single unit and hence twice the field. This 
would raise the field to approximately that of the iron CHIRON or even slightly more if newer 
permanent magnet materials of higher remanence are used. This procedure would eliminate the need for 
a massive saturating coil with its power supply and cooling system, but would not afford an adjustable 
field as does the electromagnet. 
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9.  Conclusions 

While much progress has been made in rare earth permanent magnet technology over the past two 

decades, the demand for improvements seems to be perennial.1'2 As projected devices become more 
complex, the technological demands become more stringent. There is considerable room for 
improvement in the following areas. 

(1) Better temperature performance of temperature-compensated magnets. This includes 
temperature coefficients of the magnets' energy products and their extension to broader temperature 
ranges. Also important is further improvement of remanence and loop squareness. These developments 
are absolutely essential for the attainment of higher fields in smaller structures operating at greater 
power densities in TWT's projected for use in future lightweight, airborne devices. Raising the 
coercivities and squaring of the loops of the currently best Sm2Co17 temperature-compensated magnets 

might be a solution. Compensation of the Nd-Fe-B compounds might be an even better one as then- 
energy products are generally much higher than those of the Sm2Co17s but suffer from low Curie 
temperatures. 

(2) Improved magnet alignment in novel magnet geometries by getting sufficient flux where it is 
needed during the fabrication and magnetization processes. Sometimes this is very difficult in the case 
of conical shell magnets aligned normal to the cone surfaces, which are needed for the cladding of pole 
pieces in horseshoe-type magnetic circuits. Also difficult, for the same reason, is the radial 
magnetization of toroids with small holes and broad annuli. 

(3) Improvement of fabrication and assembly techniques through the development and use of better 
cements and dies. 

(4) A better variety of square-looped materials with low energy products is needed for widespread 
implementation of parametric field shaping. This might be done by the development of very high 
coercivity ferrites, or the dilution of oriented materials in a metal or epoxy matrix. 

Investigation of deposition of REPM materials in the form of films on surfaces of different 

geometries should continue to be pursued.34 Energy products must be raised, hysteresis loops squared, 
and mechanical and thermal ruggedness assured. Especially promising is the possibility of deposition of 
films of in-surface and normal-to-surface orientations upon each other. Success in such a venture could 
lead to a whole generation of small devices that are unattainable at present, e.g., miniature field sources 
for microelectronics, micromotors and miniature wigglers. 

In summary, the REPMs are very much more than just very powerful Alnicos. They afford not only 
the possibility of doing conventional tasks better, but offer a cornucopia of design options that were 
impossible before their advent. As mindsets acquired in the course of design experience with 
conventional magnets are discarded, the technological riches offered by rare earth permanent magnets 
can be fully and speedily realized. 
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