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ABSTRACT 

This report documents work carried forward over the fourth year of a five year ONR 

sponsored University Research Initiative (URI) entitled "Materials for Adaptive Structural Acoustic 

Control." The program has continued to underpin the development of new electro-ceramic, single 

crystal and composite materials combinations for both the sensing and actuation functions in 
adaptive structures. 

For the lead based perovskite structure relaxor ferroelectric electrostrictors, new 

experimental and theoretical studies have underscored the critical role of nano-scale heterogeneity 

on either A or B sites of the AB03 in promoting dispersive dielectric response and the very strong 

opposing role of elastic stress and electrostrictive coupling in suppressing polarization fluctuations. 

Most important for practical application is the regimen where, under high electric field nano-polar 

regions begin to amalgamate into ferroelectric macro-domains with very mobile walls lead to 

unusually large extrinsic piezoelectric coefficients. 

The program has explored a range of new relaxonferroelectric solid solutions which exhibit 

morphotropic phase boundaries between rhombohedral and tetragonal ferroelectric phases. Some 

of these compositions are much more tractable than PZT to grow in single crystal form. A major 

surprise is the very strong enhancement of the piezoelectric d33 and d31 in the crystal over that in the 

corresponding ceramic, and the massive anisotropy for different orientations and directions of 

poling. Optical studies suggest that the unusual effects reside largely in the extrinsic (domain 

controlled) response and we speculate about the mobility of walls in metastable phases, however 
further studies are required. 

Antiferroelectric:ferroelectric phase switching studies in a wide range of compositions in 

the lead lanthanum zirconate stannate titanate system show that the first abrupt switchover to the 

rhombohedral ferroelectric phase only produces volume strain -0.2% as checked both by 

dilatometry and by X-ray. There is a large enhancement under higher field to -0.6% volume strain 

although the polarization does not change markedly. From thin film and single crystals studies 

there is mounting evidence of higher field ferroelectric:ferroelectric phase change, but again 

additional work is needed. 

Size effect studies in perovskite ferroelectrics are continuing on this program and on the 

NSF/MRG in MRL. Scaling of the 90° stripe domains in thinned TEM samples of tetragonal 

composition begin to show departure from the accepted 1/2 power law at sub micron sizes. The 

structure of domains under the three dimensional constraints of grains inside the ceramic is still 

however almost completely unknown. Computer modeling appear to show promise and codes are 

being explored which permit the mutual interactions to be varied and the corresponding two 

dimensional structures visualized. 



In composite sensors, the focus has continued upon the flextensional configurations with 

the new inexpensive cymbal shaped amplifier proving superior in every respect to the original 

"moonie." The flat section on the cymbal end cap permits very easy stacking of elements and work 

is now in progress to develop large area panels for low frequency testing at the Penn State ARL. 

Work has continued on the thin sheet 2:2 piezoceramic polymer composites, where the 

transverse poling and low density lead to a desirable combination of low electrical and low acoustic 

impedance. An alternative fabrication procedure using extruded PZT honeycomb appears most 
attractive. 

Two problems of major importance in actuation have been topics for study. First what are 

the "intrinsic" material limitations for high strain electrically driven actuation in polarization 

controlled systems, and secondly what are the practical limitations in multilayer actuators as they 

are currently fabricated and how may they be alleviated. Work on the first topic is now largely 

completed, showing that strains -0.4% could be switched more than 109 cycles in suitable PLZT 

compositions. Such reliability however requires near theoretical density, homogeneity, grain size 

control, critical attention to electrodes and electric field uniformity, none of which are adequately 
controlled in current actuator systems. 

For practical actuators fabricated by inexpensive tape casting and co-firing techniques 

electrode termination is a major problem. In the simple MLC like designs, cracks initiate at field 

concentrations associated with the tip of the buried conductor layer. A new floating electrode 

design has been found to reduce this problem. For cracking near the end surfaces, poling of the 

termination layers reduces their stiffness and markedly improves performance. In the conventional 

structures it is also found that the floating electrode may be used directly as an acoustic emission 
pickup, giving early warning of cracking problems. 

Under resonant driving conditions, the problems in actuators are markedly different. Heat 

build up and temperature run-away are significant problems traceable to dielectric loss, and new 

hard compositions and anti-resonant driving methods have been explored to reduce these 
problems. 

In integration work on the high activity 0-3 composites in nearing completion. A new type 

of zig-zag actuator is being explored for the capability to combine both longitudinal and transverse 

actuation. Under a new ONR sponsored program with Virginia Polytechnic Institute and 

University new double amplifiers combining bimorph and flextensional concepts are being 
examined. 

Processing studies permit the fabrication of the wide range of compositions and forms 

required in these material researches. Rate controlled sintering is proving to be highly 

advantageous, particularly for reducing delamination in integrated structures.  Electrophoretic and 



dielectrophoretic forming are showing promise in green assembly of thick film components where 
high green density is critical. 

Thin film papers have been selected from the very broad range of work in MRL because of 

their relevance to transduction in piezoelectric and in phase switching systems. 



MATERIALS FOR ADAPTIVE STRUCTURAL 
ACOUSTIC CONTROL 

Period February 1,1995 to January 31,1996 

Annual Report 

VOLUME III 

OFFICE OF NAVAL RESEARCH 
. Contract No.:  N00014-92-J-1510 

APPROVED FOR PUBLIC RELEASE — DISTRIBUTION UNLIMITED 

Reproduction in whole or in part is permitted 
for any purpose of the United States Government 

L. Eric Cross 

PENNSTATE 

18   5   5 

THE MATERIALS RESEARCH LABORATORY 
UNIVERSITY PARK, PA 



APPPENDICES 

VOLUME I 

General Summary Papers 

1. Cross, L.E., "Ferroelectric Materials for Electromechanical Transducer Applications," 
Jpn. J. Appl. Phys. 34, 2525-2532 (1995). 

2. Fernandez, J.F., A. Dogan, Q.M. Zhang, J.F. Tressler, and R.E. Newnham, "Hollow 
Piezoelectric Composites," submitted to Sensors and Actuators: A. Physical (1995). 

3. Uchino, K., "Recent Developments in Ceramic Actuators-Comparison among USA, Japan 
and Europe," Workshop on Microsystem Technologies in the USA and Canada, 
Düsseldorf (1995). 

4. Trolier-McKinstry, S., J. Chen, K. Vedam, and R.E. Newnham, "In Situ Annealing 
Studies of Sol-Gel Ferroelectric Thin Films by Spectroscopic Ellipsometry," 
/. Am. Ceram. Soc. 78 [7], 1907-1913 (1995). 

5. Nair, N., A. Bhalla, and R. Roy, "Inorganic Lead Compounds in Electroceramics and 
Glasses," Am. Cer. Soc. Bull. 75 [1], 77-82 (1996). 

6. Gentile, A. and F.W. Ainger, "Single Crystals," Chapter 9, Materials Science and 
Technology, A Comprehensive Treatment, 17A Processing of Ceramics, Part 1 
(R. J. Brook, editor), VCH Verlagsgesellschaft mbH, Weinheim, Fed. Repl. of Germany 
(1996). J 

Materials  Studies 

I. Choi, S.W., J.M. Jung, and A.S. Bhalla, "Dielectric, Pyroelectric and Piezoelectric 
Properties of Calcium-Modified Lead Magnesium Tantalate-Lead Titanate Ceramics." 

8. Kim, Y.J., S.W. Choi, and A.S. Bhalla, "Dielectric, Pyroelectric Properties, and 
Morphotropic Phase Boundary in La-Doped (l-x)Pb(Mg1/3Ta2/3)-xPbTiO, Solid Solution 
Ceramics", Ferroelectrics 173, 87-96 (1995). 

9. Alberta, E. and A.S. Bhalla, "A Processing and Electrical Property Investigation of the 
Solid Solution: (x) Pb(In1/2Nb1/2)03-(l-x)Pb(Sc1/2Ta1/2)03," submitted to Ferroelectrics 
(1995). 

10. Zhang, Q.M., H. You, M.L. Mulvihill, and S.J. Jang, "An X-ray Diffraction Study of 
Superlattice Ordering in Lead Magnesium Niobate," Solid State Comm. 91 [8], 693-698 
(1996). 

II. Zhang, Q.M., J. Zhao, and L.E. Cross, "Aging of the Dielectric and Piezoelectric 
Properties of Relaxor Ferroelectric Lead Magnesium Niobate-Lead Titanate in the Electric 
Field Biased State," J. Appl. Phys. 19 (6), 1-7 (1996). 



VOLUME II 
Materials Studies (continued) 

12. Zhang, Q.M., J. Zhao, T.R. Shrout, and L.E. Cross, "The Effect of Ferroelastic Coupling 
in Controlling the Abnormal Aging Behavior in Lead Magnesium Niobate-Lead Titanate 
Relaxor Ferroelectrics," submitted J. Mat. Res. 

13. Mulvihill, ML., L.E. Cross, and K. Uchino, "Low-Temperature Observation of Relaxor 
Ferroelectric Domains in Lead Zinc Niobate," J. Am. Ceram Soc. 78 (12) 3345-3351 
(1995). 

14. Mulvihill, ML., L.E. Cross, and K. Uchino, "Dynamic Motion of the Domain 
Configuration in Relaxor Ferroelectric Single Crystals as a Function of Temperature and 
Electric Field," 8th Euro. Mtg. Ferroelectricity, Nijmegen (1995). 

15. Mulvihill, ML., K. Uchino, Z. Li, and Wenwu Cao, "In-Situ Observation of the Domain 
Configurations During the Phase Transitions in Barium Titanate," accepted Phil. Mag. B 
(1995). 

16. Oh, K.Y., K. Uchino, and L.E. Cross, "Electric Properties and Domain Structures in 
Ba(Ti,Sn)03 Ceramics." 

17. Cao, W., "Elastic and Electric Constraints in the Formation of Ferroelectric Domains," 
Ferroelectrics, 172, 31-37 (1995). 

18. Cao, W. and C. A. Randall, "The Grain Size and Domain Size Relations in Bulk Ceramic 
Ferroelectric Materials," accepted J. Phys. Chem. Solids (1995). 

19. Cao, W., "Defect Stabilized Periodic Amplitude Modulations in Ferroelectrics," accepted 
Phase Transitions (1995). 

20. Sopko, J., A. Bhalla, and L.E. Cross, "An Improved Quantitative Method for Determining 
Dynamic Current Response of Ppyroelectric Materials" Ferroelectrics, 173,139-152 
(1995) 

VOLUME III 

Composite   Sensors 

21. Tressler, J.F., A. Dogan, J.F. Fernandez, J.T. Fielding, Jr., K. Uchino, and 
R.E. Newnham, "Capped Ceramic Hydrophones," submitted to Proc. IEEE Int'l 
Ultronics Symp., Seattle (1995). 

22. Koc, B., A. Dogan, J.F. Fernandez, R.E. Newnham, and K. Uchino, "Accelerometer 
Application of the Modified Moonie (Cymbal) Transducer," submitted Jpn. J. Appl. Phys. 
(1995). 

23. Zhao, J., Q.M. Zhang, and W. Cao, "Effects of Face Plates and Edge Strips on 
Hydrostatic Piezoelectric Response of 1-3 Composites," Ferroelectrics 173, 243-256 
(1995). 

24. Wu, S.J., W. Qi, and W. Cao, "Numerical Study of Ultrasonic Beam Pattern of a 1-3 
Piezocomposite Transducer," accepted Proc. IEEE Trans. Ultrasonics, Ferroelectridcs and 
Frequency Control. (1995). 

3 ONR 1995 Annual Report 



Composite Sensors (continued)-^blume III 

25. Wang, H., Q.M. Zhang, and L.E. Cross, "Tailoring Material Properties by Structure 
Design-Radially Poled Piezoelectric Cylindrical Tube," Ferroelectrics Lett, (in press). 

26. Zhang, Q.M. and X. Geng, "Electric Field Forced Vibration of a Periodic Piezocomposite 
Plate with Laminated Structure and Reflection and Transmission of a Plane Wave at the 
Fluid-Composite Interface," submitted to IEEE Transactions on Ultrasonics, Ferroelectrics, 
and Frequency Control (1995). 

27. Geng, X., and Q.M. Zhang, "Dynamic Behavior of Periodic Piezoceramic-Polymer 
Composite Plates," Appl. Phys. Lett. 67 (21) (1995). 

28. Zhang, Q.M., "Transverse Piezoelectric Mode Piezoceramic Polymer Composites with 
High Hydrostatic Piezoelectric Responses," Proc. Int. Conf. on Electronic Components 
and Materials Sensors and Actuators, Xi'an, China, 159-162 (1995) 

29. Zhang, Q.M., H. Wang, J. Zhao, J.T. Fielding, Jr., R.E. Newnham, and L.E. Cross, 
"A High Sensitivity Hydrostatic Piezoelectric Transducer Based on Transverse 
Piezoelectric Mode Honeycomb Ceramic Composites," IEEE Transactions on Ultrasonics, 
Ferroelectrics and Frequency Control 43 (1), 26-42 (1996). 

30. Zhang, Q.M., J. Chen, H. Wang, J. Zhao, L.E. Cross, and M.C. Trottier, "A New 
Transverse Piezoelectric Mode 2-2 Piezocomposite for Underwater Transducer 
Applications," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 
42 (4), 774-780 (1995). 

31. Cao, W., Q.M. Zhang, J.Z. Zhao, and L.E. Cross, "Effects of Face Plates on Surface 
Displacement Profile in 2-2 Piezoelectric Composites," IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control 42 (1), 37-41 (1995). 

32. Cao, W. and W. Qi, "Plane Wave Propagation in Finite 2-2 Composites," J. Appl. Phys. 
78 (7), 4627-4632 (1995). 

33. Qi, W. and W. Cao, "Finite Element Analysis and Experimental Studies on the Thickness 
Resonance of Piezocomposite Transducers," accepted Ultrasonic Imaging (1995). 

34. Cao, W. and W. Qi, "Multisource Excitations in a Stratified Biphase Structure," J. Appl. 
Phys. 78 (7), 4640-4646 (1995). 

VOLUME IV 

Actuator Studies 

35. Uchino, K., "Materials Update: Advances in ceramic actuator materials," Materials Lett. 
22, 1-4 (1995). 

36. Uchino, K., "Novel Ceramic Actuator Materials." 

37. Aburatani, H., K. Uchino, and A.F. Yoshiaki, "Destruction Mechanism and Destruction 
Detection Technique for Multilayer Ceramic Actuators," Proc. of the 9th Annual 
International Symposium on the Applications of Ferroelectrics, 750-752 (1995). 



Actuator Studies (continued)-Volume IV 

38. Uchino, K. "Manufacturing Technology of Multilayered Transducers," Proc. Amer. 
Ceram. Soc, Manufacture of Ceramic Components, 81-93 (1995). 

39. Uchino, K. "Piezoelectric Actuators/Ultrasonic Motors—Their Development and Markets," 
Proc. 9th ISAF, 319-324 (1995). 

40. Dogan, A., J.F. Fernandez, K. Uchino, and R.E. Newnham, "New Piezoelectric 
Composite Actuator Designs for Displacement Amplification," in press Proc. Euroceram 95 
(1995). 

41. Onitsuka, O., A. Dogan, J.F. Tressler, Q.Su, S. Yoshikawa, and R.E. Newnham, "Metal- 
Ceramic Composite Transducer, The 'Moonie'," J. Intelligent Materials Systems and 
Structures 6, 447-455 (1995). 

42. Fernandez, J.F., A. Dogan, J.T. Fielding, K. Uchino, and R.E. Newnham, "Tailoring 
High Displacement Performance of Ceramic-Metal Piezocomposite Actuators 'Cymbals'," 
submitted to IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 
(1995). 

43. Hirose, S., S. Takahashi, K. Uchino, M. Aoyagi, and Y. Tomikawa, "Measuring 
Methods for High-Power Characteristics of Piezoelectric Materials," Mat. Res. Soc. Symp. 
Proc. 360, 15-20 (1995). 

44. Takahashi, S., S. Hirose, K. Uchino, and K.Y. Oh, "Electro-Mechanical Characteristics 
of Lead-Zirconate-Titanate Ceramics Under Vibration-Level Change," Proc. 9th ISAF, 
377-382 (1995). 

45. Takahashi, Sadayuki, Yasuhiro Sasaki, Seiji Hirose, and Kenji Uchino, "Electro- 
Mechanical Properties of PbZrC^-PbTiCyPKMn^Sb^C^ Ceramics Under Vibration- 
Level Change," Mat. Res. Soc. Symp. Proc. 360, 305-310 (1995). 

VOLUME V 

46. Zheng, Jiehui, Sadayuki Takahashi, Shoko Yoshikawa, Kenji Uchino, and 
J.W.C. de Vries, "Heat Generation in Multilayer Piezoelectric Actuators," submitted to 
J. Am. Ceram. Soc. (1995). 

47. Uchino, Kenji, "Review: Photostriction and its Applications," in press J. Innovations in 
Mater. Res. (1995). 

48. Chu, Sheng-Yuan, and Kenji Uchino, "Photo-Acoustic Devices Using (Pb,La)(Zr,Ti)03 
Ceramics," Proc. 9th ISAF, 743-745 (1995). 

Integration  Issues 

49. Matsko, M.G., Q.C. Xu, and R.E. Newnham, "Zig-Zag Piezoelectric Actuators: 
Geometrical Control of Displacement and Resonance," J. Intell. Mat. Syst. and Struct. 
6 (6), 783-786 (1995). 

50. Xu, Baomin, Qiming Zhang, V.D. Kugel, and L.E. Cross, "Piezoelectric Air Transducer 
for Active Noise Control," submitted Proc. SPIE (1996). 

ONR 1995 Annual Report 



Integration Issues (continued)-Volume V 

51. Kumar, S., A.S. Bhalla, and L.E. Cross, "Underwater Acoustic Absorption by Collocated 
Smart Materials," accepted Ferroelectric Letters (1995). 

52. Elissalde, Catherine and Leslie Eric Cross, "Dynamic Characteristics of Rainbow 
Ceramics," J. Am. Ceram. Soc. 78 [8], 2233-2236 (1995). 

Processing   Studies 

53. Bowen, Christopher P., Thomas R. Shrout, Robert E. Newnham, and Clive A. Randall, 
"Tunable Electric Field Processing of Composite Materials," J. of Intelligent Material 
Systems and Structures 6 (2), 159-168 (1995). 

54. Zhang, Q.M., J. Zhao, T. Shrout, N. Kim, and L.E. Cross, "Characteristics of the 
Electromechanical Response and Polarization of Electric Field Biased Ferroelectrics," 
J.Appl. Phys. 77 (5), 2549-2555 (1995). 

55. Zhao, J., Q.M. Zhang, N. Kim, and T. Shrout, "Electromechanical Properties of Relaxor 
Ferroelectric Lead Magnesium Niobate-Lead Titanate Ceramics," Jpn. J. Appl. Phys. 34, 
5658-5663(1995). 

56. Zipparo, M.J., K.K. Shung, and T.R. Shrout, "Piezoelectric Properties of Fine Grain PZT 
Materials," Proc. IEEEInt'l Ultrasonics Symposium (1995). 

57. Yoshikawa, Shoko, Ulagaraj Selvaraj, Paul Moses, John Witham, Richard Meyer, and 
Thomas Shrout, "Pb(Zr,Ti)03[PZT] Fibers-Fabrication and Measurement Methods," 
J. Intell. Mat. Syst. and Struct. 6 (2), 152-158 (1995). 

58. Hackenberger, W.S., T.R. Shrout, A. Nakano, and R.F. Speyer, "Rate Controlled 
Sintering of Low Temperature Cofired Ceramic Multilayers Used for Electronic 
Packaging." 

59. Randall, CA., N. Kim, W. Cao, and T.R. Shrout, "Domain-Grain Size Relation in 
Morphotropic Phase Boundary, Pb(Zr052,Ti04g)O3," 7th US:Japan Mtg. on Dielectric and 
Piezoelecttric Ceramics, Tsukuba, 145-149 (1995). 

60. Cann, David P., Clive A. Randall, and Thomas R. Shrout, "Investigation of the Dielectric 
Properties of Bismuth Pyrochlores," accepted Solid State Communication (1995). 

VOLUME VI 

61. Mulvihill, Maureen L., Seung Eek Park, George Risch, Zhuang Li, Kenji Uchino, and 
Thomas R. Shrout, "The Role of Processing Variables in the Flux Growth of PZN-PT 
Relaxor Ferroelectric Single Crystals." 

Thin Films Ferroelectrics 

62. Chen, H.D., K.R. Udayakumar, L.E. Cross, JJ. Bernstein, and L.C. Niles, "Dielectric, 
Ferroelectric, and Piezoelectric Properties of Lead Zirconate Titanate Thick Films on 
Silicon Substrates," J. Appl. Phys. 77 (7), 3349-3353 (1995). 



Thin Films Ferroelectrics (continued^-Volume VI 

63. Udayakumar, K.R., P.J. Schuele, J. Chen, S.B. Krupanidhi, and L.E. Cross, 
"Thickness-Dependent Electrical Characteristics of Lead Zirconate Titanate Thin Films," 
J. Appl. Phys. 77 (8), 3981-3986 (1995). 

64. Chen, H.D., K.R. Udayakumar, C.J. Gaskey, and L.E. Cross, "Electrical Properties' 
Maxima in Thin Films of the Lead Zirconate-Lead Titanate Solid Solution System," 
Appl. Phys. Lett. 67 (23), 3411-3413 (1995). 

65. Gaskey, C.J., K.R. Udayakumar, H.D. Chen, and L.E. Cross, "'Square' Hysteresis 
Loops in Phase-Switching Nb-Doped Lead Zirconate Stannate Titanate Thin Films," 
J. Mater. Res. 10 (11), 2764-2769 (1995). 

66. Yamakawa, K., S. Trolier-McKinstry, J.P. Dougherty, and S. Krupanidhi, "Reactive 
Magnetron Co-Sputtered Antiferroelectric Lead Zirconate Thin Films," Appl. Phys. Lett. 
67 (14), 2014-2016 (1995). 

67. Ravichandran, D., K. Yamakawa, A.S. Bhalla, and R. Roy, "Alkoxide Derived 
SrBi-Tap,, Phase Pure Powder and Thin Films." 

68. Thakoor, Sarita, A.P. Thakoor, and L. Eric Cross, "Optical Non-Invasive Evaluation of 
Ferroelectric Films/Memory Capacitors," Mat. Res. Soc. Symp. Proc. 360, 157-167 
(1995). 

ONR 1995 Annual Report 



COMPOSITE 
SENSORS 



APPENDIX 21 



CAPPED CERAMIC HYDROPHONES 

J.F. Tressler, A. Dogan, J.F. Fernandez, J.T. Fieldingjr., K. Uchino, 
and R.E. Newnham 

International Center for Actuators and Transducers 
Intercollege Materials Research Laboratory 

Pennsylvania State University 
University Park, PA 16802 

ABSTRACT 

Attaching specially shaped thin metal caps, each 
containing a shallow inner cavity, to the 
electroded surfaces of a piezoelectric ceramic 
will significantly enhance its hydrostatic 
sensitivity. The presence of the cavities allows 
the metal caps to convert a portion of the 
incident axial-direction stress into radial and 
tangential stresses of opposite sign, thus allowing 
the amplified d31 and d33 coefficients of the 
poled ceramic to now add together as opposed 
to subtracting from one another, thus 
magnifying the d„. By capping a PZT-552 disk, 
the dt, can be amplified by a factor of nearly 100 
and the g„ by a factor of almost 50. These 
particular hydrophones show the most promise 
for use in shallow water applications. 

INTRODUCTION 

When a poled piezoelectric ceramic, such as 
PZT, is subject to a hydrostatic pressure, a 
charge is developed in the poled direction. The 
magnitude of this charge is directly proportional 
to the material's hydrostatic charge coefficient, 
dfc, which is equal to its response from the 
thickness mode, dj3, plus its response from the 
planar mode, d31+d,2. Unfortunately, the d31 (=d]2 
due to symmetry) coefficient of PZT is opposite 
in sign and is approximately half the magnitude 
of its d33 coefficient; therefore, its d„ (=d33+2d31) 
is quite low. In addition, the hydrostatic voltage 
coefficient, g„, is small due to the large 
permittivity of PZT. For instance, the comp- 
osition PZT-552 used in this study has a d» of 
only 50pC/N and a g„ of 2mV«m/N. As a result, 
bulk PZT exhibits a rather low receive sensitivity 
and is therefore a generally poor hydrophone if 
entirely submersed into water. 

Over the course of the past 15 years, a number 
of PZT-polymer composite transducers with 
various   connectivities   have   been   developed 

which magnify both the d„ and g„ coefficients 
and hence exhibit a greater hydrophone 
sensitivity [1-2]. The enhanced d„ arises mainly 
from the polymer phase attenuating much of the 
incident lateral stress, thus minimizing the d3I 
contribution to d„. These polymer-ceramic 
composites also exhibit a lower density, which 
results in a better acoustical impedance match to 
water and an increased mechanical compliance. 
Disadvantages of these polymer-PZT composites 
include a low dielectric constant (i.e. 
capacitance), a greater pressure dependence on 
properties, and a high cost due to labor intensive 
fabrication techniques. 

The moonie and cymbal-type transducers are 
based on the concept of the flextensional 
transducer and possess a 2-(0)-2 connectivity. 
These transducers consist of a poled 
piezoelectric or electrostrictive ceramic disk 
(fully electroded on each face) sandwiched 
between two shaped metal electrode endcaps, 
each containing a shallow air-filled cavity on 
their inner surface. In the case of the moonie 
transducer, the cavities are in the shape of a half 
moon, whereas the cymbal contains a truncated 
cone-shaped cavity (see Figure 1). The presence 
of these cavities allows the metal caps to serve as 
mechanical transformers for transforming a 
portion of the applied axial-direction stress into 
tangential and radial stresses of opposite sign. 
Thus, the d3, and d33 contributions of the PZT 
now add in the effective d„ of the device rather 
than subtract. 

Figure 1: Cross-sectional view of the standard 
cymbal transducer. Arrows show direction of 
stress redistribution. 



EXPERIMENTAL PROCEDURE 

Cymbal Fabrication 

Using metal foil between 120u.m and 380M.ni 
thick, 12.7mm diameter caps were simul- 
taneously cut and shaped. The cavity was 9.0mm 
in diameter and ranged in depth from 120um to 
500um. These caps were then adhered to 
1.00mm thick, 12.7mm diameter poled PZT-552 
disks (Piezo Kinetics) using Emerson and 
Cuming insulating epoxy. To ensure proper 
alignment of the caps, the entire assembly was 
kept under pressure in a special die during the 
24 hour curing step. 

Cymbal Characterization 

In order to characterize the quality of the metal- 
PZT bond, the admittance as a function of 
frequency was measured using an HP 4194A 
Impedance Analyzer. This technique was found 
to be very sensitive to both defects in the 
bonding layer as well as the presence of an 
unsymmetric bonding layer [3]. 

The capacitance, C, of the cymbal transducer was 
measured in air at both 100 Hz and 1 kHz using 
a Stanford Research Systems Model SR 715 
LCR Meter. In addition, the capacitance was 
remeasured under hydrostatic pressure at 1 kHz 
using an HP 4192A LF Impedance Analyzer. 
The dielectric constant, K, was calculated from 
equation (1), 

K = Ct/E„A (1) 

where A is the electrode area of the ceramic 
(12.7mm), t is the total thickness of the 
transducer, and e0 is the permittivity of free 
space. 

dh measurement 

The effective dh of the cymbal transducer as a 
function of hydrostatic pressure was measured 
using the system shown in Figure 2. The oil in 
the hydrostatic pressure chamber served as a 
sonic medium for the transmission of pressure 
(in this case at 30 Hz). The sample was exposed 
to this pressure equally in all directions and the 
charge in the poled direction was measured. At 
the same time a standard, Ca-doped lead titanate, 
with known d„ mounted next to the sample was 
measured in the same way while exposed to 
identical conditions. The d„ (short circuit 
current) was measured instead of gh (open circuit 
voltage)   since   a   single   amplifying   circuit 

converted the current into a proportional 
voltage, thus reducing the problem of noise 
pickup and eliminating the problem of loading 
high impedance transducers. The relationship 
between the time-varying charge in the sample 
(dQ/dt) which produces current at the input of 
the op-amp, and the output voltage makes this 
circuit a current to voltage converter. Since the 
output voltage from the sample was compared to 
a standard, the exact value of the feedback 
resistor, Rf, became immaterial. The voltage at 
the input of the op-amp was equal to or nearly 
equal to zero volts (a virtual ground), thus 
making for a short-circuit measurement. In 
addition, all the voltages in the wiring connected 
to the samples were at ground, essentially 
eliminating the effect of stray capacitance 
between them and any other point in the system. 

The effective hydrostatic voltage coefficient, &„ 
for the hydrophone can be calculated from the 
measured (L,, as given in equation (2). The g„ 
coefficient is proportional to the hydrophone 
receive sensitivity, which is equal to the open 
circuit voltage measured at the terminals of a 
hydrophone per unit incident pressure. 

g„ = d„/KE0 (2) 

hydrostatic 
pressure 
chamber 

■C  standard"")1 -^   ? 
-C   sample 

AC 
stress generator "S: 

"in 
i—AAf— 

HP Wide Range 
Oscillator 
Model 200CD 

HP3585A 
Spectrum Analyzer 

Figure    2:    Experimental    set-up    used    for 
performing d„ measurements. 

EXPERIMENTAL RESULTS 

The results presented in this paper will focus on 
the cymbal transducer, as the hydrostatic 
properties of the moonie transducer have been 
reported previously [4]. Figure 3 shows the 
admittance spectrum of a cymbal transducer 
with brass caps 250um thick and a cavity depth 



of 250um. The first resonance, at 17kHz, is 
associated with the flextensional, or umbrella, 
mode of the endcaps, whereas the resonance at 
175kHz is due to the radial mode of the 
ceramic. Sharp resonance peaks, combined with 
the absence of any spurious modes between the 
two primary resonances, are indicative of a high- 
quality metal to ceramic bond. 

80 120 
frequency (kHz) 

160 200 

Figure 3: Admittance as a function of frequency 
for a cymbal transducer. 

Figure 4 shows the dielectric constant and loss of 
a 2.0mm thick cymbal transducer (with brass 
endcaps) measured at 1kHz as a function of 
hydrostatic pressure. The capacitance of the 
cymbal was measured to be 3500pF, which is the 
same as when measured in air, and is about ten 
percent less than that of the bulk PZT-552 disk 
itself. The loss is also similar to that measured in 
air and is slightly larger than that of the bulk 
PZT due to the presence of the epoxy layer. The 
dielectric constant is independent of pressure 
within the working range of the hydrophone 
(1.4MPa). 

u 
''S 

0.0    0.3    0.6     0.9    1.2    1.5 
hydrostatic pressure (MPa) 

Figure 4: Dielectric constant and loss measured 
under pressure at 1kHz for a cymbal transducer 
with brass caps 250u,m thick and a cavity depth 
of 250um. 

Figure 5 shows the pressure dependence of the 
effective d„ and gh coefficients for various 
cymbal cap materials. The data show that as the 
cap material becomes suffer, the pressure 
tolerance increases, but at a cost of reduced 
sensitivity. This is due to the suffer metals being 
less able to radially transfer the incident axial 
stress to the ceramic. The more compliant 
metals, such as brass, can magnify the dh of the 
PZT by a factor of 90 and the g„ by a factor of 
45. Even very stiff metals like tungsten can 
amplify the d„ and g„ values of the PZT by 
factors of 30 and 15, respectively. 

Both the d|, and g„ coefficients remain relatively 
constant within a certain working pressure range 
for each endcap material. For instance, kovar 
cymbals can be used repeatedly up to about 
3MPa. However, once this range has been 
exceeded, the high sensitivity is not recoverable, 
presumably due to a buckling of the endcaps. 
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20 

0 

> 
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■a 
> 

•3 

I 
0      12      3      4      5     6      7 

hydrostatic pressure (MPa) 
Figure 5: Effect of cap material (shown with its 
Young's Modulus) on the d„ and g„ of the 
cymbal transducers. 

The first resonance frequency of the cymbal 
transducer with different cap materials is shown 
in Figure 6. This frequency appears to increase 
linearly as a function of the resonance 
frequency of a thin circular metal plate clamped 
around its circumference, and depends upon the 
metal's stiffness, density, and Poisson's ratio [5]. 
These results show that for a hydrophone with 
given dimensions, the resonance frequency can 
be varied simply by changing the cap material. 

Figure 7 shows the influence of cap thickness on 
both the d,, and g„ coefficients. As cap thickness 
increases from 120u.m to 380u,m, pressure 
tolerance increases, but again at the cost of 
reduced sensitivity. For the transducer with 
120ujn thick caps, a d„»gto product exceeding 10* 
x 10*15 m2/N is achieved, which is the highest ever 
reported for this size of hydrophone. 
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Figure 6: Effect of cap materials on the first 
resonance frequency of the transducer. In each 
case the caps were 250u,m thick and the cavity 
was 250\im deep. 
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Figure 8: Effect of cavity depth on the d„ and g„ 
coefficients. The cap material was 250um thick 
kovar. 
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Figure 7: Influence of cap thickness on the d„ 
and gh values. The cap material was brass with a 
250p.m deep cavity. 

Figure 8 shows how the cavity depth effects the 
d„ and g„ coefficients as a function of pressure. 
Very shallow cavities collapse at low pressures 
and do not permit the caps to transform axial 
stress into radial stresses very well, which 
accounts for the low sensitivity. As the cavity 
depth increases, both the pressure tolerance and 
the sensitivity are enhanced. At a cavity depth of 
500nm, though, the sensitivity decreases. This is 
due to the cavity shape now approaching that of 
a dome, which is very adept at withstanding very 
high pressures, as seen in the data, but is not as 
effective in transforming axial stress into radial 
stresses. Nevertheless, both the d„ and gh 
coefficients are still quite high, 2500pC/N and 
50mV«m/N, which are 50 and 25 times the value 
of the PZT, respectively. 

CONCLUSIONS 

The cymbal-type hydrophone is characterized 
by very large d„ and gh coefficients while 
retaining the high dielectric constant 
(capacitance) and low losses of the piezo- 
ceramic. The pressure dependence of the 
sensitivity can be tailored simply by changing 
the cap material, cap thickness, or cavity shape. 
These transducers have the advantage of being 
thin, lightweight, and inexpensive to fabricate. 
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The modified Moonie (Cymbal) transducer has been investigated for an accelerometer 

application. High effective piezoelectric charge coefficients (d33) of the Cymbal transducer 

was observed around 15000 pC/N, which is much higher than that   of the piezoelectric 

ceramic itself (~550 pC/N). With this feature the Cymbal trasducer is a good candidate for 

high sensitive accelerometer applications. The sensitivity of the Cymbal accelerometer was 

measured as a function of driving frequency and compared with the single plate ceramic 

disk which was used as driving component in the transducer. Besides, the geometry of the 

transducer such as endcap thickness, the effect of different PZT compositions and metal 

endcaps on sensitivity was investigated. The sensitivity 50 times better than the PZT disk 

was obtained. 

KEYWORDS: accelerometer, piezoelectric effect, modified Moonie (Cymbal) transducer, sensitivity 



1.       Introduction 

Accelerometers are used widely throughout engineering, both as research and development 

tools and as control-system components. However, the most popular application area is using of 

accelerometer for vehicle dynamics." Since the market especially for vehicle dynamics is very large, 

various types of accelerometer design have been reported .2~T> 

One of the most popular techniques to measure acceleration is using the piezoelectric effect of 

materials. In the piezoelectric effect, no matter which mode is used, such as compression 

(longitudinal), bending or shear, the sensitivity of acceleration sensor depends on piezoelectric charge 

coefficients of the material. When a longitudinal mode is used, the sensitivity is directly proportional 

to d33 of the material. PZT-based ceramics exhibit a large d33 constant, but still it is not high enough 

to measure acceleration efficiently. Therefore, PZT-polymer composites have been used by Ohara and 

Miyayama and the sensitivity has been tripled in comparison with the single PZT plate.2) The other 

way of improving sensitivity taken by Ohtsuki et al. was using multilayer piezoelectric ceramics,4) 

with sacrificing the cost Since piezoelectric sensors have various advantages such as fast response, 

which is very important for shock measurement, and simple detecting circuits, they are preferred for 

some applications such as safety and suspension systems in the automobile. A metal-piezoceramic 

composite structure with very high effective d33 constant may be a good alternative for acceleration 

sensors. 

A metal-ceramic composite design, Moonie, was first used for hydrophones which sense weak 

pressure wave in fluid.8) The metal endcaps of the Moonie were recently modified, and as an actuator 

higher displacements were obtained than multilayer actuators (See Fig.la) .910) The new transducer, 

"Cymbal", named after the endcap shape like cymbals, has also higher piezoelectric charge 

coefficients and an easy production method than the Moonie trasducer. 

In this study, the cymbal transducer has been used to detect acceleration, with metal endcaps 

transfering a longitudinal stress into a radial stress. When the metal endcaps move radially due to the 

compressive stress, the bonded PZT disk is stretched. Therefore, the ineffective d3i of a single PZT 



disk becomes effective, and that causes higher effective piezoelectric charge coefficient (d33*ff) and 

thus much higher sensitivity. r , \      ^ 

2.       Acceleration Sensitivity of the Cymbal 

The force from a mass (m) due to acceleration (F=m a) is transferred through the two metal 

endcaps on to the PZT thin disk, and it causes a stress toward the circumference of the ceramic disk, 

most of which is in the radial direction and some part of which acts as a compressive stress in the 

thickness direction (Fig. 1 b)). 

The polarization vector due to the stress acting on the polycrystalline piezoelectric disk is defined as: 

0 0 0 0 dw 0 
0 0 0 dis 0 0 
dn dis d33  0    0   0 

x2 
X3 x4 x5 
X« 

(1) 

where, Px, Py and Pz are the polarization vectors in a cartesian coordinate, di3, d33 and dis are the 

piezoelectric charge coefficients of radial,  longitudinal and shear mode and Xj's (i=l,...,6) are the 

stress components. In a cylindrical coordinate system, which is more suitable for the geometry of the 

piezoelectric thin disk, the stress components are; 

Xi = X2 = -KrF (2) 

X3 = KZF 

and 

X4 — X5 = Xö = 0. 

Then the polarization vector can be obtained as 

Pz=(d33Kz-2d31Kr)F. (3) 

Here, the proportional constants, K* and Kz, depend on geometry of the metal endcaps and the 

piezoelectric ceramic disk such as thicknesses of the metal and ceramic disks, cavity angle of the 

metal endcap 9, Young's modulus of the metal endcaps and diameter of the piezoelectric disk. Note 

that the negative value of di3 acts positively because of the negative sign of the summation. Then, 

charge generation for the whole disk can be defined as: 



Q = TO-22 (d33Kz - 2 d31K,)m a (4) 

and finally the charge sensitivity of this transducer defined by the charge generation by unit 

acceleration becomes: 

Sq = 7or2
2 (d33Kz - 2 d^KJm      [PC/(m/s2)] (5) 

3.      Experimental Procedure 

The composite transducers were made of electroded ceramic disks (12.7 mm in diameter and 

0.5,1 or 2 mm in thickness) and metal endcaps (12.7 mm in diameter with thickness ranging from 

0.18 to .30 mm). Piezoelectric properties of the PZT disks and elastic characteristics of the metal 

endcaps are given in Table I and Table n, respectively. Truncated-cone shape endcap was fabricated 

first by punching and then pressing the metal sheet up to 100 MPa to give 250 um cavity depth. The 

ceramic disk and metal endcaps were bonded together around the circumference with two component 

epoxy (Eccobond). The epoxy was distributed by taking care neither to fill the cavity nor to make 

open circuit between the endcaps and the electroded face of the PZT. After 24 hours epoxy curing 

process under a small pressure, the samples became ready for the measurements. 
ToJ?!«.,  1 
Table, 2 

Figure 2 shows the experimental setup of the sensitivity measurement of the metal-ceramic 

composite transducer. The transducer was fixed with added mass(8.4 g) inside a housing unit. A 

commercialized accelerometer (PCB 302A02) was mounted on the top of the housing unit to 

produce a reference signal. A mini-shaker (Bruel & Kjaer 4810) was used to produce vibration. A 

charge amplifier circuitry has been used during the Cymbal and the single PZT disk measurement. The 

output signals (mV/G) of the purposed transducer and the commercial accelerometer were measured 

simultaneously with a digital oscilloscope (Tektronix TDS 310)        rf"      ~> 
r*ij   ^ 

4.      Result and Discussion 

The metal endcaps of the Cymbal transducer transfer some part of the acceleration stress in 

the normal direction into the radial direction. Therefore, the sensitivity of the transducer depends not 

only on d33 but also on d3i of the piezo-ceramic. The Cymbal transducers with different piezoelectric 



ceramics whose piezoelectric charge coefficients are different, are compared in Fig. 3. The ceramic 

with the larger d33 and d3i in magnitude provides the higher sensitivity. As shown in Table I, PZT-5H 

shows the highest d3i constant, and also shows the highest sensitivity to the acceleration. The 

identical zirconium endcaps were used for all transducers.        

Figure 4 shows the sensitivity versus frequency of the PZT-5H single disk and of the Cymbal 

transducers with various metal endcaps. The output of the Cymbal transducer with Zirconium end 

caps was found to be about 50 times as large as that in PZT-5H itself. Considering the Young's 

modulus and the density of the PZT 5H ceramic (E = 71 GPa, p = 7.5 g/cm3), it may be concluded 

that the elastic properties similar to the PZT are required to transfer the acceleratin force effectively. 

It is also possible to compensate thermal delatation effect on the piezoelectric material by choosing a 

suitable endcap metal. For example, when tungsten endcaps have been used temperature insensitive 

displacement actuators have been obtained.n) ^_ 

The transferred stress from the metal endcaps, which act as springs, to the ceramic material 

depends also on the endcap geometry. Then, the sensitivity of the transducer is strongly affected by 

the thickness of the endcaps. When the endcaps are too thin, they deform without stretching the 

ceramic causing energy loss. On the contrary when they are too thick, they can not produce enough 

momentum in the radial direction, but the longitudinal stress on the edge of the ceramic disk. Figure 5 

shows the endcap thickness dependence of the sensitivity. The thickness 0.18 mm provided the 

highest sensitivity for the brass endcaps. 

F\s.s 
5.      Conclusion 

A metal-ceramic composite structure (Cymbal transducer) has been investigated for 

accelerometer applications. The Cymbal transducer has provided 50 times better sensitivity than the 

single PZT disk, which was used to make the Cymbal transducer. 

The most significant result was that the sensitivity of the purposed acceleration transducer 

depended on the geometry and the structure such as the cavity dept, thickness, Young's modulus of 

the metal endcaps as well as piezoelectric properties. 
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Figure Captions 

Figure 1. a) Structure of the modified Moonie (Cymbal). 

b) Schematic compressive force transformation to the radial direction on a ideal metal 

endcap. 

Figure 2.  Experimental setup for the sensitivity measurement 

Figure 3.   Dependence of the acceleration sensitivity on the PZT composition. 

Figure 4. Sensitivity for various metal endcaps. 

Figure 5. Dependence of the sensitivity on the endcap thickness. 



Table I. Piezoelectric properties of PZT disks used in the Cymbal transducer 

CERAMIC 

PZT8D 

PZT5A 

PZT5H 

1104 

1802 

3500 

tg5 

0.003 

0.016 

0.016 

d3i(pC/N) 

-107 

-208 

-285 

d33(pC/N) 

289 

429 

581 



Table II. Elasüc characteristics of metal endcaps used in the Cymbal transducer 

Metal 

Endcap 

Density 

(g/cm3) 

Young's Modulus (E) 

(GPa) 

Zirconium 6.49 77 

Brass 8.53 110 

Tungsten 19.30 405 

PZT5H 7.5 71 
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Piezoceramic-polymer composites with 1-3 connectivity provide higher hydrostatic figure of merit </„#„ 
and low density, which make them attractive for underwater applications. By incorporating rigid face 
plates on the composite electrode surfaces, the transverse piezoelectric response can be reduced effec- 
tively and dh increased significantly. When edge strips are put on the lateral dimensions, the hydrostatic 
response of the composite may be further improved, depending on the ratio of the sample thickness to 
the sample lateral dimensions and the elastic properties of the edge strips. In this work the effects of 
the rigid face plates and the edge strips on the piezoelectric response of 1-3 composites with different 
lateral dimensions were investigated. All the experimental features can be well accounted for by using 
the shear-coupling model developed recently by us and the isostrain model. Based on these results the 
relationship between the dh of the face plated 1-3 composite and the elastic properties of the polymer 
matrix as well as other design parameters is derived, which can serve as a guideline to optimize the 
material selection for 1-3 composites with larger hydrostatic response. 

Keywords: Piezocomposite, hydrostatic piezoelectricity, mechanical properties. 

I.    INTRODUCTION 

Piezoelectric ceramic-polymer composites with 1-3 connectivity possess many prom- 
ising features which make them attractive for hydrostatic applications.1-5 As has been 
demonstrated, both theoretically and experimentally, with a small aspect ratio of the 
ceramic rods and a proper ceramic content, the piezoelectric hydrostatic figure of 
merit dig,, (dh and gh are the piezoelectric hydrostatic charge and voltage coefficients 
respectively) of a composite can be substantially higher than the constituent ceramic 
phase.2,6 However, to fully utilize the potential of a 1-3 composite for hydrostatic 
applications, several issues have to be addressed. Small aspect ratio of ceramic rods 
will incur a high manufacturing cost and low reliability of the rods. The Poisson's 
ratio effect, which reduces the effect pressure on the polymer matrix in the ceramic 
rod poling direction by a factor of (1 — 2CT) where a is the Poisson's ratio of the 
polymer phase, drastically cuts down the effectiveness of the stress transfer from the 
polymer to the ceramic rods.7 In the past, a great deal of effort have been~devoted 
to address these issues and some progress has been made. One of the effective ways 
to improve the hydrostatic response of a 1-3 composite is to glue rigid face plates 
on the two electrode surfaces, as schematically drawn in Figure 1(a). Throughout 
this paper, the following convention will be used: the 3-direction (or the z-direction) 
is along the ceramic rod axial (poling) direction, the 1 and 2-directions (or x and y- 
directions) are in the plane perpendicular to the poling directions. 

tAuthor to whom all correspondence should be addressed. 

243 



244 J. ZHAO, Q. M. ZHANG and W. CAO 

rigid face plate 

1 d 1111LIL L i L111111111 II Mil TTTTTTTTT 

1-3 composite 
NMMNiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiii Illlllllllllin 

     Li     - 

(a) 

edge strip 

rigid face plate 

<m»"i' iiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiin 

1 -3 composite 

2(y) 

"*l(x) 

IIIIIIIIIIIMINIIIIIIIIIIIIIIIIIIIIIII lllllllllllUTTTTTTT1 

r  Li   

(b) 
FIGURE 1    (a) Schematic drawing of a face plated 1-3 composite, (b) schematic drawing of a face 
plated 1-3 composite with edge strips at two end faces in the 1-direction. 

The effect of rigid face plates on a 1-3 piezocomposite can be summarized as 
follows: (1) it improves the stress transfer between the ceramic rods and polymer 
matrix in the ceramic poling direction so that the composite approaches the isostrain 
situation; (2) it improves the bonding between the ceramic rods and polymer matrix; 
(3) it reduces Poisson's ratio effect and the dM effect. The effect (1) has been in- 
vestigated and the results have been reported in another publication.8 The reason for 
effect (2) is quite obvious. In this paper, the results of a recent investigation on effect 
(3) will be presented and in all the discussion, the stress transfer in the 3-direction 
is assumed to be that of isostrain results due to the face plates. 

When rigid face plates are glued onto the two faces of a 1-3 composite, due to 
the fact that the elastic stiffness of the plates is much higher than that of the com- 
posite in the lateral dimensions, most of the pressure in these directions will be born 
by the face plates, which reduces the effective dn and dn coefficients of the whole 
sample and increases d„ since d„ = d3i + d3l + dn- In addition to that, the much 
reduced lateral pressure on the polymer matrix greatly reduces the Poisson's ratio 
effect. 

Based on an earlier work by Wang et al.9 to treat the clamping effect of the face 
plates on 1-3 composites and the isostrain model2-3-5 to calculate the effective material 
properties of the composite, a theoretical treatment will be presented in this paper, 
which quantitatively analyzes how various parameters affect these two effects and 
provides a general guideline to the design of a face plated 1-3 composite. 

For a face plated 1-3 composite, as shown schematically in Figure 1(a), the clamp- 
ing effect of the face plates in the lateral dimensions is through shear force, a situ- 
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ation quite similar to a 2-2 composite. As has been demonstrated earlier,210 the 
effectiveness of this clamping effect will depend on the sample dimension, especially, 
the ratio of the 1-3 composite thickness t to its lateral dimension L. To evaluate this 
dimensional effect, experiments were carried out systematically on 1-3 composites 
with different ratio of tIL. The results are in excellent agreement with the theoretical 
calculation based on the shear coupling model.10 

To improve the stress transfer in the lateral directions between the face plates and 
1-3 composite, one can put edge strips on the end faces of the face plated 1-3 
composite, as schematically drawn in Figure 1(b). The effect of the edge strips on 
the hydrostatic response of 1-3 composite with different dimensions was also inves- 
tigated and will be reported in the paper. 

II.    EXPERIMENTS 

Two 1-3 composites with 15% volume content ceramic rods and different polymer 
matrix were made and tested. The polymer matrix for the first composite (labeled as 
composite I) is Spurrs epoxy and the second one (labeled as composite II) is poly- 
urethane mixed with 50% volume of microballon of about 20 p-m size. As listed in 
Table I, the two have quite different elastic properties." The ceramic rods of lead 
zirconate titanate (PZT) used for the two composites were manufactured by CPSS 
Co. (MA). The composition of the rods is similar to that of PZT-5H and the diameter 
of the rods is 1.10 mm. The piezoelectric and dielectric properties of the PZT rods 
used for the two composites are also listed in Table I. Both composites were poled 
at a poling voltage of 25 kV/cm at room temperature for three minutes. 

The initial dimensions of the composite with Spurrs epoxy matrix are: t = 5.62 
mm, L2 = 27 mm, and L, = 38.5 mm. Brass plates with thickness t = 0.79 mm were 
used as the face plates and J-B weld cement of J-B weld Co. was used to glue the 
brass plates to the composite. Glass reinforced polymer (GRP) plate (f = 1.6 mm) 
and alumina plate (f = 3.5 mm) were tested for edge strip materials. The bonding 
between the edge strip and face plated 1-3 composite was provided by a 5 minute 
epoxy of Devcon Corporation. 

The initial dimensions of the composite with polyurethane mixed with 50% mi- 
croballon matrix are: t = 5.54 mm, L2 = 35 mm, and L, = 52.5 mm. Since the elastic 
stiffness of the polymer matrix here is much lower than that of spurrs epoxy, a GRP 
plate (t = 1.6 mm) was used for the face plates. Silver epoxy (Insulating Materials 
Inc.) was used to glue the face plates and 1-3 composite together. For this structure, 
only alumina plates (f = 3.5 mm) were used as edge strips. The elastic properties of 
the face plate materials as well as the plates thickness are summarized in Table II.12 

The effective dielectric constant e, the piezoelectric hydrostatic charge coefficent 

TABLE I 
Some properties of the polymer matrix and PZT rods for the two composites  

sp„ (mVN) <rr d„ (pC/N) d» (pC/N) 

Composite I                  2*1(T1U                 0.36                    450                        -208                   2333 
Composite II 5*10"" 0.36 481 -222 2533 
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TABLE II 

Properties of face plates 

t (mm) si, (m2/N) sP 

GRP 1.6 2.63*10" -0.789*10" 

Brass 0.79 0.97*10"" -0.32*10-" 

dh, piezoelectric d33 coefficients were evaluated for these composites. Surface profile 
scans using a double beam laser dilatometer were also made to characterize the 
nonuniform strain distribution in the face plated 1-3 composites.13 The dielectric 
constant was measured using a HP multi-frequency RLC meter (HP 4192A). The dh 

was measured by a comparison method where the test sample and a standard sample 
with known dh value are subjected to the same quasi-static pressure (50 Hz) and the 
charge outputs from the two samples were compared. d33 coefficient of the samples 
was measured using both a Berlincourt d33 meter and a laser dilatometer. The effec- 
tive d31 coefficient of the composites was evaluated using a laser dilatometer and 
will be discussed in detail later in the text. The dimensional effect of face plated 1- 
3 composites was investigated by reducing the sample length L, while keeping L^ 
constant. All the relevant material parameters were evaluated for samples with dif- 
ferent L,. 

To distinguish the hydrostatic charge coefficient dh measured for a 1-3 composite 
without face plates and with face plates, d„ and d'„ are used corresponding to the 
two situations. The same convention will also be used for the other parameters when 
needed. 

III.   EXPERIMENTAL RESULTS FOR COMPOSITE I 

Shown in Figure 2 is df„ of face plated 1-3 composite with Spurrs epoxy matrix 
measured at different L,. For comparison, dh of the composite without face plates 
was also measured and it is 43 pC/N. Clearly, without face plates, d„ of die composite 
is not any better than the ceramic rods even though its d*gh value is improved owing 
to the smaller effective dielectric constant of the composite. Face plates significantly 
increase the hydrostatic piezoelectric response of a composite. Figure 2 also shows 
that d{ decreases drastically with decreasing L„ which is caused by the incomplete 
clamping of the face plates on the 1-3 composite for samples with large tfL ratio. 

If the composite is effectively clamped in the lateral dimensions by the face plates, 
it is expected that the whole sample will exhibit very small d3l and d32 coefficients. 
Figure 3(a) shows the lateral strain profiles, measured by the double beam laser 
dilatometer, in the 1-direction of face plated composite for different L, while U. was 
kept constant and the samples were driven with an electric field of 1 V/m. These 
surface profiles are quite similar to those of 2-2 composites measured earlier, which 
is consistent with the fact that a 1-3 composite with face plates can be viewed as 
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FIGURE 2 The hydrostatic charge coefficient of composite I (Spurrs epoxy matrix) as a function of 
the sample lateral dimension L,. Curve 1 is for the composite without edge strips, curve 2 is for the 
composite with alumina edge strips, and curve 3 is for the composite with GRP edge strips. Solid lines 
are drawn to guide eyes. 

one repeating unit of a large 2-2 composite. Because of the non-uniform strain profile 
in the lateral directions, df

3l should be calculated using the relation df
3l = SJE3 where 

S, is the averaged strain in the 1-direction and E3 is the applied electric field in the 
3-direction. The results are plotted in Figure 3(b). For the composite without face 
plates, d3l = —128 pC/V. Evidently, the value of d3l is greatly reduced by the face 
plates especially when //L, is small. As L, decreases, the clamping effect of face 
plates becomes less effective which leads to the rapid increases of df

3l. 
In practice, a face plated 1-3 composite may not reach the limit tIL —» 0 for which 

d'h reaches maximum. Therefore, it is useful to know how much d?h of a face plated 
1-3 composite is off from its limiting value. From our earlier work on 2-2 compos- 
ites,10 it can be shown that both dh and d3} follow approximately a linear relationship 
with tIL. Indeed, the data here, when plotted against tlLx, fall on a straight line, as 
shown in Figure 4. Hence, the limiting value of d{ and d3, can be extrapolated from 
the figure. For this composite structure, in the ///,, —» 0 limit, df

h should reach 180 
pC/N and dr

3l — 15.5 pC/N. Since this d'h value is for the sample with 1^ = 21 mm, 
in the limit of both f/L, and tIL* -* 0, d{ should be above 200 pC/N. For the sample 
investigated, at L, = 38.5 mm and I? = 27 mm df

h value is 160 pC/N, which is 
already about 80% of the limiting value. 

To improve the clamping effect of the face plates on 1-3 composites, edge strips 
were added on this face plated composite. Shown in Figure 5 are the comparison of 
strain profiles of the sample of tlLx = 0.196 with and without edge strips. Two 
different edge strips were used here, one is GRP plate (thickness =1.6 mm) and the 
other is alumina plate (thickness = 3.5 mm). It is evident that the edge strips improve 
the uniformity of the strain profiles. For the alumina plates, the measured d3l value 
is —18.5 pC/N, which is very close to the limiting value of d31 at tlL{ -» 0. However, 
the effect of GRP plates is much smaller due to its relatively lower elastic stiffness 
and small thickness. 

The comparison of the hydrostatic charge coefficient dh between the three config- 
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FIGURE 3 (a) The lateral strain S, profile of the composite I under 1 V/m driving electric field for 
different t/L, ratio. The label for each curve is the ration t/L,. The incomplete clamping of the face plates 
on 1-3 composite is reflected by the non-uniform strain profile of S„ (b) the dependence of d{, on the 
sample lateral dimension L,. 

urations (without edge strips, with GRP edge strips, and with alumina edge strips) 
is shown in Figure 2. The effect of GRP edge strips is not significant. When an edge 
strip is used in face plated composite structure, it will influence the composite re- 
sponse in two opposite ways. On one hand, it reduces d3l for samples with finite 
t/L, hence enhances d„. On the other hand, it will clamp the composite in the 3- 
direction in the region near it, which leads to the reductions of dn and d„. This latter 
effect is illustrated in Figure 6 where the surface profiles in the ceramic poling 
direction (the 3-direction) for face plated composite with and without edge strips are 
compared. The interface between the edge strip and the face plated composite is 
located at x = 0. Due to the cancellation of the two competing effects, the GRP edge 
strips do not change d„ very much as has been shown in Figure 2. In the limit of 
t/L -» 0, the three configurations should yield the same dh. That is, as far as the 
hydrostatic response is concerned, the edge strips do not make much difference when 
t/L is very small. However, the edge strips do have the effect of reducing shear stress 
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FIGURE 4   The linear relationship between dr„, df„ and I/Z.,. 
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FIGURE 5   The comparison of the strain profile S, for the face plated composite I at tIL - 0 iQfi 

fZ6 and curv^ isT0^ WitH a,UTa edge S,ripS' CUrVe b is fOT '"eTomS,; witf bRP edge süips, and curve c .s the one w.thout edge strips. The composites were driven under 1 V/m electric 

concentration at the side boundaries of the face plate-1-3 composite interface, which 
improve the mechanical integrity of the composite structure. 

IV.    EXPERIMENTAL RESULTS FOR COMPOSITE II. 

The polymer matrix of polyurethane mixed with microballon has much smaller 
Young s modulus and Poisson's ratio compared with Spurrs epoxy as listed in Table 
L Without face plates, the composite II has a dh of 45 pC/N and a d3l of -130 pC/ 
N. Although softer polymer matrix reduces the polymer self-loading, the much re- 
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FIGURE 6 The effect of edge strips on the longitudinal strain S,. For the comparison, S, for the 
composite without edge strips is shown in curve a. Curve b is for the composite with GRP edge strips 
and curve c is for the alumina edge strips. The interface between the face plated composite and edge 
strip is at x = 0. 

duced shear modulus of the polymer matrix also reduces the stress transfer between 
the polymer matrix and ceramic rods resulting in a small dh. With GRP face plates, 
dh value is increased significantly as shown in Figure 7(a). Similar to the composite 
I, d{ also exhibits a strong t/L, dependence. The dimensional dependence of dr

3X was 
also measured and is plotted in Figure 7(b). Though df

3i value here is comparable to 
those of composite I, df

h is clearly much higher for the composite with a soft polymer 
matrix. As will be shown later in the paper, this increase is due to the reduction in 
the polymer matrix self-loading which produces a higher effective stress level in the 
ceramic rods. 

The influence of 3.5 mm thick alumina edge strips on the hydrostatic response of 
this face plated composite is also shown in Figure 7(a). The improvement of the 
edge strips on this face plated composite is only about 10% at most. This is the 
result of edge strip clamping on d33 response of the composite since with a soft 
polymer matrix, the elastic stiffnes in the 3-direction is much smaller than that of 
the edge strips and the effect of clamping in the 3-direction will be more severe in 
composite II. 

For composite II, the plots of d{ and df
3l as a function of tlLy did not fall on a 

straight line. It was also found that the dielectric constant and piezoelectric constant 
d33 of the sample decreased as the sample dimension L, decreases. All these are 
quite different from the results of composite I. Careful inspection on composite II 
reveals that some PZT rods in the composite were broken when the sample was 
recycled during the hydrostatic measurement and during the cutting process to reduce 
L,. To correct this, the dielectric constant e of individual PZT rods was measured 
and the data is used to calculate the percentage a of the broken rods in the samples 
by assuming the sample dielectric constant do not depend on the sample lateral 
dimensions if no ceramic rod is broken in the sample. Using this method, the mea- 
sured d{3, d{ and df

3] were corrected by dividing them by the factor of (1 - a) at 
the corresponding L, value. After this correction, d'33 becomes almost independent 
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FIGURE 7 (a) The dependence of di on the sample lateral dimension L, for the composite n. Curve 
a is for the composite without edge strips and curve b is that with alumina edge strips, (b) The depen- 
dence of dr„ on the sample lateral dimension L, for the compsite II. 

of the sample lateral dimension as we have expected. The results after the correction 
for d'h and df

iX are plotted in Figure 8 and indeed, the data follow a linear relationship 
with 1/Z-i. From the linear extrapolation, the limiting values of d{ and df

ri at 1/L -> 
0 are obtained and they are 440 pC/N and -6.6 pC/N respectively. Therefore, the 
hydrostatic figure of merit for this configuration can be as high as 50,600* 10"15 

m2/N. 
In Table III, the values of dh, dix, d

f„, df
3l, measured at smallest tlLx ratio, and the 

values of d{, d'h at f/L, -> 0, as well as the hydrostatic figure of merit for the two 
composites are listed. Needless to say, the exceptionally high d^gh, high dh, light 
weight, and relative easiness of manufacturing face plated 1-3 composites make them 
superior compared with currently available hydrophone designs. 
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FIGURE 8   The modified d{ and df„ (corrected for the broken rods in the composite) as a function of 
\IL,. 

TABLE in 

Summary of the properties of the two composites 

d3,(pC/N)       dh        d31
r        dh

r       d31
r (limit)   delimit)    dh'gh

r (limit) (m2/N) 

Composite I     -128 43     -34.8       154       -17 181 7378(10-15) 

Composite 11     -130 45      -23.9       414        -6.6 438        50,600 (10'5) 

* d3, and dh are for 1 -3 composite without face plates, d31f and dh
f are for 1 -3 composites with 

face plates at their initial dimension, d3 / (limit) and dh
r(limit) are taken from figures 4 and 8. 

V.    THEORETICAL TREATMENT OF CLAMPING EFFECT OF FACE 
PLATES ON 1-3 COMPOSITES 

From the experimental results in the sections III and IV, it is clear that in order to 
have a high hydrostatic response of a face plated 1-3 composite, a polymer matrix 
with a low Young's modulus is preferred. On the other hand, a 1-3 composite made 
of soft polymer matrix such as foamed polyurethane used here has the problem of 
low mechanical integrity, which may result in failure of a device. In practice, one 
has to balance these two effects. In this section, we will present a theoretical treat- 
ment which relates various design parameters to the hydrostatic response of a face 
plated 1-3 composite. 

Clamping effect of stiff face plates on a soft piezoelectric material has been ana- 
lyzed by Wang et al. 
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Ö33 = «33   +     ,  V) 
5|1   T 5,2 

where the quantities on the left hand side of the equations are those for the face 
plated samples. The quantitive with a bar on the top (such as d3l) on the right hand 
side of the equations are those for the soft piezoelectric material and the superscript 
b refers to the face plate. 7 = tlth is the thickness ratio of the piezoelectric material 
to the face plate. Equations (1), (2), and (3) are derived under the condition that the 
lateral strains in the face plate and the soft piezoelectric material are equal, a situation 
corresponds to tIL —¥ 0 limit here. 

To use these equations for the face plated 1-3 composite, the effective material 
properties have be to evaluated. Though the behavior of composites without face 
plates can be quite different from that calculated based on the isostrain model, it is 
shown that the difference of the strain profile between the polymer and ceramic rods 
in the 3-direction becomes very small for composites with thick face plates, and the 
composite can be treated using the isostrain model. 

The basic assumption for the isostrain model used here is that the strains in both 
the polymer and ceramic rods in the 3-direction are equal while the stresses in the 
1- and 2-directions in the two constituents are the same. Based on these assumptions, 
it can be derived 

033   r,   Vsj, + (i - v>33 

  _ £3 S33S33  /c\ 
S" ~T3~  Vs'3i  +   (1   -   V>33 

where the superscripts p and c refer to the polymer and ceramic, respectively. 
Assuming the sample is subjected to a stress Tt in 1 or 2 direction, from the 

constitutive relations and isostress assumption, one can get 

Sc
3 = s\3r3 + 4?,r, (6) 

Sc
t = sc

nTt + s\3r3 (7) 

52 = s\2Tt + sc
23r3 - (8) 

For the polymer phase, similar equations can be obtained by simply replacing su- 
perscript c by p. Furthermore, 

Vcr3 + (1 - VC)TP
3 = 0 (9) 

D; = dc
33r3v

c + dux (io) 
£ = VCS2 + (1 - VC)SP

2 (ID 
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S~{ = V'S] + (1  - VC)SP (12) 

Solving these equations yields: 

13   r,      Vs>„ + ^(1 - n 

517 = (1 - VOM2 + *W*7» - ^3)VcJ + VK2 - tf,(tf, - tf,)(l - Vc)ca]    (14) 

5^ = (1 - V*)[tf2 + sUspn - s\3)V
cca] + VKJ - rfs(tf3 - *W(1 - Vc)ca]    (15) 

337 = «/»V'c.tf 3(*?3 - rf3)(l - Vc)] + dnV (16) 

where c„ = 1/((1 - Vc)sc
i3 + s?,Vc). From these relations, d{ and df

3i are calculated 
for the two composite structures investigated. Some of the material parameters used 
for the calculations have been listed in Tables I and II and the elastic compliance 
data for PZT-5H are used for the ceramic rods.14 (7 = 7.1 for spurrs epoxy composite 
and 7 = 3.46 for polyurethane composite). The calculated results for the composite 
with Spurrs epoxy matrix (composite I) are, d{ = 171 pC/N and df

n = -17.6 pC/N; 
and for the composite with foamed polymer matrix (composite II), d{ = 480 PC/N 
and df

M = -0.2 PC/N. These values are in very good agreement with the experimental 
data when extrapolated to f/L, and t/L2 —> 0 limit. It indicates that the theoretical 
results here provide quite accurate prediction on the hydrostatic response of a face 
plated 1-3 composite. 

From the above equations, the relationship between the hydrostatic response of a 
face plated 1-3 composite and sp

u and a of the polymer can be derived: 

d{ = d,^'„V<ca + [Vd3l - V'(l - V')d33c.tfl3 + vs'n)] (17) 

2-YW, + ^2) ~ 4cAV's'us'„ - S,*TS'U(1 - ni 

.fij l-Yfefi + *!i) + 2[V(tf, + JÜ + (1 - V)iWl - a) - IVcJil - V)(.s\, + as', 

Figure 9(a) shows the dependence of df
h on s?, for three different Poisson's ratio of the 

polymer matrix: CT = 0.15, 0.3, and 0.4. GRP is used here as face plates. The ceramic 
used in the calculation is PZT-5H.'4 The ceramic rods content of 15% and a -y of 3.5 are 
used in the calculation. From Figure 9(a), it is clear that the effect of the Poisson's ratio 
of the polymer phase on d{ depends critically on the elastic compliance of the polymer. 
When the elastic compliance of the polymer matrix is below, for example, 5*10-8, there 
is little change in dh when the Poisson's ratio is increased form 0.15 to 0.4. However, a 
drastic decrease of d{ with a occurs for polymers with smaller elastic compliance. Fur- 
thermore, there is not much decrease in d{ when sp„ is reduced from 5*10~8 (close to 
the value of the foamed polyurethane used for the composite II) to 5*10"', a polymer 
ten times harder than the polymer matrix used for the composite II. With an elastically 
suffer polymer matrix, the mechanical integrity of the device is improved significantly 
while there is not much loss in the hydrostatic response. This illustrates that for a com- 
posite with a polymer matrix ten times stiffer than the polymer matrix for the composite 
II, there is little reduction in the hydrostatic figure of merit while there is a substantial 
increase in its mechanical integrity. Apparently, Spurrs epoxy is not a suitable choice 
either for the polymer matrix for the face plated 1-3 composite discussed here. 

Figure 9(b) shows the dependence of d{ on sp
u with different ratio 7 (thickness ratio 

of 1-3 composite to the face plate) with <x = 0.3 for the polymer matrix, which should 
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FIGURE 9 (a) The dependence of d{ of a face plated 1-3 composite, which has 15% PZT 5H rod 
content and GRP face plates with y = 3.5, on the compliance s„ of the polymer matrix. Three Poisson's 
ratios are used: o = 0.15, 0.3, and 0.4 as labeled on the figure. The curves are calculated using Equation 
(17). (b) The dependence of d{ of a face plated 1-3 composite, which has 15% PZT 5H rod content and 
GRP face plates, on the compliance slt of the polymer matrix for different y (the thickness ratio of the 
face plate tb and the 1-3 composite /)• 

provide valuable information on the selection of face plate thickness in reference with 
the thickness of 1-3 composite. 

VI.   SUMMARY 

The hydrostatic response of a 1-3 composite can be significantly increased by using 
face plates to (1) improve the stress transfer in the 3-direction; (2) reduce the Pois- 
son's ratio effect and dn effect; (3) improve the mechanical integrity of the composite 
structure. In this paper, we show that for a face plated 1-3 composite with a soft 
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polymer matrix and 15% ceramic rod content, its hydrostatic figure of merit d^gh can 
reach more than 50,000*10"" (m2/N). However, due to the nature of the shear cou- 
pling between the face plates and 1-3 composite, the hydrostatic response of a face 
plated 1-3 composite will depend on the sample lateral dimensions. The hydrostatic 
response will increase as the ratio of the thickness to the lateral dimension (r/L) 
becomes small, for a large tIL ratio, improvement of the hydrostatic response due 
the face plates is not significant. One possible method to increase dh for samples 
with a large tIL ratio is to use edge strips. However, the study here shows that the 
effect is not significant due to the two opposite roles an edge strip plays on a face 
plated 1-3 composite. Therefore, the key to increase hydrostatic response is to use 
small tIL ratio for a face plated 1-3 composite. 

To balance the requirement of high hydrostatic sensitivity and mechanical integrity, 
a proper polymer matrix with the right elastic properties should be used. In the paper, 
we showed that the two face plated composites tested represent the two extreme 
cases with the Spurrs epoxy matrix on the hard side and the polyurethane with 50% 
microballon on the soft side of the polymer matrix spectrum. A polymer matrix with 
its elastic properties in between the two would be a good choice to balance the two 
requirements as mentioned previously. In general, the theoretical results presented 
here can provide a useful guideline for the optimum design of face plated 1-3 
composites. 
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ABSTRACT 

A comprehensive numerical study of the radiation beam pattern from a 1-3 ceramic 

polymer composite ultrasonic transducer has been carried out. The goals are to establish a 

simulation procedure and to evaluate how the nonuniform vibration profile of the composite affects 

the radiation pattern compared to a uniformly vibrating transducer. With the imposed absorbing 

boundary condition at the outer fluid boundary, the nonuniform surface vibration profile and the 

velocity distribution of the composite transducer under a pulse and a continuous wave driven 

situations are calculated using finite element method. The radiation pattern from the transducer is 

then calculated from the velocity distribution at the transducer surface by solving the Helmholtz 

integral equation using boundary element method. 



INTRODUCTION 

Piezocomposite with 1-3 type connectivity [1,2] has gained wide popularity as transducer 

material, especially in medical diagnostic ultrasound and under water acoustics. The main reason is 

due to the high electromechanical coupling coefficients and the low acoustic impedance [3]. 

Different transducer configurations (i.e., changing the geometric of the ceramic pillars, ceramic- 

polymer ratio etc.,) have been designed to fit particular needs, such as beam width, focal length 

and efficiency [4]. However, due to the complexity of the composite structure, the true 

performance of the design can not be modeled by the widely used KLM model [5]. Besides, 

current transducer designs require large amount of experimental testing which is both costly and 

time consuming [6,7]. With the increasing demand on better transducer, there is a need for a 

computational scheme to simulate the performance of composite transducer designs, i.e., to study 

the details of the electromechanical vibrations and to calculate the acoustic beam characteristics at 

the design stage. 

The fast development of the computer technology makes it possible now to solve large 

scale problems using finite element method [8]. In this paper we report a comprehensive simulation 

of a 1-3 composite transducer operation using finite element method (FEM) and boundary element 

method (BEM). Both the vibration characteristics of the transducer under water loading and the 

acoustic beam profiles under CW and pulse driven situations were analyzed. The objective of this 

study is to provide a general simulated design and testing procedure and to study the influence of 

nonuniform transducer surface vibration on the acoustic beam characteristics. 

The vibrational and electromechanical characteristics of a 1-3 composite transducer has 

been intensively investigated using finite element method [7, 8] with or without water loading. 

Mode coupling and shear wave propagation are the most concerned problems in a composite 

transducer design. The results from the analysis of the vibration modes are quite different for the 

cases of with and without water loading condition [8]. Traditionally, the major problem for solving 

the elasticity problem under water loading had been the coupling of piezoelectric ceramic and 

polymer to the medium. The calculation involves fluid acoustic field far away from the transducer, 



Appendix A: 

In Eq.8 two integrals are to be evaluated, i.e., 

ff      9    e.ikr(x,q) tt     e-ikr(x,o) 
JJs"5nT    ,   ^   ds(c) md JJi ds(a) and JJSn  ds(o) (Al) 

r(x,o) r(x,a) 

When the distance of the point of interest is much large than the transducer dimension, the variable 

r can be approximated as follows, 

r2=lr- rl=R2 + 52-2R-8) = R2h - 2 R
R2'  

§ ](/. R » 8 in far field)   (A2) 

where 8 measures the distance of a point on the transducer surface from the center of the 

transducer. Therefore, 

r-R>/l.^V^-R-ft.».(ft-|) (A3) 

Thus we have the simple form for the integrands: 

jr-     «ik^p-R-ne'kR-8        (A4) dn°   r(x,c) R 

e-ikr(x,CT)     eikR      A   =5_elk&. 8 (A5) 
r(x,a) 

Eq. (Al) can be easily integrated with this simplification 
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which greatly increases the complexity and the computation time. The new finite element 

technology utilizes absorbing boundary condition (impedance at the boundary matched to the fluid 

media) at the interface to represent the radiation condition. This method can greatly reduces the 

computation time without sacrificing the accuracy of the solutions. 

The calculation of the sound field radiated from a baffled piston has been studied two 

decades ago [9,10] for both tone burst and pulse response cases either by numerical integration or 

by applying Huygen's principle. However, the assumption of uniform vibration, infinite baffle, 

infinite boundary, and the lack of closed-form solution for elements not in circular shape render the 

calculations deviate from true situation [12]. The radiation acoustic field from vibrating piston can 

be calculated by solving the Helmholtz integral equation [11] as long as the vibration velocity 

distribution on the surface is known. This involves discretizing the piston surface, similar to the 

boundary element method. The advantages are much fewer elements being involved in the 

calculation than solving the whole acoustic field in entire space using FEM. Considering the merits 

of both methods we have carried out an analysis using the two software packages: ANSYS® 

(FEM) and CHIEF (BEM) to analyze the transducer vibration profile and the acoustic radiation 

field. 

THEORETICAL ANALYSIS 

There are three different aspects in the theoretical analysis. They are briefly described 

below: 

(1) Piezoelectric coupling 

The constitutive equations governing the stress {T}, strain {S}, electric field {£}, and 

electric flux {£)} can be expressed as: 

{T} = [c]{S}-[e]T{E} 
(1) 

{D} = [e]{S} + [8]{E} 

where [c] is the elastic stiffness matrix, [e] and [e] are respectively the piezoelectric coupling and 

the permittivity matrices. The equations of motion are given by: 



[m]{Ü} + [Kuu]{U} + [Ku(t)]{<!>} = {F} 

[iq,u]{U} + [K^4)]{(t)} = {Q} (2) 

where [m] is the mass matrix, {U) is the displacement vector, [Kuu] is the elastic stiffness matrix, 

[Ku0] and [K0U] are the piezoelectric coupling matrices, [K00] is the dielectric matrix, [F] is the 

force vector, {0} is the potential vector and {Q} is the charge vector, respectively. Equations for 

the polymer phase are simpler because the electromechanical coupling is vanished. 

(2) Fluid structure interaction: 

The governing equation of acoustic field in fluid is the Helmholtz equation. The degree of 

freedom (DOF) of finite element formulation for the fluid is the pressure at each node. In matrix 

formulation, the governing equations for the acoustic field in fluid is quite similar to that of the 

polymer phase, 

[Mf] {P} + [Kf] {P} = {Ff} 
[Ms] {Ü} + [Ks] {U} = {Fs} (3) 

where [Kfi is the fluid equivalent "stiffness" matrix, [Mß is the fluid equivalent "mass" matrix, 

{P} is the unknown nodal pressure, {Ff} is the fluid load applied at the fluid structure interface, 

[Ks] is the structure "stiffness" matrix, [Ms] is the structure mass matrix, and {Fs} is the load 

applied at the structure interface. 

By matching the loads at the fluid structure interface we have the augmented matrix 

equation of fluid structure interaction with the coupling matrix [R] as follows: 

[Ms] {Ü} + [Ks] {U} = {Fs} + [R] {P} 
[Mf] {P} + [Kf] {P} = [Ff] - po [R]T {Ü} (4) 

Because the solid and the fluid region have different degree of freedom, a particular solid-fluid 

interface element containing both pressure and displacement DOFs is used which is designed to 

solve Eq.(4). 

(3) Helmholtz integral equation: 

If 5 is a closed surface in space, the acoustic field on or exterior to the surface 



S can be formulated according to the integral Heimholte equation [11]: 
f dGOca) fp(x) for x ext. S 
Js {md^ + itöP^)G^)}ds(°) = {lp(x) for x on S <5> 

where a is the coordinate of the point on S and G(x,x') is the Green's function at x with respect to 

1    e-iklx-x'l CO 

In Eq.(5) the p(a) and u(c) are respectively the pressure and the velocity on surface S. If we 

discretize the surface S the relation between the surface pressure and the surface velocity can be 

expressed in the following matrix form 

[A]{P}=[B] {V} (7) 

where {P } represents the pressure at each subdivision on the surface S and {V }is the velocity 

matrix at the same location on S. The coefficient matrices [A ]and [B ] are as follows, 

Amn = 2 ^mn - Jsn JjjJ" G (Cm,a)ds(C) 

Bmn = i© P J sn G((;m,a)ds(c) (8) 

where Sn is a subdivision of 5, C,m is the coordinate of the center at subdivision Sm, The pressure 

field can be obtained from Eq. (7) once the velocity distribution is known. In order to provide the 

CHIEF program a set of input surface velocity distribution, we have used the simple relation at the 

solid fluid interface, i.e., 

V = ^- (9) 

where Zwater is the acoustic impedance of water and PQ is the acoustic pressure in the fluid 

adjacent to the solid surface. The velocity at each element is taken from the average value of 4 

adjacent nodes with rectangular mash since the FEM calculates nodal values whereas CHIEF takes 

only the averaged value on an element. 

When only the far field pressure is of interest, the calculations of [A ] and [B ] matrices can 

be greatly simplified (see Appendix A). 



RESULTS AND DISCUSSIONS 

The material properties of the transducer under study are listed in Table I. Because of 

symmetry, only 1/8 of the 1-3 composite transducer has been analyzed using FEM, the model 

analyzed is shown in Fig. 1, where the faces near the reader and at the bottom are symmetry planes. 

This model represents a full size composite of a 8x8 = 64 ceramic pillars embedded in the polymer. 

The center frequency of this composite transducer is 2.53 MHz. We have performed calculations in 

both CW and pulse mode. 

(a)CWmQde 

The steady state surface vibration pressure at resonant frequency calculated from ANSYS® 

is shown in Fig.2 (a)-(c). Fig 2(a) is thedirectview of the compisite transducer surface, Fig, 2(b) 

and 2(c) are the vibration amplitude and the phase distribution in gray scale. We can see a strong 

nonuniformity from Fig. 2 both in terms of the amplitude and the phase. There is also an obvious 

amplitude difference between the pillars at the center of the composite and those at the edge. Two 

possible reasons may account for this phenomenon: one is the edge effect which reflects the fact 

that the edge pillars have relatively lighter loading, and the other is the coupling of lateral modes to 

the thickness mode.[13,14] In order to understand the effect of inhomogeneous surface vibration, 

we have calculated both the beam pattern generated by the composite transducer and by a uniform 

vibrating piston. The results are shown in Figs. 3, 4, and 5. Fig. 3(a) is the illustration of the 

pressure distribution on the transducer surfaceand Fig. 3(b) is the 2-D (x-z plane) near field 

pressure. Fig.4 plots the near field axial pressure variation and Fig. 5 is the far field pattern on the 

x-z plane (z axis is the direction normal to the transducer surface). 

Surprisingly, the difference between the beam patterns generated by the uniform and the 

nonuniform vibrations is not significant, especially in the far field. This result contradicts the 

common belief that the beam pattern will be seriously distorted due to the nonuniformity of 

transducer surface vibration. One possible explaination for theis result is that the polymer phase 

does not emit significant energy. We are currently trying some experimental works to verify this 

result. 



(b) Pulse mode 

In imaging applications, the transducer is operated in a pulse mode. It is therefore 

necessary to calculate the propagation of the pressure pulse in the medium. Such calculation is 

accomplished in a process depicted in the flow diagram of Fig. 6. The duration of the simulated 

driving triangular pulse is 10"8 second. In order to illustrate the method, moderate damping was 

applied to allow some ringing. A total of 128 velocity maps were calculated for a duration of 1.05 

x 10"5 seconds using the transient function of ANSYS. The transient vibration response at each 

subelement of the transducer surface is decomposed into 128 frequency components via Fast 

Fourier Transform (FFT). Each of the frequency components is then fed into the CHIEF program 

and the corresponding pressure components of the acoustic field were calculated. Finally, the 

transient acoustic pulse at each location is reconstructed via Inverse Fast Fourier Transform (IFFT) 

from these frequency components of the pressure pulse. 

Fig. 7 is sequence of snapshots of the pressure distribution resulting from a single pulse 

drive. We can clearly see the ringdown along the axial direction and the off axial direction 

pressure distribution. Sidelob structures are also visible on the snapshot. The width of the pulse 

becomes wider as it propagates and the peak pressure value gradually decreases. 

In order to see the spreading of the effective beam width we have calculated the root mean 

square(RMS) pressure of the pulse at each location for the near field as show in Fig. 8. The 

effective beam pattern is similar to a single frequency CW beam pattern except slight wider beam 

width. Fig. 9 is the RMS along the axial direction. Compared with Fig. 4, we can see that the 

near field shows deviation from the CW peam pattern, but the far field pressure distribution is very 

similar to the CW case except the beam becomes slightly wider. 

SUMMARY AND CONCLUSIONS 

We have successfully performed a combined FEM and BEM analysis on a 1-3 type 

piezocomposite transducer. The combination of the two numerical techniques enables us to analyze 

the acoustic beam pattern generated by the nonuniformly vibrating transducer. To our surprise, the 

difference of the generated pressure filed distribution caused by the nonuniformity is not significant 



except near the transducer surface. In the far field, the beam pattern is quite similar to that of a 

uniformly vibrating piston. 

An important advancement form this work is the development of a computational scheme 

for the propagation of a finite length pulse in the medium. This aloows us to study the pulse shape 

deformation as it propagates. Some degree of broadening of the pulse is found but the RMS 

pressure distribution appears to be very similar to a single frequency CW pressure distribution. 
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LIST OF FIGURE CAPTIONS: 

Fig.l 1/8 of the 1-3 piezocomposite transducer studied using ANSYS. 

Fig.2 (a) Surface of the actual positions of the ceramic pillars; (b) Distribution of the amplitude of 

pressure on the transducer surface under 1.0 Volt (peak to peak) 2.53 MHz CW operation; (c) 

distribution of the phase angle of the vibration pressure on the transducer surface. 

Fig.3 Acoustic near-field radiation beam pattern on the central plane y = 0. ( x> 0, z > 0), under 

2.53 MHz CW operation. 

Fig.4 Axial (z-axis) acoustic pressure distribution under 2.53 MHz CW operation. 

Fig.5 Angular distribution of the far-field (x-z plane) acoustic radiation under 2.53 CW operation. 

Fig.6 Calculation process for the acoustic radiation beam pattern under 10"8 second triangluar 

electric pulse excitation. 

Fig.7 Snapshots of a propagating acoustic pulse in the far-field. 

Fig.8 Distribution of the RMS pressure in the near-field under pulse excition. 

Fig.9 Axial (z-axis) distribution of RMS pressure under pulse excition. 



Table 1 Elastic Stiffness Matrix C (1010 N/m2), piezoelectric constants e (10'12 C/N), dielectric 
constant £ (EQ), coupling constants k and density p (kg/m3) 

Cn Cl2 Cn C33 C44 C66 

Polymer 0.349 0.349 0.13 0.13 

PZT 13.0483 8.34907 8.82772 12.1148 2.29885 2.3462 

eis e3l e33 Ell £33 ki5 k3I k33 kt P 

PZT 741 -274 593 1700 1470 .675 0.39 0.75 0.50 7800 

polymer 4 4 1097 
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Abstract- In many applications such as hydrophone and ultrasonic transducers, materials 
with large piezoelectric anisotropy are preferred in order to suppress the interfering signals 
from lateral modes. It has been shown that piezoelectric anisotropy can be sigmlican ly 
improved by structure design . For instance, for a radially poled cylindrical lube the 
effective transverse piezoelectric response can be tuned to zero. In this work, the cllcclivc 
piezoelectric responses of lead zirconalc tilanatc (PZT) and lead magnesium niobalc-lcau 
titanate (PMN-PT) ceramic cylindrical lubes were studied. Large piezoelectric anisotropy 
with a hieh effective uniaxial coefficient has been obtained for both materials. It has been 
shown that near zero effective d3i can be achieved for a PZT tube with a proper 
dimension ratio of r0/R„, where r0 and R0 arc inner and outer radii ol lie lube, 
respectively. While for a PMN-PT lube, the effective piezoelectric responses can be tuned 
by the ratio of ro/Ro as well as the bias field because the induced piezoelectric coefficients 
d33 and d3i and their ratio ld33/d3il arc all functions of the bias field. 

INTRODUCTION 

Conventional piezoelectric lead zirconate titanate (PZT) ceramics arc widely used 

in many transducer applications. The materials have high electromechanical coupling 

coefficients and large piezoelectric strain constants d33 and d3i- However, the 

piezoelectric anisotropy, which is measured by d constant ratio ld33/d3)l or coupling 

constant ratio ktkp, where kt and kp arc thickness and planar coupling coefficients, 

respectively, of the materials is quite small. In the applications where large piezoelectric 

anisotropy is required PZT ceramics arc not favorable candidates. For example, in 

underwater hydrophone applications, an important material parameter is hydrostatic 

coefficient dh (=d33 + 2d3|). In order to achieve a large d|, constant it is desirable to use 

materials with a large ratio of ld33/d3|l since d33 and d3i have opposite signs. Similarly, 

for ultrasonic transducers, materials with high piezoelectric anisotropy can transmit 
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ultrasonic wave in the poling direction with minimal interference from lateral modes. 

Previous efforts to improve piezoelectric anisolropy of a device were mainly focused on 

the selection of materials with large ratio of Id33/d3il, including single phase ceramics and 

ceramic/polymer composites. For example, lead litanatc (PT) ceramic possesses large 

lattice anisolropy. Under certain processing conditions modified PT ceramics showed 

unusually large ratio of the thickness to the planar coupling coefficients and, 

consequently, a large ratio of lci33/cl311.!-2 Piezoelectric ceramic/polymer composites can 

also be engineered to exhibit high piezoelectric anisolropy.3 

Another approach to increase piezoelectric anisolropy is by material structure 

design. Even for the materials with small piezoelectric anisolropy as PZT ceramics, by 

proper design of material structure it is possible to enhance the cffeclivc longitudinal 
coefficient d33 meanwhile to suppress the effective transverse coefficient d31. Piezoelectric 

ceramic cylindrical lubes are commonly employed as stress sensors. Recently il has been 
shown that when poled in the radial direction, the effective d33 constant of a ceramic tube 

with a large ratio of length to wall thickness can reach an exceptionally large value.4 In 
addition, analysis has indicated that the effective d3I constant can be tuned from positive 

to zero, and to negative by varying the ratio vJR0 of the lube, where rQ and R0 are inner 
and outer radii, respectively, and/or by changing the ratio ld33/d31l of the ceramic. 

Besides providing large piezoelectric anisotropy, the structure is also very attractive in the 

applications where large surface displacement is required since the effective d33 conslanl is 

proportional lo the ratio of the length to the wall thickness and can be much higher than 

those of PZT and PT based ceramics. 
In this paper, the results of recent investigations of the effective piezoelectric 

responses of lead magnesium niobatc-lcad litanalc (PMN-PT) and PZT ceramic cylindrical 

tubes are reported. High piezoelectric anisolropy and large uniaxial coefficients have been 

obtained. The effects of non-uniformity of electric field and bias-field dependence of 

induced piezoelectric coefficients on the effective piezoelectric responses of PMN-PT 

tubes are discussed. 

PIEZOELECTRIC RESPONSES OF A CYLINDRICAL TUBE 

Piezoelectricity can be described by the constitutive equations. When mechanical 

stress (T) and electric field (E) are chosen as independent variables, the mechanical strain 

(S) and electric displacement (D) responses are described by: 
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Sj = SjjTj + dinE„ 

Dm = dmjTj + e0KmnE|, 

(la) 

(lb) 

where sij are clastic compliances, Km„ arc dielectric constants, e0 is free space pcnniUivily 

and dnij are piezoelectric strain coefficients. Eq. (lb) describes the direct effect, where 

electric charges are induced by a stress while Eq.(la) describes the converse effect, where 

strains arc induced by an electric field. 
Shown in Fig. 1 is a schematic drawing of a piezoelectric cylindrical lube and its 

coordinate system. Electrodes arc on the inner and outer wall surfaces and the polarization 
of the material is along the radial direction. The piezoelectric responses from the direct and 

the converse effects of such system were analyzed by several authors.^ ln lhcir works, 

the voltage developed in the system by pressure or transmitting responses induced by an 

electric field were obtained. Recently, the analytical results of the effective piezoelectric 

strain constants d33 and d31 of a radially poled ceramic tube have been reported.« It has 

also been shown that for such a system, the effective piezoelectric d constants determined 

from the converse effect are equal to those from the direct effect. For the cylindrical lube 

structure, the effective d constants arc defined as: 

4L=dC3r3f^ 

131 L 

L       JJL 
AD_ = dcrrY 
2R0 

(2a) 

(2b) 

/ 
-*-t 

FIGURE 1   Schematic drawing of a cylindrical lube 



H. WANG, Q. M. ZHANG, L. E. CROSS and M. C. TROTT1ER 

where AL and AD arc Ihc displacements in the axial and radial directions under an applied 

voltage V, respectively, and L is the length of the tube. The effective piezoelectric d 

constants have the expressions: 

ficrr _ .1.. 2L  (3a) 

Ji    (R0 + r0) in(R0/r0)        R0 Ro 

Two assumptions were used in the derivations of above equations. First, it was 

assumed that the material is clastically isolropic and the material parameters d33 and (J31 

are constant throughout the sample. Secondly, the strain responses in axial and radial 

directions arc independent. Therefore, the requirements for the sample geometry arc thin- 

wall (R0»(R0-ro)) or long tube (L»(R0-r0)). 
It can be seen from Eqs. (3a) and 3(b) that the effective longitudinal response of a 

tube depends only on the piezoelectric d3i constant of the material while the effective 

transverse response of a tube is a competition between the piezoelectric d33 and d3i modes 

through the tube dimensions. For piezoelectric ceramics such as PZT and PT, material 

parameters d33 and d3i are fixed after the poling. Therefore, the only way to tune the 

transverse response of a piezoelectric ceramic tube is to change the ratio of io/R0-ln F'S- 

2, the calculated effective d33 and d3j constants of a PZT-5001' ceramic lube arc depicted 

as functions of the ratio of r0/Ro. The outer radius and the length of the tube arc 5.08 mm 

and 12.70 mm, respectively. As can be seen, when ratio TQ/RQ is near 0.38, the cilcctivc 

d31 of the tube is almost zero and the effective d33 constant is around -1200 pC/N 

resulting in large piezoelectric anisolropy. 
As illustrated by Eq. (3b), the transverse piezoelectric response of a radially poled 

cylindrical tube depends not only on the ratio of ro/R0 of the lube, but also on the ratio of 

ICJ33/CI31I of the material. For rclaxor fcrrocleclrics, of which piezoelectric d33 and d3i 

coefficients can be induced by a DC bias field, the ratio of ld33/d3il changes with the bias 

field. Therefore, the effective d3i constant of a cylindrical tube made of rclaxor 

ferroelectric ceramic can be tuned by the bias field. 

EXPERIMENTAL DETAILS 

The major aims of this work were to experimentally investigate the piezoelectric 
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FIGURE 2 Calculated effective d constants of a PZT ceramic tube 
as functions of the dimension ratio 

responses of a radially poled ceramic cylindrical tube and to increase the piezoelectric 

anisotropy by structure design. For most PZT ceramics, the d constant ratio ld33/d3il is 

around 2.2. Therefore, when the dimension ratio ro/R„ of a PZT ceramic lube is close to 
0 38 near zero transverse response can be obtained as seen from Fig. 2. In this work, 

normal piezoelectric ceramic PZT-500 and rclaxor ferroelectric ceramic PMN-PT (90/10) 

were used. To achieve high piezoelectric anisotropy, the lube dimensions were designed 

based on Eqs. (3a) and (3b). The sample dimensions are listed in Table 1. PMN-PT tubes 

were purchased from TRS Ceramic Inc. and poled PZT-500 lubes were purchased from 

Piezo Kinetic Inc.. Gold sputtering and silver paste were used for the electrodes of PMN- 

PT samples. Low frequency dielectric constant and polarization of PMN-PT ceramics as 

functions of temperature were measured by a LCR meter (HP4274A) and a PA meter 

(HP4140B), respectively, with a computer controlled temperature regulation system. 

Material parameters d33 and d31 and the effective piezoelectric responses of the tube 

samples were measured by a double-beam laser interferometer. 



I-I. WANG, Q. M. ZHANG, L. E. CROSS and M. C. TROTTIER 

RESULTS AND DISCUSSION 

Material Properties 

The induced d33 and d3J of an clcclrostrictivc material arc both functions of the 

electric bias field and are proportional to the dielectric constant (e/e0) and polarization (P) 

of the material. In order to obtain high induced piezoelectricity, materials with high 

dielectric constants and large polarization are preferred. For rclaxor fcrroclcctrics, in the 

temperatures above Td and near Tm, where Tm is the temperature of maximum dielectric 

constant and Td is the depolarization temperature, large reversible polarization and high 

dielectric constant are achievable. Consequently, large material parameters d33 and d3| can 

be obtained. 

TABLE 1   Sample dimension of cylindrical ceramic tubes 

L Sample R0 
ro 

 (mm) (mm) (™m) . 

2.56 L01 12.70 

2.54 L27 12.70 
PZT-500 

PMN-PT-1 

PMN-PT-2 2.54 1.02 12.70 

PMN Ceramics are relaxor-type fcrroelectrics with a broad and frequency- 

dispersive dielectric constant peak. Near the diffuse transition region, its dielectric 

constant can be over 30,000. Modification or the composition by normal fcrroclcctrics 

PbTi03 can shift the transition temperature from Tm - -10»C to that near room 

temperature, which is desirable for most applications. In this work, cylindrical tubes made 

of 0.9PMN-0.1PT ceramic were used. Plotted in Fig. 3 arc the dielectric constant and the 

polarization of the material as functions of temperature measured at frequency of 1 kHz. 

As can be seen Irani the diagram, the depolarization Icmpcraluie T(| and Ihe Icmpoialtiir ol 

maximum dielectric constant of the material T,„ arc around 10°C and 50(,C, respectively. 

The dielectric constant is about 15,000 in room temperature. 
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FIGURE 3   Dielectric constant and polarization of PMN-PT (90/10) ceramic as functions of temperature 

At temperatures above Td, piezoelectricity can be induced by a DC bias field. 

Shown in Figs. 4 (a) and (b) arc the induced transverse and longitudinal piezoelectric 

constants of 0.9PMN-0.1PT ceramic as functions of bias field, respectively, measured at 

frequency of 500 Hz. Clearly, induced d33 and d3] coefficients increase linearly with bias 

field until they reach a peak. Depicted in Fig. 5 is the change of the ratio ld33/d3ll wilhUic 
bias field. The overall ratio of the material is higher than those of most PZT ceramics, 

which arc around the value of 2.2. In addition, in the field range of 1 - 4 kV/cm, this ratio 

increases with the bias field. Therefore, even for fixed dimensions (r0/Ro) the effective 

d3i constant of a PMN-PT lube can be adjusted by the bias field. 

Effective Pjp.7.np.1ectric Response of a Radially Poled Tube 

The material parameters d33 and d3i of PZT ceramics arc fixed after the ceramics 

arc poled. Therefore, the transverse piezoelectric response of a radially poled PZT 

cylindrical tube only depends on its dimensions. As indicated in Fig. 2, when the ratio of 

ro/Ro is 0.372, the calculated effective d3| constant of a PZT-500 tube is zero. For the 

PZT- 500 samples used in this study, the ratio of r0/R0 was 0.395. Shown in Fig. 6 arc 

effective d33 and d3i coefficients of a PZT-500 tube measured at low frequencies. The 

effective d33 constant is about -1300 pC/N and the effective d3, constant is about -50 

PC/N. Obviously, compared with the material parameters (d33 = 374 pC/N and tl.u = 

-171 pC/N), piezoelectric anisolropy is greatly enhanced in this structure. For PMN-PT 

ceramic tubes the effective responses also depend on the DC bias field because the induced 
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FIGURE 5  The d constant ratio as a function of bias field 
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piezoelectric parameters CI33 and d3i and their ratio Id33/d311 arc functions of the bias field. 

The bias field dependence of effective dß3 and d3i constants of PMN-PT ceramic lubes #1 

and #2 is illustrated in Fig. 7(a) and 7(b), respectively. Several features can be seen from 

the results presented in Figs. 6, 7(a) and 7(b). (1) For all samples, the effective 

longitudinal and transverse d constants have the same sign indicating that in hydrostatic 

applications, both longitudinal and transverse effects make positive contribution to the 

total response. (2) The uniaxial piezoelectric response (dc
3
r

3
f) is greatly enhanced. This 

parameter can be further improved by using samples with a larger ratio of L/(R0-r0). 

Hence, a piezoelectric ceramic tube with appropriate dimensions is a good candidate for 

uniaxial actuator applications. (3) As indicated by Eq. (3b) the effective d3i constant of a 

tube strongly depends on the ratio r0/R0- For the PMN-PT samples, when the ratio r0/R0 

is reduced by 20%, the effective d3i constant decreases about 70%. Consequently, strong 

piezoelectric anisolropy is obtained. (4) Comparing the results of the PMN-PT ceramic, it 
is found that at the same bias voltage level, radially poled tubular structure can provide 
much higher d33 constant than that of the material parameter. Therefore, the requirements 

for the power supply equipment are greatly reduced. 
Listed in Table 2 is a comparison between experimental results and the calculations 

by Eqs. (3a) and (3b). It can be seen that for PZT samples the experimental results of the 

effective d constants are in good agreement with those from the analytical calculations. For 

PMN-PT samples, the discrepancy between the measured and the calculated values is 

more obvious (beyond the data scattering). This is because for relaxor ferroelectric 

materials, induced piezoelectricity strongly depends on the DC bias field as indicated in 

Figs. 4(a) and 4(b). For the structure of a cylindrical tube, DC bias field is not uniform in 

the radial direction. Thus, the induced piezoelectric d33 and d3i coefficients arc not 

constant in the material. The bias field in the calculations and in Figs. 7(a) and 7(b) was 

taken as the bias voltage divided by the tube wall thickness. For the samples cmployccd in 

Ulis work the electric field at inner wall surface of the samples is more than double of that 

at outer wall surface. For example, with a DC bias voltage of 200 V, the actual electric 

fields are 0.86 kV/cm and 2.15 kV/cm at the outer and inner surfaces or sample #2, 

respectively. From Fig. 4(a), the corresponding induced d33 constants arc 390 pC/N and 

1070 pC/N, respectively. Apparently, this inhomogeneity of piezoelectric constants in the 

material is quite significant. Moreover, due to the nonlinear relation between induced 

piezoelectric constants and the bias field, the induced piezoelectric constants arc not 

monotonically decreasing in the radial direction. Hence, it is not surprising that there is a 
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TABLE 2 Effective d coefficients of the ceramic tubes 

Sample d33 (pC/N) d31 (pC/N) 

Measured Calculated Measured Calculated 

PZT-500 -1310 -1308 -51 -46 

PMN-PT-1* -2500 -3558 -210 72 

PMN-PT-2* -2280 -2893 -55 617 

Both measured and calculated d coefficients are at bias field of 2.5 kV/cm. 

discrepancy between the predictions of Eqs. (3a) and (3b) and the experimental results for 

rclaxor fcrroclcclrics. For quantitative predictions of the effective piezoelectric responses 

of a rclaxor ferroelectric ceramic lube, the inhomogencily of induced piezoelectric 

coefficients due to the non-uniform bias field needs to be considered. 

CONCLUSIONS 

Piezoelectric anisolropy can be significantly improved by an appropriate structure 

design. The experimental results presented above demonstrate that for a radially poled 

cylindrical tube, practically, a zero transverse d3] coefficient has been obtained for both 

piezoelectric PZT ceramic and rclaxor ferroelectric PMN-PT ceramic, which confirms the 

predictions from the early analytical calculations. Moreover, the effective uniaxial 

coefficients have been greatly enhanced compared with the material parameters. Besides 

the dependence of effective piezoelectric constants on the tube dimensions, the effective 

transverse coefficient of a rclaxor ferroelectric ceramic lube can also be tuned by the 

material parameters d33 and d31, which are functions of bias field. Due to the non-uniform 

bias field in the radial direction, the inhomogencity of induced piezoelectric constants in a 

tube made of relaxor fcrroelcctrics needs to be considered in the calculations of the total 

piezoelectric responses. The slniclure is promising in sippliwitions whciv. Inrj-r suifiuv 

displacement and high piezoelectric anisolropy arc required. 
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Abstract 
We address the problems of the vibration of a periodic piezo- 
composite plate (2-2 composite) under external electric fields 
and the reflection and transmission of a plane wave incident on 
the fluid-composite interface based on an analytical method 
developed recently, which takes into account explicitly the 
heterogeneous nature of the piezocomposites. It is shown that 
due to the finite thickness of the composite plate, a series of 
piezo-active modes at frequencies near and above the stop band 
edge mode frequency may be excited. It is also shown that as a 
result of the heterogeneous structure of the composite, the 
reflection coefficient from the fluid-composite interface is a 
complex number, which should have important implication on 
the design of quarter wave matching layer in composite 
transducers. 

I. Introduction. 

Piezoceramic polymer composites have been widely used in 
areas such as ultrasonic medical imaging and non-destructive 
evaluation and exhibit many attractive features in these 
applications in comparison with single phase piezoelectric 
materials.' Since as a diphasic material, the effective properties 
of a composite depend crucially on the properties of the 
constituents, the quantitative study of their properties is an 
interesting and important problem in order to optimize 
composite transducers for different applications.   However, 
due to the fact that for ultrasonic applications, the aspect ratio of 
the composite unit cell, which is L/d for a composite with 2-2 
connectivity as schematically drawn in figure 1, is not large 
(usually in the range between 2 and 6) and the acoustic 
wavelength is also comparable to the spatial period d, the usual 
averaging schemes such as those based on either the Reuss 
(isostress) model or Voigt (isostrain) model2 in treating the 
elastic and electromechanical properties of a composite become 
inadequate. While finite element analysis (FEA) can provide 
some information on how the properties of the constituents 
affect the ultrasonic performance of a composite transducer 
under these conditions, it is quite time consuming if a 
systematic study is intended and to some extent, FEA is a 
computer experiment and, hence, does not provide a lot of 
physical insight into the problem investigated.   Clearly, 
analytical models which takes into account the heterogeneous 
structure of a composite and can bridge the gap between the 
earlier simple models on composite materials and FEA should 
be developed. 

Recently, based on the method of partial wave expansion, a 
theoretical model was established for composites with a 
periodic laminate structure and finite aspect ratio L/d.3-4 For a 
periodic laminate composite plate as schematically drawn in 
figure 1, since the dimension in the X2-direction is much larger 

Figure 1. Schematic drawing of a periodic piezoceramic 
polymer composite plate. The poling direction of the 
piezoelectric ceramic plates is along the X3-direction. The width 
of ceramic plate is v d and the width of polymer is (1-v) d, 
where v is the ceramic volume content in the composite. 

than L and d, the problem can be treated as a two dimensional 
one. Here, the solution to a bounded composite plate is 
obtained by summation over the solutions of guided waves in 
unbounded plates.3 Unlike the earlier approach, the solutions 
to unbounded composite plates are obtained by solving the 
dynamic elastic equations in the ceramic phase and polymer 
phase separately and matching the two by the boundary 
conditions at the ceramic-polymer interface. Hence, the 
problem of averaging the properties of a composite in the xi- 
direction is avoided. 

The guided wave solutions to the dynamic elastic equations 
in the unbounded ceramic plate are: 

3 
u§ = X Rf f? cosOifr) exp(j ßx3) 

i-l 
3 

u? = X Ri 8i sin(hfxi) expü ßx3)       (1) 
i»l 

3 

4>c = X R? «i cos(hfxi) exp( j ßx3) 

where fjc, gjc, and tjc are factors depending on ß and hi, the 
wave vector components in the X3 and xi directions, and 
j - VT. Similar equations can be written for the polymer 
plate.3.4 

The superscripts c and p are introduced to denote the 
ceramic and polymer, respectively. In eq. (1), the symmetry 
conditions in the xi-direction for the piezoelectric active mode 
in a periodic composite plate are used, and for the sake of 
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simplicity, the time dependent term (exp(jcot)), where u> is the 
angular frequency and t is time, is omitted. The boundary 
conditions of the stresses, elastic displacements, and the electric 
displacement and potential at the ceramic-polymer interface (xj 
= vd/2) yield six homogeneous linear equations which relate the 
six undetermined coefficients Rfand Rj\ The condition for a 
nontrivial solution of homogeneous linear equations requires 
that the determinant of the coefficients vanishes, i.e., 

K = I coefficients of R, I =0 (2) 
where the coefficients of R; are functions of the ß, d, the 
angular frequency co, the ceramic volume fraction v. and the 
material parameters of both the polymer and piezoceramic. 
Equation (3) yields the relationship between ß and f, the 
dispersion curves. For each point on the dispersion curves, the 
relations among Rfand R? can be determined from the 
homogeneous linear equations. Shown in figures 2(a) and 2(b) 
are the dispersion curves for composite plates with 15% and 
44% ceramic content, respectively. The parameters used in the 
calculation are those of PZT-5H for the piezoceramic and 
Spurrs epoxy for the polymer phase, respectively.6 In 
addition, for ß=0, the solutions in the ceramic and polymer 
plates which satisfy the boundary conditions at xi=vd/2 are: 

uf = ki C sin (hg, xi), uP = k2 C sin (hg, (x,- &)), 

(3) 
tfc=<Dp = Cx3 

/ nc 

where ki and k2 are constants, hoi=v\ / — oa, hp,I=
/ 

V  eft 

In this paper, two situations will be considered explicitly 
based on the results presented. The first one is a composite 
plate situated in air and subjected to an AC applied electric field 
where the electric impedance, resonant mode frequencies, and 
surface vibration profile will be calculated. The second one is 
the wave propagation in a fluid-composite system as 
schematically drawn in figure 3. From the reflection 
coefficients, the input acoustic impedance at the fluid-composite 
interface as a function of frequency can be evaluated.7-8 

Clearly, the quantities evaluated here can be measured 
experimentally and are of great importance to the understanding 
of ultrasonic performance and optimum design of a composite 
transducer. 

II. Forced vibration of a finite thickness composite plate. 

To treat a composite plate situated in air under an AC electric 
field, U3, ui, and $ are expanded in terms of the eigenfunctions 
in an unbounded system. For the ceramic plate: 

m     3 

"5=11 Ki £i C0S(hc
niXi) Sin( ßnXaJA,, 

n«l i=l 
m     3 

"i=II kc
ni & sinfl&x,) cos( ßnx3)A„ +C k,sin(h^xi) 

n=l 1=1 

m     3 

*C=SI kc
ni & cos(h^xi) sin( ß„x3)A„ + Cx3 (4) 

P=I i=i 
A similar solution can be written for the polymer plate. In eq. 
(4). k„i, f„i, gni. and t„i are constants.     An  and C are 
determined by the boundary conditions which are traction free 
and $ = ±<t>0/2 at x3 = ± 172. With a finite number of 
eigenfunctions in the expansion, the boundary conditions at x3 

= ± L/2 cannot be satisfied at all xj.   The number of the 

#* 2S lrv(ß d> 

(a) 

(b) 
»<;S*^6) 

Figure 2. Dispersion curves for a composite made of PZT-5H 
ceramic and Spurrs Epoxy with 15% (v=0.15) (the top figure) 
and 44% ceramic volume content (v=0.44) (the bottom figure). 

eigenfunctions, m, required, hence, is determined by the 
accuracy needed for the solution. For the problem treated here, 
we found that it is adequate to use eight eigenmodes in the 
expansion. In the frequency range studied (fd < 2 in figure 2), 
there are two branches with real ß and other branches having 
either imaginary or complex ß, which corresponds the modes 
confined at the boundary x3 = ± L/2 (surface modes). 

The coefficients An and C in eqs. (4) are determined by the 
variational technique.5 Based on u3, uj, and 4 thus 
determined, all the properties related to the vibration problem 
of a composite plate can be evaluated. Shown in figure 4(a) is 
the electric impedance spectrum for a composite plate with 44% 
ceramic content made of PZT-5H piezoceramic and Spurrs 
epoxy with L/d = 4.49. The electric impedance Ze is calculated 

from the relation Ze = <t»o/I where I = j a | D3dxi.   The 
/' 
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Figure 3. Schematic drawing of a plane wave incident 
normally at the fluid-2-2 composite interface, where the fluid 
occupies the upper half space and the piezocomopsite the lower 
half space. 

integration is over one unit cell for D3 at X3 = L/2, where D3 is 
the electric displacement vector component along the X3- 
direction ( D3=e33U3,3+e3iui-i-£33<])-3 ). For the comparison, 
the electric impedance measured experimentally from the same 
composite is shown in figure 4(b) and clearly the theoretical 
impedance curve reproduces the experimental data quite well. 
One interesting feature revealed in the figures is that in a 
composite plate, in addition to the thickness resonance mode, 
there exist other modes due to the periodic nature of the 
composite and coupling between the two phases. In figure 5, 
we display the distributions of U3 at each mode. Apparently, 
fLl is the fundamental thickness resonance and fti is the stop 
band edge resonance as revealed by the fact that the ceramic and 
polymer vibrate 180° out of phase at this mode, which has been 
predicted in the earlier theoretical work.9 The frequency 
position and the distribution of U3 along the X3-axis indicate that 
?L3 is third harmonic of the thickness mode. However, the 
appearance of fa is not expected from the earlier theoretical 
works. By examining the equations of the boundary conditions 
at X3 = ± L/2, it can be deduced that a resonance will occur 
whenever ß = (l+2n) 7t/L, i.e., cos (ßL/2) = 0.   From the 
dispersion curves of real ß, as shown in figure 4(c), it is clear 
that the fundamental thickness resonance and the stop band 
edge resonance occur at ß = Jt/L (fu and fti). Similarly, when 
ß = 3 7E/L, the third harmonic of the thickness mode will occur 
at IL3. In addition, a mode fa will also show up at the branch 
1 which is at a frequency near and above fti. By the same 
argument, it would be expected that fa, fa, etc. may also be 
observed, depending on the electromechanical coupling factors 
of these modes. It can be shown that the effective coupling 
factor for these modes decreases rapidly for the higher order 
modes. These features have been observed experimentally and 
the results here provide a clear physical picture for the 
experimental observation. 

For a composite plate to work effectively as an 
electromechanical transduction material, it is required that the 
ceramic and polymer vibrate in phase with nearly the same 
amplitude in the X3-direction. The evolution of the vibration 
pattern in the two plates with frequency and the aspect ratio L/d 
of a composite plate is studied here. Shown in figure 6(a) is 
the change of the ratio U3P /u3c at X3 = L/2 (at the surface of the 
composite plate), where U3p and U3C are U3 at the centers of the 
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Figure 4. (a) The impedance spectrum for v = 0.44 composite 
plate of L/d = 4.49. (b) Experimental results for a 2-2 
composite with v=0.44 and L/d = 4.49 which can be compared 
with figure (a), the theoretical result, (c) The dispersion 
curves for v=0.44 composite which show the positions of the 
possible resonant modes in a finite thickness plate, fti and ftj 
occur at ß=7t/L, fu and fa occur at ß=3n/L. Hence, ft3 will 
occur at ß=5n/L, etc. Whether these high order modes fa, fa, 
etc. be observed experimentally depends on the 
electromechanical coupling factors for these modes. 

polymer phase (xi=d/2) and the ceramic (xj=0) respectively, 
with frequency for the composite plate of L/d = 4. At 
frequencies far below any resonance mode, U3P /U3c is always 
less than one. As L/d increases, this ratio increases and 
approaches one. These are consistent with the results of the 
earlier theoretical model developed.10 As frequency increases 
towards the thickness resonance, the ratio 113p /U3C also 
increases towards one. At a frequency fi which is near fs of 
the thickness mode, where fs is the series resonant frequency, 
U3p /"3c =1- This is true as long as fLi < fti- This ratio will 
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Figure 5. The distributions of U3 for a composite plate of 
v=0.44 and L = 4 (d=l) at fu, ftl, fL3, and ft2. (a) and (b) u3 
at X] = 0 (at the center of ceramic plate) as a function of X3 
where X3 = 0 is at the center and X3 = 2 is at the surface of the 
composite plate, (c) and (d) u3 at the surface of the composite 
plate as a function of x\. The arrows indicate the position of 
the interface between the ceramic and polymer. At fti and fo, 
the ceramic and polymer vibrate out of phase with each other, 
while at fLi and fa, the two vibrate in phase. 

surpass one as the frequency is further increased. In figure 
6(b), the change of fi/fs vs. the aspect ratio L/d is presented. 
Clearly, fi/fs is near but larger than one except for composite 
plates with small aspect ratio. Hence, the aspect ratio L/d does 
not have a significant effect on the ratio of U3P /U3C at 
frequencies very near fs of the thickness mode, where U3„ Ai3C 
is always near one.  However, it will affect the bandwidth in 

which U3P /U3c is near one. For example, the bandwidth A£ in 

which 0.9 < U3n /U3C < 1.1 increases as the aspect ratio L/d 
increases, which is shown in figure 6(b). In the practical 
design of a composite transducer, the aspect ratio L/d required, 
hence, will be determined by the operation bandwidth needed. 

III. Reflection and transmission of a plane wave at fluid- 
composite interface 

We now turn to the problem of the reflection and 
transmission of a plane wave normally incident at the fluid- 
composition boundary as depicted in figure 3, where the fluid 
occupies the upper half space (z > 0) and the composite the 

lower half space (z < 0) and a plane wave with wave vector ßo 
incident normally at the boundary. The solutions to the wave 
equation in the fluid phase (z > 0) are plane wave solutions and 
to satisfy the boundary conditions at the fluid-composite 
interface, u^ and u£ arc expanded in terms of these plane wave 
solutions: 

J 
U1=X J **»** sin (k«iXl) exp(jßnX3) 

n-l 

U3=ßkxp(-jßi>X3) "X   ßnRn COS (k„X,) exp0ßoX3) (5) 
n-0 

where kxn = 2ML and ßn = V(ß0)2-(kXI1)
2 are the wave vector 

components along xi and X3- directions, respectively. In the 
frequency range where an ultrasonic piezocomposite transducer 

is operated, ß„ is imaginary except n = 0.   The reflection 
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Figure 6. (a) The ratio of u3p/u3C vs. frequency (fd) for the 
composite plate of v=0.44 andL/d = 4. (b) The frequency ratio 
fl/fs and the bandwidth Af/fi, where Af is defined as the 
frequency range in which 0.9 < u3p/u3c < 1.1 as a function of 
the aspect ratio L/d for a composite plate with v=0.44. 

coefficient, hence, is -R0 which can be measured 
experimentally. 

The solutions in the composite region are: 
m    3 

u1 = X X jbcnisinfli^xi) exp(-jß„x3) An 
n=l i=l 
m     3 

u$ = X X acnicos(hc
nix,) exp(-jßnx3) An (6) 

n=l i=l 
m    3 

*C = X X CCniCOS(hC
niXi) exp(-jß„X3) A„ 

n=l i=l 
tor the ceramic plate and similar equations can be written for the 
polymer region. In the above equations, bcnj, acnj and cc„j are 
proportional constants, An and R„ are determined by the 
boundary conditions at the fluid-composite interface X3 = 0. 
The variational technique is used to determine these 
coefficients. The number of terms in the expansions (J in eqs. 
(5) and m in eqs. (6)) is determined by the accuracy desired. In 
the calculation carried out here, J = 5 and m = 8 are used. 

Shown in figure 7 is the reflection coefficient R for the 
composites made of PCT-5H piezoceramic and Spurrs epoxy 
with 15% and 44% ceramic content, respectively, where 
parameters of water are used for the fluid medium. The large 
change in the reflection coefficient at fd near 1 for 44% (fd near 
0.8 for 15%) is due to the lateral mode in the composites where 
the ceramic and polymer vibrate out of phase. Evidently, R is 
not a pure real number but has a imaginary component, 
reflecting the heterogeneity nature of the composites.8 Only at 
low frequency region, does the imaginary part become zero. 
This is fundamentally different from single phase materials. 
From the classical wave propagation in elastic medium 
problem, the input acoustic impedance of the composite Zjn at 
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Figure 7. The reflection coefficient R from the water 
piezocomposite interface for a plane wave normally incident at 
the interface for (a) the ceramic volume content v in the 
composite is 15%; (b) the ceramic volume content v in the 
composite is 44%. The polymer and piezoceramic used in the 
composites are Spurrs epoxy and PZT-5H. The solid lines are 
the amplitude and dashed lines are the phase angle of R. The 
absolute phase angle is that displayed plus 180°. The non-zero 
phase angle for the reflection coefficient at the fluid-composite 
interface will affect the choice of the thickness of the matching 
layer for a composite transducer. 

the interface can be calculated from the relation: 

Zf+Zjn 
where Zf is the characteristic acoustic impedance of the fluid.7'8 

Since Zf is assumed independent of frequency and real for 
water, Zjn exhibits a frequency dependent behavior and has a 
non-zero phase angle as shown in figure 8. Again, only at low 
frequencies, Zj„ is equal to that calculated from the averaged 
density of the composites times the effective longitudinal 
velocity.1' The strong frequency dependence of the acoustic 
impedance for piezocomposites was also observed in an earlier 
experiment 12 and further experiment will be carried out to 
verify the analytical results. 

Another standard method for calculating the input acoustic 
impedance of the composite at X3=0 is from the relationship 
between the stress and the sound velocity at the interface.7'8 

For a composite considered here, both the stress and velocity 
are functions of xj and to calculated Zi„, we assume that the 
averaged values can be used: 

Zi-.Ii (8) 

where T3 and v3 are the averaged stress component and 
averaged velocity (over one unit cell) in the X3-direction 
evaluated at X3=0. The results are also shown in figure 8 
(dashed lines). As seen from the figure, the two results agree 
with each other quite well. 

0.6   0.8 
Frequency " 

Figure 8. The input acoustic impedance for the composite 
calculated from the reflection coefficient R (solid lines) and 
from the stress-sound velocity relationship (dashed lines) for 
(a) composite with 15% ceramic content and (b) composite with 
44% ceramic content. Unlike single phase materials, the input 
acoustic impedance for a composite is a complex. Only at low 
frequencies, the acoustic impedance is equal to those calculated 
from the effective medium theory. 

IV. Summary. 

Based on the analytical method developed recently, we 
treated quantitatively the vibration problem of a finite thickness 
piezoceramic polymer composite under an external AC field and 
wave propagation and input acoustic impedance at a fluid 
piezocomposite interface. The results reveal many interesting 
and important features related to the resonant modes and 
vibration profiles in a piezocomposite plate, and the 
characteristics of the reflection and transmission of a plane 
wave and input acoustic impedance at the fluid composite 
interface, which should have important implications to the 
design of the matching layer in a composite transducer. The 
results are in good agreement with existing experimental data. 
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The dynamic behaviors of periodic piezoceramic-polymer composite plates, especially the effect of 
the finite thickness on the strain distributions and resonant modes, are studied theoretically. It is 
found that as long as/L,</,,, where fu and/,,are the thickness and first piezoelectric active stop 
band-edge mode frequencies, there exists a frequency/) near fL]at which the polymer and ceramic 
vibrate in phase with equal amplitude in the ,v3 direction. The effect of the thickness of a composite 
plate is to change the bandwidth in which the two vibrate in unison. It is also found that due to the 
finite thickness effect a series of piezoelectric active modes at frequencies near and above/,,may be 
excited.   © 1995 American Institute of Physics. 

For a piezocomposite, it is well known that its properties 
can be varied over a wide range, therefore, the quantitative 
study of their properties is an interesting and important prob- 
lem. Many efforts have been devoted to this study in the past 
and due to the complexity of the problem, different ap- 
proaches have been developed to address different aspects of 
the problem, such as the effective medium model, transmis- 
sion line theory, and the analysis based on Floquet theory, 
etc 1-5 

In this letter, the results of a recent investigation on the 
dynamic problem of piezocomposite plates as schematically 
drawn in Fig. 1, especially the effect of the finite thickness 
(or aspect ratio Lid) on the strain distributions in the two 
phases and the resonant modes, will be presented. Since the 
dimension in the .v2 direction is much larger than L and d, the 
problem is treated as a two-dimensional one. Here, the solu- 
tion to the vibration of a bounded composite plate is obtained 
by summation over the solutions of two-dimensional waves 
in unbounded plates.6 Unlike the earlier approach, the solu- 
tions to unbounded composite plates are obtained by solving 
the dynamic elastic equations in the ceramic and polymer 
phases separately and matching the two by the boundary 
conditions at the ceramic-polymer interface. 

The dynamic elastic equations in the piczoceramic phase 
are:6 

cfl" I.I 1 + (c D + C'44>"3.I3+ C44" 1.33+ <?3I<A. 1.1= PC" I 

= 2 ^/[cos(^A,)expO-Avi) 

<^ = 2 R'ti si» (/'--vJexpO'Av.i) (2. 

*c=2 /?^[cos(/l^1)expOAv.i), 

where ft , tf ,and t\ are factors depending on ß and /1,, the 
wave vector components in the .v3 and .v, directions, and j 
= -J— I. Similar equations can be written for the polymer 
region. 

The superscripts c and /; are introduced to denote the 
ceramic and polymer, respectively. In Eq. (2), the symmetry 
conditions in the .v, direction for the piezoelectric active 
mode in a periodic composite plate are used, and for the sake 
of simplicity, the time dependent term [exp(i<o/)] is omitted. 
The boundary conditions of the stresses, elastic displace- 
ments, and the electric displacement and potential at the 
ceramic-polymer interface (.v, = vdl2) yield six homoge- 
neous linear equations which relate the six undetermined co- 
efficients R'l and /?)' . The condition for a nontrivial solu- 
tionof homogeneous linear equations requires that the 
determinant of the coefficients vanishes, i.e., 

K = I coefficients or tf,| = 0, (3) 

where the coefficients of R, are functions of the ß, d, the 
angular frequency w, the ceramic volume fraction v, and the 

clV'.l.l I + (c U+ c 44)" 1.13+ c3.l" 3.33 + eM<l'>SS = Pl "3 

el5»3.ll + (<'l5 + <?3l)»l.l3+''33"3.33_e33<A11
_eilöl|-0. 

(1) 

where itx and ity are the clastic displacements, </> is the elec- 
tric potential, c'^ is the constant electric field elastic stiffness 
coefficient, eVj is the piezoelectric coefficient, e J, is the di- 
electric permittivity, and p is the density. Similar equations 
can be written for the polymer phase. 

The solutions in the unbounded ceramic plate are:' 

Ceramic Polymer 

FIG. 1. Schematic drawing of a periodic pie/.occramic polymer composite 
plate. The poling direction of the piezoelectric ceramic plates is along the 
.v, direction. The width of ceramic plate is v d and the width of polymer is 
(I — I») (/. where i- is the ceramic volume content in the composite. 
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FIG. 2. Dispersion curves for a composite made of PZT-5H ceramic and 
Spurrs epoxy with 44% ceramic volume content (v=U.44). 

material parameters of both the polymer and piczoccramic. 
Equation (3) yields the relationship between ß and /, the 
dispersion curves. For each point on the dispersion curves, 
the relations among It'! and Ä- can be determined from the 
homogeneous linear equations. Shown in Fig. 2 arc the dis- 
persion curves for a composite plate with 44% ceramic con- 
tent (in the first quadrant). The parameters used in the calcu- 
lation arc those of PZT-5H for the piczoccramic and Spurrs 
cpoxy for the polymer phase, respectively.7 In addition, for 
/?=0, the solutions in the ceramic and polymer phases which 
satisfy the boundary conditions at X\ — vJI2 arc 

u\ = k\C sin(/»o,A-,),  u'l = k2C sin 

0)' = <!,/< = ex, 

/'(;. X,-; 

(4) 

where   k,    and   k2   are   constants,   licw= VpTcf^w, /i(J, 
= \V7cnw. 

To treat a composite plate under different boundary con- 
ditions at x3 = ± L/2 explicitly, «3, //,, and </> arc expanded 
in terms of the cigenfunctions. For the ceramic region 

m       3 

«3=2  2 kc
nif„i:Cos(/»^I-x1)sin(/3,1A-3)/l„ 

m       3 

«1=2  2 KiSc„i^ sin(//^x1)cos(/3„.v3M„ 
H=I i=i 

+ Ckt sin(/io[Xi) 

*C=2     2  k^COSill^X^hißnXjAn+CXi 

(5) 

n=l    i"=l 

A similar solution can be written for the polymer region. In 
Eq. (5), kni, /„,, gni, and /„, are constants. A„ and C arc 
determined by the boundary conditions at x3 = ±L/2. In this 
letter, the problem with the boundary conditions of traction 
free and <f>= ± </> 012 at x3= ±L/2will be treated, which cor- 
responds to a composite plate situated in air and subjected to 

FIG. 3. (a) The admittance spectrum for r=t).44 composite plate of Z/c/=4. 
(b) the dispersion curves for v=0.44 composite which show the positions of 
the possible resonant modes in a finite thickness plate. /,, and /,,occur at 
/3=7r/Z-,/,, and/,: occur at 0=3TT/L. Therefore./,, will occur at ß=5ir/L, 

etc. Whether these high order modes/,;./,,, etc. he observed experimen- 
tally depends on the electromechanical coupling factors for these modes. 

an externally applied electric held. With ;t finite number of 
cigenfunctions in the expansion, the boundary conditions at 
x3= ±L/2 cannot be satisfied at all .v:. The number of the 
cigenfunctions in, required, thereafter is determined by the 
accuracy needed for the solution. For the problem treated 
here, we found that it is adequate to use eight cigenmodes in 
the expansion. In the frequency range studied (fcl<2 in Fig. 
2), there arc two branches with real ß and other branches 
having cither imaginary or complex ß, which corresponds 
the modes confined at the boundary .v,= ±L/2 (surface 
modes). 

The coefficients A„ and C in Eqs. (5) can be determined 
by cither the method of least-squares or selected boundary 
points method.6'8 Here, the latter approach is used due to its 
simplicity, where several boundary points arc selected to de- 
termine A, and C. Based on H3 , u (, and </> thus determined, 
all the properties related to the dynamic behavior of a com- 
posite plate can be evaluated. Shown in Fig. 3(a) is the elec- 
tric admittance spectrum for a composite plate with 44% 
ceramic content made of FZT-5H piczoccramic and Spurrs 
epoxy at L/d=4. The admittance Y is calculated from the 
relation Y=II<j)0 where I=jw$D?idx]. The integration is 
over one unit cell for Z)3 at x3 = L/2, where D3 is the electric 
displacement vector component along the ^-direction ( £>3 

= e33(i33+t'3|iiu — e33r/>3). One interesting feature revealed 
in Fig. 3(a) is that in a composite plate, in addition to the 
thickness resonance mode, there exist other modes due to the 
periodic nature of the composite and coupling between the 
two phases. In Fig. 4, wc display the distributions of «3 at 
each mode. Apparently, fLi is the fundamental thickness 
resonance and /,,  is the stop-band-edge resonance as re- 
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FIG. 4. The tlislrihutions of »i for a composite plate of v=0.44 and 
L=A(d= I) at/tl, /,,, /,,,, and/,,. (a) and (b) n, at .r, =0 (at the center of 
ceramic plate) as a function of .r, where .r,=0 is at the center and .vi=2 is 
at the surface of the composite plate, (c) and (d) it, at the surface of the 
composite plate as a function of jct. The arrows indicate the position of the 
interface between the ceramic and polymer. At/,, and/t,, the ceramic and 
polymer vibrate out of phase with each other, while at fu and fl2, the two 
vibrate in phase. 

vcaled by the fact that the ceramic and polymer vibrate 180° 
out of phase at this mode, which lias been predicted in the 
earlier theoretical work.4'3 The frequency position and the 
distribution of u3 along the .rj-axis indicate that fL3 is the 
third harmonic of the thickness mode. However, the appear- 
ance of fl2 is not expected from the earlier theoretical works. 
By examining the equations of the boundary conditions at 
.v3=±L/2, it can be deduced that a resonance will occur 
whenever /3=(l +2II)TT/L, i.e., COS(/3JL/2)=0. From the dis- 
persion curves of real ß, as shown in Fig. 3(b), it is clear that 
the fundamental thickness resonance and the stop-band-edge 
resonance occur at ß= TT/L (JLl and/,,). Similarly, when 
ß=?nrL, the third harmonic of the thickness mode will occur 
at fL$. In addition, a mode fl2 will also show up at the 
branch 1 which is at a frequency near and above fn. By the 
same argument, it would be expected that/,3, fl4, etc., may 
also be observed, depending on the electromechanical cou- 
pling factors of these modes. It can be shown that the effec- 
tive coupling factor for these modes decreases rapidly for the 
higher order modes. Therefore, the experimental situation, 
only the modes of fl2 and sometimes /,-, are observed. In- 
deed, these modes have been observed experimentally and 
the results here provide a clear physical picture. 

For a composite plate to work effectively as an electro- 
mechanical transduction material, it is required that the ce- 
ramic and polymer vibrate in phase with nearly the same 
amplitude in the .ij-dircction. The evolution of the vibration 
pattern in the two phases with frequency and the aspect ratio 
Ud of a composite plate is studied here. Shown in Fig. 5(a) 
is the change of the ratio iiyvlvtyc at Xy-U2 (at the surface 
of the composite plate), where iiyp and uye arc H3 at the 
centers of the polymer phase (.r,=r//2) and the ceramic 
(.t| = 0), respectively, with frequency for the composite plate 
of Ud=4. At frequencies far below any resonance mode. 
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iiip/iijc is always less than one. As Ud increases, this ratio 
increases and approaches one. These arc consistent with the 

FIG. 5. (a) The ratio of II, , liti,, vs frequency (fit) for the composite plate of 
t'=0.44 and IJd=4. (b) The frequency ratio ft //, and the bandwidth 
Ä///|, where A/ is defined as the frequency range in which 0.9<H,/)/»V 

< 1.1 as a function of the aspect ratio L/il for a composite plate with v=0.44. 

results of the earlier theoretical model developed.' As fre- 
quency increases towards the thickness resonance, the ratio 
uip/u3c also increases towards one. At a frequency/, which 
is near/, of the thickness mode i/3/,//f v= 1. This is true as 
long as//1</,|. This ratio will surpass one as the frequency 
is further increased. In Fig. 5(b), the change of/, //, versus 
the aspect ratio Ud is presented. Clearly, /, //, is near but 
larger than one except for composite plates with a very small 
aspect ratio. Therefore the aspect ratio Ud does not have a 
significant effect on the ratio of (i1;,/»3r at frequencies very 
near/, of the thickness mode, where Uypluie is always near 
one. However, it will affect the bandwidth in which 
ii3p/u3r is near one. For example, the bandwidth (A///,) in 
which 0.9< 1*3,, li(yc< 1.1 increases as the aspect ratio Ud 
increases, which is shown in Fig. 5(b). In the practical design 
of a composite transducer, the aspect ratio Ud required, will 
be determined by the operation bandwidth needed. 
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Transverse Piezoelectric Mode Piezoceramic Polymer Composites with 

High Hydrostatic Piezoelectric Responses 

Q. M. Zhang 
Materials Research Laboratory, The Pennsylvania State University 

University Park, Pennsylvania, 16802, U.S.A. 

Abstract 

In addition to the connectivity of the constituents in a 
composite, the operation mode also plays an important 
role in determining the performance of the composite. 
In this talk, we will present two types of piezoceramic 
polymer composites developed recently at MRL of Penn 
State: a 2-2 piezocomposite operated at the transverse 
piezoelectric (TP) mode and a TP mode honeycomb 
composite. Both composites exhibit exceptionally high 
hydrostatic piezoelectric response, high reliability, as 
demonstrated by the experimental results on these new 
composites and analytical modeling. Based on 
analytical models, the optimum design of these 
composites is also analyzed. One advantage of a TP 2- 
2 composite, in audition to the high hydrostatic 
piezoelectric response, is the low fabrication cost. 
While for a TP mode honeycomb composite, due to the 
fact that the piezoelectric responses from the three 
orthogonal directions add together when the transducer 
is subjected to a hydrostatic pressure, a unique feature 
of this composite, it has a piezoelectric hydrostatic 
response considerably higher than those of most other 
piezoceramic polymer composites. 

I.     Introduction 

Through the efforts in the "last two decades, many 
forms of piezocomposites have been developed. These 
materials have demonstrated many advantages over 
conventional single phase ceramic and polymeric 
materials in the hydrostatic applications. A summary of 
the performance of these composites can be found in 
several review articles.1-2 One of the common features 
among these earlier piezocomposites is that they are 
operated in the longitudinal piezoelectric mode (di3 
mode). Hence, the hydrostatic piezoelectric coefficient 
d|, of these composites, such as 1-3 composite and 2-2 
composite, is limited to below (J33 coefficient of the 
piezoceramic phase in the composite. In addition, the 
high pressure in deep ocean due to the stress transfer 
between the polymer and ceramic phases may cause 
depoling of the piezoceramic. 

In piezoceramics, there are three independent 
piezoelectric coefficients, the longitudinal CI33, the 
transverse dj], and the shear d 15 coefficients. Hence, it 

is interesting to explore piezoceramic polymer 
composites operated in the piezoelectric d3| and d!5 

modes instead of d33 mode. Moonie transducer, a 
recent invention of metal-ceramic composite, is an 
example which makes use of piezoelectric d3i mode and 
achieves exceptionally high effective linear and 
hydrostatic piezoelectric responses.3 In this talk, I will 
present two new piezocomposites operated in the 
transverse piezoelectric mode übi orTP mode) and will 
show that exceptionally high hydrostatic piezoelectric 
response can be achieved with these TP mode 
piezocomposites. The transverse mode operation also 
reduces the high pressure depoling effect. 

2.  TP mode 2-2 composite 

Shown in figure 1 is a schematic drawing of aTP 
2-2 composite. Here, two configurations will be 
evaluated, one without face plates and one with stiff 
face plates. By employing the model similar to that used 
in the reference 2, one can derive the following 
expressions for the effective hydrostatic piezoelectric 
responses of a TP 2-2 composite: 

dcP _[0f1c   (l-qP)s?i+(l-v)(sP? -fo) 

(l-v)(l-0c)rfj,+v(l-a-K 
a33 >f (I) 

<"' ghP=[d' 33' +2 d31 
(l-qp)sP,+(l-v)(sP, -fa) 

(l-vXl-Oc^+vd-ap)^, 
p_y_ 

e33 
(2) 

where the superscripts p and c refer to polymer and 
ceramic, respectively, v is the ceramic volume content 
and a is the Poisson's ratio. 

Shown in figure 2 are the calculated results from 
eqs. (1) and (2), where the TP 2-2 composite is made 
of PZT-5H ceramic embedded in Spurrs epoxy (figure 
5(a)) and polyurethane with microballoon (polymer II) 
(figure 5(b)). The parameters used in~the calculation are 
listed in Table I. 

Using stiff uni-directional face plates, which clamp 
the 2-2 composite in the y-direction while leave the 
composite free in the x-direction, the hydrostatic 
piezoelectric response can be improved. It can be 
shown that in the ideal condition, that is the composite 
is completely clamped in the y-direction and free in the 
x-dircction, the hydrostatic responses are: 
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Figure I. Schematic drawing of a TP 2-2 composite. 
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Figure 2. Calculated results of hydrostatic piezoelectric 
response of TP 2-2 composite, (a) Spurrs epoxy matrix 
and (b) polyurcthane with microballoon matrix. 

<C = (2d^, 
s^d-Qp) Lv 

vsf?,(l-a„) + (l-v)sAi|(l-Oc)   l 
(3) 

s^O-Op) 2  V (4) 
hgh_V   3,vsP, (l.-ap) + (l-v)sc

I1 (I-CTC)' eL
33 

Plotted in figure 3 are the results calculated from 
eqs. (3) and (4) for face plated TP 2-2 composites. 
Apparently, the hydrostatic responses are improved 
significantly, as compared with the results in figure 2. 
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Figure 3. Calculated results of hydrostatic piezoelectric 
response of TP 2-2 composite with unidirectional face 
plates, (a) Spurrs epoxy matrix and (b) polyurethane 
with microballoon matrix. 

Table I. The parameters used in the calculation 

PZT-5H:     d33 = 593 (pC/N), d3|= - 274, si i =0.165 
(10-10 m2/N),   S33 = 0.207,   s,2 = -0.048,   s,3 = - 
0.085, £33 = 3400 en 

Polymer I (Spurrs epoxy):   si ( = 2.0 (1'0"10 m2/N), O 
= 0.36 

Polymer II su =2.0(10"y m2/N),   a = 0.36 

Several TP 2-2 composites were made and 
evaluated. Listed in Table II are some of the results and 
the comparison with the theoretical calculation. As seen 
from the Table, indeed, TP 2-2 composite exhibits 
exceptionally high hydrostatic piezoelectric response 
and there is good agreement between the theory and 
experiment. 

3. TP mode Honeycomb composite 

The schematical drawing of a TP mode honeycomb 
structure is shown in figure 4, where the poling and 
applied electric field directions arc across the wall of the 
honeycomb cell (perpendicular to the z-dircclion). A 
hydrostatic transducer can be made by cither placing 
thin layers of polymer on the two end faces to block the 
opening  (air backing)  or  embedded  the  whole 
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Table II. The piezoelectric hydrostalic performance of 
TP 2-2 composites 

Sample A Sample B 

Experiment Calculated Experiment Calculated 

dh (pC/N) .    2,020     2,572 6,000 7,700 
dhghOO-'Srr^/N) 1,468   1,752 30,000 49,900 

L(cm)         1.12 1.0 
t (cm)         0.05 0.05 
v (%)           25 15 

Poly. Matrix Spurrs epoxy 

Face plates No 

Polyurethane with 50% 
volume microballon 
Unidirectional plates 

Figure 4.    Schematic drawing of a TP honeycomb 
structure. 

honeycomb ceramic into a polymer matrix. If these 
structures arc subjected to hydrostatic pressure, the d33 
response is eliminated and the hydrostatic piezoelectric 
response is from the di| component of the piezoelectric. 
The stress field in the x-, y-, and z-dircction will induce 
three d31 responses in the corresponding ceramic 
plates. For an end capped configuration, it can be 
shown that the effective hydrostatic response is: 

ti"- . 2La_dJL (i + I +     si3 
r2        b    v    s33(2-b) 

(5) 

< 
ieii„cii_ 2h(l-h)d;„ (| 

eh ■)"    (6) + 1 + _Ü12 
En b      V      S33(2-b) 

where b = t / r with r = t + a. 
Plotted in figure 5 are the results from eqs. (5) and 

(6) for an end capped TP honeycomb made of PZT-5H 
with L= 1 cm and a = 0.125 cm. Clearly, very high 
hydrostatic response can be achieved with this 
structure. 

0.2 0.3 0.4 0.5 
Ceramic Volume Fraction 

Figure 5. Calculated results of the effective hydrostatic 
piezoelectric responses from an end capped TP 
honeycomb transducer made of PZT-5H ceramic. 

Figure-6 shows the experimental result of end 
capped honeycomb transducers. The honeycomb was 
made of PZT-4 material with da = 110 pC/N and d3i = 
-40 pC/N. The comparison between the experimental 
results and theoretical prediction is made in Table III. 

.There is a good agreement between the theoretical 
values and experimental results. The discripancy is 
mainly caused by the finite size effect where the 
honeycomb cells at the edges of the samples will have 
finite da response. 

Table III. Parameters and results of the TP honeycomb 
samples tested 

Configuration   E/EO L(cm)   dh(pC/N)    dh 

(exp)    (theory) 

I   End capped     520     1.326 - 4,700 - 6,200 
II   End capped    520     1.237 - 4,200 - 5,784 

III Polyurethane   570     1.2 - 4,666 - 5,636 
with microballoon matrix 

4. Summary 

Two new piczocomposites operated at TP mode 
were developed and evalueted. As a comparison, in 
figure 7, we summarize the hydrostatic properties of 
several commonly used transducer materials and the 
newly developed TP mode composites. It can be seen 
that these new structures exhibit exceptionally high 
hydrostatic piezoelectric responses. The author would 
like to thank the financial support of this work from 
Office of Naval Research. 
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Figure 6.    Experimental results of the TP honeycomb 
(a) sample I and (b) sample II. 
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A High Sensitivity Hydrostatic Piezoelectric 
Transducer Based on Transverse Piezoelectric 

Mode Honeycomb Ceramic Composites 
Q. M. Zhang, H. Wang, J. Zhao, Joseph T. Fielding, Jr., Robert E. Nevvnham, Member, IEEE, and L. Erie Cross 

Abstract—A new piezoelectric composite transducer bused on 
the ceramic honeycomb structure is introduced. The transducer 
is operated in the transverse piezoelectric (TP) i/.u mode. The 
ceramic honeycomb configuration enables one to fabricate a 11' 
honeycomb transducer by either embedding a honeycomb ce- 
ramic skeleton into a soil polymer matrix to form a composite or 
by blocking the openings of the honeycomb cells with thin layers 
of epoxy to form an end-capped honeycomb structure. With the 
unique honeycomb configuration and TP operation mode, the 
piezoelectric </ u response or the ceramic is nearly eliminated and 
the piezoelectric responses from the three orthogonal directions 
add together when the transducer is subjected to a hydrostatic 
pressure. As a result, the transducer exhibits exceptionally high 
hydrostatic piezoelectric response. 

I. INTRODUCTION 

AS HAS BEEN demonstrated repeatedly, the key to the 

sucecss of a composite material is to intelligently design 

the properties and geometric shapes of the constituents. In 

piezoelectric ceramic-polymer composites, by making use 

of various connectivity patterns of the ceramic phase and 

polymer phase, a scries of high performance piezoelectric 

transducers have been realized 111.12|. However, almost all the 

existing piczoeoinposiles are operated in the piezoelectric <IM 

mode (longitudinal piezoelectric mode), and in their current 

forms may have reached the performance limit. To meet the 

demands and challenges of the ever growing transducer and 

actuator market, including the so-called smart materials used 

for vibration control, it is necessary to develop a new gen- 

eration of piczocomposile materials. The Moonie transducer, 

a recent innovation, is one example of new composites |3|. 

Recently, we have demonstrated that by using the transverse 

piezoelectric mode ((/31 mode) in 1-3 tubular composites and 

in 2-2 composites, one can markedly improve the effective 

piezoelectric hydrostatic response by more than an order of 

magnitude. This substantial increase in hydrostatic piezoelec- 

tric coefficient r//, and ligure of merit (//,<//, compared with 

those of 1-3 rod composites is on a par with the Moonie 

transducer [4], [5]. 

In this paper, sve will introduce a new type of hydrostatic 

transducer made of a honeycomb piezocompo.sile operated 

in the transverse piezoelectric mode, which is named in this 

Manuscript received Pcbruary 0. 1995: revised June 16. 1995. Tins work 
was .supported by Ihe Ol'liee of Naval Research. 

The authors are with the Intcrcollegc Materials Research Laboratory, I'eiin 
State University. University Park. I'A 16X02 USA. 
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structure subjected to a hydrostatic pressure. The local cooidinale system lor 
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the piezoelectric responses in the three orthogonal directions 

|the .;>, ;/-, and ^-directions, as shown in l;ig. I(a)| have the 

same sign. The 3-D connected ceramic frame in the composite 
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[6]. As a result, this new composite exhibits a piezoelectric 
hydrostatic response considerably higher than those of most 
other piezoceramic polymer composites. 

II. PHYSICAL BASIS AND ANALYTICAL MODELING 

The basic structure of this new composite is schematically 
illustrated in Fig. 1, where the ceramic is poled perpendicular 
to the 2-direction as indicated. In this paper, two configurations 
will be investigated: 1) A honeycomb structure is end-capped 
with the interior filled with air and the openings of the 
honeycomb cells blocked by cither thin layers of polymer 
or thin layers of metal, depending on the dimensions of the 
honeycomb cell. With this configuration, the inside walls of 
the honeycomb are shielded from the external medium. Hence, 
as a transducer is subjected to hydrostatic pressure, the stress 
component perpendicular to the wall, T„, in Fig. 1(b), is zero. 
2) A honeycomb ceramic frame is embedded in a polymer 
matrix to form a composite. The polymer matrix acts as a stress 
transfer medium as in other piezoceramic polymer composites. 

Due to the local variation of the poling directions in 
the honeycomb structure studied, to facilitate the analysis 
and discussion, two coordinate systems will be used. One 
coordinate system is labeled as X-Y-Z and attached to the 
honeycomb composite, as shown in Fig. 1(a). The other is 
labeled as 1-2-3 and attached to the ceramic local structure 
with the 3-direction along the ceramic poling direction as 
shown in Fig.  1(b). 

It should be mentioned that two forms of honeycomb 
composite transducers were investigated earlier [7), [8]. The 
difference between the earlier honeycomb composite trans- 
ducers and the one introduced here is the operation mode. 
The earlier honeycomb composite transducers are operated 
in the longitudinal piezoelectric mode. Due to the limitation 
of this operation mode, the effective hydrostatic piezoelectric 
response of the earlier honeycomb composite transducers is 
at least one order of magnitude smaller than that of the TP 
honeycomb transducers introduced here. 

A. Honeycomb Structure with End Caps 

When an end-capped honeycomb structure is subjected to 
hydrostatic pressure, as will be shown later, the piezoelectric 
response is from the <l:n component of the piezoceramic. Due 
to the fact that T,„ = 0 (because the interior of an end-capped 
honeycomb is filled with air) and the poling direction of the 
ceramic is parallel to the thickness direction of the ceramic 
wall, the f/3,) response is eliminated and the stress field in 
the :/>, y-, and 2-directions will induce r/.n responses in the 
ceramic plates. 

When an end-capped honeycomb structure is subjected to 
hydrostalic pressure p, the stress component Tx as shown in 
Fig. 1(b) will be increased. From the force balance condition, 
we can obtain the following relation: 

T,= (0 

.7.- and y-directions. As a result of this stress amplification in 
the ,r- and ?/-directions as well as the stress amplification in 
the z-direction (as will be shown later), an exceptionally high 
piezoelectric response is achieved. 

In a honeycomb structure, there are two different ceramic 
regions, the bridge region (BR) and the joint region (JR). In the 
current configuration, the piezoelectric response is produced 
in the bridge region while the joint region is piezoelectrically 
inactive. In most practical honeycomb structures, the effect 
of JR is relatively small since the ceramic fraction in a 
honeycomb structure, which determines the relative weight 
of JR in the structure, is not very high. For example, even 
at a ceramic volume fraction of 40%, the ratio between the 
BR and JR is less than 15%. That is, 85% of the ceramic 
is piezoelectrically active in this structure. In addition, as 
the ceramic volume content decreases, the percentage of this 
inactive region will decrease. In most practical applications, 
the ceramic volume fraction lies below 40% and the relative 
weight of the JR will be correspondingly small. 

Clearly, the responses of the two regions, i.e., JR and BR, 
to external stresses are different. In order to determine the 
stress and strain distributions in these two regions, depending 
on the manner in which the two regions are connected, either 
isostrain or isostress approximation is used. That is, in the 
2-direction the strain in JR is equal to that in BR (isostrain 
approximation). In the :;:- and ^-directions, the stresses are 
the same in JR and BR (isostress approximation). The error 
associated with those approximations is small if L is much 
larger than r, and a is much larger than /., respectively (see 
Fig. 1) |9]. For any practical device, L\ and L-± are much 
larger than r. Under these approximations, we can write down 
the constitutive relations in a TP honeycomb structure. The 
constitutive relations in the BR are 

S2 = X12T1 + •s1lT,2BI! 

in JR, the constitutive relations are 

Sun = (■s'n + •si2)7"i + xnTzut 

S2 = 2.s12Ti + .snT2.1i) 

(2a) 

(2b) 

(3a) 

(3b) 

where .'»mn. Sun., and S-> are the strain components in the I- 
and 2-directions, respectively, s^ are the elastic compliance, 
and T; are the stress components in the ceramic plate. The 
subscripts BR and JR denote the bridge region and joint region, 
respectively. The local coordinate system is used in (2) and 
(3). In writing (2) and (3), the possible clamping effect of the 
end caps is omitted since the Young's modulus of the end 
caps used in our experiment is much smaller than that of the 
ceramic. The force balance condition in the 2-direction yields 

2/.tt7'inn + t2T2.m - r2p. 

TL>BR can be found by solving (2), (3), and (4), 

T-mn =v[ - + 
■S12 

v      su('2-b) 

(4) 

(5) 

where /; = t/r with r = 1. + a (see Fig. 1). /) is smaller than 
one and (I) indicates that there is a stress amplification in the 

where v = b{2 — b) is the volume content of the ceramic in 
the honeycomb structure. 
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Fig. 2. Model results of the effective <//, and <//,</;, as a function of the 
ceramic volume content for an end-capped TP honeycomb structure made of 
PZT-5H ceramic. The dimensions arc: L = 1 cm and <i = 0.120 cm. 

In this paper, the effective piezoelectric response for this 
structure is denned as if the honeycomb is a ceramic block 
which is electroded on the faces perpendicular to the z- 
direction. The effective hydrostatic piezoelectric coefficient 
dh, under this definition, is 

djfr=2Lad21(ri+r2BR) 

r2p 
(6) 

where L is the composite thickness (Fig. 1) and du is the 
transverse piezoelectric coefficient of the ceramic material. In 
(6), 2Ladzi (T\ + TSBR) is the total charge output from one 
unit cell under hydrostatic pressure p and r2 is the unit cell area 
in the z-direction. Using (1) and (5), (6) can be converted to 

ah   - 
2Ladsi I 1      1 «i2 

r2     \b + v + sn(2-b) 
(7) 

Similarly, the effective piezoelectric hydrostatic figure of 
merit dhgh can be derived as 

.off   eff _  26(1 " b)4, jctt    ett  _ 
ah 9h   - 

where £33 is the dielectric permittivity of the ceramic. In other 
words, the effective piezoelectric du coefficient is defined as 
the charge output per unit area in the x-y plane (L\L2) and 
the effective #/, coefficient as the ratio of voltage output to 
the composite thickness L when the composite is subjected to 
unit hydrostatic pressure. 

In Fig. 2, the calculated effective piezoelectric response is 
shown for a honeycomb structure made of PZT-5H (PZT- 
5H is the trademark of Morgan Matroc, Inc. for one of 
its piezoceramics; the parameters are: t/33 = 503 (pC/N), 
d3i = -274, an = 0.1G5 (KT10 m2/N), s33 = 0.207, s12 = 
-0.048, S13 = -0.085, e33 = 3400 e0) ceramic with L = 1 
cm, a = 0.125 cm as a function of u, the volume content of 
the ceramic phase [10]. A honeycomb structure with v — 0.3 
can easily be fabricated by extrusion, and as shown in Fig. 
2, an effective \d^\ of higher than 30000 pC/N and effective 

dh(jh higher than 50000 * 10-15 m2/N can bo obtained for this 
structure. On the other hand, due to the very high capacitance 
of this structure, the effective yu is relatively small. Hence, 
the structure is an excellent transmitter and actuator, but not 
an ideal voltage sensor. However, for an electromechanical 
transducer, the most important factor is the electromechanical 
coupling factor, and in the hydrostatic application, it is k\ = 
dngii/sh, where sh = (2s n + s33) + (2,s12 + 4s13) is 
the hydrostatic clastic compliance [11]. Clearly, a large d^yi, 
is required for a structure to have a large /„v It should 
be pointed out that although the physical basis for such 
a high piezoelectric response of a TP honeycomb structure 
is quite similar to that of a radially poled and end-capped 
cylinder [12], the TP honeycomb structure can provide a 
much higher piezoelectric hydrostatic sensitivity than that 
produced by the end-capped radially poled cylinders, because 
in this honeycomb structure the piezoelectric responses from 
all three-directions, the x-, y-, and z-dircctions, are utilized 
while in the end-capped cylinder, most of the response is from 
the axial direction. 

B. Honeycomb Ceramic-Polymer Composite 

By embedding a piczoccramic honeycomb structure in a 
polymer matrix, it is expected that the mechanical integrity, 
reliability, and shock resistance can be improved, and if a 
proper polymer is used, the piezoelectric response will not be 
reduced. To analyze the hydrostatic response of this composite 
structure, we divide the composite into three regions: the 
polymer region, the ceramic bridge region, and the ceramic 
joint region. Because of the presence of the polymer matrix, 
the stress T„, [sec Fig. 1(b)] is no longer zero and its value 
depends on the clastic properties of the polymer matrix and 
the dimensions of the honeycomb unit cell, especially the ratio 
a/L. 

The constitutive relations in the bridge region arc 

SlDIl — SllTi + SljTw + *'12^2BR 

^2 = A'12'A + A'ia'^iu + A'lljfüBH 

•S3BII = SjiTw + A'13^1 + A'13^213R- 

In the joint region, we have 

Sim - (A'II + «12)21 + «12^2.)u 

62 = .Sil!/2JH + 2si2'l\. 

And in the polymer region, we have 

5[ = (sf, + s>;2yrw + s"nn; 

S2 — A'n'A + 2s12r»> 

(8a) 

(8b) 

(8c) 

(9a) 

(9b) 

(10a) 

(10b) 

where the superscript p refers to the polymer matrix. Other 
notations arc the same as in Section 1I-A. The local coordinate 
system is used for the ceramic. For the polymer region, the 
coordinate system has the 2-axis in parallel to the z-axis 
of the honeycomb composite, and the 1- and 3-axcs in the 
plane perpendicular to that. In (8). (9), and (10), the isoslrain 
approximation in the z-dircction (S2 is the same in the three 
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regions) and isostrcss approximation in the x- and ;y-directions 
were used. 

The force balance conditions in the :r- and r-directions lead 

to 

{I - b)T„, + bTY = V (11a) 

(1 - bfTi; + 21,(1 - b)T2Un + b2T2.m = V-     (Mb) 

Here, the composite is subjected to hydrostatic pressure /). The 
isostrain condition in the ./-direction yields 

J-l)siBR + SUR= Q-lW + Saun-        (12) 

Tliese are the basic equations for the piezoelectric and elastic 
responses of the composite, which contain 10 unknowns. By 
eliminating the strain components in the above equations, we 
get five linear equations for the stress components in the 
composite where bh = £ — 1, as shown in (13) at the bottom of 
the page. These stress components are easily evaluated using 
the matrix method. The effective hydrostatic piezoelectric 
coefficient, therefore, is 

"h   — 

2 La 

r-p 
MnfTi+TzBRl + ^uT,,,) 

and the hydrostatic figure of merit is 

2I,{1 - b) 
<r," n <Ju 

e-ssV 
MnrTi+TzBnl + 'AuT,,,) 

(14) 

(15) 

Here again, the definitions of the effective tli, and #/;, are the 
same as those introduced in the previous section. 

Shown in Fig. 3 are the results calculated from (14) and (15) 
for honeycomb composites made of PZT-5H piezoceramic 
with different polymer matrices. The curve 3 is for a composite 
with a Spurrs epoxy matrix (Young's modulus Y = 4.8 * 109 

Pa and Poisson's ratio a = ().30<l) [ I0|. The curves 1 and 2 arc 
for composites with a polymer matrix having Y = 4.8*10' Pa 
and Y = 4.8* 108 Pa, respectively. All have Poisson's ratio 
IT = ()..'J(i4. As expected, as Young's modulus of the polymer 
matrix decreases, the dlt value of a composite approaches that 
of an end-capped honeycomb which is the upper limit for the 
composite. In Fig. 4(a), the effect of the polymer compliance 
on du is shown explicitly for a honeycomb composite with 
20% ceramic content. In both Figs. 3 and 4, L = 1 cm and 
a — 0.125 mm were used in the calculation. Fig. 4(a) shows 
that as the compliance of the polymer matrix is increased 
above 10_s m2/N, the effect of the compliance of the polymer 
matrix becomes negligible. For example, the relative difference 
in r//, between a composite with .s'^ = 10_,s m2/N and the end- 
capped honeycomb structure (*'', —» ex») is less than 4%. To 

(a) 

200 

0.2 0.3 0.4 0.5 0.6 
Ceramic Volume Content 

(b) 

Fig. 3. Model results of the elTecl of polymer Young's modulus on (he 
effective </;, and </;,'//, of a TP honeycomb composite, where curve 1 is for 
a composile with a polymer matrix of V = 4.8 * 111' I'a. curve 2 for a 
polymer matrix of V = -1.8 * 10M Pa, and curve 3 for a polymer matrix of 
Y = 4.8 * 1(1" Pa (Spurrs epoxy). All have the Poisson's ratio rr = (1.3G4. 
The piezoceramic is I'ZT-SH. 

illustrate this more clearly, in Fig. 4(b), the du values from 
Fig. 4(a) arc plotted against the Young's modulus (>') of the 
polymer matrix, and the result is a nearly linear relationship 
between </,, and Y. The dh value at Y = 0 is -50200 pC/N. 

The influence of the Poisson's ratio a of the polymer matrix 
on di, of a honeycomb composile can also be evaluated, and 
plotted in Fig. 5 arc the results from (14) and (15) for a 
composite of 20% ceramic content and the polymer matrix 
with the compliance ,su = l()_s irr/N. Apparently, n docs 
not affect <//, very much until it is close to 0.5. This is in strong 
contrast with 1-3 and 2-2 composites where the Poisson's ratio 
of the polymer matrix has a strong influence on the hydrostatic 
performance of the composites. The reason for this difference 
is that unlike 1-3 and 2-2 composites, the ceramic frame in a 
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Fig. 4. Model resulls of the effect of polymer clastic compliance (a) or 
Young's modulus (b) on the effective <//, of a TP honeycomb composite with 
20% ceramic volume fraction. The Poisson's ratio a of the polymer is fixed 
at 0.364 and the ceramic is PZT-5H. 

honeycomb composite forms a 3-D structure which bears the 
stresses in all three directions, i.e., the :/.-, y-, and z-dircctions, 
and the polymer phase, due to its low clastic constant, will not 
affect the stress pattern in the x- and y-dircclions. Only when 
the Poisson's ratio of the polymer phase approaches 0.5, which 
implies the bulk modulus will approach infinity [13], will the 
polymer phase substantially reduce the effective stress applied 
on the ceramic and the effective hydrostatic response of the 
composite. 

III. EXPERIMENTAL RESULTS 

The honeycomb ceramics used in this study were made by 
Dr. Lochman of Corning, Inc., using the extrusion technique 
and specially designed dies. The composition of the material 
is close to that of PZT-4. The original shape of the honeycomb 
ceramic is a long cylinder of 1.5 cm diameter. The samples 
were cut into pieces about 1 cm length with nearly square cross 
sections, as illustrated in Fig. 6. The dimensions of the square 
unit cell are: a = 0.125 ± 0.004 cm and t = 0.22 ± 0.03 mm. 
The ceramic volume content, therefore, is 27.7%. There are 
small variations in the value of a and / across a sample. The 

-1000UOr 

Fig. 5. Model resulls of the effect of polymer Poisson's ratio on the effective 
til, and (/(,«//, of a TP honeycomb composite with 20% ceramic volume. The 
clastic compliance of the polymer matrix is lixed at 10"" m'-'/N and the 
ceramic is PZT-5H. 

samples were clcctroded with clcctroicss nickel. The electric 
connection was provided by gluing thin copper wires to each 
cell using conductive cpoxy. The samples were then poled 
with a field of about 40 kV/em at a temperature of about 
60°C for live minutes. Three samples were fabricated and 
tested. The parameters of the samples arc listed in Table I. 
The piezoelectric dju and 1/31 coefficients of the material were 
measured using a laser dilalomctcr on a small ceramic plate cut 
from a poled honeycomb sample. The average dM = 110 pC/N 
and dji — —40 pC/N (the 1/33 coefficient was also measured 
by a t/3,1 meter). Two honeycomb samples were made in the 
end-capped form by placing thin layers of cpoxy (Jli KYV1K) 
(JB KWIK is the trademark of JB Welb Co., TX) over the two 
ends to block all the openings. One sample was made in the 
composite form with the polymer matrix made ol'polyurcthanc 
(Miles Inc., PA) mixed with 50% volume mieroballoon. 

The effective hydrostatic piezoelectric <//, coefficient of TP 
honeycomb composites was evaluated by a standard compari- 
son method: A composite and a standard sample with known 
du were placed in a high pressure oil chamber and subjected 
to a low frequency ac (50 Hz) hydrostatic pressure. The charge 
outputs of the composite and the standard sample under the ac 
pressure were measured and were used to calculate (/;, of the 
composite when the areas of the composite and the standard 
are known. From the measured <//, value and the effective 
dielectric constant of the composite, <ji, as well as <//,<//, were 
obtained. 

Shown in Fig. 7 arc the lest results of di, and <//,///, for 
these samples where the abscissa *is the dc bias hydrostatic 
pressure. There were no observable changes of <//, as the 
samples went through pressure cycles, except for data scatter. 
The comparison between the experimental and theoretical t//, 
values is made and listed in Table I. The elastic constants for 
the piczoccramic used in the calculation are those of PZT-4 
(PZT-4 is the trademark of Morgan Matroc, Inc., OH: sn = 
0.123 (10-10 m2/N), S33 = 0.155, .s12 = -0.011. .su = 
—0.053. The clastic constants for the matrix are: .su = 5.0 
(I0~8 m2/N), a = 0.304). Considering the simplicity of the 
model, the agreement between the experimental results and 
model calculations is quite good. The discrepancy between 
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Fig. 6. (a) The cleclric connection paltern lor (he honeycomb slniclure where 
all Ihe cells ol""+" are connected together and Ihe cells of "—" are connected 
together. The thick lines on the walls ol" the cells indicate the electrodes, (hi 

Photograph showing the honeycomb structure used in the experiment, where 

the numbers on the meter are in centimeters. 

the two is mainly caused by the finite size of a honeycomb 

structure. That is, in a unite honeycomb structure, there are 

ceramic walls (bridge regions) in the periphery that are in 
direct contact with the external pressure source. In these 

regions, even in the end-capped configuration. T,„ is no longer 
zero and can be close to p. Hence, the effective hydrostatic 
responses in these cells will be reduced. In the honeycomb 
samples tested, about 20% ol" the bridge regions arc in the 

periphery, and hence arc subject to the external pressure, which 
reduces the d>, value since the analytical model does not lake 

these cflccls into account. The variation of ihr wall thickness 

in these samples could result in imperfect poling in the thick 

wall regions, and consequently a lower material piezoelectric 

activity, which is another possible reason for the discrepancy 

between the model predictions and experimental results. Even 

so, the hydrostatic response from those test samples is quite 

high considering the fact that the material has <I-M = -40 pC/N 
and '/.j.i = ] 10 pC/N. With improved materials, the effective 

TAHI.I-: I 

PAUVMI.IIKS AND Ri.sens HI- IIII. TP IIOSI YCCIMII S\MPU.S TI SII I> 

Configuration      c/ro     L|(cm)   L2 (cm)   L{cm) d|, (pC/N) (exp)     di, (Theory) 

I End-capped 520 1.29 1.4-1 

II End-capped          520 1.15 1.37 

HI          Polyurethane         570 I.I 1.1 

will) microballoon matrix 

326 -4.700 -6.200 

237 -4.200 - 5.784 

2 - 4,666 - 5.636 
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0   200  400  600  000  1000 1200 

Pressure (Psi) 

(hi 

Tig. 7. I:\perinienliil results ol ellcclive </;, ami .//, ■/;, ol' (he TP honeycomb 

(a) sample I and (h) sample II. Both samples are in the end-capped ccmligu- 

ration (see Table 11. The solid and open circles are the experimental results. 

Solid lines connecting the dala points arc drawn to guide die eye. Arrows 
on the solid lines indicate the experimental path (increasing and decreasing 

pressure). 

piezoelectric response of a TP honeycomb transducer can be 

significantly higher, as predicted in Section II. 
For sample III. which has a polymer matrix of polyurelhane 

mixed with 50% volume microhalloons, ihe theoretical pre- 

dicted </;, value using (13) is the same as that calculated for 

an end-capped structure since the Young's modulus of the 

polymer matrix is very low. The experimental (//, value is close 

to the model value, which demonstrates thai a TP honeycomb 

composite with soil polymer malrix can yield the same level 

of hydrostatic response as that of an end-capped honeycomb 

structure. 
Hence, the experimental results confirm Ihe prediction of the 

analytical model and show thai a TP honeycomb composite 
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can provide subslanlially higher hydrosialic responses than     ill] -standards on piezoelectric crystal*: Determination of the clastic, pic/.o- 
most oi" the Composites developed previously. electric, and dielectric constants <>C piezoelectric crystals—The electru- 

inechanica! coupling factors." IEEE Standard I7S-I95X. RI972. 
|I2|   R. A. Langevin. "The electro-acoustic sensitivity of cylindrical ceramic 

IV     rnwn nciniu lubes," J. Actiusl. Sac. Amer.. vol. 2<). pp. 421—427. 1954. 
IV.   LUNLLUSIUN |I3|   L. D. Landau and II. M. Lilshitz, Theory of Elasticity.    New York: 

A new piezoelectric composite transducer based on  the Pcrgumon, 1986. p. 13. 

ceramic honeycomb structure has been introduced and its hy- 
drostatic piezoelectric performance was modeled analytically. 
The transducer is operated in the transverse piezoelectric </;JI 

mode. The honeycomb configuration enables one to fabricate 
a TP honeycomb transducer by either embedding a honey- 
comb ceramic skeleton into a soft polymer matrix to form a 
composite or blocking the openings of the honeycomb cells 
with thin layers of cpoxy to form an end-capped honeycomb 
structure. With the unique honeycomb configuration and TP 
operation mode, the piezoelectric dxs response of the ceramic 
is nearly eliminated and the piezoelectric responses from the 
three orthogonal directions add together when the transducer 
is subjected to a hydrostatic pressure. As a result, as predicted 
by the analytical model and verilied by the experimentation, 
the TP honeycomb transducer exhibits exceptionally high 
hydrostatic responses such as d/, and f//,/;/,. 
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A New Transverse Piezoelectric 
Mode 2-2 Piezocomposite for 

Underwater Transducer Applications 
Q. M. Zhang, J. Chen, H. Wang, J. Zhao, L. E. Cross, Fellow. IEEE, and M. C. Trotticr 

Abstract—In this paper, we present a new type of 2-2 piezo- 
electric ceramic-polymer composite operated at Hie transverse 
piezoelectric mode (TP). The new TP mode piezocomposite has 
exceptionally high hydrostatic piezoelectric response, high reli- 
ability, and can be made at low cost. Based on the isostrain 
approximation, an analytical model is developed to analyze and 
optimize the effective piezoelectric and the effective elastic prop- 
erties or the composite. Several composites with the new structure 
were fabricated and tested. The calculated and experimental 
results show good agreement. It is shown that a TP 2-2 composite 
made of PZT plates in a soft polymer matrix with elastically uni- 
directional face plates yields an effective hydrostatic piezoelectric 
coefficient ./,, or 6,000 (pC/N) and a hydrostatic figure or merit 
,!,,!/,, higher than 30,000 (10"" m'/N). 

I. INTRODUCTION 

THE GROWING market of ferroelectric sensors, actuators, 
and transducers demands a continuous improvement on 

the performance of the underlying materials. With single phase 
piezoelectric materials, however, it becomes increasingly dif- 
ficult to considerably improve the material properties, such 
as, piezoelectric coefficients, acoustic impedance and material 
density. On the other hand, many composite materials, which 
incorporate several constituent phases with complementary 
properties, are offering many unique and attractive features. 
For example, in hydrostatic and medical imaging applications, 
piezoceramic polymer composites with the 1-3 connectivity 
pattern exhibit low density, high hydrostatic piezoelectric 
response, high electromechanical coupling factor, and better 
acoustic impedance matching, etc.  [1], 12].  However, for 
many emerging applications, such as, large area acoustic 
projectors and adaptive materials for fluid borne noise control, 
in order to generate high radiation power at a wide frequency 
band a transducer is required  to generate a large surface 
displacement while operated with a moderate driving voltage. 
And apparently, a conventional 1-3 composite cannot meet 
these requirements. In spite of the fact that the material has a 
relatively high hydrostatic piezoelectric figure of merit dh(jn- 
its piezoelectric dh coefficient is limited by the longitudinal 
piezoelectric strain coefficient dSi of the ceramic phase. While 
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work was supported by the Office of Naval Research and by a Grant of SHIR. 

Q. M. Zhang, J. Chen, H. Wang. J. Zhao, and L. E. Cross arc with the In- 
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increasing the composite thickness will increase the surface 
displacement, the escalated electric impedance with thickness 
and limited improvement accomplished by this method clearly 
disfavor this approach. In addition, for deep water appli- 
cations, the loading pressure is against the poling direction 
of piezoceramic rods in a 1-3 composite. Due to the stress 
amplification in a piezocomposite [3|. this pressure induced 
depolarization effect can become severe in a composite with 
low piezoceramic content, which is often a preferred choice 
in order to yield a high hydrostatic piezoelectric figure of 
merit. Consequently, the performance of a composite degrades, 
causing reliability problem in the transducer. 

To overcome these problems, recently we have designed and 
developed a 1-3 tubular composite operated in the transverse 
piezoelectric dsl mode 14], 15J. The 1-3 tubular composite 
has exhibited an exceptionally high effective piezoelectric 
coefficient dh, the hydrostatic figure of merit d,,Uh and has 

little problem of the depoling from the high loading pressure. 
The one possible drawback of this composite is that with 
the current technology the manufacture cost is relatively 
high. Following the similar line of operation of 1-3 tubular 
composites, in this paper, we shall present a new composite—a 
transverse piezoelectric du mode 2-2 piezocomposite, which 
possesses most of the advantages of a 1-3 tubular composite. 
Moreover, it can be made with lower manufacture cost and 

simpler fabrication process. 
As had been introduced earlier by Newnham et «/., piezo- 

composites can be classified into different categories based on 
the connectivity pattern of the constituents, which determines 
the effective material properties of a composite [6J. However, 
even within the same connectivity pattern, piezocomposites 
can be operated in different piezoelectric modes, i.e., longitu- 
dinal piezoelectric mode (LP), transverse piezoelectric mode 
(TP), and shear piezoelectric mode (SP) or even in mixed 
modes. Apparently, the response behavior of a piezocomposite 
is quite different when operated in different piezoelectric 
modes. To distinguish this difference, it is necessary to specify 
the operation mode besides the connectivity for u composite. 
With this spirit, the new 2-2 piezocomposite is named as a 

TP 2-2 composite. For the sake of simplicity, in this paper, 
the piezocomposites operated in LP mode will just be referred 
to their connectivity pattern without specifying their operation 

mode. 
In this paper, we shall present the theoretical analysis of 

the response behavior of this new composite and the key 

0885-3010795404.00 © 1995 IEEE 
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Fig. I. (a) Schematic drawing of a TP 2-2 piezocomposite. (b) The local 
coordinate system for piezoceramic plale, it is different from that for the 
composite in (a). 

matrix is close to thai predicted by the isostrain model [7]. 
Furthermore, in most practical cases, the unidirectional face 
plates will be used for TP 2-2 composites, which will improve 
the stress transfer between the ceramic plates and polymer 
matrix to the level of the isostrain model. 

Due to the special arrangement of the piezoceramic plates in 
a TP 2-2 composite, two coordinate systems will be employed 
in the analysis: one is attached to the composite structure as 
shown in Fig. 1(a) where the V'-axis is along the ceramic 
poling direction, and the subscripts for all the effective co- 
efficients of a composite are based on this coordinate system; 
the other, shown in Fig. 1(b), is attached to the ceramic 
plate (the local coordinate system) and to conform with the 
convention, the z-axis is along the ceramic poling direction. 
The parameters of the piezoceramic plates are labeled with 
respect to this local coordinate system and they will be 
specified by the superscript c. All the other parameters used 
in the analysis will be labeled with the composite coordinate 
system. The superscripts ;; and c.p are used for the parameters 
of the polymer phase and the effective parameters of the 
composite, respectively. 

Analysis of the Responses of TP 2-2 Piezocomposite 

The constitutive relations in the piezoceramic plate can be 
expressed as: 

s{=si t rr+*\2n + »\*n + <M     (• a> 

Di = <r3i T[ + <r3i T; + «; + 4, ET3       (1C) 

parameters in the design process, elucidate the differences 
between a TP 2-2 composite and 1-3, 2-2 piezocompositcs. 
and demonstrate its superior performance. 

II. DESIGN DETAILS 

A schematical drawing of a TP 2-2 piezocomposite is shown 
in Fig. 1, where the piezoceramic thin plates form a parallel 
array and are embedded in a soft polymer matrix. The ceramic 
plates are elcctroded over the side faces with the polarization 
direction parallel to the acoustic radiation plane, as shown in 
the figure. Therefore, the action of the composite is through 
the transverse piezoelectric dM mode of the ceramic plates. 
Although the magnitude of r/3i of a piezoceramic is smaller 
than that of the longitudinal coefficient f/33, as will be shown 
later, the large ratio of L/1. in a composite introduces an 
amplification factor and as a result, the effective d3:i coefficient 
of a TP 2-2 composite can be much higher than f/33 coefficient 
of the piezoceramic. Consequently, the new piezocomposite 
can generate much higher acoustic power than the 1-3 rod 
composite. 

The theoretical analysis developed in this paper is based on 
the so-called isostrain approximation. Hence, the results de- 
rived represent the upper limit of the piezoelectric response of 
a composite. However, for a 2-2 composite properly designed, 
the stress transfer between the ceramic plates and polymer 

where S, and T, arc the strain and stress components in the 
ceramic plate, s,j are the elastic compliance, E^ = V/l. is 
the electric field along the ceramic poling direction generated 
by the total applied voltage V over the thickness t of the 
ceramic plate, e33 is the dielectric permitivity, and djj are 
the piezoelectric coefficients, all are for the ceramic plate 
(see Fig. 1(b)). For a polarized ceramic, which point group 
symmetry is 007n, the equation for S!j is similar to that of S[. 

The constitutive equations for the polymer matrix are similar 
to those of the ceramic except that all the parameters in (I) 
are replaced by those of the polymer phase. 

For a composite material, at the long wavelength limit, 
the effective parameters can be introduced to describe the 
responses when it is subjected to an external electric field 
and/or stress field. By utilizing thase effective parameters, the 
constitutive equations for a composite can be expressed as: 

Sr
2" = ^7, + »%T2 + ^73 + ,1ZE, (2a) 

S7 = »ZTi + WK + *33^ + >r&E3 (2b) 

£3" = <(&Ti + <r&r* + <izn + f SS^3       (2c) 
where T, are the external stresses applied on the composite, 
which can be quite different from those in either the ceramic 
or polymer phase (Tf and Tf),E3 = V/L is different from 
7?'j in (1), where L is the thickness of the composite. The 
xV', d'j'j, and c'-J^ are the effective coefficients of the composite. 
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Due to the symmetry of the composite, the equation for S['' is 
similar to that of S^p. In writing down (2), a TP 2-2 composite 
is regarded as an effective piezoelectric medium with the 
electrode areas in perpendicular to the z-axis (Fig. 1(a)). 

To evaluate the effective material parameters for a compos- 
ite, the following approximations will be employed: 

1) The strains in the polymer phase and ceramic phase arc 
equal in the i-dircction and in the z-dircction, that is, 
S*p = Sr2 = Sp and S{'' = S[ = Sp, this is the isostrain 
approximation. 

2) The stresses in the y-dircction in the polymer phase and 
ceramic phase arc equal, which is derived from the static 
force balance condition. 

3) The stresses in the z- and x-dircctions arc related 

through T-s = vTZ+{\-")lt anclTi = vTf+il-vffl, 
where v is the volume content of the ceramic phase in 
the composite. For the quantities in the ceramic phase, 
local coordinate system is used. 

Except otherwise specified, the x-, y-, and z-dircclions in the 
derivations and discussions through out the paper arc referred 
to those of the composite (Fig. I (a)). 

With the constitutive equations and the above conditions, the 
effective coefficients for a TP 2-2 composite can be derived. 
For example, the effective piezoelectric coefficients are: 

where 

dcp = i, d] 
(l-^).-'n Lv 

'33 - ^31 (1 _ v)(1 _ ^^ + v{{ _ apyn j    t 

d32 - j2^i (1 _ v){1 _ ffcKi + w(1 _ ^Ki + h 

(3a) 

Lv 

t 

"31 —"33 

(3b) 

(3c) 

where ap and ac arc the Poisson's ratio of the polymer and 
ceramic phases, respectively. If s^ » srn, (3a) can be reduced 

to 

UT> — d-i x33 (4) 

Equation (4) indicates that in a TP 2-2 composite with a large 
ratio of L/M33 can be significantly larger than d^. The 
amplification factor L/t is similar to that in the TP 1-3 tubular 
composite [4], [5], which is one of the advantages of this type 
of composite structure. 

The effective elastic compliances of a TP 2-2 composite, 

thus derived, are 

(«11*12 + «11^2)^12 - ■Sii*Vb2 - s12.^2An 
A\2 - AnA-22 

cp       \SC
USP

2 + SP
nS

c
22)Ai2 - S12S1VI22 - Sr

22s'[2An 

s33 — 

S13 — ' 

scp - scp 
oil      O 

A2
Vi - AnA22 

S22-{l-V)S22 + VS3:i A11+/I1 

cp     c 
Sit — 51-1 — '12 13 

til "I" >U3 

(l-v)(s<jl+sli2)(sl3-sp
2) 

A11 + A13 
(5) 

Aij = (1 - vWij + vx'ty. i,.i = 1,2.3. 

From the definition </,, = d;yj + d:n + ds>, the effective 
hydrostatic piezoelectric coefficient of a TP 2-2 composite 
can be obtained 

-•„ _ /., ,      (l-^)^+(l-")«2-<2) + 4i:. 

Lv 

T (6) 

By taking a TP 2-2 composite as a parallel plate capacitor 
with the electrodes perpendicular to the z-axis, the effective 
dielectric constant of the composite is obtained, 

n> _ E
'M

VI
-'
Z 

e.,, = 
I.2     ' 

(7) 

The effective hydrostatic figure of merit di,<n, is 

it-it   en 
dh'Jh    = '^ + /"^(l-v)(l-acyn+v(l-all).s'n_ 

(8) 
-33 

Equations (6) and (8) reveal that under the isostrain approx- 
imation, d'fl' depends linearly on the ratio of L/t while the 
figure of merit d',py'H' is independent of L/t. This is caused 
by the effective dielectric constant of a TP 2-2 composite, 
which is proportional to L2/l2 as seen in (7) and cancels the 

L/t dependence in dr
t
p<fh

v. 
Shown in Fig. 2 are the hydrostatic piezoelectric responses 

of a TP 2-2 composite as a function of the ceramic volume 
content in a composite, calculated using (6) and (8). The 
parameters for the piezoelectric phase arc those of PZT-5H. 
To compare the effect of the Young's modulus of the polymer 
matrix on the response behavior, two sets of parameters are 
used for the polymer matrix, which are listed in Table I. In 
the calculation, L/t = 20 is used since it is a typical value 
for piezoelectric plates commercially available and suitable 
for the composite, which, in general, corresponds to a ceramic 
plate with L = 1 cm and t = 0.5 mm. The results indicate 
that a TP 2-2 composite has the potential to yield very high 
hydrostatic piezoelectric response and apparently, increasing 
the ratio of L/t can significantly increase the hydrostatic J;, 
coefficient. Fig. 2 also reveals that at high ceramic volume 
contents, the effective dh for a TP 2-2 composite goes through 
zero. This is the result of increased influence of piezoccramic 
c/33 on the hydrostatic response of a TP 2-2 composite as the 
ceramic volume content increases. It is clear from (6) that as 
the ceramic volume content v approaches 100%, the effective 

dh for a TP 2-2 composite will approach d'hL/l, where d'h is 
the hydrostatic piezoelectric coefficient of the ceramic and is 
positive. Therefore, to achieve high hydrostatic piezoelectric 
responses, a low ceramic volume content is preferred for a TP 

2-2 composite. 
One major concern in design a piezoccramic polymer com- 

posite for hydrostatic applications is the Poisson's ratio effect 
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Fig. 2. The piezoelectric hydrostatic responses of TP 2-2 composites as 
a function of the volume content of the ceramic phase. L/t =20 is used 
in the calculation. To illustrate the effect of the polymer elastic properties 
on the composite performance, two polymers with different compliances are 
evaluated: (a) PZT-5H and Spurts epoxy matrix and (b) PZT-5H and polymer 
II as the polymer matrix (see Table I). 

TABLE I 
THE PARAMETERS USED IN THE THEORETICAL CALCULATION 

PZT-5H:     d33 = 593(pC/N). d3,= 274, si, =0.165 (1010mJ/N). sJ3 = 0.207, 

S12 = -0.048. S|3 = - 0.085. C33 = 3400 Eo 

Polymer I (Spurrsepoxy):   sn =2.0 (IO-|0m2/N). 0 = 0.36 

Polymerll sn = 2.0(10 •» m-/N).  o=0.36 

• to is the vacuum permiltivily; P7T-5II is the trademark of Morgan Matric Inc. Vemitron Div. 

(Bedford, Oil); Spurrs epoxy is the trademark of Polysciences, Inc. (Warrington, PA). 

of the polymer matrix [2], [3], [8]. For example, even though 
a TP 1-3 tubular composite can yield very high hydrostatic 
piezoelectric response, its performance is very sensitive to the 
Poisson's ratio of the polymer matrix. For 1-3 rod composites, 
the Poisson's ratio of the polymer matrix also plays an very im- 
portant role. Since the key factor determining the performance 
of a piezocomposite is the effective stress transfer between the 
polymer matrix and the ceramic phase, in composites with 1-3 
connectivity pattern, the Poisson's ratio effect of the polymer 
matrix cuts down the effective transferable stress between the 
two phases by a factor of (1 — 2a) where a is the Poisson's 
ratio of the polymer matrix and results in a poor performance 
of a composite if a is large. On the other hand, for a TP 2- 
2 composite, the ceramic plates can be viewed as equivalent 
to the laterally reinforcing fiber glass employed in the earlier 
works of 1-3 composites to reduced the Poisson's ratio effect 

-0.5        -0.3        -0.1 0.1 0.3 0.5 
Poisson's Ratio of the Polymer 

(b) 

Fig. 3. The effect of Poisson's ratio on the hydrostatic responses of TP 2-2 
composiles. L/f = 20 is used in the calculation and the ceramic volume con- 
tent is 15%. (a) PZT-5H and a polymer matrix with s,, = 2.08 (10-D m2/N) 
and (b) PZT-5H and a polymer matrix with .s,, = 2.08 (I0~!0 m2/N). 

of the polymer matrix [8]. Due to this difference, it is expected 
that the Poisson's ratio of the polymer phase will have a 
less effect here than that in 1-3 composites. Shown in Fig. 3 
are the dependence of the hydrostatic piezoelectric response 
of TP 2-2 composites on the Poisson's ratio of the polymer 
matrix as calculated from (6) and (8). In comparison with 1-3 
composites, the effect of the polymer Poisson's ratio is less 
severe albeit it is still significant. In general, for a TP 2-2 
composite, the larger the volume content of the ceramic phase 
is, the less the polymer Poisson's ratio effect will be. The 
Poisson's ratio effect can also be reduced if a polymer matrix 
with a larger Young's modulus is used. 

The dependence of the hydrostatic piezoelectric responses 
on the Young's modulus of the -polymer matrix is also ex- 
amined and the analytical results are presented in Fig. 4. 
Generally speaking, in order to raise the hydrostatic piezoelec- 
tric response of a composite, a polymer matrix with a smaller 
Young's modulus is preferred. On the other hand, as shown 
in Fig. 4, the piezoelectric responses of a composite increase 
with the compliance (reciprocal of the Young's modulus) of 
the polymer matrix only in a certain range. Further increasing 
the compliance does not affect the sensitivity of a composite 
significantly. In addition, the mechanical integrity of a com- 
posite will be reduced if the Young's modulus of the polymer 
is too small. In practical design of a TP 2-2 composite, these 
factors have to be considered and balanced. 
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Fig. 4. The effect of the compliance of polymer matrix on the hydrostatic 
responses of TP 2-2 composites. L/t =20 was used in the calculation. The 
Poisson's ratio of the polymer is fixed at 0.364. (a) 15% volume content 
of PZT-5H and (b) 307c volume content of PZT-5II. Notice that for each 
configuration, there is a threshold of .sn. beyond which further increasing 
s\ i will not improve the hydrostatic responses of the composite. 

Effects of Face Plate 

The results derived above show that a TP 2-2 composite 
exhibits much better hydrostatic performance over that of a 1- 
3 composite [9]. However, the Poisson's ratio of the polymer 
phase still has a considerable effect on the piezoelectric 
response of the composite. Since in most cases, the Poisson's 
ratio of a soft polymer is around 0.4, by reducing or elimi- 
nating this Poisson's ratio effect of the polymer matrix, the 
hydrostatic response of a TP 2-2 composite can be improved 
remarkably, as shown in Fig. 3. An effective means to achieve 
this is to incorporate stiff face plates into a composite structure, 
a practice which has been used previously in 1-3 composites. 
As has been demonstrated by several experimental studies, stiff 
face plates can improve the stress transfer between the two 
constituents and raise the hydrostatic piezoelectric response of 
the composite structure considerably [10]. 

The function of the stiff face plate on a TP 2-2 composite 

structure arc mainly two folds: one is to improve the stress 
transfer between the two constituents, and the other is to clamp 
the composite in the lateral dimensions [10]. The result of 
the later effect is to reduces or eliminates the Poisson's ratio 
effect of the polymer matrix and the piezoelectric 1/33 response 
of the ceramic plates (6) and (8). For TP 2-2 composites 
subjected to hydrostatic pressure, due to the arrangement of the 

piezoceramic plates, the piezoelectric responses in both the x- 
and 2-dircctions are utilized. Hence, to the advantage of high 
hydrostatic response of the composite, a face plate should be 
specially designed so that the composite will only be clamped 
in the 7/-dircction while the a:-dircction is still free. In olhcr 
words, an ideal face plate used in a TP 2-2 composite should 
be clastically unidirectional such that the Young's modulus Y 
of the face plate in the y-dircction is much larger than that 
of the composite, while in the x-dircclion, it is much smaller 
than that of the TP 2-2 composite, or more precisely, 

— Yn' ~>Yf 

26   n >   n and rf 
'22 

L 

26i22 (9) 

where L and 6 are the thicknesses of the composite and the 
face plate, respectively. A factor of 2 is included in (9) to 
account for the fact that there arc two face plates for each 
composite as shown in Fig. 1. 

In Fig. 5, the compliances (reciprocal of the Young's mod- 
ulus) of a TP 2-2 composite in both the x- and (/-directions 
calculated from (5) are presented. It can be seen that the 
TP 2-2 configuration automatically makes Y[[' larger than 
Y-22- Therefore, (9) can be satisfied even for a face plate 
with isotropic elastic properties. However, in most practical 
situations, to make the face plate effective, the quantities on 
left hand sides of the inequalities in (9) should be several times 
of those on the right hand sides. If the difference between Y{% 
and Y2%' is not very large, an clastically anisolropic face plate 
will be necessary. 

The effective piezoelectric response of a TP 2-2 composite 
with face plates can be analyzed using the similar procedure as 
that outlined in the preceding section. In order to simplify the 
analysis, we assume that in a face plated TP 2-2 composite, 
the 2-2 composite can be treated as an effective medium with 
the effective parameters derived in the preceding section. The 
validity of this approximation has been demonstrated in an 
earlier investigation [10]. In combination with the isoslrain 
approximation, the effective piezoelectric responses and olhcr 
material properties of a TP 2-2 composite with face plates, 
then, can be analyzed. Due to the scope of this paper, wc will 
discuss only the situation when the composite is subjected to 
a hydrostatic pressure p. 

With the constraints of the face plates, the effective stress 
a TP 2-2 composite experiences becomes 

77 = (D12B2 - D22D1). 

D\2 - DnD22 
-V 

D\2-DnD22 

^3   =v (10) 

where T?'',i = 1,2,3, are the stress tensor in a TP 2-2 

composite under the constrain of face plates and p is the 
hydrostatic pressure. The parameters Dij,B, are 

Di (4 + 42 i = l,2 

where s{: is the clastic compliance of the face plate, and 7 = 
L/(L -f 26), 6 is the thickness of the face plate. The effective 
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Fig. 5. The effective compliance su and «22 of a TP 2-2 composite as 
a function of the ceramic volume content, (a) a TP 2-2 composite made of 
PZT-5H in Spurrs epoxy matrix and (b) a TP 2-2 composite made of PZT-5H 
and a polymer matrix with the Young's modulus = 0.96 (10''N/m'2) and 
Poisson's ratio = 0.364. Notice that in a TP 2-2 composite, su is always 
less than x22- The effective Young's modulus of a composite is the reciprocal 
of the effective compliance. 

hydrostatic piezoelectric coefficient dh can be obtained from 

<* = 
V 

(11) 

where rf-j' are those defined in (3). From (11), the hydrostatic 
figure of merit dhgh for a face plated TP 2-2 composite can 
also be evaluated. 

In an ideal situation where the pressure in the y-direction 
is totally born by the face plates so that T2

rp = 0 while in 
the redirection the face plates do not affect the stress in the 
composite, that is, T?' = p, the hydrostatic responses of a TP 
2-2 composite reaches their maximum values, 

<," = 2d •31 ~p 

w = mi 

vsp
n(l-ap) + (l-w)sf1(l-ac) 

4i(l-^) 

Lv 
t 
(12a) 

c33 
(12b) 

In inequalities (9), this situation corresponds to that the quan- 
tities on the left hand sides are much greater than those of the 
right hand sides. 

In Fig. 6, the hydrostatic responses calculated using (12) for 
an ideal face plated TP 2-2 composite are presented. Appar- 
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Fig. 6. The effective piezoelectric hydrostatic responses of a TP 2-2 com- 
posite with unidirectional face plates, (a) a TP 2-2 composite made of PZT-5H 
and Spurrs epoxy; (b) a TP 2-2 composite made of PZT-5H and the polymer 
II (see Table I). To simplify the calculation, the elastic properties of the face 
plate are assumed that in the inequality (9), the quantities in the left hand 
sides are much larger than those in the right hand sides so that T['' = ;> 
and K" =0. 

ently, the unidirectional face plates considerably improve the 
hydrostatic performance of a TP 2-2 composite in comparison 
with that without face plates. A detailed investigation of the 
effect of face plates on the hydrostatic performance of a TP 2-2 
composite and other practical design issues will be presented 
in another publication. 

III. EXPERIMENTAL RESULTS 

Aimed at verifying the concept of the new composite 
material and demonstrating the potential of a TP 2-2 composite 
as a high sensitivity hydrostatic -transducer material, several 
TP 2-2 composites were fabricated with the ceramic volume 
content ranging from 15-30%. The piezoceramic plates used 
were PZT-500. The piezoelectric coefficients d33 and d3i of 
the ceramic plates were measured using a laser dilatometer 
and </33 ranges from 410-440 pm/V and c/31 from -188 to 
-200 pm/V. The dielectric constant is about 2,250. 

The hydrostatic piezoelectric dh coefficient of TP 2-2 com- 
posites was evaluated by a standard comparison method: 
a composite and a standard sample with known (/;, were 
placed in a high pressure oil chamber and subjected to a 
low frequency AC (50 Hz) hydrostatic pressure. The charge 
outputs of the composite and the standard sample under the AC 
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TABLE II 
THE PIEZOELECTRIC HYDROSTATIC PERFORMANCE OF TP 2-2 COMPOSITES 

TABLE III 
SOME OF THE PARAMETERS USED IN THE THEORETICAL CALCULATION OF TAIILE 1 

Sample A Sample B Sample C 

Experiment  Calculated Experiment Calculated Experiment  calculated 

dh<pC/N) 750 1.100 3.250        3.870 6,000        7.700 

dhEh(10-|5mJ/N) 1.100 2.366 10,000      14.200 30.000      49.900 

L(cm) 1.0 1.0 1.0 

1 (cm) 0.1 0.1 0.05 

v(%) 25 25 15 

Poly. Matrix Spurrs epoxy Polyurethane with 50% 

volume microballon 

same as Sample 13 

Face plalcs No Unidirectional plates 

b = 0.15cm 

same as Sample D 

same as Sample D 

pressure were measured and were used to calculate <//, of the 
composite when the areas of the composite and the standard 
are known. From the measured dh value and the effective 
dielectric constant of the composite, <//, as well as dugu were 
obtained. 

In Table II, the experimental results arc presented along with 
the theoretical values calculated using the equations derived 
in the preceding sections. The information on each sample is 
also listed in the table. The results here clearly demonstrated 
that even with PZT-500 ceramic of which the piezoelectric 
coefficients are about two thirds of those of PZT-5H, a TP 2- 
2 composite can still yield very high hydrostatic piezoelectric 
response in comparison with that of TP 1-3 tubular composites 
[4]. It is expected that the piezoelectric hydrostatic response 
of a TP 2-2 composite with PZT-5H piezoccramic plates will 
be considerably higher than those in Table II. A detailed 
experimental study on TP 2-2 composites will be carried out 
in the future. 

The unidirectional face plalcs used in the sample B and 
C were made from strips of glass reinforced polymer (GRP) 
plates embedded in polyurelhanc. Since the elastic properties 
of the face plates are not well characterized, in the calculation 
of dh, (12a) is used instead of the more general form of 
(11). From Table II, it can be seen that for samples B and 
C, although the theoretical values of du are higher than the 
experimental ones, the difference is not significant considering 
the simplicity of the model used in deriving (12). However, 
for sample A, the theoretical dh value is much higher than 
the experimental one which indicates that for a nonfacc plated 
composite, the isostrain model may overestimate the effective 
piezoelectric response of a composite as one would expect. 
Nevertheless, the analytical analysis based on the isostrain 
model still provides a valuable guideline in preliminary design 
of a composite. The theoretical </,, value listed in Table II is 
obtained by dividing the theoretical dh by the experimentally 

measured effective dielectric permilivity of the composite. 
Other parameters used in the calculation are listed in Table 
III. 

IV. SUMMARY 

By employing a unique design of a 2-2 piezocomposite, 
a new type of composite transducer material operated in 

P/.T-500:     d33 = 425 (pON). d),= I94.sn =0.154 (10-1° m'/N). s3.,=O.I84. 

S|2 =-0.054. si3 = -0.07 

Polyurethane with 50% volume microballon:   SJI = 5.0(10-8 m2/N).   o=0.36 

* PZT-500 is the trademark of Piezo Kinetics Inc. (Bcllctonlc, PA). 

TABLE IV 
COMPARISON OF HYDROSTATIC PIEZOELECTRIC 

RESPONSE AMONG SEVERAL COMTOSITES 

Vol%      d„ (pCTN)   dhg„ (lOl'nAN)       Ret. 

1-3 rod composite, end capped 25 265 20,000 1 

1 -3 tubular composite 25.6 -9.862 10.195 4 

2-2 composite 20 50 830 7 

TP 2-2 composite, end capped 15 -6,000 30.000 

transverse piezoelectric mode is introduced. Based on the 
isostrain model, the design parameters of this composite arc 
analyzed. Both experimental and theoretical results show that 
this new composite can yield exceptionally high hydrostatic 
piezoelectric response. In Table IV, a comparison is made 
among 1-3 rod composite, 1-3 tubular composite, 2-2 com- 
posite, and TP 2-2 composite. Apparently, TP 2-2 composites 
possess exceptionally high dh and e/^r/,,. In addition, the 
simple 2-2 structure makes the composite easy to be fabricated 
with relatively low manufacture cost. The TP operation also 
allows the composite to be used at high hydrostatic pressure 
with little depoling effect. 
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Effects of Face Plates on Surface Displacement 
Profile in 2-2 Piezoelectric Composites 

Wenwu Cao, Q. M. Zhang, J. Z. Zhao, and L. E. Cross, Fellow, IEEE 

Abstract—A simple model is developed lo describe the inho- 
mogeneous surface deformation profile of face plated 2-2 type 
piezocompositcs. The contribution of face plate to the equilibrium 
condition is approximated as from simple elastic bending of the 
plate. Analytical solutions were obtained for the inhomogenous 
surface displacement profile. From these solutions one can predict 
the variation of the nonuniform surface displacement in a 2-2 
composite with respect to material and geometry parameters. It 
is shown that the surface displacement uniformity depends on 
several factors: the ceramic aspect ratio, the spacing between 
ceramic plates, the thickness of face plate, the Young's modulus of 
the polymer and of the face plate. The calculated results indicate 
that stiffer face plates, softer polymer resin, and closer ceramic 
spacing could make the piezocompositc transducers to have more 
uniform surface displacement. 

I. INTRODUCTION 

ONE of the key features of piezoelectric composites is 
the stress transfer capability between the hard ceramic 

and the soft polymer, which gives the composite a high 
level of piezoelectric capability and at the same time, lowers 
the effective acoustic impedance of the composite to make 
it more suitable for underwater and medical applications 
[1]-|4|. The polymer phase can also reduce the Q-value of 
the transducer to suppress ringing. However, as reported in 
our early works [5]-|7], the difference in elastic stiffness 
between the two constituents in the composite causes surface 
displacement to be nonuniform under external (electric or 
elastic) fields. This nonuniformity reduces the efficiency of 
stress transfer between the two constituents, hence degrading 
the piezoelectric performance of the transducers, and causing 
the physical properties of piezocompositcs to depend on the 
aspect ratio of the ceramic and their spacing. In some actuator 
applications, such as short wavelength plane wave generators, 
uniform surface displacement is preferred. According to our 
previous analyses [5], more uniform surface displacement 
requires the polymer to have large shear modulus but small 
Young's modulus, which is difficult to achieve since the 
Poisson's ratio for most of the known materials is between 
0.3-0.4. A common practice to overcome this problem is to 
add stiff face plates to the composites. The question is how to 
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May 23, 1994; accepted May 24, 1994. This work was supported by the 
Oftice of Naval Research. 

The authors are with the Materials Research Laboratory, The Pennsylvania 
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polymer 

Fig. 1. Schematic of a face plated 2-2 piezocomposite and the coordinate 
system used in the calculations. 

determine the proper thickness of the face plates and how to 
choose the face plate material, considering the fact that face 
plates are not piezoelectric, which effectively increases the 
inactive volume of the composite. In addition, other properties, 
such as the acoustic impedance, mechanical loss and structural 
stability will all be affected by the addition of face plates. 
It is therefore important to understand and evaluate the face 
plate effects and try to optimize the selection of face plate 
material and geometry for practical applications. In this paper 
we extend the model of [5] by including (he contribution of 
the face plates in constructing the equilibrium condition at the 
composite surface. Brass was used as the face plate material in 
our calculations, but the procedure can be easily generalized 
for face plates made of other materials. A comparison with 
stainless steel and GRP (glass reinforced polymer) face plates 
is briefly made. 

II. THE MODEL 

The 2-2 lamellar composite and the coordinate system used 
in the calculations are given in Fig. 1, where z is the poling 
direction, a and d are the width of the ceramic and polymer, 
respectively. We choose the system with h > /, so that the 
properties of the system may be considered to be independent 
of y. The origin of the .r-coordinate is set at the center of 

one of the polymer plate. In a previous paper [5], a linear 
model for the 2-2 composite without face plates was reported. 
In that model we have assumed the strain component along 
the 2-direction to be constant for any given x. Our recent 
analysis using scries expansion for the displacement field [8] 
and results from finite element analyses show that the strain 

0885-3010/95S04.O0 © 199.S IEEE 
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is quite uniform along 2-direction cxcepl near the surface 
region. 

The addition of face plate not only reduces the surface 
displacement nonuniformity, but also forces the strain to be 
more uniform inside the composite, making the constant z- 
strain a better assumption. Based on this consideration, as a 
first attempt to model the face plated composite, we extend our 
previous work [5]. The equilibrium condition at the surface of 
a 2-2 composite was given there; all we need to do here is to 
add the contribution of the face plates. This is accomplished by 
treating the face plate deformation as simple clastic bending 
of a thin plate. The force density generated from the face plat 
is Duxxxx [7], where u is the surface displacement in the z- 
direction, the subscript x represents derivative with respect to 
the coordinate x, and D is the fiexural rigidity of the face 
plate, 

D = 
Y't3 

12(1-a2) (I) 

In (1) Yf and a are, respectively, the Young's modulus and 
the Poisson's ratio of the face plate, and / is the thickness of 
the face plate. 

The equilibrium condition at the composite surface z = 1/2 
is simply the addition of the Duxxxx term to the equilibrium 
condition (7) of [5], 

Duxxxx(x,l/2) + -ßvuxx{x,l/2) 

-jY'u(x,l/2) = 0, 

d d 

-2<X<2 

Duxxxx{x,l/2) + -ßcuxx(x,l/2) - jY3
c
3u{x,l/2) 

(2) 

+ Y3
c

3d33E = 0, 

d d 
-<x<-+a 

I 

(3) 

where ßp and Yp are the shear modulus and Young's modulus 
of the polymer, ,ic (= c44) and YJ3 (= I/.S33) are the shear 
modulus and Young's modulus of the ceramic, respectively. 
d33 is the piezoelectric constant of the ceramic, E is the 
electric field along the poling direction, i.e., z-direction. 

Equations (2) and (3) are the static equilibrium condition at 
the surface of the composite, which can be solved analytically 
to give the hyperbolic cosine solutions: 

u{x,l/2) = Acosh(0>'x),     -d/2<x<d/2 

u{x,l/2)=Bcos\i 

d 

ßc  X- 
a + (/ 

+ ^hiE, 

2-<*<-+a 

(4) 

(5) 

u{x + n[a + d},l/2) = u{x,l/2),    u= 1,2,3-•■    (6) 

where 

V"" XD 

V 8Z3 

(7) 

(8) 

Equation (6) represents the periodic boundary condition of the 
system. Here we have selected the solution so that it recovers 
the solution of [5| in the limit of /. — Ü. The coefficients A 
and Ü can be determined from the nonslip interface boundary 
condition and the force balance condition at x = d/2 [5J: 

/ 

A 
:d-riE 

^K^M^h^'H) 
(9) 

D = 
-T2d^E 

ßcyp siiih (ff'^j colli (ft>4\ + cush (/*•") 
(10) 

Based on the inhomogencous solutions (4) and (5) lor the 
surface displacement we can derive the physical properties of 
the composite from the properties of the three constituents, 
i.e., ceramic, polymer and face plates. As shown in our earlier 
works [5J-[7], without face plates, the physical properties 
of composites depend strongly on the aspect ratio of the 
ceramic and their spacing. This aspect ratio dependence is 
a direct consequence of the displacement inhomogeneity in 
the polymer and the ceramic, which is in turn produced by the 
active and passive nature of the two constituents. It is expected 
that the addition of face plates to a composite will enforce 
deformation uniformity. In contrast to the stress transfer in 
a nonface plated composite for which the transferred stress 
is pure shear stress, the additional stress transferred between 
the ceramic and the polymer via the face plate is primarily a 
normal stress in the 2-direclion. The degree of uniformity in a 
face-plated composite depends on several factors: the thickness 
of the plate, the Young's modulus of the polymer, the Young's 
modulus of the face plate, the ceramic content as well as 
the ceramic aspect ratio and clement spacing. All of these 
factors are now included in the solutions (4) and (5), which 
makes it very convenient to evttluatc the inllucnce of each 
material parameter. As an example, we have calculated the 
inhomogeneous surface displacement profiles for a PZT5H- 
Spurrs epoxy composite with brass face plates under an electric 
field E. Parameters were varied to show the general trend for 

the optimization of the composite configuration. The material 
constants used in the calculations arc given in Table 1. 

Fig. 2 shows the calculated inhomogencous surface dis- 
placement variations as a function of the increase of face 
plate thickness I. The dimensions of the composite used in 
the calculations are: / = 5 mm, a = I mm, and </ = 2 mm. 
A voltage of \/2 volts is applied to the sample along the z 



CAO el,;/.: EFFECTS OF FACE PLATES ON SURFACE DISPLACEMENT PROFILE IN 2-2 PIEZOELECTRIC COMPOSITES 39 

TABLE I 
ELASTIC, PIEZOELECTRIC AND DinLEcrRic P ROPERTIES OF PZT 5H, B 

RASS PLATE AND S PURRS EPOXY  USED IN O UR CALCULATIONS . 

Y " d3] •111 0 

IOl»N/m; IOloN/m2 10 "am lO^Om 

PZT51I 11.74 2.3 593 -274 .364 

SpurcsEpoxy .48 .18 

Briss 9.0 .31 

< 
Zl 

3.6 

3.2 

2.8  - 

2.4 

11111 11111111111111111111111111111111 

1111111 ■ * ■ * ■ ■ ■'' ■ ■ ■ ■ 

a= lmm 
d= 2 mm 
I - 5 mm 
V=fiVolt 

■■■•!■•■■■■■■■ 

-10 12 
x (mm) 

Fig. 2. Calculated surface displacement profiles for a PZT5H-Spurrs epoxy 
2-2 composite with different face plate thickness. The volume fraction of the 
ceramic is I/3. 

-direction (poling direction). For /. = 0 (i.e., no face plates), 
the displacement at the center of the polymer surface differs 
substantially from the displacement at the center of the ce- 
ramic surface. When / > 0, the polymer surface displacement 
increases rapidly with the increase of the face plate thickness, 
and at the same time, the displacement of the ceramic is 
somewhat reduced. Because the effect of the face plate is to 
make the polymer move more and the ceramic move less, the 
overall composite surface displacement becomes more uniform 
as shown in Fig. 2. One notices that the surface displacement 
changes caused by the addition of face plates appear mainly 
in the polymer, which is due to the large difference in 
elastic stiffness between the polymer and the ceramic. The 
improvement on the surface displacement uniformity becomes 
less as the isostrain condition is approached. We believe 
for a brass face plate thickness greater than 2 mm in this 
configuration, the physical properties can be well accounted 
for by the isostrain approximation |4]. 

Without a face plates, composites made of soft polymer will 
have more severe displacement nonuniformity than composites 
made of hard polymer because soft polymers have a smaller 
shear modulus which cannot effectively transfer stress between 
the polymer and the ceramic. After adding face plates to the 
composite, the situation is reversed. Composites made of softer 
polymer will have more uniform displacement than composites 
made of harder polymer. This is due to the fact that the 
additional stress transferred by the face plate from the ceramic 
to the polymer is in the form of a normal stress. Both the 
ceramic and the polymer interact directly with the face plates. 

Fig. 3. Calculated surface displacement profiles for different Young's modu- 
lus of the polymer. The Poisson's ratio for the polymer is kepi at ar = 0.364. 
Ceramic volume fraction is I/3 and the face plate thickness is 1 = 0.5 mm. 

Since the polymer phase is nonpiezoelectric, it adds to the 
loading on the ceramic phase, the level of this loading is 
proportional to the stiffness of the polymer. In other words, 
a softer polymer has less resistance to elastic deformation, 
therefore, will be easier to be driven toward more uniform 
displacement with the ceramic phase with the help of face 
plates. This situation is illustrated in Fig. 3 where the surface 
displacement is plotted for different elastic stiffnesses of the 
polymer. The face plate thickness was kept constant for these 
calculations at /. = 0.5 mm and the Poisson's ratio for the 
polymer is fixed at 0.364. Since the elastic stiffness of different 
types of polymers can easily differ by one order of magnitude, 
it is relatively easy to control this parameter. One can see from 
Fig. 3 that the surface displacement uniformity is improved 
substantially by reducing the Young's modulus of the polymer, 
and more importantly, the total effective displacement of the 
composite is also increased due to the reduction of the self 
loading produced by the polymer. For air kerf (infinitely soft 
resin) face plated composite the displacement would be uni- 
form. When the polymer is stiff, the ceramic surface shows no- 
ticeable curvature, but for very soft polymer composites, only 
the polymer phase shows nonuniform surface displacement 
while the ceramic surface is practically fiat as shown in Fig. 3. 

Another important issue is the selection of the face plate 
material. From (4) and (5) one can draw the conclusion that 
stiffer materials are preferred for the purpose of achieving 
more uniform surface displacement. For comparison, we have 
calculated the surface displacement profile for three different 
face plate materials: steel, brass and GRP, and the results are 
shown in Fig. 4. We found that stiffer face plate does improve 
the uniformity of the surface displacement, however, the effect 
of using a stiffer face plate is much less than reducing the 
Young's modulus of the polymer. 

Under the application of an electric field E, the maximum 
surface displacement difference, An, between the center 
of the polymer and the center of the ceramic can be 
derived using (4) and (5), 

Au= -dwE + U-A. (II) 
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Fig. 4.   The surface displaccmcnl varialion caused by the change of face 
plate material. The face plale thickness is chosen as r = 0.5 mm. 
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Fig. 5. The calculated maximum displaccmcnl difference An for different 
face plate thickness f in a 2-2 composite with ceramic spacing e/ as a 
parameter. The ceramic plate thickness is <i = I mm. 

nonuniform displaccmcnl in lace plated composilcs can be 
improved by several methods: (a) increase lace plale thickness; 
(b) increase the Young's modulus of the face plate; (c) reduce 
the Young's modulus of the polymer; (d) increase die ratio of 
l/u; and (c) increase the ceramic volume ratio. Both (d) and 
(c) can reduce the spacing between the ceramics. 

The addition of face plates to the composite structure makes 
it possible to use softer polymer resin, which can reduce the 
polymer loading and improve the effective electromechanical 
conversion properly of the composite. Face plates allows 
normal stress transfer along z-axis between the ceramic and 
the polymer, which makes the overall surface displacement 
of the composite more uniform and the interior deformation 
more close to isoslrain condition. 
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This quantity can be used as a measure of the uniformity in 
surface displacement. Fig. 5 shows Aw versus face plale thick- 
ness for a 2-2 composite calculated at live different volume 
contents. The ceramic plate thickness is fixed at 1 mm in the 
calculations. The results show that the improvement on the 
surface displacement uniformity becomes less effective after 
the brass face plate thickness is beyond certain limit. The ef- 
fects of face plate is more pronounced for composites made of 
large spaced ceramics, or large (7-value. One of the important 
conclusions should be mentioned is thai the ceramic spacing 
plays more important role than the face plates in terms of 
making the surface displacement more uniform. This is clearly 
seen in Fig. 5 for composites without face plates (/. = 0). 

III. SUMMARY AND CONCLUSIONS 

A theoretical model is proposed to calculate the surface 
displacement profile in face plated 2-2 piezoelectric ceramic- 
polymer composites. Predictions on the influence of geometry 
and material properties of each constituents to the surface 
displacement uniformity are given. It is concluded thai the 
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A common practice in the study of wave propagation in stratified structures is to use the Floquet (or 
Bloch) condition to derive the dispersion relation, leading to the passband and stopband structures. 
However, the Floquet condition is valid only for an infinite system while a real system always has 
finite dimensions. We report a study on wave propagation in a finite 2-2 composite by using the 
transfer (7*) matrix technique. Through introducing a new definition for the dispersion relation using 
the T matrix, the passbands and stopbands are calculated for a finite system without the Floquet 
condition. The formation of stopbands and passbands with the increase of composite size can now 
be clearly seen. The spatial profile of the vibration pattern inside a finite composite can also be 
calculated using this technique, which reveals strong edge effects. The effects of randomization on 
the wave localization in a 2-2 composite are also studied. © 1995 American Institute of Physics. 

I. INTRODUCTION 

The dynamic behavior of piezoelectric composites has 
attracted the attention of many researchers after it has been 
successfully applied to under water acoustics and medical 
ultrasound imaging.1" Conceptual understanding was 
achieved in many aspects for composite structures, and some 
guidelines for composite transducer design were also devel- 
oped. However, there are still many unanswered questions 
regarding the composite structure. Some of the most funda- 
mental and interesting topics include wave propagation in- 
side the composite structure, mode coupling, and band struc- 
tures for a finite system. 

Several methods were introduced in the study of wave 
propagation in periodic composites, such as the T-matrix 
method,10,1416-20 the effective medium method,1314 and the 
finite element method.15"17 Each method has certain merits 
but also limitations. Among these methods, the finite element 
method is the most powerful method which can deal with 
complex geometry. However, it is limited by the power of 
the computer, and the results from the finite element analysis 
often do not lead to a clear conceptual understanding of the 
physical origin of the observed phenomena. Another accurate 
method is the transfer matrix (7"-matrix) method, which is 
especially suitable to study wave propagation in one- 
dimensional layered structures, such as 2-2 composites. The 
T-matrix method has been used to study the dilational Lamb 
wave in a 2-2 composite in conjunction with the Floquet 
theory. 10.14.16.20 Many interesting results, including the band 
structures, were obtained, which have provided conceptual 
understanding of some wave propagation characteristics in 
composites. 

Wave propagation in stratified structures, such as a 2-2 
composite illustrated in Fig. 1, have been studied extensively 
using transfer matrix.21"25 In the past, band structures were 
calculated by using a combination of T matrix and the Flo- 
quet theory, because the traditional T-matrix method alone 
does not provide enough information to determine the band 
structures. The problem of Floquet theory is that it is valid 
only for an infinite system. Therefore, the band structures 

obtained in all the previous studies do not accurately de- 
scribe the wave propagation characteristics in finite systems. 
It is predictable that the Floquet condition will be strongly 
violated when a composite contains only a few cells. Focus- 
ing on this problem, we introduce an extension to the 
7-matrix technique which enables the T-matrix technique to 
calculate the band structures for a finite stratified structures, 
such as 2-2 composites, without using Floquet condition. 

As an example, we will consider the transverse wave 
propagation in a 2-2 composite; one can easily calculate the 
longitudinal wave analogously. 

II. T MATRIX AND THE NEW DISPERSION RELATION 

As mentioned above, the main objective of this study is 
to derive a substitute for the Floquet condition to calculate 
the band structures for a finite stratified structure. We begin 
with a brief review on the 7-matrix technique and then in- 
troduce some new definitions. 

Assuming a shear acoustic plane wave ip(x,t) enters a 
ceramic-polymer composite system shown in Fig. 1 from the 
left at x=0, we can write the wave function at the nth cell in 
the following form: 

ifin=Aneiiu"-kpj) + Bne
iiü"+tpl), 

(n—\)d<x<nd — a    (in polymer); 

^n = Cne
Hü"~k^) + Dnei<a"+t^\ 

nd — a<x<nd    (in ceramic), 

where 

(1) 

(2) 

,= w\pm/cs5    {m=p,cl (3) 

■'Electronic mail: wcao@sun01.mrl.psu.edu 

is the wave number, a and b are the thickness of the ceramic 
layer and polymer layer, respectively, a + b = d is the period 
of the cell (see Fig. 1), a» is the angular frequency, pm and c™5 

are the density and the shear elastic stiffness of the m con- 
stituent. The subscripts/superscripts p and c indicate that the 
physical quantities are for the polymer and the ceramic, re- 
spectively. The requirements of the wave function i// and the 
shear stress T5 to be continuous at the ceramic-polymer in- 
terface lead to the following relations among the coefficients, 
An, B„, C„, and D„, in the nth cell: 
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An)=J_l (Zp + Zc)e
iUr-k^"J-°)      (Zp-Zc)e

i(t^k^nJ-^\tCn\_ lCn) 
Bj     2Zp \{Zp-Zc)e-i(kr + k<)(nd-a)    (Zp + Zc)e

i(kp*k^nJ-^j\Dnj-
[T'"1-a]\D (4a) 

r 

Similarly, we can derive the relations among the coefficients 
C„, Dn and An + i, B„+l between adjacent cells, 

/ C"l = _L / (ZP + Zc)e«kc-Vd     (Zc-Zp)e«kc+Vd\ 
\DnJ    2Zc\(Zc-Zp)e-i(kc+k>)nd    (Zp + Zc)e«k<^nd) 

x>,::;i-[rj B n+1 

where 

Z„ = pmvm=\lpmc"5    (m=p,c) 

(4b) 

(5) 

is the acoustic impedance and vm is the acoustic velocity for 
material m. From Eqs. (4a) and (4b) we can derive the re- 
currence relation for the coefficients A„ and B., 

BJ-[Tnd-a][Tnd]^B
n^ (6) 

Considering a system of N cells, we can derive the fol- 
lowing relation, according to the above recurrence relation: 

t'MZ: (7) 

where the T matrix in Eq. (7) is a second rank tensor given 
by 

[T] = [Td.a][Td]...[Tnd_a][Tnd]...[TNd_a][TNdl    (8) 

For convenience, we assume that the composite is made 
of N cells and is immersed in a polymer medium. Since the 
incident wave enters the composite from the left, BN+, =0, 
in other words, only a transmitted wave exists in the medium 
on the right side of the composite. 

Now, let us define a transmission function H(w), 

H(CJ) = 

A „-ik.Nd 1 
e~ikpNd (9) 

which describes both the amplitude and phase relationships 
between the incident wave at JC=0 and the transmitted wave 
at x = Nd. Similarly, we can define a reflection function 
CM, 

B\    r,, 
(10) 

which describes the amplitude and phase relationships be- 
tween the incident wave and the reflected wave at x=0. 

Clearly, the transmission and reflection coefficients are 
(see the Appendix) 

t = H{(o)-H*(w) 

and 

r=G(ft»)-G*(w). 

It is easy to verify that (see the Appendix) 

t + r=\. 
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(ID 

(12) 

(13) 

In order to calculate the dispersion relation without using 
Floquet theory, an effective real wave vector k' needs to be 
defined for the composite, which should give the same phase 
change as H{m) over a distance Nd. In this spirit, we intro- 
duce the following definition: 

k' = 
Ang[/J(u)] ilm[H(m)} 

~Nd~~ = aiCtg\Rc[HM] (14) 

where Ang[H(w)] represents the phase angle of H(u>). 
Before we extract the stopband information from this 

new definition, let us examine the characteristics of the dis- 
persion relation shown in Fig. 2, which is derived from the 
Floquet condition for an infinite system. The piecewise dis- 
persion curve represents the passbands while the gaps are the 
stopbands. In each of the passbands, the phase velocity 
vph=w/k is a monotonically decreasing function of fre- 
quency. uph is always a minimum at the upper passband edge 
frequency w^, and a maximum at the lower passband edge 
frequency <J^. 

The derivation of the band structures was based on the 
nonexistence of real k, and the band edges are those frequen- 
cies corresponding to the discontinuities of the dispersion 
relation.22 For a finite system, these discontinuities are ex- 
pected to be smoothed out and solutions for the finite system 
should approach the discontinuity limit as the number of 
cells in the system becomes very large. We found that this 
goal can be precisely achieved using the new definition Eq. 
(14). One important point is that the newly defined k' will 
always have a finite value, although it may become ex- 
tremely small in certain frequency regions when the system 
becomes very large. We will see later that the dispersion 
relation obtained from Eq. (14) approaches the Lee and Yang 
solution (Ref. 22) for very large systems. 

Next, we need to define the bands using the new defini- 
tion. In reference to the characteristics of the phase velocity 
in the band structure of Fig. 2, one may define the band 
structures of a finite system by using the maxima and the 
minima of the phase velocity vph = u>/k'. These extrema can 
be easily calculated, and serve as the boundary mark between 
different frequency bands. For a finite system, the band 
structures will not be fully developed, they are pseudopass- 
bands and pseudostopbands which have many similar char- 
acteristics as the true bands. A pronounced difference from 
the solution of Lee and Yang is that the phase velocity also 
can be defined inside the pseudostopbands. 

Lee and Yang22 have shown that the wave number is 
purely imaginary inside a stopband for an infinite system. 
For a finite system, the real part of the wave number always 
exists even inside the pseudostopbands; therefore the wave 
number will be a complex number in general, i.e., 
k = k' -ik". The imaginary part k" may be calculated accord- 
ing to the following equation: 

W. Cao and W. Qi 



vXvN I 
^__. 

,\ 

H i 
call-n 

ceramic        K; 1    polymer 

FIG. I. Schematic plot of a /V-ceII 2-2 ceramic-polymer composite with 1/3 
of ceramic volume content. The y dimension is assumed to be infinite so that 
the system can be treated as one dimensional. 

r=- lnl//(q>)| 
Nd     ' (15) 

which can be nonzero inside the passbands for a finite sys- 
tem. 

III. WAVE PROPAGATION IN A FINITE PERIODIC 
SYSTEM WITHOUT DAMPING 

Using Eqs. (3), (4), (8), and (9), the transmission func- 
tion H(CD) is calculated as a function of N for a system shown 
in Fig. 1. The volume content of the ceramic is fixed at 1/3, 
i.e., ald= 1/3, and the material parameters used in the calcu- 
lations are given in Table I. 

Figures 3(a)-3(e) show the change of the magnitude of 
H{u>) as a function of frequency for composites of N= 1, 2, 
10, 50, and 100. The frequency is normalized with respect to 
WQ, where u>0 is defined as 

a>0 = 
bvc + avp' 

(16) 
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FIG. 2. Dispersion relation for an infinite system obtained from Floquet 
theory. The frequency unit ui0=irvcvp/(bvc + avl,)=949l6Q\/s, vc and vp 

are the acoustic velocities of the ceramic and the polymer, respectively. The 
width of each stopband is different, which depends on both the degree of 
acoustic impedance mismatch and the volume content of ceramic. 

TABLE 1. Material properties for the ceramic and polymer constituents of 
the 2-2 composite. 

Ceramic 
Polymer 

:j5 = 2.4 (10,oN/m-),    pc = 7800 
:?, = 1.59(10' N/m;).    pc = 1160 

vc and up are the shear acoustic velocities of the ceramic and 
the polymer, respectively. The development of the band 
structures with the increase of cell number N can be seen 
clearly from Figs. 3(a) to 3(e). 

It is interesting to note that some band structure charac- 
teristics start to show even for a single layer ceramic inclu- 
sion. Complete transmission, i.e., \H(w)\ = l, can be achieved 
at isolated frequencies due to structural resonance. As the 
number of cells N increases, complete transmission occurs at 
more and more frequencies. Eventually, as N goes to infinity, 
true passbands are formed. The stopbands correspond to total 
reflection, i.e., \H(CJ)\=0. For a finite system such condition 
cannot be achieved; however, the value of \H(w)\ can be- 
come negligible inside the pseudostopbands. 

When N =10, pseudostopbands are clearly visible but 
the passbands are not well defined. In general, it appears that 
the number of frequencies which allow the wave to pass 

\     "    A     '    A ■V «•»     J \          / \ 
—' ■ 1 1 -— 1 1 ■ 1 1 1—-..-.  

a 
E 
<     o.s HU 
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4 6 

0)/tl)o 
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FIG. 3. The magnitude of transmission function vs frequency for different 
size composites. The development of band structure with the increase of 
number of cells N is calculated for the following cases: (a) 1 cell, (b) 2 cells, 
(c) 5 cells, (d) 10 cells, and (e) 50 cells. 
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FIG. 4. The development of the second stopband with the increase of N. 
The deviation is quite large for systems containing less than 10 cells, but 
when N is greater than 200, the Floquet treatment can give reasonable 
description. 

through the structure without reflection is equal to N—l. 
Therefore, it is conceivable that complete passbands will 
form only when A'—><». 

This fact is seen more clearly in the dispersion relations 
depicted in Fig. 4. Using Floquet's condition, Lee and Yang22 

have derived the dispersion relation for an infinite periodic 
system (see Fig. 2), sharp discontinuities occur at k = mrld. 
While for a finite system, some degree of round off occur at 
these discontinuities. The edges of the passbands become 
sharper as the number of cells N increases (Fig. 4). When 
A/=200, the dispersion relation almost coincides with that of 
an infinite system derived by Lee and Yang22 (see Fig. 4). 

For an infinite system, one can derive the evanescent 
wave solutions for frequencies inside the stopbands using 
Roquet theory. The magnitude of these evanescent waves 
decays exponentially in space, but the phase angle, which is 
determined by the real part of the wave number, is indepen- 
dent of frequency (k'=0). For a finite system, on the other 
hand, the real part of the wave number is always nonzero, 
hence, the phase angle will be frequency dependent inside 
the pseudostopbands. The decay of the magnitude is slower 
inside a pseudostopband than inside a true stopband. It is 
apparent that the band edges are not well defined when N is 
small, and gradually become sharper as N increases. 

Figure 5 shows the vibration pattern at a given frequency 
inside a passband for composites with different numbers of 
cells. We can see the resonance nature of the patterns, with 
the polymer vibrating at much larger amplitude than the ce- 
ramic. 

Figure 6 shows the comparison of the vibration patterns 
occurred in a ten-cell composite at three distinct frequencies. 
These three frequencies are selected as follows: 1.36364 f0 is 
in the first passband with a maximum value of \H(io)\, 
1.55/0 is at the upper edge of the first passband, and 2.009/0 

is at the center of the second stopband with a minimum value 
of \H(w)\. Different from the infinite system, there is no 
sharp edge between the passband and the stopband. As a 
result, a gradual transition can be seen from the passing reso- 
nant wave pattern to the localized evanescent wave pattern. 
The evanescent wave is practically localized within 2-3 

8 10 

FIG. 5. Typical spatial vibration pattern for a completely transmitted wave 
with frequency in the first passband. The pattern changes for different N, the 
internal vibrational magnitude can be much larger than that of the incident 
wave and is also much larger in the polymer phase than in the ceramic 
phase. 

cells. According to symmetry analysis on the vibration pat- 
terns shown in Fig. 7, the upper edge of the second stopband 
resonance is piezoelectrically active for the 1/3 ceramic vol- 
ume percent composite, i.e., all the ceramic elements are 
vibrating in phase. Therefore, this mode will couple strongly 
to the thickness mode affecting the performance of a com- 
posite transducer.26 

It is a common practice to reduce the size of the com- 
posite cells in designing high-frequency composite transduc- 
ers. The rule of thumb is that the upper edge of the second 
stopband resonance should be twice as high as the transducer 
operating frequency. This will place the thickness mode in- 
side the first stopband of the transverse wave to minimize the 
coupling.4 In reality, there are technical limitations for mak- 
ing fine scale ceramic inclusions. An alternative to reduce the 
shear wave resonance effects is to introduce randomness into 
the composite structures, since randomness can destroy 
many shear resonance modes.26"29 

IV. WAVE PROPAGATION IN APERIODIC FINITE 
SYSTEM 

Theoretically speaking, true randomness can only be 
achieved in an infinite system. In reality, we seek wave lo- 
calization which can be achieved with limited number of 
cells. The questions of interest are 

FIG. 6. Vibration pattern of a 10 cell composite. (—) A frequency in the 
passband. (—) A frequency in the pseudostopband. (—) A frequency near 
the edge of the pseudostopband. 
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FIG. 7. Phase profiles for the upper and lower band edge frequencies of the 
second pseudostopband. (—) upper band edge frequency; (—) lower band 
edge frequency. The lower band edge frequency vibration is piezoelectric 
active since all the ceramics are in phase. Slight phase lagging occurred due 
to finite size, which can be seen by comparing the phase angle of the first 
layer and of the last layer. 

(1) How much randomness is sufficient? 
(2) What is the size dependence of the random effect? 
With the 2-2 composite structure discussed above, these 

questions can be conveniently studied using the T-matrix 
technique plus the new definition of Eqs. (14) and (15). Both 
vibration profile and band structures can be calculated for an 
aperiodic 2-2 composite. 

There are several ways to introduce randomness into a 
2-2 composite. The simplest way is either randomizing the 
spacing between ceramic plates (randomizing b), or chang- 
ing the ceramic plate thickness while leaving their spacing 
constant (randomizing a). Since the effects of randomization 
of b or a are similar due to the symmetry of the structure, we 
only give the results for randomizing b to illustrate the 
physical characteristics. When a or b is randomized, the 
number of passing frequencies will be greatly reduced and 
all the pseudostopbands become wider. The random effects 
are greatly enhanced when both a and b are randomized at 
the same time, with new characteristics produced as dis- 
cussed below. 

Figure 8 shows the comparison between the magnitudes 
of transmission function H(ia) for randomizing b and for 
randomizing both a and b. The composite has 20 cells and 
the ceramic volume percent is kept at 1/3 on the average in 
order to compare with the results of the periodic composite 
calculated in Sec. III. An interesting fact in the case of ran- 
domizing b is that the transmission is not completely de- 
stroyed for all frequencies, there still exist some frequencies 
which allow the waves to completely pass through [|/Y(w)| 
= 1] as shown in Fig. 8. The reason is that a resonance length 
scale, i.e., the ceramic thickness a, still remains in the com- 
posite. Conversely, when randomness is introduced in both 
the ceramic thickness a and their spacing b, all but the first 
passband are eliminated. There appears to be a cut-off fre- 
quency for wave propagation in the random composite. Intu- 
itively, the first passband should represent the propagation of 
waves with wavelengths comparable to and larger than the 
size of the composite system. The bandwidth is also expected 
to become narrower as the number of cells increases. How- 

= o.s 
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FIG. 8. The band structures for a randomly spaced ceramic plate composite 
(randomizing b. dashed curve) and a completely random composite (ran- 
domizing both a and b. solid curve), respectively. For the randomly spaced 
composite, the stopband width becomes much wider compared with the 
periodic structure, but there are still passing waves at higher frequencies. 
While for the completely random structure, no passing wave after a cut-off 
frequency. 

ever, direct correlation between the dimension of the com- 
posite and the cut-off frequency was not found in our calcu- 
lations. 

An important point here is that the characteristics of lo- 
calized waves in the random structure are quite different 
from those of the stopband waves. Although the magnitude 
of the waves shows exponential decay in space for both 
cases, the phase of the stopband waves is independent of 
frequency, while the phase of the localized waves shows 
strong frequency dependence. There are many stopbands in a 
periodic composite, each of the bands has a bandwidth char- 
acterized by the band edges. While in a random composite, 
the band structure consists of only one passband, no waves 
can go through the structure at frequencies above the cut-off 
frequency. 

Considering the efficiency of cross-talking elimination, 
the stopband waves decay faster than the random localized 
waves, as illustrated in Fig. 9. The decay rate is the highest 
for the frequency at the center of each stopband; typically the 
wave vanishes in 2-3 cells. The decay rate becomes slower 

4) 
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FIG. 9. Comparison of the transmission function for a periodic structure at 
a pseudostopband frequency and for a completely random structure at the 
same frequency. 
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as the frequency moves away from the center frequency of 
the stopband. On the other hand, localized waves are not so 
sensitive to frequency as long as the frequency is above the 
cut-off frequency. The localized waves have much broader 
bandwidth, although the decay rate for the localized waves is 
relatively slower than for the stopband waves. A typical lo- 
calized wave can be confined within 6-7 cells. These quan- 
titative evaluations can be used as general guidelines for the 
design of random composites. 

V. SUMMARY AND CONCLUSIONS 

We have studied shear wave propagation in a 2-2 com- 
posite structure using the T-matrix technique. A new defini- 
tion is introduced for the effective wave number k [Eqs. (14) 
and (15)]. Using the new definition, the dispersion relation 
for a finite composite system is calculated without using the 
Floquet theory, which is valid only for an infinite system. 

The formation of the band structures with the increase of 
composite cells can be seen clearly from the calculated re- 
sults (Fig. 4). Our results show that the boundaries between 
stopbands and passbands become unclear for a finite system. 
Pseudostopbands can develop quickly with the increase in 
the number of cells in the composite. Stopband-like fre- 
quency regions are already formed in a composite of 10 cells 
as shown in Fig. 3. For a system with more than 200 cells, 
the dispersion relation calculated using the new definition is 
nearly identical with that obtained from Floquet theory (see 
Fig. 4). 

Wave patterns inside the composites can be quite com- 
plicated and the magnitude of vibration could be much larger 
than the incident wave due to resonance. It is demonstrated 
that the polymers vibrate at much larger amplitude than the 
ceramics. These shear resonance modes are undesirable for 
thickness mode transducers because they not only reduce the 
efficiency of the transducer, but also prolong the ringdown in 
the pulse mode, producing poor resolution. 

There are two ways to solve this problem: one is to 
reduce the cell dimensions, which can push the shear reso- 
nance to higher frequencies and place the operating fre- 
quency inside the first stopband to reduce the coupling; and 
the other is to introduce randomness into the structure, which 
can effectively destroy the shear resonance in a much 
broader band, and also can overcome the technical limita- 
tions encountered in fabricating fine scale composites. It is 
shown that the waves can be confined within 6-7 cells if 
both a and b are randomized. Therefore, this technique could 
be very useful and cost effective in producing high- 
frequency composite transducers of small size. 
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APPENDIX 

From Eqs. (3) and (4) we have 

|rn,_j|rj = i. (AD 

so that 

\T\ = \TJ-d\\Td\...\THj-a\\Tnd\...\TSJ-a\\Tfld\=l, 

\T\ = TnT22-Ti2T2] 

T   T* \     1 
»r.,77,1 i-=A=r =T(I-»-) = I. 

(A2) 

nj a 
li1 ii t 

r + r=l. 
(A3) 

Note [7"J is in the form of [ '     T* ]> therefore, the total 
ri:      ii 

matrix [T] which is a product of each individual matrix also 
has the relation 

7-22=rf,. 

7-2. = 7n. 

(A4) 

(A5) 

ac + bd*        ad + bc* 
b*c + a*d*    b*d + a*c* 

f 
f* 

(A6) 
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FINITE ELEMENT ANALYSIS AND EXPERIMENTAL STUDIES ON THE THICKNESS 
RESONANCE OF PIEZOCOMPOSrTE TRANSDUCERS 
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2. Department of Mathematics 
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Finite element method (FEA) has been used to calculate the thickness resonance 
frequency and electromechanical coupling coefficient kt for 2-2 piezocomposite transducers. 
The results are compared with that of the effective medium theory and also verified by 
experiments. It is shown that the predicted resonance frequencies from the effective medium 
theory and the unit cell modeling using FEA deviate from the experimental observations for 
composite systems with a ceramic aspect ratio (width/length) more than 0.4. For such systems, 
full size FEA modeling is required, which can provide accurate predictions of the resonance 
frequency and thickness coupling constant kt. 

Key words: Aspect ratio; composite transducers; effective medium theory; finite element 
analysis; piezocomposites. 

INTRODUCTION 

A transducer is usually characterized by two major properties: sensitivity and resolution. 
The sensitivity is related to the electromechanical coupling coefficient, while the resolution is 
related to the center frequency and bandwidth. At the beginning of the ultrasonic imaging 
industry, two types of piezoelectric materials were used as transducer materials: lead zirconate 
titanate (PZT) and polyvinylidene fluoride (PVDF). PZT has high acoustic impedance, making 
it very difficult to send ultrasonic energy into the human tissue, which has very low acoustic 
impedance. In addition, the Q value of PZT is very high so that the bandwidth is narrow 
resulting in poor resolution due to ringing effects. On the other hand, PVDF has a very good 
acoustic impedance match with human tissue, but its electromechanical coupling coefficient is 
very low, resulting in low sensitivity. In addition, the low dielectric constant of PVDF also 
creates the problem of electric impedance mismatch, which limits the application of PVDF in 
array transducers. 

The advent of piezoelectric composites greatly improved this situation [1,2]. 
Piezocomposites have large coupling coefficients as well as low acoustic impedance, making 
them ideal transducer materials. Nowadays, piezoelectric composites are widely used in 
making underwater acoustic and medical ultrasonic transducers [2-4]. However, due to the 
biphase nature and the large difference in the elastic stiffness between the polymer and the 
ceramic, the surface displacement is often nonuniform [5-8]. It is therefore difficult to 
accurately predict the resonance frequency of the composite transducers using simplified 
models. 



The most commonly-used method for designing composite transducers is the effective 
medium model [4]. Experience reveals that the actual resonance frequency of the designed 
composite transducer is often lower than the theoretical estimates from the effective medium 
theory. Motivated by this discrepancy, we have conducted a combined experimental and finite 
element analysis to give a detailed assessment of the effective medium model and to derive the 
conditions for the application of such theoretical estimates. We also intended to evaluate the 
validity of the commonly used unit cell FEA modeling [9-11]. For simplicity, we only analyze 
a 2-2 composite transducer, but the conclusions are also valid for 1-3 type composite 
transducers. 

2. EFFECTIVE MEDIUM MODEL FOR 2-2 PEZOCOMPOSITES 

A typical 2-2 composite is shown in figure 1. It is a layered structure of alternating 
polymer and piezoceramic constituents. 

The constitutive relations for the polymer phase can be written as the following, 

T,=CiiSi+Ci2S2 + Ci2S3 (la) 

T2 = Ci2S1+C1iS2 + Ci2S3 (lb) 

T3 = Ci2S1+Ci2S2 + C11S3 (lc) 

T4 = C44S4 (Id) 

T5 = C44S5 (le) 

T6 = C44S6 (If) 

Di=enEi (lg) 

D2 = enE2 (lh) 

D3 = enE3 (li) 

Here, T/ and S/(1 =1,2,...6) are the stress and strain components, respectively, in Voigt 
notation, Ej and Dj (i= 1,2,3) are the electric field and electric displacement respectively, Qj are 
the elastic stiffness constants and £tj are the dielectric constants. 

Similarly, if we take the x3-direction as the poling direction, the constitutive relations in 
the ceramic phase can be written as: 

Ti =CJJSI +C,2S2 + C13S3-e3iE3 (2a) 

T2 = cf2Si + cfjS2 + cf3S3 - e31E3 (2b) 

T3 = cf3S i + Cf3S2 + Cf3S3 - e33E3 (2c) 



T4 = CuS4-ei5E2 

T5 = C4dS5-ei5Ei 

T6 = C66S6 

Di =ei5S5 + e^Ei 

D2 = ei5S4 + eJ1E2 

(2d) 

(2e) 

(2f) 

(2g) 

(2h) 

D3 = e31Si + e3iS2 + e33S3 + e*3E3 (2i) 

where ej] are the piezoelectric constants, and the superscripts, E and S, refer to quantities at 
constant electric field and strain, respectively. 

We can follow the same procedure as in [4] and use all the assumptions proposed there to 
derive the effective properties (denoted with an overbar) of a 2-2 composite, 

CE   = V ,.(c'2-c'3)
: 

33 " P 
VC*+VCn 

+ vc,, (3a) 

e33 = V e33 - V'e3i 
(cf3-c12) 
vcf, + VCll 

(3b) 

£S   = V fc33      V £33     +   77T 

e2   V e31  v 
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(3c) 

c?, = cf, + sm (e33)
: 
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p=VpC + V'pP (3g) 

In the above expressions, V and V are the volume percentages of ceramic and polymer, 
respectively, V = 1-V, and pP and pc are the densities of the ceramic and polymer. Using the 
conventional definition, one can derive all the relevant effective quantities for the thickness 
mode operation, 

T~ -       n33 633 

\ *~33 b33 

_ /CD 
/     33 v/ 

P 

/r 
_   v/ 
~ 2L 

33 P (5) 

(6) 

(7) 

v/ and L are the longitudinal wave speed and the thickness of the composite in the poling (x3) 
direction and ft is the resonance frequency given by the effective medium theory. 

Using the above equations, we have calculated the effective thickness resonance 
frequency for a 2-2 composite of 1 mm thick. Compared with a 1-3 composite transducer of 
the same thickness, the resonance frequency of a 2-2 composite is higher than that of a 1-3 
composite of the same ceramic volume content as shown in Figure 2. The same is true also for 
the thickness coupling constant "kT, as plotted in figure 3. 

Although the effective medium theory is relatively simple and sometimes gives reasonable 
estimate for the resonance frequency, it fails to account for the aspect ratio effect which can be 
substantial if the a/L (width/length) ratio is not sufficiently small [6,7]. For systems with lar<>e 
a/L ratio and low ceramic content, the isostrain assumption is not valid. e 

In addition, since a real transducer always contains a finite number of cells, one would 
not expect a very good match with experimental results from a unit cell model that automatically 
assuming periodic boundary conditions. For this reason, we have performed FEA on 2-2 
composite transducers using both the unit cell and full dimension models. 

3. FINITE ELEMENT ANALYSIS 

The nonuniform displacement at the surface of composite transducers has been observed 
experimentally[5,8]. This inhomogeneity can greatly affect the overall performance of a 



transducer. For low frequencies, the situation may be treated by using elasticity theory and 
describing the two constituents separately. Some approximations can be used in solving the 
low frequency problem since there are no countable phase difference in the structure[6-8]. 
However, when the operating frequency is high and close to the thickness resonance, we must 
use FEA for an accurate theoretical prediction. 

A commercial package ANSYS® is used in our study and two models were analyzed: 
(1) A unit cell model, which was also analyzed by several other researchers[9-11]; 
(2) A finite real dimensional system. 
These FEA results are checked against our experiment results. 

After some test runs, we found that the results from a 2-D model are almost the same as 
those from a 3-D model for the geometry we have chosen. Therefore, for computational 
efficiency, we performed only 2-D modeling. The models and the coordinate system are shown 
in figure 4. 

One of our objectives is to study the change of the thickness resonance frequency and the 
electromechanical coupling coefficient kt with respect to the change of ceramic aspect ratio. 
Both the thickness resonance and the anti-resonance frequencies were calculated. The 
resonance frequency is calculated under short circuit condition (constant E) while the anti- 
resonance frequency is calculate in open circuit condition (constant D)[12]. From these two 
resonance frequencies, the electromechanical coupling coefficient kt can be calculated using the 
formula, 

t - i-c^) 
where fr and fa are the resonance and anti-resonance frequencies, respectively. 

First, we performed analysis on the unit cell model. Only a quarter of the unit cell is 
needed due to symmetry [Fig. 4(a)]. A composite of real dimensions was then analyzed. 
Again, only a quarter of the piece was analyzed due to symmetry [Fig. 4(b)]. The results are 
plotted in figure 5 together with the experimental results. 

4. RESULTS AND DISCUSSIONS 

In order to verify the theoretical results, we made a series of 2-2 composite transducers 
using PZT-5H and Spurrs epoxy. The dimension along the X2-axis (into the paper) is made 
large enough so that the system can be treated as two dimensional. We start by making a thick 
2-2 piezocomposite in the X3-dimension, and later gradually increased the a/L ratio by 
shortening L, i.e., shortening the X3-dimension without changing the other dimensions. After 
each cutting, the sample is re-electroded and the resonance frequency measured using a HP 
4194A impedance analyzer. From the impedance curves, the resonance and anti-resonance 
frequencies can be obtained, and the electromechanical coupling coefficient kt can be 
determined using Eq.(8). 

Another experiment was also performed to check the dimensional effect in the xj- 
direction. In other words, reducing the number of cells in the composite structure to see if it 
affects the resonance frequency in the X3-dimension. Impedance measurements were also used 
as the means to characterize this effect. 



Figure 5 shows the comparison of the resonance frequencies calculated by the effective 
medium theory unit cell FEA and real dimensional model FEA together with the experimental 
results. When the ceramic ratio a/L is less than 0.4, all theoretical models agree quite we^wth 

^^nmTVbuer^ll0u- ButJ°T ^ greater than °"4' the effective Medium theory prediction is too high while the prediction from the unit cell FEA model is too low Only the 
real dimensional model provide accurate prediction for the resonance frequency. 

The coupling constant kt calculated from effective medium theory is independent of the 
^S^h0, aS Sf°Wn in f,gUre 3- Hu

owever' experimental results demonstrate a fluctuation of 
kt with change of aspect ratio, as shown in figure 6. This fluctuation is mainly caused by the 
coupling between the thickness mode and other lateral modes or their higher harmonics. 

When the thickness, L, is reduced, the resonance frequency is shifted to hi eher 
frequencies. Whenever the resonance frequency approaches one of the late a modes or fhd 
higher harmonics, energy will be lost to the lateral modes and the coupling™nstam kt is 
reduced. Further increase of the thickness resonance frequency may recover some of the lost 
energy through mode decoupling until reaching the nex? lateral mode, which causes ano he 
reduction of the coupling constant. Therefore, we expect the kt value to go up Sown with 

SeSe'J ^r S»OWS 7 ^ 6' tSm0de COUPling effect is wel1 accounted for by the FEA. Both the unit cell model and the real dimensional model show this fluctuating feature and 
the real dimensional model provides better agreement with the experimental observltionf 

The difference between unit cell and real dimensional model indicate that the resonance 
frequency in the X3-dimension will also depend on the composite size in thrx,-d'mens"on 
(number of cells). However, this effect is weak when the a/L ratio is small. a,mension 

5. SUMMARY AND CONCLUSIONS 

freaueYcvofr2P2e^3lb0th exPerimenta' and reA investigations on the resonance 
frequency of a 2-2 piezoelectric composite transducer and compared with the effective medium 

TZ^TLn^ZT* ^«^ rdiUm *«*'gives goo^e^TswTen Z 
thtlT        ? ; ' but the calculatl0n of the coupling constant is incorrect whenever the 
thickness mode gets close to one of the lateral modes. When the a/L ratio is larger than 04 the 
effective medium theory prediction will be higher than the actual resonance flSuencv of he 
composite transducer. The FEA results depend strongly on the detailofThe nSSuÄ 
Z 111 T? t0 u"derest™ate the resonance frequency for composites with large a^ ratio 
but the flueöiaöon of kt can be reasonably predicted. The most accurate modeling is the real 
inf/Tf ^A' Wh,Ch gave g°od Factions for both resonance frequency and coupling 
constant for all aspect ratios investigated. p   lg 

Q^ 1 min r^wl"^^ by, The °ffice of Naval Research under Grant No. N00014- yj-l-UJ40 and The Whitaker Foundation under Special Opportunity Award. 
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Table I. Material properties of PZT and epoxy. 

Elastic compliance (10"12 m2/N) 
E 

Sll 
E 

S33 •?* 4 4 44 '% 

PZT 16.5 20.7 -4.78 -8.45 43.5 42.6 

Epoxy 286.7 286.7 -97.9 -97.9 769 769 
Piezoelectric constants, dy, (10-12 c/N) Dielectrics constants, k;j, (EQ) Coupling constants, 

kix and kt, and Density p (kg/m3) 

di5 <*31 d33 El/eo e33/eO ki5 k31 k33 kt P 

PZT 741 -274 593 1700 1470 0.675 0.39 0.75 0.50 7800 

Epoxy 4.0 4.0 1097 



FIGURE CAPTIONS: 

Fig. 1        Configuration of 2-2 composite investigated in this study. 

Fig. 2 Resonance frequencies for 2-2 and 1-3 composites calculated using the effective 
medium theory for different ceramic volume content. 

Fig. 3 Coupling constant kt calculated for 2-2 and 1-3 composites of different ceramic 
volume content. 

Fig. 4 2-D models used in the finite element analysis, (a) unit cell model; (b) full 
dimension model. 

Fig. 5 Comparison of observed resonance frequencies and theoretical predictions from the 
effective medium theory, unit cell and full dimension finite element models at 
different ceramic aspect ratios. The widths of the ceramic and polymer are a = 
0.273 mm and b = 0.362mm, respectively. 

Fig. 6 Comparison of observed coupling constant kt and theoretical calculations from the 
effective medium theory, unit cell and full dimension finite element models at 
different ceramic aspect ratios. The widths of the ceramic and polymer are a = 
0.273 mm and b = 0.362 mm, respectively. 
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Multisource excitations in a stratified biphase structure 
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A stratified biphase structure can have many mechanical resonance modes due to the existence of 
several length scales in the system. The resonance effect is greatly enhanced if there are periodic 
synchronized multiple driving sources in the structure. For example, a single beam or a linear array 
composite transducers used in medical ultrasonic imaging. Such resonance behavior can be studied 
using an extended transfer matrix technique which we name: multisource T-matrix technique. Using 
this technique we have studied the effects of randomization in a 2-2 composite. It is found that for 
dispersing the pitch resonance the randomization of ceramic spacing is more effective for low 
ceramic content, while randomization of ceramic width is more effective for high ceramic 
content. © 1995 American Institute of Physics. 

I. INTRODUCTION 

Transfer matrix (T matrix) is one of the tools used in the 
study of wave propagation characteristics in stratified 
structures.1"9 In all the previous studies using T matrix, the 
Floquet relation must be used to derive the dispersion rela- 
tion. However, the Floquet relation is valid only for an infi- 
nite system, it is not appropriate to use it for a finite system. 
On the other hand, the transfer matrix technique can be used 
for systems of any size so long as the wave propagation has 
one-dimensional nature. With this consideration recently we 
have introduced a definition of a complex wave number k 
using the T matrix alone so that the dispersion relation can be 
derived for a finite system without the Floquet condition.10 

Using this new definition the development of band structures 
with the increase of the number of cells in the composite can 
be calculated directly. 

In a 2-2 composite transducer, the active components are 
often driven simultaneously. In other words, there are more 
than one wave sources in the structure. For such systems, the 
band structure study, which only deals with single-wave 
propagation, would not be as useful since new resonance 
feature will be produced by the interference of multiwave 
sources. There will be interference between the incident and 
reflected waves, and also among waves of different sources. 

Although of practical importance, theoretical studies on 
such multisource driven system have not been reported in the 
literature. It is the intention of this paper to extend the trans- 
fer matrix technique to address this problem. 

A typical single beam 2-2 composite transducer is shown 
in Fig. 1, where the piezoelectric ceramics are the active 
components of the transducer and the polymers are the pas- 
sive components. When an electric potential is applied to the 
transducer through the top and bottom electrodes, the ce- 
ramic components will either contract or expand to generate 
acoustic signals through piezoelectric coupling, whereas the 
polymer components will play the passive role of damping 
and acoustic coupling agent to a low acoustic impedance 
medium. 

In reality, the resonance behavior of the system shown in 
Fig. 1 depends on both the position of the driving source and 
the number of the driving sources. For simplicity, we assume 
the system to be linear, so that the principle of superposition 
can be used. 

Following the spirit of the single-source transfer matrix 
technique, we introduce here an algorithm of multisource 
transfer matrix for the study of stratified structures. Quanti- 
tative calculations have been carried out for a 2-2 ceramic- 
polymer composite as shown in Fig. 1 with both periodic and 
random arrangements. We choose the shear wave as an ex- 
ample for this study, other waves can be studied in a similar 
fashion. 

II. TRANSFER MATRIX FOR MULTISOURCE DRIVEN 
2-2 COMPOSITES 

As shown in Fig. 1, when all the ceramic elements are 
being driven in the z direction with an alternating field, shear 
waves are being generated at all the ceramic-polymer inter- 
faces. It can be shown (Appendix) that for a linear system the 
wave functions in the nth cell can be written in the following 
from: 

*-X 

cell-n 

caramic k       polymer 

cell-N 

"'Electronic mail: wcao@sunOl.mrl.psu.edu 

FIG. 1. Structure of a 2-2 ceramic-polymer composite, where a and ft are 
the ceramic width and polymer width, respectively, d = a + b is the pitch. 
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<f,np=Ane«'*—'p*' + Bne"u"*S>     (in polymer). (la) 

0ac«CB«'("'-^, + D)1*
,'("'+t<*> + Ee«-»'    (in ceramic). 

(lb) 
where kp and kc are the wave numbers of the polymer and 
ceramic, respectively. 

Basically, inside the polymer there is a forward wave 
and a backward wave with their amplitudes given by com- 
plex numbers (Appendix). While inside the ceramic, an ad- 
ditional position-independent vibration has to be included to 
specify the external drive. Among all the coefficients in Eqs. 
(la) and (lb), £ is a real number, An, B„, Cn, and D„ are all 
complex numbers. 

Similar to the case of single-wave propagation in com- 
posite, there are two boundary conditions at each interface, 
i.e., continuity and force equilibrium. Using Eqs. (la) and 
(lb), these two conditions can be explicitly written at the nth 
P-C (from polymer to ceramic) interface, i.e., at x = xK 

A„e"'V. +B „e'V- =Cfl*-'V. +Dneik^+E, (2a) 

Zp{-AHe-'Vn +B„e,k^n ) 

= Zc(-Cne-'V„PC+Dne'Vrc
), 

or 

(2b) 

PC 
(Ze + Zp)e-'lkp-k'K     (Zc-Zp)e

iikr+k< 

\ (Zc-Z,)e-''<V*cK     (Ze+Z.)e,{kp-kc -Ux 

= [7-(OJ ■inJ 2 U-'vr 
where Zp and Zc are the acoustic impedance of the polymer and ceramic, respectively. 

Similarly, we can obtain another relationship at x = x^p, the nth C-P (from ceramic to polymer) interface, 

(3a) 

*An+1\ = j_ / (Zp + Z>«*p-rf      (Zp-Zc)e«Vrf \ / c \     El eikfX? \ 

, *.+ •/ " 2Z
P [ {Z,-Ze)e'*W?    (Zp + Zc)e-^-^P) [ D J + 2 \ Ä-,V?J 

=[r(^)]       | + T 

..    CP 
£ /   e'V. 

e-'V- 
(3b) 

Therefore, the recurrence relation between the vibration am- 
plitudes of the forward and backward waves in the nth and 
(n + l)th polymer elements is given by 

/ ««Vf 

\e' 
CP (4) 

It is interesting to see from Eq. (4) that the recurrence 
relation has similar features as the one for a single-source 
situation, in fact, the first term on the rhs of Eq. (4) is just the 
single-source transfer matrix. There are two additional terms 
proportional to the driving magnitude £, which will vanish 
upon the elimination of these internal vibration sources. 

Once the vibration in the first cell is known, the ampli- 
tude in the nth cell can be calculated repeatedly using Eq. 
(4): 

^+I)=[r(x^)][r(xr:)][r(^1)][7-(^1)]-[r(^p)][7-ur)]f^ 
2n  matrix 

HTix?)]mx?)][TixZM[T(xZl)]...[nxY)) 
(2n-I)  matrix 

£   ..  PC 

£     ., pc 
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where 

£    ..   cp 

+ [7-(0][7-(xa
pc)][7,(x^l)][r(x^I)]...[7-(^)][7-Ur:)]|   E CP ' +"" 

-■V: 
CP   Mr-T-/_PC 
n-1 

(2n-2)  matrix 

+(-)2--nnO][nxr:)][n^,)][7-(x«l)]...[7XxSr.j] JJ;[^:;5 

-[nO] 
2 

■L « «- 

\ 

£      ..pc 

(2n-m)  matrix 

£   .,   CP 

£      ...   CP 
(5) 

'Vi(*2«-J 
iV2(jT2n-m) 

£   .,   pc 

2 
£     ..pc 
— g-'M2n-m 
2 
£    .i_(

CP 

2 
£  _t CP 
— £    'V*2n-»i 
2 

if 2n-m is odd 

if 2n-m  is even. 

(6) 

(8a) 

(8b) 

D=Dne 

The vibration pattern for the ceramic elements can be Än = A„e" 
calculated using Eq. (3a). 

III. GLOBAL COORDINATES VERSUS LOCAL 
COORDINATES 

Equation (5) could be simplified by using local coordi- 
nates if the structure is periodic. The idea is based on the fact 
that each wave function i/fnp(x) is valid only in a spatial 
interval of (n- l)d<x<nd-a, where a is the width of 
ceramic and d-a + b is the period with b being the width of 
the polymer. 

Let us introduce a local coordinate 

y=x-(n-l)d (7a) 

for the forwarding wave and 

y'=x-(nd-a) (7b) 

for the backward wave so that each wave function is consid- 
ered to be generated at the nearest interface of the position of 
interest x, then the transfer matrix Eq. (5) can be greatly 
simplified. 

Using these local coordinates, we can rewrite the wave 
functions Eqs. (la) and (lb) in the following form: 

+ ßnei{mt+kp[*-(nd-a)]}     (Jn polymer), 

J,    =C e>{<»l-kJ.i-{nd~a)]) + p^at + kjx-ad)] 

+ Eeiu"    (in ceramic), 

where where 

— D   JkJnd-a) Bn = Bne 

r   -C f-'kcind-a) 

ikrnd 

(9a) 

(9b) 

(9c) 

(9d) 

compared with Eqs. (la) and (lb). 
The physical meaning of Eqs. (8a) and (8b) is very clear. 

Each polymer-ceramic interface now becomes the origin of 
the acoustic source whose strength is the superposition of all 
the waves propagating inside the structure. Again, we must 
note that the coefficients are all complex numbers except £. 
It can be shown that the recurrence relation becomes much 
simpler using the local coordinate representation: 

Bn+} 
=m „ km. (10) 
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[7> 
I      je-kpb[4ZcZp cos(.kca)-2i(Z2

c + Zl)sin(kca)]     -2i{Z]-Zp)iin(kca) 

4ZcZp \2i(Z2-Z2)sin(kca)    eikpb[2i(Z2
c + Z2

p)sin(kca) + 4ZcZp cos(kca)] 

E 
/l- cos(/:ca) + ( — sin(£ca) 

eikpb 1 -cos(kca)-i z~ sin(Jtca) 

\ 

(11) 

(12) 

Note that both [T] and [V] are independent of n. One now 
only needs to perform the T-matrix calculation once. The 
vibration in the «th cell can be easily derived if vibration in 
the first cell is known. For instance, the polymer vibration 
recurrence relation now becomes 

^n+l 

kc = kc — iac, (19) 

Bn + \ 
'iTT[B't)+[[T]'"1 + [T]"~2 + - + [T] 

+ U]][V] = [T]^By[[I]-[TTW] 

-[T]]-l[Vl (13) 

where [/] is the unit matrix and the exponent -1 represents 
the matrix inversion. The above recurrence relation can be 
further simplified to become 

An+l~V[ 

with 

S)-c[/]-[nr'(v; 

(14) 

(15) 

Equation (14) is much simpler for numerical calculations 
compared to Eq. (5) which involves explicitly the coordi- 
nates of all the cells. 

IV. DAMPING EFFECTS 

In a ceramic-polymer composite transducer, high damp- 
ing in the polymer is desirable for reducing the ringing down 
to increase the resolution and the bandwidth of the trans- 
ducer. We can study this situation by introducing complex 
wave numbers and acoustic impedance when the multisource 
T-matrix technique described in Sees. II and III is used. 

Let ap and ac represent the damping constants of the 
polymer and ceramic, respectively, the damped waves may 
be written in the following form: 

Vnp=Ane-Ve'(
<u'-M» 

+ ß„e<W(<'"+V)    (in polymer), (16) 

^nc = Cne~a'xei{u''k'x) + Dnea'Jei{u'+k'x) 

+ Ee,a"    (in ceramic). 

If we introduce two complex wave numbers 

kp = kp-iap, 
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(17) 

(18) 

Eqs. (15) and (16) will have the same format as that of Eqs. 
(la) and (lb). In addition, we can generalize the definition of 
the acoustic impedance to include an imaginary part. 

(20) 
-     k.v" 
ZP = — = ZP- H        (x)           y 

apvP 

CO 

.    kcv
c 

Zc~~~Zc~ 

acv
c 

w (21) 

All the derivations in Sees. II and III can be duplicated for 
the damped system with these complex wave numbers, kp 

and kc, and the complex impedance, Zp and Zc. The results 
are the same except replacing the real, kp,kc,Zp, and Zc by 
their complex counterpart. The resonance magnitude will be 
gTeatly reduced as we will see from the calculations below. 

V. RESULTS AND DISCUSSIONS 

In a composite transducer, the polymer phase can be 
chosen to be lossy in order to reduce the level of spurious 
resonance from the shear waves, while the damping in ce- 
ramic is relatively small and have little flexibility for adjust- 
ment. For simplicity damping is introduced only in the poly- 
mer (ac=0) in the calculations. The damping factor in our 
calculation is assumed to be a linear function of frequency 

a/,= a0(5.4lXl0_5/-20.49)/m, (22) 

where / is the frequency in Hertz and OQ is an adjustable 
factor. The coefficients were so chosen that when OQ=5, the 
rhs of Eq. (22) divided by the conversion factor In 10=2.3 
will give the ap value in dB. 

Most of the composite transducers operate in the thick- 
ness mode, i.e., resonance in the z direction shown in Fig. 1. 
Because the pitch scale (the period) d is usually made very 
small in conventional transducer design in order to make the 
pitch resonance will be at a rnuch~higher frequency than the 
thickness mode. The transducer will not function well when 
the spurious transverse modes occur. 

In order to study the relevant shear modes in a multi- 
source system, we define an average amplitude of the ce- 
ramic components Masa measure to characterize those rel- 
evant shear modes, 

M 
1   "    f 

\tc\dx. 
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(23) 
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FIG. 3. Space profile of the vibration amplitude and phase for a 50 cell 
composite at the main peak frequency of ai=1.056<i^. 

FIG. 2. Frequency dependence of the average ceramic vibration amplitude 
for shear wave propagation in a multisource driven system. Polymer damp- 
ing is chosen at ao=2. 

where the integration is on the ceramic element only to ac- 
count for the piezoelectric effect. N is the total number of the 
cells in the composite. 

To be more general, M is normalized by the magnitude 
of the applied drive |£|, and the frequency is normalized by 
the half wavelength shear wave resonance frequency of the 
polymer element, 

TTV„ 
<o0 = - (24) 

where vp is the shear acoustic velocity of the polymer. 
Figure 2 shows the frequency dependence of M for a 50 

cell 2-2 composite with the polymer width b = 0.352 mm and 
the ceramic width a =0.2732 mm (44% ceramic by volume). 
The physical properties of ceramic and polymer used for the 
calculations are given in Table I. Figure 2 shows three peaks 
of M, corresponding to the pitch resonance, its third har- 
monic, and a higher shear resonance. Other peaks at much 
lower frequencies related to the overall size of the composite 
structure have much smaller magnitude and therefore ig- 
nored here. 

The most pronounced low-frequency peak is the one 
near WQ, or O)/CD0~\, corresponding to the pitch resonance, 
we call it the main peak. In transducer design, this main peak 
is the most interesting one which determines the frequency 
limit for the composite transducer. In what follows we will 
devote most of the effort to study this main peak. 

In order to see the physical meaning of those peaks in 
Fig. 2, we have calculated the space profile and phase varia- 
tion inside the composite at these corresponding peak fre- 

TABLE I. Material properties for the ceramic and polymer constituents of 
the 2-2 composite. 

Ceramic: c$3 = 2.4 (1010 N/m:), 
Polymer: cf5 = 1.59 (10* N/nr), 

pc=7800. 
pc = ll60. 

quencies. Figure 3 is the space profile of a 50-cell composite 
at the main peak frequency of 1.056u>o. We can see clearly 
that the pattern corresponds to the full wavelength pitch reso- 
nance with the ceramic and polymer elements vibrating 180° 
out of phase. It is important to note that this is the first 
excited mode in this structure due to the symmetry of the 
driving force applied to the composite, whereas in the single 
drive analysis, other nonpiezoelectric active modes will also 
appear.10 The second important point that should be noted in 
Fig. 3 is the strong edge effects, which are unavoidable in a 
finite system. The edge effects can be seen more clearly in 
Fig. 4 which displays the space profile and the phase varia- 
tion of several composites made of 6, 10, and 50 cells. Both 
the magnitude and the phase are affected by the composite 
size. As a consequence, the main peak of the average mag- 
nitude also shows some degree of size dependence, both the 
magnitude and the peak frequency are smaller for compos- 
ites with lesser cells, but these values saturate after 
N>\00.n 

The amplitude of the main peak is affected strongly by 
the damping in the polymer phase as shown in Fig. 5. The 
peak value MmiX changes drastically with the increase of the 
damping coefficient a0 defined in Eq. (22). This suggests that 
lossy polymer can play an important role in reducing the 
effects of the pitch resonance. 

VI. EFFECTS OF RANDOMIZATION 

Considering the fact that the main peak is from the pitch 
resonance due to the periodic nature, it should be reduced or 
eliminated if the periodicity is destroyed.12'15 There are two 
kinds of fabrication processes in making a composite, one is 
placing ceramic elements of the same size with certain spac- 
ing in between and then filling in the gaps with polymer 
resin; the other is to dice a solid ceramic to create the kerfs 
and then filling in those kerfs with polymer. The former has 
a fixed ceramic dimension, or constant a, while the latter has 
a constant polymer width b (saw blade thickness). Therefore, 
randomizing a would be easier for the latter fabrication pro- 
cess and randomizing b would be easier for the former fab- 
rication process. Using the multisource T-matrix techniques 
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FIG. 4. Comparison of the vibration amplitude and phase for composites 
consisting 6 10. and 50 cells. Only the first 10 cells were plotted for *e 50 
cell composite. 

described in Sec. H, we have studied the effects of random- 
ization for the multisource driven system in both cases of a 
random and b random. 

Figure 6 shows the effects of randomizing ceramic spac- 
ing b. It is expected that the randomization of b will have a 
strong effect because the main resonance peak shown in Fig 
2 appears to be close to the polymer half-wavelength reso- 
nance frequency. 

The randomized ceramic spacing bt is chosen according 
to the following formula: 

*, = (l-X)*o +*C,r,,    Cr = 
Nb0 

(25) 

where b0 is the arithmetic mean of the ceramic spacing (or 
polymer width), N is the total number of cells,  r,  (/ 
~} ^ is a set of random numbers between 0 and 1,'and 
X is the percentage of randomization which is defined *o be 
the variable percentage of b,. We have studied the cases of 
*=5%, 10%, 20%, and 50%. 

As shown in Fig. 6, the resonance nature changes dra- 
matically with the introduction of randomness. The magni- 
tude of the main resonance peak is reduced by 40% with 
only 5% randomness. At the same time, there are more small 
bumps created in the vicinity of the original main peak. 
Theoretically speaking, more randomness in the structure is 
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FIG. 5. Effect of damping on the main resonance peak. <% are chosen to be 
2, 5, and 8, respectively 

better in terms of dispersing the main resonance peak but the 
effect is the strongest within the first 20% randomness 

We also found that the influence of randomizing b on the 
main peak becomes much weaker for high ceramic volume 
percent composites for which the major contribution to the 
main low-frequency resonance will come from the ceramic. 
On the other hand, randomizing a has different effects as 
shown in Fig. 7, where the results were calculated for a com- 
posite with 45% ceramic. When the ceramic percentage is 
less than 60% ceramic volume content, the main low- 
frequency peak is reduced but still relatively strong even for 
50% randomness of a. Interestingly, the shape of the peak 
remains practically the same. However, when the ceramic 
percent is more than 70%, the shape of the main peak will be 
destroyed through randomizing a. Figure 8 shows the calcu- 

0.8 1 1.2 
Frequency (avu ) 

1.4 

FIG. 6. Effects of randomizing * for a composite with 45% ceramic volume 
content. The percentages of randomness are 5%, 10%. 20%, and 50% re- 
spectively. The effectiveness decreases with the increase of ceramic content. 
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FIG. 7. Effects of randomizing a for a 45% ceramic composite. The per- 
centages of randomness are 5%. 10%. 20%, and 50%, respectively. The 
influence on the low-frequency main peak is much smaller compared with 
randomizing b as shown in Fig. 6. 

lated results for a composite contains 80% ceramic. We can 
see that the effect of randomizing a is much larger compared 
with the results shown in Fig. 7. 

VII. SUMMARY AND CONCLUSIONS 

We have derived the recurrence relation for the vibration 
amplitude among different cells in a multisource driven 
stratified structure using an extended multisource T-matrix 
technique. Ceramic-polymer composites with 2-2 connectiv- 
ity is a perfect example of such situation. The new criteria 
Eq. (23) introduced here can directly identify the relevant 
shear modes that affect the thickness mode operation. Analy- 
ses show that the lowest shear mode, corresponding to the 

pitch resonance, is the most important mode which couples 
strongly to the thickness resonance in a periodic composite 
transducer. 

The pitch resonance can be destroyed by randomization. 
For moderate ceramic volume content (60% or less), the 
main peak is primarily linked to the spacing between the 
ceramics. In this case, we found that randomizing the spac- 
ing between ceramics, i.e., b is much more effective than 
randomizing a, the ceramic width. On the other hand, for 
very high percentage ceramic content (70% or more), the 
effect of randomizing a becomes more effective than ran- 
domizing b since the main low-frequency peak is tied more 
to the ceramic dimension. These results can provide useful 
guidelines for making random composite transducers. 
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APPENDIX 

Assuming there are m acoustic sources located at 
— al, — a2,.-., — am sending waves to forward direction, 
then the wave form at position x is the linear superposition of 
these waves: 

^)=/liei["'-«'+l,i>]+/l/»'-J«'+''i)]+- 

+ Ame-ika"<]eiiü"-kx) = Aeii""-kx\ (Al) 

where 

A=Axe-
ik"i+Ale-ikai+---+Ame-ika'» 

is a complex number. Therefore, both the forward and back- 
ward waves can be written as a simple wave form even for 
the multisource system except the amplitude is now a com- 
plex number. 

For the ceramic elements the wave function also should 
include the uniform driving of the external field. 
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FIG. 8. Effects of randomizing a for a composite with 80% ceramic volume 
content. The percentages of randomness are 5%, 10%, 20%, and 50%. re- 
spectively. Note this peak does not appear for a low ceramic content com- 
posite, for which the lowest peak is near «^ as shown in Fig. 6. 
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