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CHAPTER 1 

Introduction 



1.1 Research Objectives and Methodology 

This research addresses the need to accurately analyze the performance of a 

particular class of frequency-modulation (FM) numerical demodulation techniques that are 

amenable to real-time implementation. The class of demodulators to be analyzed are those 

which apply the backward difference estimate of the time derivative of the phase to 

produce instantaneous frequency estimates. The receive-signal conditions used for 

performance analysis purposes are that of a single, discrete-time, constant envelope, 

frequency-modulated complex exponential in the presence of additive, spectrally uniform, 

Gaussian noise. With the performance of the backward difference numerical FM 

demodulator as an established baseline, a further objective is to address the performance 

enhancement of this demodulator in specific receive-signal conditions, by employing 

frequency feedback techniques. In this case, the receive-signal conditions of interest are 

frequency deviations that are large relative to the bandwidth of the message signal, a low 

sample rate resulting from decimation, and noise strengths that yield values of input 

carrier-to-noise ratio (CNR) of the order of 10 dB or more. 

The performance analysis methodology is a combination of theoretical analyses 

and experimental verifications via non-real-time computer simulations. More correctly, it 

is the noise-contaminated complex signal that is simulated and used as input to the 

demodulation processes, for performance measurements and comparisons. The 

demodulation processes themselves are direct floating-point implementations, and are 

more appropriately described as being experimental (although non-real-time) in nature. 



1.2 Background 

Since the pioneering work of Armstrong [1], Carson, and Fry [2], a wealth of 

research has been conducted in the theory and applications of analog FM communication 

systems. In particular, previous research has included various analyses of the effects of 

noise on the received signal, such as the work presented by Middleton [3, 4], Stumpers 

[5], and Rice [6]. More recently, with the advent of high speed digital circuitry and 

programmable signal processors, interest has turned toward discrete-time implementations 

of the FM demodulation process. 

Various methods have been proposed for performing discrete-time FM 

demodulation. These include zero-crossing interval averaging for signals where the 

deviation of the instantaneous frequency from the carrier is small, and iterative recovery 

techniques using zero-crossings as proposed by Wiley, Schwarzlander and Weiner [7] 

where large frequency deviations exist. In contrast to these techniques, the research to be 

presented addresses the problem of numerical demodulation of uniformly sampled 

discrete-time signals, using the complex analytic signal. An example of this type of system 

is the discrete-time FM receiver proposed by Kammeyer [8], in which sampled in-phase 

and quadrature signals are derived from the received analog signal and used to produce a 

linear estimate of the original message modulation. The processing proposed by 

Kammeyer is consistent with the continuous-time definition given by Cramer and 

Leadbetter [9] of instantaneous frequency, as the derivative (with respect to time) of the 

recovered phase component of the analytic signal. 



The earliest work employing the Hilbert transform for generation of the complex 

signal is commonly attributed to Gabor [10]. Among the quality references on the 

generation and use of the discrete-time analytic signal are the works presented by 

Urkowitz [11], and Oppenheim and Schäfer [12]. Consistent with Nuttall's work [13], 

Urkowitz correctly avoids the previously held notion that the modulated signal must have 

a bandwidth which is much smaller than the intermediate frequency (IF) at which 

demodulation takes place within the receive chain. This notion is also quite contrary to 

the common usage of what are referred to as "zero-EF" receivers employing in-phase and 

quadrature signals, where such a bandwidth to IF ratio becomes infinite. Practical 

generation of the sampled analytic signal is presented by Schussler and Weith [14], Regalia 

and Mitra [15], and Rosenkranz [16] using Hilbert transform techniques. Schussler and 

Weith present a design method for a causal recursive Hilbert transformer. The work by 

Regalia and Mitra allows for the use of known half-band filter design techniques in 

designing Hilbert transform systems. Rosenkranz presents an alternate sampling-based 

method to the more commonplace quadrature downconversion process presented in [11]. 

In addition to the reception and demodulation of man-made FM signals, research is 

also being conducted on the concept of instantaneous frequency as applied to the analysis 

of "naturally" occurring signals, such as animal vocalizations and human voice. Much of 

this work also relies on the generation of the sampled analytic signal for estimation of the 

discrete-time instantaneous frequency. Among the more revealing references for the 

concept of the instantaneous frequency of a discrete-time signal is the work by Boashash, 

Jones and O'Shea [17]. Although the central difference is used rather than the backward 



difference for approximating the time derivative, this work is an example where modulo 

2% processing is applied to the instantaneous frequency estimate of "monocomponent" 

signals, taking into account the circular nature of the Fourier transform of discrete-time 

signals. (As defined by the authors, a monocomponent signal is one "where there is only 

one frequency or a narrow range of frequencies varying as a function of time".) Their 

presented applications include the detection of harmonically related signals, and 

time-varying filtering. 

Included in work since that performed by Armstrong, Carson and Fry has been a 

considerable amount of effort in the design and analysis of receive systems employing 

feedback techniques. Part of this previous research is the analysis of devices such as the 

phase-lock loop (PLL), commonly referenced in texts on communications theory, and the 

less well known FM with feedback (FMFB) demodulator. The FMFB demodulator as 

introduced by Chaffee [18] and furthered by Enloe [19] and others, effectively acts as a 

time-varying or tracking filter. However, rather than changing filter characteristics over 

time, this device translates the incoming signal in frequency to the fixed center of a 

bandpass filter. The purpose of the bandpass filter is to reject out of band noise, while 

passing the narrow range of frequencies centered about the instantaneous frequency of the 

input signal. Inconsistencies in earlier performance comparisons of the PLL and FMFB 

demodulators began to be reconciled with Develet's research [20], in which appropriate 

conditions lead to equivalent servo-mechanisms. Emphasis more recently has been on the 

discrete-time implementation of these devices. 



The evolution of the PLL from continuous-time to various discrete-time 

implementations is readily apparent in the literature. For example, Rosenkranz [21] has 

presented a discrete-time approach to the PLL for numerical FM demodulation. The 

numerical implementation of a PLL is often referred to as a digital PLL (DPLL). The 

demodulator presented by Rosenkranz is a type of DPLL which is characterized by a 

non-linear phase detector. Continuous-time PLL devices with a nearly linear phase 

detector characteristic were studied by Robinson [22] and others, and were referred to as 

"tanlock loops". As the name implies, the characteristic of the phase detector in these 

devices approached the piece-wise linear phase characteristic of the arctangent. Research 

has been conducted on the numerical implementation of the tanlock loop, as evidenced by 

the work of Lee and Un [23]. Here, the authors present a non-uniform sampling device 

referred to as the digital tanlock loop (DTL). This numerical implementation is modeled 

using an exact piece-wise linear phase detector characteristic. As a more recent example, 

Ono, Aoyama, Hagiwara and Nakagawa [24] have presented a uniform sampling 

numerical PLL implementation with a linear phase detector. In this work and that of Lee 

and Un, we begin to see the appropriate trend to mathematically model the modulo 2TC 

process, and include this process in subsequent phase-domain block diagrams and models. 

Recently there has been much interest in time-frequency distribution theory and 

applications. Boashash and White [25] have employed methods of instantaneous 

frequency estimation to control a time-varying filter. Although the device is properly 

described as a tracking filter, the technique is more appropriately referred to as an open 

loop system. 



1.3 Overview 

As claimed within the work presented by Natali [26], there are relatively few 

publications pertaining to the automatic frequency control (AFC) loop, a form of tracking 

device employing frequency feedback. With Natali's research, we begin to see an interest 

in the performance analysis of numerical FM discriminators, as applied to the AFC loop. 

Even this work, however, does not include the use or performance analysis of a 

discrete-time FM discrimination device that has a linear characteristic over the entire 

Nyquist band. Thus it is evident that a need exists to properly characterize the 

performance of such discrete-time FM demodulation processes. 

In view of the previously stated objectives of this research, we begin in Chapter 2 

with the application of the concept of Riemann surfaces to the time-domain phase plane 

leading to the definition of a modulo 2% process, referred to as g[d\. Here, a is a variable 

representative of an input argument value, and g[a] is the output result. This process is 

necessary for the proper definition of the instantaneous frequency of a modulated complex 

exponential sequence. It is also necessary for proper theoretical analysis of the 

discrete-time angle demodulation processes. This analysis leads to the accurate prediction 

of changes in the error in Riemann sheet identification at any particular sample instant, 

referred to as a "phase cycle-slip". We continue in Chapter 2 with the demonstration of 

the equivalence of the traditional quadrature downconvefjer and the complex bandpass 

filter, for generation of the in-phase and quadrature sequences from the original 

real-valued input sequence. This in turn leads to the concept of the "generalized 

pre-envelope", as presented and used throughout the research. 



The concepts developed in Chapter 2 are subsequently used in Chapter 3 in the 

development and definition of the numerical FM discrimination process. In Chapter 3, we 

modify the Arcsine numerical FM demodulator presented by Kammeyer [8], to extend the 

linear phase detector characteristic to the complete Nyquist frequency band arising in 

complex-valued systems. We also introduce several other methods of numerical FM 

demodulation. These include the Arccosine, the Principal-Value Arctan (previously 

developed by the author), and the Standard numerical FM discriminator. The Standard 

numerical FM discriminator is derived from the conversion to discrete-time of a 

continuous-time FM discrimination process. Subsequent demonstration of the equivalence 

of the presented numerical FM demodulators to the Standard discriminator, and to the 

better known Direct and Indirect methods, allows us to refer to these devices as numerical 

FM discriminators. Chapter 3 concludes with the development of explicit sample rate 

requirements for frequency modulated complex exponential sequences. This leads to the 

definition of a pair of parameters which characterize the modulated complex exponential. 

These parameters are the relative message sampling rate, y, and the discrete-time FM 

(DTFM) modulation index, 5. The definition of the process g[a] is then modified for use 

with the generalized pre-envelope. 

In Chapter 4, an analysis is presented of the performance of the backward 

difference class of numerical FM demodulators in the presence of additive white (over the 

Nyquist band) Gaussian noise (AWGN). Both theoretical and experimental results 

obtained via computer simulations, are presented. 



Finally, in chapter 5, we address the issue of performance enhancement of the 

numerical FM discriminator under specific modulation conditions, through the use of 

specific frequency feedback techniques. Here, the reconstituted numerical FM with 

feedback (RNFMFB) demodulator is introduced. Enhanced discriminator performance 

demonstrated via computer simulation techniques. 

is 



CHAPTER 2 

Complex Numbers and the Generalized Pre-envelope 
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2.1 The Geometric Interpretation of Complex Numbers 

The purpose of the proceeding sections is to review the mechanism of the vector 

representation of complex numbers and complex valued time sequences [27]. A 

nonrandom complex number, C, can be represented mathematically in Cartesian (i.e., 

rectangular) coordinates as 

C=CR+jd, (2-1) 

where CR is a real valued number representative of the real constituent of C, and C1 is a 

real valued number representative of the imaginary constituent of C. The variable y has the 

usual meaning of the square root of-1. Note that it is the association or pairing of CR with 

Cj, combined with rules of complex arithmetic, which facilitate the processing of complex 

numbers on a computing device. 

Geometrically, C can be interpreted as a point in a two-dimensional plane, whose 

location is determined by the ordered pair of real numbers, {CR ,C}], as depicted in Figure 

(2-1). 

imaginary axis 

{Cnfij} 

real axis 

Figure (2-1). The geometric interpretation of a nonrandom complex valued constant, 
C = CR +jCi, as a point in two-dimensional space. 
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It is also apparent that this point in space is identifiable by a vector referenced to the origin 

with a particular length, L, and direction angle, a, as depicted in Figure (2-2) 

imaginary axis 

{QA} 

real axis 

Figure (2-2). The vector interpretation of a nonrandom complex valued constant, 
C=CR +jCj, referenced to the origin. 

The angle a is by convention measured from the positive real axis. This angle is 

considered positive when C7 is positive, and negative when Q is negative. Also, a is zero 

when Cj is zero and CR is positive. It is apparent that the ordered pair of real numbers, 

{L ,a }, is an alternate representation of the complex constant, C. 

The values of L and a are readily determined from geometric considerations as 

L ~ yj^-R + W    > (2-2) 

and 

a=Arctan{pr- } 
CR 

(2-3) 
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Thus L is the radial distance of the point {CR , C7} from the origin and is always 

non-negative. L is commonly referred to as the envelope, modulus or magnitude of the 

complex constant C, and is represented as \C \. The angle a is commonly referred to as 

the phase or argument of C, and is represented as ZC . This phase angle can be defined 

either as 

-7i < a < +7i, i.e., a e [-71, +TC) , 

or alternatively as 

-7E < a < +7t, i.e., a e (-TC, +TC] , 

for unambiguous representation. Special note is made of Equation (2-3), in which the first 

letter of the abbreviation for the arctangent is capitalized. This is to distinguish this 

arctangent of a ratio of two known real quantities, from the arctangent of a single known 

real quantity. In the latter case, an angle in the range -TC/2 to +TE/2 results, and is normally 

referred to as the principal value. In the case of the arctangent of the ratio of two 

quantities which are representative of the coordinates of a point in space, {CR , Q }, the 

signs of both CR and C, are necessary to determine whether to add or subtract % from the 

principal value resulting from the arctangent of the ratio of the coordinates. This in effect 

determines the phase quadrant in which the vector lies. Thus the complex constant, C, 

can be represented in vector or polar notational form as the pairing 

c=\c\zc. 
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As with the ordered real pair {CR,CI}, complex arithmetic rules have been developed for 

the ordered real pair {\C \, ZC }. These rules facilitate the processing of complex 

constants represented in polar form, on a computing device. 

2.1.1 Further Considerations of the Phase Angle a 

From further geometric considerations it is evident that the real component of C is 

Re{C} = CR = IC\ cos[a] , (2-4) 

and likewise the imaginary component is 

Im{C}=CI=\C\s\n[d\. (2-5) 

Employing Euler's identity leads us to the exponential representation of the complex 

constant C, as the product 

C=\Cya. (2-6) 

The exponential form places in evidence the fact that a need not be constrained to be less 

than 7t in magnitude. This is a consequence of the modulo 2% nature of the cosine and 

sine functions in Equations (2-4) and (2-5). Thus the exponential form leads to the 

concept of expanding the complex plane of Figure (2-2) into a continuum of "sheets" 

overlapping in a helical fashion, which can be likened to a spiraling staircase. We can 
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consider each angle a as resulting from the rotation of the vector C, starting from the 

phase angle zero. As the rotation progresses from slightly less than +TC to slightly greater 

than +7i, the vector representing C is said to progress from sheet 0 to sheet 1. Likewise, 

for any progression across the negative real axis, the vector is considered as progressing 

to the next sheet. (This helical surface is a particular example of what is referred to as a 

Riemann Surface [28].) 

To allow for the placement of the complex constant on some particular sheet, r, 

the angle a is written explicitly in terms of its constituents as 

a = ao + 2r% , r e integers , a0 e (-TC, +7C] . (2-7) 

In so doing, the various complex constants represented by Equation (2-6) become unique 

via knowledge of the integer r . This integer is representative of the number of angular 

rotations of the vector C through an entire 2TC cycle as referenced to the positive real axis, 

and corresponds to the sheet number on which the vector lies. For example, with a phase 

angle of-1. ITC , the vector C lies on sheet -1, and r is -1 . 

Note that in many situations, the integer r may not be known. In this case, 

determination of the phase angle via Equation (2-3) from the ordered pair {CR , C7 } , will 

yield a0 rather than a . Thus in general, the ordered triplet {CR , Q, r } is required for a 

"complete" representation of the complex constant C . Likewise, the ordered triplet 

{\C |, a0, r } will be referred to as a complete representation. 
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2.2 Processing Considerations in the Utilization of Complex Numbers 

In many situations where complex numbers are represented and processed on a 

computing device, the representation is either intentionally or necessarily incomplete in the 

sense that the integer r is not used or not known. For example, in representing the 

discrete-time counterpart of a continuous-time bandpass signal, the initial value of r is 

either unknown or assigned the value zero. In fact if r, as a result of processing, takes on 

another value other than zero, it is often re-assigned the value zero. In such a case, the 

process is utilizing a0 rather than a . This prompts us to define the function, or more 

correctly, the process g[ ] as 

g[a] = {a + K ■ sgn(a)} „oduua* - n ■ sgn(a), {a + % ■ sgn(a)} moduio2n * 0 , 
= +7C , {a + K ■ Sgn(a)}modulo2n = 0   , 

sgn(b) = +1 , b > 0 
=0,6=0 
= -l,ft<0. (2-8) 

A plot of g[a ] versus a is shown in Figure (2-3). The process g[a ] is simply 

representative of the information loss in going from the ordered pair {\C \, a }, triplet 

{\C |, a0, r } or triplet {CR,Cj,r} representation of C, to the ordered pair {\C |, a0} 

or {CR , Cj}. Likewise, it is representative of the modulo 2n nature of the quantity eta. 

Note for example that 

v-o = g[ao] = g[a], (2-9) 

17 



demonstrating that all phase angles are mapped to sheet 0 , by the process g[a ]. 

sheet-1 sheet 0 sheet 1 

Figure (2-3). The process g[a ]. 

From Equation (2-9) it is also readily apparent that 

eja0 _ ejg[a0+2r%] 

- eMao] (2-10) 

Thus for the incompletely specified complex number C represented as {CR , C7}, the 

equivalent exponential form of C is ICI^1"1 . 

2.2.1 Implicit Versus Explicit Addition of Phase Angles 

We are now able to make a distinction between the implicit and the explicit 

addition of the phase angles of complex numbers. The addition of two phase values which 

obtained via independent applications of Equation (2-3), is considered to be an 

plicit addition. The result of this addition ranges from -2% to +2n radians, since each of 

were i 

ex 
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the phases being summed ranges from -% to +% . More generally, if M such phase angles 

from sheet 0 are added together, the result ranges from -M71 to +M7t radians. Note that 

explicit phase angle addition results in a phase angle that is associated with a resulting 

complex number which may require a complete representation; i.e., the integer r 

associated with the resultant complex number may be non-zero. 

An alternate method of implementing the addition of the phase angles of a set of 

complex numbers is to do so implicitly, via complex multiplication. For example, consider 

the resultant product, C, of the complex numbers A and B, where 

A = |y4|eM«oa+2ra7c] 

and 

B = \B\eJ8[a°b+2rblzi 

Here, the phase angles a0a and a0i and the integers ra and rb are such that 

ctoa = g[a-a] and oco6 = g[oib] , with aa = a0a + 2ra% and a& = a06 + 2rbiz . 

The product is formed as 

C = AB 
= {AR,AI}-{BR,BI) 
= {AR-BR-AI-BI,AI-BR+AR-BI} 

= {CR,Ct}. (2-11) 
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The resulting phase, a0c, is found using Equation (2-3). Equivalently we can write 

C = AB 
= Ule*[°Bl- \B\eJg^b] 

= \A\ • \B\eJ8^a"^g[ai'^ 
= \C\eto*  . (2-12) 

Note that even if ra and rb are known, rc is not identifiable using the implicit method of 

phase additions. Note also that if phase differencing is desired, the difference can be 

performed implicitly by first forming the conjugate of B as 

B* = {BR ,-Bi}, 

and subsequently forming the product AB*. 

If it is desired to obtain the implicit result using explicit phase additions, the 

process g[a ] can be applied to the explicit result. It will become evident as this research 

progresses that the distinction between implicit and explicit phase additions is needed to be 

able to properly analyze the numerical FM discrimination process. 
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2.3 The Discrete-Time Bandpass Signal Representation and Generation of the 

Corresponding Complex Envelope 

We turn our attention now to the representation and processing of signal 

waveforms that are essentially bandlimited in frequency, such that these continuous-time 

signals can be uniformly sampled in time with tolerable destructive aliasing. For samples 

equally spaced in time (i.e., uniform sampling,) the Nyquist sample rate requirement 

implies that a lowpass signal of bandwidth WUz can be sampled at time intervals of 

At= Ts< l/(2W) seconds, to prevent (destructive) aliasing of frequency constituents. This 

translates to selecting a sample rate, Fs =\ITS, greater than twice the lowpass signal 

bandwidth, W. For bandpass signals of approximate bandwidth B' Hz, and originally 

centered at some carrier frequency fc, Hz, sampling can be performed as above by first 

downconverting to a new center frequency of fc > B'I2 Hz, with W=fc + B'/2. In this 

manner, we have not violated the requirement that the bandpass bandwidth relative to/c 

must be less than 200% [11]. Further details of this process are deferred to Chapter 3. 

By sampling such a bandpass, continuous-time signal s(t) at integer multiples of 

A* -Ts, we obtain the discrete-time sequence s(nTs) , where the index n is an integer 

which identifies a particular sample of the newly obtained sequence. 

2.3.1 A Method of Complex Envelope Generation: The Numerical Quadrature 

Downconversion Process 

The numerical or digital quadrature downconversion process [11] is presented as a 

model of the processing which is required to generate the in-phase (/') data 

corresponding to the real constituent of the complex envelope sequence, and the 

21 



quadrature (q) data corresponding to the imaginary constituent of the complex envelope 

sequence, from the real sequence, s(nTs). As will be seen in Section 3.3, a properly 

downconverted and sampled angle modulated signal can be considered to be a 

discrete-time bandpass process. We represent this input signal, s(nTs), as 

s(nTs) = a(nTs)cos[2KfcnTs + $(nTs)] ,       a(nTs) > 0 , (2-13) 

where a(nT) is the time varying amplitude of s(nT), and §(nT) represents the phase or 

angle modulation imposed on the signal. In this research, fc is defined as the true center 

frequency after analog downconversion (immediately prior to sampling), which is 

considered to be close to the center of the Nyquist bandwidth. Thus for a sampling rate of 

Fs samples per second, fc is about halfway between 0 and FJ2 Hz, i.e., fc = FJA Hz. 

As seen in Figure (2-4), the input signal, s(nTs), is replicated and mixed with two local 

oscillator frequencies which are in phase quadrature relative to each other, and at the 

tuning frequency, f . This tuning frequency is set to exactly (within the numerical 

accuracy of the processing device) one-quarter of the sampling frequency, since this is our 

best estimate of the true center frequency, fc. The mixing (numerical multiplication) 

process generates in the /' and q channels, frequency components centered around both 

(/c+//)and (fc'fi)- The role ofthe (identical) lowpass filters is to remove the 

unwanted components centered around (fc+f). Further insight into the workings ofthe 

numerical quadrature downconverter is arrived at by analyzing the channels 

simultaneously using complex signal representation. 
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s(nTs) 

2cos(2KfmTs+Q) 

*? LPF 

In-phase 
Channel 

» KnTs) 

Quadrature 
qP(nTs)\   pigital   I   Channel 

> q(nTs) 

-2sm(2nfinTs + Q) 

Figure (2-4). The numerical quadrature downconverter. 

The rules of complex arithmetic justify the interpretation of the overall mixing 

process as the multiplication of the real input signal by the complex exponential 

2e-ya,„(«r,) = 2cos[a/0(„^)] _y. 2sin[a,0(«r,)] , (2-14) 

where 

oiio(nTs) = g[2%fi nTs + 9] . (2-15) 

The result is the circular (i.e., periodic) convolution of the periodic spectrum of the input 

signal with the periodic spectrum of the complex exponential of Equation (2-14). In 

effect, the original signal spectrum, S(^2nfT'), is circularly rotated down in frequency by 
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the amount f,. This is a direct consequence of the discrete-time modulation or windowing 

theorem [12]. 

Figure (2-5) shows a representative set of resulting magnitude spectra, at various 

stages in the numerical quadrature downconversion process. The pair of digital or 

discrete-time lowpass filters can be interpreted as a single real filter operating on complex 

data, with the desired magnitude response as seen in the figure. Thus after multiplication 

by the complex exponential, but prior to the filtering, we have the pre-filtered complex 

signal 

sp(nT,) = iP(nTs) +jqP(nTs) , (2-16) 

where 

ipinTs) = 2 • s(nTs)cos[2%fi nTs +9] (2-17) 

and 

gp(/i7,,) = -2-5(/ir,)sin[27c//7i7',+e] . (2-18) 

After application of trigonometric identities and lowpass filtering, we obtain the 

approximation to the sampled complex envelope, s (nTs) , as 

s(nTs) = i(nTs)+jq(nTs), (2-19) 

where 
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and 

i(nTs) = a(nTs)cos[2nfenTs + $(nTs) - 9] (2-20) 

q(nTs) ~ a(nTs)sm[2nfenTs + §(nTs) - 0] (2-21) 

2\S(e>2*T')\ 

c) 
15(^^)1 

~i i 1 1 1 r 
-Fs -Fs/2     -f „ f Fs/2 -Fs/2     -/ _ f Jl 0 Jl 

Figure (2-5). A set of representative signal magnitude spectrum plots: a) Representative 
input signal magnitude spectrum; b) The frequency shifted and pre-filtered signal 
magnitude spectrum; c) The magnitude spectrum of the resulting complex envelope 
estimate. 
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Here, /, is the error in the estimate of the true center frequency, i.e., /, = (fc - /)• This 

error is a consequence of the noncoherent nature of the quadrature downconversion 

process, and can be either negative or positive. In the absence of a tuning error, the 

remaining error accounted for by the above approximations, is due to the non-ideal nature 

of the lowpass filters. The quadrature downconverter therefore generates the sequence of 

ordered pairs, {i(nTs ),q(nTs)} as a time-ordered series of Cartesian coordinates, available 

for subsequent processes. 

2.3.2 A Method of Complex Envelope Generation: The Complex Bandpass Filter 

The processing of the sequence s(nTs) by the numerical quadrature downconverter 

as presented in Figure (2-4) and described in Section 2.3.1, will be shown to be equivalent 

to linearly convolving s(nTs) with a complex bandpass filter with impulse response 

heq(nTs) = h,(nT,) +jhq(nTs) , (2-22) 

and subsequently (circularly) rotating the result in frequency by the amount -/, Hz. To 

determine this impulse response, we first consider the complex output, i(nTs)+jq(nTs). 

From Figure (2-4), it is readily apparent that 

i(nTs) +jq(nTs) = 2e+ ■ {s(nTs) ■ e'^' *•} * h!p(nTs) . (2-23) 

(Note that for the present discussion, to simplify analysis we will use the standard 

approach to the representation of the complex exponential, by not explicitly identifying the 
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process g[ ] in our equations.) Here, hlp(nTs) is the real-valued impulse response of the 

lowpass filters of the quadrature downconverter. Indicating spectral periodic convolution 

as ®, the right-hand side of Equation (2-23) has the discrete-time Fourier transform 

2e-J»{lS
,(0/2*W'>r')} .Hip(eW°) = 2e^°{S(e^<)■ Hip(e>2'&W')}®ii2ob(f+fi + mFs) , 

^<fi<^f   ,    me integers. (2-24) 

Taking the inverse Fourier transform of the right-hand side of Equation (2-24) and 

applying Equation (2-23) we find that 

i(nTt) +jq(nTs) = 2e~# {s(nTs) * [hip(nTs) ■ e^'"T']} ■ e^W' . (2-25) 

Thus Equations (2-23) and (2-25) demonstrate that the quadrature downconversion 

process of Figure (2-4) is equivalent to convolving s(nTs) with a complex impulse 

response, heq(nTs), and subsequently multiplying the result by the complex sequence, 

The complex impulse response is identified as 

heq(nTs) = hlp(nTs)-e^<"T* 
= hip{nTs) • cos[27i/i«rs] +jhlp(nTs) ■ sm[2nfinTs] . (2-26) 

From Equations (2-22) and (2-26) we have 
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h,(nT,) = hip(nTs)cos[2nfinTs] , (2-27) 

and 

hq(nTs) = hlp(nTs)sm[2KflnTs] . (2-28) 

This establishes the impulse response of the complex bandpass filter. We now turn our 

attention toward identifying the complex bandpass filter coefficients. 

Consider the lowpass filter impulse response, hlp(nT), and its z-transform, Hlp(z). 

For Hlp(z) of the form 

M z 
*=0 
Ish-Z-* 

Hlp{z) = ^-N    , (2-29) 
l-S«*-^ 

fc=i 

the impulse response, hlp(nTs), is determined by the M+l+N real coefficients bk, 

k=0,l,2,...,M and ak, k=l,2,3,...,N. The z-transform of h(nTs) is by definition 

H(z)= I h(nTs)-z-" . (2-30) 
v   '        «=-00 

Therefore, the complex sequence, 

hlp(nTs)e
+^'"T' , 

has the z-transform 
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hlp(nTs)e
+W> "T* <~> Hlp(z ■ e~^^ ) = Heq(z). (2-31) 

Thus for filters of the form presented in Equation (2-29) we have 

I,bk{*e-**lT'}-* 

Heq(z)= fc0 

fc=i 

(2-32) 

Equation (2-32) implies that any filter with the response as indicated in Equation (2-29) 

can be circularly rotated in frequency by the amount/, by multiplying the finite length real 

coefficient sequences ak and bk by the complex exponential sequence, 

e+j2%fikTs 

Thus we can transform the lowpass filter of the quadrature downconverter into a complex 

bandpass filter, and subsequently linearly convolve the input sequence with this complex 

filter. The result of this convolution can then be circularly rotated down in frequency as 

implied in Equation (2-25), to yield the complex envelope identified in Section 2.3.1 . 

This process is depicted in Figure (2-6). 
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Desired Complex Bandpass Filter Response 

2\S{efl"fT°)\ 

0      ', 

b) 

\\e^-f'^)\ 

f T" 
-Fs -Fs/2     -f fx 

I 
Fs/2 Fs 

C) 

\S(eW
T°)\ 

f i 
-Fs/2 

Figure (2-6). A set of signal magnitude spectrum plots which are representative of the 
complex bandpass filter method of complex envelope generation: a) Representative input 
signal magnitude spectrum; b) The result of filtering this input signal with the complex 
bandpass filter; c) The magnitude spectrum of the resulting complex envelope estimate. 

2.4 The Generalized Pre-envelope 

In light of the equivalence of the numerical quadrature downconversion method 

described in Section 2.3.1 and the complex bandpass filter / downconversion method 

described in Section 2.3.2, the generalized pre-envelope is introduced. Normally the term 

"analytic signal" and the notation s+(nT) is reserved for the pre-envelope, 
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's(nTs)-e
+W°nT* , 

to identify the complex signal prior to downconversion [29]. This is the signal whose 

spectrum is depicted in Figure (2-6 b). In this research, however, it will become evident 

that the discrete-time FM demodulation methods to be described need not rely on whether 

downconversion is explicitly implemented as in the previously described methods. 

Therefore, it is convenient to define the generalized pre-envelope as 

s+(nTs, fo)EEs(nTs)e
+W°"T* ,^<f0<^. (2-33) 

The pre-envelope and the complex envelope are simply the special cases where/, = fc, 

and /0= 0 respectively. Thus the generalized pre-envelope sequence, is simply the 

complex envelope sequence circularly rotated in frequency to an arbitrary frequency, f0. 

For the case where an unknown tuning error, fe, exists as previously described, for 

notational simplicity we will adopt the convention 

s+(nTs) = s+(nTs, fe). 

Note that the real phase sequence extracted from the complex generalized pre-envelope is 

ao(nTs,f0) = g[a(nTs,f0)], (2-34) 

where 
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ainTsJo) = InfonTs + tfnT,) - 9 . (2-35) 

The demodulation methods to be described in Chapter 3 require as input the 

complex envelope, as generated by the preceding techniques or their equivalents. More 

generally it will be seen that the generalized pre-envelope can also be processed to 

estimate the original message. 
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CHAPTER 3 

Analysis of a Class of Numerical FM Discrimination Methods 

Amenable to Real-Time Implementation 
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3.1 The Ideal Discrete-Time FM (DTFM) Signal 

In Chapter 2, methods were introduced for generating the discrete-time 

generalized pre-envelope, s+(nTs), from the discrete-time bandpass signal, s{nT). It is 

readily apparent that these techniques are approximate or non-ideal in light of the fact that 

the required ideal lowpass (or complex bandpass) filter cannot be realized [12]. In fact 

there are numerous distortions of the original message and the modulated signal, which 

have taken place in all stages of the transmit/receive process. It is therefore not the intent 

of this research to address the various issues regarding the generation of the pre-envelope 

with regard to its accuracy in representing the intended modulated signal. However, it is 

the intent of this research to establish a baseline numerical FM demodulation method, to 

which other methods can be compared. To accomplish this objective, the analyses and 

simulations throughout this research will utilize what is considered to be the ideal 

generalized pre-envelope, 

s+(nT,) = i(nTs) +jq(nTs) , (3-1) 

where 

i(nTs) = a(nTs)cos[2KfenTs + $(nTs) - 0] (3-2) 

and 

q(nTs) = a(nTs)sm[2%fenTs + $(nTs) - 9] . (3-3) 
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The class of numerical FM discrimination methods to be described estimate the original 

message by processing the time sequence of ordered pairs, {i(nTs),q(nTs)} . Thus 

subsequent numerical discrimination methods can be fairly compared since all will be 

processing this same ideal generalized pre-envelope. 

The envelope, \a(nTs)\, for the present will not be restricted to being constant, but 

we will impose the constraint that a(nT) be greater than 0, as indicated in Equation 

(2-13). As before, fe is indicative of a frequency tuning error. The sampled phase angle 

term, fy(nT), is modeled as being the result of the frequency modulation process 

t=nTs 

typT,) = Wti\**r, = 2Ttif J   m(t)dt, (3-4) 
o 

where m{f) is the original bandlimited message, that has been amplitude limited such that 

-1 <m(t)<+\ , 

and is also zero mean in time. The complex signal defined by Equations (3-1) through 

(3-4) is representative of what will be referred to as the ideal discrete-time FM (DTFM) 

signal. The constant phase term, 0 , is comprised of two sources of constant phase offset. 

The first is the arbitrary but unknown phase offset between the carrier and the local 

oscillator frequencies of the numerical downconversion process. The second is the 

constant phase resulting from the integration of the modulating signal, including time t 

less than 0. Both sources of constant phase offset are taken into account via the arbitrary 

but constant phase, 0 . 
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The discrete-time true instantaneous frequency, y(nTs), is defined as 

y{nTs) = <k'(nTs) = f(OUrs = 2nAf- /w(OUr, , (3-5) 

in units of radians per second. This is obtained by direct differentiation of Equation (3-4). 

(The prime in Equation (3-5) indicates differentiation with respect to time.) Thus, in all 

approaches, the goal is to estimate the sampled instantaneous frequency [30], which is 

found as the time rate of change of phase of the modulated complex signal, s+(nTs). 

3.2 Numerical FM Discrimination (Demodulation) Techniques 

As already indicated, the numerical FM demodulation techniques to be described in 

this research are considered to be of the same class, in that each results in the backward 

difference approximation to the time derivative of the phase, as a method of recovering the 

modulating signal. The differentiation of a continuous function of time, x(t), can be 

defined as 

*'(0 = ^=limp»]. (3-6) 

The backward difference approximation to the discrete-time signal, x'(nTs), resulting from 

this differentiation is [12] 

x(nT,}-xan-l]Ts) x'(nTs) = ^™=F, • {x(nTs)-x([n- l)Ts)} , (3-7) 
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and is readily seen to be the (weighted) difference between the present and previous 

samples of the sequence, x(nTs). The weighting allows for the incorporation of the 

knowledge of the value of Ts into the approximation. Note that this approximation 

approaches our definition of the actual time derivative in Equation (3-6) as the sampling 

interval, Ts, decreases. It can be shown (see Appendix A) that this approximation to the 

time derivative has the magnitude frequency response 

\HB(ef»T')\ = jr ■ V2-2cos((ör,) , (3-8) 

which for small values of |co| relative to the sampling rate, closely resembles the desired 

magnitude response of the time derivative. 

These numerical demodulation techniques are presented in a progression of 

development beginning with what is considered to be the two most fundamental methods 

of this class, the Direct and the Indirect or Implicit numerical FM discriminators. 

Following these methods, the Arcsine method is arrived at by employing a mathematical 

analysis of the nearly equivalent continuous-time analogy, and subsequently compensating 

for distortions introduced by the sampling process. The Arccosine method is presented in 

a similar fashion. As will be seen, the Principal-Value Arctan approach is developed via 

an alternate compensation method applied to the first stages of the Arcsine approach. The 

last technique to be covered in this chapter will be referred to as the Standard numerical 

discriminator, since it is developed in an analogous fashion to the standard or conventional 

continuous-time FM discriminator. 

37 



3.2.1 The Direct and Indirect Methods of Numerical FM Discrimination 

Before proceeding further with the descriptions of the Direct and Indirect methods 

of numerical FM discrimination, we must modify our definition of the backward difference 

approximation. Since we are applying this approximation to a sequence which is 

representative of sequential phase angles extracted from the generalized pre-envelope, we 

must take into account the modulo 2% nature of these angles. Thus we define the 

backward difference approximation to the desired discrete-time signal, a'(nTs,fo), as 

a'(nTsJ0) = g[«°(^./0W[»-iF,/,)] = Fs.g[ao(nTsJo) _ ao([„ _ i]TsJo)] t (3-9) 

where a0(nTs,fo) is as presented in Equation (2-34). Equation (3-9) is the backward 

difference approximation to the rate of change of phase of the generalized pre-envelope, 

s+(nTs,fo ) . With this definition, we can now develop the Direct and Indirect numerical 

discrimination methods. 

3.2.1.1 Direct Numerical FM Discrimination 

Equations (3-1) through (3-3) represent s+(nTs) evaluated at/c=/e in Cartesian 

form, and can be converted to exponential form using Equations (2-2) and (2-3), resulting 

in 

S+(nTs) = ji\nTs) + q\nTs) ■ expU-Arctan[fg] } . (3-10) 
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From simple trigonometric considerations, it is readily seen that 

Ji\nT,) + q\nT,) =\a(nTs)\ (3-11) 

represents the envelope of the original signal, s(nTs), as previously described in Chapter 2. 

The instantaneous phase message estimate, c(), , at time sample n is identified as 

i,(nTs) =Arctan[|g] = g[2nfenTs + 4>(nTs) - 0] = aQ(nTt) , (3-12) 

which implies that 

A 

-71 < ((), < +71   . 

In other words, the instantaneous phase message estimate will lie on sheet 0 of our 

Riemman surface described in Chapter 2. In a straightforward fashion, Equation (3-12) 

shows that it is possible to obtain these estimates at any particular sample in time, by using 

the corresponding in-phase and quadrature samples. The Direct method of numerical 

discrimination is simply the implementation of Equation (3-9), using consecutive 

instantaneous phase message estimates. To distinguish between the explicitly required 

modulo 27C process g[ ] in Equation (3-9), and the implicitly applied process g[ ] indicated 

in Equation (3-12), the Direct method of discrimination is summarized as 

ydiriTs) = bfaTs) = Fs ■ gE[UnTs) -$,([» - l]Ts)] . (3-13) 
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Here, the subscript E on the process g[ ] is used to indicate that this process is being 

explicitly applied to the backward difference of instantaneous phase message estimates. 

These phase message estimates have been obtained via consecutive Arctan calculations, as 

in Equation (3-12). 

Either the modulo 2% process, gE[ ], must be applied explicitly to the backward 

difference of consecutive instantaneous phase message samples, or a "phase-difference 

quadrant determination" algorithm is required as follows: 

d(nTs) = ^(nTs)-H\p-nTs) 
if{ d{nTs) > +%} 

d(nTs) = d{nTs)-2% 
if{d(nTs)<-%} 

d(nTs) = d(nTs) + 2% 
y(nTs) = Fs-d(nTs) (3-14) 

Note that the above quadrant determination algorithm achieves the same result as 

Equation (2-8) only for the difference range 

-2K < {<ki(nTs) - b^nTs)} < +2n , 

which is sufficient based on the range of phase message estimates returned by Equation 

(2-3). In the mathematically equivalent Indirect approach, it will become evident that this 

phase difference quadrant determination is not explicitly required. 
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3.2.1.2 Indirect Numerical FM Discrimination 

The Indirect technique, commonly implemented in practice, utilizes the fact that 

multiplication of two complex numbers in exponential form is accomplished by real 

multiplication of the magnitudes, and addition of the corresponding phases. Since the goal 

is to determine the difference between consecutive phase samples as an instantaneous 

frequency estimate, it is possible to achieve this difference by multiplying the complex 

pre-envelope phasor (i.e., phase-vector) at time sample n, by the conjugate of the phasor 

at time sample (n -1). Thus we find that 

s+(nTs) ■ s*+([n - l]Ts) = a(nTs) ■ a([n- \]Ts)exp{J■ [2%feTs + $(nTs)-<K[«- l]Ts)]}, 

(3-15) 

and our Indirect instantaneous frequency estimate is found as the "phase" of the resultant 

vector in Equation (3-15), 

yj(nTs) = Fs-g[2KfeTs+<b(nTs)-<b([n-\]Ts)]  . (3-16) 

In units of radians/sec, the Indirect method of frequency modulation estimation is 

proportional to the backward difference approximation to the rate of change of phase, plus 

the bias term 2%fe. Rather than converting to exponential form, as indicated in Section 

2.2.1 the multiplication can be performed in Cartesian form using implicit phase addition, 

since 
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S+(nTs) ■ sl([n - l]Ts) = [i(nTs) +jq(nTs)] ■ [i([n - \]TS) -jq([n - l]Ts)] =A+jB , 

(3-17) 

where 

A = i(nTs) ■ /([«- l]Ts) + q(nTs) ■ q([n- l]Ts) (3-18) 

is the resulting real term, and 

B = q(nTs) ■ i([n - \]TS) - i(nTs) ■ q([n - l]Ts) (3-19) 

is the resulting imaginary term. Thus we obtain our frequency modulation estimate as 

yI(nTs) = Fs-Arctan[%\. (3-20) 

Equations (3-18) through (3-20) summarize the Indirect numerical FM discrimination 

technique, given the in-phase and quadrature samples sequences, i(nTs) and q(nTs) . 

3.2.2 Arcsine Numerical FM Discrimination 

The Arcsine method of numerical FM demodulation [8] is arrived at by first 

considering the continuous time analogy to Equation (3-12) which expresses the 

instantaneous phase message estimate as 
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$,(>) = arctan[f ] = g[2nfet + <j,(0 - 0] (3-21) 

The estimate of the rate of change of modulated phase, $•(/), is found by utilizing 

|[arctan(a(0)]=_i_.|, (3-22) 

for the angle range 

■f<arctan{«(0} <& 

From Equations (3-21) and (3-22) it is apparent that 

*/(0 = 
1 + <?2(Q 

'2(0 

dq WZ-«*)-* 
i2(t) + q\t) 

(3-23) 

for the instantaneous phase angle range 

f<arctan{f}<f 

In the methods of numerical FM discrimination being described, we have available to us 

sampled versions of the in-phase and quadrature signals, but do not have sampled versions 

of their corresponding time derivatives. The Arcsine method applies Equation (3-7), the 

backward difference approximation of this time derivative, to i(nTs) and q(nTs) to yield 
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i(nTs) ■ {q(nTs) - q([n - l]Ts)} - q{nTs) ■ {i{nTs) - i([n - l)Ts)} 
i2(nTs) + q\nTs) 

qinTs) ■ i([n - l]Ts) - i(nT,) ■ g([n - 1]TS) (324) 

i2(nTs) + q2(nTs) 

which can be scaled by Fs for our frequency modulation estimate. 

By employing Equations (3-2) and (3-3) in Equation (3-24) we find that 

M/ir,): 
a(nTs)a({n-\]Ts){smCcosD-cosCsm.D} ^^ 

a2{nTs) 

where 

C = 2%fenTs + §(nTs) - 9 (3-26) 

and 

D = 2nfe[n -1]T,+ <|)([/i - 1]TS) - 9 . (3-27) 

Application of a trigonometric identity to Equation (3-25) along with Equations (3-26) 

and (3-27) yields 

a(nTs)a([n-l]Ts)sm(C-D) 

a2(nTs) 
b',(nT,) = 2 
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_ a(nTs)a([n- l]Ts)sm[2%feTs + tfnT,) -$([n- l]Ts)] 

a2{nTs) (3.28) 

Under the condition that a(nTs) - a([n - l]Ts), we arrive at 

fc(nTs) = !fal2nfeT,+WnT,)-Wln-l]T,)] , (3-29) 

which implies the need for an arcsine correction, to properly recover an estimate of the 

modulating waveform. Thus from Equations (3-24) and (3-29) we find that 

yas{nTs) = Fs ■ arcsin[^(«7;)] 

77 •   r g(nTs)i([n-m)-i(riTs)q([n-l]Ts) -, 
= Fs • arcsin[ .  ] , (3-30) 

can be used to estimate the time rate of change of phase for the phase difference range 

f < [2nfeTs + 4>(nTs) - <«[/i - IF,) ] < +7C 
2     • 

In comparing the Arcsine method as summarized by Equation (3-30), to the 

previously described Direct and Indirect numerical FM discrimination methods, two very 

basic observations can be made. The first observation is with regard to the range of phase 

differences over which the message can be recovered. It would appear that we are limited 

to differences in the range -n/2 to +n/2 exclusively, to be able to utilize Equation (3-30). 

In actuality, we can use the sign of the numerator of the argument in Equation (3-30) and 

the sign of Equation (3-19) to decide whether to add -%, 0, or +% to the negated principal 
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value returned by the arcsine (prior to scaling by the sample rate, Fs). This new 

phase-difference quadrant determination algorithm required by the Arcsine method can be 

summarized by 

d(nTs) = arcän[iHnT^q2(nTs) 

if(A<0) 
if( B < 0) 

d(nTs) = -K-d(nTs) 
else 

d(nTs) = +K-d(nTs) 
yas(nTs) = Fs-d(nTs) , 

(3-31) 

where A and B are defined as in Equations (3-18) and (3-19). The second observation is 

that the Arcsine method is arrived at via the constraint that consecutive envelope samples 

are essentially equal (i.e., the signal has a constant modulus). Note that in the event that 

the constant modulus condition is not initially present, we can correct the envelope by 

normalizing the in-phase and quadrature signal components, thus imposing this condition. 

This would be done at the expense of the processing requirements of the extra square-root 

required for normalization as implied by Equation (3-11), and the extra divisions which 

would be required. 
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3.2.3 Arccosine Numerical FM Discrimination 

Given the existence of the Arcsine numerical discrimination method and the 

Indirect method which requires an arctangent calculation, it is naturally expected that a 

discrimination method exists which requires an arccosine correction. Consider the ratio 

&(nTs) = A 
i\nTs)+q\nTs) 

(3-32) 
i(nTs}i([n-l]Ts)+q(rtTs)q([n-l]Ts) 

i2(nTs)+q2("Ts) 

From Equations (3-2) and (3-3), the denominator of Equation (3-32) is 

i2(nTs) + q2(nTs) = a2(nTs). 

Similarly, the numerator simplifies to 

i(nTs) ■ /'([«- l]Ts) + q(nTs) ■ q([n- \]TS) = a(nTs)a([n- l]r,){cosCcos£> + sinCsinD} 

= a(nTs)a([n - l]Ts)cos(C-D) 

= a(nTs)a([n - l]Ts) ■ cos[2%feTs + 4>(nTs) -$([n - l]Ts)] 

Here, C and D are as defined in Equations (3-26) and (3-27). With the above 

substitutions, the instantaneous frequency estimate is equivalent to 

1//„T ^      a(nTs)a([»-Ws)™s[2KfeTsmnTsy$([n-l]Ts)] 
Vc(nis)- a2{nTs) (3-33) 
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For the constant modulus case, we define 

pac(nTs) = Fs • arccos[^c(nTs)] 

= Fs ■ arccos L»2(«r,)+g
2(»r,)J (3-34) 

The arccosine function will unambiguously yield a value between 0 and n radians. The 

phase-difference quadrant determination algorithm that is required is therefore simply 

d(nTs) = arccos 

if{£<0.} 
d(nTs) - -d(nTs) 

yac(nTs) = Fs ■ d(nTs) 

i2(nTs)+q\nT,). 

(3-35) 

where A and B are defined as in Equations (3-18) and (3-19). Thus, the Arccosine 

method of numerical discrimination is as summarized by Equation (3-34) and Algorithm 

(3-35). 

3.2.4 Principal-Value Arctan Numerical FM Discrimination 

The Principal-Value Arctan numerical demodulation method can be developed by 

partially utilizing the development of the Arcsine method, previously described. By 

making the observation that the backward difference approximation to the time derivative 

as defined by Equation (3-7) is most valid at time t = [n - \]TS , or halfway between 
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consecutive time samples (see Appendix A) it becomes apparent that Equation (3-24) can 

be modified as 

Uf„T ^    <frT,) ■ i([n- l]Ts) -i(nTs) ■ q([n- \]TS) 
«"^ =      ^T^-^J^—- —        • (3"36) 

' q(nTsyrq([n-\]Ts) 

Essentially, an attempt has been made to time-align the sampled in-phase and quadrature 

signals with their corresponding time derivative estimates, by substituting 

Ui(nTs) + i([n-\]Ts)} 

for i{nT), and 

Uq(nTs) + q([n-l]Ts)} 

for q(nTs) respectively. As can be seen, the numerator in Equation (3-24) remains 

unchanged, and the denominator is an estimate of the square of the envelope at time 

t=[n-\]Ts. 

By applying Equations (3-2) and (3-3) to Equation (3-36), we find that 

ifc,r.) = **Ptf.T.+¥pT.)-¥b-WM  (3.37) 

^jfciE+2cos[2I/«7',+«»r,)-w»-i]rJ)] 

Again, under the condition that a(nTs) = a([n - l]Ts), it is found that 

♦fttr.) = 2tan[27l/g^("r;H([-1]r-)] , (3-38) 
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after application of a trigonometric identity. The modulating signal can be recovered as 

ypv(nTs) = 2FS ■ arctan{$(nT,)\ , (3-39) 

A   . 

where §t(nTs) is as defined in Equation (3-32). 

Note that the arctangent required in Equation (3-39) is different from that required 

in Equation (3-20) since the range of the obtained sampled phase differences has been 

reduced by a factor of 1/2, i.e., 

f < ftfaT.) < f , 

as implied by Equation (3-38). Thus, the Principal-Value Arctan numerical FM 

demodulation method as summarized by Equations (3-36) and (3-39) requires neither 

phase quadrant determination as in the Direct and Indirect methods, nor phase-difference 

quadrant determination as in the Direct, Arcsine and Arccosine methods. Like the Arcsine 

and Arccosine methods, this numerical demodulation technique is best applied to constant 

modulus input signals. 

3.2.5 Standard Numerical FM Discrimination 

The conventional or standard analog FM discriminator [30] consists of a 

"slope-circuit" followed by an envelope detector, as shown in Figure (3-1 a). The 

frequency response of the slope-circuit is such that a constant-envelope frequency 
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modulated signal at the input results in an output signal with an envelope that is 

proportional to the original message. The slope circuit is designed to operate at a 

particular intermediate frequency,/,,, as seen in the representative response in Figure 

(3-1 b). This response is approximately linear over the frequency interval 

(/c-A/)<!/l<(/c/+A/). 

Typically, the constant envelope condition is imposed on the received FM signal via 

amplitude limiting circuitry, to remove any noise-/distortion-induced envelope variations. 

Thus the analog FM discriminator converts the instantaneous frequency variations into 

proportional amplitude variations, for subsequent envelope demodulation. 

a) 

constant-envelope, 
frequency modulated 
signal 

(centered at fd 
with deviation Ay ) 

slope-circuit 
envelope 
detector 

modulation 
estimate 
 > 

b) / 

Figure (3-1). a) The conventional analog discriminator, b) Representative magnitude 
frequency response of the slope-circuit. 
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The Standard numerical FM discrimination method is the discrete-time 

implementation of the conventional analog device. In the discrete-time case, we will be 

processing the ideal generalized pre-envelope, s+(nT) , centered at the frequency f=fe, 

i.e., the slightly mis-tuned complex envelope. Of the various stages of processing 

required, it is the discrete-time counterpart to the slope-circuit which requires some 

detailed development. 

We borrow upon previous developments in both Chapter 2 and Appendix A, to 

arrive at a numerical slope-circuit implementation. From Figure (A. 3-2), it is apparent 

that the response of the backward difference identified as HB(d Q) approximates that of an 

ideal slope-circuit, HA(e> °), over the frequency interval 0 to FJ2 Hz. It is also apparent 

that if the generalized pre-envelope were centered near Fs 14 Hz, it could be filtered using 

the (real) backward difference impulse response, to generate a signal with an envelope 

modulation which is proportional to the instantaneous frequency. Note that the allowable 

range on the instantaneous frequency is from 0 to Fs 12 . 

Rather than rotating the generalized pre-envelope from/e Hz to (fe + Fs I A) Hz, the 

impulse response of the backward difference can be (circularly) rotated in frequency by the 

amount -Fs IA Hz, using the methods described in Section 2.3.2. The result is a (complex) 

impulse response which can be used to directly filter the complex envelope, s+(nTs). The 

impulse response of the backward difference filter is 

Ts-hB(nTs) = +l, » = 0, 
= -l,/i = -l, 
= 0, else. (3-40) 
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Frequency rotation of these coefficients is accomplished by multiplying the sequence of 

Equation (3-40) by the complex exponential, 

e-j\2**-«T. ] = cos[2;c . £, . nj.^ _j sinj-27C . £. m nTs^ 

= cos[f • n] -y'sinfy • ri\. (3-41) 

The result is the discrete-time slope-circuit complex impulse response, 

Ts-hsl(nTs) = +l, w = 0, 
= +J, n = -l, 
= 0, else. (3-42) 

This discrete-time slope-circuit is implemented in a straightforward fashion as shown in 

Figure (3-2). 

s>Ts) 
s+(nTs) + js+([n-l]Ts) 

indicates complex data 

Figure (3-2). The discrete-time slope-circuit derived from the backward difference filter. 
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The output of this slope-circuit is 

s+(nT,) +j • 5+([/i - l]r,) = [i(nTs) - q([n - l]T,)] +j ■ [q(nTs) + i([n - l]Ts)] .    (3-43) 

If we consider forming the square of the envelope of the signal of Equation (3-43), the 

result is 

\s+(nTs)+j-s+([n- l]Ts)\
2 = [i2(nTs) + q2(nTs)] + [i2([n- l]Ts) + q2([n- l]Ts)] 

-2 • [i(nTs) ■ q([n - l]Ts) -q(nTs) ■ /([« - \]TS)] . (3-44) 

As already indicated, in the conventional analog discriminator, a constant envelope 

condition is imposed via amplitude limiting circuitry. In a similar fashion, a normalized 

envelope condition can be imposed on the complex envelope, prior to the slope-circuit. 

Under this condition, the first two terms in brackets in Equation (3-44) are each equal to 

unity. In this case Equation (3-44) simplifies to 

\S+(nTs) +j ■ s+([n- \]Ts)\
2

normalized = 2 • [1 + q(nTs) ■ i([n- l]Ts)- i(nTs) ■ q([n- l]Ts)] . 

(3-45) 

By simply subtracting the constant term and scaling by a factor of 1/2, the Standard 

numerical FM discrimination estimate becomes 

U(nTs) = q(nTs) ■ i([n - l]Ts) - i(nTs) ■ q([n- l]Ts) . (3-46) 
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Figure (3-3) summarizes the Standard numerical FM discrimination processing steps. 

In comparing Equations (3-46) with the intermediate step in the Arcsine 

discrimination method of Equation (3-24), it is noted that under the normalized envelope 

condition, these equations are identical. It is then immediately evident that once again, an 

arcsine correction is required as indicated in Equation (3-30) to achieve a linear estimate 

of the original message. Likewise, to increase the range of allowable instantaneous 

frequency values to the entire (complex) Nyquist band, the phase-difference quadrant 

determination algorithm in (3-31) can be employed. 

s>Ts) 

discrete-time 
slope-circuit 

$'(nT ) sv    s 

complex data -»     real data 

Figure (3-3). The Standard numerical FM discrimination method. 
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Thus, the Standard numerical FM discrimination method is found to be 

mathematically equivalent to an intermediate step in the Arcsine method. With the 

appropriate corrections previously described, the output of the Standard discrimination 

process will be equivalent to the output of the Arcsine method. This is interesting to note, 

given that the Arcsine and the Standard methods were developed using very distinct 

approaches. In fact, it will be demonstrated in the following section that the Direct, 

Indirect, Arcsine, Arccosine, Principal-Value Arctan and the (corrected) Standard 

methods of numerical FM demodulation are all mathematically equivalent. 

3.2.6 Discrimination Method Comparison 

In Section 3.2.5 it has been established that the distortion-corrected Standard 

numerical discriminator and the Arcsine numerical discriminator are mathematically 

equivalent. We will subsequently establish the additional result that the Arcsine method 

(and therefore the distortion-corrected Standard method) is also equivalent to the Direct, 

Indirect, Arccosine and Principal-Value Arctan discrimination techniques. Thus the 

numerical demodulation techniques presented in Section 3.2 are considered to be of the 

class of FM demodulators which employ the backward difference approximation to the 

time rate of change of phase, as the message estimate. Further, since these numerical 

demodulators include the distortion-corrected Standard discriminator, justification of the 

term "discriminator" for each member of this class is established. Each member is 
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therefore considered to be of the class of backward difference numerical FM 

discriminators. 

We first consider the equivalence of the Direct and Indirect processing techniques. 

Equivalence can be established by demonstrating that the instantaneous frequencies 

specified by Equations (3-13) and (3-16) are the same. From Equation (3-12), this implies 

that we must demonstrate the equivalence of the Direct process, 

yd(nTs) = Fs ■ gE[g[2itfenTs + 4>(nTs)- 9] -g[2nfe[n-X\T, + <K[»- IF,) -9]] , (3-47) 

and the Indirect process, 

y!(nT,) = F,-g[2nfeT, + MnT,)-WLn-l]T,)] . (3-48) 

Applying modulo arithmetic rules it can be shown that 

g[ax -a2] =g[g[ai] -g[a2]], (3-49) 

which immediately demonstrates the equivalence of Equations (3-47) and (3-48), with a, 

identified as 

ai = 2nfenTs + §(nTs) - 0 , 

and a2 identified as 

a2 = 2nfe[n - \]TS + $([« - IF,) - 9 
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Thus we find that 

yd{nTs) = Fs ■ g[2%feTs + $(nTs) - $(nTs)] . (3-50) 

Consider now the Arcsine method as summarized by Equation (3-30) and the 

phase-difference quadrant determination of Algorithm (3-31). From Equations (3-29) and 

(3-30) along with Algorithm (3-31) we have 

yas(nTs) = Fs-g[2nfeTs + ^nTs)-^[n-l]Ts)] . (3-51) 

The process g[ ] indicated in Equation (3-51) is a result of the phase-difference algorithm. 

This algorithm is simply a variant of the phase quadrant determination process required by 

the Arctan introduced in Equation (2-3) of Section 2.1. In comparing Equations (3-51) 

and (3-48), it is apparent that the Arcsine method of discrimination is mathematically 

equivalent to the Indirect (and therefore also to the Direct) method of instantaneous 

frequency estimation. Likewise for the Arccosine method, Equations (3-33), (3-34) and 

Algorithm (3-35) demonstrate that 

yac(nTs) = Fs-g[2TifeTs + ^nTs)-^[n-l)Ts)] . (3-52) 

Finally, from the properties of the arctangent required in Equation (3-35) and the results 

of Equation (3-34), the Principal-Value Arctan method yields 
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ypv(nTs) = Fs ■ g[2izfeTs + 4>(nTs) -<|>([#i -IF*)] . (3-53) 

Thus the Arccosine and Principal-Value Arctan methods are also equivalent to each of the 

aforementioned techniques. 

It has been demonstrated that the distortion-corrected Standard method, the Direct 

and Indirect methods, the Arcsine and Arccosine methods and the Principal-Value Arctan 

methods are all mathematically equivalent numerical FM demodulation techniques. Note 

however, that differences do exist in the processing requirements of each method. 

Therefore, one of the methods will be selected based on implementation considerations, as 

an "established baseline" for subsequent performance analysis comparisons. 

3.2.6.1 Selection of a Baseline Numerical Discrimination Technique 

Each of the previously described numerical FM demodulation techniques require, 

as a minimum, a single division and a trigonometric inversion. However, in view of the 

additional processing required by the Standard, Arcsine, Arccosine and Principal-Value 

Arctan discrimination methods to impose the constant modulus condition, these methods 

will not be considered further. It is acknowledged that depending on specific application 

requirements, any one of these methods may be considered "better" than the others. For 

example, if an application happens to require an envelope estimate in addition to the 

instantaneous frequency, the envelope calculation is no longer considered to be an extra 

processing burden. In this case, the Standard, Arcsine, Arccosine and Principal-Value 

Arctan methods become more attractive from an implementation viewpoint. 
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Since, for the purposes of this research, it is the instantaneous frequency which is 

of primary interest, the Direct and Indirect methods remain as baseline candidates due to 

their insensitivity to amplitude variations. Further still, due to its conceptual simplicity, 

the Direct method is arbitrarily selected as the chosen baseline numerical FM 

discriminator. It is pointed out, however, that since each of these methods are 

mathematically equivalent, subsequent performance analyses and simulations of the Direct 

method apply equally well to the remaining discrimination techniques. 
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3.3 Sampling Rate Considerations 

The sampling theorem as put into general practice in the field of communications 

engineering by Nyquist [31] and formalized by Shannon [32], has become commonplace in 

the scientific and technical community. Simply stated the sampling theorem indicates that 

a real lowpass signal having spectral content limited to the frequency range 0 to W Hz, 

can be accurately represented by instantaneous samples of the amplitude of the signal 

taken at time intervals of At=Ts< \I(2W) seconds. Entire texts (e.g., [12]) have been 

devoted to the processing of the resulting discrete-time signal, and to the reconstruction 

into continuous time of the extracted information or control bearing signals. (In fact, 

generalized versions of the sampling theorem do not require uniformly time-spaced 

samples, and also includes, for example, sampling the signal and its derivatives to form a 

discrete-time representation [32][33].) 

Shannon's presentation of the sampling theorem also allows for the conversion of a 

real bandpass (i.e., bandlimited) signal, centered at/=/c,, from continuous to discrete time 

by employing the proper frequency downconversion techniques as stated in Section 2.3. 

Reformulating this result, a real bandpass signal of approximate bandwidth B' Hz, and 

originally centered at some carrier frequency/c, Hz, can be sampled by first 

downconverting to a new center frequency of /c > B'I2 Hz, with W=fc + 572. An 

idealized version of this process is depicted in Figure (3-4). 

As Slepian appropriately points out [34], strictly speaking, truly bandlimited 

lowpass/bandpass signals do not exist in reality, since this would imply that such a signal is 

present for all time. In light of this, he established the concept of essentially or really 
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bandlimited signals, to distinguish between exact mathematical models and models that are 

less restrictive for practical implementation. Urkowitz applied this result and correctly 

concludes that this approximate bandwidth of a real bandpass signal must be less than 

200%, relative to its center frequency, fc. This center frequency is, as implied, the center 

or midpoint of the signal frequency band. 

a) 

-fr.' 

/A B'<B 

fr.' 

b) 
-yA- 

-(L.-B/2) 
-V 

c) tx 
-(2fr,-B/2) -w -f, 
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anti-alias lowpass filter 
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L  w 
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c Jc 
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(2fr, - B/2) 

-w -L      I  w 'c Jc 

f 

f 
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Figure (3-4). Bandpass signal pre-acquisition processing, a) A representative magnitude 
spectrum of a bandpass signal of bandwidth B' < B, centered at/c, Hz. b) The magnitude 
frequency response of the analog local oscillator used for frequency downconversion. 
c) The result of convolving the original spectrum with the local oscillator spectrum; 
fe = B/2, W=fc +572. d) The representative spectrum of the desired signal, s(t\ prior to 
conversion from analog to discrete time. 
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Thus Shannon's previously presented method of preparing a bandpass signal for 

conversion from analog to discrete time, and Urkowitz's requirement as stated above, are 

consistent. 

We now turn our attention to the representation of a bandpass signal, s(t), as the 

product of the real lowpass signal, a(t), and the real bandlimited signal, cos[27t/cM-<|>(0-9]- 

As a consequence of Bedrosian's product theorem [35], in order for the signal, s(t), 

modeled as 

5(0 = a(t) ■ cos[2nfct + 4>(0 - 6] (3-54) 

to be bandpass, it is required that 

U(Ol=0, \f\>fi, 

\A(f)\>0, !/!</!, (3-55) 

and simultaneously that 

|?{co$[2nfct + <K0 - 9]} | = 0, \f\ <f2, 

>o,/2<!/l</3, 

'=0, 1/1 >/3, (3-56) 

with/2 >/,. Here, \A(f)\ = \3{a(t)}\ is the magnitude spectrum of the real lowpass signal, 

a(t). (Equality in Equations (3-55) and (3-56) can be interpreted as in the practical sense 
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developed by Slepian.) Figure (3-5) is representative of this application of Bedrosian's 

product theorem, for the case where/2 approaches/, and a(t) is real. Note that in view 

of Slepian's results, this product theorem can be viewed both as a bandpass signal 

construction technique and as justification of bandpass signal representation, as applied to 

the signal s(t) resulting from the pre-sampling process depicted in Figure (3-4). 

a) 

K/)| 

/ 
-/,   /, 

b) 

l*icos[a(t)]| 

/ 
-fs -f2   f2 f3 

c) 

|?ja(t)cos[a(t)] 

/ 

-B B = (2f]+f3-f2) 

Figure (3-5). Representative spectra depicting a special case of Bedrosian's product 
theorem, a) The magnitude spectrum of the real lowpass signal, a(t). b) The magnitude 
spectrum of the approximately bandlimited signal, cos[a(/)], where a(0 = 2izfct+<k(t)-Q . 
c) The magnitude spectrum of the product, a(t)cos[a(f)]. 
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We conclude that the pre-sampled signal, s(t), resulting from the proper 

downconversion and anti-aliasing filtering of a bandpass signal centered at/c, Hz, retains 

the bandpass representation indicated in Equation (3-54). The resultant discrete-time 

signal, s(nTs), is therefore (within an arbitrary constant phase offset) 

s(nTs) = s(i)I t=nTs = a(nTs) ■ cos[2%fcnTs + §(nTs)] . (3-57) 

It is this real discrete-time "bandpass" signal which is processed as described in Sections 

2.3.1 and 2.3.2 to generate the complex-valued generalized pre-envelope, s+(nTs). Thus 

for the bandpass signal, s(f), of bandwidth B Hz, the required acquisition sample interval 

is 

Ts {acquisition) < ^ seconds. (3-58) 

Note that in additionally modeling this signal as being representative of the frequency 

modulation process as in Equation (3-4), it is further required that a(nTs) > 0, as indicated 

in Equation (2-13). This condition prevents the sign of the amplitude, a(nTs), from 

distorting the instantaneous phase. This amplitude has initially been modeled as being time 

dependent to allow us to demonstrate the insensitivity of the Direct and Indirect numerical 

discrimination methods to these amplitude variations. However, in adopting this more 

general model, it has been necessary to address the previous bandpass representation 

considerations. In subsequent analyses we will adopt the more restrictive model in which 
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the amplitude is a constant, a(nTs) = a. In this constant amplitude case, we can closely 

approximate the bandwidth, B, using Carson's rule [30], 

B = 2-(Af+fm)Uz. (3-59) 

Here,/m is the highest significant frequency component in the message signal, m{t). 

3.3.1 Sampling Rate Requirements of the Ideal Complex DTFM Signal 

Once generated, it is common practice to increase the sampling interval of the 

complex envelope by a factor of 2. Thus the sampling interval requirement for the 

complex envelope becomes 

1 s (decimated) = ^ ' * s (acquisitori) , (J-0\J) 

which from Equation (3-58) becomes 

Ts (decimated) < ß Seconds. (3-61) 

A set of signal spectra representative of this decimation or downsampling process is 

shown in Figure (3-6). The ability to do so is simply a consequence of the lack of signal 

energy in the frequency bands 

■■■    4     ^J ^   4       '      4   ^J  ^   4      '     4       J        4     "•• 

66 



where 

Fs = 
l 

' s (acquisition) 

Therefore, increasing the sample interval by a factor of 2 by simply discarding every other 

sample, does not lead to destructive aliasing of frequency components in the resulting 

decimated complex envelope [12]. (As a consequence of decimation by a factor of 2, the 

resulting spectrum is 1/2 the amplitude prior to decimation, to be consistent with the 

discrete-time Fourier transform definition.) 

a) 

2nfTs \S(eJ2nJls)\ F  = — s       j 

r\    rA    rA 
s (acquisition) 

f 
Fs p 

b) 

2\S(eJ2nJls)\ 2nfTs 

R s f 

rATYYVA 
s (decimated) 

f 
-F. Fs p 

Figure (3-6). A set of signal magnitude spectrum depicting the decimation of the complex 
envelope by a factor of 2. a) \3{ s(nTs)}| with Fs equal to the acquisition sample rate, 
b) 2\3{ s(nTs)}\ withFs equal to the decimated sample rate. 
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Likewise the generalized pre-envelope, once generated, can be properly 

represented by samples at time intervals of Ts{decimated). This is evident since circular 

frequency rotation can be performed either before or after the downsampling process, 

resulting in exactly the same time sequence of ordered pairs, {i(nTs),q(nTs)}. Note 

however that this and any further decimation in time must be done after generating the 

generalized pre-envelope sequence. Thus we do initially require a sample interval as 

defined in Equation (3-58), for the method of acquisition which has been defined. 

The issue that needs to be addressed is the determination of the largest time 

interval, resulting from decimation, that can be allowed. We do so by considering the 

requirement to extract an estimate of the original message, m(t). The message signal is 

modeled as being bandlimited such that 

|M(/<D)I = \Hm(t)}\ > 0, Icoi < (om , 
= 0, Irol >(om , G)m = In/m . (3-62) 

For each ordered pair {i(nTs),q(nT)}, backward difference numerical FM discrimination 

will result in the estimate 

yd(pTs) = h'dinTs) = Fs ■ g[Ts ■ hB{nTs) * {2nfenTs + $>(nTs) - 9}] ,        (3-63) 

as implied by Equation (3-51). Here, hB(nT) is as defined in Equation (3-40) with the 

response indicated in Appendix A. (The subscript d can be thought of as representing 

either the Direct method specifically, or more generally, backward difference numerical 

discrimination) From the results of Appendix A and Equation (3-5) we conclude that 

68 



yd(nTs) = Fs ■ g[2nfeTs + Ts ■ hD(nTs) * V(nTs)] 

= Fs • g[2izfeTs + Ts ■ hD(nTs) * {2%Af- m(nTs)}] .       (3-64) 

Here, hD(nTs) is the impulse response of the distortion transfer function, HJ& Q), due to 

the non-ideal nature of the backward difference approximation to the true time derivative. 

Equation (3-64) is a key result, in that it indicates the need to specify two distinct sample 

time-interval requirements for complex DTFM signals. 

The first requirement is a result of applying Nyquist's criterion to the message 

signal, m{t). Since the linear convolution internal to Equation (3-64) does not result in 

frequency components outside the range indicated in Equation (3-62), we have the 

requirement 

T -   l 
J- s {decimated) ^ 9 /" (3-65) 

Defining the ratio 

Y = l/m 
(3-66) 

we have the equivalent requirement 

y> 1 . (3-67) 
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We will refer to y as the relative message sampling rate. The requirement identified in 

Equation (3-67) ensures that the discrete-time estimation of the original message, as 

identified in Equation (3-64), is sampled at a sufficient rate. 

The second sample rate requirement is a consequence of the modulo 2% process, 

g[ ], in Equation (3-64). We immediately conclude that this results in a mapping of all 

phase differences, to sheet 0 of the phase-difference plane. In order to unambiguously 

recover an estimate of the original message, it is additionally required that 

-7C < 2%feTs + Ts ■ hD(nTs) * {2nd/- m(nTs)} < +n . (3-68) 

Since both/e and m(nTs) can independently be either positive or negative, this translates 

into the requirement 

T ^ 1  (3-69) 
1 s (decimated) ^ 2-{\fe\W\hD(nTs)*m(nTs)\} ' V 

for all values of the index n. From Appendix A it is apparent that the gain of the distortion 

response, \HJe?°)\, does not exceed unity at any particular frequency. In addition, by 

design m(nT) does not exceed unity in magnitude. Therefore, in most modulation 

scenarios, Equation (3-69) simplifies to the requirement 

Ts {decimated) < 2.{]f.\+ttf}  ' V  '     > 
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In this form it is evident that this second sampling interval requirement ensures that the 

maximum deviation of the instantaneous frequency from 0 Hz, does not exceed FJ2 in 

magnitude. Thus, this requirement prevents instantaneous frequency aliasing. Defining 

the ratio 

8 = be + 8m , (3-71 a) 

where 

8e=^ (3-71 b) 

and 

Sw = ^, (3-71 c) 

we equivalently require 

8 < 1 . (3-72) 

We will refer to 8 as the DTFM modulation index, Sffl as the DTFM message index, and 8e 

as the DTFM tuning-error index. Note that "overmodulation" (i.e., 5 >1) translates into 

instantaneous frequency aliasing. 
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The DTFM modulation index, 5, and the relative message sampling rate, y, can be 

related to the modulation index, ß, of the continuous-time FM signal by considering the 

product 

y-5 = f + f. (3-73) 
Jm       Jm 

The modulation index of the continuous-time FM signal is typically defined as [30] 

ß ^ f . (3-74) 
Jm 

Thus from Equations (3-73), (3-74), and previous results we obtain 

ß = y-S-f = Y-8M   . (3-75) 
J nt 

The sampling interval requirements summarized by Equations (3-65) and (3-70) 

for proper recovery of the message signal from the complex DTFM signal can be 

combined as 

Ts (decimated) < ^Hy^ > 2-{\fe\+Af}^  ' ^'^ 

Note that since we have modeled the DTFM signal as having a constant amplitude, the 

decimation process will not result in frequency aliasing in the envelope sequence. 
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3.3.2 Instantaneous Frequency Aliasing and the Generalized Pre-envelope 

In representing our instantaneous frequency estimate as in Equation (3-64), it is 

implied that the input to the discrimination process is 

s+(nTs,fe) = a ■ {cos[2%fenTs + <k(nTs) - 9] +jwn[2nfenTi +§(nTs) - 0]}.     (3-77) 

Consider the case where we have as input the generalized pre-envelope 

s+(nTs,f0) = a ■ {cos[2Kf0nTs + <b(nTs) - 9] +j sm[2nf0nTs + ^(nTs) - 9]}, 

^<fo<^. (3-78) 

Analogous to Equation (3-64), this results in the instantaneous frequency estimate 

pd(nTs,f0) = Fs ■ g[2nf0Ts + Ts ■ hD(nTs) * {2näf- m(nTs)}] . (3-79) 

Note that for values of f0 near +/- FJ2, even the slightest message signal amplitude can 

result in instantaneous frequency aliasing. Rather than discarding the discrimination result 

indicated in Equation (3-79), it is possible to correct the frequency rotation implied by the 

term, 2K/0TS. Define the modulo 2u process, g[a ,/J, as 

g[OL,f0] = g[a-^l (3-80) 
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where g[ ] is as in Equation (2-8). By employing the property of modulo arithmetic 

indicated in Equation (3-49) along with Equations (3-79) and (3-80), it is readily apparent 

that 

yd(nTs,0)=Fs-g[Ts-yd(nTs,fo),fo] . (3-81) 

Thus in the case that the center frequency, fa, is known exactly, the result of the 

backward difference discrimination process can always be corrected. In effect, the process 

g[a >/J changes the reference of the process g[a] from 0 radians, to 2itfJFs radians, as 

depicted in Figure (3-7). 

As indicated in Section 2.3.1, in practice the true center frequency,/,, is not 

known exactly. This results in the tuning error, fe, which is normally small relative to 

FJ2. In this case, the instantaneous frequency estimate becomes 

yd{nTs)=yd(nTs,fe) 

= Fs ■ g[Ts -päinTsJolfo -fe]. (3-82) 

Thus the sampling rate requirements remain as in Section 3.3.1. The process indicated in 

Equation (3-82) will be referred to as a phase-difference "downwrapping", since in effect 

both frequency downconversion (or rotation) and phase-difference unwrapping or 

quadrant determination are performed simultaneously. 

In conclusion, the generalized pre-envelope sequence, s+(nTs,f0), can be processed 

directly by the numerical discrimination techniques previously described. The resulting 
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sequence is subsequently processed as in Equation (3-82), to yield the desired 

instantaneous frequency estimate. Note that the discrimination and the downwrapping 

process can be performed on a sample by sample basis. Therefore, the class of backward 

difference numerical FM discriminators are particularly useful in real-time applications. 

JL 
2 

' % 

Figure (3-7). The geometric representation of the process g[a ,fa] as a rotation of the 
angle reference axes used in the modulo 2% process g[d\. In this particular representation, 
a positive value of f0 is depicted. 
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CHAPTER 4 

Backward Difference Numerical Discrimination 

in the Presence of Additive White Gaussian Noise 

77 



4.1 Phase Modulation Recovery and Phase Domain Performance Measures 

In Chapter 3, various approaches to the generation of the backward difference 

approximation of the rate of change of phase were introduced as instantaneous frequency 

estimates. From among these approaches the Direct method has been selected as a 

baseline numerical FM discrimination process for analysis purposes, although each of 

these approaches results in the same estimate. Therefore any reference made to the 

baseline numerical discrimination process will refer to the Direct method specifically, or 

more generally, to any one of these equivalent processes. 

We summarize the baseline discriminator using Equations (3-12) and (3-13) as 

fanT.) = Fs ■ gEiUnTs) -1,([" - l]r,)] (4-1) 

in units of radians per second, where 

k«r,)=Arcta<S;-;£;j]. («) 

It is convenient to define the phase message estimate as the accumulation of the 

instantaneous frequency sequence of Equation (4-1). Thus in units of radians we define 

ta(«7-,) = Ts ■ { E b'd(kT,) + M-Ts)} (4-3) 
fc=0 
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as the baseline discriminator phase message estimate. Here, §J(-TS) is an arbitrary initial 

phase value assigned to the phase at time t = -Ts. This is also the initial value assigned to 

the instantaneous phase at time t = -Ts during the numerical discrimination process, i.e., 

M-Ts) = it(-Ts). 

Usually the initial phase §J(-Ts) is assigned the value zero, such that it need not be retained 

for phase message recovery. Note that the accumulation process of Equation (4-3) is an 

inversion of the backward difference calculation [12] and has the transfer function 

[//B(eiQ)]"1. Thus we are motivated to work in the phase domain in subsequent 

performance analyses in that the distortion HJ^0) is no longer present and therefore not 

of concern. 

In this chapter we will use both an analytical and an experimental approach to the 

prediction of the performance of backward difference numerical FM discrimination in the 

presence of additive white Gaussian noise (AWGN). The experimental aspect consists of 

computer simulations where finite length complex signal sequences consisting of the ideal 

DTFM signal and additive noise are generated and processed for performance 

measurement purposes. By calculating a pair of statistics to be described, an experimental 

performance measure is established for comparison to the analytically predicted results. It 

should be noted that in this research, the term "white" refers to the fact that the noise 

power spectral density is constant over the Nyquist frequency interval. In continuous 

time, it is common to refer to this noise as being "bandlimited white" noise. 
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The signal model to be used for both the analytical and experimental performance 

predictions is depicted in Figure (4-1). The model consists of the ideal complex DTFM 

signal sequence as described by Equations (3-1) through (3-4), in summation with a 

complex Gaussian noise sequence, both of which are represented in Cartesian form. The 

discrete-time noise sequence is the sampled bandpass noise process 

N(nTs) = Ni(nTs)+j-Ng(nTs) (4-4) 

where Nj(riTs) is the Gaussian distributed in-phase component sequence, and Nq(nTs) is the 

Gaussian distributed quadrature component sequence. The random processes Nt(nTs) and 

Nq(nTs) are real-valued independent and identically distributed processes of zero mean and 

variance a2. This signal-plus-noise model is typical ofthat used in communication 

systems analyses [11, 36]. 

i (nTx) 

q{nT) 

<$ 

Ni(nT„) 

■> Xt(nT8) 

^ 
■> Xq{nTs) 

W ) 

Figure (4-1). The model of the ideal complex DTFM signal in the presence of bandlimited 
additive white Gaussian noise. 
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Prior to sampling, we consider the power spectral density of the noise, S^(f), as 

being uniformly distributed over the frequency interval -WI2 </< +W/2 , and of density 

2N0 Watts/Hz . The corresponding autocorrelation sequence, Rmr(x), found as the inverse 

Fourier transform of the power spectral density, is 

sin(7cPPr) 
RM(x) = 2NoW—^-L. (4-5) 

The zeros of this function occur at integer multiples of W. Thus by ensuring that the 

sample interval is selected to correspond to the occurrence of these zeros, the samples of 

the complex noise sequence will be uncorrelated. Since these samples are of a zero mean 

Gaussian process, they are also independent. For analysis purposes, we choose the 

maximum required sample interval satisfying the Nyquist criterion, which corresponds to 

the smallest non-zero time interval that yields uncorrelated samples. The corresponding 

discrete-time power spectral "density" is [12] 

Sm(ejQ) = 2NoFs, -7i<O< +7t, Q = <aTs . (4-6) 

Thus after sampling, the noise power is uniformly distributed, and therefore considered to 

be "white", over the Nyquist interval. With a spectral density of 2NQ Watts/Hz over the 

frequency interval -WI2 </< +WI2 Hz, we find that the power of the complex noise 

waveform is 2N0W= 2N0FS. This corresponds to twice the variance, o2, of both the 

in-phase and quadrature components. The resultant noise-contaminated complex 
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DTFM signal is represented as the random process 

X+(nTs) = Xt(nTs) +j ■ Xq(nTs) , (4-7) 

where 

Xi(nTs) = i(nTs)+Ni(nTs) (4-8) 

and 

Xq(nTs) = q(nTs) +Nq(nTs) . (4-9) 

Again, i(nT) and q(nTs) are as in Equations (3-2) and (3-3) respectively, with the imposed 

modulation as in Equation (3-4). Subsequent analyses and simulations will be based on 

the established signal model of Equations (4-7) through (4-9). 

4.1.1 The Phase Noise Probability Density Function 

Consider the instantaneous phase message estimate 

$,(»r,)=Arctan{Mg}, (4-10) 

defined in an analogous fashion to Equations (3-12) and (4-2). (For notational purposes, 

the tilde symbol, ~, over a phase variable will be indicative of noise-contaminated phase.) 

Of interest is the resulting random phase noise sequence, r\(nTs), a constituent of the 

random instantaneous phase sequence 
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%i(pT,) = g[a(nTs) + t\(nTs) + 2TC • Re(nT,)] , (4-11) 

where RJipT) is some unknown sheet sequence error, and the true phase, a(nTs), is 

a(nTs) = 2nfenTs + $(nTs) - 6 . (4-12) 

The phase noise sequence is defined relative to the ideal noise-free phase as 

r\(nT,) = g[UnTs) - a(nTs)] . (4-13) 

Equivalently the phase noise can be defined relative to the ideal noise-free instantaneous 

phase as 

n(riTs) = g[UnTs)-g[a(nTs)]] . (4-14) 

Geometrically, this process is depicted on the phase plane in Figure (4-2). Note that the 

signal vector, s+, can lie on any sheet, but for simplicity is shown on sheet 0. 

By virtue of the independence of the random variables Xi and Xq, the joint 

probability density function (pdf) of^. and Xq is easily found as the product of the 

corresponding Gaussian marginal pdfs. After transforming the resulting joint pdf from 

Cartesian to polar coordinates and integrating over the envelope variable, Middleton [3, 

37] has shown the marginal pdf of the phase noise to be 

p(T\) = ± ■ exp(-p) + ^^ ■ exp(-p sin2(T!)) • Erf{^ COS(TI)) . (4-15) 
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Here, the function Erf(u) is the error function, typically defined in communication system 

analysis as 

u 

(4-16) 

^ 
teV 

imaginary 

# 
c^ 

Input Gaussian 
noise vector 

Figure (4-2). The phase plane representation of the phase noise, TJ , at an arbitrary time, 
t = nT. 

The input (i.e., prior to phase estimation) carrier-to-noise ratio, p , is defined as 

P = ^ (4-17) 
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Figure (4-3) is a plot of this phase noise pdf (herein referred to as the Middleton 

distribution) for various values of p. Note that as a result of defining the phase noise 

relative to the true phase, a, we have that 

-K<r\<+K. (4-18) 

It is also readily apparent that since the input noise sequence is independent from sample 

to sample, the output (i.e., after phase estimation) phase noise sequence will also be 

independent from sample to sample. Therefore the resulting phase noise power spectral 

density will also be uniform over the Nyquist interval, -^ </< ^ . This is an additional 

motivation for basing performance comparisons in the phase angle domain rather than the 

phase-difference domain, the latter of which results in correlated consecutive samples. 

We observe that as the carrier-to-noise ratio increases, r| decreases such that we 

can use the approximations 

sin2(r|) = rj2 , and cos(r|) = 1. 

In this case, the Middleton distribution of Equation (4-15) approaches a zero mean 

Gaussian distribution of variance (a/af. At the other extreme, for values of p 

approaching zero, the Middleton distribution approaches that of a uniform distribution in 

the interval (-71,n]. 
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JPOI) 

+ 71 *1 

Figure (4-3). The Middleton probability density function of the phase noise, t\, at various 
values of the carrier-to-noise ratio, p. 

4.1.2 The Phase Cycle-Slip 

In addition to the additive phase noise, r\, which is present in our instantaneous 

phase estimate, we are also concerned with errors in the determination of the phase plane 

sheet on which the signal vector lies. In this research, we will not be concerned with 

locally constant errors in the determination of this integer value, rather, we will be 

concerned with changes in this error between consecutive sample intervals. (Note that it 

is these changes in this error sequence which lead to errors in the resulting backward 

difference instantaneous frequency sequence.) A change in the error of the phase plane 

sheet determination over a sample time interval will be referred to as a. phase cycle-slip. 
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Recall that our true phase angle is as in Equation (4-12), 

a(nTs) = InfettTs + §(nTs) - 0 , 

corresponding to the phase of the noise-free signal vector, s+(nTs). Expressed in terms of 

the phase plane sheet sequence, r(nT), and the sheet 0 residual phase constituents, we 

have 

a(nTs) = g[a(nTs)] + 2% ■ r(nTs) , r e integers . (4-19) 

As described in Chapter 2, the integer sequence, r(nTs), identifies the sheet number on 

which the signal vector lies. Note that a change in r from time t=[n-l]Ts to time t = nTs 

does not constitute a phase cycle-slip. It is simply representative of the progression of the 

signal vector across the +/-71 boundary of the phase plane, during this time interval. 

We will be interested in identifying the estimate of the sequence r(nTs), derived 

from the phase message estimate, and knowledge of the true phase sequence, a(nTs). The 

baseline discriminator process applied to the noise-contaminated DTFM signal results in 

the instantaneous frequency estimate 

$'rf(/ir,) = Fs ■ gE[UnTs) - $,([« - l)Ts)] , (4-20) 

with $j(nTs) defined as in Equation (4-10). In likeness to Equation (4-3) we can define 

our noise-contaminated phase message estimate as 
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$<*nT,) = T,-{T, $'d(kTs) + 4>d(-Ts)}, (4-21) 
k=0 

which will be used to identify the corresponding sheet sequence estimate, R(nTs). Thus a 

phase cycle-slip occurs whenever there is a change, from time t = [n-\]Ts to t = nTs, in the 

integer valued error sequence, 

ReinTs) = R(nTs) - r(nTs) . (4-22) 

4.1.3 The Phase Noise and Phase Cycle-Slip Performance Statistics 

To predict the performance of the discriminator phase message estimate of 

Equation (4-21) via simulation, it is necessary to introduce measurement-derived statistics 

which are representative of the phase noise and phase cycle-slip errors. This section 

presents the simulation technique used to determine the phase noise sample sequence from 

knowledge of the true phase sequence. Subsequently, the sheet sequence estimate is 

presented, which can be used to determine phase cycle-slip occurrences. 

Observe that in the simulation process, the true phase as described by Equation 

(4-12) is known, since it is needed to generate the in-phase and quadrature pairs, 

{i(nTs),q(nTs)}, for the finite set of indices n = 0,1,2,...,(NPTS-1). For simplicity, each 

vector component generated by the sine and cosine functions is left as normalized to unity, 

i.e., a = 1. Each simulation run begins with the addition of this finite-length complex 

signal sequence and a newly generated complex Gaussian noise sequence of zero mean 

and variance 2o2. The new noise sequence, {Nj(nTs)J^(nTs)}, n = 0,1,2,...,(NPTS-1), 

generated for each simulation run, has the properties described in Section 4.1, namely : 
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1) Nt and TV" are zero mean, Gaussian uncorrelated random variables of variance o2 at any 

particular time, t = nTs, and 

2) {N$pT)Jf(nT)} and {Nj(mT}Jfq(mT)} are uncorrelated for all indices with the 

exception of m = n. 

The addition of the signal and noise finite length sequences results in the 

noise-contaminated sequence, {XfpT^JCJjiT)}, n = 0,1,2,...,(NPTS-1), generated at the 

beginning of a simulation run, having a fixed carrier-to-noise ratio equal to l/(2o2). 

During a simulation run, the real sequence 

d(nTs) = T, • $'rf(/i7-,) , n = 0,1,2,..., (NPTS- 1) (4-23) 

is generated using a backward difference numerical FM discrimination method. This 

allows us to calculate our phase message estimate simply as 

%d(nTs) =t d(kTs) ,n = 0,1,2,...,(NPTS- 1). (4-24) 

Consider first, the determination of a phase noise performance measure. Just as 

the zero-mean Gaussian distribution is completely characterized by its variance, the 

Middleton phase noise pdf in Equation (4-14) is completely characterized by its variance, 

V{r\}. The phase noise variance is a decreasing function of p, and is bounded at the upper 

extreme by the variance of a uniform distribution in (-%,%], and at the lower extreme by 

the variance, (p/af, of a Gaussian distribution. Thus we are interested in an estimate of 

the variance of the phase noise, as one of the performance measures. 
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Knowledge of the true phase, a(nT), allows us to consider determining a sample 

function of the phase noise sequence 

r\(nTs) = g[UnTs)-g[a(nTs)]] 

= g[h(nTs)-a(nTs)]. (4-25) 

Here, we have taken advantage of the fact that 

UnTs) = glh(nTs)] (4-26) 

as shown in Appendix B, and the modulo 2n arithmetic property presented in Equation 

(3-49). From a practical viewpoint, this means that we can determine the finite length 

phase noise sequence, r\(nT), from Equation (4-25) as 

r\(nTt) = gE[h(pTs) - a(nTs)], n = 0,1,2,..., (NPTS- 1) . (4-27) 

As an estimate of the variance of the phase noise, we define the performance statistic 

Ef = wki- £0   MMs)-m
2, (4-28) 

where r\ is an estimate of the mean of the phase noise and is defined as 

.     NPTS-l ., „„. 

* = *kr & ^>- <4"29> 
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With the ability to obtain a phase noise sample function and knowledge of the true phase, 

we now consider the phase cycle-slip performance measurement. 

In Appendix B, we have represented the noise-contaminated phase message 

estimate as 

$d(nTs) = a(nTs) + y\{nTs) + 2K ■ Re(nTs) , (4-30) 

where Re(nT) is as described in the appendix, an integer valued sheet sequence error. 

From Equation (4-30) and the phase noise sequence of Equation (4-27), knowledge of the 

true phase sequence allows us to identify the sheet sequence estimate as 

2TI • R(nTt) = {%d(nTs) - T](nTs)} -gE&j(nTs) - y\(nTs)], n = 0,1,2,..., (NPTS- 1) . 

(4-31) 

In practice, the calculation in Equation (4-31) is found to be sensitive to computer 

representation/roundoff errors when a is an odd multiple of+/-7C, and can lead to +/-2K 

errors when used in conjunction with Equation (4-22) to determine a sample function of 

the sheet sequence error, Re(nT). Therefore, although Equations (4-22) and (4-31) yield 

further insight into the nature of the phase sheet sequence error, we select an alternate 

method of determining Re{nT). An equivalent calculation for practical purposes is 

2TC • Re(nTs) = %d(nTs) - a(nTs) - v\(nTs), n = 0,1,2,..., (NPTS- 1) ,      (4-32) 
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directly from Equation (4-30). By counting the number of negative transitions, NCOUNT, 

and positive transitions, PCOUNT, in the error sequence found in Equation (4-32), we 

have a measure of phase cycle-slip performance for each simulation run. Alternatively, we 

can form the ratio 

A      _ NCOUNT + PCOUNT      TCOUNT (4-33) 
Pcs - NPTS NPTS    ' V 

as an estimate of the probability of a phase cycle-slip occurring at any particular sample of 

the phase message estimate. Here, TCOUNT, is the total number of transitions, either 

positive or negative. 

Taken together, the phase cycle-slip count and the phase noise variance estimate 

form a set of measures which can be used to predict the performance of the baseline 

numerical FM discrimination process. This technique is not unlike that of Rice's [6], in 

which both "cycle-skips" and output signal-to-noise ratio analytical measures are used to 

summarize continuous-time FM discriminator performance. However, in a similar fashion 

to Develet's analysis of angle demodulation [20, 39], we have chosen to stay in the 

phase-domain with both performance measures. 
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4.2 Recovery of the Sheet Sequence, r(nTs), in the Presence of AWGN 

We have previously introduced methods of obtaining phase noise variance and 

phase cycle-slip performance measures for the backward difference numerical FM 

discrimination technique, via experimental computer simulations. In these simulations, 

noise sample function sequences obtained from a Gaussian random process are added to 

the ideal complex DTFM signal, for subsequent analyses. We will now be concerned with 

the theoretical phase cycle-slip performance prediction in more detail, for comparison to 

the simulation results. The noise-contaminated signal model is as presented in Section 4.1. 

Consider the accumulation process of Equation (4-21), which is used as our 

noise-contaminated phase message estimate. From this we can write 

h(nTs) = $rf([/i - l]r,) + Ts ■ $'d(nTs) 

= $rf([w - l]Ts) +g&,(nTs) - $,([» - 1]T,)]. (4-34) 

Using Equation (4-26) and modulo 2K arithmetic, Equation (4-34) is rewritten as 

fanTs) = $d([/i - 1]7",) +g\g[h("Ts)] -g[$d([n ~ l]Ts)]] 

= $„([»- l]Ts) +g$d(nTs) - $rf([/i - l]r,)] . (4-35) 

After application of Equation (4-30) and modulo 2n arithmetic in Equation (4-35), 

rearrangement of terms yields 

r\(nT,) = v(nTs) - 2% ■ {Re(nTs) -Re([n - l]Ts)}, (4-36) 
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where 

y(pTs) = TI([/I - l]Ts) +g[a'd(nTs) + VrfW)] - a'd{nTs) (4-37) 

The terms ad(nTs) and r\d(nTs) are defined as the backward differences 

a'd(nTs) = a(nTs) - a([n - l]Ts) (4-38) 

and 

T\'d(nTs) = i\(nT.) - r\Qn -l]Ts). (4-39) 

Equation (4-36) is a key result in that it allows us to determine the probability of a phase 

cycle-slip occurring at a particular time t = nTs. This equation indicates that when v(nTs) 

exceeds n in magnitude, a phase cycle-slip identified as 

2% ■ Rcs(nTs) = 2K ■ {Re(nTs) -Re([n - l]Ts)} (4-40) 

will occur as a "compensation" such that equality with r\(nTs) holds. The result is that the 

phase noise, r\(nTs), remains on sheet 0 of the modulation referenced phase plane as 

defined, and as indicated in Equation (4-18). 

Figure (4-4) is representative of the various pdfs which arise at a particular time, 

t = nTs, in the formation of the random process v(nT) . For simplicity we use the notation 

a'd= a'pTX and TJ_ = TI([W -1]7;), r\ - r\(nT), v = v(nTs), for these random variables. 
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Figures (a) through (c) are for the case where the quantity (TI - a'd) is greater than zero. 

Similarly, figures (d) through (f) are for the case where the quantity (r| - a'd) is less than 

zero. 

-it   ~^~ 
(-7i-T|_+a'rf)        (-r\jUtj) 

(a) 

o    ^ 
(jt-Ti_+a'rf) 

(b) 

-(t-Tl.+a',,) 

(c) 

(n+n_-arf) 

$       0 ^ 7t ^ 
(-n-t]_Hx'd)      (-Ti_+a^) (t-i1_-Hx'rf) 

(d) 

-n T       0 
(-K-t]_+a'd) 

(e) 

-(n-n_-K»'d) 

(0 

Figure (4-4). Representative pdfs arising in the formation of v(nTs). 

Casel:(Ti_-a'd)>0 
a) The pdf of (r\ -r\_ + a'd) given r\ and a'd. 
b) The pdf of g[T] -1|_ + ot'J given r| and a'd. 
c) The pdf of v = r|_ - a'd + g[r] - TI_ + a'd] given TI._ and a'd, pX^l^ ,a'd) 

Case 2 : (r(_ - a'd) < 0 
d) The pdf of (TI - r\_ + a'd) given r\ and a'd. 
e) The pdf of g[r\ - r\_ + a'd] given r\ and a'd. 
f) The pdf of v = TI_ - a'd + gfa - TI._ + a'd] given TI_ and a'd, /?<(V|TI_ ,a'd). 

0      /|V 

(n+t]_~a'd) 
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From the representative pdfs of figures (c) and (f), it is possible to determine the 

probability of a phase cycle-slip under various modulation conditions. The three cases of 

interest will be the unmodulated carrier with a perfectly tuned receiver, the unmodulated 

carrier with an off-tuned receiver, and finally, the angle modulated carrier with an 

off-tuned receiver. The following sections will cover each of these cases, presenting both 

the theoretically predicted and the corresponding simulation results. 

4.2.1 Case I: The Unmodulated Carrier and Perfectly Tuned Receiver 

We begin with the case where the carrier is unmodulated and there exists no tuning 

error, i.e., the case where a(nTs) = 9. In this case, a'd = -9 - (-9) = 0. Consider the 

determination of the probability that v exceeds K, which corresponds to the occurrence of 

a positive phase cycle-slip compensation, 2%RCS, at some particular time t = nTs. We 

represent this probability as ppcs = Pr{v > TC}. Similarly we represent the probability of a 

negative phase cycle-slip as/?„CT = Pr{v < -%}. The probability of a phase cycle-slip 

occurrence (either positive or negative) is simply 

Pcs=Pncs+Ppcs ■ (4-41) 

This is true regardless of the modulation scenario, since the occurrence of a positive phase 

cycle-slip, the occurrence of a negative phase cycle-clip, and the occurrence of no phase 

cycle-slip, form a set of mutually exclusive and exhaustive events. 

Due to the symmetry of the Middleton phase noise pdf, and due to the fact that the 

backward difference, a'd, is equal to zero, it is readily apparent that the probabilities of a 
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negative phase cycle-slip and of a positive phase cycle-slip are the same. In Figure (4-4 c), 

the shaded area represents the probability of a positive phase cycle-slip, given a specific 

value, T|_ , of the random variable TJ_ . Integrating over all possible values of rj we obtain 

?! 7t+n- 

PncS=pPcs = Vr{v>%}=j   j p ^vlr]-) ■ p(r\-)dv dr\- . (4-42) 
o    t 

Note that integration on the variable r| is from 0 to % rather than -71 to TC, since for values 

of T|_ less than zero, Pr{v > 71} = 0. To simplify Equation (4-42) we employ the fact that 

Tl=g[v], (4-43) 

as implied by Equation (4-36). Thus values of v in the range % to (71 + rj ) map to values 

oft] in the range -n to (-71 + TJ_). Taking advantage of this mapping, we rewrite Equation 

(4-42) as 

jt —jt+n- 

Pncs =pPcs = Pr{-7i < T| < -7t + Ti_} = j pM   J  p(j])dr\ dr\- . (4-44) 
0 -t 

Note that both T\ and TJ are Middleton distributed as in Equation (4-15). Given the input 

carrier-to-noise ratio, p , we can use Equation (4-44) to determine the probability of a 

positive phase cycle-slip, which in this special case is the same as the probability of a 

negative phase cycle-slip. 
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Before presenting a comparison of the theoretical and the experimental 

performance predictions for various input carrier-to-noise ratios, we consider a specific 

example in which the carrier-to-noise ratio is allowed to approach zero. In this example, 

the pdfs of T|_ and t| approach that of a uniform distribution in the interval {-%,%]. From 

Equation (4-44) we obtain the probability of a negative phase cycle-slip as 

l * 
4K\ 

I 
8 

jV dr\. 

We conclude that with perfectly tuned reception of an unmodulated carrier in the presence 

of AWGN, the backward difference numerical FM discriminator will result in a negative 

phase cycle-slip occurring at a particular time, t = nTs, with a probability approaching 1/8 

as p approaches zero. As previously indicated, the symmetry of this example implies that 

the probability of a positive phase cycle-slip also approaches 1/8. From Equation (4-41), 

the probability of a phase cycle-slip therefore approaches 1/4. 

Figures (4-5 a) through (4-5 d) present both theoretical and experimental results 

serving as prediction of the performance of the backward difference discriminator, with 

regard to phase cycle-slip occurrences. Throughout the various simulations, the sequence 

length, NPTS, is equal to 1024 samples. 
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Figure (a) presents the analytically predicted number of negative phase cycle-slips 

per NPTS samples, as p is varied from -20 to +40 dB in 2 dB increments. This predicted 

count is found as the product of pms and NPTS. Here, pncs is found by numerical 

integration of the integral of Equation (4-44). Figure (b) presents the corresponding 

experimental results, which are arrived at using the technique outlined in Section 4.1.3. 

Rather than presenting the results in the form of a predicted probability as in Equation 

(4-33), we have simply plotted the variable NCOUNT versus the carrier-to-noise ratio. 

Note that the experimental results agree quite well with the theoretical results. It is also 

noted that as p decreases, the experimental negative phase cycle-slip count approaches 

values near 1024/8 = 128, as expected. 

Similarly, figures (c) and (d) respectively present the theoretically and 

experimentally predicted number of positive phase cycle-slips in a sequence of length 1024 

samples. The simulations presented in figure (d) plot the variable PCOUNT versus the 

input carrier-to-noise ratio. As expected, the performance predictions are the same as for 

the negative phase-cycle slip measures, in the currently treated case of the unmodulated 

carrier and perfectly tuned receiver. 

Our attention now turns to the case where there exists a tuning error, fe, in our 

DTFM signal. This error is associated with the receive end of our communication system, 

which is modeled as the quadrature downconverter (or its equivalent) and the backward 

difference discriminator. The error mechanism is therefore referred to as an off-tuned 

receiver. 

99 



t/3 

O 
i—i 

o 
O 

130 

120 

110 

100 
90 
80 
70 
60 

50 

40 

30 
20 

10 

lK  » 
'▲ 
▲ ! 
 A  

j 'A ! M. 

 | %  

A 
A 

 :                     Ä 

¥A 

-20 -10 10 20 30 40 

Input Carrier-to-Noise Ratio (dB) 
Figure (4-5 a). Analytically predicted number of negative phase cycle-slips vs. p ; 
Case I: The unmodulated carrier and perfectly tuned receiver. 

Figure (4-5 b). Experimentally predicted number of negative phase cycle-slips vs. p 
(4 simulation runs); Case I: The unmodulated carrier and perfectly tuned receiver. 
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Figure (4-5 c). Analytically predicted number of positive phase cycle-slips vs. p ; 
Case I: The unmodulated carrier and perfectly tuned receiver. 

Figure (4-5 d). Experimentally predicted number of positive phase cycle-slips vs. p 
(4 simulation runs); Case I: The unmodulated carrier and perfectly tuned receiver. 
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4.2.2 Case II: The Unmodulated Carrier and Off-tuned Receiver 

We now analyze the case where the carrier is unmodulated, but there exists a 

tuning error of /, Hz. In this case, a'd = (2nfenTs - 0) - {2%fe [n - l]Ts - 9) = 2%feTs. 

Consider the determination of the probability that v is less than -%, which corresponds to 

the occurrence of a negative phase cycle-slip compensation, 2%RCS, at some particular time, 

t = nTs. As before, we represent this probability as pncs = Pr{v < -n;}. This corresponds 

to the scenario where Cn_ - a'd) is less than zero, as shown in Figure (4-4 f). Integrating 

over all contributing values of TJ we obtain 

a, 

Pncs - 
4       ~n 

)      \     p<(y\y\-)-p(v\-)dvdy\-. (4-45) 
(jt-Ti--kx^) 

For the outer integral of Equation (4-45), values of r\_ in the range [-7t,a'J will result in 

non-zero contributions over the inner integral. Thus the limits of integration for the outer 

integral are established. 

Likewise, for the scenario where (t|_ - a'J is greater than zero corresponding to a 

positive phase cycle-slip, we write 

„(n-Hi--a^) 

Ppa=j     j     p>(v\r]-)p(r\-)dvdr)-. (4-46) 

For the outer integral of Equation (4-46), only values of TI_ in the range [a 'd,%\ will 

contribute to the overall integration. 
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To simplify the integrals of Equation (4-45) and (4-46) we again employ Equat 

(4-43). For (r\ - a'd) less than zero, values of v in the range -% to -(K+r\-a'd) map to 

values of r\ in the range (7i+r|_-a'd) to n. This allows us to rewrite Equation (4-45) 

ion 

as 

Pncs=]p(r\~)     j    p(r\)dT] dr\- . 
(7i+r|--a^) 

(4-47) 

Similarly, for (y\_ - a'd) greater than zero, values of v in the range 7r to {n+^-a'd) map to 

values of Ti in the range -TC to -(Ti+rL-a',). Equation (4-46) is rewritten as 

n -(7t-T|-+a^) 

PPcs=\p(y\-)     j     p(T))dr\dr)- (4-48) 

or As in Case I, we determine the probability of a phase cycle-slip (either positive. 

negative) using Equation (4-41). It is interesting to note that by employing the symmetry 

of the Middleton pdf, a simple change of variable in Equation (4-47) along with a change 

in the order of integrations yields the property 

PncS(a'd, p) =ppcs(-a
/

d, p) . (4-49) 

In the above expression, we have explicitly indicated the dependence of these probabilities 

on both the tuning offset, a'd = 2nfeTs, and the input carrier-to-noise ratio, p. 
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Before presenting a comparison of the Case II theoretical and experimental 

performance predictions for various input carrier-to-noise ratios, we consider a specific 

example in which the carrier-to-noise ratio is allowed to approach zero. As stated 

previously, the pdfs of n_ and r, approach that of a uniform distribution in the interval 

(-*,*]. In this example, we also allow the tuning offset to approach the positive extreme 

value, a'd = -hi. From Equation (4-47) we obtain the probability of a negative phase 

cycle-slip under this condition as 

P--IU&1*1 

71 

-Tt   f (7C-Tl_)rfn- 
4K

2
 -4 

I 
2 

We conclude that with maximally positive off-tuned reception of an unmodulated carrier in 

the presence of AWGN, the backward difference numerical FM discriminator will result in 

a negative phase cycle-slip occurring at a particular time, t = nTs, with a probability 

approaching 1/2 as p approaches zero. At the same time, from Equation (4-48) the 

probability of a positive phase cycle-slip is zero. From the property presented in Equation 

(4-49), this example implies that when a'd = -*, the probability of a positive phase 

cycle-slip also approaches 1/2 as p approaches zero. Likewise, from Equation (4-47) the 

probability of a negative phase cycle-slip is zero, when a'd = -n. 
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Figures (4-6 a) through (4-6 d) present both theoretical and experimental results 

serving as prediction of the performance of the backward difference discriminator, with 

regard to phase cycle-slip occurrences for Case II. Throughout the various simulations, 

the sequence length, NPTS, is again equal to 1024 samples. The tuning offset in these 

figures is a'd = 2%feTs = n/10. 

Figure (a) presents the analytically predicted number of negative phase cycle-slips 

per NPTS samples, as p is varied from -20 to +40 dB in 2 dB increments. This predicted 

count is found as the product of pncs and NPTS. Here, pncs is found by numerical 

integration of the integral of Equation (4-47). Figure (b) presents the corresponding 

experimental results, which are arrived at using the technique outlined in Section 4.1.3. 

As in Case I, rather than presenting the results in the form of a predicted probability using 

Equation (4-33), we have simply plotted the variable NCOUNT versus the carrier-to-noise 

ratio. Note that the experimental results agree quite well with the theoretical results. 

Similarly, figures (c) and (d) respectively present the theoretically and 

experimentally predicted number of positive phase cycle-slips in a sequence of length 1024 

samples. The simulations presented in figure (d) plot the variable PCOUNT versus the 

input carrier-to-noise ratio. As expected, the presence of a positive tuning offset increases 

the chance of a negative phase cycle-slip, and decreases the chance of a positive phase 

cycle-slip. 

Next, we will be interested in the case where there exists a tuning error, fe, in 

addition to a message signal, $(t) , in our DTFM signal. This is the final and most general 

modulation case consistent with our established DTFM model, which will be considered. 
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Figure (4-6 a). Analytically predicted number of negative phase cycle-slips vs. p ; 
Case II: The unmodulated carrier and off-tuned receiver (2nfeTs = nde = it/10). 
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Figure (4-6 b). Experimentally predicted number of negative phase cycle-slips vs. p 
(4 simulation runs); Case II: The unmodulated carrier and off-tuned receiver 
(2nfeTs = nbe = rc/10). 
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Figure (4-6 c). Analytically predicted number of positive phase cycle-slips vs. p 
Case II: The unmodulated carrier and off-tuned receiver (2%feTs = %5e = n/10). 
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Figure (4-6 d). Experimentally predicted number of positive phase cycle-slips vs. p 
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4.2.3 Case m: The Angle Modulated Carrier and Off-tuned Receiver 

The final case to be considered is the general case in which there exists both a 

tuning error and angle modulation imposed on the carrier. Demodulation of the noise-free 

DTFM signal in this case yields a'pT) = 2itfeTs + $(nTs) - <)>([" - 1]T). We will build 

upon the results of Equations (4-47) and (4-48) to arrive at phase cycle-slip probabilities 

for the present modulation case. 

It is observed that in the noise-contaminated DTFM model which we have 

adopted, the distribution of phase-difference amplitude values, a'd, is statistically 

independent of the distribution of each of the phase noise random variables, r\ and TI_. 

This amplitude distribution will be represented as pjy), where the variable 7 signifies any 

of the possible values of the quantity v = a'd at any arbitrary time, t = nTs. As previously 

established, these amplitude values range from -n to +%. Given the amplitude 

distribution, p/y), the probability of a negative phase cycle-slip is readily found as 

PncS=]py(y)]p(n-)     J     p(ri)dr\dr\-dy. (4-50) 

Equation (4-50) can be viewed as a weighted average of Case II negative phase cycle-slip 

probabilities. Previous expressions for the probability of a negative phase cycle-slip are 

simply special cases of Equation (4-50), in which the quantity .y = a'd takes on a single 

known value. 

Similarly the probability of a positive phase cycle-slip is 
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jt n -0^1-+^) 

PPCS = J py(y) jp(r\-)      j     p(r))dr\ <h\-dy . (4-51) 
-n y -n 

This can likewise be interpreted as the weighted average of Case II positive phase 

cycle-slip probabilities. Once again, previous expressions for the probability of a positive 

phase cycle-slip are simply special cases of Equation (4-51), in which the quantity y = ct'd 

takes on a single known value. 

We now present the specific example in which the imposed angle modulation is 

sinusoidal with 

m(nTs) = sm(2%fmnTs + 0m), (4-52) 

such that 

MnT,) - <|>([/i - l]Ts) = Ts ■ hD(nTs) * {2%Af- m(nTs)}. (4-53) 

In the presence of a tuning offset, employing results from Appendix A yields 

y(nTs) = \iy +aysm(2%fmnTs + 0m - n ■ ff), (4-54) 

where 

\iy = 2%feTs, (4-55) 

and 
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Random sampling of the amplitude of y(nT) yields the distribution 

pY(y) = .    l -ay<(y-iiy)<ay. (4-57) 
may f^W) 

To carry out the numerical integration of Equation (4-50) and (4-51), we perform a 

weighted average of the inner double integrals, over a finite set of subintervals spanning 

the amplitude interval, [(-o + \xy),{a + Vy)l The weights used are the corresponding 

probabilities of y being in a particular subinterval. Corresponding to each subinterval, any 

value of the amplitude, y, in this subinterval can be used in the calculation of the inner 

double integrals. Consider first the numerical calculation of Equation (4-51), the 

probability of the occurrence of a negative phase cycle-slip. 

The approximation to Equation (4-50) which is used to find the probability of a 

negative phase cycle-slip is 

Pncs = I Pr j p(r\-)     j    P(T\)dr\ dr\- ,   yk<y <yk+i , (4-58) 

where the probability weights, P^ are found as 

n+i 
Pk=jpriy)dy. (4-59) 

yk 
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Here, the amplitude subintervals are a result of quantizing the modulating signal into 2b 

equally spaced discrete values of y, where b is some positive integer. (In the simulations 

to be presented, b = 5.) The subintervals are \yk, yM ], k= 1,2,3,...,(26-l), with yx 

corresponding to (-a + \i) and ylhA corresponding to (a + \iy). In the sinusoidal 

modulation example, with pjy) defined as in Equation (4-57), the weights become 

ft = 1 • [sin- ( y-i^ ) - *."'( ^ }] (4-60) 

For a numerically calculated upper bound on Equation (4-50) we employ Equation (4-58) 

with y=yk¥X, since Pr{v < -7c} is an increasing function of y. Similarly, a lower bound 

on the probability of a negative phase cycle-slip is determined using Equation (4-58), by 

setting y=yk. 

Likewise, an approximation to the probability of the occurrence of a positive phase 

cycle-slip described by Equation (4-51) is 

2»-i        « -0Ml--KXrf) 

PPCS = t PkjpM      j     P(r0dr\dr\- ,    yk<y<yk+i . (4-61) 
k=l y -n 

The weights, P^ remain as in Equation (4-59). For a numerically calculated upper bound 

on Equation (4-51), we employ Equation (4-61) with y =yk, since Pr{v > rc} is a 

decreasing function of y. Similarly, a lower bound on the probability of a positive phase 

cycle-slip is determined using Equation (4-61) by setting y=yk¥X ■ 
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Figures (4-7) and (4-8) present both the theoretically and experimentally predicted 

phase cycle-slip performance measures, for two distinct Case III modulation scenarios. 

The first scenario is presented in Figures (4-7 a) through (4-7 d), with the relative message 

sampling rate, y, set at 17.067, and the DTFM message index, 8m, set at 0.2930. Figure 

(a) presents the upper and lower bounds on the analytically predicted number of negative 

phase cycle-slips. The corresponding experimental results are presented in figure (b), and 

are in agreement with the analytically predicted performance. Similarly, figure (c) presents 

the analytically predicted positive phase cycle-slip occurrences, while figure (d) presents 

the experimental results. Again, the analytical and experimental performance predictions 

are in agreement with each other. 

Likewise, Figures (4-8 a) through (4-8d) present the theoretical and experimental 

phase cycle-slip performance predictions for the modulation scenario where y remains set 

at 17.067, but 8m is changed to 0.5859. As expected, increasing the DTFM modulation 

index has the effect of increasing the probability of a phase cycle-slip. Figure (a) presents 

the upper and lower bounds on the analytically predicted number of negative phase 

cycle-slips. The corresponding experimental results are presented in figure (b), and are in 

agreement with the analytically predicted performance. Similarly, figure (c) presents the 

analytically predicted positive phase cycle-slip occurrences, while figure (d) presents the 

experimental results. As seen in these figures, the analytical and experimental performance 

predictions are in agreement with each other. 
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Figure (4-7 a). Analytically predicted number of negative phase cycle-slips vs. p ; 
Case III: The angle modulated carrier and off-tuned receiver (27t/e7; = 7t8e = 7t/10, with 
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(4 simulation runs); Case III: The angle modulated carrier and off-tuned receiver 
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113 



Figure (4-7 c). Analytically predicted number of positive phase cycle-slips vs. p ; 
Case III: The angle modulated carrier and off-tuned receiver (2%feTs = 7c5e = 7C/10, with 
sinusoidal modulation, y = 17.067, 8m = 0.2930). 
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Figure (4-7 d). Experimentally predicted number of positive phase cycle-slips vs. p 
(4 simulation runs); Case III: The angle modulated carrier and off-tuned receiver 
(2nfeTs = %8e = TI/10, with sinusoidal modulation, y = 17.067, 8m = 0.2930). 
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Figure (4-8 a). Analytically predicted number of negative phase cycle-slips vs. p ; 
Case III: The angle modulated carrier and off-tuned receiver (2nfeTs = %5e = TC/10, with 
sinusoidal modulation, y = 17.067, 8ffl = 0.5859). 
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Figure (4-8 b). Experimentally predicted number of negative phase cycle-slips vs. p 
(4 simulation runs); Case III: The angle modulated carrier and off-tuned receiver 
(2nfeTs = 7rSe = 7t/10, with sinusoidal modulation, y = 17.067, 5ffl = 0.5859). 
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Figure (4-8 c). Analytically predicted number of positive phase cycle-slips vs. p ; 
Case III: The angle modulated carrier and off-tuned receiver (2%feTs = %5e = 7t/10, with 
sinusoidal modulation, y = 17.067, 5ffl = 0.5859). 

Figure (4-8 d). Experimentally predicted number of positive phase cycle-slips vs. p 
(4 simulation runs); Case III: The angle modulated carrier and off-tuned receiver 
(2nfeTs = 7c5e = 7i/10, with sinusoidal modulation, y = 17.067, 5ffl = 0.5859). 
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4.3 The Mean-Square Phase Noise Performance Measure, Ep 

The emphasis in this chapter thus far has been on the phase cycle-slip performance 

measure. Our attention now turns toward the measured mean-square phase noise, as a 

phase noise variance estimate, for performance prediction purposes. Recall from 

Equations (4-27) through (4-28) that this measure requires the knowledge of the true 

phase sequence, a(nTs), as in the phase cycle-slip measure. Taken together, both 

measures are used to predict the performance of the backward difference numerical FM 

discriminator in the presence of additive white Gaussian noise. 

We begin by considering the special case in which the imposed angle modulation is 

sinusoidal as in Equation (4-52). In the presence of a tuning error, fe, noise-free phase 

recovery yields 

a{nTs) = S y(kTs) = 2nfenTs + ß sm(2%fmnTs + Qm - §) - 9 , (4-62) 

where ß is A/7/m as defined in Equation (3-73). Note that the "information-bearing" 

phase signal component is the term 

<k(nTs) = ß sm(2KfmnTs + Qm - §). (4-63) 

The output noise-contaminated phase is from Equation (4-30) represented as 

$rf(«7,) = 2%fenTs + 4>(nTs) -d + r\(nTs) + 2n ■ Re(nTs), (4-64) 
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which motivates us to consider an output signal-to-noise ratio performance measure using 

our knowledge of §(nTs), and the phase noise variance estimate. 

The output phase signal-to-noise ratio (for sinusoidal modulation) is defined as 

SWR = £!._!_. Y = _LL_. (4-65) 

The factor y in the above equation represents the effect of an ideal lowpass filter of 

bandwidth fm Hz, applied to the recovered phase signal. Thus the effect of the output 

phase noise, TJ, is measured over the message bandwidth. The factor ß2/2 is 

representative of the power of the sinusoidal modulating signal. 

Figure (4-9) presents the results of both the analytically and experimentally 

predicted output phase SNR measure, as a function of the input carrier-to-noise ratio, p. 

Figure (a) presents the analytical results, while figure (b) presents the results of a single 

simulation run. For the experimental performance prediction, the numerically found phase 

noise variance, V{r\}, has been replaced by its estimate, Ep, using a simulated DTFM 

sequence of length NPTS = 1024 samples. In both figures, the modulation index, 8m, 

takes on the values 0.0586, 0.1172, 0.2930, and 0.5860, with y fixed at 17.067. (These 

values of 5m correspond to ß values of 1, 2, 5 and 10 respectively, for the current value 

of y.) Note that the experimentally predicted measure is in close agreement with that of 

the analytically predicted measure, for the given modulation indices. It is interesting to 

observe that a single curve from Figure (4-9) is sufficient to serve as phase noise 

performance prediction; the parameter ß merely shifts (increases) the ordinate by the 
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Figure (4-9 a). Analytically predicted output phase SNR in the message bandwidth; 
(sinusoidal modulation, y = 17.067). 
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Figure (4-9 b). Experimentally predicted output phase SNR in the message bandwidth; 
(sinusoidal modulation, y = 17.067). 
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amount 101og{ß2/2}. Note also, however, that as the phase noise pdf approaches a 

uniform distribution (for values of p less than 0 dB or so) the output phase SNR measure 

loses its meaning. In this limiting situation, the phase noise very effectively randomizes 

the recovered instantaneous phase and thus eliminates the signal. Due to the fact that the 

phase noise at time t = nTs is modeled as being statistically independent of the phase noise 

at time t = [w-1]^, the backward difference does not help to alleviate this effect. (In fact 

as indicated in [6], Rice [38], Stumpers [5], and Middleton [4], have shown that for 

the continuous-time case, the message signal is reduced by the factor (1 - e'p).) 

We make the observation that for a fixed sample rate, Fs, and fixed message 

bandwidth, fm, the frequency deviation, A/, can be increased such that for a given input 

carrier-to-noise ratio, the output phase signal-to-noise ratio can be enhanced. This is 

done, however, at the expense of increasing the probability of phase cycle-slip 

occurrences, as seen in Figure (4-10). In comparison to Figures (4-7) and (4-8), we see 

that increasing the DTFM message index, 5m, to 0.8203 (by increasing A/) gives rise to 

additional phase cycle-slips, at input carrier-to-noise ratios as high as 20 dB. 

A more realistic scenario is that the sample rate is decreased in order to facilitate 

processing on a computing device. For a fixed message bandwidth and deviation 

frequency, the result is that y decreases while 5m increases, both towards unity. Again this 

is done at the expense of additional phase cycle-slips. 
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(4 simulation runs); Case III: The angle modulated carrier and off-tuned receiver 
(2KfeTs = TC5 = 7t/10, with sinusoidal modulation, y = 17.067, 6m = 0.8203). 

122 



4.4 Relating Instantaneous Frequency Aliasing and the Phase Cycle-Slip 

In the absence of noise, we have previously established in Equation (3-67) the 

requirement to prevent instantaneous frequency aliasing due to overmodulation. With 

a'J[nTs) defined as in Equation (4-38), this requirement is restated as 

-it<ad(nTs)<+K . (4-66) 

With noise as modeled in the present research, the new requirement becomes 

-7i < a'd(nTs) + T\d(nTs) < +n . (4-67) 

Note that even in the latter noise-contaminated case, the requirement of Equation (4-66) 

remains. Thus it is best to refer to violation of Equation (4-66) as overmodulation. 

Violation of Equation (4-67) will be referred to as instantaneous frequency aliasing. 

Further consideration of the phase cycle-slip as derived from Equation (4-37) leads 

us to conclude that analysis of the term 

g[ad(nTs) + y\d(nTs)\, 

will uniquely determine when cycle-slips occur. More specifically, a phase cycle-slip is 

avoided under the condition 

g[a'd(nTs) + rfanT,)] = a'd{nTs) + r\d(nTs). (4-68) 
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This condition, however, is simply a restatement of Equation (4-67). Thus the phase 

cycle-slip probabilities previously determined have the alternate interpretation of being the 

probabilities of instantaneous frequency aliasing events. Aliasing across the +n boundary 

is the same as a negative phase cycle-slip, while aliasing across the -n boundary is the 

same as a positive phase cycle-slip. 

4.5 Concluding Remarks 

As already indicated, by taking into account both the occurrences of phase 

cycle-slips and the output phase SNR measure, we have a method of predicting the 

performance of the backward difference discriminator. In the previous section we have 

not addressed the fact that the occurrence of a phase cycle-slip is dependent on the phase 

noise sequence sample function, such that these distinct noise contributions are not 

independent of each other. In this regard, these two noise effects should not be 

considered directly additive. Rather, careful consideration must be used to properly 

combine the effects, if so desired. Currently, we will consider it to be sufficient to leave 

the performance measures as separate quantities. 
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CHAPTER 5 

Simulation of a Method of Discriminator Performance Enhancement 

for Efficient Processing of Large ß DTFM Signals at Low Input CNR 
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5.1 Objective 

We have established in Chapter 4 the representation of the recovered phase from 

the backward difference discriminator, in units of radians, as 

$d(nTs) = a(nTs) + T](nTs) + 2%Re(nTs) , (5-1) 

where 

a(nTs) = 2nfenTs + $(nTs) - 0 . (5-2) 

Here, 2%f/iTs is a ramp function resulting from the tuning error, fe, §(nTs) is the phase 

message signal, Q is an arbitrary but constant reference phase, and r\(nTs) is the Middleton 

distributed phase noise process. The term 2%Re(nTs) is representative of the occurrence of 

phase cycle-slips and has the properties outlined in Chapter 4 and Appendix B. This 

recovered phase representation is the result of modeling the modulated input signal as the 

Cartesian sum of our complex DTFM signal with complex Gaussian distributed noise of 

uniform spectral density over the Nyquist frequency band. In this research focus will be 

on the reduction of phase cycle-slip occurrences, by reducing the modulation index of the 

noise-contaminated DTFM signal. 

Of interest to us is the modulation scenario in which the original continuous-time, 

constant envelope, frequency modulated signal is characterized by a "large" Af/fm ratio 

(i.e., large ß). Currently we will consider the term "large" to imply that the minimum 

required sample rate, after conversion of the input to the generalized pre-envelope form, is 

such that the message signal amplitude changes by no more than 10 to 20% between 
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consecutive samples. (Recall that the message signal, m(nTs), is normalized in amplitude.) 

Note that for efficient and/or real-time processing of such a DTFM signal, it is desirable to 

perform computations at as low a sample rate as possible. However, as we have seen in 

previous results, lowering the sample rate increases the probability of the occurrence of 

phase cycle-slips for the given resultant value of relative message sample rate, y. In effect, 

by lowering the sample rate, the DTFM modulation index, 5, increases towards its 

maximum allowable value of unity, beyond which the signal is considered to be 

over-modulated. 

As indicated in Figures (4-10 a) through (4-10 d), we find that the phase cycle-slip 

probability increases substantially with increases in modulation index. This can be seen in 

comparing these results to those of Figures (4-8 a) through (4-8 d). At a 10% tuning 

offset, by increasing 8m from .5859 to .8203 the phase cycle-slip count per 1024 samples 

increases from approximately zero, to tens of counts at values of input CNR in the range 

10 to 20 dB. In this chapter, we will develop and evaluate a method of enhancing the 

performance of the backward difference numerical FM discriminator, using frequency 

feedback techniques. In particular, by simulating the noise-contaminated complex DTFM 

signal as in Chapter 4, observed phase cycle-slip counts and phase noise variance 

estimation will be used to compare the enhanced demodulator to the established backward 

difference discriminator baseline. 

Special note is made of the fact that in this chapter, for convenience, instantaneous 

frequency estimates are left in units of normalized radian frequency, rather than scaling by 

Fs to convert to units of radians per second. 
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5.1.1 The FM with Feedback (FMFB) Demodulator 

The continuous-time FMFB technique as proposed by Chaffee [18] and furthered 

by Enloe [19] and others, was originally introduced as a means of reducing the FM 

threshold effect for large deviation, low carrier-to-noise ratio FM systems. The basic 

block diagram representation of the FMFB device is presented in Figure (5-1). The 

related and better known phase-lock loop (PLL) device is shown by Develet [20] to be 

equivalent to the FMFB demodulator under the correct conditions. 

Mixer 
Bandpass 
FM Signal 
in Additive 
Gaussian Noise 

Bandpass 
Filter 
(BPF) 

Analog Limiter/ 

Discriminator 

Voltage 
Controlled 
Oscillator 
(VCO) 

Lowpass 
Filter 

(LPF) 

Recovered 
Message 
Signal 

Figure (5-1). The continuous-time (analog) FM with Feedback (FMFB) demodulator. 

As explained by Enloe, both the PLL and the FMFB demodulators use the a priori 

information that the ratio of frequency deviation to message signal bandwidth, A///m, is 

large. Referring to Figure (5-1), the function of the Voltage Controlled Oscillator (VCO) 

is to track the slowly varying message-signal-induced frequency excursions. At the same 

time, the Bandpass Filter (BPF) responds only to a much narrower band of noise centered 
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around these frequency excursions. The function of the Analog Limiter/Discriminator and 

Lowpass Filter (LPF) is to provide the necessary information to the VCO to continuously 

track these excursions. Note that an error in the VCO frequency relative to the input 

waveform will result in a proportionate control voltage, acting in a negative feedback 

manner, such that the error is reduced and continuously maintained near zero. Thus the 

discriminator is presented a narrower band of noise so that any resulting phase noise is 

substantially lowered at the discriminator output. 

5.1.2 The Numerical FM with Feedback Demodulator 

We arrive at a form of the numerical FMFB demodulator by converting to 

discrete-time the analog FMFB device of Figure (5-1). By additionally incorporating the 

generalized pre-envelope representation, we arrive at the system shown in Figure (5-2). 

The input to the device is the noise-contaminated generalized pre-envelope sequence, 

X+(nTs,f0). The data registers shown are simply indicative of the fact that all necessary 

calculations for each output estimate must be performed within the sample clock interval, 

Ts seconds. It is assumed that the instruction clock of the programmable device used to 

implement the process and the sample clock are derived from a common clock source such 

that an integer number of instruction cycles are available between consecutive time 

samples. 
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For a description of its operation, we start at time t = nTs at the input to the device. 

The function of the Complex Multiply module is to reduce the modulation index of the 

input sequence by reducing the frequency deviation, A/. With the input sequence 

represented as 

X+(nTs,f0) = \A+(nTs)\ ■ exV{j[2%f0nTs + typT,) - 9 + r\(nT,)]}, (5-3) 

the resultant bandpass filtered product is 

{X+(nTs,f0) ■ aap{-jip(nT,Jo)}}BPF = \A+(nTs)BPF\ ■ exp{j^e(nTs)},      (5-4) 

or expressed in Cartesian form, 

\A+(nTs)BPF\ -exptöeinTs)} = {Xei(nTs) +jXeq(nTs)} = Xe(nTs). (5-5) 

The notation {.}BPF is representative of the effect of the complex bandpass filter in the 

device, shown as the BPF module. (This filter processes the result of the Complex 

Multiply module.) Here, \A+(nT)\ is the noise-perturbed envelope sequence associated 

withX+(«7;,/0). Likewise, \A£nT)BPF \ is the resulting envelope after bandpass filtering. 

With the definition 

a+(nTs) = KI. {hlp(kTs) *y([k- l]Ts)}, (5-6) 

the phase prediction sequence is 
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iP(nTsJo) = 2%f0nTs + ä+(nTs) = 2n[f0 -fe]nTs + a+(nTs), (5-7) 

where hlp(nT) is the impulse response of the phase predictor lowpass filter. We have also 

used the fact that 

2nfo = 2n-[fo-fel (5-8) 

The resulting residue modulation becomes 

%e(nT,) = g[{a(nTs) + r\(nT,) -ä+(nTs)}BPF) . (5-9) 

The intent of the bandpass filtering operation is to pass a narrow band of frequency 

excursions centered around zero hertz, and to reject the noise energy outside of this band. 

At the same time, this filter must remain wide enough in frequency such that the residue 

modulation accurately represents the reduced index phase modulation. Employing the 

backward difference discriminator, the Numerical FM Discriminator module processes this 

reduced modulation index signal, producing an estimate of the original modulating signal. 

Although not shown, this estimate can subsequently be processed further, using for 

example lowpass filtering, to enhance the output signal-to-noise ratio. Thus available to 

the Phase Predictor module for generating the current phase prediction, are all 

instantaneous frequency estimates prior to the current time, t = nTs. With the above 

calculations complete, a new sample interval begins with a sample clock transition to 

/ = [w+l]7^ and the entire process continues. 
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The shown form of the phase predictor consists of a fixed feedback gain factor, K, 

the lowpass filter, LPF, and an accumulator which acts as an integrator inverting the 

differentiation process of the numerical discriminator. Injection of the center frequency 

estimate after scaling by the sample interval, effectively sets the nominal operating 

frequency of the Numerically Controlled Oscillator (NCO) module. The shown NCO 

allows for quantization of the feedback phase prediction such that the required cosine and 

sine trigonometric functions can be readily implemented using look-up table techniques. 

The number of bits used in the quantizer determines both the size of the look-up table, and 

the amplitude resolution of the instantaneous phase prediction. The number of bits can be 

chosen to produce a resolution which is commensurate with the maximum change between 

consecutive samples expected in the modulation sequence . 

For practical reasons, the output of the accumulator in the Phase Predictor module 

is retained in a modulo 2it fashion, bounding the accumulated result in the interval (—7c,7t] 

and easing quantizer implementation. Overall, with proper choice of feedback gain, 

complex bandpass filtering and phase prediction lowpass filtering, the numerical 

implementation acts in an analogous manner to its continuous-time counterpart and 

effectively tracks instantaneous frequency excursions. 
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5.2 The Reconstituted Numerical FM with Feedback (RNFMFB) Demodulator 

We now introduce a form of demodulator device to be referred to as the Type I 

RNFMFB demodulator, shown in Figure (5-3). This device operates just as the previously 

described numerical FMFB demodulator of Figure (5-2). However, from this previous 

description it is observed that we have available to us the instantaneous phase prediction 

sequence, 

g&p(nT,jo)] = g[2%fonTs + a+(nT,)] , (5-10) 

which has been used to reduce the modulation index of the original input sequence, 

X+(nTs,fo). Since the message output is no longer taken directly from the numerical 

discriminator, we modify Equation (5-6) as 

a+(nTs) = K-i {hlp(kTs)*g[de([k-l]Ts)]}, (5-11) 
4=0 

where 

de{nTs) = $e(nT,) - $.([/! - 1]T,) . (5-12) 

It is apparent that the rate of change of the instantaneous phase prediction sequence of 

Equation (5-10) represents the frequency compression that has been effected upon the 

original modulated signal. Thus with the appropriate time alignment as shown in the 

Phase-Difference Reconstitution module, this compression signal can be recombined with 
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the recovered residue modulation estimate, reconstituting the original modulation. The 

time alignment takes into account the group delay of the complex bandpass filter function, 

BPF. The output is now identified as this reconstituted instantaneous frequency estimate. 

The Type I RNFMFB device, interesting in its own right, is left for future research 

efforts. Currently we emphasize the analysis of a specific implementation of the Type II 

RNFMFB demodulator, as presented in Figure (5-4). The Type II device is distinguished 

from the Type I in that the signal fed back to the Phase Predictor module is now the 

reconstituted message estimate, rather than the residue constituent, g[de{nT)\ Note that 

for the implemented RNFMFB demodulator, as shown in the figure, both the bandpass 

and lowpass filter functions have been omitted for computational efficiency and reduction 

of complexity. By additionally designing the acquisition and demodulation process such 

that 7^ is as large as permissible for proper message recovery, we increase the number of 

instructions available between consecutive samples. 

In practice, we find that cost effective programmable Digital Signal Processing 

(DSP) devices are characterized by their ability to perform the operations of 

multiply-accumulate and table look-ups quite efficiently in terms of executed instructions. 

However, these devices typically cannot perform calculations such as division and 

arctangent in an efficient manner. As a consequence of these device characteristics, the 

presented RNFMFB demodulator becomes attractive to the communications engineer, 

given that the extra processing requirements can be implemented in a small percentage of 

the total set of instructions required for demodulation. We therefore potentially gain more 

instructions by increasing Ts than are invested in the additional processing. In the absence 
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of this processing advantage, analysis of the performance of the RNFMFB device relative 

to the established baseline enhances basic understanding of the operation of numerically 

implemented frequency feedback techniques. 

To facilitate the description of the operation of the RNFMFB demodulator, we 

refer to the phase-domain model. 

5.2.1 The Implemented RNFMFB Demodulator Phase-Domain Model 

The phase-domain model of the implemented RNFMFB demodulator is shown in 

Figure (5-5), where we have made use of the z-transform time delay notation, z'. 

Referring to the figure, we find that 

tiUnTJo)] = tiWonT, + 0.5 tyQk- 1]T.)] (5-13) 

such that 

^2(nTs) = g[d2(nTs,fo),fo] 

= ääbpWsJo)] -g[ip([« - l]TsJ„)] - 2nfo] 

= g[05y([n-l]Ts)]. (5-14) 

Since 

»^'iW + ^W, (5-15) 
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we find that the message output has the property 

-2TU <y(nTs) < +2% , (5-16) 

which allows us to simplify Equation (5-14) and write 

%2(nTs) = 0.5y([n-l]Ts). (5-17) 

gpicfotiT, + a(nTs) + r\(nTs)] 

Li 

g[^p(nTs,f0)] 

Secondary Discriminator 
A 

+ ^-sd2(nTs,f0) 
— ~Kj) > g[d2(nTsJ0),f0 

^z"1 

$i(«n) 

Phase Predictor 
+ 

g[]   «---oXb.5^ 
-F 

2nfoTs 

Figure (5-5). The phase-domain model of the implemented Type II RNFMFB 
Demodulator. 
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With the output of the secondary discriminator established, we are now interested in 

determining an expression for the primary discriminator output. First we note that 

$e(nTs) = g[g[2nf0nTs + a(nTs) + r\(nTs)] -g&P(nT,J0)]] 

= g[a(nTs) + r\(nTs)-0.5 £ y([k- l]Ts)] , (5-18) 

where we have made use of Equations (5-2) and (5-13). From the above and Equation 

(5-8) we can write 

%[(nTs)=g[a'd(nTs)WÄnTs)-0.5yan-\]Ts)] , (5-19) 

where ad(nTs) and r\d(nTs) are as defined in Equations (4-38) and (4-39). Equivalently, 

$i(/i7-,) = a'jnT,) + r\UnT,) - 0.5y([n- l]Ts) + InRKpTs), (5-20) 

where the integer sequence, R*s(nTs), is required to ensure that we retain the property 

-%<%[(nTs)<+K. (5-21) 

This integer sequence is representative of the occurrence of phase cycle-skips in the 

primary discriminator of the phase-domain model, and has properties that are unique to 

the RNFMFB device. Thus when the quantity 

a'd{nTs) + Vd(»r,) - 0.5y([n -\]TS) 
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exceeds n in magnitude, a phase cycle-skip occurs as compensation to ensure validity of 

Equation (5-21). Combining the primary and secondary discriminator outputs as in 

Equation (5-15), we find from Equations (5-17) and (5-20) that the message output 

becomes 

y(nTs) = a'd(nTs) + rfanT,) + 2nR*cs{nTs) . (5-22) 

Note that Equation (5-22) implies that the output phase noise is identical to that which 

would have been obtained using the backward difference discriminator alone. Therefore, 

in subsequent simulations, we expect the predicted output phase noise variance 

performance measure to be consistent with the baseline discriminator. At best then, we 

only expect enhanced performance via reduced phase cycle-skip occurrences. 

Observe that with regard to the implemented RNFMFB demodulator, the intent of 

the device is to divide the discrimination process equally between two numerical FM 

demodulators identified as the primary and secondary discriminators. A consequence of 

the fact that we are processing large ß DTFM signals, is that the message signal changes 

in amplitude by only a small percentage between consecutive samples. This in turn results 

in a large relative message sampling rate, y. This a priori information allows us to use the 

current instantaneous frequency estimate as the predicted value of the next estimate. With 

a feedback factor of K = 0.5, the frequency deviation of the signal presented to the 

primary discriminator is potentially reduced by 50%. We also note that with this value of 

K, phase cycle-skips are confined to the primary discriminator. 
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In the absence of a previous phase cycle-skip at time t = [n-l]Ts, the quantity 

controlling the occurrence of a cycle-skip becomes 

afaT.) + v!d(nTs) - 0.5j>([« - IF*) = a'd(nTs) - O.Sa&w - IF*) + s'd(nTs),    (5-23) 

where 

s'd(nTs) = r\'d(nTs) - O.SVXI» - IF*) • (5"24) 

At values of input carrier-to-noise ratio, p = a2/(2o2), greater than 10 dB or so, the phase 

noise is approximately Gaussian, with a variance of less than (a/af. For ß > 4, this leads 

to pre-filtered output phase signal-to-noise ratios greater than 20 dB. This in turn implies 

that the primary discriminator noise term identified in Equation (5-24) is small relative to 

the reduced index signal, 

a[(nTs) = a'd(nTs)- 0.5a(,([«- IF,). (5-25) 

Using the pessimistic modulation scenario in which the message signal is 

sinusoidal, the relative message sampling rate can be used to bound the message prediction 

error. It can be shown that 

Ammax = 2cos[7i-(^-)] (5-26) 

represents this maximum message amplitude change between consecutive samples. 
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5.3 RNFMFB Demodulation Performance Simulation Results 

The Type II RNFMFB demodulator of Figure (5-4) has been implemented for 

comparison to the performance of the established backward difference numerical 

discriminator baseline. Each demodulator is presented four (for a total of eight) 

independently generated sample functions of the noise-contaminated DTFM process, of 

length 1024 samples. Modulation parameters have been selected which demonstrate the 

typical performance of these demodulators for large ß systems. Specifically, the relative 

message sample rate is set at y = 17.067 at a 10% tuning offset, with a message index of 

8m = .8203. This choice of parameters coincides with a ß value of 14. 

These parameters were chosen to ensure that the maximum message amplitude 

change between consecutive samples as indicated in Equation (5-26), is less than 20%. 

This is consistent with our clarification of the term "large ß". In the presented simulations, 

the selected y value yields a maximum message amplitude change of 18.4%. The selected 

parameters also represent a progression from the performance results previously given in 

Chapter 4 for the backward difference discriminator. 

Once again, we present both the probability of occurrence of phase cycle-slips and 

phase noise variance estimates as performance measures. However, special note is made 

with regard to the phase cycle-slip counts. As already indicated, the RNFMFB 

demodulator produces a phase cycle-skip sequence which can potentially change by more 

than 2n between consecutive samples. This fact has been taken into account in the 

simulations to be presented, such that phase cycle changes greater than 2ii are specifically 

looked for during the counting process. In the simulations presented, no such phase cycle 

143 



changes were observed at or above 0 dB input carrier-to-noise ratio. Therefore, we 

properly refer to the phase cycle changes observed for the RNFMFB demodulator, as 

phase cycle-slips. 

Figures (5-6 a) through (5-6 d) present the observed number of both negative and 

positive phase cycle-slips for the backward difference and RNFMFB demodulators. In 

particular we note the significantly enhanced performance of the RNFMFB device 

indicated in Figure (5-6 b) over that of the baseline discriminator results in Figure (5-6 a). 

For values of input carrier-to-noise ratio between 10 and 20 dB, the RNFMFB device 

produces no observed cycle-slips, whereas the non-enhanced backward difference 

demodulator produces tens of cycle-slips. 

Estimates of phase noise variance were also made, and converted to output phase 

signal-to-noise ratios in the message signal bandwidth, as in Chapter 4. In comparing the 

results of the backward difference discriminator of Figure (5-7 a) with the RNFMFB 

demodulator of Figure (5-7 b), we note no observable difference. This is consistent with 

the resultant phase noise indicated in Equation (5-22) for the RNFMFB demodulator, and 

theoretical results obtained for the backward difference discriminator in Appendix B. 

We conclude that the RNFMFB demodulator is a viable method of performance 

enhancement for the backward difference numerical FM discriminator, under the 

appropriate modulation conditions. Specifically we have demonstrated the ability of the 

RNFMFB demodulator to operate at combined low sample rate and low input 

carrier-to-noise ratios for large ß systems. 
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CHAPTER 6 

Conclusions and Areas of Future Research 
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6.1 Conclusions 

In this research, a performance analysis has been performed regarding a class of 

numerical FM demodulators operating in the presence of additive, spectrally uniform, 

Gaussian noise. Both theoretical and computer simulation techniques have been 

employed, and have given consistent performance prediction results. The class of 

numerical demodulators which have been analyzed apply the backward difference estimate 

of the time derivative of the phase, to estimate the instantaneous frequency of an 

angle-modulated complex exponential sequence. Several computationally different 

approaches to backward difference numerical FM demodulation have been shown to 

produce equivalent results. Basic concepts regarding the representation and processing of 

complex-valued, uniformly sampled, discrete-time sequences have been reviewed. These 

concepts lead to the generalization of the pre-envelope, involving a circular frequency 

rotation of the complex envelope. The generalized pre-envelope along with the 

development and representation of the modulo 2% process, g[a,f0], together reveal 

themselves to be fundamental in the understanding of the discrete-time FM (DTFM) signal 

and backward difference demodulation. Subsequently, a method of enhancing the 

performance of the numerical demodulation process using frequency feedback is 

presented. A form of this numerical FM with feedback (FMFB) demodulator is 

introduced and referred to as the reconstituted numerical FM with feedback (RNFMFB) 

demodulator. Simulation results are presented for a specific implementation of this 

demodulator operating in the presence of noise. Performance enhancement is 

demonstrated for large Af/fm ratios at low sample rates, and low carrier-to-noise ratios. 
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Regarding the backward difference numerical FM demodulation process, the 

presence of additive white Gaussian noise is shown to create an additive Middleton 

distributed phase noise term, along with randomly occurring +1-2% phase cycle changes or 

phase cycle-slips. ■ These phase cycle-slips increase in rate of occurrence with an increase 

in the modulation index, and are equivalent to noise-induced instantaneous frequency 

aliasing. The determination of the rate of occurrence of these slips when the message 

waveform is known, is one performance prediction measure used in this analysis. 

Experimental results obtained via simulation of the noisy DTFM signal agree with the 

analytically predicted phase cycle-slip occurrence rates. The second performance 

prediction measure is the estimate of phase noise variance. Experimental measurements of 

this variance estimate also gave results in agreement with the true variance of the 

Middleton distribution. These performance measures, the phase cycle-slip probability 

estimate and the phase noise variance estimate, together establish a baseline performance 

summary as associated with backward difference numerical FM demodulation techniques. 

The sampling rate requirements of the DTFM signal have been addressed. Two 

parameters, the relative message sampling rate, y, and the DTFM modulation index, 5, are 

required when presenting the analysis of waveforms composed of modulated complex 

exponentials. Proper selection of these parameters ensures proper recovery of the original 

message from the complex exponential signal. 
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6.2 Areas of Future Research 

In this research we have intentionally separated the phase cycle-slip error 

mechanism from the Middleton phase noise process, to elucidate device behavior and to 

lead to a method of performance enhancement. With careful consideration, these 

measures can be combined to form a measure of mean square error, leading to the use of 

optimal receiver design and analysis techniques [40-42]. Whether working in the phase or 

instantaneous frequency domain, it may further be appropriate to include 

pre-emphasis/de-emphasis filtering in the communication system model. More generally, 

wherever additional information regarding the message signal is available a priori, it is 

often useful to modify the system model accordingly. In addition to presenting results in 

the context of optimal receiver design and analysis using a minimum mean square error 

criterion, the non-ideal effects of bandpass filtering on complex envelope generation can 

be addressed. Although methods of generating the complex generalized pre-envelope 

from the received band-limited signal have been presented, of interest would be the effects 

of filtering in both the static and tracking filter cases. These filter effects are particularly 

important when the receiver employs frequency feedback techniques. 

Various methods exist in the literature which help to alleviate the onset of phase 

cycle-slips, which tend to occur (and increase rapidly) as the input carrier-to-noise ratio 

decreases. In particular, the phase-lock loop device has been a popular choice for 

communications engineers. Also of interest, however, have been methods of 

demodulation which employ frequency feedback techniques. Further research on the 

development and application of the RNFMFB demodulator can be performed. 
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Specifically, the inclusion of complex bandpass filtering prior to discrimination, and 

lowpass filtering in the feedback path are expected to be extremely useful in various 

applications, including co-channel interference mitigation. The ability to separately 

control the distinct function of these filters makes the FMFB device attractive to 

communication engineers. In addition, methods of incorporating additional knowledge 

regarding the message signal into the phase prediction process can be addressed. 

Other areas of future research include the potential application of these results to 

the problem of phase unwrapping of frequency domain responses in homomorphic 

processing applications [12, 43], the use of the central difference derivative 

approximation, data signal recovery [44], and low sample rate demodulation of 

over-modulated DTFM signals. 
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APPENDIX A 

The Backward Difference Approximation to Time Differentiation 
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A.l Acquisition of a Bandlimited Signal and its Corresponding Derivative 

Consider the two methods of acquiring both the sampled version of a bandlimited 

signal, x(t), and the sampled version of its time derivative, x'(t), as shown in Figure (A-l). 

The sampling time interval, Ts, is chosen such that the sampling rate, Fs = l/Ts, is greater 

than twice the highest frequency component of x(t). As indicated in the figure the integer, 

n, is an index which identifies a particular sampling instant via the product, t = nTs. 

The input, x(t), has a Fourier transform such that 

\X(f)\>0, 0<\/\<W 

= 0,else. (A-l) 

Note that both systems are considered to be linear and time-invariant. 

A.2 The Frequency Response of the Time Derivative Process 

For System A the ideal time derivative, y(t), is known to have the Fourier 

transform [29] 

7(0 =j2nf-X(f), (A-2) 

which is also zero outside the interval 0<\f\<W, since X(f) is zero outside this interval. 

This system requires synchronized sampling of both the input signal, and its corresponding 

derivative. 
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= x'(t) 
j !                                   J 

FS = ±>2W 
J J 

^ 
Analog to 
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s !                                 '     '"   *> 
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Analog to 
Discrete-time 
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i/P\      J>^ 

J -v-v    If !                    ^ 

Ts 
delay 
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 > 

Figure (A-l). Two methods of acquiring a bandlimited signal, x(f), and its corresponding 
time derivative, a) A continuous-time method employing an analog time derivative and 
synchronized Analog to Discrete-time Converter (ADC) pair, b) The discrete-time 
backward difference approximation, employing a single ADC and difference of 
consecutive samples. 

We can represent x(nTs) as the superposition of infinitesimally small complex 

sinusoids of the form [12] 

±-X(eJQ)-eJnndQ, 

as in the Fourier integral 
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+Jt 

x(nTs) = ±\ X(eJQ)eJQ"dQ . (A-3) 

Note that Q ranges over an interval of length 2%, and X(e?Q) determines the relative 

(complex) amount of each complex sinusoidal component. Here, Q. = <QTS radians, and 

© = 27i/ radians/second 1. Likewise, y{nT) can be represented in the above manner. 

The frequency response of System A is represented as HA(^
n), where 

YieV) = HA(e&) ■ X(eJQ) . (A-4) 

We can determine HA(e/°) by considering the response of System A to the input 

x(t) = e** , (A-5) 

where © = Q / Ts. In this case we find that 

y(nTs)={j\e^}\t=nTs 

= Vfy* ■ (A-6) 

Thus //A(VQ) can be identified in Equation (A-6) as 

1 To be consistent with the usual meaning of the variable ©, the variable Q must 
have units of radians. (This differs from the usage of these variables in reference [12].) 
When Ts is equal to 1 second, Q and ö happen to have the same value and it is tempting to 
consider them as having the same units, but strictly speaking, the units remain as given. 
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= /- 

=j(Q   , -%<(OTS<+K. (A-7) 

Note that this frequency response differs from that implied by Equation (A-2), since 

HA{e?n) is implicitly periodic in Q, with period 2%. However, since x(t) is bandlimited and 

properly sampled, the effect of these two distinct responses, over the range of ra of 

interest, is the same. 

The magnitude frequency response of System A is 

\HA(^
T')\ = jHA(e/°Tl)-HA(e-f°T') 

- I©l , -% < (oTs < +7C . (A-8) 

The phase response is identified as 

ZHA(efi°T-) = f,     -K<(oTs<0 

= 0   , &TS = 0 

2   ' 0 < <aT, < +7i . (A-9) 
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A.3 The Frequency Response of the Backward Difference Approximation 

In a similar manner, the transfer function of System B is represented as HB{e?n), 

where 

f(e>°) = HB(ejQ) ■ X(eJQ) . (A-10) 

We can determine HB{^) by considering the response of System B to the input identified 

by Equation (A-5). For System B we find that 

y(nTs) = jr{x(nTs)-x([rt-l]Ts)} 

= ±{\-e-JQ}-eJQ" . (A-ll) 

From Equation (A-l 1) we can readily identify the response of System B as 

HB(efaT') = HB(e^) 

= j-t-{l-e-f°} 

= f • {1 -e-J'wT<},    -n <(oTs < +n . (A-12) 

Equation (A-12) further simplifies to 

HB(eJ(oTs) = f sin(con/2) • e*™^12 ,     -% < ®TS < +% . (A-13) 
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The magnitude frequency response of system B is 

\HB(e*T')\=j-]sm2((aTs/2) 

= j-j2-2cos((oTs) ,    -71 <<oT, < -Hi .       (A-14) 

and its phase response is identified as 

ZHB{e^Ts) = (TC - (QTS)/2 -%,    -7t < oTs < 0 

= 0 , <oT, = 0 

= (TC - (oTs)/2 , 0 < (oTs < +7C . (A-15) 

With the frequency responses of the ideal time differentiator and the backward difference 

having been determined, it is possible to determine how closely the difference 

approximation resembles the ideal differentiator. 
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A.4 The Equivalent Distortion Response 

We can consider the frequency response of System B in Figure (A-l) as the 

product of the ideal response of System A, and a distortion response, HD{da), as shown in 

Figure (A-2). 

x(nTs) 
>HA{eimT°) >HD(eJa>T*) 

HB(eJ(oT*) = HA(eJ(oT°) ■ HD(e*°T') 

 > 

Figure (A-2).  A discrete-time filter which has the same frequency response as System B 
shown in Figure (A-l). 

It is readily seen that the distortion response is 

(A-16) 

From Equation (A-7) with j = einn, along with Equation (A-13) we find that 

n(.*T..    sin(cor,/2)-^-^2 

sinc(©7V2)• e-X«^))   -%<G)Ts<+n,      (A-l7) 
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where sinc(x) is defined as sin(x) / x . Since sinc(x) is positive over the interval 

-7t/2 < x < +n/2 , the magnitude frequency response is identified as 

\HD(eJaT°)\=smc((QTs/2),   -K < aTs <+% , (A-18) 

and is periodic in Q = ®TS, with period 2n . The phase of this equivalent distortion 

response is 

ZHD(e^) = -CD7V2 ,    -7i < oTs < +TC . (A-19) 

Equation (A-19) places in evidence the fact that the backward difference 

approximation introduces a half-sample-interval time lag relative to the input function and 

relative to the ideal derivative of this input. Although this time delay is not a distortion 

per se, knowledge of the existence of this delay may affect design considerations in some 

applications. Thus the distortion phase response is linear, and not generally considered to 

be a problem. 

The magnitude frequency response of the distortion is, in fact, not particularly bad 

either. As seen in Figure (A-3), the magnitude response of System B has the effect of 

attenuating higher frequencies as compared to the magnitude response of the ideal 

differentiator of System A. Figure (A-4) shows the magnitude and phase response of the 

equivalent distortion, HD(d
a). 

163 



Ts\HA(e*»T°)\ 

Ts\HB(e^)\ 

figure (A-3). One period of the magnitude frequency responses, Ts\HA(e
ja>Ts)\ and 

Ts\HB(e^)\ . 

1.2-, \HD(e^T0\ 
l .0 

. 8 

. 6 

• 4 H 
. 2 

-7Ü 

2 

ZHD{e^) 

-71 

2 

7t 

-j- o = CD r5 

71 

Figure (A-4). One period of the frequency response of the distortion, HD(ejaTs). 
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APPENDIX B 

The Backward Difference Phase Estimate Representation 

165 



B.l The Effects of the Presence of Phase Noise 

We are interested in justifying the representation of our noise-contaminated phase 

estimate as the sum of the original phase, a(nTs), the Middleton distributed phase noise, 

r\(nTs), and a sheet sequence phase error, 2%Re(nT). Also of interest are any constraints 

or properties of the integer sequence, Re(nT), that may arise. 

From Figure (4-2), it is apparent that the recovered instantaneous phase estimate 

can be represented as 

U"Ts) = g[g[a.(nTs)] + r\(nTs)] 

= g[a(nTs) + r\(nTs)]. (B-l) 

(Here, the modulo 2% arithmetic property presented in Equation (3-49) has once again 

been utilized, and will be employed without reference throughout the remainder of this 

appendix.) By definition we have from Equations (4-20) and (4-21) that 

%'d(nTs) = Fs ■ gE[U"Ts) - $,([" - l]T,y\ (B-2) 

and 

fanT,) = T, ■ { £ %'d(kTs) + U-Ts)} ■ (B-3) 
fe=0 

Thus from Equations (B-l) and (B-2) we can write 
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yd(nTs) = Fs ■ g\g[a(nTs) + i\(nT,)] -g[a([n - l]Ts) + n([» - \]TS)]] 

= Fs-g[a'd(nTs)WÄ"Ts)], (B-4) 

where a'd(nTs) and t\'/nTs) are as defined in Equations (4-38) and (4-39) respectively. In 

the absence of noise, to prevent instantaneous frequency aliasing, we have from Chapter 3 

the requirement 

-7i < ad(nTs) < +7C . (B-5) 

The phase noise, T\, has been defined such that 

-7i < r\(nTs) < +K , 

which results in the property 

-2% < r\d(nTs) < +2% . (B-6) 

Combining Equations (B-5) and (B-6) we have that 

-3TC < a'd(nTs) + r\'d(nTs) < +3% . (B-7) 

From Equation (B-7) we can write 

a'd(nTs) + ri>n) = g[a.'d(nTs) + T\d(nTs)] - 2%R'e(nTs) ,   -1 < R'e(nTs) < +1.    (B-8) 
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Note that for any particular time, t = nTs, we have that R'e(nTs) e {-1,0,1}. 

If we had available to us the quantity a'd(nTs) + r\'/nTs), along with initial phase 

conditions, we could form the accumulation 

%goai{nTs) = S {a'd(kTs) + T\'d{kTs)} + {a(-Ts) + itf-T,)} 
k=0 

= a(nTs) + T](nTs). (B-9) 

In lieu of Equation (B-9), we use what is available and form 

h("Ts) = Z g[a'd(kTs) + T&W,)] + U~T,) , (B-lOa) 
fc=0 

where 

U-Ts) = gM-Ts) + r\(-Ts)] . (B-10b) 

Combining Equations (B-8) through (B-10) we have that 

$goai(nTs) = %d(nTs) - 2TI- E R'e(kT,),   -1 <R'e(kTs) < +1 . (B-l 1) 
k=0 

Defining Re{nT) such that R'e{nT) = i?/«^) - Re{[n-\]T), we arrive at 

$p»/(/i7',) = $rf(«7',)-27CÄ,(/i7',), (B-12) 

where the integer sequence Re(nTs) has the property that 
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-l<Re(nTs)-Re([n-l]Ts)<+l . (B-13) 

From Equations (B-9) and (B-12) we can write 

$«/(«r,) = a(nTs) + T\(nTs) + 2%Re(nTs) . (B-14) 

It is also readily apparent from Equations (B-l) and (B-14) that 

UnTs) = g[fa(nTs)]. (B-15) 

This fact is utilized in Section 4.1.3 to help establish a pair of experimental statistics as 

measures of backward difference phase estimate performance prediction. 

Thus our noise-contaminated backward difference phase estimate is represented as 

the sum of the original phase, a(nTs), the Middleton distributed phase noise, r\(nTs), and a 

sheet sequence phase error, 2%Re{nT). The sheet sequence error, Re(nTs), has the 

property that it either remains unchanged between consecutive time samples, or changes 

by +/-1. Therefore we refer to the sequence 

2TtRcs(nTs) = 2nR,
e{nTs) = 2TT • {Re(nTs) -Re([n - \]TS)} (B-16) 

as a phase cycle-slip sequence, since it indicates the occurrences of+/-2TC phase changes at 

any particular time, t = nTs. 
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