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ABSTRACT

This report documents work carried forward over the fourth year of a five year ONR
sponsored University Research Initiative (URI) entitled “Materials for Adaptive Structural Acoustic
Control.” The program has continued to underpin the development of new electro-ceramic, single
crystal and composite materials combinations for both the sensing and actuation functions in
adaptive structures.

For the lead based perovskite structure relaxor ferroelectric electrostrictors, new
experimental and theoretical studies have underscored the critical role of nano-scale heterogeneity
on either A or B sites of the ABO, in promoting dispersive dielectric response and the very strong
opposing role of elastic stress and electrostrictive coupling in suppressing polarization fluctuations.
Most important for practical application is the regimen where, under high electric field nano-polar
regions begin to amalgamate into ferroelectric macro-domains with very mobile walls lead to
unusually large extrinsic piezoelectric coefficients.

The program has explored a range of new relaxor:ferroelectric solid solutions which exhibit
morphotropic phase boundaries between rhombohedral and tetragonal ferroelectric phases. Some
of these compositions are much more tractable than PZT to grow in single crystal form. A major
surprise is the very strong enhancement of the piezoelectric d,, and d,, in the crystal over that in the
corresponding ceramic, and the massive anisotropy for different orientations and directions of
poling. Optical studies suggest that the unusual effects reside largely in the extrinsic (domain
controlled) response and we speculate about the mobility of walls in metastable phases, however
further studies are required.

Antiferroelectric:ferroelectric phase switching studies in a wide range of compositions in
the lead lanthanum zirconate stannate titanate system show that the first abrupt switchover to the
thombohedral ferroelectric phase only produces volume strain ~0.2% as checked both by
dilatometry and by X-ray. There is a large enhancement under higher field to ~0.6% volume strain
although the polarization does not change markedly. From thin film and single crystals studies
there is mounting evidence of higher field ferroelectric:ferroelectric phase change, but again
additional work is needed.

Size effect studies in perovskite ferroelectrics are continuing on this program and on the
NSF/MRG in MRL. Scaling of the 90° stripe domains in thinned TEM samples of tetragonal
composition begin to show departure from the accepted 1/2 power law at sub micron sizes. The
structure of domains under the three dimensional constraints of grains inside the ceramic is still
however almost completely unknown. Computer modeling appear to show promise and codes are
being explored which permit the mutual interactions to be varied and the corresponding two
dimensional structures visualized.




In composite sensors, the focus has continued upon the flextensional configurations with
the new inexpensive cymbal shaped amplifier proving superior in every respect to the original
“moonie.” The flat section on the cymbal end cap permits very easy stacking of elements and work
is now in progress to develop large area panels for low frequency testing at the Penn State ARL.

Work has continued on the thin sheet 2:2 piezoceramic polymer composites, where the
transverse poling and low density lead to a desirable combination of low electrical and low acoustic
impedance. An alternative fabrication procedure using extruded PZT honeycomb appears most
attractive.

Two problems of major importance in actuation have been topics for study. First what are
the “intrinsic” material limitations for high strain electrically driven actuation in polarization
controlled systems, and secondly what are the practical limitations in multilayer actuators as they
are currently fabricated and how may they be alleviated. Work on the first topic is now largely
completed, showing that strains ~0.4% could be switched more than 10° cycles in suitable PLZT
compositions. Such reliability however requires near theoretical density, homogeneity, grain size
control, critical attention to electrodes and electric field uniformity, none of which are adequately
controlled in current actuator systems. ‘

For practical actuators fabricated by inexpensive tape casting and co-firing techniques
electrode termination is a major problem. In the simple MLC like designs, cracks initiate at field
concentrations associated with the tip of the buried conductor layer. A new floating electrode
design has been found to reduce this problem. For cracking near the end surfaces, poling of the
termination layers reduces their stiffness and markedly improves performance. In the conventional
structures it is also found that the floating electrode may be used directly as an acoustic emission
pickup, giving early warning of cracking problems.

Under resonant driving conditions, the problems in actuators are markedly different. Heat
build up and temperature run-away are significant problems traceable to dielectric loss, and new
hard compositions and anti-resonant driving methods have been explored to reduce these
problems.

In integration work on the high activity 0-3 composites in nearing completion. A new type
of zig-zag actuator is being explored for the capability to combine both longitudinal and transverse
actuation. Under a new ONR sponsored program with Virginia Polytechnic Institute and
University new double amplifiers combining bimorph and flextensional concepts are being
examined.

Processing studies permit the fabrication of the wide range of compositions and forms
required in these material researches. Rate controlled sintering is proving to be highly
advantageous, particularly for reducing delamination in integrated structures. Electrophoretic and




dielectrophoretic forming are showing promise in green assembly of thick film components where
high green density is critical.

Thin film papers have been selected from the very broad range of work in MRL because of
their relevance to transduction in piezoelectric and in phase switching systems.
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CAPPED CERAMIC HYDROPHONES

J.F. Tressler, A. Dogan, J.F. Fernandez, J.T. Fielding,Jr., K. Uchino,
and R.E. Newnham
International Center for Actuators and Transducers
Intercollege Materials Research Laboratory
Pennsylvania State University
University Park, PA 16802

ABSTRACT

Attaching specially shaped thin metal caps, each
containing a shallow inner cavity,
electroded surfaces of a piezoelectric ceramic
will significantly enhance its hydrostatic
sensitivity. The presence of the cavities allows
the metal caps to convert a portion of the
incident axial-direction stress into radial and
tangential stresses of opposite sign, thus allowing
the amplified d,, and d,, coefficients of the
poled ceramic to now add together as opposed
to subtracting from one another, thus
magnifying the d,. By capping a PZT-552 disk,
the d, can be amplified by a factor of nearly 100
and the g, by a factor of almost 50. These
particular hydrophones show the most promise
for use in shallow water applications.

INTRODUCTION

When a poled piezoelectric ceramic, such as
PZT, is subject to a hydrostatic pressure, a
charge is developed in the poled direction. The
magnitude of this charge is directly proportional
to the material’s hydrostatic charge coefficient,
d,, which is equal to its response from the
thickness mode, d,,, plus its response from the
planar mode, d,,+d,,. Unfortunately, the d,, (=d,,
due to symmetry) coefficient of PZT is opposite
in sign and is approximately half the magnitude
of its d,; coefficient; therefore, its d, (=dj+2d,,)
is quite low. In addition, the hydrostatic voltage
coefficient, g,, is small due to the large
permittivity of PZT. For instance, the comp-
osition PZT-552 used in this study has a d, of
only 50pC/N and a g, of 2mV.m/N. As a result,
bulk PZT exhibits a rather low receive sensitivity
and is therefore a generally poor hydrophone if
entirely submersed into water.

Over the course of the past 15 years, a number
of PZT-polymer composite transducers with
various connectivities have been developed

to the-

which magnify both the d, and g, coefficients
and hence exhibit a greater hydrophone
sensitivity [1-2]. The enhanced d, arises mainly
from the polymer phase attenuating much of the
incident lateral stress, thus minimizing the d,,
contribution to d,. These polymer-ceramic
composites also exhibit a lower density, which
results in a better acoustical impedance match to
water and an increased mechanical compliance.
Disadvantages of these polymer-PZT composites
include a low dielectric constant (i.e.
capacitance), a greater pressure dependence on
properties, and a high cost due to labor intensive
fabrication techniques.

The moonie and cymbal-type transducers are
based on the concept of the flextensional
transducer and possess a 2-(0)-2 connectivity.
These transducers comsist of a poled
piezoelectric or electrostrictive ceramic disk
(fully electroded on each face) sandwiched
between two shaped metal electrode endcaps,
each containing a shallow air-filled cavity on
their inner surface. In the case of the moonie
transducer, the cavities are in the shape of a half
moon, whereas the cymbal contains a truncated
cone-shaped cavity (see Figure 1). The presence
of these cavities allows the metal caps to serve as
mechanical transformers for transforming a
portion of the applied axial-direction stress into
tangential and radial stresses of opposite sign.
Thus, the d;, and d,; contributions of the PZT
now add in the effective d, of the device rather
than subtract.
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Figure 1: Cross-sectional view of the standard
cymbal transducer. Arrows show direction of
stress redistribution.




EXPERIMENTAL PROCEDURE
Cymbal Fabrication

Using metal foil between 120pm and 380um
thick, 12.7mm diameter caps were simul-
taneously cut and shaped. The cavity was 9.0mm
in diameter and ranged in depth from 120um to
500um. These caps were then adhered to
1.00mm thick, 12.7mm diameter poled PZT-552
disks (Piezo Kinetics) using Emerson and
Cuming insulating epoxy. To ensure proper
alignment of the caps, the entire assembly was
kept under pressure in a special die during the
24 hour curing step.

Cymbal Characterization

In order to characterize the quality of the metal-
PZT bond, the admittance as a function of
frequency was measured using an HP 4194A
Impedance Analyzer. This technique was found
to be very senmsitive to both defects in the
bonding layer as well as the presence of an
unsymmetric bonding layer [3].

The capacitance, C, of the cymbal transducer was
measured in air at both 100 Hz and 1 kHz using
a Stanford Research Systems Model SR 715
LCR Meter. In addition, the capacitance was
remeasured under hydrostatic pressure at 1 kHz
using an HP 4192A LF Impedance Analyzer.
The dielectric constant, K, was calculated from
equation (1),

K = Ct/g, A 1

where A is the electrode area of the ceramic
(12.7mm), t is the total thickness of the
transducer, and €, is the permittivity of free
space.

d, measurement

The effective d, of the cymbal transducer as a
function of hydrostatic pressure was measured
using the system shown in Figure 2. The oil in
the hydrostatic pressure chamber served as a
sonic medium for the transmission of pressure
(in this case at 30 Hz). The sample was exposed
to this pressure equally in all directions and the
charge in the poled direction was measured. At
the same time a standard, Ca-doped lead titanate,
with known d, mounted next to the sample was
measured in the same way while exposed to
identical conditions. The d, (short circuit
current) was measured instead of g, (open circuit
voltage) since a single amplifying circuit

converted the current into a proportional
voltage, thus reducing the problem of noise
pickup and eliminating the problem of loading
high impedance transducers. The relationship
between the time-varying charge in the sample
(dQ/dt) which produces current at the input of
the op-amp, and the output voltage makes this
circuit a current to voltage converter. Since the
output voltage from the sample was compared to
a standard, the exact value of the feedback
resistor, R, , became immaterial. The voltage at
the input of the op-amp was equal to or nearly
equal to zero volts (a virtual ground), thus
making for a short-circuit measurement. In
addition, all the voltages in the wiring connected
to the samples were at ground, essentially
eliminating the effect of stray capacitance
between them and any other point in the system.

The effective hydrostatic voltage coefficient, g,
for the hydrophone can be calculated from the
measured d,, as given in equation (2). The g,
coefficient is proportional to the hydrophone
receive sensitivity, which is equal to the open
circuit voltage measured at the terminals of a
hydrophone per unit incident pressure.

2 = d/Ke, )
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Figure 2: Experimental set-up used for

performing d, measurements.

EXPERIMENTAL RESULTS

The results presented in this paper will focus on
the cymbal transducer, as the hydrostatic
properties of the moonie transducer have been
reported previously [4]. Figure 3 shows the
admittance spectrum of a cymbal transducer
with brass caps 250um thick and a cavity depth




of 250um. The first resonance, at 17kHz, is
associated with the flextensional, or umbrella,
mode of the endcaps, whereas the resonance at
175kHz is due to the radial mode of the
ceramic. Sharp resonance peaks, combined with
the absence of any spurious modes between the
two primary resonances, are indicative of a high-
quality metal to ceramic bond.
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Figure 3: Admittance as a function of frequency
for a cymbal transducer.

Figure 4 shows the dielectric constant and loss of
a 2.0mm thick cymbal transducer (with brass
endcaps) measured at 1kHz as a function of
hydrostatic pressure. The capacitance of the
cymbal was measured to be 3500pF, which is the
same as when measured in air, and is about ten
percent less than that of the bulk PZT-552 disk
itself. The loss is also similar to that measured in
air and is slightly larger than that of the bulk
PZT due to the presence of the epoxy layer. The
dielectric constant is independent of pressure
within the working range of the hydrophone
(1.4MPa).
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Figure 4: Dielectric constant and loss measured
under pressure at 1kHz for a cymbal transducer
with brass caps 250um thick and a cavity depth
of 250pm.

Figure 5 shows the pressure dependence of the
effective d, and g, coefficients for various
cymbal cap materials. The data show that as the
cap material becomes stiffer, the pressure
tolerance increases, but at a cost of reduced
sensitivity. This is due to the stiffer metals being
less able to radially transfer the incident axial
stress to the ceramic. The more compliant
metals, such as brass, can magnify the d, of the
PZT by a factor of 90 and the g, by a factor of
45. Even very stiff metals like tungsten can
amplify the d, and g, values of the PZT by
factors of 30 and 15, respectively.

Both the d, and g, coefficients remain relatively
constant within a certain working pressure range
for each endcap material. For instance, kovar
cymbals can be used repeatedly up to about
3MPa. However, once this range has been
exceeded, the high sensitivity is not recoverable,
presumably due to a buckling of the endcaps.
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Figure 5: Effect of cap material (shown with its
Young’s Modulus) on the d, and g, of the
cymbal transducers.

The first resonance frequency of the cymbal
transducer with different cap materials is shown
in Figure 6. This frequency appears to increase
linearly as a function of the resonance
frequency of a thin circular metal plate clamped
around its circumference, and depends upon the
metal’s stiffness, density, and Poisson’s ratio [5].
These results show that for a hydrophone with
given dimensions, the resonance frequency can
be varied simply by changing the cap material.

Figure 7 shows the influence of cap thickness on
both the d, and g, coefficients. As cap thickness
increases from 120um to 380um, pressure
tolerance increases, but again at the cost of
reduced sensitivity. For the transducer with
120um thick caps, a d,g, product exceeding 10°
X 10" m*/N is achieved, which is the highest ever
reported for this size of hydrophone.
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Figure 6: Effect of cap materials on the first
resonance frequency of the transducer. In each
case the caps were 250um thick and the cavity
was 250um deep.
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Figure 7: Influence of cap thickness on the d,
and g, values. The cap material was brass with a
250um deep cavity.

Figure 8 shows how the cavity depth effects the
d, and g, coefficients as a function of pressure.
Very shallow cavities collapse at low pressures
and do not permit the caps to transform axial
stress into radial stresses very well, which
accounts for the low sensitivity. As the cavity
depth increases, both the pressure tolerance and
the sensitivity are enhanced. At a cavity depth of
500um, though, the sensitivity decreases. This is
due to the cavity shape now approaching that of
a dome, which is very adept at withstanding very
high pressures, as seen in the data, but is not as
effective in transforming axial stress into radial
stresses. Nevertheless, both the d, and &
coefficients are still quite high, 2500pC/N and
50mVem/N, which are 50 and 25 times the value
of the PZT, respectively.
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Figure 8: Effect of cavity depth on the d, and g,
coefficients. The cap material was 250um thick
kovar.

CONCLUSIONS

The cymbal-type hydrophone is characterized
by very large d, and g, coefficients while
retaining the high dielectric  constant
(capacitance) and low losses of the piezo-
ceramic. The pressure dependence of the
sensitivity can be tailored simply by changing
the cap material, cap thickness, or cavity shape.
These transducers have the advantage of being
thin, lightweight, and inexpensive to fabricate.
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Accelerometer Application of

the Modified Moonie (Cymbal) Transducer
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The modified Moonie (Cymbal) transducer has been investigated for an accelerometer
application. High effective piezoelectric charge coefficients (dj;) of the Cymbal transducer
was observed around 15000 pC/N, which is much higher than that of the piezoelectric
ceramic itself (~550 pC/N). With this feature the Cymbal trasducer is a good candidate for
high sensitive accelerometer applications. The sensitivity of the Cymbal accelerometer was
measured as a function of driving frequency and compared with the single plate ceramic
disk which was used as driving component in the transducer. Besides, the geometry of the
transducer such as endcap thickness, the effect of different PZT compositions and metal
endcaps on sensitivity was investigated. The sensitivity 50 times better than the PZT disk

was obtained.

KEYWORDS: accelerometer, piezoelectric effect, modified Moonie (Cymbal) transducer, sensitivity




1. Introduction

Accelerometers are used widely throughout engineering, both as research and development
tools and as control-system components. However, the most popular application area is using of
accelerometer for vehicle dynamics.”  Since the market especially for vehicle dynamics is very large,

various types of accelerometer design have been reported .>”

One of the most popular techniques to measure acceleration is using the piezoelectric effect of
materials. In the piezoelectric effect, no matter which mode is used, such as compression
(longitudinal), bending or shear, the sensitivity of acceleration sensor depends on piezoelectric charge
coefficients of the material. When a longitudinal mode is used, the sensitivity is directly proportional
to d33 of the material. PZT-based ceramics exhibit a large ds3 constant, but still it is not high enough
to measure acceleration efficiently. Therefore, PZT-polymer composites have been used by Ohara and
Miyayama and the sensitivity has been tripled in comparison with the single PZT plate.? The other
way of improving sensitivity taken by Ohtsuki et al. was using multilayer piezoelectric ceramics,®
with sacrificing the cost. Since piezoelectric sensors have various advantages such as fast response,
which is very important for shock measurement, and simple detecting circuits, they are preferred for
some applications such as safety and suspension systems in the automobile. A metal-piezoceramic
composite structure with very high effective di; constant may be a good alternative for acceleration

Sensors.

A metal-ceramic composite design, Moonie, was first used for hydrophones which sense weak
pressure wave in fluid.¥ The metal endcaps of the Moonie were recently modified, and as an actuator
higher displacements were obtained than multilayer actuators (See Fig.1a) .*'® The new transducer,
"Cymbal", named after the endcap shape like cymbals, has also higher piezoelectric charge

coefficients and an easy production method than the Moonie trasducer.

In this study, the cymbal transducer has been used to detect acceleration, with metal endcaps
transfering a longitudinal stress into a radial stress. When the metal endcaps move radially due to the
compressive stress, the bonded PZT disk is stretched. Therefore, the ineffective d; 1 of asingle PZT




disk becomes effective, and that causes higher effective piezoelectric charge coefficient (d33°“) and
thus much higher sensitivity. TR A

2T
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2. Acceleration Sensitivity of the Cymbal

The force from a mass (m) due to acceleration (F=m a) is transferred through the two metal
endcaps on to the PZT thin disk, and it causes a stress toward the circumference of the ceramic disk,
most of which is in the radial direction and some part of which acts as a compressive stress in the
thickness direction (Fig. 1 b)).
The polarization vector due to the stress acting on the polycrystalline piezoelectric disk is defined as:

p] [0 0 0 0 ds O]

Pl-0 0 0 ds 0 0% (1)
P, |ds dsdss O 0 0|X

X

X,

where, Py, Py and P, are the polarization vectors in a cartesian coordinate, d;3, d33 and d;s are the
piezoelectric charge coefficients of radial, longitudinal and shear mode and Xj's (i=1,...,6) are the

stress components. In a cylindrical coordinate system, which is more suitable for the geometry of the

piezoelectric thin disk, the stress components are;

X; =X;=-KF @)
X3 =K;F
and
Xy=Xs=X6=0.
Then the polarization vector can be obtained as
P, = (d3:K; - 2 d3,K)F. (3)

Here, the proportional constants, K; and K, depend on geometry of the metal endcaps and the
piezoelectric ceramic disk such as thicknesses of the metal and ceramic disks, cavity angle of the
metal endcap 6, Young's modulus of the metal endcaps and diameter of the piezoelectric disk. Note
that the negative value of d;3 acts positively because of the negative sign of the summation. Then,

charge generation for the whole disk can be defined as:




Q = nr,* (d3K, - 2 dsK;)m a (4)

and finally the charge sensitivity of this transducer defined by the charge generation by unit
acceleration becomes:

Sq=mr;’ (d3K, - 2duK)m  [pC/r/s?) (5)

3. Experimental Procedure

The composite transducers were made of electroded ceramic disks (12.7 mm in diameter and
0.5, 1 or 2 mm in thickness) and metal endcaps (12.7 mm in diameter with thickness ranging from
0.18 to .30 mm). Piezoelectric properties of the PZT disks and elastic characteristics of the metal

endcaps are given in Table I and Table I, respectively. Truncated-cone shape endcap was fabricated

first by punching and then pressing the metal sheet up to 100 MPa to give 250 pum cavity depth. The
ceramic disk and metal endcaps were bonded together around the circumference with two component
epoxy (Eccobond). The epoxy was distributed by taking care neither to fill the cavity nor to make
open circuit between the endcaps and the electroded face of the PZT. After 24 hours epoxy curing

process under a small pressure, the samples became ready for the measurements.
Table, |
Table 2
Figure 2 shows the experimental setup of the sensitivity measurement of the metal-ceramic

composite transducer. The transducer was fixed with added mass(8.4 g) inside a housing unit. A
commercialized accelerometer (PCB 302A02) was mounted on the top of the housing unit to

produce a reference signal. A mini-shaker (Bruel & Kjaer 4810) was used to produce vibration. A
charge amplifier circuitry has been used during the Cymbal and the single PZT disk measurement. The
output signals (mV/G) of the purposed transducer and the commercial accelerometer were measured
simultaneously with a digital oscilloscope (Tektronix TDS 310) F" g 2

4, Result and Discussion

The metal endcaps of the Cymbal transducer transfer some part of the acceleration stress in
the normal direction into the radial direction. Therefore, the sensitivity of the transducer depends not
only on ds3 but also on ds; of the piezo-ceramic. The Cymbal transducers with different piezoelectric




ceramics whose piezoelectric charge coefficients are different, are compared in Fig. 3. The ceramic
with the larger di; and dy in magnitude provides the higher sensitivity. As shown in Table I, PZT-5H
shows the highest ds; constant, and also shows the highest sensitivity to the acceleration. The

identical zirconium endcaps were used for all transducers. —

— -

Figure 4 shows the sensitivity versus frequency of the PZT-5H single disk and of the Cymbal
transducers with various metal endcaps. The output of the Cymbal transducer with Zirconium end
caps was found to be about 50 times as large as that in PZT-5H itself. Considering the Young's
modulus and the density of the PZT 5H ceramic (E =71 GPa,p =7.5 g/cm’), it may be concluded
that the elastic properties similar to the PZT are required to transfer the acceleratin force effectively.
It is also possible to compensate thermal delatation effect on the piezoelectric material by choosing a
suitable endcap metal. For example, when tungsten endcaps have been used temperature insensitive
displacement actuators have been obtained.'" — ’

g &

The transferred stress from the metal endcaps, which act as springs, to the ceramic material
depends also on the endcap geometry. Then, the sensitivity of the transducer is strongly affected by
the thickness of the endcaps. When the endcaps are too thin, they deform without stretching the
ceramic causing energy loss. On the contrary when they are too thick, they can not produce enough
momentum in the radial direction, but the longitudinal stress on the edge of the ceramic disk. Figure 5
shows the endcap thickness dependence of the sensitivity. The thickness 0.18 mm provided the
highest sensitivity for the brass endcaps.

—
F € 5
5. Conclusion

A metal-ceramic composite structure (Cymbal transducer) has been investigated for
accelerometer applications. The Cymbal transducer has provided 50 times better sensitivity than the
single PZT disk, which was used to make the Cymbal transducer.

The most significant result was that the sensitivity of the purposed acceleration transducer
depended on the geometry and the structure such as the cavity dept, thickness, Young's modulus of

the metal endcaps as well as piezoelectric properties.
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Figure Captions

Figure 1. a) Structure of the modified Moonie (Cymbal).

b) Schematic compressive force transformation to the radial direction on a ideal metal

endcap.

Figure 2. Experimental setup for the sensitivity measurement.

Figure 3. Dependence of the acceleration sensitivity on the PZT composition.

Figure 4. Sensitivity for various metal endcaps.

Figure 5. Dependence of the sensitivity on the endcap thickness.




Table I. Piezoelectric properties of PZT disks used in the Cymbal transducer

CERAMIC €' tgd ds;(pC/N) dz3(pC/N)
PZT 8D 1104 0.003 -107 289
PZT 5A 1802 0.016 -208 429
PZT 5H 3500 0.016 -285 581




Table II. Elastic characteristics of metal endcaps used in the Cymbal transducer

Metal Density Young's Modulus (E)
Endcap (g/cm?) (GPa)
Zirconium 6.49 77
Brass 8.53 110
Tungsten 19.30 405
PZT 5SH 1.5 71
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EFFECTS OF FACE PLATES AND EDGE STRIPS ON
HYDROSTATIC PIEZOELECTRIC RESPONSE OF
1-3 COMPOSITES

J. ZHAO, Q. M. ZHANGt and WENWU CAO
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University Park, PA 16802, U.S.A.

(Received May 2, 1995)

Piezoceramic-polymer composites with 1-3 connectivity provide higher hydrostatic figure of merit d,g,
and low density, which make them attractive for underwater applications. By incorporating rigid face
plates on the composite electrode surfaces, the transverse piezoelectric response can be reduced effec-
tively and d, increased significantly. When edge strips are put on the lateral dimensions, the hydrostatic
response of the composite may be further improved, depending on the ratio of the sample thickness to
the sample lateral dimensions and the elastic properties of the edge strips. In this work the effects of
the rigid face plates and the edge strips on the piezoelectric response of 1-3 composites with different
lateral dimensions were investigated. All the experimental features can be well accounted for by using
the shear-coupling model developed recently by us and the isostrain model. Based on these results the
relationship between the d, of the face plated 1-3 composite and the elastic properties of the polymer
matrix as well as other design parameters is derived, which can serve as a guideline to optimize the
material selection for 1-3 composites with larger hydrostatic response.

Keywords: Piezocomposite, hydrostatic piezoelectricity, mechanical properties.

I. INTRODUCTION

Piezoelectric ceramic-polymer composites with 1-3 connectivity possess many prom-
ising features which make them attractive for hydrostatic applications.' > As has been
demonstrated, both theoretically and experimentally, with a small aspect ratio of the
ceramic rods and a proper ceramic content, the piezoelectric hydrostatic figure of
merit d,g, (d, and g, are the piezoelectric hydrostatic charge and voltage coefficients
respectively) of a composite can be substantially higher than the constituent ceramic
phase.”® However, to fully utilize the potential of a 1-3 composite for hydrostatic
applications, several issues have to be addressed. Small aspect ratio of ceramic rods
will incur a high manufacturing cost and low reliability of the rods. The Poisson’s
ratio effect, which reduces the effect pressure on the polymer matrix in the ceramic
rod poling direction by a factor of (1 — 20) where o is the Poisson’s ratio of the
polymer phase, drastically cuts down the effectiveness of the stress transfer from the
polymer to the ceramic rods.” In the past, a great deal of effort have been~devoted
to address these issues and some progress has been made. One of the effective ways
to improve the hydrostatic response of a 1-3 composite is to glue rigid face plates
on the two electrode surfaces, as schematically drawn in Figure 1(a). Throughout
this paper, the following convention will be used: the 3-direction (or the z-direction)
is along the ceramic rod axial (poling) direction, the 1 and 2-directions (or x and y-
directions) are in the plane perpendicular to the poling directions.

tAuthor to whom all correspondence should be addressed.
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FIGURE | (a) Schematic drawing of a face plated 1-3 composite, (b) schematic drawing of a face
plated 1-3 composite with edge strips at two end faces in the 1-direction.

The effect of rigid face plates on a 1-3 piezocomposite can be summarized as
follows: (1) it improves the stress transfer between the ceramic rods and polymer
matrix in the ceramic poling direction so that the composite approaches the isostrain
situation; (2) it improves the bonding between the ceramic rods and polymer matrix;
(3) it reduces Poisson’s ratio effect and the dy, effect. The effect (1) has been in-
vestigated and the results have been reported in another publication.® The reason for
effect (2) is quite obvious. In this paper, the results of a recent investigation on effect
(3) will be presented and in all the discussion, the stress transfer in the 3-direction
is assumed to be that of isostrain results due to the face plates.

When rigid face plates are glued onto the two faces of a 1-3 composite, due to
the fact that the elastic stiffness of the plates is much higher than that of the com-
posite in the lateral dimensions, most of the pressure in these directions will be born
by the face plates, which reduces the effective dy, and ds, coefficients of the whole
sample and increases d, since d, = di; + d5 + di,. In addition to that, the much
reduced lateral pressure on the polymer matrix greatly reduces the Poisson’s ratio
effect. -

Based on an earlier work by Wang er al.’ to treat the clamping effect of the face
plates on 1-3 composites and the isostrain model**”* to calculate the effective material
properties of the composite, a theoretical treatment will be presented in this paper,
which quantitatively analyzes how various parameters affect these two effects and
provides a general guideline to the design of a face plated 1-3 composite.

For a face plated 1-3 composite, as shown schematically in Figure 1(a), the clamp-
ing effect of the face plates in the lateral dimensions is through shear force, a situ-
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ation quite similar to a 2-2 composite. As has been demonstrated earlier,' the
effectiveness of this clamping effect will depend on the sample dimension, especially,
the ratio of the 1-3 composite thickness ¢ to its lateral dimension L. To evaluate this
dimensional effect, experiments were carried out systematically on 1-3 composites
with different ratio of #/L. The results are in excellent agreement with the theoretical
calculation based on the shear coupling model."

To improve the stress transfer in the lateral directions between the face plates and
1-3 composite, one can put edge strips on the end faces of the face plated 1-3
composite, as schematically drawn in Figure 1(b). The effect of the edge strips on
the hydrostatic response of 1-3 composite with different dimensions was also inves-
tigated and will be reported in the paper.

1II. EXPERIMENTS

Two 1-3 composites with 15% volume content ceramic rods and different polymer
matrix were made and tested. The polymer matrix for the first composite (labeled as
composite I) is Spurrs epoxy and the second one (labeled as composite II) is poly-
urethane mixed with 50% volume of microballon of about 20 pm size. As listed in
Table I, the two have quite different elastic properties.'" The ceramic rods of lead
zirconate titanate (PZT) used for the two composites were manufactured by CPSS
Co. (MA). The composition of the rods is similar to that of PZT-5H and the diameter
of the rods is 1.10 mm. The piezoelectric and dielectric properties of the PZT rods
used for the two composites are also listed in Table I. Both composites were poled
at a poling voltage of 25 kV/cm at room temperature for three minutes.

The initial dimensions of the composite with Spurrs epoxy matrix are: t = 5.62
mm, L, = 27 mm, and L, = 38.5 mm. Brass plates with thickness ¢ = 0.79 mm were
used as the face plates and J-B weld cement of J-B weld Co. was used to glue the
brass plates to the composite. Glass reinforced polymer (GRP) plate (r = 1.6 mm)
and alumina plate (r = 3.5 mm) were tested for edge strip materials. The bonding
between the edge strip and face plated 1-3 composite was provided by a 5 minute
epoxy of Devcon Corporation.

The initial dimensions of the composite with polyurethane mixed with 50% mi-
croballon matrix are: ¢ = 5.54 mm, L, = 35 mm, and L, = 52.5 mm. Since the elastic
stiffness of the polymer matrix here is much lower than that of spurrs epoxy, a GRP
plate (r = 1.6 mm) was used for the face plates. Silver epoxy (Insulating Materials
Inc.) was used to glue the face plates and 1-3 composite together. For this structure,
only alumina plates (¢ = 3.5 mm) were used as edge strips. The elastic properties of
the face plate materials as well as the plates thickness are summarized in Table 1"

The effective dielectric constant €, the piezoelectric hydrostatic charge coefficent

TABLE 1
Some properties of the polymer matrix and PZT rods for the two composites

shy (m*/N) o’ dy; (pC/N) dy, (pC/N) €

Composite I 2+107% 0.36 450 —208 2333
Composite II 5«10 0.36 481 —222 2533
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TABLE 1I
Properties of face plates

t (mm) sp1 (m2/N) S1a
GRP 1.6 2.63*10-11 -0.789*10-11
Brass 0.79 097*10-11 -0.32*10-11

d,, piezoelectric d,; coefficients were evaluated for these composites. Surface profile
scans using a double beam laser dilatometer were also made to characterize the
nonuniform strain distribution in the face plated 1-3 composites.”> The dielectric
constant was measured using a HP multi-frequency RLC meter (HP 4192A). The d,
was measured by a comparison method where the test sample and a standard sample
with known d, value are subjected to the same quasi-static pressure (50 Hz) and the
charge outputs from the two samples were compared. d,, coefficient of the samples
was measured using both a Berlincourt d;, meter and a laser dilatometer. The effec-
tive d,, coefficient of the composites was evaluated using a laser dilatometer and
will be discussed in detail later in the text. The dimensional effect of face plated 1-
3 composites was investigated by reducing the sample length L, while keeping L,
constant. All the relevant material parameters were evaluated for samples with dif-
ferent L,.

To distinguish the hydrostatic charge coefficient d, measured for a 1-3 composite
without face plates and with face plates, d, and d) are used corresponding to the
two situations. The same convention will also be used for the other parameters when
needed.

II. EXPERIMENTAL RESULTS FOR COMPOSITE I

Shown in Figure 2 is d} of face plated 1-3 composite with Spurrs epoxy matrix
measured at different L,. For comparison, d, of the composite without face plates
was also measured and it is 43 pC/N. Clearly, without face plates, d, of the composite
is not any better than the ceramic rods even though its d,g, value is improved owing
to the smaller effective dielectric constant of the composite. Face plates significantly
increase the hydrostatic piezoelectric response of a composite. Figure 2 also shows
that &}, decreases drastically with decreasing L,, which is caused by the incomplete
clamping of the face plates on the 1-3 composite for samples with large #/L ratio.
If the composite is effectively clamped in the lateral dimensions by the face plates,
it is expected that the whole sample will exhibit very small d;, and d,, coefficients.
Figure 3(a) shows the lateral strain profiles, measured by the double beam laser
dilatometer, in the 1-direction of face plated composite for different L, while L, was
kept constant and the samples were driven with an electric field of 1 V/m. These
surface profiles are quite similar to those of 2-2 composites measured earlier, which
is consistent with the fact that a 1-3 composite with face plates can be viewed as
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FIGURE 2 The hydrostatic charge coefficient of composite 1 (Spurrs epoxy matrix) as a function of
the sample lateral dimension L,. Curve 1 is for the composite without edge strips, curve 2 is for the
composite with alumina edge strips, and curve 3 is for the composite with GRP edge strips. Solid lines
are drawn to guide eyes.

one repeating unit of a large 2-2 composite. Because of the non-uniform strain profile
in the lateral directions, d%, should be calculated using the relation d%, = 5,/E, where
S, is the averaged strain in the 1-direction and E; is the applied electric field in the
3-direction. The results are plotted in Figure 3(b). For the composite without face
plates, d;; = —128 pC/V. Evidently, the value of dj, is greatly reduced by the face
plates especially when #/L, is small. As L, decreases, the clamping effect of face
plates becomes less effective which leads to the rapid increases of d%,.

In practice, a face plated 1-3 composite may not reach the limit #/L — 0 for which
d}, reaches maximum. Therefore, it is useful to know how much &/, of a face plated
1-3 composite is off from its limiting value. From our earlier work on 2-2 compos-
ites,' it can be shown that both d, and dj, follow approximately a linear relationship
with ¢/L. Indeed, the data here, when plotted against ¢/L,, fall on a straight line, as
shown in Figure 4. Hence, the limiting value of d/, and &%, can be extrapolated from
the figure. For this composite structure, in the #/L, — 0 limit, d should reach 180
pC/N and &4, — 15.5 pC/N. Since this d} value is for the sample with L, = 27 mm,
in the limit of both ¢/L, and #/L, — 0, d}, should be above 200 pC/N. For the sample
investigated, at L, = 38.5 mm and L, = 27 mm d} value is 160 pC/N, which is
already about 80% of the limiting value.

To improve the clamping effect of the face plates on 1-3 composites, edge strips
were added on this face plated composite. Shown in Figure 5 are the comparison of
strain profiles of the sample of #/L, = 0.196 with and without edge sfiips. Two
different edge strips were used here, one is GRP plate (thickness = 1.6 mm) and the
other is alumina plate (thickness = 3.5 mm). It is evident that the edge strips improve
the uniformity of the strain profiles. For the alumina plates, the measured d,, value
is —18.5 pC/N, which is very close to the limiting value of d%, at /L, — 0. However,
the effect of GRP plates is much smaller due to its relatively lower elastic stiffness
and small thickness. _

The comparison of the hydrostatic charge coefficient d, between the three config-
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FIGURE 3 (a) The lateral strain S, profile of the composite I under 1 V/m driving electric field for
different #/L, ratio. The label for each curve is the ration #/L,. The incomplete clamping of the face plates

on 1-3 composite is reflected by the non-uniform strain profile of S,, (b) the dependence of d%, on the
sample lateral dimension L,.

urations (without edge strips, with GRP edge strips, and with alumina edge strips)
is shown in Figure 2. The effect of GRP edge strips is not significant. When an edge
strip is used in face plated composite structure, it will influence the composite re-
sponse in two opposite ways. On one hand, it reduces d,, for samples with finite
t/L, hence enhances d,. On the other hand, it will clamp the composite in the 3-
direction in the region near it, which leads to the reductions of d,; and d,. This latter
effect is illustrated in Figure 6 where the surface profiles in the cerafnic poling
direction (the 3-direction) for face plated composite with and without edge strips are
compared. The interface between the edge strip and the face plated composite is
located at x = 0. Due to the cancellation of the two competing effects, the GRP edge
strips do not change d, very much as has been shown in Figure 2. In the limit of
t/L — 0, the three configurations should yield the same d,. That is, as far as the
hydrostatic response is concerned, the edge strips do not make much difference when
t/L is very small. However, the edge strips do have the effect of reducing shear stress
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FIGURE 4 The linear relationship between df, &%, and 1/L,.
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FIGURE 5 The comparison of the strain profile S, for the face plated composite I at L, = 0.196.
Curve a is for the composite with alumina edge strips, curve b is for the composite with GRP edge
strips, and curve ¢ is the one without edge strips. The composites were driven under 1 V/m electric
field.

concentration at the side boundaries of the face plate-1-3 composite interface, which
improve the mechanical integrity of the composite structure. -

IV.  EXPERIMENTAL RESULTS FOR COMPOSITE II.

The polymer matrix of polyurethane mixed with microballon has much smaller
Young’s modulus and Poisson’s ratio compared with Spurrs epoxy as listed in Table
L. Without face plates, the composite II has a d, of 45 pC/N and a d,, of —130 pC/
N. Although softer polymer matrix reduces the polymer self-loading, the much re-
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FIGURE 6 The effect of edge strips on the longitudinal strain S,. For the comparison, S, for the
composite without edge strips is shown in curve a. Curve b is for the composite with GRP edge strips
and curve c is for the alumina edge strips. The interface between the face plated composite and edge
strip is at x = 0.

duced shear modulus of the polymer matrix also reduces the stress transfer between
the polymer matrix and ceramic rods resulting in a small d,. With GRP face plates,
d, value is increased significantly as shown in Figure 7(a). Similar to the composite
I, &/, also exhibits a strong #/L, dependence. The dimensional dependence of d%, was
also measured and is plotted in Figure 7(b). Though d%, value here is comparable to
those of composite I, &} is clearly much higher for the composite with a soft polymer
matrix. As will be shown later in the paper, this increase is due to the reduction in
the polymer matrix self-loading which produces a higher effective stress level in the
ceramic rods.

The influence of 3.5 mm thick alumina edge strips on the hydrostatic response of
this face plated composite is also shown in Figure 7(a). The improvement of the
edge strips on this face plated composite is only about 10% at most. This is the
result of edge strip clamping on ds; response of the composite since with a soft
polymer matrix, the elastic stiffnes in the 3-direction is much smaller than that of
the edge strips and the effect of clamping in the 3-direction will be more severe in
composite II.

For composite II, the plots of d} and 4, as a function of #L, did not fall on a
straight line. It was also found that the dielectric constant and piezoelectric constant
d’, of the sample decreased as the sample dimension L, decreases. All these are
quite different from the results of composite 1. Careful inspection on composite 11
reveals that some PZT rods in the composite were broken when the sample was
recycled during the hydrostatic measurement and during the cutting process to reduce
L,. To correct this, the dielectric constant € of individual PZT rods was measured
and the data is used to calculate the percentage a of the broken rods in the samples
by assuming the sample dielectric constant do not depend on the sample lateral
dimensions if no ceramic rod is broken in the sample. Using this method, the mea-
sured d%,;, d/; and d’, were corrected by dividing them by the factor of (1 — a) at
the corresponding L, value. After this correction, d’%; becomes almost independent
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FIGURE 7 (a) The dependence of d on the sample lateral dimension L, for the composite II. Curve
a is for the composite without edge strips and curve b is that with alumina edge strips. (b) The depen-
dence of d4, on the sample lateral dimension L, for the compsite M.

of the sample lateral dimension as we have expected. The results after the correction
for 4} and d’,, are plotted in Figure 8 and indeed, the data follow a linear relationship
with 1/L,. From the linear extrapolation, the limiting values of d, and d%, at 1/L —
0 are obtained and they are 440 pC/N and —6.6 pC/N respectively. Therefore, the
hydrostatic figure of merit for this configuration can be as high as 50,600%107"
m’/N.

In Table I, the values of d,, d;,, d, d’,, measured at smallest #/L, ratio, and the
values of &}, &% at t/L, — 0, as well as the hydrostatic figure of merit for the two
composites are listed. Needless to say, the exceptionally high d,g,, high d,, light
weight, and relative easiness of manufacturing face plated 1-3 composites make them
superior compared with currently available hydrophone designs.
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FIGURE 8 The modified d% and d%, (corrected for the broken rods in the composite) as a function of
1/L,.

TABLE I
Summary of the properties of the two composites

d3 (pC/N)  dp  d3yf dyf  dyyfdimit) dyflimit)  dyfggl (limit) (m2/N)

Composite | -128 43 348 154 -17 181 7378 (10°15)
Composite Il -130 45 239 414 -66 438 50,600 (10-15)

* d3) and dy, are for 1-3 composite without face plates, d3,f and dyf are for 1-3 composites with

face plates at their initial dimension, d3," (limit)and d},(limit) are taken from figures 4 and 8.

V. THEORETICAL TREATMENT OF CLAMPING EFFECT OF FACE
PLATES ON 1-3 COMPOSITES

From the experimental results in the sections III and IV, it is clear that in order to
have a high hydrostatic response of a face plated 1-3 composite, a polymer matrix
with a low Young’s modulus is preferred. On the other hand, a 1-3 composite made
of soft polymer matrix such as foamed polyurethane used here has the problem of
low mechanical integrity, which may result in failure of a device. In practice, one
has to balance these two effects. In this section, we will present a theoretical treat-
ment which relates various design parameters to the hydrostatic response of a face
plated 1-3 composite.

Clamping effect of stiff face plates on a soft piezoelectric material has been ana-
lyzed by Wang et al.
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where the quantities on the left hand side of the equations are those for the face
plated samples. The quantitive with a bar on the top (such as ds;) on the right hand
side of the equations are those for the soft piezoelectric material and the superscript
b refers to the face plate. vy = #/t" is the thickness ratio of the piezoelectric material
to the face plate. Equations (1), (2), and (3) are derived under the condition that the
lateral strains in the face plate and the soft piezoelectric material are equal, a situation
corresponds to /L — O limit here.

To use these equations for the face plated 1-3 composite, the effective material
properties have be to evaluated. Though the behavior of composites without face
plates can be quite different from that calculated based on the isostrain model, it is
shown that the difference of the strain profile between the polymer and ceramic rods
in the 3-direction becomes very small for composites with thick face plates, and the
composite can be treated using the isostrain model.*

The basic assumption for the isostrain model used here is that the strains in both
the polymer and ceramic rods in the 3-direction are equal while the stresses in the
1- and 2-directions in the two constituents are the same. Based on these assumptions,
it can be derived

D Ves5dss
BT =55 P @
T, Vish+ (1 — Vs,
— -S—s 55355 (5)

WETTVEEL + 4 - Vs,

where the superscripts p and c refer to the polymer and ceramic, respectively.
Assuming the sample is subjected to a stress T, in 1 or 2 direction, from the
constitutive relations and isostress assumption, one can get

S5 = s3T5 + suTh ©6)
ST =suT, + 5075 a
S5 =0T + 5575 - ®

For the polymer phase, similar equations can be obtained by simply replacing su-
perscript ¢ by p. Furthermore,

VT + (1 —V)T5=0 ®
D; =duT3V + dSITIV‘ (10
S,=VS;+ (1 — VIS8 (1
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Si=VS)+ (1 — V)OSt (12)
Solving these equations yields:

— 8 s58%(1 — V) + Vishis)
™ =2 . 333|:(p :) 521513 (13)
T, Vish + s5(1 — V)

= (1 — VOlsh, + sha(shy — sa)Vee] + VIsiz — sissh — st — V9] (14)
5= (1 — VOIsh, + sh65 — si)Voe] + Vs, — s — st — VC)C.:] (15)
2; = dyVec,[sis(sh: — s — VC)] + dy, V¢ (16)

where ¢, = 1/((1 — V)s5, + s5,V°). From these relations, d}, and d%, are calculated
for the two composite structures investigated. Some of the material parameters used
for the calculations have been listed in Tables I and II and the elastic compliance
data for PZT-5H are used for the ceramic rods."* (y = 7.1 for spurrs epoxy composite
and vy = 3.46 for polyurethane composite). The calculated results for the composite
with Spurrs epoxy matrix (composite I) are, d} = 171 pC/N and d%, = —17.6 pC/N;
and for the composite with foamed polymer matrix (composite II), d/, = 480 PC/N
and d%, = —0.2 PC/N. These values are in very good agreement with the experimental
data when extrapolated to t/L, and #/L, — O limit. It indicates that the theoretical
results here provide quite accurate prediction on the hydrostatic response of a face
plated 1-3 composite.

From the above equations, the relationship between the hydrostatic response of a
face plated 1-3 composite and s%, and o of the polymer can be derived:
d} = dyysT\Vic, + [Vids, — V(1 — Vdsselsts + osh)] a7

_ { 2y(sty + sh) — dc[Vishish = shosh(l — V) }
Yis§ + sf) + 2[VGsS + s5) + (1 = Vsl — @) — 2V (I — VO)(shs + oshy)]

Figure 9(a) shows the dependence of @} on s, for three different Poisson’s ratio of the
polymer matrix: o = 0.15, 0.3, and 0.4. GRP is used here as face plates. The ceramic
used in the calculation is PZT-5H." The ceramic rods content of 15% and a -y of 3.5 are
used in the calculation. From Figure 9(a), it is clear that the effect of the Poisson’s ratio
of the polymer phase on & depends critically on the elastic compliance of the polymer.
When the elastic compliance of the polymer matrix is below, for example, 5%107%, there
is little change in d, when the Poisson’s ratio is increased form 0.15 to 0.4. However, a
drastic decrease of d% with o occurs for polymers with smaller elastic compliance. Fur-
thermore, there is not much decrease in d/, when s%, is reduced from 5%107% (close to
the value of the foamed polyurethane used for the composite II) to 5%107°, a polymer
ten times harder than the polymer matrix used for the composite II. With an elastically
stiffer polymer matrix, the mechanical integrity of the device is improved significantly
while there is not much loss in the hydrostatic response. This illustrates that for a com-
posite with a polymer matrix ten times stiffer than the polymer matrix for the composite
I1, there is little reduction in the hydrostatic figure of merit while there is a substantial
increase in its mechanical integrity. Apparently, Spurrs epoxy is not a suitable choice
either for the polymer matrix for the face plated 1-3 composite discussed here.

Figure 9(b) shows the dependence of &/, on s%, with different ratio -y (thickness ratio
of 1-3 composite to the face plate) with o = 0.3 for the polymer matrix, which should
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FIGURE 9 (a) The dependence of d} of a face plated 1-3 composite, which has 15% PZT 5H rod
content and GRP face plates with iy = 3.5, on the compliance s, of the polymer matrix. Three Poisson’s
ratios are used: ¢ = 0.15, 0.3, and 0.4 as labeled on the figure. The curves are calculated using Equation
(17). (b) The dependence of d} of a face plated 1-3 composite, which has 15% PZT 5H rod content and
GRP face plates, on the compliance s,, of the polymer matrix for different y (the thickness ratio of the
face plate 7, and the 1-3 composite ).

provide valuable information on the selection of face plate thickness in reference with
the thickness of 1-3 composite.

V1. SUMMARY

The hydrostatic response of a 1-3 composite can be significantly increased by using
face plates to (1) improve the stress transfer in the 3-direction; (2) reduce the Pois-
son’s ratio effect and d;, effect; (3) improve the mechanical integrity of the composite
structure. In this paper, we show that for a face plated 1-3 composite with a soft
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polymer matrix and 15% ceramic rod content, its hydrostatic figure of merit d,g, can
reach more than 50,000%107"* (m*N). However, due to the nature of the shear cou-
pling between the face plates and 1-3 composite, the hydrostatic response of a face
plated 1-3 composite will depend on the sample lateral dimensions. The hydrostatic
response will increase as the ratio of the thickness to the lateral dimension (#/L)
becomes small, for a large t/L ratio, improvement of the hydrostatic response due
the face plates is not significant. One possible method to increase d, for samples
with a large #/L ratio is to use edge strips. However, the study here shows that the
effect is not significant due to the two opposite roles an edge strip plays on a face
plated 1-3 composite. Therefore, the key to increase hydrostatic response is to use
small #L ratio for a face plated 1-3 composite.

To balance the requirement of high hydrostatic sensitivity and mechanical integrity,
a proper polymer matrix with the right elastic properties should be used. In the paper,
we showed that the two face plated composites tested represent the two extreme
cases with the Spurrs epoxy matrix on the hard side and the polyurethane with 50%
microballon on the soft side of the polymer matrix spectrum. A polymer matrix with
its elastic properties in between the two would be a good choice to balance the two
requirements as mentioned previously. In general, the theoretical results presented
here can provide a useful guideline for the optimum design of face plated 1-3
composites.
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ABSTRACT
A comprehensive numerical study of the radiation beam pattern from a 1-3 ceramic

polymer composite ultrasonic transducer has been carried out. The goals are to establish a
simulation procedure and to evaluate how the nonuniform vibration profile of the composite affects
the radiation pattern compared to a uniformly vibrating transducer. With the imposed absorbing
boundary condition at the outer fluid boundary, the nonuniform surface vibration profile and the
velocity distribution of the composite transducer under a pulse and a continuous wave driven
situations are calculated using finite element method. The radiation pattern from the transducer is
then calculated from the velocity distribution at the transducer surface by solving the Helmholtz

integral equation using boundary element method.




INTRODUCTION

Piezocomposite with 1-3 type connectivity [1,2] has gained wide popularity as transducer
material, especially in medical diagnostic ultrasound and under water acoustics. The main reason is
due to the high electromechanical coupling coefficients and the low acoustic impedance [3].
Different transducer configurations (i.e., changing the geometric of the ceramic pillars, ceramic-
polymer ratio etc.,) have been designed to fit particular needs, such as beam width, focal length
and efficiency [4]. However, due to the complexity of the composite structure, the true
performance of the design can not be modeled by the widely used KLM model [5]. Besides,
current transducer designs require large amount of experimental testing which is both costly and
time consuming [6,7]. With the increasing demand on better transducer, there is a need for a
computational scheme to simulate the performance of composite transducer designs, i.e., to study
the details of the electromechanical vibrations and to calculate the acoustic beam characteristics at
the design stage.

The fast development of the computer technology makes it possible now to solve large
scale problems using finite element method [8]. In this paper we report a comprehensive simulation
of a 1-3 composite transducer operation using finite element method (FEM) and boundary element
method (BEM). Both the vibration characteristics of the transducer under water loading and the
acoustic beam profiles under CW and pulse driven situations were analyzed. The objective of this
study is to provide a general simulated design and testing procedure and to study the influence of
nonuniform transducer surface vibration on the acoustic beam characteristics.

The vibrational and electromechanical characteristics of a 1-3 composite transducer has
been intensively investigated using finite element method [7, 8] with or without water loading.
Mode coupling and shear wave propagation are the most concerned problems in a composite
transducer design. The results from the analysis of the vibration modes are quite different for the
cases of with and without water loading condition [8]. Traditionally, the major problem for solving
the elasticity problem under water loading had been the coupling of piezoelectric ceramic and

polymer to the medium. The calculation involves fluid acoustic field far away from the transducer,




Appendix A:

In Eq.8 two integrals are to be evaluated, i.c.,

. .
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When the distance of the point of interest is much large than the transducer dimension, the variable

r can be approximated as follows,
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where 6 measures the distance of a point on the transducer surface from the center of the

transducer. Therefore,
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Thus we have the simple form for the integrands:
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Eq. (A1) can be easily integrated with this simplification.
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which greatly increases the complexity and the computation time. The new finite element
technology utilizes absorbing boundary condition (impedance at the boundary matched to the fluid
media) at the interface to represent the radiation condition. This method can greatly reduces the
computation time without sacrificing the accuracy of the solutions.

The calculation of the sound field radiated from a baffled piston has been studied two
decades ago [9,10] for both tone burst and pulse response cases either by numerical integration or
by applying Huygen's principle. However, the assumption of uniform vibration, infinite baffle,
infinite boundary, and the lack of closed-form solution for elements not in circular shape render the
calculations deviate from true situation [12]. The radiation acoustic field from vibrating piston can
be calculated by solving the Helmholtz integral equation [11] as long as the vibration velocity
distribution on the surface is known. This involves discretizing the piston surface, similar to the
boundary element method. The advantages are much fewer elements being involved in the
calculation than solving the whole acoustic field in entire space using FEM. Considering the merits
of both methods we have carried out an analysis using the two software packages: ANSYS®
(FEM) and CHIEF (BEM) to analyze the transducer vibration profile and the acoustic radiation
field.

THEORETICAL ANALYSIS

There are three different aspects in the theoretical analysis. They are briefly described
below:

(1) Piezoelectric coupling

The constitutive equations governing the stress {7}, strain {S}, electric field {E}, and
electric flux {D} can be expressed as:

{T} = [c] {S} - [e]T {E}
¢y

{D} =[e] {S} +[e] {E}

where [c] is the elastic stiffness matrix, [e] and [e] are respectively the piezoelectric coupling and

the permittivity matrices. The equations of motion are given by:




[m] {U} + [Kuu] {U} + [Kug] {0} = {F}

[Koul {U} + [Kgsl{9} = {Q} )
where [m] is the mass matrix, {U} is the displacement vector, [K,,,] is the elastic stiffness matrix,
[K,p) and [K4,] are the piezoelectric coupling matrices, [K 4] is the dielectric matrix, [F] is the
force vector, {g} is the potential vector and {Q} is the charge vector, respectively. Equations for
the polymer phase are simpler because the electromechanical coupling is vanished.
| (2) Fluid structure interaction:

The governing equation of acoustic field in fluid is the Helmholtz equation. The degree of
freedom (DOF) of finite element formulation for the fluid is the pressure at each node. In matrix
formulation, the governing equations for the acoustic field in fluid is quite similar to that of the
polymer phase,

Mg {B) + [Kel {P} = {Fy)
Ms] {0} + [Ks] {U} = {Fy) 3)

where [K7 is the fluid equivalent "stiffness” matrix, [Mp] is the fluid equivalent "mass” matrix,
{P} is the unknown nodal pressure, {F f} is the fluid load applied at the fluid structure interface,
[Ks] is the structure "stiffness" matrix, [M s] is the structure mass matrix, and {F} is the load
applied at the structure interface.

By matching the loads at the fluid structure interface we have the augmented matrix

equation of fluid structure interaction with the coupling matrix [R] as follows:

[M] (U} + [K] {U} = {Fs) + [R] {P)
[Mf] (P} + [Ksl (P} = [Fr) - po IRIT (U} )

Because the solid and the fluid region have different degree of freedom, a particular solid-fluid
interface element containing both pressure and displacement DOFs is used which is designed to
solve Eq.(4).

(3) Helmholtz integral equation:

If S is a closed surface in space, the acoustic field on or exterior to the surface




S can be formulated according to the integral Helmholtz equation [11}:

0G(x,0) p(x) for x ext. S
on

®

.[s {p(c) + iwpV(0)G(x,0)}ds(c) ={

%p(x) for x on S

where o is the coordinate of the point on S and G(x,x') is the Green's function at x with respect to

X,
; 1 e-ikix-xl )
Gox) =77 =T - k=¢ ©

In Eq.(5) the p(c) and v(o) are respectively the pressure and the velocity on surface S. If we
discretize the surface S the relation between the surface pressure and the surface velocity can be

expressed in the following matrix form

(Al { P} =[B] {V} , M
where {P } represents the pressure at each subdivision on the surface S and {V }is the velocity

matrix at the same location on S. The coefficient matrices [A Jand [B ] are as follows,

Amn=3 Bon-Jsn 3= G Gm0)is()

Bmn = i0 pJs;; G(Cm,0)ds(0) 8)
where S, is a subdivision of S, ,, is the coordinate of the center at subdivision S,,, The pressure
field can be obtained from Eq. (7) once the velocity distribution is known. In order to provide the
CHIEF program a set of input surface velocity distribution, we have used the simple relation at the
solid fluid interface, i.e.,

- _Po
" Zwater ©)

where Z,, 410y is the acoustic impedance of water and P is the acoustic pressure in the fluid

\Y%

adjacent to the solid surface. The velocity at each element is taken from the average value of 4
adjacent nodes with rectangular mash since the FEM calculates nodal values whereas CHIEF takes
only the averaged value on an element.

When only the far field pressure is of interest, the calculations of [A ] and [B ] matrices can

be greatly simplified (see Appendix A).




RESULTS AND DISCUSSIONS

The material properties of the transducer under study are listed in Table I. Because of
symmetry, only 1/8 of the 1-3 composite transducer has been analyzed using FEM, the model
analyzed is shown in Fig.1, where the faces near the reader and at the bottom are symmetry planes.
This model represents a full size composite of a 8x8 = 64 ceramic pillars embedded in the polymer.
The center frequency of this composite transducer is 2.53 MHz. We have performed calculations in
both CW and pulse mode.

(a) CW mode

The steady state surface vibration pressure at resonant frequency calculated from ANSYS®
is shown in Fig.2 (a)-(c). Fig 2(a) is thedirectview of the compisite transducer surface, Fig, 2(b)
and 2(c) are the vibration amplitude and the phase distribution in gray scale. We can see a strong
nonuniformity from Fig. 2 both in terms of the amplitude and the phase. There is also an obvious
amplitude difference between the pillars at the center of the composite and those at the edge. Two
possible reasons may account for this phenomenon: one is the edge effect which reflects the fact
that the edge pillars have relatively lighter loading, and the other is the coupling of lateral modes to
the thickness mode.[13,14] In order to understand the effect of inhomogeneous surface vibration,
we have calculated both the beam pattern generated by the composite transducer and by a uniform
vibrating piston. The results are shown in Figs. 3, 4, and 5. Fig. 3(a) is the illustration of the
pressure distribution on the transducer surfaceand Fig. 3(b) is the 2-D (x-z plane) near field
pressure. Fig.4 plots the near field axial pressure variation and Fig. 5 is the far field pattern on the
x-z plane (z axis is the direction normal to the transducer surface).

Surprisingly, the difference between the beam patterns generated by the uniform and the
nonuniform vibrations is not significant, especially in the far field. This result contradicts the
common belief that the beam pattern will be seriously distorted due to the nonuniformity of
transducer surface vibration. One possible explaination for theis result is that the polymer phase
does not emit significant energy. We are currently trying some experimental works to verify this

result.




(b)_Pulse mode

In imaging applications, the transducer is operated in a pulse mode. It is therefore
necessary to calculate the propagation of the pressure pulse in the medium. Such calculation is
accomplished in a process depicted in the flow diagram of Fig. 6. The duration of the simulated
driving triangular pulse is 10-8 second. In order to illustrate the method, moderate damping was
applied to allow some ringing. A total of 128 velocity maps were calculated for a duration of 1.05
x 10-3 seconds using the transient function of ANSYS. The transient vibration response at each
subelement of the transducer surface is decomposed into 128 frequency components via Fast
Fourier Transform (FFT). Each of the frequency components is then fed into the CHIEF program
and the corresponding pressure components of the acoustic field were calculated. Finally, the
transient acoustic pulse at each location is reconstructed via Inverse Fast Fourier Transform (IFFT)
from these frequency components of the pressure pulse.

Fig. 7 is sequence of snapshots of the pressure distribution resulting from a single pulse
drive. We can clearly see the ringdown along the axial direction and the off axial direction
pressure distribution. Sidelob structures are also visible on the snapshot. The width of the pulse
becomes wider as it propagates and the peak pressure value gradually decreases.

In order to see the spreading of the effective beam width we have calculated the root mean
square(RMS) pressure of the pulse at each location for the near field as show in Fig. 8. The
effective beam pattern is similar to a single frequency CW beam pattern except slight wider beam
width. Fig. 9 is the RMS along the axial direction. Compared with Fig. 4, we can see that the
near field shows deviation from the CW peam pattern, but the far field pressure distﬁbution is very
similar to the CW case except the beam becomes slightly wider.

SUMMARY AND CONCLUSIONS

We have successfully performed a combined FEM and BEM analysis on a 1-3 type
piezocomposite transducer. The combination of the two numerical techniques enables us to analyze
the acoustic beam pattern generated by the nonuniformly vibrating transducer. To our surprise, the

difference of the generated pressure filed distribution caused by the nonuniformity is not significant




except near the transducer surface. In the far field, the beam pattern is quite similar to that of a
uniformly vibrating piston.

An important advancement form this work is the development of a computational scheme
for the propagation of a finite length pulse in the medium. This aloows us to study the pulse shape
deformation as it propagates. Some degree of broadening of the pulse is found but the RMS
pressure distribution appears to be very similar to a single frequency CW pressure distribution.
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LIST OF FIGURE CAPTIONS:

Fig.1 1/8 of the 1-3 piezocomposite transducer studied using ANSYS.

Fig.2 (a) Surface of the actual positions of the ceramic pillars; (b) Distribution of the amplitude of
pressure on the transducer surface under 1.0 Volt (peak to peak) 2.53 MHz CW operation; (c)
distribution of the phase angle of the vibration pressure on the transducer surface.

Fig.3 Acoustic near-field radiation beam pattern on the central plane y = 0. ( x> 0, z > 0), under
2.53 MHz CW operation.

Fig.4 Axial (z-axis) acoustic pressure distribution under 2.53 MHz CW operation.

Fig.5 Angular distribution of the far-field (x-z plane) acoustic radiation under 2.53 CW operation.
Fig.6 Calculation process for the acoustic radiation beam pattern under 10-8 second triangluar
electric pulse excitation.

Fig.7 Snapshots of a propagating acoustic pulse in the far-field.

Fig.8 Distribution of the RMS pressure in the near-field under pulse excition.

Fig.9 Axial (z-axis) distribution of RMS pressure under pulse excition.




Table 1 Elastic Stiffness Matrix C (1010 N/m2), piezoelectric constants e (10-12 C/N), dielectric
constant € (€p), coupling constants k and density p (kg/m3)

Cn Ci2 Ci3 Cs3 Cas4 Ces
Polymer 0.349 0.349 0.13 0.13
PZT 13.0483 8.34907 8.82772 12.1148 2.29885 2.3462
eis | e | e3 | & | €3 | kis | kst | ka3 | ke P
PZT 741 -274 | 593 | 1700 | 1470 | .675 | 0.39 | 0.75 | 0.50 | 7800
polymer 4 4 1097
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TAILORING MATERIAL PROPERTIES BY STRUCTURE DESIGN---
RADIALLY POLED PIEZOELECTRIC CYLINDRICAL TUBE
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Abstract: In many applications such as hydrophone and ultrasonic transduccrs, matcrials
with large piezoelectric anisotropy arc preferred in order to suppress the interfering signals
from lateral modes. 1t has been shown that piezoclectric anisotropy can be signilicantly
improved by structurc design . For instance, for a radially poled cylindrical tube, the
cffcctive transversc piczoclectric response can be tuned Lo zero. In this work, the effective
piczoclectric responsces of lcad zirconate titanate (PZT) and lcad magnesium niobatc-lcad
titanate (PMN-PT) ccramic cylindrical tubes were studied. Large piczoclectric anisotropy
with a high cffective uniaxial coefficient has been obtained for both materials. It has been
shown that ncar zcro effective d3| can be achicved for a PZT tube with a proper
dimension ratio of ro/Re, where 1o and R, arc inner and outer radii of the tube,
respectively. While for a PMN-PT tube, the effective piezoclectric responses can be tuncd
by the ratio of ro/R as well as the bias ficld because the induced piczoclectric cocfficients
d33 and d3; and their ratio Id33/d3 ! are all functions of the bias ficld.

INTRODUCTION

Conventional piczoelectric lead zirconate titanate (PZT) ceramics arc widely used
in many transducer applications. The materials have high clectromechanical coupling
cocfficients and large piezoclectric strain constants d33 and d3;. However, the
piczoclectric anisotropy, which is mecasured by d constant ratio ld33/d31! or coupling
constant ratio kkp, where k, and kp are thickness and planar coupling cocflicicnts,
respectively, of the materials is quite small. In the applications where large piczoclectric
anisotropy is requircd PZT ceramics arc not favorable candidates. For cxample, in
underwater hydrophonce applications, an important material parameter is hydrostatic
cocfficient dj, (=d33 + 2d3)). In order to achicve a large dy, constant it is desirable to use
matcrials with a large ratio of Id33/ds )| since d33 and d3; have opposile signs. Similarly,

for ultrasonic transduccrs, materials with high piczoclectric anisotropy can ransmit
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ultrasonic wave in the poling direction with minimal interfcrence from lateral modcs.
Previous efforts to improve piczoelectric anisotropy of a device were mainly focuscd on
the sclection of materials with large ratio of Id33/d3}l, including single phase ccramics and
ceramic/polymer composites. For cxample, lcad titanate (PT) ccramic posscsscs large
lattice anisotropy. Under certain processing conditions modificd PT ceramics showed
unusually large ratio of the thickness (o the planar coupling coclficicnts and,
consequently, a large ratio of Id33/d3 ;.12 Piczoclectric ceramic/polymer composites can
also be engineered (o exhibit high piezoelectric anisotropy.>

Another approach to increasc piczoclectric anisotropy is by matcrial structure
design. Even for the materials with small piczoclectric anisotropy as PZT ccramics, by
proper design of material structure it is possible to enhance the elfective longitudinal
coefficicnt d33 meanwhilc to suppress the effective transverse cocfflicient d5;. Piczoclectric

ccramic cylindrical tubes are commonly employcd as stress sensors. Recently it has been
shown that when poled in the radial direction, the effective d33 constant ol a ceramic tubc

with a large ratio of length to wall thickness can rcach an cxceptionally large valuc.4 In
addition, analysis has indicated that the cffective dy; constant can be tuncd from positive

to zcro, and to ncgative by varying the ratio ro/Ro of the tube, where 1o and R, are inncr
and outer radii, respectively, and/or by changing the ratio Id33/d ! of the ceramic.
Besides providing large piczoclectric anisotropy, the structure is also very attractive in the
applications where large surface displaccment is required since the effective ds3 constant s
proportional to the ratio of the Icngth to the wall thickness and can be much higher than
those of PZT and PT bascd ccramics.

In this paper, the results of recent investigations of the cffective piczoclectric
responses of Icad magnesium niobate-lcad titanatc (PMN-PT) and PZT ceramic cylindrical
tubes are reported. High piczoclectric anisotropy and large uniaxial cocfficicnts have been
obtained. The cffects of non-uniformity of electric ficld and bias-ficld dependence of
induced piczoclectric cocfficients on the cffective piczoclectric responses of PMN-PT

tubes are discusscd.

PIEZOELECTRIC RESPONSES OF A CYLINDRICAL TUBE

PIEAVUDLE L AN, N A ) ) A e e e L s

Piczoclectricity can be described by the constitutive equations. When mechanical
stress (T) and electric ficld (E) are chosen as independent variables, thc mechanical strain
(S) and electric displacement (D) responses are described by:
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S; = sijTj + dinEn , (la)
D= dijj + €oKinnEn (1b)

where sjj are clastic compliances, Kinp are diclectric constants, € is frec spacc permittivity
and dy,j arc piczoelectric strain cocfficients. Eq. (1b) describes the dircct cffect, where
electric charges are induced by a stress while Eq.(1a) describes the converse cllect, where
strains are induccd by an clectric ficld.

Shown in Fig. 1 is a schematic drawing of a piczoclectric cylindrical tube and its
coordinate system. Electrodes arc on the inner and outer wall surfaces and the polarization
of the material is along the radial dircction. The piczoclectric responscs from the dircct and
the converse cifccts of such systcm were analyzed by several authors.5-10 In their works,
the voltage developed in the system by prcssurc-or transmitting responses induced by an
electric ficld were obtained. Recently, the analytical results of the effective piczoclectric
strain constants d33 and d3; of a radially poled ceramic tube have been reported.4 It has
also been shown that for such a system, the effective piczoclectric d constants determincd
from the conversc effect arc cqual to those from the direct effect. For the cylindrical tube

structure, the effcctive d constants arc defincd as:

% = dgfg% (2a)
2A1?0 =T (2b)

=

o b pram

FIGURE | Schematic drawing of a cylindrical tube
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where AL and AD are the displacements in the axial and radial dircctions under an applicd
voltage V, respectively, and L is the length of the tube. The eflective piczoclectric d

constants have the cxpressions:

elf = 21 ,
d33 = daipoy ) R 34)

cﬂ'
S = g R + (- 4] (3b)

Two assumptions were used in the derivations of above equations. First, it was
assumed that the material is clastically isotropic and the material parameters d3z and d3
are constant throughout the sample. Secondly, the strain responses in axial and radial
directions arc independent. Therefore, the requircments for the sample geomelry arc thin-
wall (Re>>(Ro-Io)) or long tube (L>>(Ro-1o)).

It can be seen from Eqgs. (3a) and 3(b) that the cffcctive longitudinal response ol a
tube depends only on the piczoclectric d3y constant of the material while the cffcctive
transverse responsc of a tube is & competition between the piezoelectric d33 and d3) modes
through the tube dimensions. For piezoelectric ceramics such as PZT and PT, material
parameters d33 and d3; are fixed after the poling. Therefore, the only way (o tunc the
transverse responsc of a piezoclectric ceramic tube is to change the ratio of ro/Ro. In Fig.
2, the calculated cffective d33 and d31 constants of a PZT-500!"! ceramic tube arc depicted
as functions of the ratio of ry/Ro. The outer radius and the length of the tube are 5.08 mm
and 12.70 mm, respectively. As can be scen, when ratio ro/R, is ncar 0.38, the cllcetive
d3; of the tube is almost zero and the effective d33 constant is around -1200 pC/N
resulting in large piezoclectric anisotropy.

As illustrated by Eq. (3b), the transverse piczoclectric responsc of a radially poled
cylindrical tube depends not only on the ratio of ro/R of the tube, but also on the ratio of
Id33/d31! of the material. For relaxor ferrocleetrics, of which piczoclectric d3z and d3y
coefficients can be induced by a DC bias field, the ratio of Id33/d31l changes with the bias
field. Therefore, the cffective d3j constant of a cylindrical tubc made of relaxor

ferroelcctric ceramic can be tuncd by the bias ficld.

IXPERIMENTAL DETAILS

The major aims of this work were to experimentally investigate the piczoclectric
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FIGURE 2 Calculated effective d constants of a PZT ccramic tube
as functions of the dimension ratio

responses of a radially poled ceramic cylindrical tube and to increasc the piczoclectric
anisotropy by structurc design. For most PZT ccramics, the d constant ratio Id33/d3 ! is
around 2.2. Therefore, when the dimension ratio ro/Re of a PZT ceramic tube is closc lo
0.38, near zero transverse response can be obtained as seen from Fig. 2. In this work,
normal piczoclectric ceramic PZT-500 and relaxor ferroclectric ceramic PMN-PT (90/10)
were used. To achieve high piczoclectric anisotropy, the tube dimensions were designed
based on Egs. (3a) and (3b). The sample dimensions arc listed in Table 1. PMN-PT tubes
were purchascd from TRS Ceramic Inc. and poled PZT-500 tubes were purchascd {rom
Piczo Kinetic Inc.. Gold sputtering and silver paste were used for the clectrodes of PMN-
PT samples. Low frequency dielectric constant and polarization of PMN-PT ceramics as
functions of tcmpcraturc were mecasurced by a LCR meler (HP4274A) and a pA meter
(11P4140B), respectively, with a computer controlled temperaturc regulation system.
Material paramcters d33 and d3; and the cffective piczoclcclric responscs of the tubc

samples were measured by a double-beam lascr interfcrometer.
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RESULTS AND DISCUSSION

Material Propertics

The induced d33 and d3; of an clectrostrictive material arc both functions of the
clectric bias ficld and are proportional to the diclectric constant (€/€,) and polarization (P)
of the matcrial. In order to obtain high induced piczoclectricity, materials with high
diclectric constants and large polarization are preferred. For relaxor ferroclectrics, in the
tcmperaturcs above Ty and near Ty, where Ty, is the temperaturc of maximum diclectric
constant and Ty is the depolarization lemperature, large reversible polarization and high
diclectric constant arc achicvable. Conscquently, large material parameters d33 and d3y can

be obtaincd.

TABLE | Sample dimension of cylindrical ccramic tubes

Sample Ry To L
(mm) (mm) (mm)
PZT-500 2.56 1.01 12.70
PMN-PT-1 2.54 1.27 12.70
PMN-PT-2 2.54 1.02 12.70

PMN Ceramics are relaxor-type ferroelectrics with a broad and frequcncy-
dispersive diclectric constant pcak. Near the diffuse transition region, its diclectric
constant can be over 30,000. Modilication of the composition by normal fcrroclectrics
PbTiO3 can shift the transition temperature from Ty, ~ -10°C to that ncar room
temperaturc, which is desirable for most applications. In this work, cylindrical tubes made
of 0.9PMN-0.1PT ceramic were uscd. Plotted in Fig. 3 arc the diclcctric constant and the
polarization of the material as functions of tcmperature measurcd at frequency of 1 kllz.
As can be scen from the diagram, the depolarization temperature Ty and the temperature of
maximum dielcctric constant of the material Ty, arc around 10°C and 50°C, respectively.
The diclcctric constant is about 15,000 in room temperature.
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FIGURE 3 Diclectric constant and polarization of PMN-PT (90/ 10) ceramic as functions ol temperature

At temperatures above Ty, piczoclectricity can be induced by a DC bias ficld.
Shown in Figs. 4 (a) and (b) arc the induced transverse and longitudinal piczoclectric
constants of 0.9PMN-0.1PT ccramic as functions of bias ficld, respectively, measurcd at
frequency of 500 Hz. Clearly, induced d33 and d3 cocfficients increase lincarly with bias
ficld until they reach a peak. Depicted in Fig. 5 is the change of the ratio Id33/d3;l with the
bias ficld. The overall ratio of the material is higher than thosc of most PZT ccramics,
which arc around the valuc of 2.2. In addition, in the ficld range of 1 - 4 kV/cm, this ratio
increases with the bias field. Therefore, even for fixed dimensions (ro/Re) the clfcctive

ds3| constant of a PMN-PT tube can be adjusted by the bias ficld.

Effective Piezoelectric Response of a Radially Poled Tube

The material paramelers d33 and d3j of PZT ceramics arc fixed alter the ccramics
arc poled. Therefore, the transverse piczoelectric response of a radially polced PZT
cylindrical tube only depends on its dimensions. As indicated in Fig. 2, when the ratio of
ro/Ro is 0.372, the calculated cffective d3) constant of a PZT-500 tube is zcro. For the
PZT- 500 samples uscd in this study, the ratio of /R was 0.395. Shown in Fig. 6 arc
cffective d33 and d3| coclficicnts of a PZT-500 tube mecasured at low frequencics. The
effective d33 constant is about -1300 pC/N and the cffective d3; constant is about -50
PC/N. Obviously, compared with the material paramcters (d33 = 374 pC/IN and dyy =
-171 pC/N), piezoclectric anisotropy is greatly enhanced in this structurc. For PMN-PT
ceramic tubes the effective responses also depend on the DC bias field because the induced
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FIGURE 4 Induccd piczoclectric d31 (a) and d33 (b) coefficicnts of PMN-PT (90/10) ceramic

FIGURE 5 The d conslant ratio as a function of bias ficld
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piezoclectric parameters d33 and d3) and their ratio ld33/ds | arc functions of the bias ficld.
The bias ficld dependence of effective d33 and d3j constants of PMN-PT ccramic tubcs-|
and #2 is illustrated in Fig. 7(a) and 7(b), respectively. Scveral {eaturcs can be seen from
the results presented in Figs. 6, 7(a) and 7(b). (1) For all samples, the cffective
longitudinal and transversc d constants have the same sign indicating that in hydrostatic
applications, both longitudinal and transverse clfccts make positive contribution to the
total response. (2) The uniaxial piezoclectric response (dgg) is greatly cnhanced. This
parameter can be further improved by using samples with a larger ratio of L/(Ro-1o)-
Hence, a piczoclectric ceramic tube with appropriate dimensions is a good candidate for
uniaxial actuator applications. (3) As indicated by Eq. (3b) the cffective d3y constant of a
tube strongly depends on the ratio ro/Ro. For the PMN-PT samples, when the ratio ry/Re
is reduced by 20%, the cffective d3) constant decreases about 70%. Conscquently, strong
piczoelcctric anisotropy is obtained. (4) Comparing the results of the PMN-PT ccramic, it
is found that at the same bias voltage level, radially poled tubular structurc can provide
much higher d33 constant than that of the material parameter. Thercfore, the requircments
for the power supply equipment are greatly reduced.

Listed in Table 2 is a comparison between experimental results and the calculations
by Egs. (3a) and (3b). It can be scen that for PZT samples the cxperimental results of the
effective d constants are in good agrecment with those from the analytical calculations. For
PMN-PT samples, the discrepancy between the measured and the calculated valucs is
more obvious (beyond the data scattering). This is because for relaxor [erroclectric
materials, induced piczoclectricity strongly depends on the DC bias ficld as indicated in
Figs. 4(a) and 4(b). For the structure of a cylindrical tube, DC bias field is not uniform in
the radial dircction. Thus, the induced piczoclectric d33 and d3; cocfficicnts arc not
constant in the material. The bias field in the calculations and in Figs. 7(a) and 7(b) was
taken as the bias voltage divided by the tube wall thickness. For the samples cmployeed in
this work the clectric field at inner wall surface of the samples is more than doublc of that
at outer wall surface. For example, with a DC bias voltage of 200 V, the actual clectric
ficlds arc 0.86 kV/cm and 2.15 kV/cm at the outer and inner surfaces of sample #2,
respectively. From Fig. 4(a), the corresponding induced d33 constants arc 390 pC/N and
1070 pC/N, respectively. Apparently, this inhomogeneity of piczoclcclric constants in the
malcrial is quite significant. Morcover, due to the nonlincar relation between imduced
piezoelectric constants and the bias field, the induced piczoclectric constants arc nol

monotonically decreasing in the radial direction. Hence, it is not surprising that there is a
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TABLE 2 Effective d coclficients of the ceramic tubes

Sample "~ d33 (pC/N) ds; (pC/N)
Measured Calculated Measured Calculated
PZT-500 -1310 -1308 -51 -46
PMN-PT-1* -2500 -3558 -210 72
PMN-PT-2* -2280 -2893 -55 617

* Both measured and calculated d coefficients are at bias ficld of 2.5 kV/cm.

discrepancy betwcen the predictions of Egs. (3a) and (3b) and the experimental results for
relaxor ferroclectrics. For quantitative predictions of the effcctive piczoclectric responses
of a relaxor ferroclectric ceramic tube, the inhomogenceity of induccd piczoclectric
coefficicnts due to the non-uniform bias ficld nceds to be considered.

N SION

Piczoelectric anisotropy can be significantly improved by an appropriate structurc
design. The experimental results presented above demonstrate that for a radially polcd
cylindrical tube, practically, a zcro transverse ds3) cocfficicnt has been obtaincd for both
piczoclectric PZT ceramic and relaxor ferroelectric PMN-PT ceramic, which confirms the
predictions from the carly analytical calculations. Morcover, the effective uniaxial
cocfficients have been greatly enhanced compared with the material parameters. Besides
the dependence of effective piczoclectric constants on the tube dimensions, the cffcetive
transverse coefficient of a relaxor ferroelectric ceramic tube can also be tuncd by the
material parameters d33 and d3j, which are functions of bias ficld. Duc to the non-uniform
bias field in the radial direction, the inhomogeneity of induced piczoclectric constants in a
wbe made of relaxor ferroelectrics needs to be considercd in the calculations of the total
piczoclectric responses. The structure is promising in applications where farpe surface

displacement and high piczoclectric anisotropy arc required.
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Electric Field Forced Vibration of a Periodic Piezocomposite Plate
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Reflection and Transmission of a Plane Wave at the Fluid-Composite Interface
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Abstract:

We address the problems of the vibration of a periodic piezo-
composite plate (2-2 composite) under external electric fields
and the reflection and transmission of a plane wave incident on
the fluid-composite interface based on an analytical method
developed recently, which takes into account explicitly the
heterogeneous nature of the piezocomposites. It is shown that
due to the finite thickness of the composite plate, a series of
piezo-active modes at frequencies near and above the stop band
edge mode frequency may be excited. It is also shown that as a
result of the heterogeneous structure of the composite, the
reflection coefficient from the fluid-composite interface is a
complex number, which should have important implication on
the design of quarter wave matching layer in composite
transducers.

1. Introduction.

Piezoceramic polymer composites have been widely used in
areas such as ultrasonic medical imaging and non-destructive
evaluation and exhibit many attractive features in these
applications in comparison with single phase piezoelectric
materials.! Since as a diphasic material, the effective properties
of a composite depend crucially on the properties of the
constituents, the quantitative study of their properties is an
interesting and important problem in order to optimize
composite transducers for different applications. However,
due to the fact that for ultrasonic applications, the aspect ratio of
the composite unit cell, which is L/d for a composite with 2-2
connectivity as schematically drawn in figure 1, is not large
(usually in the range between 2 and 6) and the acoustic
wavelength is aiso comparable to the spatial period d, the usual
averaging schemes such as those based on either the Reuss
(isostress) model or Voigt (isostrain) model 2 in treating the
elastic and electromechanical properties of a composite become
inadequate. While finite element analysis (FEA) can provide
some information on how the properties of the constituents
affect the ultrasonic performance of a composite transducer
under these conditions, it is quite time consuming if a
systematic study is intended and to some extent, FEA is a
computer experiment and, hence, does not provide a lot of
physical insight into the problem investigated. Clearly,
analytical models which takes into account the heterogeneous
structure of a composite and can bridge the gap between the
earlier simple models on composite materials and FEA should
be developed.

Recently, based on the method of partial wave expansion, a
theoretical model was established for composites with a
periodic laminate structure and finite aspect ratio L/d.34 For a
periodic laminate composite plate as schematically drawn in
figure 1, since the dimension in the x;-direction is much larger

Cera‘>xic I—-—d——{ Pc}ymer

Figure 1. Schematic drawing of a periodic piezoceramic
polymer composite plate. The poling direction of the
piezoelectric ceramic plates is along the x3-direction. The width

of ceramic plate is v d and the width of polymer is (1-v) d,
where v is the ceramic volume content in the composite.

than L and d, the problem can be treated as a two dimensional
one. Here, the solution to a bounded composite plate is
obtained by summation over the solutions of guided waves in
unbounded plates.5> Unlike the earlier approach, the solutions
to unbounded composite plates are obtained by solving the
dynamic elastic equations in the ceramic phase and polymer
phase separately and matching the two by the boundary
conditions at the ceramic-polymer interface. Hence, the
problem of averaging the properties of a composite in the x;-
direction is avoided.

The guided wave solutions to the dynamic elastic equations

. in the unbounded ceramic plate are:

3
u§ =Y R £ cos(hxy) exp(j Bxs)

im]

3
uf = Y, Rf g sin(hx) exp(j Bxs) (1)

im]

3
o= 2 R} € cos(hix,) exp( j Bx3)
i=l
where £iC, giC, and tiC are factors depending on P and b, the
wave vector components in the x3 and x; directions, and
j=¥-I. Similar equations can be written for the polymer
Pm_3.4

The superscripts ¢ and p are introduced to denote the
ceramic and polymer, respectively. In eq. (1), the symmetry
conditions in the x;-direction for the piezoelectric active mode
in a periodic composite plate are used, and for the sake of




simplicity, the time dependent term (exp(jwt)), where ® is the
angular frequency and t is time, is omitted. The boundary
conditions of the stresses, elastic displacements, and the electric
displacement and potential at the ceramic-polymer interface (x;
= vd/2) yield six homogeneous linear equations which relate the
six undetermined coefficients RPand Rf. The condition for a
nontrivial solution of homogeneous linear equations requires
that the determinant of the coefficients vanishes, i.e.,
K =1 coefficients of R; | =0 2)
where the coefficients of R; are functions of the B, d, the

angular frequency @, the ceramic volume fraction v. and the
material parameters of both the polymer and piezoceramic.
Equation (3) yields the relationship between B and f, the
dispersion curves. For each point on the dispersion curves, the
relations among Rfand R§ can be determined from the
homogeneous linear equations. Shown in figures 2(a) and 2(b)
are the dispersion curves for composite plates with 15% and
44% ceramic content, respectively. The parameters used in the
calculation are those of PZT-5H for the piezoceramic and
Spurrs epoxy for the polymer phase, respectively.6 In

addition, for B=0, the solutions in the ceramic and polymer
plates which satisfy the boundary conditions at x;=vd/2 are:

uf =k; Csin (h§; x)), u® =k Csin (), (xl-%)),

3
=P =Cx;
c _ pe p_./ PP
where k; and k; are constants, hg= cT @, hy= a1 .
11

In this paper, two situations will be considered explicitly
based on the results presented. The first one is a composite
plate situated in air and subjected to an AC applied electric field
where the electric impedance, resonant mode frequencies, and
surface vibration profile will be calculated. The second one is
the wave propagation in a fluid-composite system as
schematically drawn in figure 3. From the reflection
coefficients, the input acoustic impedance at the fluid-composite
interface as a function of frequency can be evaluated.”-8
Clearly, the quantities evaluated here can be measured
experimentally and are of great importance to the understanding
of ultrasonic performance and optimum design of a composite
transducer.

II. Forced vibration of a finite thickness composite plate.

To treat a composite plate situated in air under an AC electric

field, u3, uy, and ¢ are expanded in terms of the eigenfunctions
in an unbounded system. For the ceramic plate:

m 3
ug= Y, D K £ cos(htx)) sin( Byxa)A

n=1i=l

m 3
uf= D, D KS; g5 sin(hixy) cos( Baxs)An +C k;sin(h§;x,)

a=1li=1

m 3
D =3 Y K € cos(bx)) sin( Baxa)Aq + Cxs @

=1 i=l
A similar solution can be written for the polymer plate. In eq.
(4), Kpi, fni» 8ni, and t;; are constants. Ap and C are
determined by the boundary conditions which are traction free
and ¢ =*00/2 at x3 =+ L/2. With a finite number of
eigenfunctions in the expansion, the boundary conditions at x3

= £ L/2 cannot be satisfied at all x;. The number of the
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Figure 2. Dispersion curves for a composite made of PZT-5H
ceramic and Spurrs Epoxy with 15% (v=0.15) (the top figure)
and 44% ceramic volume content (v=0.44) (the bottom figure).

eigenfunctions, m, required, hence, is determined by the

needed for the solution. For the problem treated here,
we found that it is adequate to use eight eigenmodes in the
expansion. In the frequency range studied ( fd < 2 in figure 2),

there are two branches with real B and other branches having
cither imaginary or complex B, which corresponds the modes
confined at the boundary x3 =+ L/2 (surface modes).

The coefficients Ap and C in egs. (4) are determined by the
variational technique.5 Based on us, uj, and ¢ thus
determined, all the properties related to the vibration problem
of a composite plate can be evaluated. Shown in figure 4(a) is
the electric impedance spectrum for a composite plate with 44%
ceramic content made of PZT-5H piezoceramic and Spurrs
epoxy with L/d = 4.49. The electric impedance Ze is calculated

from the relation Ze = ¢o/1 where I = jo f Didx). The
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Figure 3. Schematic drawing of a plane wave incident
normally at the fluid-2-2 composite interface, where the fluid
occupies the upper half space and the piezocomopsite the lower
half space.

integration is over one unit cell for D3 at x3 = [/2, where D5 is
the electric displacement vector component along the x3-

direction ( Di=e33u3 3+e31u,1-€330.3 ). For the comparison,
the electric impedance measured experimentally from the same
composite is shown in figure 4(b) and clearly the theoretical
impedance curve reproduces the experimental data quite well.
One interesting feature revealed in the figures is that in a
composite plate, in addition to the thickness resonance mode,
there exist other modes due to the periodic nature of the
composite and coupling between the two phases. In figure 5,
we display the distributions of u3 at each mode. Apparently,
f1 is the fundamental thickness resonance and ft is the stop
band edge resonance as revealed by the fact that the ceramic and
polymer vibrate 180° out of phase at this mode, which has been
predicted in the earlier theoretical work.® The frequency
position and the distribution of u3 along the x3-axis indicate that
fL3 is third harmonic of the thickness mode. However, the
appearance of fi2 is not expected from the earlier theoretical
works. By examining the equations of the boundary conditions
at x3 =% L/2, it can be deduced that a resonance will occur

whenever B = (1+2n) nt/L, i.e., cos (BL/2) = 0. From the

dispersion curves of real B, as shown in figure 4(c), it is clear
that the fundamental thickness resonance and the stop band

edge resonance occur at f = n/L (fp] and fy;). Similarly, when

B =3 w/L, the third harmonic of the thickness mode will occur
at fr 3. In addition, a mode fi; will also show up at the branch
1 which is at a frequency near and above fi;. By the same
argument, it would be expected that fi3, fi4, etc. may also be
observed, depending on the electromechanical coupling factors
of these modes. It can be shown that the effective coupling
factor for these modes decreases rapidly for the higher order
modes. These features have been observed experimentally and
the results here provide a clear physical picture for the
experimental observation.

For a composite plate to work effectively as an
clectromechanical transduction material, it is required that the
ceramic and polymer vibrate in phase with nearly the same
amplitude in the x3-direction. The evolution of the vibration
pattern in the two plates with frequency and the aspect ratio L/d
of a composite plate is studied here. Shown in figure 6(a) is
the change of the ratio u3p /usc at x3 = L/2 (at the surface of the
composite plate), where u3p and usc are u3 at the centers of the
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Figure 4. (a) The impedance spectrum for v = 0.44 composite
plate of L/d = 4.49. (b) Experimental results for a 2-2
composite with v=0.44 and L/d = 4.49 which can be compared
with figure (a), the theoretical result. (c) The dispersion
curves for v=0.44 composite which show the positions of the
possible resonant modes in a finite thickness plate. fi) and fy;

occur at B=n/L, f13 and f2 occur at B=3m/L. Hence, ft3 will

occur at $=57t/L, etc. Whether these high order modes fi3, fi3,
etc. be observed experimentally depends on the
electromechanical coupling factors for these modes.

polymer phase (x)=d/2) and the ceramic (x1=0) respectively,
with frequency for the composite plate of L/d = 4. At
frequencies far below any resonance mode, u3p /u3c is always
less than one. As L/d increases, this ratio increases and
approaches one. These are consistent with the results of the
earlier theoretical model developed.10 As frequency increases
towards the thickness resonance, the ratio ujp /u3c also
increases towards one. At a frequency f; which is near fg of
the thickness mode, where f; is the series resonant frequency,
u3p fuzc =1. This is true as long as i) < fi1. This ratio will
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Figure 5. The distributions of u3 for a composite piate of
v=0.44 and L = 4 (d=1) at fy |, f;), f] 3, and fi5. (a) and (b) us
at x; = 0 (at the center of ceramic plate) as a function of x3
where x3 = 0 is at the center and x3 = 2 is at the surface of the
composite plate. (c) and (d) u3 at the surface of the composite
plate as a function of xy. The arrows indicate the position of
the interface between the ceramic and polymer. At f;; and fi 3,
the ceramic and polymer vibrate out of phase with each other,
while at f] | and fi3, the two vibrate in phase.

surpass one as the frequency is further increased. In figure
6(b), the change of fi/fs vs. the aspect ratio L/d is presented.
Clearly, fi/fs is near but larger than one except for composite
plates with small aspect ratio. Hence, the aspect ratio L/d does
not have a significant effect on the ratio of usp /usc at
frequencies very near f; of the thickness mode, where u3g /usc
is always near one. However, it will affect the bandwigth in

which u3p /u3c is near one. For example, the bandwidth %f in

1
which 0.9 < u3p /u3c < 1.1 increases as the aspect ratio L/d
increases, which is shown in figure 6(b). In the practical
design of a composite transducer, the aspect ratio L/d required,
hence, wiil be determined by the operation bandwidth needed.

III. Reflection and transmission of a plane wave at fluid-
composite interface

We now tumn to the problem of the reflection and
transmission of a plane wave normally incident at the fluid-
composition boundary as depicted in figure 3, where the fluid
occupies the upper half space (z > 0) and the composite the
lower half space (z < 0) and a plane wave with wave vector B{)
incident normally at the boundary. The solutions to the wave
equation in the fluid phase (z > 0) are plane wave solutions and
to satisfy the boundary conditions at the fluid-composite

interface, uf and uf are expanded in terms of these plane wave
solutions:

J
uf=Y" j kenRq sin (kynk1) exp(iBixs)

n=]
J
u=Boexp(-iBoxs) -, BiRa cos (keox1) expBixs)  (5)

n=0
where ky, = Zgz: and B, = v (Bo)?-(kyn)? are the wave vector

components along x) and x3- directions, respectively. In the
frequency range where an ultrasonic piezocomposite transducer

is operated, B; is imaginary except n = 0. The reflection
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Figure 6. (a) The ratio of u3{1/.13c vs. frequency (fd) for the
composite plate of v=0.44 and L/d = 4. (b) The frequency ratio
f1/fs and the bandwidth Af/f;, where Af is defined as the
frequency range in which 0.9 < u3p/u3e <1.1 as a function of
the aspect ratio L/d for a composite plate with v==0.44.

coefficient, hence, is
experimentally.

-Ro which can be measured

The solutions in the composite region are:

m 3
ui= 2, 3 jbensin(tix;) exp(-iBaxs) Ap

m 3
u§= Y, D acicos(hix1) exp(-iBaXs) Ay (6)
n=l i=1 .
m 3
=3 Y cenicos(hixy) exp(-iBaxs) An
n=] i=]

for the ceramic plate and similar equations can be written for the
polymer region. In the above equations, bcpi, acp; and ccy; are
proportional constants, A, and R, are determined by the
boundary conditions at the fluid-composite interface x3 = 0.
The variational technique is used to determine these
coefficients. The number of terms in the expansions ( J in egs.
(5) and m in egs. (6)) is determined by the accuracy desired. In
the calculation carried out here, J = 5 and m = 8 are used.

Shown in figure 7 is the reflection coefficient R for the
composites made of PZT-5H piezoceramic and Spurrs epoxy
with 15% and 44% ceramic content, respectively, where
parameters of water are used for the fluid medium. The large
change in the refiection coefficient at fd near 1 for 44% (fd near
0.8 for 15%) is due to the lateral mode in the composites where
the ceramic and polymer vibrate out of phase. Evidently, R is
not a pure real number but has a imaginary component,
reflecting the heterogeneity nature of the composites.8 Only at
low frequency region, does the imaginary part become zero.
This is fundamentally different from single phase materials.
From the classical wave propagation in elastic medium
problem, the input acoustic impedance of the composite Z;;, at
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Figure 7. The reflection coefficient R from the water
piezocomposite interface for a plane wave normally incident at
the interface for (a) the ceramic volume content v in the
composite is 15%; (b) the ceramic volume content v in the
composite is 44%. The polymer and piezoceramic used in the
composites are Spurrs epoxy and PZT-5H. The solid lines are
the amplitude and dashed lines are the phase angle of R. The
absolute phase angle is that displayed plus 180°. The non-zero
phase angle for the reflection coefficient at the fluid-composite
interface will affect the choice of the thickness of the matching
layer for a composite transducer.

the interface can be calculated from the relation:
R=Z1-Zpn 10
Ze+Zin

where Zs is the characteristic acoustic impedance of the fluid.”-8
Since Z¢ is assumed independent of frequency and real for
water, Z;, exhibits a frequency dependent behavior and has a
non-zero phase angle as shown in figure 8. Again, only at low
frequencies, Zjy is equal to that calculated from the averaged
density of the composites times the effective longitudinal
velocity.11 The strong frequency dependence of the acoustic
impedance for piezocomposites was also observed in an earlier
experiment 12 and further experiment will be carried out to
verify the analytical results.

Another standard method for calculating the input acoustic
impedance of the composite at x3=0 is from the relationship
between the stress and the sound velocity at the interface.”.8
For a composite considered here, both the stress and velocity
are functions of x; and to calculated Z;;, we assume that the
averaged values can be used:

Zi=- 32 ®
where T3 and V3 are the averaged stress component and
averaged velocity (over one unit cell) in the x3-direction
evaluated at x3=0. The results are also shown in figure 8

(dashed lines). As seen from the figure, the two results agree
with each other quite well.
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Figure 8. The input acoustic impedance for the composite
calculated from the reflection coefficient R (solid lines) and
from the stress-sound velocity relationship (dashed lines) for
(2) composite with 15% ceramic content and (b) composite with
44% ceramic content. Unlike single phase materials, the input
acoustic impedance for a composite is a complex. Only at low
frequencies, the acoustic impedance is equal to those calculated
from the effective medium theory.

IV. Summary.

Based on the analytical method developed recently, we
treated quantitatively the vibration problem of a finite thickness
piezoceramic polymer composite under an external AC field and
wave propagation and input acoustic impedance at a fluid
piczocomposite interface. The results reveal many interesting
and important features rclated to the resonant modes and
vibration profiles in a piezocomposite plate, and the
characteristics of the reflection and transmission of a plane
wave and input acoustic impedance at the fluid composite
interface, which should have important implications to the
design of the matching layer in a composite transducer. The
results are in good agreement with existing experimental data.
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Dynamic behavior of periodic piezoceramic-polymer composite plates
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The dynamic behaviors of periodic piezoceramic-polymer composite plates, especially the effect of
the finite thickness on the strain distributions and resonant modes, are studied theoretically. It is
found that as long as f;,<f,;, where f;, and f,,are the thickness and first piezoelectric active stop
band-edge mode frequencies, there exists a frequency f near f; ;at which the polymer and ceramic
vibrate in phase with equal amplitude in the x5 direction. The effect of the thickness of a composite
plate is to change the bandwidth in which the two vibrate in unison. It is also found that duc to the
finite thickness effect a series of piczoelectric active modes at frequencics ncar and above f,;may be

excited. © 1995 American Institute of Physics.

For a piezocomposite, it is well known that its properties
can be varied over a wide range, therefore, the quantitative
study of their properties is an interesting and important prob-
lem. Many efforts have been devoted to this study in the past
and duc to the complexity of the problem, different ap-
proaches have been developed to address different aspects of
the problem, such as the effective medium model, transmis-
sion line theory, and the analysis based on Floquet theory,
etc.'”?

In this letter, the results of a recent investigation on the
dynamic problem of piezocomposite plates as schematically
drawn in Fig. 1, especially the effect of the finite thickness
(or aspect ratio L/d) on the strain distributions in the two
phases and the resonant modes, will be presented. Since the
dimension in the x direction is much larger than L and d, the
problem is treated as a two-dimensional one. Here, the solu-
tion to the vibration of a bounded composite plate is obtained
by summation over the solutions of two-dimensional waves
in unbounded plates.® Unlike the carlier approach, the solu-
tions to unbounded composite plates are obtained by solving
the dynamic elastic equations in the ceramic and polymer
phases separately and matching the two by the boundary
conditions at the ceramic-polymer interface.

The dynamic elastic equations in the piczoceramic phase

ZII'CI(‘

E EE E — cn
et (et egdua izt o a3t eydh3=pli

E E ., E E _en
catant (et nt ezt esnd.=pii; (N

s s —
erstznt(esten)u ytenyn—eud, —€,0,=0,

where 1, and w4 are the clastic displacements, ¢ is the clec-
tric potential, (fj is the constant electric field elastic stiffness
coefficient, e;; is the piczoclectric cocfficient, € }; is the di-
electric permittivity, and p is the density. Similar equations
can be written for the polymer phasc.

The solutions in the unbounded ceramic plate are:*
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3
uy= 2:,[ Rif; cos(hixy)exp(jBxs)

. _
W=, Rig! sin (hix )exp(jBxs) @

i=1

3
$=, R{1 cos(hixy)exp(jBxs),
i=1

where f7, gf,and 1] are factors depending on B and /;, the
wave vector components in the xy and x; directions, and j
= \/:_l Similar equations can be written for the polymer
region.

The superscripts ¢ and p are introduced to denote the
ceramic and polymer, respectively. In Eq. (2), the symmetry
conditions in the x, direction for the piezoclectric active
mode in a periodic composite plate are used, and for the sake
of simplicity, the time dependent term [exp(iwr}] is omitted.
The boundary conditions of the stresses, elastic displace-
ments, and the electric displacement and potential at the
ceramic-polymer interface (v,=wvd/2) yield six homoge-
neous lincar equations which relate the six undetermined co-
efficients RY and R{. The condition for a nontrivial solu-
tionof homogenecous linear equations requires that the
determinant of the coefficients vanishes, i.e.,

K =|coefficients of R;|=0, ‘ (3)

where the coefficients of R; are functions of the 8, d, the
angular frequency w, the ceramic volume {raction v, and the

AL T

.

I . AR ALY
Cera\mic i‘_ d _’l Polymer

IFIG. 1. Schematic drawing of a periodic piezoceramic potymer composite
plate. The poling dircction of the piezoelectric ceramic plates is along the
X3 direction. The width of ceramic plate is » d and the width of polymer is
(1=} d. where s the ceramic volume content in the composite.
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FIG. 2. Dispersion curves for a compositc made of PZT-5H ceramic and
Spurrs epoxy with 44% ceramic volume content (v=0.44),

material parameters of both the polymer and piczoceramic.
Equation (3) yiclds the relationship between 8 and f, the
dispersion curves. For each point on the dispersion curves,
the rclations among R and R can be determined from the
homogencous lincar equations. Shown in Fig. 2 arc the dis-
persion curves for a composite platc with 44% ccramic con-
tent (in the first quadrant). The parameters used in the caleu-
lation arc those of PZT-5H for the piczoccramic and Spurrs
cpoxy for the polymer phase, respectively.” In addition, for
B=0, the solutions in the ceramic and polymer phases which
satisfy the boundary conditions at x| =vd/2 arc

» d
X =351

O¢=PP=Cuxy )

ui=k,C sin(hgx;), ui=k,C sin

where k; and k, arc constants, h;=p‘/c 0, )
=Vpllcw.

To treat a composite plate under diflerent boundary con-
ditions at x3= = L/2 explicitly, 3, 1, and ¢ arc expanded
in terms of the cigenfunctions. For the ceramic region

m 3

ll3 2 2 I\m.f(u CQS(/I,”./\.l)bln(ﬂ".\:;)A"

n=1}i=1

m 3

= E 2 l\'::ug::n Sin(hzi‘xl)COS(ﬁu'\.J)An
i=]

n=1i=

+ Ck, sin(hgx,) (5)

(bc_’zl 2 I\,“f,“COS ,,,Xl)Sill(ﬁ,,X3)A,,+C.X].
A similar solution can be written for the polymer region. In
Eq. (5), k,iv fni» &ui» and t,; arc constants. A, and C arc
“determined by the boundary conditions at x;3= = L/2. In this
letter, the problem with the boundary conditions of traction
free and ¢==¢ (/2 at x3= = L/2will be treated, which cor-
responds to a compositc plate situated in air and subjected to
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FIG. 3. (a) The admittance spectrum for v=0.44 composite plale of LAd=4.
(b) the dispersion curves for v=0.44 compusite which show the positions of
the possible resonant modes in a finite thickness plate. f,, and [, oceur at
B=alL, {3 and f,> oceur at B=37/L. Therelore, £,y will occur at g=57/L,
cte. Whether these high order modes f5. f,3. ete. be observed experimen-
tally depends on the clectromechanical coupling factors for these maodes.

an cxternally appliced clectric ficld. With a finitc number ol
cigenfunctions in the expansion, the boundary conditions at
x3=* L/2 cannot be satisficd at all x,. The number of the
cigenfunctions m, required, thereafler is determined by the
accuracy nceded for the solution. For the problem treated
here, we found that it is adequate to use cight cigenmodes in
the expansion. In the frequency range studied (fd<2 in Fig.
2), there arc two branches with real 8 and other branches
having cither imaginary or complex 8, which corresponds
the modes confined at the boundary x3==*L/2 (surlacc
modes).

The coefficients A, and C in Egs. (5) can be determined
by ecither the method of least-squares or sclected boundary
points method.®® Here, the latier approach is used duc to its
simplicity, where scveral boundary points are sclected to de-
termine A; and C. Based on w3, u, and ¢ thus determined,
all the propertics related to the dynamic behavior of a com-
posite plate can be evaluated. Shown in Fig. 3(a) is the elec-
tric admittance spectrum for a composite platc with 44%
ceramic content made of PZT-5H piczoceramic and Spurrs
epoxy al L/d=4. The admittancc Y is calculated from the
relation Y=I/¢py where I=jwfDidx,. The intcgration is
over one unit cell for Dy at x3=L/2, where Dj is the clectric
displacement vector component along the x3-direction ( D
=enlty 3t et~ €336 3). One interesting feature revealed
in Fig. 3(a) is that in a composite plate, in addition to the
thickness resonance mode, there exist other modes due to the
perivdic nature of the composite and coupling between the
two phases. In Fig. 4, we display the distributions of 5 at
cach mode. Apparently, f;; is the fundamental thickness
resonance and f,; is the stop-band-cdge resonance as re-
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FIG. 4. The distributions of u; for a composite plate of v=0.44 and
L=4(d=1)atfy,. fi1, f13. and ;5. (a) and (b) w4 at x; =0 (at the center of
ceramic plate) as a function of x; where x3=0 is at the center and x;=2 is
at the surface of the composite plate. (¢) and (d) u; at the surface of the
composite plate as a function of x,. The arrows indicite the position of the
interface between the ceramic and polymer. At f,; and f; 4, the ceramic and
polymer vibrate out of phase with each other, while at f;, and f5, the two
vibrate in phase.

vealed by the fact that the ceramic and polymer vibrate 180°
out of phase at this mode, which has been predicted in the
carlier theoretical work.”* The frequency position and the
distribution of u5 along the xj-axis indicate that f, 4 is the
third harmonic of the thickness mode. However, the appear-
ance of f,» is not expected from the carlier theoretical works.
By cxamining the equations of the boundary conditions at
x3=*L/2, it can be deduced that a resonance will occur
whenever B=(1+2n)w/L, i.e., cos(BL/2)=0. From the dis-
persion curves of real B, as shown in Fig. 3(b), it is clear that
the fundamental thickness resonance and the stop-band-edge
resonance occur at 8= 7/L (f,; and f,,). Similarly, when
B=37L, the third harmonic of the thickness mode will occur
at f,;. In addition, a mode f,; will also show up at the
branch 1 which is at a [requency ncar and above f,,. By the
same argument, it would be expected that f;-, f,4, ctc., may
also be observed, depending on the electromechanical cou-
pling factors of these modes. It can be shown that the effec-
tive coupling factor for these modes decreases rapidly for the
higher order modes. Therefore, the experimental situation,
only the modes of f,» and sometimes f,3 are observed. In-
deed, these modes have becn observed experimentally and
the results here provide a clear physical picture.

For a composite plate to work effectively as an electro-
mechanical transduction material, it is required that the ce-
ramic and polymer vibrate in phase with nearly the same
amplitude in the x;-direction. The evolution of the vibration
pattern in the two phases with frequency and the aspect ratio
L/d of a composite plate is studied here. Shown in Fig. 5(x)
is the change of the ratio 3, /i3, at x3=L/2 (at the surface
of the composite plate), where w;, and w;,. arc uy at the
centers of the polymer phase (x;=d/2) and the ceramic
(x,=0), respectively, with frequency for the composite plate
of L/d=4. At frequencies far below any resonance mode,
us, /1y, is always less than one. As L/d increases, this ratio
increases and approaches one. These arc consistent with the
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FIG. 5. (a) The ratio of u;, /us, vs frequency (fd) for the composite plate of
v=0.44 and L/d=4. (b) The frequency ratio f,/f, and the bandwidih
Aflfy, where Af is defined as the frequency range in which 0.9<u;, fus,
< 1.1 as a function of the aspect ratio L/ for a composite plate with v=0.44.

results of the earlier theoretical model developed.® As fre-
quency increases towards the thickness resonance, the ratio
u3, /13, also increases towards one. At a frequency f which
is near f, of the thickness mode w3, /113.= t. This is true as
long as f;<f,; . This ratio will surpass onc as the frequency
is further increased. In Fig. 5(b), the change of f,/f versus
the aspect ratio L/d is presented. Clearly, f,/f, is near but
larger than one except for composite plates with a very small
aspect ratio. Therefore the aspect ratio L/d does not have a
significant effect on the ratio of 13, /us, at frequencies very
near f, of the thickness mode, where 1y, /13, is always near
one. However, it will affect the bandwidth in which
13, /13, is near one. For example, the bandwidth (Af/f}) in
which 0.9< w3, /u3.<1.1 increases as the aspect ratio L/4d
increases, which is shown in Fig. 5(b). In the practical design
of a composite transducer, the aspect ratio L// required. will
be determined by the operation bandwidth needed.
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Transverse Piezoelectric Mode Piezoceramic Polymer Composites with

High Hydrostatic Piezoelectric Responses

Abstract

In addition to the connectivity of the constituents in a
composite, the operation mode also plays an important
role in determining the performance of the composite.
In this talk, we will present two types of piezoceramic
polymer composites developed recently at MRL of Penn
State: a 2-2 piezocomposite operated at the transverse
piezoeléctric (TP) mode and a TP mode honeycomb
composite. Both composites exhibit exceptionally high
hydrostatic piezoelcctric response, high reliability, as
demonstrated by the experimental results on these new
composites and analytical modeling. Based on
analytical models, the optimum design of these
composites is also analyzed. One advantage of a TP 2-
2 composite, in addition to the high hydrostatic
piezoelectric response, is the low fabrication cost.
While for a TP mode honcycomb composite, due to the
fact that the piezoelectric responses from the three
orthogonal directions add together when the transducer
is subjected to a hydrostatic pressure, a unique feature
of this composite, it has a piezoelectric hydrostatic
response considerably higher than those of most other
piezoceramic polymer composites.

I.  Introduction

Through the efforts in the last two decades, many
forms of piezocomposites have been developed. These
matcrials have demonstrated many advantages over
conventional single phase ceramic and polymeric
materials in the hydrostatic applications. A summary of
the performance of these composites can be found in
several review articles.!2 One of the common features
among these carlier piczocomposites is that they are
operated i the longitudinal piezoelectric mode (di3
mode). Hence, the hydrostatic piezoelectric coefficient
dpy of these composites, such as 1-3 composite and 2-2
composite, is limited to below d33 coefficient of the
piezoceramic phase in the composite. In addition, the
high pressure in deep ocean due to the stress transfer
between the polymer and ceramic phases may cause
depoling of the piezoceramic.

In piezoceramics, there are three independent
piezoclectric coefficients, the longitudinal d33, the
transverse d3j, and the shear d 5 coefficients. Hence, it
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is interesting to explore piezoceramic polymer
composites operated in the piezoelectric d3; and dis
modes instead of d33 mode. Moonie transducer, a
recent invention of metal-ceramic composite, is an
example which makes use of piezoelectric d3; mode and
achicves exceptionally high effective linear and
hydrostatic piezoclectric responses.3 In this talk, I will
present two new piczocomposites operated in the
transverse piezoelectric mode (d3; or TP mode) and will
show that exceptionally high hydrostatic piezoelectric
response can be achieved with these TP mode
piezocomposites. The transverse mode operation also
reduces the high pressure depoling effect.

2. TP mode 2-2 composite

Shown in figure 1 is a schematic drawing of a-TP
2-2 composite. Here, two configurations will be
evaluated, one without face plates and one with stiff
face plates. By employing the mode! similar to that used
in the reference 2, one can derive the following
expressions for the effective hydrostatic piezoelectric
responses of a TP 2-2 composite:

d;? ={2d5 (1-0p)sh +(1-v) (s§, - s§9)
. (l-v)(l—O’c)s‘il +v (I_Gp)S[;l

h syt ()

dc (l-cp)s';]+(l-v) ( s‘l’z - S(iz) JZCL (2)

diPgtP=[dS;+2
h &h 33
(1-9)(1-60)s5; + v (1-ap) sf, ~ €5,
where the superscripts p and ¢ refer to polymer and
ceramic, respectively. v is the ceramic volume content

and o is the Poisson's ratio.

Shown in figure 2 are the calculated results from
eqs. (1) and (2), where the TP 2-2 composite is made
of PZT-5H ceramic embedded in Spurrs epoxy (figure
5(a)) and polyurethane with microballoon (polymer II)
(figure 5(b)). The parameters used in the calculation are
listed in Table 1.

Using stiff uni-directional face plates, which clamp
the 2-2 composite in the y-direction while leave the
composite free in the x-direction, the hydrostatic
piczoelectric response can be improved. It can be
shown that in the ideal condition, that is the composite
is completely clamped in the y-direction and free in the
x-direction, the hydrostatic responses are:
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Figure 2. Calculated results of hydrostatic piczoelectric
response of TP 2-2 composite. (a) Spurrs €poxy matrix
and (b) polyurcthane with microballoon matrix.
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Plotted in figure 3 are the results calculated from
egs. (3) and (4) for face plated TP 2-2 composites.
Apparently, the hydrostatic responses are improved
significantly, as comparcd with the results in figure 2.
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Figure 3. Calculated results of hydrostatic piczoclectric
response of TP 2-2 composite with unidircctional face
plates. (a) Spurrs cpoxy matrix and (b) polyurethanc
with microballoon matrix.

Table I. The parameters used in the calculation

PZT-5H:  di3 = 593 (pC/N), d3= - 274, 511 = 0.165
(10-10 m2/N), s33 = 0.207, sy2 = -0.048, 513 =-
0.085, £33 = 3400 &g

Polymer I (Spurrs epoxy): sii = 2.0 (10-19m2/N), o
=036

Polymer 11 s11=2.0(10% m?/N), 6=0.36

Several TP 2-2 composites werc made and
evaluated. Listed in Table Il are some of the results and
the comparison with the theoretical calculation. As scen
from the Table, indeed, TP 2-2 compositc exhibits
exceptionally high hydrostatic piczoelectric response
and there is good agrcement between the theory and
experiment.

3. TP mode Honeycomb Composite

The schematical drawing of a TP mode honeycomb

structure is shown in figure 4, where the poling and
applicd electric ficld directions arc across the wall of the
honeycomb cell (perpendicular to the z-direction). A
hydrostatic transducer can bc made by cither placing
thin layers of polymer on the two end faces to block the
opening (air backing) or embedded the whole
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Table II. The piezoelectric hydrostatic performance of

TP 2-2 composites

Sample A Sample B

Experiment Calculated Experiment Calculated

dn (pC/N) . 2,020 2572 6,000 7,700
dpgn(10-15 m2/N) 1,468 1,752 30,000 49,900
L (cm) 1.12 1.0
t (cm) 0.05 0.05
v (%) 25 15

Poly. Matrix Spurrs epoxy
volume microballon

Face plates No Unidirectional plates

Polyurethane with 50%

\ . - -
Poling Dircction

Figure 4. Schematic drawing of a TP honeycomb
structure.

honeycomb ceramic into a polymer matrix. If these
structures are subjected to hydrostatic pressure, the d33
response is climinated and the hydrostatic piezoclectric
response is from the da; component of the piezoelectric.
The stress ficld in the x-, y-, and z-direction will induce
three d31 responses in the corresponding ceramic
plates. For an end capped configuration, it can be
shown that the effective hydrostatic response is:
et = 2hada (L Ly s
2 b v s33(2-b)
N
df,”-gf,”. = 2_b(_l;h_),(t1!. (,l_ +14
€13 b v
whereb=t/rwithr=t+a.
Plotted in figure 5 are the results from eqs. (5) and
(6) for an end capped TP honeycomb made of PZT-5H
with L= 1 cm and a = 0.125 cm. Clearly, very high
hydrostatic response can be achieved with this
structure.

(5)

S13__ 2
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$33(2-b) ©)
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Figure 5. Calculated results of the effective hydrostatic
piezoelectric responses from an end -capped TP
honeycomb transducer made of PZT-5H ceramic.

Figure-6 shows the experimental result of end
capped honeycomb transducers. The honeycomb was
made of PZT-4 material with d33 = 110 pC/N and d3; =
-40 pC/N. The comparison between the experimental
results and theoretical prediction is made in Table 111.

.There is a good agreement between the theoretical
‘values and cxperimental results. The discripancy is

mainly caused by the finite size effect where the
honeycomb cells at the edges of the samples will have
finite d33 response.

Table III. Parameters and results of the TP honeycomb
samples tested '

Configuration €/ey L{cm) dp(pC/N) dj
(exp) (theory)
I Endcapped 520 1.326 -4,700 -6,200
I End capped 520 1.237 -4,200 -5,784
IIl Polyurethane 570 1.2 -4,666 -5,636

with microballoon matrix

4. Summary

Two new piczocomposites operated at TP mode
were developed and evalueted. As a comparison, in
figure 7, we summarize the hydrostatic properties of
several commonly used transducer materials and the
newly developed TP mode composites. It can be seen
that these ncw structures exhibit exceptionally high
hydrostatic piczoelectric responses. The author would
like to thank the financial support of this work from
Office of Naval Research.
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A High Sensitivity Hydrostatic Piezoelectric
Transducer Based on Transverse Piezoelectric
Mode Honeycomb Ceramic Composites

Q. M. Zhang, H. Wang, J. Zhao, Joseph T. Ficlding, Jr., Robert E. Newnham, Member, 1EEE, and L. Lric Cross

Abstract—A new piczoclectric composite transducer based on
the ceramic honeycomb structure is introduced. The transducer
is operated in the transverse piczocleetrie (I oy mode. The
ceramic honeycomb configuration enables one to fabricate a TP
honeycomb transducer by cither cmbedding a honeycomb ce-
ramic skeleton into a solt polymer matrix to form a composite or
by blocking the opeaings of the honeycomb cells with thin layers
of cpoxy to form an end-capped honeycomb structure. With the
unique honeycomb coufiguration and TP operation mode, the
piczoclectric dyy response of the ceramic is nearly eliminated and
the piczoclectric responses from the three orthogonal directions
add together when the transducer is subjected to a hydrostatic
pressure. As a result, the transducer exhibits exceptionally high
bydrostatic piezoclectric response.

I. INTRODUCTION

S HAS BEEN demonstrated repeatedly, the key to the

success of a composite material is to intelligently design
the propertics and geometric shapes ol the constituents. n
piczoclectric ceramic-polymer composites, by making usc
of various conneclivity palterns ol the ceramie phase and
polymer phasc, a serics of high performance piczoclectric
transducers have been realized [ 1] 2], However, almost all the
cxisting piczocomposites arc operated in the piczoclectric diyy
mode (longitudinal piczoclectric mode), and in their current
forms may have reached the performance limit. To mect the
demands and challenges of the ever growing transducer and
actuator market, including the so-called smart materials used
for vibration control, it is necessary to develop a new gen-
cration of piczocomposite materials. The Moonic transducer,
a recent innovation, is onc cxample of new composites [3].
Recently, we have demonstrated that by using the transverse
piczoclectric mode (d3; mode) in 1-3 tubular composites and
in 2-2 composites, onc can markedly improve the cffective
piczoclectric hydrostatic response by more than an order of
magnitude. This substantial increase in hydrostatic piczoclee-
tric cocflicient dy, and figure of merit dy,g), compared with
those of 1-3 rod composites is on a par with the Moonic
transducer [4], {5].

In this paper, we will introduce a new type of hydrostatic
transducer made of a honeycomb piczocomposite operated
in the transverse piczoclectric mode, which is named in this
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Fig. 1. (a) Schematic drawing of a honeycomb cenmie stiucture. The
ceramic poling direction is indicated in the msert ol the figure. Notice the
dilference in the poling directions between the neighboring cells. I the
figure, r = a4 1. (b) Stress components in the -y plane ol @ honeycomb
structure subjected to a hydrostatic pressure. The docal coordinate systent for
the ceramic phase is also shown in thefigure. The 2-anis of the focal coordinate
system is perpendiculir o the §- and 3-axes and parallel w the z-anis ol the
honeycomb structure in (a).

paper s TP mode honeycomb composite transducer. We shall
show that with a suitable poling and clectrode conliguration,
the piczoelectric responses in the three orthogonal directions
[the -, y-, and z-dircctions, as shown in Fig. 1y} have the
same sign. The 3-D connected ceramic frame in the composite
areatly reduces the Poisson’s ratio effect of the polyier phase,
the most detrimental elfect in a regular 1-3 piczocomposite
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[6). As a result, this new composite exhibits a piezoelectric
hydrostatic response considerably higher than those of most
other piezoceramic polymer composites.

II. PHYSICAL BASIS AND ANALYTICAL MODELING

The basic structure of this new composite is schematically
illustrated in Fig. 1, where the ceramic is poled perpendicular
to the z-direction as indicated. In this paper, two configurations
will be investigated: 1) A honeycomb structure is end-capped
with the interior filled with air and the openings of the
honeycomb cells blocked by ecither thin layers of polymer
or thin layers of metal, depending on the dimensions of the
honeycomb cell. With this configuration, the inside walls of
the honeycomb are shielded from the external medium. Hence,
as a transducer is subjected to hydrostatic pressure, the stress
component perpendicular to the wall, T3, in Fig. 1(b), is zero.
2) A honeycomb ceramic frame is embedded in a polymer
matrix to form a composite. The polymer matrix acts as a stress
transfer medium as in other piezoceramic polymer composites.

Due to the local variation of the poling directions in
the honcycomb structure studied, to facilitate the analysis
and discussion, two coordinate systems will be used. One
coordinate system is labeled as X-Y-Z and attached to the
honeycomb composite, as shown in Fig. 1(a). The other is
labeled as 1-2-3 and attached to the ceramic local structure
with the 3-direction along the ceramic poling dircction as
shown in Fig. 1(b).

It should be mentioned that two forms of honecycomb
composite transducers were investigated earlier {7}, [8]. The
difference between the carlier honeycomb composite trans-
ducers and the one introduced here is the operation mode.
The earlier honeycomb composite transducers arc opcrated
in the longitudinal piezoclectric mode. Due to the limitation
of this operation mode, the effective hydrostatic piezoelectric
response of the earlier honeycomb composite transducers is
at least one order of magnitude smaller than that of the TP
honeycomb transducers introduced herc.

A. Honeycomb Structure with End Caps

When an end-capped honcycomb structure is subjected to
hydrostatic pressure, as will be shown later, the piezoelectric
responsc is from the «/3; component of the piczoceramic. Due
to the fact that 73, = 0 (because the interior of an end-capped
honeycomb is filled with air) and the poling direction of the
ceramic is parallel to the thickness direction of the ceramic
wall, the dy; response is eliminated and the stress field in
the x-, y-, and z-directions will induce 3, responses in the
ceramic plates.

When an end-capped honeycomb structure is subjected to
hydrostalic pressure p, the stress component Ty as shown in
Fig. 1(b) will be increased. From the force balance condition,
we can obtain the following relation:

=" )

b
where h = 1/r with r = 1 4+ a (see Fig. 1). b is smaller than
one and (1) indicates that there is a stress amplification in the

a- and y-directions. As a result of this stress amplification in
the x- and y-directions as well as the stress amplification in
the z-direction (as will be shown later), an exceptionally high
piezoclectric response is achicved.

In a honeycomb structure, there are two different ceramic
regions, the bridge region (BR) and the joint region (JR). In the
current configuration, the piezoelectric response is produced
in the bridge region while the joint region is piezoelectrically
inactive. In most practical honeycomb structures, the effect
of JR is relatively small since the ceramic fraction in a
honeycomb structure, which determines the relative weight
of JR in the structure, is not very high. For cxample, even
at a ceramic volume fraction of 40%, the ratio between the
BR and JR is less than 15%. That is, 85% of the ceramic
is piezoelectrically active in this structure. In addition, as
the ceramic volume content decreases, the percentage of this
inactive region will decrease. In most practical applications,
the ceramic volume fraction lies below 40% and the relative
weight of the JR will be correspondingly small.

Clearly, the responses of the two regions, i.e., JR and BR,
to external stresses are different. In order to determine the
stress and strain distributions in these two regions, depending
on the manner in which the two regions are connected, either
isostrain or isostress approximation is used. That is, in the
z-direction the strain in JR is equal to that in BR (isostrain
approximation). In the - and y-dircctions, the stresses are
the same in JR and BR (isostress approximation). The error
associated with those approximations is small if L is much
larger than 7, and a is much larger than £, respectively (see
Fig. 1) [9]. For any practical device, Ly and Lo are much
larger than 7. Under these approximations, we can write down
the constitutive relations in a TP honeycomb structure. The
constitutive relations in the BR are

Sigr = s11T1 + s12Tepr (2a)
Sy = 51271 + s11Topr (2b)
in JR, the constitutive rclations are
Sur = (s11 + s12)T1 + s12T2R (3a)
So = 2812 + suTon (3b)

where Sipr, S1ir, and Sy are the strain compbnents in the |-
and 2-directions, respectively, s;; are the elastic compliance,
and 7} are the stress components in the ceramic plate. The
subscripts BR and JR denote the bridge region and joint region,
respectively. The local coordinate system is used in (2) and
(3). In writing (2) and (3), the possible clamping effect of the
end caps is omitted since the Young’s modulus of the end
caps used in our experiment is much smaller than that of the
ceramic. The force balance condition in the z-direction yields

20aTopp + 127"3_111 = 1'2]). 4)

Typr can be found by solving (2), (3), and (4),

1 512
Tonp = pf = + —22 5
]-BR P(V+ .91](2—I))> ( )

where v = b (2 — b) is the volume content of the ceramic in
the honeycomb structure.
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Fig. 2. Model results of the effective d;, and d;, ¢y, as a function of the
ceramic volume content for an end-capped TP honeycomb structure made of
PZT-5H ceramic. The dimensions are: L = 1 ¢m and ¢ = 0.125 cm.

In this paper, the effective piezoclectric responsc for this
structure is defined as if the honeycomb is a ceramic block
which is electroded on the faces perpendicular to the z2-
direction. The effective hydrostatic piezoelectric coefficient
dr, under this definition, is

2Lad31

deﬂ' =
h 1,21)

(T1 + T2pr) ©
where L is the composite thickness (Fig. 1) and dg; is the
transverse piezoelectric cocfficient of the ceramic material. In
(6), 2Lad3; (Ty + Tspr) is the total charge oulput from one
unit cell under hydrostatic pressure p and 72 is the unit cell arca

in the z-direction. Using (1) and (5), (6) can be converted to

2LG(131 1 1 $12
Ao 2. 7
T2 <b+u+311(2—b) M

dif =
Similarly, the effective piezoclectric hydrostatic figure of
merit dngn can be derived as

512

2
- 311(2-1)))

where €33 is the dielectric permittivity of the ceramic. In other
words, the effective piezoelectric d;, coefficient is defined as
the charge output per unit area in the x—y plane (L;Ly) and
the effective g coefficient as the ratio of voltage output to
the composite thickness L when the composite is subjected to
unit hydrostatic pressure.

In Fig. 2, the calculated effective piczoelectric response is
shown for a honeycomb structure made of PZT-SH (PZT-
SH is the trademark of Morgan Matroc, Inc. for onc of
its piezoceramics; the paramecters are: dzy = 593 (pC/IN),
d31 = =274, s;; = 0.165 (10_10 n12/N), s33 = 0.207, sy2 =
—0.048, 533 = —0.085, €33 = 3400¢g) ceramic with L = 1
cm, a¢ = 0.125 cm as a function of v, the volume content of
the ceramic phase [10]. A honeycomb structure with v = (.3
can easily be fabricated by extrusion, and as shown in Fig.
2, an effective |dy| of higher than 30000 pC/N and effective

26(1-0)d3, (1 1
dcﬁ' eff _ 31 2 -
h 9h e \D + y
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dngs, higher than 50000 * 10715 m2/N can be obtained for this
structure. On the other hand, duc to the very high capacitance
of this structure, the cffective gy, is relatively small. Hence,
the structure is an cxcellent transmitler and actuator, but not
an idecul voltage scnsor. However, for an electromechanical
transducer, the most important factor is the clectromechanical
coupling factor, and in the hydrostatic application, it is &7 =
diugn/sn, where s, = (2511 + s33) + (2812 + dsyg) is
the hydrostatic elastic compliance [11]. Clearly, a large djgs
is required for a structurc to have a large k). It should
be pointed out that although the physical basis for such
a high piezoelectric responsc of a TP honcycomb structure
is quite similar to that of a radially poled and end-capped
cylinder [12], the TP honecycomb structurc can provide a
much higher piczoelectric hydrostatic scnsitivity than that
produced by the end-capped radially poled cylinders, because
in this honeycomb structure the piczoclectric responses [rom
all three-directions, the z-, y-, and z-directions, are utilized
while in the end-capped cylinder, most of the responsc is from
the axial direction.

B. Honeycomb Ceramic-Polymer Composite

By cmbedding a piczoceramic honcycomb structure in a
polymer matrix, it is expected that the mechanical integrity,
reliability, and shock resistance can be improved, and if a
proper polymer is used, the piczoclectric response will not be
reduced. To analyze the hydrostatic responsc of this composite
structure, we divide the composite into three regions: the
polymer rcgion, the ceramic bridge region, and the ceramic
joint region. Because of the presence of the polymer matrix,
the stress Ty, [sec Fig. 1(b)] is no longer zcro and its value
depends on the clastic properties of the polymer matrix and
the dimensions of the honeycomb unit cell, especially the ratio
afL.

The constitutive rclations in the bridge region arc

Sipr = suT1 + s13Tw + s12T2pr (8a)
So = 81211 + s13Tw + sulopr (8b)
Sapr = $33Tw + 51371 + s1372pR- (8¢c)
In the joint region, we have

Sur = (s11 4 812)T1 + s1272u1 (92)
Sy = s oy + 25121} (9b)

And in the polymer region, we have
SP = (Si,l + 511‘2):[‘10 + 3'1121:2,’ (l()d)
Sy = 1,1V + 257, T (10b)

where the superscript p refers to the polymer matrix. Other
notations are the same as in Scction 1I-A. The local coordinale
system is uscd for the ceramic. For the polymer region, the
coordinate system has the 2-axis in parallel to the z-axis
of the honeycomb composite, and the 1- and 3-axcs in the
planc perpendicular to that. In (8). (9), and (10), the isostrain
approximation in the z-dircction (S is the same in the three
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regions) and isostress approximation in the - and y-directions
were used.

The force balance conditions in the z- and z-directions lead
to

(=0T, +VTh =p
(1= b)2T? + 2b(1 = b)Topgr + b*Tayn = p.

(11a)
(11b)

Here, the composite is subjected to hydrostatic pressure p. The
isostrain condition in the x-direction yields

(% - 1>5mn + Sunr = (% - 1)5{' + Sspr. (12)
These are the basic equations for the piczoelectric and elastic
responses of the composite, which contain 10 unknowns. By
eliminating the strain components in the above equations, we
get five lincar equations for the stress components in the
composite where bl = ,—1,— 1, as shown in (13) at the bottom of
the page. These stress components are easily evaluated using
the matrix method. The effective hydrostatic piezoclectric
coefficient, therefore, is

2L
dift = 1_2: (ds1 [Ty + Topr] + dssTo) (14)
and the hydrostatic figure of merit is
. 20(1 = b .
af i = 2O 1y (13 4 Tan] + da )% (15)

€33p

Here again, the definitions of the effective d;, and g, are the
same as those introduced in the previous section.

Shown in Fig. 3 are the results calculated from (14) and (15)
for honeycomb composites made of PZT-5H piezoceramic
with different polymer matrices. The curve 3 is for a composite
with a Spurrs epoxy matrix (Young’s modulus Y = 4.8 x 10°
Pa and Poisson’s ratio 7 = 0.364) [ 10]. The curves | and 2 are
for composites with a polymer matrix having ¥ = 4.8%107 Pa
and Y = 4.8+ 108 Pa, respectively. All have Poisson’s ratio
o = 0.364. As expected, as Young's modulus of the polymer
matrix decreases, the d;, value of a composite approaches that
of an cnd-capped honeycomb which is the upper limit for the
composite. In Fig. 4(a), the effect of the polymer compliance
on dj, is shown explicitly for a honeycomb composite with
20% ceramic content. In both Figs. 3 and 4, L. = 1 cm and
a = 0.125 mm were used in the calculation. Fig. 4(a) shows
that as the compliance ol the polymer matrix is increased
above 1075 m?/N. the effect of the compliance of the polymer
matrix becomes negligible. For example, the relative difference
in d), between a composite with s = 107* m?/N and the end-
capped honeycomb structure (s7; — co) is less than 4%. To
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Fig. 3. Model results of the effect of polymer Young’s modulus on the
effective dj, and dy, g, of a TP honeycomb composite, where curve | is for
a composite with a polymer matrix of ¥ = 1.8 * 107 Pa, curve 2 for a
polymer matrix of Y = 1.8 = 10 Pa, and curve 3 for a polymer matrix of
Y = 4.8 % 10" Pa (Spurrs epoxy). All have the Poisson’s ratio @ = 0.361.
The piezoceramic is PZT-5H.

illustrate this more clearly, in Fig. 4(b), the d), values from
Fig. 4(a) arc plotted against the Young's modulus (}7) of the
polymer matrix, and the result is a nearly linear relationship
between dj, and Y. The d, value at ¥ = 0 1s =50200 pC/N.

The influence of the Poisson’s ratio o of the polymer matrix
on d;, of a honcycomb composite can also be evaluated, and
plotted in Fig. 5 arc the results from (14) and (15) for a
composite of 20% ceramic content and the polymer matrix
with the compliance sy; = 107 m?/N. Apparently, o does
not alfect d;, very much until it is close to 0.5. This is in strong
contrast with 1-3 and 2-2 composites where the Poisson’s ratio
of the polymer matrix has a strong influence on the hydrostatic
performance of the composites. The reason for this difference
is that unlike 1-3 and 2-2 composites, the ceramic frame in a
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Fig. 4. Model results of the effect of polymer clastic compliance (a) or
Young's modulus (b) on the effective ), of a TP honeycomb composite with
20% ceramic volume fraction. The Poisson’s ratio @ of the polymer is fixed
at 0.364 and the ceramic i1s PZT-5H.
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honeycomb composite forms a 3-D structure which bears the
stresses in all three directions, i.c., the x-, y-, and z-directions,
and the polymer phase, due to its low clastic constant, will not
affect the stress pattern in the - and y-directions. Only when
the Poisson’s ratio of the polymer phase approaches 0.5, which
implics the bulk modulus will approach infinity [13], will the
polymer phase substantially reduce the effective stress applicd
on the ceramic and the effective hydrostatic response of the
composite.

III. EXPERIMENTAL RESULTS

The honeycomb ceramics used in this study were made by
Dr. Lochman of Corning, Inc., using the extrusion technique
and specially designed dics. The composition of the matcrial
is close to that of PZT-4. The original shape of the honeycomb
ceramic is a long cylinder of 1.5 cm diameter. The samples
were cut into pieces about 1 cm length with nearly square cross
sections, as illustrated in Fig. 6. The dimensions of the square
unit cell are: ¢ = 0.125 % 0.004 cm and ¢ = 0.22 £ 0.03 mm.
The ceramic volume content, therefore, is 27.7%. There are
small variations in the value of « and ¢ across a sample. The
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Fig. 5. Model results of the effect of polymer Poisson’s ratio on the effective

dp and dy, gy, of a TP honeycomb composite with 20% ceramic volume. The
clastic compliance of the polymer matix is fixed at 107" m*/N and the
ceramic is PZT-5H.

samples were clectroded with electroless nickel. The clectric
conncction was provided by gluing thin copper wires to cach
cell using conductive epoxy. The samples were then poled
wilth a ficld of about 40 kV/em at a temperature of about
60°C for five minutes. Three samplcs were [abricated and
tested. The parameters of the samples arc listed in Table 1.
The piezoelectric dyy and dy; cocflicients of the material were
measured using a laser dilatometer on a small ceramic plate cut
from a poled honcycomb sample. The average dyy = 110 pC/N
and dy; = —40 pC/N (the dg3 cocfficicnt was also measured
by a dz3 meter). Two honcycomb samples were made in the
cnd-capped form by placing thin laycers of cpoxy (JB KWIK)
(JB KWIK is the trademark of JB Welb Co., TX) over the two
cnds to block all the openings. One sample was made in the
composite form with the polymer matrix made of polyurcthanc
(Miles Inc., PA) mixcd with 50% volume microballoon.

The effective hydrostatic piczoclectric o), cocflicient of TP
honcycomb composites was cvaluated by a standard compari-
son method: A composite and a standard sample with known
d;, were placed in a high pressure oil chamber and subjected
1o a low frequency ac (50 Hz) hydrostatic pressure. The charge
outputs of the composite and the standard sample under the ac
pressure werc measurcd and were used to calculate dy, of the
composite when the arcas of the composite and the standard
arc known. From the measurcd d;, value and the ellective
dielectric constant of the composite, g, as well as dy,g), were
obtained.

Shown in Fig. 7 arc the test results of dy, and dy,g), for
these samples where the abscissa s the de bias hydrostatic
pressure. There were no observable changes of d), as the
samples went through pressure cycles, except for data scatler.
The comparison between the experimental and theoretical dj,
valucs is made and listed in Table 1. The clastic constants for
the piczoccramic used in the calculation are those of PZT-4
(PZT-4 is the trademark of Morgan Matroc, Inc., OH: 51y =
0.123 (10719 m*N), sy3 = 0.155, 812 = —0.011, 53 =
—0.053. The clastic constants for the matrix are: s;; = 5.0
(1078 m%/N), ¢ = 0.364). Considering the simplicity of the
model, the agreement between the experimental results and
model calculations is quite good. The discrepancy between
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Fig. 6. (a) The clectric connection pattern for the honeycomb structure where
all the cells of "+ are connected together and the cells of *=" are connected
together. The thick lines on the walls of the cells indicate the electrodes. (b)
Photograph showing the honeycomb structure used in the experiment, where
the numbers on the meter are in centimeters.

the two is mainly caused by the finite size of a honeycomb
structure. That is, in a finite honeycomb structure, there are
ceramic walls (bridge regions) in the periphery that are in
direct contact with the external pressure source. In these

regions, even in the end-capped configuration, 75, is no longer

zero and can be close to p. Hencee, the effective hydrostatic
responses in these cells will be reduced. In the honeycomb
samples tested, about 20% of the bridge regions arc in the
periphery, and hence are subject to the external pressure, which
reduces the o), value since the analytical model does not take
these effects into account. The variation of the wall thickness
in thesc samples could result in imperfect poling in the thick
wall regions, and consequently a lower matertal piczoclectric
activity, which is another possible reason for the discrepaney
between the model predictions and experimental results, Even
so, the hydrostatic response [rom those test samples is quite
high considering the fact that the material has oy = —40 pC/N
and diy = 110 pC/N. With improved materials, the elfective

TABLE L
PARAMETERS ASD REstors ot TP Hoxeyconie Saaweeds Tesien

Configuration  &/co  Licm) Lz (cm) L (ecm) dy (pC/N) (exp)  dp (Theory)
1 End-capped 520 1.29 1.44 1.326  -4.700 - 6,200
i End-capped 500 LIS L2 1237 -4.200 - 5,784
m Polyurethane 570 1.1 1t 1.2 - 4,666 - 5.636
with microballoon matrix
{
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Fig. 7. Experimental results of effective g, and g, gy, of the TP honeycomb

) sample Tand (h) sample 11 Both sinples are in the end-capped configu-
ration (see Table 1), The solid and open circles are the experimental results,
Solid lines connecting the data points are drawn to guide the eye. Arrows
on the solid lines indicate the experimental path (increasing and decreasing
pressure).

piezaclectric response of a TP honeycomb transducer can be
signiflicantly higher, as predicted ‘in Section 1.

For sample 11 which has a polymer matrix of polyurethane
mixed with 50% volume microballoons, the theoretical pre-
dicted o), value using (13) is the same as that caleulated for
an end-capped structure since the Young's modulus of the
polymer matrix is very low. The experimental ), value is close
to the model value, which demonstrates that a TP honeycomb
composite with soft polymer matrix can vield the same level
of hydrostatic response as that ol an end-capped honeycomb
structure.

Henee. the experimental results contirm the prediction of the
analvtical model and show that a TP honeycomb composite
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can provide substantially higher hydrostatic responses than
most of the composites developed previously.

1V. CONCLUSION

A new piczoclectric composite transducer based on the
ceramic honcycomb structure has been introduced and its hy-
drostatic piczoclectric performance was modeled analytically.
The transducer is operated in the wansverse piczoclectric dy;
mode. The honeycomb configuration cnablcs onc to fabricate
a TP honcycomb transducer by cither embedding a honcy-
comb ceramic skeleton into a soft polymer matrix to form a
composite or blocking the openings of the honeycomb cells
with thin layers of cpoxy to form an end-capped honeycomb
structure. With the unique honeycomb configuration and TP
opcration mode, the piczocleetric dyy responsc of the ceramic
is ncarly climinated and the piczoclectric responses {rom the
threc orthogonal directions add together when the transducer
is subjected to a hydrostatic pressure. As a result, as predicted
by the analytical model and verificd by the experimentation,
the TP honcycomb transducer exhibits exceptionally high
hydrostatic responses such as o, and d,g,.
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A New Transverse Piezoelectric
Mode 2-2 Piezocomposite for
Underwater Transducer Applications

Q. M. Zhang, J. Chen, H. Wang, J. Zhao, L. E. Cross, Fellow. IEEL, and M. C. Trottier

Abstract—1In this paper, we present a new type of 2-2 piezo-
clectric ceramic-polymer composite operated at the transverse
piezoelectric mode (TP). The new TP mode piezocomposite has
exceptionally high hydrostatic piezocleetric response, high reli-
ability, and can be made at low cost. Based on the isostrain
approximation, an analytical model is developed to analyze and
oplimize the effective piezoelectric and the ceffective clastic prop-
ertics of the composite, Several composites with the new structure
were fabricated and tested. The calculated and experimental
results show good agreement. It is shown that a TP 2-2 composite
made of PZT plates in a soft polymer matrix with clastically uni-
directional Tace plates yields an cffective hydrostatic piezoclectric
coefficient 1, of 6,000 (pC/N) and a hydrostatic figure of merit
dign, higher than 30,000 (107"° m*/N).

1. INTRODUCTION

HE GROWING market of ferroclectric sensors, actuators,

and transducers demands a continuous improvement on
the performance of the underlying materials. With single phase
piczoclectric materials, however, it becomes increasingly dif-
ficult to considerably improve the material propertics, such
as, piezoelectric coefficients, acoustic impedance and material
density. On the other hand, many compositc materials, which
incorporate several constituent phases with complcmentary
properties, are offering many unique and attractive features.
For example, in hydrostatic and medical imaging applications,
piezoceramic polymer composites with the 1-3 connectivity
pattern exhibit low density, high hydrostatic piczoelectric
response, high electromechanical coupling factor, and better
acoustic impedance matching, etc. [1], [2]. However, for
many emerging applications, such as, large area acoustic
projectors and adaptive materials for fluid borne noise control,
in order to generate high radiation power at a wide frequency
band a transducer is required to generate a large surface
displacement while operated with a moderate driving voltage.
And apparently, a conventional 1-3 composite cannot mect
these requircments. In spite of the fact that the material has a
relatively high hydrostatic piezoclectric figure of merit dygn.
its piezoelectric dy, coefficient is limited by the longitudinal
piezoelectric strain coefficient d3 of the ceramic phase. While
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increasing the composile thickness will increase the surface
displacement, the escalated clectric impedance with thickness
and limited improvement accomplished by this method clearly
disfavor this approach. In addition, for deep water appli-
cations. the loading pressurc is against the poling dircction
of piczoccramic rods in a [-3 composite. Due to the stress
amplification in a piczocomposite [3]. this pressure induced
depolarization cffect can become severe in composite with
low piczoccramic content, which is often a prelerred choice
in order to yield a high hydrostatic piczoclectric figure of
merit. Consequently, the performance of a composite degrades,
causing reliability problem in the transducer.

To overcome these problems, recently we have designed and
developed a 1-3 tubular composite operated in the transverse
piezoclectric dy; mode {4, [5). The 1-3 tubular composite
has exhibited an cxceptionally high effective piczoelectric
cocfficient dy,, the hydrostatic figure of merit dy g, and has
littic problem of the depoling from the high loading pressure.
The one possible drawback of this composite is that with
the current technology the manufacture cost is rclatively
high. Following the similar linc of operation ol 1-3 wbular
composiles, in this paper, we shall present a new composite—a
transverse piezoclectric dy; mode 2-2 piczocomposite, which
posscsses most of the advantages of a 1-3 tubular composite.
Morcover, it can be made with lower manufacture cost and
simpler fabrication process.

As had been introduced carlier by Newnham et al., piczo-
composites can be classificd into different categorics bascd on
the connectivity pattern of the constituents, which determines
the effective material properties of a composite [6]. However,
even within the same conncctivily pattern, piczocomposites
can be operated in different piczoelectric modes, i.c., longitu-
dinal piczoelectric mode (LP), transversc piczoelectric mode
(TP), and shear piczoclectric mode (SP) or even in mixed
modes. Apparently, the response behavior of a piczocomposite
is quite different when operated in different piczoclectric
modes. To distinguish this difference, it is necessary o specify
the operation mode besides the conneclivity for a composite.
With this spirit, the new 2-2 piczocomposite is named as a
TP 2-2 compositc. For the sake of simplicity. in this paper,
the piczocomposites operated in LP modc will just be referred
to their connectivity pattern without specifying their opcration
mode.

In this paper, we shall present the theoretical analysis of
the response behavior of this new composite and the key

0885-3010/95%04.00 © 1995 IEEE
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Fig. 1. (a) Schematic drawing of a TP 2-2 piezocomposite. (b) The local
coordinatc system for piezoceramic plate, it is different from that for the
' composite in (a).

parameters in the design process, clucidate the differences
between a TP 2-2 composite and 1-3, 2-2 piezocomposiles,
and demonstrate its superior performance.

II. DESIGN DETAILS

A schematical drawing of a TP 2-2 piezocomposite is shown
in Fig. 1, where the piezoceramic thin plates form a parallel
array and are embedded in a soft polymer matrix. The ceramic
plates are electroded over the side faces with the polarization
direction parallel to the acoustic radiation plane, as shown in
the figure. Therefore, the action of the composite is through
the transverse piezoelectric dy; mode of the ceramic plates.
Although the magnitude of dy; of a piezoceramic is smaller
than that of the longitudinal coefficient dy3, as will be shown
later, the large ratio of L/{ in a composite introduces an
amplification factor and as a result, the effective 3y coefficient
of a TP 2-2 composite can be much higher than dgy coefficient
of the piezoceramic. Consequently, the new piezocomposite
can generale much higher acoustic power than the 1-3 rod
composite.

The theoretical analysis developed in this paper is based on
the so-called isostrain approximation. Hence, the results de-
rived represent the upper limit of the piczoclectric response of
a composite. However, for a 2-2 composite properly designed,
the stress transfer between the ceramic plates and polymer

matrix is close to that predicted by the isostrain model {7].
Furthermore, in most practical cases. the unidirectional face
plates will be used for TP 2-2 composites. which will improve
the stress transfer between the ceramic plates and polymer
matrix to the level of the isostrain model.

Due to the special arrangement of the piezoceramic plates in
a TP 2-2 composite, two coordinate systems will be employed
in the analysis: one is attached to the composite structure as
shown in Fig. I(a) where the Y-axis is along the ceramic
poling direction, and the subscripts for all the effective co-
cfficients of a composite are based on this coordinate system;
the other, shown in Fig. 1(b), is attached to the ceramic
plate (the local coordinate system) and to conform with the
convention, the z-axis is along the ceramic poling direction.
The parameters of the piczoceramic plates are labeled with
respect 1o this local coordinate system and they will be
specified by the superscript ¢. All the other parameters used
in the analysis will be labeled with the composite coordinate
system. The superscripts p and ep are used for the parameters
of the polymer phase and the effective parameters of the
composite, respectively.

Analysis of the Responses of TP 2-2 Piezocomposite

The constitutive relations in the piezoceramic plate can be
expressed as:

ST =0\ TF + T3 + s3T5+ d5, B ()
S5 = 80317 + 13Ty + s5:. T + dia B3 (1b)
3 =dyy Ty +dgy Ty + dy T + €53 B3 (le)

where S; and T; arc the strain and stress components in the
ceramic plate, s,; are the elastic compliance, I = V/i is
the electric field along the ceramic poling direction generated
by the total applied voltage V over the thickness £ of the
ceramic plate, €33 is the diclectric permitivity, and d;; are
the piezoclectric coefficients, all are for the ceramic plate
(see Fig. 1(b)). For a polarized ceramic, which point group
symmetry is com, the equation for S5 is similar to that of SY.

The constitutive equations for the polymer matrix are similar
to those of the ceramic except that all the parameters in (1)
are replaced by those of the polymer phase.

For a composite material, at the long wavelength limit,
the elfective parameters can be introduced to describe the
responses when it is subjected to an external electric field
and/or stress field. By utilizing these effective parameters, the
constitutive equations for a composite can be expressed as:

S;l‘ = Srl‘lz”Tl + .S’:_;Z:FQ -+ S(I'I-;’]‘J + (]:;IZ,E'} (221)
SgP = 8Ty + STy + sETy + dh By (2b)
DY = ATy + dshTy + dhTs + €5 oy (2¢)

where T; are the external stresses applied on the composite,
which can be quite different from those in either the ceramic
or polymer phase (77 and 77), 2y = V/L is different from
v5 in (1), where L is the thickness of the composite. The

sirydiY, and ey are the effective coefficients of the composite.
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Due to the symmetry of the composite, the equation for Sy is
similar to that of S57. In writing down (2), a TP 2-2 composite
is regarded as an cffective piczoclectric medium with the
electrode areas in perpendicular to the z-axis (Fig. 1(a)).

To evaluate the cffective material parameters for a compos-
ite, the following approximations will be employed:

1) The strains in the polymer phase and ceramic phase arc
equal in the z-direction and in the z-dircction, that is,
S5P = S5 =S4 and S{P = S7 = 57, this is the isostrain
approximation.

2) The stresses in the y-direction in the polymer phase and
ceramic phase arc equal, which is derived from the static
force balance condition.

3) The stresses in thc z- and x-dircctions are related
through T3 = vT5+(1-v)1% and Ty = vT{+(1-v)17,
where v is the volume content of the ceramic phase in
the composite. For the quantities in the ccramic phase,
local coordinate system is used.

Except otherwise specified, the -, y-, and z-dircctions in the
derivations and discussions through out the paper arc referred
to those of the composite (Fig. 1(a)).

With the constitutive equations and the above conditions, the
effective cocfficients for a TP 2-2 composite can be derived.
For example, the effective piczoclectric cocllicients are:

cp_ o (1 — ()‘l,)sll’] £_‘_’_
3 A —v) (1 -0)s§, +v(l—0,)sty ) ¢
1= v)(shy = s%2)-
dclr = 2dc~ ( 12 12 lr-
32 { 1 -v)(1 = 0.)s§, +v(l = 0,)sh, +
Ly

4
cp _ J°r
d31 _d33

(3a)

(3b)
(3¢)

where g, and o, arc the Poisson’s ratio of the polymer and
ceramic phases, respectively. If s}, > s{,, (3a) can be reduced
to

&5 = d, @

L
t
Equation (4) indicates that in a TP 2-2 composite with a large
ratio of L/t,d33 can be significantly larger than d§3. The
amplification factor L/t is similar to that in the TP 1-3 tubular
composite {4], [5], which is one of the advantages of this type
of composite structure.

The effective elastic compliances of a TP 2-2 composite,
thus derived, are

P P o P . P
cp _ (591812 + 5715%2)A12 — 571571 A2z = sTas1p4n1
3=

A2, — ApAx
c P P oC ) I Y S |

§P = (852509 + 811859) A1z — 87587, A2z 892812411

137 2
Al - AnAn

cp _ P
$11 = 833

2v(1 - U)[(5§3)2 - (3'1)2)2]
A+ Agg
(1 —v)(s5; + 553)(553 = sTo)
An+ A

sgp = (1= v)shy + vs33 —

®)

S12 =813~

where

/1”- =(1- ’u).s",fj + 'u.s'f.'j: ivj =123
From the definition o), = day + dyy + dyo, the clicctive
hydrostatic piczoelectric coclficient ol a TP 2-2 composite
can be obtained
dy’ =< 2y, - + .
h 3 (1 =) = ae)sy, + ol —a,)sh) 33
Luv

. - (0)

(L= ap)st) + (1 =0)(sh, — s1y)

By tuking a TP 2-2 composite as a parallel plate capacitor
with the clectrodes perpendicular to the z-axis, the elfective
diclectric constant of the composite is obtained,

. 2
eqvl
cp 33
€y =" 7

The elfcctive hydrostatic figure of merit dy, gy, 1s
) ) - 2
(1= a,)shy + (1= o)(shy, = s1))
(1= 0)(1 = ac)siy +o(l —a,)s1,
v

S (8)
€33

epoep o - o e
gy = [’133 + 2dy,

Equations (6) and (8) reveal that under the isostrain approx-
imation, dj” depends lincarly on the ratio of L/t while the
figurc of merit dj”g)” is independent of L/t. This is caused
by the effective diclectric constant of a TP 2-2 composite,
which is proportional to L2/t% as seen in (7) and cancels the
L/t dependence in d)"g;".

Shown in Fig. 2 are the hydrostatic piczoclectric responses
of a TP 2-2 compositc as a function of the ccramic volume
content in a composite, calculated using (6) and (8). The
parametcrs for the piczoclectric phasc are those of PZT-5H.
To compare the effcct of the Young's modulus of the polymer
matrix on the response behavior, two sets ol parameters are
used for the polymer matrix, which arc listed in Table 1. In
the calculation, L/t = 20 is used since it is a typical value
for piezoelectric plates commercially availuble and suitable
for the composite, which, in general, corresponds to a ccramic
platc with L = 1 cm and ¢t = 0.5 mm. The results indicate
that a TP 2-2 composite has the potential to yicld very high
hydrostatic piczoclectric responsc and apparently, increasing
the ratio of L/t can significantly increase the hydrostatic dy
coefficient. Fig. 2 also reveals that at high ccramic volume
contents, the effective dj, for a TP 2-2 composite gocs through
zero. This is the result of increased influcnce of piezoccramic
ds3 on the hydrostatic response of a TP 2-2 composite as the
ceramic volume content increases. It is clear from (06) that as
the ceramic volume content v approaches 100%, the effcctive
dp, for a TP 2-2 composite will approach dj, L/1, where dj is
the hydrostatic piczoclectric coefficient of the ceramic and is
positive. Therefore, to achicve high hydrostatic piczoelectric
responses, a low ceramic volume content is preferred for a TP
2-2 composite.

One major concern in design a piczoceramic polymer coni-
posite for hydrostatic applications is the Poisson’s ratio effect
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Fig. 2. The piezoelectric hydrostatic responses of TP 2-2 composites as
a function of the volume content of the ceramic phase. L/t =20 is used
in the calculation. To illustrate the effect of the polymer elastic properties
on the composite performance, two polymers with different compliances are
evaluated: (a) PZT-5H and Spurrs epoxy matrix and (b) PZT-5H and polymer
11 as the polymer matrix (see Table I).

TABLE 1
THE PARAMETERS USED IN THE THEORETICAL CALCULATION

PZT-SH:  dy3 = 593 (pC/N), d3g= 274, 51, = 0.165 (1010 m2/N), s33 = 0.207,
$12 =-0.048, 513 =- 0.085, €33 = 3400 g
Polymer I (Spurrs epoxy): sq3 =2.0 (10-10m2/N), 0 =0.36

Polymer 11 511 =2.0(109 m¥N), =036

* ggis the vacuum permittivity; PZT-5H is the trademark of Morgan Matric Inc, Vernitron Div.

(Bedford, Oll); Spurrs epoxy is the trademark of Polysciences, Inc. (Warrington, PA).

of the polymer matrix [2], 3], (8]. For example, even though
a TP 1-3 tubular composite can yield very high hydrostatic
piezoelectric response, its performance is very sensitive to the
Poisson’s ratio of the polymer matrix. For 1-3 rod composites,
the Poisson’s ratio of the polymer matrix also plays an very im-
portant role. Since the key factor determining the performance
of a piezocomposite is the effective stress transfer between the
polymer matrix and the ceramic phase, in composites with 1-3
connectivity pattern, the Poisson’s ratio effect of the polymer
matrix cuts down the effective transferable stress between the
two phases by a factor of (1 — 2¢) where o is the Poisson’s
ratio of the polymer matrix and results in a poor performance
of a composite if o is large. On the other hand, for a TP 2-
2 composite, the ceramic plates can be viewed as equivalent
1o the laterally reinforcing fiber glass employed in the earlier
works of 1-3 composites to reduced the Poisson’s ratio effect

80000 12000
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410000
Z 60000}
o~ - —
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b (5}
‘o 40000F {6000 &
- £
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& {4000 ¢
<20000¢
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Fig. 3. The effect of Poisson's ratio on the hydrostatic responses of TP 2-2
composites. L/t = 20 is used in the calculation and the ceramic volume con-
tent is 15%. (a) PZT-5H and a polymer matrix with s3; = 2,08 (10~ m?/N)
and (b) PZT-5H and a polymer matrix with sy; = 2.08 (10712 m?/N).

of the polymer matrix {8]. Due to this differcnce, it is expected
that the Poisson’s ratio of the polymer phase will have a
less effect here than that in 1-3 composites. Shown in Fig. 3
are the dependence of the hydrostatic piezoelectric response
of TP 2-2 composites on the Poisson’s ratio of the polymer
matrix as calculated from (6) and (8). In comparison with -3
composites, the effect of the polymer Poisson’s ratio is less
severe albeit it is still significant. In general, for a TP 2-2
composite, the larger the volume content of the ceramic phase
is, the less the polymer Poisson’s ratio effect will be. The
Poisson’s ratio effect can also be reduced if a polymer matrix
with a larger Young’s modulus is used.

The dependence of the hydrostatic piezoelectric responses
on the Young's modulus of the polymer matrix is also ex-
amined and the analytical results are presented in Fig. 4.
Generally speaking, in order to raise the hydrostatic piezoelec-
tric response of a composite, a polymer matrix with a smaller
Young's modulus is preferred. On the other hand, as shown
in Fig. 4, the piezoelectric responses of a composite increase
with the compliance (reciprocal of the Young’s modulus) of
the polymer matrix only in a certain range. Further increasing
the compliance does not affect the sensitivity of a composite
significantly. In addition, the mechanical integrity of a com-
posite will be reduced if the Young’s modulus of the polymer
is too small. In practical design of a TP 2-2 composite, these
factors have to be considered and balanced.




778 ILEE TRANSACTIONS ON ULTRASONICS, FERROELLECTRICS, AND FREQUENCY CONTROL, VOL. 42, NO. 4, JULY 1995

10000 5000

~ 8000
<
6000

4000

d,g, (10°'3m?/
- dn (PC/N)

2000

13500

3000
2500
2000

1500

- dn (pC/N)

1000

500

0 ad

15 20 25 30 35 48
5, (10779 m2/N)
b

Fig. 4. The cffect of the compliance of polymer matrix on the hydrostatic
responses of TP 2-2 composites. L/t =20 was used in the calculation. The
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Effects of Face Plate

The results derived above show that a TP 2-2 composite
exhibits much better hydrostatic performance over that of a 1-
3 composite [9]. However, the Poisson’s ratio of the polymer
phase still has a considerable effcct on the piczoclectric
response of the composite. Since in most cascs, the Poisson’s
ratio of a soft polymer is around 0.4, by reducing or climi-
nating this Poisson’s ratio cffect of the polymer matrix, the
hydrostatic responsc of a TP 2-2 composite can be improved
remarkably, as shown in Fig. 3. An cffective means to achieve
this is to incorporate stiff face plates into a composite structure,
a practice which has been used previously in 1-3 composites.
As has been demonstrated by several experimental studies, stiff
face plates can improve the stress transfer between the two
constituents and raise the hydrostatic piezoclectric responsc of
the composite structure considerably [10].

The function of the stiff face plate on a TP 2-2 composite
structure arc mainly two folds: onc is to improve the stress
transfer betwecn the two constituents, and the other is to clamp
the composite in the lateral dimensions {10]. The resuit of
the later cffect is to reduces or eliminates the Poisson’s ratio
effect of the polymer matrix and the piczoelectric d33 response
of the ceramic plates (6) and (8). For TP 2-2 composites
subjected to hydrostatic pressure, duc to the arrangement of the

piczoceramic plates, the piezoclectric responscs in both the -
and z-dircctions are utilized. Hencee, to the advantage of high
hydrostatic response of the composite, a face plate should be
specially designed so that the composite will only be clamped
in the y-dircction while the z-dircction is still free. In other
words, an idcal face plate used in a TP 2-2 composite should
be clastically unidirectional such that the Young’s modulus Y
of the face plate in the y-dircction is much larger than that
of the composite, while in the z-direction, it is much smaller
than that of the TP 2-2 composite, or more preciscly,

ELBY{{’ >Y), and V> %)';2" o)
where L and b arc the thicknesses of the composite and the
face plate, respectively. A factor of 2 is included in (9) to
account for the fact that therc arc two face plates for cach
composite as shown in Fig. 1.

In Fig. 5, the compliances (reciprocal of the Young’s mod-
ulus) of a TP 2-2 composite in both the x- and y-dircctions
calculaicd from (5) are presented. 1t can be scen that the
TP 2-2 configuration automatically makes Y7 larger than
Y,P. Therefore, (9) can be satisfied even for a face plate

with isotropic elastic properties. However, in most practical

situations, to makc the face plate effective, the quantitics on
left hand sides of the incqualities in (9) should be several times
of thosc on the right hand sides. If the difference between Y7
and Y,7 is not very large, an clastically anisotropic face plate
will be necessary.

The effective piczoclectric response of a TP 2-2 composite
with face plates can be analyzed using the similar procedurc as
that outlined in the preceding section. In order to simplify the
analysis, we assume that in a face plated TP 2-2 compositc,
the 2-2 composite can be treated as an effective medium with
the effective parameters derived in the preceding section. The
validity of this approximation has becn demonstrated in an
carlicr investigation |10]. In combination with the isostrain
approximation, the effective piczoclectric responsces and other
material propertics of a TP 2-2 composite with fuce plates,
then, can be analyzed. Due to the scope of this paper, we will
discuss only the situation when the composite is subjected to
a hydrostatic pressure p.

With the constraints of the face plates, the cffective stress
a TP 2-2 composite expericnces becomes

TP — (DI?BZ - D'Z?,Bl)p
! D%, — Dy1 Dy
ep _ (D12 — DuBz),)

T

2 D2, — D1 Dy,

' =p (10)
where T77,1 = 1,2,3, arc the stress tensor in a TP 2-2

composite under the constrain of face plates and p is the
hydrostatic pressure. The parameters D;j, B; arc

Dij=(L =)+l =12
Bi=(sh+slo) + (-l -sd) i=12
where .s{ is the clastic compliance of the face plate, and vy =

L/(L + 2b),b is the thickness of the face plate. The cffective
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Fig. 5. The effective compliance s;; and s92 of a TP 2-2 composite as (b)

a function of the ceramic volume content. (a) a TP 2-2 composite made of
PZT-5H in Spurrs epoxy matrix and (b) a TP 2-2 composite made of PZT-5H
and a polymer matrix with the Young's modulus = 0.96 (10" N/m?) and
Poisson's ratio = 0.364. Notice that in a TP 2-2 composite, s11 is always
fess than sa2. The effective Young’s modulus of a composite is the reciprocal
of the cffective compliance.

hydrostatic piezoelectric coefficient d;, can be obtained from

o _ TS+ dTTET 4 AT |
AP = ; (11)

where df}’ are those defined in (3). From (11), the hydrostatic
figure of merit dyg; for a face plated TP 2-2 composite can
also be evaluated.

In an ideal situation where the pressure in the y-direction
is totally born by the face plates so that 7,7 = 0 while in
the z-direction the face plates do not affect the stress in the
composite, that is, 7" = p, the hydrostatic responses of a TP
2-2 composite reaches their maximum values,

P (1
&P = (2d§1v = op) )&

s’fl(l—cr,,)-*-(l—v)sfl(l-ac) ¢
(12a)

8T (1 = op) 20

o ()Y
n I ( les'“(l—o,,)-}-(l-—v)s‘l'l(l—ac) €33
(12b)

In inequalities (9), this situation corresponds to that the quan-
tities on the left hand sides are much greater than those of the
right hand sides.

In Fig. 6, the hydrostatic responses calculated using (12) for
an ideal face plated TP 2-2 composite are presented. Appar-

Fig. 6. The effective piezoelectric hydrostatic responses of a TP 2-2 com-
posite with unidirectional face plates. (a) a TP 2-2 composite made of PZT-5H
and Spurrs epoxy; (b) a TP 2-2 composite made of PZT-5H and the polymer
1T (see Table I). To simplify the calculation, the elastic properties of the face
plate are assumed that in the inequality (9), the quantitics in the left hand
sides are much larger than those in the right hand sides so that 77" = p
and T;" =0.

ently, the unidirectional face plates considerably improve the
hydrostatic performance of a TP 2-2 composite in comparison
with that without face plates. A detailed investigation of the
effect of face plates on the hydrostatic performance of a TP 2-2
composite and other practical design issues will be presented
in another publication.

III. EXPERIMENTAL RESULTS

Aimed at verifying the concept of the new composite
material and demonstrating the potential of a TP 2-2 composite
as a high sensitivity hydrostatic 4ransducer material, several
TP 2-2 composites were fabricated with the ceramic volume
content ranging from 15-30%. The piezoceramic plates used
were PZT-500. The piezoelectric coefficients d33 and d3; of
the ceramic plates were measured using a laser dilatometer
and dj3 ranges from 410-440 pm/V and d3; from —188 to
—200 pm/V. The dielectric constant is about 2,250.

The hydrostatic piezoelectric dj, coefficient of TP 2-2 com-
posites was evaluated by a standard comparison method:
a composite and a standard sample with known d), were
placed in a high pressurc oil chamber and subjected to a
low frequency AC (50 Hz) hydrostatic pressure. The charge
outputs of the composite and the standard sample under the AC
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TABLE 11
THE PIEZOELECTRIC HYDROSTATIC PERFORMANCE OF TP 2-2 COMPOSITES
Sample A Sample B Sample C
Experiment Calculated E Calculated  Experiment calculated
dy (PC/N) 750 1,100 3.250 3,870 6,000 7,700
dhgn (10°15 m¥N) 1,100 2,366 10000 14,200 30,000 49,900
L(cm) 10 1.0 1.0
t (cm) 0.1 0.1 0.05
v (%) 25 25 15
Poly. Matrix Spurrs epoxy Polyusethanc with 50% same as Saniple B
volume microbalion
Face plates No Unidirectional plates samc as Sample B

b=0.15cm same as Samplc B

pressure were measured and were used to calculate d), of the
compositc when the areas of the composite and the standard
are known. From the measured dj, value and the effective
dielectric constant of the composite, g, as well as d;, g5, were
obtained.

In Table 11, the experimental results arc presented along with
the theoretical values calculated using the equations derived
in the preceding sections. The information on each sample is
also listed in the table. The results herc clearly demonstrated
that even with PZT-500 ceramic of which the piczoclectric
coefficients are about two thirds of those of PZT-5H, a TP 2-
2 composite can still yield very high hydrostatic piezoelectric
response in comparison with that of TP 1-3 tubular composites
[4]. It is expected that the piezoelectric hydrostatic response
of a TP 2-2 composite with PZT-5H piezoceramic plates will
be considerably higher than those in Table II. A detailed
experimental study on TP 2-2 composites will be carricd out
in the future.

The unidirectional face plates used in the sample B and
C were made from strips of glass reinforced polymer (GRP)
plates embedded in polyurethanc. Since the elastic properties
of the face plates are not well characterized, in the calculation
of dp, (12a) is used instead of the more general form of
(I1). From Table II, it can be secn that for samples B and
C, although the theoretical values of d), are higher than the
experimental ones, the difference is not significant considering
the simplicity of the model used in deriving (12). However,
for sample A, the theoretical d), value is much higher than
the experimental one which indicates that for a nonface plated
composite, the isostrain model may overestimate the cffective
piczoelectric response of a composite as onc would cxpect.
Nevertheless, the analytical analysis based on the isostrain
model still provides a valuable guidcline in preliminary design
of a composite. The theoretical g, value listed in Table 1I is
obtained by dividing the theoretical d, by the experimentally
measured effective diclectric permitivity of the composite.
Other parameters used in the calculation are listed in Table
1L

IV. SUMMARY

By employing a unique design of a 2-2 piczocomposite,
a new type of composite transducer material operated in

TABLE 111
SOME OF THE PARAMETERS USED IN THE THEORETICAL CALCULATION OF TABLE 11

P/T-500:  d33 = 425 (pC/N), dy1= 194, 515 = 0.154 (10-10 m¥N), 533 = 0.184,
512 =-0.054, s13=-007

Polyurcthane with 50% volumc microballon: sy = 5.0 (108 m¥N), © =0.36

* PZT-500 is the trademark of Piezo Kinctics Inc. (Belicfontc, PA).

TABLE IV
COMPARISON OF HYDROSTATIC PIEZOELECTRIC
RESPONSE AMONG SEVERAL COMPOSITES

Vol %  dy (pC/N) dpgn (1013 m2N)  Rel.

1-3 rod composite, end capped 25 265 20,000 1
1-3 wbular composite 25.6 9,862 10,195 4
2-2 composile 20 50 830 7
TP 2-2 composite, end capped 15 -6,000 30,000

transverse piezoclectric mode is introduced. Based on the
isostrain model, the design parameters of this composite arc
analyzed. Both experimental and theoretical results show that
this new composite can yicld exceptionally high hydrostatic
piczoelectric responsc. In Table IV, a comparison is madc
among 1-3 rod composite, 1-3 tubular composite, 2-2 com-
posite, and TP 2-2 composite. Apparently, TP 2-2 composilcs
possess exceptionally high d;, and djg,. In addition, the
simple 2-2 structure makes the compositc easy to be fabricated
with relatively low manufacture cost. The TP operation also
allows the composite to be used at high hydrostatic pressure
with little depoling effect.
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Effects of Face Plates on Surface Displacement
Profile in 2-2 Piezoelectric Composites

Wenwu Cao, Q. M. Zhang, J. Z. Zhao, and L. E. Cross, Fellow, IEEE

Abstract— A simple model is developed to describe the inho-
mogeneous surface deformation profile of face plated 2-2 type
piezocomposites. The contribution of face plate to the equilibrium
condition is approximated as from simple elastic bending of the
plate. Analytical solutions were obtained for the inhomogenous
surface displacement profile. From (hesc solutions one can predict
the variation of the nonuniform surface displacement in a 2-2
composite with respect to material and geometry parameters. It
is shown that the surface displacement uniformity depends on
several factors: the ceramic aspect ratio, the spacing between
ceramic plates, the thickness of face plate, the Young’s modulus of
the polymer and of the lace plate. The calculated results indicate
that stiffer face plates, softer polymer resin, and closer ceramic
spacing could make the piezocomposite transducers to have more
uniform surface displacement,

I. INTRODUCTION

NE of the key features of piezoelectric composites is

the stress transfer capability between the hard ceramic
and the soft polymer, which gives the composite a high
level of piezoclectric capabitity and at the same time, lowers
the effective acoustic impedance of the composile to make
it more suitable for underwater and medical applications
[1]-14]. The polymer phase can also reduce the Q-value of
the transducer (o suppress ringing. However, as reported in
our early works [5])-{7], the difference in elastic stiffness
between the two constituents in the composite causes surface
displacement to be nonuniform under external (electric or
elastic) fields. This nonuniformity reduces the efficiency of
stress transfer between the two constituents, hence degrading
the piezoelectric performance of the transducers, and causing
the physical properties of piezocomposites to depend on the
aspect ratio of the ceramic and their spacing. In some actuator
applications, such as short wavelength plane wave generators,
uniform surface displacement is preferred. According to our
previous analyses [5], more uniform surface displacement
requires the polymer to have large shear modulus but small
Young's modulus, which is difficult to achieve since the
Poisson’s ratio for most of the known materials is between
0.3-0.4. A common practice to overcome this problem is to
add stiff face plates to the composites. The question is how to
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Fig. 1. Schematic of a face plated 2-2 piezocomposite and the coordinate
system used in the calculations.

determine the proper thickness of the face plates and how to
choose the face plate material, considering the fact that face
plates are not piezoelectric, which effectively increases the
inactive volume of the composite. In addition, other properties,
such as the acoustic impedance, mechanical loss and structural
stability will all be affected by the addition of face plates.
It is therefore important to understand and evaluate the face
plate effects and try to optimize the selection of face plate
material and geometry for practical applications. In this paper
we extend the model of [5] by including the contribution of
the face plates in constructing the equilibrium condition at the
composite surface. Brass was used as the face plate material in
our calculations, but the procedure can be easily generalized
for face plates made of other materials. A comparison with
stainless steel and GRP (glass reinforced polymer) face plates
is briefly made.

II. THE MODEL

The 2-2 lamellar composite and the coordinate system used
in the calculations are given in Fig. 1, where z is the poling
direction, a and « are the width of the ceramic and polymer,
respectively. We choose the system with & > [, so that the
properties of the system may be considered to be independent
of y. The origin of the x-coordinate is set at the center of
one of the polymer plate. In a previous paper 5], a linear
model for the 2-2 composite without face plates was reported.
In that mode! we have assumed the strain component along
the z-direction 10 be constant for any given . Our recent
analysis using scries expansion for the displacement field [8]
and results from finite element analyses show that the strain

0885-3010/95504.00 © 1995 IEEE
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is quite uniform along z-direction except near the surface
region.

The addition of face plate not only reduces the surface
displaccment nonuniformity, but also forces the strain to be
more uniform inside the composite, making the constant z-
strain a better assumption. Based on this consideration, as a
first attempt to model the face plated composite, we extend our
previous work [5]. The equilibrium condition at the surface of
a 2-2 composite was given there; all we need to do here is to
add the contribution of the face plates. This is accomplished by
treating the face plate deformation as simple clastic bending
of a thin plate. The force density generated from the face plat
is Duyzz, [7], where u is the surface displacement in the 2-
direction, the subscript x represents derivative with respect to
the coordinate z, and D is the flexural rigidity of the face
plate,

Y/e3

T 12(1 - 0?) )
In (1) Y/ and o are, respectively, the Young’s modulus and
the Poisson’s ratio of the face plate, and 1 is the thickness of
the face plate.

The equilibrium condition at the composite surface z = [ /2
is simply the addition of the Du,,, term to the equilibrium
condition (7) of [5],

Duzrrz(z,1/2) + i—/t”uu(z, 1/2)

- %Y”u(a;,lﬂ) =0,

_d 4 2
2553 2)

!
Dttenee(,1/2) + Znuea(z, 1/2) - %Y;{g,u(:c, 1/2)
+ Yscg' d33E = 0,

d<x<d+ 3
2 2 T¢ )

where 1” and Y7 are the shear modulus and Young’s modulus
of the polymer, ;1 (= c44) and Y3 (= 1/s33) are the shear
modulus and Young’s modulus of the ceramic, respectively.
d3 is the piezoclectric constant of the ceramic, E is the
electric field along the poling direction, i.e., z-direction.

Equations (2) and (3) are the static equilibrium condition at
the surface of the composite, which can be solved analytically
to give the hyperbolic cosine solutions:

u(z,1/2) = Acosh (BPz), —d/2<x<d/2 “)
u(z,1/2) = Boosh | ¢ (L - %‘i)] + 2l
d << d +a ()

2 2

u($+n[a+d],l/2)=‘u(:L‘,l/2), n=1,2,3--- (6)

where

g = \/—//:" + \/l'zjl,"z + 128D0Y 1)1

8D @
—lp 20 4 128DY /I
/i":\/ I+ /12 + 128D, /1 ©)
8D

Equation (6) represents the periodic boundary condition of the
system. Here we have selccted the solution so that it recovers
the solution of [5] in the limit of 1 — 0. The coeflicients A
and I3 can be determined from the nonslip interface boundary
condition and the force balance condition al x = d/2 |5}

l
‘ 5(1331';

T )
ﬂ“ Yr . (t 173 {i
—_—— P — ., c__ N . [

v Yj}, sinh ([j 2) colh (ﬂ 2) + cosl (/j 2)
l
s dy k5
D= 2 (10)

Py

Py NAW AN Lo (e
IBg; sinh (/f E) coth (ﬂl 7 + cosh (ﬂ 2)

Based on the inhomogencous solutions (4) and (5) for the
surface displacement we can derive the physical properties of
the composite from the properties of the three constituents,
i.c., ceramic, polymer and face plates. As shown in our carlicr
works [5]-[7], without face plates, the physical propertics
of composites depend strongly on the aspect ratio of the
ceramic and their spacing. This aspect ratio dependence is
a direct consequence of the displacement inhomogeneity in
the polymer and the ceramic, which is in turn produced by the
active and passive nature of the two constituents. It is expected
that the addition of face plates to a composite will enforce
deformation uniformity. In contrast to the stress transfer in
a nonface plated composite for which the transferred stress
is pure shear stress, the additional stress transferred between
the ceramic and the polymer via the face plate is primarily a
normal stress in the z-direction. The degree of uniformity in a
face-plated composite depends on several factors: the thickness
of the plate, the Young's modulus of the polymer, the Young's
modulus of the face plate, the ceramic content as well as
the ceramic aspect ratio and element spacing. All of these
factors are now included in the solutions (4) and (5), which
makes it very convenient to evaluate the influence of cach
material parameter. As an example, we have calculated the
inhomogeneous surface displacement profiles for a PZT5H-
Spurrs epoxy composite with brass face plates under an electric
ficld £. Parameters were varied o show the general trend for
the optimization of the composite configuration. The material
constants used in the calculations are given in Table 1.

Fig. 2 shows the calculated inhomogencous surface dis-
placement variations as a function of the increase of face
plate thickness {. The dimensions of the composite used in
the calculations are: | = 5 mm, « = | mm, and = 2 mm,
A voliage of V2 voits is applied 1o the sample along the 2
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TABLE |
ELASTIC, PIEZOELECTRIC AND DIELECTRIC P ROPERTIES OF PZT SH, B
RASS PLATE AND S PURRS EPOXY USED IN O UR CALCULATIONS .

Y [ dsy dy c
1019 N/im? 1010 Nfm? 10-12C/m 102 C/m
PZTS5H 174 23 593 -274 364
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Fig. 2. Calculated surface displacement profiles for a PZTSH-Spurrs epoxy
2-2 composite with different face plate thickness. The volume fraction of the
ceramic is 1/3.

-direction (poling direction). For ¢t = 0 (i.e., no face plates),
the displacement at the center of the polymer surface differs
substantially from the displacement at the center of the ce-
ramic surface. When £ > 0, the polymer surface displacement
increases rapidly with the increase of the face plate thickness,
and at the same time, the displacement of the ceramic is
somewhat reduced. Because the effect of the face plate is to
make the polymer move more and the ceramic move less, the
overall composite surface displacement becomes more uniform
as shown in Fig. 2. One notices that the surface displacement
changes caused by the addition of face plates appear mainly
in the polymer, which is due to the large difference in
elastic stiffness between the polymer and the ceramic. The
improvement on the surface displacement uniformity becomes
less as the isostrain condition is approached. We believe
for a brass face plate thickness greater than 2 mm in this
configuration, the physical properties can be well accounted
for by the isostrain approximation [4].

Without a face plates, composites made of soft polymer will
have more severe displacement nonuniformity than composites
made of hard polymer because soft polymers have a smaller
shear modulus which cannot effectively transfer stress between
the polymer and the ceramic. After adding face plates to the
composite, the situation is reversed. Composites made of softer
polymer will have more unilorm displacement than composites
made of harder polymer. This is due to the fact that the
additional stress transferred by the face plate from the ceramic
to the polymer is in the form of a normal stress. Both the
ceramic and the polymer interact directly with the face plates.

4.5 [
L y

i a = 0.364 b

4 |- -

- e —— -

Y? (10° N/m)

L e 4

<. | y = ]
L ————. J

-~ 35 | o
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3 a=1mm 1
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L 1=5mm 1
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Fig. 3. Calculated surface displacement profiles for different Young's modu-
lus of the polymer. The Poisson's ratio for the polymer is kept at aP = 0.364.
Ceramic volume fraction is 1/3 and the face plate thickness is ¢t = 0.5 mm.

Since the polymer phase is nonpiezoelectric, it adds to the
loading on the ceramic phase, the level of this loading is
proportional to the stiffness of the polymer. In other words,
a softer polymer has less resistance to elastic deformation,
therefore, will be casier to be driven toward more uniform
displacement with the ceramic phase with the help of face
plates. This situation is illustrated in Fig. 3 where the surface
displacement is plotted for different elastic stiffnesses of the
polymer. The face plate thickness was kept constant for these
calculations at ¢ = 0.5 mm and the Poisson’s ratio for the
polymer is fixed at 0.364. Since the elastic stiffness of different
types of polymers can easily differ by one order of magnitude,
it is relatively easy to control this parameter. One can see from
Fig. 3 that the surface displacement uniformity is improved
substantially by reducing the Young's modulus of the polymer,
and more importantly, the total effective displacement of the
composite is also increased due to the reduction of the self
loading produced by the polymer. For air kerf (infinitely soft
resin) face plated composite the displacement would be uni-
form. When the polymer is stiff, the ceramic surface shows no-
ticeable curvature, but for very soft polymer composites, only
the polymer phase shows nonuniform surface displacement
while the ceramic surface is practically flat as shown in Fig. 3.

Another important issue is the selection of the face plate
material. From (4) and (5) one can draw the conclusion that
stiffer materials are preferred for the purpose of achieving
more uniform surface displacement. For comparison, we have
calculated the surface displacement profile for three different
face plate materials: steel, brass and GRP, and the results are
shown in Fig. 4. We found that stiffer face plate does improve
the uniformity of the surface displacement, however, the effect
of using a stiffer face plate is much less than reducing the
Young’s modulus of the polymer.

Under the application of an electric field [, the maximum
surface displacement difference, Awu, between the center
of the polymer and the center of the ceramic can be
derived using (4) and (5),

Aun = éfl;;;;E-*—B—A. (rn
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Fig. 4. The surface displacement variation caused by the change of face
plate material. The face plate thickness is chosen as f = 0.5 mm.
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Fig. 5. The calculated maximum displacement difference Au for different
face plate thickness t in a 2-2 composite with ceramic spacing d as a
parameter. The ceramic plate thickness is « = | mm.

This quantity can be used as a measure of the uniformity in
surface displacement. Fig. 5 shows Au versus face plate thick-
ness for a 2-2 composite calculated at five different volume
contents. The ceramic plate thickness is fixed at 1 mm in the
calculations. The results show that the improvement on the
surface displacement uniformity becomes less effective after
the brass face plate thickness is beyond certain limit. The ef-
fects of face plate is morc pronounced for composites made of
large spaced ceramics, or large d-value. One of the important
conclusions should be mentioned is that the ceramic spacing
plays more important role than the face plates in terms of
making the surface displacement more uniform. This is clcarly
seen in Fig. 5 for composites without face plates (£ = 0).

IIl. SUMMARY AND CONCLUSIONS

A theoretical model is proposed to calculate the surface
displacement profile in face plated 2-2 piezoclectric ceramic-
polymer composites. Predictions on the influence of geometry
and material properties of each constituents to the surface
displacement uniformity are given. It is concluded that the

nonuniform displacement in face plated composites can be
improved by several methods: (a) increase face plate thickness:
(b) increase the Young's modulus of the face plate: (¢) reduce
the Young’s modulus of the polymer; (d) increase the ratio of
{/a; and (c) increase the ceramic volume ratio. Both (d) and
(¢) can reduce the spacing between the ceramics.

The addition of face plates to the composite structure makes
it possible to use softer polymer resin, which can reduce the
polymer loading and improve the effective clectromechanical
conversion property of the composite. Face plates allows
normal stress transfer along z-axis between the ceramic and
the polymer, which makes the overall surface displacement
of the composite more uniform and the interior deformation
more close to isostrain condition.
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Plane wave propagation in finite 2-2 composites
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A common practice in the study of wave propagation in stratified structures is to use the Floguet (or
Bloch) condition to derive the dispersion relation, leading to the passband and stopband structures.
However, the Floquet condition is valid only for an infinite system while a real system always has
finite dimensions. We report a study on wave propagation in a finite 2-2 composite by using the
transfer (7') matrix technique. Through introducing a new definition for the dispersion relation using
the T matrix, the passbands and stopbands are calculated for a finite system without the Floquet
condition. The formation of stopbands and passbands with the increase of composite size can now
be clearly seen. The spatial profile of the vibration pattern inside a finite composite can also be
calculated using this technique, which reveals strong edge effects. The effects of randomization on
the wave localization in a 2-2 composite are also studied. © 1995 American Institute of Physics.

L. INTRODUCTION

The dynamic behavior of piezoelectric composites has
attracted the attention of many researchers after it has been
successfully applied to under water acoustics and medical
ultrasound imaging.'”'® Conceptual understanding was
achieved in many aspects for composite structures, and some
guidelines for composite transducer design were also devel-
oped. However, there are still many unanswered questions
regarding the composite structure. Some of the most funda-
mental and interesting topics include wave propagation in-
side the composite structure, mode coupling, and band struc-
tures for a finite system.

Several methods were introduced in the study of wave
propagation in periodic composites, such as the T-matrix
method,'%'4!620 the effective medium method,'*'* and the
finite element method."*~!” Each method has certain merits
but also limitations. Among these methods, the finite element
method is the most powerful method which can deal with
complex geometry. However, it is limited by the power of
the computer, and the results from the finite element analysis
often do not lead to a clear conceptual understanding of the
physical origin of the observed phenomena. Another accurate
method is the transfer matrix (7T-matrix) method, which is
especially suitable to study wave propagation in one-
dimensional layered structures, such as 2-2 composites. The
T-matrix method has been used to study the dilational Lamb
wave in a 2-2 composite in conjunction with the Floquet
theory.'%!%1620 Many interesting results, including the band
structures, were obtained, which have provided conceptual
understanding of some wave propagation characteristics in
composites.

Wave propagation in stratified structures, such as a 2-2
composite illustrated in Fig. 1, have been studied extensively
using transfer matrix.>'~% In the past, band structures were
calculated by using a combination of T matrix and the Flo-
quet theory, because the traditional T-matrix method alone
does not provide enough information to determine the band
structures. The problem of Floquet theory is that it is valid
only for an infinite system. Therefore, the band structures

¥Electronic mail: wcao@sun01.mrl.psu.edu
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obtained in all the previous studies do not accurately de-
scribe the wave propagation characteristics in finite systems.
It is predictable that the Floquet condition will be strongly
violated when a composite contains only a few cells. Focus-
ing on this problem, we introduce an extension to the
T-matrix technique which enables the T-matrix technique to
calculate the band structures for a finite stratified structures,

such as 2-2 composites, without using Floguet condition.

As an example, we will consider the transverse wave
propagation in a 2-2 composite; one can easily calculate the
longitudinal wave analogously.

Il. T MATRIX AND THE NEW DISPERSION RELATION

As mentioned above, the main objective of this study is
to derive a substitute for the Floquet condition to calculate
the band structures for a finite stratified structure. We begin
with a brief review on the T-matrix technique and then in-
troduce some new definitions.

Assuming a shear acoustic plane wave ¢(x,t) enters a
ceramic-polymer composite system shown in Fig. 1 from the
left at x=0, we can write the wave function at the nth cell in
the following form:

,/,n_—_Anei(wt-k,,x).,.Bnei(wuk,,x)'
(n—1)d<x<nd=-a (in polymer); (1)

dln = C"ei(ml-k‘.x)+Dnei(wl+k‘.x)'

nd—a<x<nd (in ceramic), (2)
where
kn=w\pnlcss (m=p,c) 3)

is the wave number, a and b are the thickness of the ceramic
layer and polymer layer, respectively, a+b=d is the period
of the cell (see Fig. 1), @ is the angular frequency, p,, and cJs
are the density and the shear elastic stiffness of the m con-
stituent. The subscripts/superscripts p and ¢ indicate that the
physical quantities are for the polymer and the ceramic, re-
spectively. The requirements of the wave function ¢ and the
shear stress T to be continuous at the ceramic-polymer in-
terface lead to the following relations among the coefficients,
A,, B, C,, and D,, in the nth cell:
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B, 2z,

Similarly, we can derive the relations among the coefficients
C,.D,and A,,,, B,,, between adjacent cells,

(Cn)_ 1 ((ZP+ZC)ei(kc—kp)nd (ZC_ZP)ei(k,ﬁP)nd)

D, —E.Z_c (Zc_Zp)e-i(kcHP)nd (Z,,+Zc)ei(kf+kp)"d
A,,H) (A,,H)
X =[T ,
(Bn+l [ nd] Bn+l (4b)
where
Zm=pmvm= meb’sns (m =p,c) (5)

is the acoustic impedance and v,, is the acoustic velocity for
material m. From Egs. (4a) and (4b) we can derive the re-
currence relation for the coefficients A, and B,,,

An A +1
(Bn)=[Tnd-a][Tnd](B:+l)' (6)

Considering a system of N cells, we can derive the fol-
lowing relation, according to the above recurrence relation:

()=l

By
where the 7 matrix in Eq. (7) is a second rank tensor given
by

(T)=(Tu-adlTa) - [Tag-adTadd-. [ Twa-od[ Twal- (8)

For convenience, we assume that the composite is made
of N cells and is immersed in a polymer medium. Since the
incident wave enters the composite from the left, By, =0,
in other words, only a transmitted wave exists in the medium
on the right side of the composite.

Now, let us define a transmission function H(w),

@

AN+Ie—ikPNd 1 )
H = e —ik,Nd
(w) A, T e~ e, 9)

which describes both the amplitude and phase relationships
between the incident wave at x=0 and the transmitted wave
at x=Nd. Similarly, we can define a reflection function
G(w),

Glw)=—=— (10)

which describes the amplitude and phase relatiopships be-
tween the incident wave and the reflected wave at x=0.

Clearly, the transmission and reflection coefficients are
(see the Appendix)

t=H(w) -H*(w) (11)
and

r=G(w) G*(w). (12)
It is easy to verify that (see the Appendix)

t+r=1. (13)
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(2= Z)eltpmhetnd = ¢,
(Zp_Zc)e-i(kp+kc)(nd—a) (Zp+zc)ei(kp+kr)lnd—a))(Dn) =[T,.d—a](D ) (4a)

In order to calculate the dispersion relation without using
Floquet theory, an effective real wave vector k' needs to be
defined for the composite, which should give the same phase
change as H(w) over a distance Nd. In this spirit, we intro-
duce the following definition:

_ Ang[H(w)] _

k Nd =arctg

(Im[H(w)])‘ (14)

Re[H(w)]

where Ang[H(w)] represents the phase angle of H(w).

Before we extract the stopband information from this
new definition, let us examine the characteristics of the dis-
persion relation shown in Fig. 2, which is derived from the
Floquet condition for an infinite system. The piecewise dis-
persion curve represents the passbands while the gaps are the
stopbands. In each of the passbands, the phase velocity
ven=w/k is a monotonically decreasing function of fre-
quency. vy, is always a minimum at the upper passband edge
frequency w!, and a maximum at the lower passband edge
frequency wt.

The derivation of the band structures was based on the
nonexistence of real k, and the band edges are those frequen-
cies corresponding to the discontinuities of the dispersion
relation.? For a finite system, these discontinuities are ex-
pected to be smoothed out and solutions for the finite system
should approach the discontinuity limit as the number of
cells in the system becomes very large. We found that this
goal can be precisely achieved using the new definition Eq.
(14). One important point is that the newly defined &’ will
always have a finite value, although it may become ex-
tremely small in certain frequency regions when the system
becomes very large. We will see later that the dispersion
relation obtained from Eq. (14) approaches the Lee and Yang
solution (Ref. 22) for very large systems.

Next, we need to define the bands using the new defini-
tion. In reference to the characteristics of the phase velocity
in the band structure of Fig. 2, one may define the band
structures of a finite system by using the maxima and the
minima of the phase velocity vph=w/k'. These extrema can
be easily calculated, and serve as the boundary mark between
different frequency bands. For a finite system, the band
structures will not be fully developed. they are pseudopass-
bands and pseudostopbands whieh have many similar char-
acteristics as the true bands. A pronounced difference from
the solution of Lee and Yang is that the phase velocity also
can be defined inside the pseudostopbands.

Lee and Yang? have shown that the wave number is
purely imaginary inside a stopband for an infinite system.
For a finite system, the real part of the wave number always
exists even inside the pseudostopbands; therefore the wave
number will be a complex number in general. ie.
k=k'—ik". The imaginary part k" may be calculated accord-
ing to the following equation:
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FIG. 1. Schematic plot of a N-cell 2-2 ceramic-polymer composite with 1/3
of ceramic volume content. The y dimension is assumed to be infinite so that
the system can be treated as one dimensional.

B In|H(w)|

Nd (15)

k"=
which can be nonzero inside the passbands for a finite sys-
tem.

lll. WAVE PROPAGATION IN A FINITE PERIODIC
SYSTEM WITHOUT DAMPING

Using Egs. (3), (4), (8), and (9), the transmission func-
tion H(w) is calculated as a function of N for a system shown
in Fig. 1. The volume content of the ceramic is fixed at 1/3,
i.e., a/d=1/3, and the material parameters used in the calcu-
lations are given in Table L.

Figures 3(a)-3(e) show the change of the magnitude of
H(w) as a function of frequency for composites of N=1, 2,
10, 50, and 100. The frequency is normalized with respect to
wy, where wy is defined as

MUV,
wy=————
0 bv.+av,’

(16)
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FIG. 2. Dispersion relation for an infinite system obtained from Floquet
theory. The frequency unit =7 U,/ (bv +av,)=9491601/s, v, and v,
are the acoustic velocities of the ceramic and the polymer, respectively. The
width of each stopband is different. which depends on both the degree of
acoustic impedance mismatch and the volume content of ceramic.
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TABLE 1. Material propenrties for the ceramic and polymer constituents of
the 2-2 composite.

c§5=2.4 (10" N/m%),  p,_=7800
c35=1.59 (10° N/'m%), p,=1160

Ceramic
Polymer

v, and v, are the shear acoustic velocities of the ceramic and
the polymer, respectively. The development of the band
structures with the increase of cell number N can be seen
clearly from Figs. 3(a) to 3(e).

It is interesting to note that some band structure charac-
teristics start to show even for a single layer ceramic inclu-
sion. Complete transmission, i.e., |H(w)|=1, can be achieved
at isolated frequencies due to structural resonance. As the
number of cells N increases, complete transmission occurs at
more and more frequencies. Eventually, as N goes to infinity,
true passbands are formed. The stopbands correspond to total
reflection, i.e., |H(w)|=0. For a finite system such condition
cannot be achieved; however, the value of |H(w)| can be-
come negligible inside the pseudostopbands.

When N=10, pseudostopbands are clearly visible but
the passbands are not well defined. In general, it appears that
the number of frequencies which allow the wave to pass
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FIG. 3. The magnitude of transmission function vs frequency for different
size composites. The development of band structure with the increase of
number of cells ¥ is calculated for the following cases: (a) 1 cell. (b) 2 cells,
(c) 5 cells, (d) 10 cells, and (e) SO cells.
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FIG. 4. The development of the second stopband with the increase of N.
The deviation is quite large for systems containing less than 10 cells, but
when N is greater than 200, the Floquet treatment can give reasonable
description.

through the structure without reflection is equal to N—1.
Therefore, it is conceivable that complete passbands will
form only when N—x.

This fact is seen more clearly in the dispersion relations
depicted in Fig. 4. Using Floquet's condition, Lee and Yang?
have derived the dispersion relation for an infinite periodic
system (see Fig. 2), sharp discontinuities occur at k=nw/d.
While for a finite system, some degree of round off occur at
these discontinuities. The edges of the passbands become
sharper as the number of cells N increases (Fig. 4). When
N =200, the dispersion relation almost coincides with that of
an infinite system derived by Lee and Yang? (see Fig. 4).

For an infinite system, one can derive the evanescent
wave solutions for frequencies inside the stopbands using
Floquet theory. The magnitude of these evanescent waves
decays exponentially in space, but the phase angle, which is
determined by the real part of the wave number, is indepen-
dent of frequency (k'=0). For a finite system, on the other
hand, the real part of the wave number is always nonzero,
hence, the phase angle will be frequency dependent inside
the pseudostopbands. The decay of the magnitude is slower
inside a pseudostopband than inside a true stopband. It is
apparent that the band edges are not well defined when N is
small, and gradually become sharper as N increases.

Figure 5 shows the vibration pattern at a given frequency
inside a passband for composites with different numbers of
cells. We can see the resonance nature of the patterns, with
the polymer vibrating at much larger amplitude than the ce-
ramic.

Figure 6 shows the comparison of the vibration patterns
occurred in a ten-cell composite at three distinct frequencies.
These three frequencies are selected as follows: 1.36364 f, is
in the first passband with a maximum value of |H(w)],
1.55f is at the upper edge of the first passband, and 2.009f,
is at the center of the second stopband with a minimum value
of |H(w)|. Different from the infinite system, there is no
sharp edge between the passband and the stopband. As a
result, a gradual transition can be seen from the passing reso-
nant wave pattern to the localized evanescent wave pattern.
The evanescent wave is practically localized within 2-3
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FIG. 5. Typical spatial vibration pattern for a completely transmitted wave
with frequency in the first passband. The pattern changes for different N, the
internal vibrational magnitude can be much larger than that of the incident
wave and is also much larger in the polymer phase than in the ceramic
phase.

cells. According to symmetry analysis on the vibration pat-
terns shown in Fig. 7, the upper edge of the second stopband
resonance is piezoelectrically active for the 1/3 ceramic vol-
ume percent composite, i.e., all the ceramic elements are
vibrating in phase. Therefore, this mode will couple strongly
to the thickness mode affecting the performance of a com-
posite transducer.?

It is a common practice to reduce the size of the com-
posite cells in designing high-frequency composite transduc-
ers. The rule of thumb is that the upper edge of the second
stopband resonance should be twice as high as the transducer
operating frequency. This will place the thickness mode in-
side the first stopband of the transverse wave to minimize the
coupling.* In reality, there are technical limitations for mak-
ing fine scale ceramic inclusions. An alternative to reduce the
shear wave resonance effects is to introduce randomness into
the composite structures, since randomness can destroy
many shear resonance modes. 2~

IV. WAVE PROPAGATION IN APERIODIC FINITE
SYSTEM

Theoretically speaking, true randomness can only be
achieved in an infinite system. In reality, we seek wave lo-
calization which can be achieved with limited number of
cells. The questions of interest are

10

WA N7 N7 N7 NENENEN

ceramic

Amplitude

FIG. 6. Vibration pattern of a 10 cell composite. (—) A frequency in the
passband. (—) A frequency in the pseudostopband. (---) A frequency near
the edge of the pseudostopband.
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FIG. 7. Phase profiles for the upper and lower band edge frequencies of the
second pseudostopband. (~) upper band edge frequency; (—) lower band
edge frequency. The lower band edge frequency vibration is piezoelectric
active since all the ceramics are in phase. Slight phase lagging occurred due
to finite size, which can be seen by comparing the phase angle of the first
layer and of the last layer.

(1) How much randomness is sufficient?

(2) What is the size dependence of the random effect?

With the 2-2 composite structure discussed above, these
questions can be conveniently studied using the T-matrix
technique plus the new definition of Egs. (14) and (15). Both
vibration profile and band structures can be calculated for an
aperiodic 2-2 composite.

There are several ways to introduce randomness into a
2-2 composite. The simplest way is either randomizing the
spacing between ceramic plates (randomizing &), or chang-
ing the ceramic plate thickness while leaving their spacing
constant (randomizing a). Since the effects of randomization
of b or a are similar due to the symmetry of the structure, we
only give the results for randomizing b to illustrate the
physical characteristics. When a or b is randomized, the
number of passing frequencies will be greatly reduced and
all the pseudostopbands become wider. The random effects
are greatly enhanced when both a and b are randomized at
the same time, with new characteristics produced as dis-
cussed below.

Figure 8 shows the comparison between the magnitudes
of transmission function H(w) for randomizing b and for
randomizing both a and b. The composite has 20 cells and
the ceramic volume percent is kept at 1/3 on the average in
order to compare with the results of the periodic composite
calculated in Sec. III. An interesting fact in the case of ran-
domizing b is that the transmission is not completely de-
stroyed for all frequencies, there still exist some frequencies
which allow the waves to completely pass through [|H (w)|
=1] as shown in Fig. 8. The reason is that a resonance length
scale, i.e., the ceramic thickness a, still remains in the com-
posite. Conversely, when randomness is introduced in both
the ceramic thickness a and their spacing b, all but the first
passband are eliminated. There appears to be a cut-off fre-
quency for wave propagation in the random composite. Intu-
itively, the first passband should represent the propagation of
waves with wavelengths comparable to and larger than the
size of the composite system. The bandwidth is also expected
to become narrower as the number of cells increases. How-
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FIG. 8. The band structures for a randomly spaced ceramic plate composite
(randomizing b, dashed curve) and a completely random composite (ran-
domizing both a and b, solid curve), respectively. For the randomly spaced
composite, the stopband width becomes much wider compared with the
periodic structure, but there are still passing waves at higher frequencies.
While for the completely random structure, no passing wave after a cut-off
frequency.

ever, direct correlation between the dimension of the com-
posite and the cut-off frequency was not found in our calcu-
lations.

An important point here is that the characteristics of lo-
calized waves in the random structure are quite different
from those of the stopband waves. Although the magnitude
of the waves shows exponential decay in space for both
cases, the phase of the stopband waves is independent of
frequency, while the phase of the localized waves shows
strong frequency dependence. There are many stopbands in a
periodic composite, each of the bands has a bandwidth char-
acterized by the band edges. While in a random composite,
the band structure consists of only one passband, no waves
can go through the structure at frequencies above the cut-off
frequency.

Considering the efficiency of cross-talking elimination,
the stopband waves decay faster than the random localized
waves, as illustrated in Fig. 9. The decay rate is the highest
for the frequency at the center of each stopband; typically the
wave vanishes in 2-3 cells. The decay rate becomes slower

) k\\\\\“%@%ﬁ%m%

.g f ' random ceramic  polymer
2 Rl 3
£ ; R b
< P ]
: i stopband ]
i : de04Smm ]
f = 2.00941 f. 1

0 " 1 e L
0 1 2 3 4 S
x/d

FIG. 9. Comparison of the transmission function for a penodic structure at
a pseudostopband frequency and for a completely random structure at the
same frequency.
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as the frequency moves away from the center frequency of
the stopband. On the other hand, localized waves are not so
sensitive to frequency as long as the frequency is above the
cut-off frequency. The localized waves have much broader
bandwidth, although the decay rate for the localized waves is
relatively slower than for the stopband waves. A typical lo-
calized wave can be confined within 6-7 cells. These quan-
titative evaluations can be used as general guidelines for the
design of random composites.

V. SUMMARY AND CONCLUSIONS

We have studied shear wave propagation in a 2-2 com-
posite structure using the T-matrix technique. A new defini-
tion is introduced for the effective wave number k [Eqgs. (14)
and (15)]. Using the new definition, the dispersion relation
for a finite composite system is calculated without using the
Floquet theory, which is valid only for an infinite system.

The formation of the band structures with the increase of
composite cells can be seen clearly from the calculated re-
sults (Fig. 4). Our results show that the boundaries between
stopbands and passbands become unclear for a finite system.
Pseudostopbands can develop quickly with the increase in
the number of cells in the composite. Stopband-like fre-
quency regions are already formed in a composite of 10 cells
as shown in Fig. 3. For a system with more than 200 cells,
the dispersion relation calculated using the new definition is
nearly identical with that obtained from Floquet theory (see
Fig. 4).

Wave patterns inside the composites can be quite com-
plicated and the magnitude of vibration could be much larger
than the incident wave due to resonance. It is demonstrated
that the polymers vibrate at much larger amplitude than the
ceramics. These shear resonance modes are undesirable for
thickness mode transducers because they not only reduce the
efficiency of the transducer, but also prolong the ringdown in
the pulse mode, producing poor resolution.

There are two ways to solve this problem: one is to
reduce the cell dimensions, which can push the shear reso-
nance to higher frequencies and place the operating fre-
quency inside the first stopband to reduce the coupling;'s and
the other is to introduce randomness into the structure, which
can effectively destroy the shear resonance in a much
broader band, and also can overcome the technical limita-
tions encountered in fabricating fine scale composites. It is
shown that the waves can be confined within 6-7 cells if
both a and b are randomized. Therefore, this technique could
be very useful and cost effective in producing high-
frequency composite transducers of small size.
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From Eqgs. (3) and (4) we have

|Tnd—a”Tndi=1- (Al)
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so that

1T =Ty dllTal - AT =l Tadl . A Tyva-al| Twal = 1.
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T\, T}, 1
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matrix [7] which is a product of each individual matrix also
has the relation

Note [T,] is in the form of [ ]; therefore, the total
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FINITE ELEMENT ANALYSIS AND EXPERIMENTAL STUDIES ON THE THICKNESS
RESONANCE OF PIEZOCOMPOSITE TRANSDUCERS

Wenkang Qi! and Wenwu Caol 2

1. Intercollege Materials Research Laboratory
2. Department of Mathematics
The Pennsylvania State University
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Finite element method (FEA) has been used to calculate the thickness resonance
frequency and electromechanical coupling coefficient k¢ for 2-2 piezocomposite transducers.
The results are compared with that of the effective medium theory and also verified by
experiments. It is shown that the predicted resonance frequencies from the effective medium
theory and the unit cell modeling using FEA deviate from the experimental observations for
composite systems with a ceramic aspect ratio (width/length) more than 0.4. For such systems,
full size FEA modeling is required, which can provide accurate predictions of the resonance
frequency and thickness coupling constant k. '

Key words: Aspect ratio; composite transducers; effective medium theory; finite element
analysis; piezocomposites.

1. INTRODUCTION

A transducer is usually characterized by two major properties: sensitivity and resolution.
The sensitivity is related to the electromechanical coupling coefficient, while the resolution is
related to the center frequency and bandwidth. At the beginning of the ultrasonic imaging
industry, two types of piezoelectric materials were used as transducer materials: lead zirconate
titanate (PZT) and polyvinylidene fluoride (PVDF). PZT has high acoustic impedance, making
it very difficult to send ultrasonic energy into the human tissue, which has very low acoustic
impedance. In addition, the Q value of PZT is very high so that the bandwidth is narrow
resulting in poor resolution due to ringing effects. On the other hand, PVDF has a very good
acoustic impedance match with human tissue, but its electromechanical coupling coefficient is
very low, resulting in low sensitivity. In addition, the low dielectric constant of PVDF also
creates the problem of electric impedance mismatch, which limits the application of PVDF in
array transducers. /

The advent of piezoelectric composites greatly improved this situation [1,2].
Piezocomposites have large coupling coefficients as well as low acoustic impedance, making
them ideal transducer materials. Nowadays, piezoelectric composites are widely used in
making underwater acoustic and medical ultrasonic transducers [2-4]. However, due to the
biphase nature and the large difference in the elastic stiffness between the polymer and the
ceramic, the surface displacement is often nonuniform [5-8]. It is therefore difficult to
accurately predict the resonance frequency of the composite transducers using simplified
models.




The most commonly-used method for designing composite transducers is the effective
medium model[4]. Experience reveals that the actual resonance frequency of the designed
composite transducer is often lower than the theoretical estimates from the effective medium
theory. Motivated by this discrepancy, we have conducted a combined experimental and finite
element analysis to give a detailed assessment of the effective medium model and to derive the
conditions for the application of such theoretical estimates. We also intended to evaluate the
validity of the commonly used unit cell FEA modeling [9-11]. For simplicity, we only analyze
a 2-2 composite transducer, but the conclusions are also valid for 1-3 type composite

transducers.

2. EFFECTIVE MEDIUM MODEL FOR 2-2 PIEZOCOMPOSITES

A typical 2-2 composite is shown in figure 1. It is a layered structure of alternating
polymer and piezoceramic constituents.

The constitutive relations for the polymer phase can be written as the following,
T1 =C11S1 + C1252 + C283
T2=C12S1 +C11S2 + C12S83
T3=C1251 + C1282 + Cy1S3

T4 =Cy4S4
Ts=Cy4qSs
Te = CaqS¢
Di=¢11E;
Dy=¢g11Ep
D3 =¢1;E3

(1a)
(1b)
(1c)
(1d)
(le)
(1f)

(1g)
(1h)

(11)

Here, T; and S; (1 =1,2,...6) are the stress and strain components, respectively, in Voigt
notation, Ej and Dj (i= 1,2,3) are the electric field and electric displacement respectively, Cjj are

the elastic stiffness constants and € ; are the dielectric constants.

Similarly, if we take the x3-direction as the poling direction, the constitutive relations in

the ceramic phase can be written as:

T = CI;:IS] + Cll:‘zsz + CIl:‘3S3 -e31E3
Ty =Cp,S1 +C5 S2 +CE 83 - e3,E;

T3 = CES] + C%Sz + C§3S3 -e33E3

(2a)

(2b)

(2c)




Ty = CZSA, -esEr
E

Ts =C4455 -e1sEq
E

T6=C66S6

D;=¢e|555 + 8?151

Dy =€15S4 +€flEz

D3 =e3;S) +€31S2 +e3353 + €§3E3

(2d)

(2e)

(2f)

(2g)

(2h)

(1)

where ej] are the piezoelectric constants, and the superscripts, E and S, refer to quantities at

constant electric field and strain, respectively.

We can follow the same procedure as in [4] and use all the assumptions proposed there to

derive the effective properties (denoted with an overbar) of a 2-2 composite,

E \2
E .(C12'C13) .
Cy = V|C5, -V = + V'Cyy
V'C”+VC“

(C]E3'C12)

V'CY + VCI1

e;3=V/e33 - V'es)

r 2 o
= E €3 V

V'el;:l + VCii

33

P - &3
has =5

€

33
gs - L
BS3 es

33

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)




p=Vpt + VpP (3g)

In the above expressions, V and V' are the volume percentages of ceramic and polymer,

respectively, V' = 1-V, and pP and p€ are the densities of the ceramic and polymer. Using the
conventional definition, one can derive all the relevant effective quantities for the thickness
mode operation,

h33 €33
= 4)
S
 C33855 Cs3 €33
C3s P

k[=
fz':'\/

)

D

_ C

VI = =3 ©6)
p

fr=af M

v/ and L are the longitudinal wave speed and the thickness of the composite in the poling (x3)
direction and f; is the resonance frequency given by the effective medium theory.

Using the above equations, we have calculated the effective thickness resonance
frequency for a 2-2 composite of 1 mm thick. Compared with a 1-3 composite transducer of
the same thickness, the resonance frequency of a 2-2 composite is higher than that of a 1-3
composite of the same ceramic volume content as shown in Figure 2. The same is true also for

the thickness coupling constant K¢, as plotted in figure 3.

Although the effective medium theory is relatively simple and sometimes gives reasonable
estimate for the resonance frequency, it fails to account for the aspect ratio effect, which can be
substantial if the /L. (width/length) ratio is not sufficiently small [6,7]. For systems with large
a/L ratio and low ceramic content, the isostrain assumption is not valid.

In addition, since a real transducer always contains a finite number of cells, one would
not expect a very good match with experimental results from a unit cell model that automatically
assuming periodic boundary conditions. For this reason, we have performed FEA on 2-2
composite transducers using both the unit cell and full dimension models.

3. FINITE ELEMENT ANALYSIS

The nonuniform displacement at the surface of composite transducers has been observed
experimentally([5,8]. This inhomogeneity can greatly affect the overall performance of a




transducer. For low frequencies, the situation may be treated by using elasticity theory and
describing the two constituents separately. Some approximations can be used in solving the
low frequency problem since there are no countable phase difference in the structure[6-8].
However, when the operating frequency is high and close to the thickness resonance, we must
use FEA for an accurate theoretical prediction.

A commercial package ANSYS® is used in our study and two models were analyzed:
(1) A unit cell model, which was also analyzed by several other researchers[9-11];
(2) A finite real dimensional system.
These FEA results are checked against our experiment results.

After some test runs, we found that the results from a 2-D model are almost the same as
those from a 3-D model for the geometry we have chosen. Therefore, for computational
efficiency, we performed only 2-D modeling. The models and the coordinate system are shown
in figure 4.

One of our objectives is to study the change of the thickness resonance frequency and the
electromechanical coupling coefficient k¢ with respect to the change of ceramic aspect ratio.
Both the thickness resonance and the anti-resonance frequencies were calculated. The
resonance frequency is calculated under short circuit condition (constant E) while the anti-
resonance frequency is calculate in open circuit condition (constant D)[12]. From these two
resonance frequencies, the electromechanical coupling coefficient k¢ can be calculated using the
formula,

2 _ Tf; ®(fa- fr)
k[ = 2—fatan( 2fa ) ®)

where fy and f3 are the resonance and anti-resonance frequencies, respectively.

First, we performed analysis on the unit cell model. Only a quarter of the unit cell is
needed due to symmetry [Fig. 4(a)]. A composite of real dimensions was then analyzed.
Again, only a quarter of the piece was analyzed due to symmetry [Fig. 4(b)]. The results are
plotted in figure 5 together with the experimental results.

4. RESULTS AND DISCUSSIONS

In order to verify the theoretical results, we made a series of 2-2 composite transducers
using PZT-5H and Spurrs epoxy. The dimension along the x;-axis (into the paper) is made
large enough so that the system can be treated as two dimensional. We start by making a thick
2-2 piezocomposite in the x3-dimension, and later gradually increased the a/L ratio by
shortening L, i.e., shortening the x3-dimension without changing the other dimensions. After
each cutting, the sample is re-electroded and the resonance frequency measured using a HP
4194A impedance analyzer. From the impedance curves, the resonance and anti-resonance
frequencies can be obtained, and the electromechanical coupling coefficient k¢ can be
determined using Eq.(8).

Another experiment was also performed to check the dimensional effect in the x;-
direction. In other words, reducing the number of cells in the composite structure to see if it
affects the resonance frequency in the x3-dimension. Impedance measurements were also used
as the means to characterize this effect.




Figure 5 shows the comparison of the resonance frequencies calculated by the effective
medium theory, unit cell FEA and real dimensional mode] FEA together with the experimental
results. When the ceramic ratio a/L is less than 0.4, all theoretical models agree quite well with
the experimental observations. But for a/L greater than 0.4, the effective medium theory
prediction is too high while the prediction from the unit cell FEA model is too low. Only the
real dimensional model provide accurate prediction for the resonance frequency.

The coupling constant k¢ calculated from effective medium theory is independent of the
aspect ratio, as shown in figure 3. However, experimental results demonstrate a fluctuation of
kt with change of aspect ratio, as shown in figure 6. This fluctuation is mainly caused by the
coupling between the thickness mode and other lateral modes or their higher harmonics.

When the thickness, L, is reduced, the resonance frequency is shifted to higher
frequencies. Whenever the resonance frequency approaches one of the lateral modes or their
higher harmonics, energy will be lost to the lateral modes and the coupling constant ki is
reduced. Further increase of the thickness resonance frequency may recover some of the lost
energy through mode decoupling until reaching the next lateral mode, which causes another
reduction of the coupling constant. Therefore, we expect the k¢ value to go up and down with
the decrease in L. As shown in figure 6, this mode coupling effect is well accounted for by the
FEA. Both the unit cell model and the real dimensional model show this fluctuating feature and
the real dimensional model provides better agreement with the experimental observations.

The difference between unit cell and real dimensional model indicate that the resonance
frequency in the x3-dimension will also depend on the composite size in the x 1-dimension
(number of cells). However, this effect is weak when the a/L ratio is small.

5. SUMMARY AND CONCLUSIONS

We have performed both experimental and FEA investigations on the resonance
frequency of a 2-2 piezoelectric composite transducer and compared with the effective medium
theory estimation. It is found that the effective medium theory gives good estimates when the
a/L ratio is less than 0.4, but the calculation of the coupling constant is incorrect whenever the
thickness mode gets close to one of the lateral modes. When the a/L ratio is larger than 0.4, the
effective medium theory prediction will be higher than the actual resonance frequency of the
composite transducer. The FEA results depend strongly on the details of the model. Unit cell
modeling seems to underestimate the resonance frequency for composites with large a/L ratio
but the fluctuation of k¢ can be reasonably predicted. The most accurate modeling is the real
dimensional FEA, which gave good predictions for both resonance frequency and coupling
constant for all aspect ratios investigated.

This work was supported by The Office of Naval Research under Grant No. N00014-
93-1-0340 and The Whitaker Foundation under Special Opportunity Award.
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Table I. Material properties of PZT and epoxy.

Elastic compliance (10-12 m2/N)

E E E E E E

51y S33 512 $13 S44 S66
PZT 16.5 20.7 -4.78 -8.45 43.5 42.6
Epoxy 286.7 286.7 -97.9 -97.9 769 769

Piezoelectric constants, dij (10-12 C/N) Dielectrics constants, kjj, (€g) Coupling constants,
ki, and k;, and Density p (kg/m3) ‘

S S
dis | d3; | di3 | § /o £35/€0 kis | k3 | ks | K p
PZT 741 | -274 | 593 1700 1470 0.675 { 0.39 | 0.75 | 0.50 | 7800
Epoxy 4.0 4.0 _ 1097




FIGURE CAPTIONS:

Fig. | Configuration of 2-2 composite investigated in this study.

Fig. 2 Resonance frequencies for 2-2 and 1-3 composites calculated using the effective
medium theory for different ceramic volume content.

Fig. 3 Coupling constant k; calculated for 2-2 and 1-3 composites of different ceramic
volume content.

Fig. 4 2-D models used in the finite element analysis. (a) unit cell model; (b) full
dimension model.

Fig. 5 Comparison of observed resonance frequencies and theoretical predictions from the
effective medium theory, unit cell and full dimension finite element models at
different ceramic aspect ratios. The widths of the ceramic and polymer are a =
0.273 mm and b = 0.362mm, respectively.

Fig. 6 Comparison of observed coupling constant k¢ and theoretical calculations from the

effective medium theory, unit cell and full dimension finite element models at
different ceramic aspect ratios. The widths of the ceramic and polymer are a =
0.273 mm and b = 0.362 mm, respectively.
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Multisource excitations in a stratified biphase structure

Wenwu Cao® and Wenkang Qi

Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802

(Received 6 March 1995; accepted for publication 22 June 1995)

A stratified biphase structure can have many mechanical resonance modes due to the existence of
several length scales in the system. The resonance effect is greatly enhanced if there are periodic
synchronized multiple driving sources in the structure. For example, a single beam or a linear array
composite transducers used in medical ultrasonic imaging. Such resonance behavior can be studied
using an extended transfer matrix technique which we name: multisource T-matrix technique. Using
this technique we have studied the effects of randomization in a 2-2 composite. It is found that for
dispersing the pitch resonance the randomization of ceramic spacing is more effective for low
ceramic content, while randomization of ceramic width is more effective for high ceramic

content. © 1995 American Institute of Physics.

I. INTRODUCTION

Transfer matrix (T matrix) is one of the tools used in the
study of wave propagation characteristics in stratified
structures.'™® In all the previous studies using T matrix, the
Floguet relation must be used to derive the dispersion rela-
tion. However, the Floquet relation is valid only for an infi-
nite system, it is not appropriate to use it for a finite system.
On the other hand, the transfer matrix technique can be used
for systems of any size so long as the wave propagation has
one-dimensional nature. With this consideration recently we
have introduced a definition of a complex wave number k
using the T matrix alone so that the dispersion relation can be
derived for a finite system without the Floquet condition.'
Using this new definition the development of band structures
with the increase of the number of cells in the composite can
be calculated directly.

In a 2-2 composite transducer, the active components are
often driven simultaneously. In other words, there are more
than one wave sources in the structure. For such systems, the
band structure study, which only deals with single-wave
propagation, would not be as useful since new resonance
feature will be produced by the interference of multiwave
sources. There will be interference between the incident and
reflected waves, and also among waves of different sources.

Although of practical importance, theoretical studies on
such multisource driven system have not been reported in the
literature. It is the intention of this paper to extend the trans-
fer matrix technique to address this problem.

A typical single beam 2-2 composite transducer is shown
in Fig. 1, where the piezoelectric ceramics are the active
components of the transducer and the polymers are the pas-
sive components. When an electric potential is applied to the
transducer through the top and bottom electrodes, the ce-
ramic components will either contract or expand to generate
acoustic signals through piezoelectric coupling, whereas the
polymer components will play the passive role of damping
and acoustic coupling agent to a low acoustic impedance
medium,

*Electronic mail: wcao@sun0l.mrl.psu.edu
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In reality, the resonance behavior of the system shown in
Fig. 1 depends on both the position of the driving source and
the number of the driving sources. For simplicity, we assume
the system to be linear, so that the principle of superposition
can be used.

Following the spirit of the single-source transfer matrix
technique, we introduce here an algorithm of multisource
transfer matrix for the study of stratified structures. Quanti-
tative calculations have been carried out for a 2-2 ceramic-
polymer composite as shown in Fig. 1 with both periodic and
random arrangements. We choose the shear wave as an ex-
ample for this study, other waves can be studied in a similar
fashion.

Il. TRANSFER MATRIX FOR MULTISOURCE DRIVEN
2-2 COMPOSITES

As shown in Fig. 1, when all the ceramic elements are
being driven in the z direction with an alternating field. shear
waves are being generated at all the ceramic-polymer inter-
faces. It can be shown (Appendix) that for a linear system the
wave functions in the nth cell can be written in the following

from:

ceil -1 cell-n cell-N

FIG. 1. Structure of a 2-2 ceramic-polymer composite. where a and b are
the ceramic width and polymer width, respectively, d=a+b is the pitch.

© 1995 American Institute of Physics




‘/lnp=Anei(wl—kpx)+Bnei(wl“'kpx) (m polymer). (18)

Yne=Cne' @)+ D e kN L Eeivt (in ceramic),

(1b)
where k, and k_ are the wave numbers of the polymer and
ceramic, respectively.

Basically, inside the polymer there is a forward wave
and a backward wave with their amplitudes given by com-
plex numbers (Appendix). While inside the ceramic, an ad-
ditional position-independent vibration has to be included to

Similar to the case of single-wave propagation in com-
posite, there are two boundary conditions at each interface,
ie., continuity and force equilibrium. Using Eqgs. (la) and
(1b), these two conditions can be explicitly written at the nth
P-C (from polymer to ceramic) interface, i.e., at x = x*€

n

_. PC . PC _ PC o PC
A,,e lkpxu +Bn€'k"x" =C,,€ 1k‘_x" +D"€‘k‘x" +E, (28)

.. PC : PC
ZP(—A,,e_'kP"" +B,,e"""n )

specify the external drive. Among all the coefficients in Eqgs. =Z,(- Cne-ikcrfc +D e"ka,'.'c ) (2b)
(12) and (1b), E is a real number, A,,, B,, C,, and D, are all "
complex numbers. or
]
Ca\ 1 [(@ZAZ)e Wk (2 —z yeikptrnt\ (4N g et

D,| 2Z. (Zc'_zp)e—i(kp+kr)x:c (Z‘_l_zp)ei(kp—kc)x:c B,

A E eiketn

n
=[T PC —— ,
[ (X" )] Bn 2 e—“t":c

where Z, and Z, are the acoustic impedance of the polymer and ceramic, respectively.

Similarly, we can obtain another relationship at x = xf

B 2z,

n €

=[T CP C" E eik’x"cy
_[ (Xn )] D +5 _ikprp .

Therefore, the recurrence relation between the vibration am-
plitudes of the forward and backward waves in the nth and
(n+1)th polymer elements is given by

o =[TeDITG] N - 2176
B,.+| n n B,, 2 n
eikene E eikrr
X + = ol @)

.. PC .
e-lk‘..l',I 2 e—:kpxn

(A"H) 1 ((2p+lc)e“"f*"‘=”fp (zp-zc>ef<kp+kc)xf”) ( c") E(e.-k,xf”)

. cp b —p 1.CP
(ZP—Zr)e x(l:’,+k‘)x’l (Zp+zc)e l(kp kc)xn

Bn+l

2n matrix

~[TEONTEON T VAT (xRS DL LT 2

(2n=1) matrix
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Ans A
( ’) =[T(xEP)J[T<x:’°>][T<xSEo][T(x;'E.)]...[T(x?")][r(xfcn( B')

(3a)
P, the nth C-P (from ceramic to polymer) interface,
D" 5 e-”‘p-"sp
(3b)

It is interesting to see from Eq. (4) that the recurrence
relation has similar features as the one for a single-source
situation, in fact, the first term on the rhs of Eq. (4) is just the
single-source transfer matrix. There are two additional terms
proportional to the driving magnitude E, which will vanish
upon the elimination of these internal vibration sources.

Once the vibration in the first cell is known, the ampli-
tude in the nth cell can be calculated repeatedly using Eq.

4):

I

E .

PC
- elkcxl

PC
— e—'kt‘xl
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-E- eikr‘gp

2
+[TEETEEONTEE DA TR DT [TEEOUTEE])| g +.

(2n-2) matnx

= e~ikr T
7 €

|4 -
+(-)2"‘"'[T(xf”)][T(xf.’c)][T(xfﬁx)][T(x,'.’E.)].--[T(ng-m)]( .y “’)

(2n~m) matrix

E e E
—[T(XSP)] E . PC + E . CP ’
E e-lk‘.x" E, e—'kﬁ"n
where
( E . wx
E— e‘kchﬂ-M
E o if 2n—m is odd
—e_ichZn—m
(Vl(x2n—m))_* 2
Vv - - E
2(*2n-m) Ee,k’,g’_m
if 2n—m is even.
E e_ikl’xg:"m
\ 2

The vibration pattern for the ceramic elements can be
calculated using Eq. (3a).

ill. GLOBAL COORDINATES VERSUS LOCAL
COORDINATES

Equation (5) could be simplified by using local coordi-
nates if the structure is periodic. The idea is based on the fact
that each wave function ¢,,(x) is valid only in a spatial
interval of (n—1)d<x<nd-—a, where a is the width of
ceramic and d=a + b is the period with b being the width of

the polymer.

Let us introduce a local coordinate

y=x—(n—1)d (7a)
for the forwarding wave and

y'=x—(nd—a) (7b)

for the backward wave so that each wave function is consid-
ered to be generated at the nearest interface of the position of
interest x, then the transfer matrix Eq. (5) can be greatly
simplified.

Using these local coordinates, we can rewrite the wave
fuirctions Egs. (1a) and (1b) in the following form:

‘pnP:Anei{w!-kp[X‘(n- 1)]d}

+ B eilwrrkpla=(nd=all}  (in polymer), (8a)
d’nc: énei{"’“kc[’_("d"")]) + bnei[m-bkc(x—nd)]
+Ee' (in ceramic), (8b)
where
4642 J. Appl. Phys., Vol. 78, No. 7, 1 October 1995

V2(x2n-m)

(5)
(6)

[
A‘n=Ane—ikp(n—l)d' (98)
B,=B,e™nd=9), (9b)
Cp=Ceiknd=a), (9¢)
D,=D,e*, (94)

compared with Egs. (1a) and (1b).

The physical meaning of Egs. (8a) and (8b) is very clear.
Each polymer-ceramic interface now becomes the origin of
the acoustic source whose strength is the superposition of all
the waves propagating inside the structure. Again, we must
note that the coefficients are all complex numbers except E.
It can be shown that the recurrertce relation becomes much
simpler using the local coordinate representation:

An+l _ An
(5ot o
where
W. Cao and W. Qi




e *t[42.2Z, cos(k.a)=2i(Z}+Z})sin(k.a))

1
Tl=
(7] 4z2.Z, (2i(Zf—Z,2,)sin(kca)

Z.
I —cos(k.a)+i == sin(k.a)
Z,

(Vl=

ik, b Ze
e"r’| 1 —cos(k.a)—i =~ sin(k.a)
ZP

Note that both [T] and [V] are independent of n. One now
only needs to perform the T-matrix calculation once. The
vibration in the nth cell can be easily derived if vibration in
the first cell is known. For instance, the polymer vibration
recurrence relation now becomes

(An+l

n+l

) m( )+[[T]"“+[T]"72+---+[T]'

=y 5! +un-tree
-(717' V), (13

where [7] is the unit matrix and the exponent —1 represents
the matrix inversion. The above recurrence relation can be
further simplified to become

An+l V,
(Bn+l‘V2) =7y (B Vz) (14)
with
(V‘)=[UJ—[T13-*(V') (15)
v, v,

Equation (14) is much simpler for numerical calculations
compared to Eq. (5) which involves explicitly the coordi-
nates of all the cells.

IV. DAMPING EFFECTS

In a ceramic-polymer composite transducer, high damp-
ing in the polymer is desirable for reducing the ringing down
to increase the resolution and the bandwidth of the trans-
ducer. We can study this situation by introducing complex
wave numbers and acoustic impedance when the multisource
T-matrix technique described in Secs. II and III is used.

Let a, and a, represent the damping constants of the
polymer and ceramic, respectively, the damped waves may
be written in the following form:

'/,n‘,:A"e'—anei(wl-kPx)

+B,e%*e!“*%%)  (in polymer), (16)

Une=Cpe 0% W=k L D packpili*her)

+Ee'®" (in ceramic). (17)
If we introduce two complex wave numbers
k,=k,~ia,, (18)

J. Appl. Phys., Vol. 78, No. 7, 1 October 1995

e*s?[2i(Z2+ Z2)sin(k.a) +4Z.Z, cos(k.a)]

~2i(Z;-2Z;)sin(ka)

(1

(12)

Ec=kc_£acv (19)
Eqgs. (15) and (16) will have the same format as that of Eqgs.
(1a) and (1b). In addition, we can generalize the definition of
the acoustic impedance to include an imaginary part,

- Iz,,v" Capvf
Z,,=—;)—=Z,,—z o (20)
. koS a v°
Zc= w =Zc—‘ » (21)

All the derivations in Secs. I and III can be duplicated for
the damped system with these complex wave numbers, k

and k., and the complex impedance, Z, and Z The results
are the same except replacing the real, k Jke, Z ,and Z_ by
their complex counterpart. The resonance magnitude will be
greatly reduced as we will see from the calculations below.

V. RESULTS AND DISCUSSIONS

In a composite transducer, the polymer phase can be
chosen to be lossy in order to reduce the level of spurious
resonance from the shear waves, while the damping in ce-
ramic is relatively small and have little flexibility for adjust-
ment. For simplicity damping is introduced only in the poly-
mer (a,=0) in the calculations. The damping factor in our
calculation is assumed to be a linear function of frequency

a,=ag(5.41X1073f-20.49)/m, (22)

where f is the frequency in Hertz and aq is an adjustable
factor. The coefficients were so chosen that when ay=35, the
rhs of Eq. (22) divided by the conversion factor In 10=2.3
will give the a, value in dB.

Most of the composite transducers operate in the thick-
ness mode, i.e., resonance in the z direction shown in Fig. 1.
Because the pitch scale (the period) d is usually made very
small in conventional transducer design in order to make the
pitch resonance will be at a much higher frequency than the
thickness mode. The transducer will not function well when
the spurious transverse modes occur.

In order to study the relevant shear modes in a multi-
source system, we define an average amplitude of the ce-
ramic components M as a measure to characterize those rel-
evant shear modes,

1 N
=5 gl |y |dx, (23)

ceramic
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FIG. 2. Frequency dependence of the average ceramic vibration amplitude
for shear wave propagation in a multisource driven system. Polymer damp-
ing is chosen at ap=2.

where the integration is on the ceramic element only to ac-
count for the piezoelectric effect. N is the total number of the
cells in the composite.

To be more general, M is normalized by the magnitude
of the applied drive |E|, and the frequency is normalized by
the half wavelength shear wave resonance frequency of the
polymer element,

1TVP
Wy~ b N . (24)
where v, is the shear acoustic velocity of the polymer.

(4
Figure 2 shows the frequency dependence of M for a 50

cell 2-2 composite with the polymer width »=0.352 mm and
the ceramic width a=0.2732 mm (44% ceramic by volume).
The physical properties of ceramic and polymer used for the
calculations are given in Table I. Figure 2 shows three peaks
of M, corresponding to the pitch resonance, its third har-
monic, and a higher shear resonance. Other peaks at much
lower frequencies related to the overall size of the composite
structure have much smaller magnitude and therefore ig-
nored here.

The most pronounced low-frequency peak is the one
near wy, or w/wy~1, corresponding to the pitch resonance,
we call it the main peak. In transducer design, this main peak
is the most interesting one which determines the frequency
limit for the composite transducer. In what follows we will
devote most of the effort to study this main peak.

In order to see the physical meaning of those peaks in
Fig. 2, we have calculated the space profile and phase varia-
tion inside the composite at these corresponding peak fre-

TABLE L. Material properties for the ceramic and polymer constituents of
the 2-2 composite.

Ceramic: c§s=2.4 (10'° N/m?), p.=7800.
Polymer: ¢5s=1.59 (10° N/m?), p.=1160.
4644 J. Appl. Phys., Vol. 78, No. 7, 1 October 1995
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FIG. 3. Space profile of the vibration amplitude and phase for a 50 cell
composite at the main peak frequency of w=1.056wy.

quencies. Figure 3 is the space profile of a 50-cell composite
at the main peak frequency of 1.056w,. We can see clearly
that the pattern corresponds to the full wavelength pitch reso-
nance with the ceramic and polymer elements vibrating 180°
out of phase. It is important to note that this is the first
excited mode in this structure due to the symmetry of the
driving force applied to the composite, whereas in the single
drive analysis, other nonpiezoelectric active modes will also
appear.'® The second important point that should be noted in
Fig. 3 is the strong edge effects, which are unavoidable ina
finite system. The edge effects can be seen more clearly in
Fig. 4 which displays the space profile and the phase varia-
tion of several composites made of 6, 10, and 50 cells. Both
the magnitude and the phase are affected by the composite
size. As a consequence, the main peak of the average mag-
nitude also shows some degree of size dependence, both the
magnitude and the peak frequency are smaller for compos-
ites with lesser cells, but these values saturate after
N>100." :

The amplitude of the main peak is affected strongly by
the damping in the polymer phase as shown in Fig. 5. The
peak value M, changes drastically with the increase of the
damping coefficient a, defined in Eq. (22). This suggests that
lossy polymer can play an important role in reducing the
effects of the pitch resonance.

VI. EFFECTS OF RANDOMIZATION

Considering the fact that the main peak is from the pitch
resonance due to the periodic nature, it should be reduced or
eliminated if the periodicity is de.'stroyed.'z"5 There are two
kinds of fabrication processes in making a composite, one is
placing ceramic elements of the same size with certain spac-
ing in between and then filling in the gaps with polymer
resin; the other is to dice a solid ceramic to create the kerfs
and then filling in those kerfs with polymer. The former has
a fixed ceramic dimension, or constant a, while the latter has
a constant polymer width b (saw blade thickness). Therefore,
randomizing a would be easier for the latter fabrication pro-
cess and randomizing b would be easier for the former fab-
rication process. Using the multisource T-matrix techniques

W. Cao and W. Qi
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cell composite.

described in Sec. II, we have studied the effects of random-
ization for the multisource driven system in both cases of a
random and b random,

Figure 6 shows the effects of randomizing ceramic spac-
ing b. It is expected that the randomization of b will have a
strong effect because the main resonance peak shown in Fig.
2 appears to be close to the polymer half-wavelength reso-
nance frequency. ’

The randomized ceramic spacing b, is chosen according
to the following formula:

Nb,

biz(l—X)b0+XCrriv Cr=irv (25)

[ I
where b is the arithmetic mean of the ceramic spacing (or
polymer width), N is the total number of cells, r; (i
=1,...,N) is a set of random numbers between 0 and 1, and
X is the percentage of randomization which is defined o be
the variable percentage of b;. We have studied the cases of
X=5%, 10%, 20%, and 50%.

As shown in Fig. 6, the resonance nature changes dra-
matically with the introduction of randomness. The magni-
tude of the main resonance peak is reduced by 40% with
only 5% randomness. At the same time, there are more small
bumps created in the vicinity of the original main peak.
Theoretically speaking, more randomness in the structure is
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FIG. 5. Effect of damping on the main resonance peak. ay are chosen to be
2,5,and 8, respectively.

better in terms of dispersing the main resonance peak, but the
effect is the strongest within the first 20% randomness.

We also found that the influence of randomizing b on the
main peak becomes much weaker for high ceramic volume
percent composites for which the major contribution to the
main low-frequency resonance will come from the ceramic.
On the other hand, randomizing a has different effects as
shown in Fig. 7, where the results were calculated for a com-
posite with 45% ceramic. When the ceramic percentage is
less than 60% ceramic volume content, the main low-
frequency peak is reduced but still relatively strong even for
50% randomness of q. Interestingly, the shape of the peak
remains practically the same. However, when the ceramic
percent is more than 70%, the shape of the main peak will be
destroyed through randomizing a. Figure 8 shows the calcu-
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FIG. 6. Effects of randomizing b for a composite with 45% ceramic volume
content. The percentages of randomness are 5%, 10%, 20%, and S0%, re-
spectively. The effectiveness decreases with the increase of ceramic content.
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FIG. 7. Effects of randomizing a for a 45% ceramic composite. The per-
centages of randomness are 5%, 10%, 20%, and 50%. respectively. The
influence on the low-frequency main peak is much smaller compared with
randomizing b as shown in Fig. 6.

lated results for a composite contains 80% ceramic. We can
see that the effect of randomizing a is much larger compared
with the results shown in Fig. 7.

Vil. SUMMARY AND CONCLUSIONS

We have derived the recurrence relation for the vibration
amplitude among different cells in a multisource driven
stratified structure using an extended multisource T-matrix
technique. Ceramic-polymer composites with 2-2 connectiv-
ity is a perfect example of such situation. The new criteria
Eq. (23) introduced here can directly identify the relevant
shear modes that affect the thickness mode operation. Analy-
ses show that the lowest shear mode, corresponding to the
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FIG. 8. Effects of randomizing a for a composite with 80% ceramic volume
content. The percentages of randomness are 5%, 10%, 20%, and 50%. re-
spectively. Note this peak does not appear for a low ceramic content com-
posite, for which the lowest peak is near wy as shown in Fig. 6.
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pitch resonance, is the most important mode which couples
strongly to the thickness resonance in a periodic composite
transducer.

The pitch resonance can be destroyed by randomization.
For moderate ceramic volume content (60% or less), the
main peak is primarily linked to the spacing between the
ceramics. In this case, we found that randomizing the spac-
ing between ceramics, i.e., b is much more effective than
randomizing a, the ceramic width. On the other hand, for
very high percentage ceramic content (70% or more), the
effect of randomizing a becomes more effective than ran-
domizing b since the main low-frequency peak is tied more
to the ceramic dimension. These results can provide useful
guidelines for making random composite transducers.
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APPENDIX

Assuming there are m acoustic sources located at
-a,,—a,,...,~a, sending waves to forward direction,
then the wave form at position x is the linear superposition of
these waves:

Y(x)=A ellerkaranly 4 gilor—kix+aply ...
+Amei[m—k(x+a,,)]=[Ale—ilm,+Aze—ika2+,,_
+ A e kam]giwi=ki) = g gilwi—ka), (A1)
where
A=Ae" k0t A e ka1t g o ikam

is a complex number. Therefore, both the forward and back-
ward waves can be written as a simple wave form even for
the multisource system except the amplitude is now a com-

plex number.
For the ceramic elements the wave function also should

include the uniform driving of the external field.
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