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INTRODUCTION 

To most accurately approximate any physical phenomenon, a mathematical model should 
be posed in full three-dimensional space and time. Even with the advent of supercomputers, 
however, obtaining a full three-dimensional solution numerically is not feasible for many 
investigators. Access to a supercomputing facility is not easily obtainable by most. When 
access is achieved, time and/or memory constraints are sometimes imposed. In addition, 
software advancements are still lagging behind the great strides being made in hardware design. 
This makes it difficult to take full advantage of these new computer architectures. 

Appropriately reducing the dimensionality of the mathematical model still seems 
necessary. The best scenario would be a reduction to one spatial dimension. It is rare, however, 
when a one-dimensional problem can be substituted for a three-dimensional one without an 
unacceptable loss in physical meaning. As a result, mathematical models in two spatial 
dimensions are still predominant in most scientific fields. 

Solving two-dimensional problems is not accomplished without some level of 
computational difficulty. Many technological situations, modeled in two spatial dimensions and 
time, involve the rapid formation, propagation, and/or disintegration of small-scale structures. 
Some examples are shock waves in compressible flows, shear layers in laminar and turbulent 
flows, phase boundaries in nonequilibrium processes, combustion fronts, and classical boundary 
layers. 

Such phenomena often arise in gun-related problems as well. For example, shock waves 
occur in the modeling of gas dynamics and internal/external ballistics while swift transients are 
found when investigating dynamic effects in gun tubes (refs 1,2). 

Such structures pose numerical complications since standard methods require locally fine 
meshes (in space and/or time) for adequate approximation purposes. Meanwhile, the location of 
these phenomena is generally unknown a priori. The typical response is a globally fine mesh 
resulting in unnecessary computational effort for most of the problem domain. 

Adaptive numerical methods were developed to address the difficulties associated with 
problems that would otherwise require dense meshes everywhere. An adaptive method is one 
which automatically adjusts its solution technique so that an answer is obtained in an optimal 
manner. Three basic adaptive procedures (/i-refinement, r-refinement, and ^-refinement) have 
evolved. All have proven to be fairly successful at optimizing their solution processes, although 
they accomplish this task through different means (ref 3). 

To the uninitiated, A-refinement (also known as local mesh refinement) and adaptive 
methods are synonymous. An /i-refinement approach adjusts the spatial and/or temporal 
discretization by adding and/or deleting mesh points so that finer meshes are used in 
neighborhoods of local disturbances while coarser meshes are used elsewhere (ref 4). The letter 
"h" is commonly used to designate the distance between mesh points, hence the name. 
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An r-refinement procedure adjusts the discretization differently than an A-refinement 
scheme. Instead of creating new points, existing points are moved to regions of high activity 
from regions of low activity as time progresses (ref 5). As a result, r-refinement is also known 
as mesh movement for time-dependent problems. In static problems, mesh points are said to be 
redistributed, as opposed to moved, consequently the letter "r" is used to describe these types of 
algorithms. 

The basic philosophy behind ^-refinement is different from the other two methods. 
Algorithms based on A-refinement or r-refinement attempt to modify the level of discretization 
in some way. The identical numerical solver is used throughout the entire spatial domain and for 
all time. 

In p-refinement schemes, the idea is to utilize numerical methods with varying orders of 
accuracy in different subdomains, as opposed to directly adjusting mesh points and/or time steps. 
For example, a finite element method with p-refinement capabilities would automatically decide 
what degree polynomial (linear (p = 1), quadratic (p = 2), cubic (p = 3), etc.) would be 
appropriate to use as basis functions in various regions of the problem. In general, low order 
methods would be used in regions where the solution is changing very little (i.e., where solution 
gradients are small). The higher order methods would be employed when and where solution 
characteristics change dramatically, as in the cases described above (ref 6). 

All three refinement schemes have their individual strengths and weaknesses (ref 3). For 
example, for a fixed level of discretization and a fixed order of accuracy, an r-refinement 
procedure will perform optimally. However, once this optimization is achieved, a finer 
discretization and/or a higher order method must be employed in order to increase accuracy. As 
a result, these adaptive strategies are often combined. 

An adaptive finite element method that performed both /z-refinement and r-refinement 
was developed for time-dependent problems in one spatial dimension (ref 7). This code has 
made contributions in various areas related to cannon development such as gun dynamics, 
impact and penetration, and rail gun technology (ref 8). However, the dimensionality restriction 
has proven to be too severe for this method to evolve into a practical tool for gun problems. 

The goal has become to extend this work to two spatial dimensions. In particular, a two- 
dimensional mesh moving technique for rectangular domains was suggested by the one- 
dimensional results (ref 9). The purpose of this report is to examine the properties and 
capabilities of this two-dimensional moving scheme. An extension to other geometries is 
implied by the two-dimensional results, but for simplicity, this report will deal with only 
rectangular regions. Reports concerned with more general geometries will be forthcoming. 

Ultimately, other adaptive techniques will be paired with r-refinement in order to 
produce a more robust computational tool. Since A-refinement and p-refmement normally 
involve solving a given problem more then once at selected times, they are more costly than 



/•-refinement. Proper mesh movement can postpone the necessity for additional adaptivity to 
take place and hence reduce the computational costs. 

Significant accomplishments were achieved in the development of the aforementioned 
one-dimensional r-refinement procedure (ref 9). First and foremost was the mesh moving 
algorithm itself. This scheme has proven to be robust, reliable, stable, easily controllable, and a 
natural partner with other refinement techniques. In addition, a stability criterion was derived 
demonstrating why some other schemes become unstable and illustrating how to construct 
different types of schemes with various stability properties. 

The two-dimensional r-refmement procedure analyzed here is a relatively simple 
extension of the one-dimensional algorithm. Due to the nature of this extension, all of the "nice" 
properties of the one-dimensional movement (reliability, stability, controllability, etc.) are 
inherited by the two-dimensional scheme. 

In the next section, theoretical aspects of the two-dimensional mesh moving algorithm 
are presented. First, the one-dimensional algorithm is reviewed . Then, the extension to two- 
dimensional rectangular domains is detailed. Concepts such as existence, uniqueness, initial 
condition dependency, and stability are discussed and the manner in which the two-dimensional 
scheme inherits these properties from the one-dimensional scheme is outlined. An example is 
provided which illustrates the stability properties of this method as compared to another more 
obvious extension to two dimensions. 

The third section entitled, "Control," discusses a more practical aspect of the two- 
dimensional mesh moving scheme. Ultimately, the scheme must be coupled with a numerical 
partial differential equation (PDE) solver (ref 10). In one dimension it was discovered that mesh 
movement could degrade the PDE solver's performance by moving points too dramatically. 
Space-time elements could become too distorted for the numerical solver to resolve adequately. 
Some control over mesh movement had to be exercised in order to avoid these situations (ref 7). 
The same problem is anticipated in two dimensions, and this section describes how to exercise 
control over the two-dimensional mesh moving algorithm in a relatively simple manner. First, 
space-time distortion is addressed, followed by a discussion on the resolution of space-space 
distortion. Examples illustrating the utility of this control methodology are presented. 

The fourth section, "Discussion and Conclusions," reviews the results of the previous 
sections and draws conclusions. Weaknesses as well as strengths of the two-dimensional mesh 
moving scheme are discussed and future plans detailed. This section is followed by a list of 
references and a sequence of figures, which are referred to within the text of this report. 

THEORY 

The one-dimensional mesh moving algorithm is based on the notion of equidistribution 
(ref 11). In this context, a one-dimensional equidistribution problem is the determination of a 
dynamic partition 



n/r) = {a = x0 < *,(r) < x2{t) < ... < ^_x(r) < x, = b) (i) 

of (a,b) into / elements such that 

p(0 w,Cx,r)dx = K(0 = 4 f *w,U,r)^, / = 1,2,..., /, r * 0, n») 
Jxi.1(t) J Ja v     ' 

or equivalently 

J*ii,}w^xrfdx = i Kit) = -j j" *Wj(x,f)dr, / = 1,2 /, f * 0, (2b) 

where the weight function w,(x,t) >0,x e[a,b], t z 0, is usually dependent on the solution of 
the underlying PDE. For example, w, has been chosen to be proportional to the solution's 
gradient, curvature, and local spatial discretization error (refs 12-20). 

Reducing the global discretization error is the ultimate goal, and towards that end 
equidistributing the local discretization error would be the best procedure to follow. However, 
estimates of the total discretization error are not easy to make, even locally, and this has led to 
these other choices for the weight function. Since for most numerical methods the discretization 
error is proportional to some order of derivative of the solution, this has become a popular 
choice (refs 13,14,15,16,17,20). It has also been argued that for certain problems, an appropriate 
physical characteristic such as density is a suitable weight function (ref 18). When a method of 
lines approach is employed, the local spatial discretization error can be used since the ordinary 
differential equation solver can reduce the temporal error component to a relatively insignificant 
level (refs 12,19). 

It was discovered that Eq. (2) was subject to unstable behavior as written (ref 21). In 
order to construct a stable mesh moving scheme, it was necessary to define 

rewrite Eq. (2b) as 

fx^a,t)di 
*(x,f) - ±  , {3) 

J a 

0(*.(O,r) - - = 0 , i = 0,1,2,...,/, (4) 

and differentiate Eq. (4) with respect to time to obtain 



4[*C*iW,0] = 0, i = 0,1,2 /, (5a) 
at 

O(x,<0),0) = 0°, i = 0,1,2,...,/. (5b) 

With emphasis placed on the stability of the functions <b(x£t),t), I = 1,...,I-1, it is seen that 
Eq. (5) is neutrally stable (ref 9). Initial perturbations of 6, (through *,), / = 1...J-1 will neither 
grow nor decay. 

Another advantage to the formulation of Eq. (5), is that as a result of the differentiation, 
an initially equidistributed mesh is no longer necessary. Any initial partition determines 
Eq. (5b) uniquely, and Eq. (5a) guarantees that the resulting movement will be stable and 
optimal, although the resulting mesh will not necessarily be equidistributed. Equidistribution is 
guaranteed for all time, however, if the initial mesh is an equidistributed one. 

As mentioned previously, extending the neutrally stable mesh moving scheme (cf., 
Eq. (5)) to two-dimensional space can be accomplished with all of the stability properties left 
intact (ref 9). Consider a rectangular two-dimensional domain 

Q = i(x,y) \a<x<b,c<y<d) (6) 

and the extension of Eq. (5) to Q. To that end, define 

TCW) - ±±  (7) 
tbldw2&,r\,t)ch\di 

J a J c 

where w2(x,y,t) is a positive weight function on fi such that ^(x.y.t) is a well-defined function 
with the necessary continuity properties. Furthermore, let 

n?/r) = {(^(Oj/0) I i = 0,1,...,/ , y = 0,1,...,/} (8) 

denote a partition of Q into IxJ subrectangles at any time t such that 



a = x0 < jTj(r) < ... < xhl(t) < x, = b , (9a) 

c =y0< Ji(0 < ... < yj.fi) <yj = d . (9b) 

In order for U2,j(t) to move in a neutrally stable manner for any initial partition Itf/Q), 
demand that it obey the following equations for t > 0: 

jV£0cJLt),d,t)] = 0 , / = 1,2 7-1 , (10a) 

j-mbypU)] = 0 , ; = 1,2, ...,/-l , (10b) 

Y(x.(0U0) =X,. ,/ = 1,2,..., 7-1 , (10c) 

Y(öj/0),0) = Yj , ; = 1,2, ...,/-l . (iod) 

The existence, uniqueness, and stability of the two-dimensional movement is guaranteed by the 
one-dimensional theory. By substituting 

wx(x,t) = (dw2{x,r\,t)dr\ (Ha) 
J c 

into Eq. (5), it can be seen that Eq. (10a) is equivalent to neutrally stable, one-dimensional 
movement in the x-direction. Similarly, by replacing the variable x with the variable y and the 
interval (a,b) with the interval (c,d) in Eq. (5), and substituting 

WjCy,*) =  fbw2(ly,t)d£, (llb) 

it can be seen that Eq. (10b) is equivalent to neutrally stable, one-dimensional movement in the 
y-direction. 

As in the one-dimensional case (ref 9), the normalization procedure (cf., Eq. (7)) is 
crucial for stability in the construction of the two-dimensional moving scheme, Eq. (10). If such 
a normalization is not performed the resulting equations are 



where 

4[0(*WÄO] = i-^-[®(b,d,t)] , i = 1,2,...,7-1 , (12a) 
dt I dt v 

^[®(b,y(t),t)] = 44[0^>^ >J = 1»2, ...,7-1 , (12b) 
dt J J dt 

@(xß),d,0) = ±@(b,d,0) , i = 1,2 7-1 , (12c) 

0(ö,y/O),O) = l@(b,d,0) J = 1,2, ...,7-1 , (I2d) 

©(W) = f* [yw2(^ff]yt)(ti]tSi . (i2e) 

Such a system is not stable when w2(x,y,t) is a decreasing function of time as illustrated by the 
following example. 

Example 1 

Consider the two-dimensional heat equation 

1 
8 

ui = T^M« + "yy)' 0<x<l, 0<y<l, f>0 (i3a) 

subject to the initial condition 

u(x,y,0) = sünu sinTiy, 0<x<l, 0<y<l (13b) 

and boundary conditions 

u(0,y,t) = u(l,y,t) = 0, 0<y<l, r*0 
u(x,0,t) = u(x,l,t) = 0, 0<x<\, t>0 (13c,d»e»f) 

The exact solution of this problem is 



It2 

u(x,y,t) = sin(7u) sin(7iy) exp(-—t), 0<x<l, 0<y<l (14) 
4 

For the purposes of mesh movement take 

w2(x,y,t) = u(x,y,t). (15) 

Since this problem and w2(x,y,t) are separable, the correct strategy is to generate an 
equidistributed mesh at time t = 0 and use it for all time. However, w2(x,y,t) is a decreasing 
function of time and, thus, the solutions of Eq. (12) are expected to be unstable (ref 21). 

For the given w2, exact solutions to Eqs. (10) and (12) can be found. The exact solution 
for Eq. (10) is 

xt(t) = x.(0), yff) = v.(0), / = 1,2, ...,/-l, j = 1,2,...,/-1 (i6ajb) 

The exact solution for Eq. (12a) is 

x,.(r) = -arccos[a(.- (a,.- COSTIX,
0
) exp(A)], / = 1,2, ...,I-1 (I7a) 

where 

o,. = 1 - 2i and ^° = *;(0), / = 1,2, ...,/-l. (i7b)C) 

The solution to Eq. (12b) can be found by substituting y for x, j for /, and J for / in Eq. (17). 
The trajectories for the meshes produced by Eqs. (16) and (17) are displayed in Figures 1 and 2, 
respectively, and the unstable behavior of Eq. (17) is clearly visible. A mesh with values of 
I = J = 3 was initially equidistributed, and initial perturbations of 0.01 for / = j - 1 and of -0.01 
for /. = j = 2 were introduced. 

It should be noted that Eq. (10) could easily be adapted to nonrectangular regions if 
another natural set of coordinates existed for the given problem domain, e.g., polar coordinates 
for circular regions or boundary-fitted coordinates as used for flow around air foils (ref 22). 
This natural coordinate system could be used for the mesh equations (cf., Eq. (10)) as well. All 
that is required is to transform Eq. (10) from rectangular coordinates to the more natural system. 
(This is not the extension to nonrectangular geometries alluded to in the "Introduction," but 
rather an extension to nonrectangular coordinate systems for appropriately defined regions.) 



CONTROL 

In the one-dimensional situation, a positive constant can be added to w7 to ensure the 
existence of a unique solution. It should be noted that adding a positive constant to w2 will 
ensure the existence of a unique solution to Eq. (10) as well. It was discovered that the inclusion 
of this constant also provided a means in which to control the one-dimensional movement 
(ref 8). 

Control was deemed necessary since mesh movement, as defined by Eq. (5), could be too 
dramatic and amplify the discretization error (especially the temporal component) of a numerical 
PDE solver by overly distorting the mesh (ref 7). In the one-dimensional case, there was only 
space-time distortion to be concerned about. Now in two dimensions there exists the possibility 
of space-space distortion as well. (Since in both one- and two-dimensional space there is the 
well-recognized problem of properly transitioning from a dense mesh to a sparse one, it will not 
be discussed here.) External control is even more of a necessity in two dimensions, and the 
addition of a positive constant to w2 appears to be a simple method of accomplishing the task. 

For one-dimensional mesh movement, it was discovered that the solution to Eq. (5), with 
a > 0 added to w„ could be written as a linear combination of two other solutions to Eq. (5) with 
appropriate weight functions (ref 8). This is also the case in two dimensions since Eq. (10), as 
previously stated, represents one-dimensional movement in the respective coordinate directions. 
In order to demonstrate this fact, consider the ^-component of the two-dimensional moving 
scheme (cf., Eq. (10a)). The v-component behaves similarly. 

Let xt(t), q{(t), and ut,l = 0,1, ...,I, denote mesh trajectories for t > 0 such that 

fx®[d[w2(Z,r),t) + a]dr\di = -r7d[w2^V)+a]dn^. i = 0,l,...,/,    (19a) 
J a      J c I J a J c 

f^fäw2(lr],t)dr\(^ = ±fb(dw2(Z,r),t)dr\dZ, / = 0,1 /, (19b) 
J a      J c I J a J c 

and 

(Uifdadr\di = i[b[dadr\dZ,i = 0,l,...,l, (19c) 
J a  J c I J a J c 

Note that the trajectories, q,{t), 1 = 0,1,.... I, are solutions to the equidistribution problem as 
originally defined and u{, I = 0,1,...,/, are constant trajectories defining a uniform mesh. 

The solutions, xt(t), 1 = 0,1,..., I, are actually linear combinations of the equidistributed 
trajectories, q/t), I = 0,1,...,/, and the constant trajectories, w„ / = 0,1,..., I, according to the 



one-dimensional theory. Furthermore, the dominant component is determined by the following 
relationship (ref 8): 

max   f w2(x,r\,t)dr\ 
I xJ® - ut | _<  — ^oJ;         | qff) - «,. | , i = 0,1,..., /. (2°) 

a(d-c) 

For large a, as compared to the maximum value of w2, the solutions, x/rj, I = 0,1, ...,I, are very 
close to being constant trajectories. Conversely, for small a, the solutions, x,{t), I = 0,1,.... I, 
are very close to the equidistributed positions. (N.B., for a = 0, Eq. (19a) and Eq. (19b) are 
identical.) Appropriate choices of a determine the amount of movement deemed necessary as 
illustrated by the following example. 

Example 2 

Consider the first-order wave equation 

ut + p(ux + uy) = 0, 0<*<1, 0<y<l, t>0, (21a) 

with initial and boundary conditions and the constant, p, selected so that the exact solution is 

u(x,y,t) = I [1 - tanh(100f + lOy - 20/)], (21b) 

which is an oblique wave front (slope = -1) that is initially centered on the line 

IOJC + 10 y = 0 (21c) 

and subsequently moves across the domain, Ü = [0,l]x[0,l], from left to right, i.e., in the 
direction of increasing x. If one wished to solve this problem numerically, incorporating mesh 
movement, a reasonable choice for the weight function, w2, would be: 

w2(x,y,t) = sech2(l(k + lOy - 20t) + a « ut(x,y,t) + a. (22) 

Eq. (10) was solved using the differential-algebraic solver, DASSL (ref 23), with the 
above choice, Eq. (22), for the weight function, w2, and three different values for the constant, a. 
In all instances, the initial condition was a uniform partition with 7 = 7=7. The purpose was to 
illustrate the effect the parameter a has on mesh moving dynamics, as well as the amount of 
control available to the user. 

Meshes at time, t = 0.25, for values of a = 0.02, 0.1, and 0.5 are displayed in Figures 3, 
4, and 5, respectively. The gray area of the figures represents the region of the domain behind 
the front, while the region ahead of the front remains white. As predicted, movement from the 
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initially uniform positions is more dramatic for a = 0.02, while for a = 0.5 mesh points have 
barely moved at all. 

The intermediate value of a = 0.1 would seem to be optimal. Mesh points have moved 
significantly so as to address the issue of the moving wave front adequately. On the other hand, 
the movement is not so dramatic so as to possibly disrupt the ability of a PDE solver by causing 
excessive space-time distortion. In general, one would expect intermediate values of a to be best 
with specific problems and solvers demanding more extreme values on occasion. 

In the above example, spatial distortion of the computational cells was not discussed. 
Since the moving front intersected both the x- and y-axes at 45 degrees, the aspect ratio of the 
cells for a = 0.1 and 0.5 did not change appreciatively. For a = 0.02, mesh movement tended to 
elongate the cells in one direction or die other. It is conceivable that this space-space distortion 
could become great enough so as to affect the accuracy of a PDE solver. 

In order to address this problem, it should be noted that there is no requirement that a be 
the same value in Eq. (10a) as it is in Eq. (10b). (For that matter, there is no requirement that the 
entire weight function be the same in the two equations.) Different values for the constant, a, 
can be used to deal with spatial mesh distortion, if necessary. This fact is illustrated by the 
following example. 

Example 3 

Once again, consider the first-order wave equation 

ut + p(ux + uy) = 0, 0<*<1, 0<y<l, t>0, (23a) 

but with initial and boundary conditions and the constant, p, selected so that the exact solution is 

u(x,y,t) = j [1 - tanh(10x + 2y - 10r)], (23b) 

which is an oblique wave front (slope = -5) that is initially centered on the line 

10* + 2y = 0 (23c) 

and subsequently moves across the domain, Q = [0,l]x[0,l], from left to right, i.e., in the 
direction of increasing x. If one wished to solve this problem numerically, incorporating mesh 
movement, a reasonable choice for the weight function, w2, would be: 

w2(x,y,t) = sech2(10x + 2y- lOr) + a « ut(x,y,t) + a. (24) 

11 



Eq. (10) was solved using the differential-algebraic solver, DASSL (ref 23), with the 
above choice, Eq. (24), for the weight function, w2, with a = 0.1 (in both equations), and for an 
initially uniform mesh with 7 = 7=7. The resulting mesh at time, t = 0.5, is displayed in 
Figure 6. The gray area of the figure represents the region of the domain behind the front, while 
the region ahead of the front remains white. The elongation of the computational cells is clearly 
evident. 

Eq. (10) was then solved using Eq. (24) and an initially uniform mesh with I = J =7, 
but with a = 1.0 in Eq. (10a) and a = 0.1 in Eq. (10b). The resulting mesh at time, t = 05, is 
displayed in Figure 7. The gray area in the figure represents the region of the domain behind the 
front, while the region ahead of the front remains white. The aspect ratio of the computational 
cells has not been altered significantly from the initial aspect ratio of 1. 

DISCUSSION AND CONCLUSIONS 

A neutrally stable two-dimensional mesh moving procedure was proposed (cf., Eq. (10)). 
Based on a successful one-dimensional algorithm (cf., Eq.(5)), this procedure can be easily 
implemented in a two-dimensional problem domain for which a natural set of coordinates exist, 
e.g., rectangular domains and Cartesian coordinates. Theoretical issues (existence, uniqueness, 
etc.) were discussed and it was demonstrated how these properties are inherited from the one- 
dimensional formulation. Examples were presented illustrating the two-dimensional mesh 
movement's attributes of stability and controllability. A more general extension to other 
geometries, regardless of the coordinate system, has been formulated but this report concentrated 
on the extension to rectangular regions in order to introduce the basic concepts. 

A mesh moving scheme based on Eq. (10) would have various strengths and weaknesses 
just like any numerical method, adaptive or otherwise. For example, such a scheme would be 
extremely stable and could be put under user control with minimal interface requirements. Any 
initial mesh would be a valid initial condition and mesh points would be guaranteed not to 
coalesce. Unacceptable mesh distortion could occur, but both space-time and space-space 
distortion could easily be addressed by the user. 

Individual point movement would not be independent in the strictest sense of the word, 
however. A routine examination of Eq. (10) reveals that Eq. (10a) is not dependent on y, while 
Eq. (10b) has no x dependency. This implies that all points on the same coordinate line will 
move in unison in the opposite coordinate direction (e.g., all points with identical x-component 
values will generate velocity and displacement vectors with identical y-component values, and 
vice versa). In a sense then, Eq. (10) delineates a line-moving scheme rather than a point- 
moving one. This makes it difficult for such a method to align points properly when 
encountering structures oblique to the coordinate axes. Orienting the initial mesh so as to align 
properly with the geometry of some known structure can overcome this weakness, but it is rare 
that such detailed information is initially available. 
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A mesh moving scheme with individual and independent point movement has been 
formulated. This independent scheme is also neutrally stable, but more susceptible to mesh 
distortion. A thorough analysis of this independent scheme and a comparison with the algorithm 
described in this report is forthcoming. Included with this analysis will be the development of a 
two-dimensional stability criterion analogous to the one-dimensional stability criterion for mesh 
movement based on equidistribution. The stability analysis presented here is specific to the 
particular two-dimensional moving scheme described herein. 

Issues such as how best to evaluate the weight function, w2, and how to properly couple 
this moving scheme with a PDE solver have not been addressed in this report. Answers to such 
questions are dependent on the properties and characteristics of the PDE solver involved. It is 
best to delay dealing with those issues until after a particular PDE solver has been chosen.  In 
the future, it is planned to combine this mesh moving scheme with some existing PDE solver 
and these issues will be reported on then, as well as the relative success or failure of such a 
coupling. 
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Figure 1       Stable mesh trajectories for Example 1 
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Figure 2       Unstable mesh trajectories for Example 1 
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Figure 3       Mesh for Example 2 at t = 0.25 and a = 0.02 
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Figure 4       Mesh for Example 2 at t = 0.25 and a = 0.1 
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Figure 5       Mesh for Example 2 at t = 0.25 and a = 0.5 
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Figure 6       Mesh for Example 3 at t = 0.5 and a = 0.1 in both Eqs. (10a,b) 
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Figure 7       Mesh for Example 3 at t = 0.5 and a = 1.0 in Eq. (10a) and a = 0.1 in 
Eq. (10b) 
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