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Abstract 

This is the Final Technical Report covering work performed during the 
period 1 April 1995 - 31 March 1996 under AFOSR Grant, Contact No. F49620- 
95-1-0272, titled "Modeling and Active Control of Nonlinear Unsteady 
Motions in Combustion Chambers."   Dr. Mitat Birkan served as Program 
Manager. The emphasis in this program is placed on understanding 
fundamental processes  in  actual  combustion  chambers  through  close 
coordination of theory, analysis and experiment.    Theoretical work and 
analysis have been carried out in the framework of an approach initiated 
many years ago, based on a form of Galerkin's method.   General unsteady 
motions are synthesized of modes of the chamber.    Spatial averaging then 
produces a representation of the unsteady behavior in a combustion chamber 
as the time evolution of a system of coupled nonlinear oscillators, one for 
each mode.  Consequently, immediate advantage can be taken of the methods 
available in contemporary research on nonlinear dynamical systems.   Several 
problems related to nonlinear combustion instabilities and their control have 
been investigated during the past year. The experimental work has  involved 
simple tests with a Rijke tube, but more importantly with the Caltech dump 
combustor developed and used in work funded by AFOSR over the past 12 
years.    Probably the most significant experimental result of the present 
program has been the demonstration that due the presence of hysteresis in 
the stability of oscillations in the dump combustor, suppression of the 
oscillations is possible over a wide range of equivalence ratio by pulsed 
injection   of   secondary   fuel   in   the   recirculation   zone.      Although 
understanding of this  phenomenon  is  presently incomplete, we have 
established that is related to a subcritical bifurcation in the dynamics of the 
recirculation zone and subsequent unsteady combustion associated with 
vortex shedding.   Both theoretical and experimental work will continue on 
this problem. 



1. Research Objectives 

This work has been part of a larger continuing program at Caltech concerned 
with fundamental problems arising in the application of active control of 
unsteady motions in combustion chambers. We believe that considerable 
progress is required to reach a level of basic understanding sufficient to 
explain observed behavior, with or without control, and to provide the 
foundation for more rational design and application of active control. 
Despite the number of apparent successes of control of combustion 
instabilities in laboratory devices, those successes are virtually all partial 
(oscillations are not entirely eliminated) and there are no complete 
explanations why the amplitudes have been changed by the use of control. 
Thus there is, for example, no sound basis for scaling to full-scale devices in 
which, among other differences, the power densities of combustion processes 
and the levels of intrinsic noise are significantly greater. These are among the 
features of full-scale combustors that have not previously been addressed in 
research programs. 

Broadly the subjects covered by this program include 
1) linear and nonlinear acoustics; 
2) oscillations in the presence of noise; 
3) modeling nonlinear combustion processes;  and 
4) active control of combustion systems 

More specifically, the topics actually addressed are: 
1) modeling the Rijke tube and the dump combustor to produce 

results in forms suitable for applying the principles of feedback 
control; 

2) analysis of nonlinear combustion instabilities with stochastic 
(noise) sources and linear or nonlinear combustion responses; 

3) control of an unstable combustor containing time lags; and 
4) active control of a combustor by using pulsed injection of a 

secondary fuel supply. 



The four items are more dosely related than may appear to be the case at first 

acquaintance, although we are far from completing the task of integrating the 
results. That is of course a long range objective, part of the foundation of 
understanding how to scale the methods of active control from the laboratory 
to operational devices. 

The general program of active control of combustion systems, and problems 

of the behavior of unsteady nonlinear motions in combustion chambers 
benefits from support with three other grants: ENEL (Italian National power 
company), Research on Problems Relating to Pressure Oscillations in Gas 
Turbine Powered Stationary Power-plants-, Advanced Gas Turbine Systems 
Research, Department of Energy, NOx and CO Emissions Models for Gas- 

Fired, Lean Premixed Combustion Turbines; and a Multidisciplinary 
University Research Initiative funded by BMDO and managed by ONR, 
Investigations of Novel Energetic Materials to Stabilize Rocket Motors. 
Portions of these programs are distinct from the effort reported here, but 
without the coordinated support in those areas that overlap it would be 
impossible to carry out this work. 

2. Research Accomplishments 

2.1  Modeling of the Rijke Tube and the Dump Combustor 

Although there exist many reports of data taken with Rijke tubes, and a few 
attempts to provide analytical representations or models, understanding the 
observed behavior is seriously incomplete. Almost all analyses have been 
linear and, as usual with problems of combustion instabilities, the frequencies 
and mode shapes can be predicted quite well to first approximation. 
However, predictions of linear stability are poor at best* and successful 
predictions of amplitudes are nonexistent. Because the unsteady motions in 
a combustor are 'self-excited' not requiring an external agent, the amplitudes 
are limited only by the action of nonlinear processes. Hence one cannot claim 
to understand the unsteady behavior of a combustor without investigating 

*In fact,  as  we  have  established  in  this  program,  the  Caltech dump  combustor, 
and  probably  other  similar combustors,  do  not  possess  the  property  of linear 
instability:      the  process   of  exciting  oscillations   is   inherently  nonlinear. 



nonlinear processes and determining the main reasons for the existence of 
limiting amplitudes (often having approximately the character of periodic 

limit cycles). 

Another significant, and often ignored feature of unstable combustors, is the 
presence of several (and sometimes many) modes. One conceivable 

explanation is based entirely on the assumption that the system is linear. In 

that limit, there are two possible reasons that more than one mode appears: 

1) one mode is unstable, but linearly coupled to other 
modes, causing them to be driven to finite amplitude; or 

2) the driving mechanism, conversion of thermal energy to - 
potential energy of fluid motions, is sufficiently strong 
over a broad range of frequencies to excite and sustain the 
various modes observed. 

Neither explanation, of course, will provide any information about the 
amplitudes reached. The second proposal could be true if the driving 
mechanism really is broad-banded. There is no evidence that is true in any 
real combustor, although, admittedly, there is virtually no data except for 
solid rockets. In that case, the driving, expressed as a response or admittance 
function, normally has a peak that spans a frequency range covering only one 
or two modes. A Rijke tube driven by an electrical heater may present a 
different situation but the action of a heater has not been sufficiently well- 
established to prove that the unsteady transfer of energy to the flow is 
significant over the broad range of frequencies required to support the second 
explanation. It seems a reasonable first guess that most mechanisms for 
driving combustion instabilities by heat transfer or energy addition are not 
sufficiently strong to sustain oscillations over a broad range of frequencies. 

The first explanation seems quite appealing, but can be dismissed if one 
accepts the results of the approximate analysis described in Section 2.2, an 
analysis that has been successful for many years in many applications to 
combustion instabilities. This matter has been examined in one publication 
supported by this grant, Culick (1996). The relevant result is the following. 



Linear coupling (e.g. associated with processes in a flame) is proportional to 
some small parameter, say e which itself is small because it is proportional to 
the Mach number of the average flow. The analysis referred to is based on a 
representation of the unstable motions as a system of coupled oscillators. It is 
a familiar result, easily demonstrated for the ease of two oscillators, that the 
effects of linear coupling appear in the order of e2. Both the frequency shift 
and, more importantly for the reasoning here, the growth constant for the 
driven oscillation are proportional to e2. Not only is e2 extremely small for 
most combustors, but the equations that have been used in support of this 
explanation, are valid only to first order in e. Hence to give a complete and 
correct analysis of the effects of linear coupling, the equations must be re- 
derived to include contributions of order e2. The point is that the 
representation of combustion instabilities as a set of oscillators is more 
complicated than a simple analogy with the classical problem of coupled 
oscillators. 

One of the basic assumptions in this work is that nonlinear processes are 
intrinsic to the behavior of motions in combustors. Therefore, the presence 
of several modes, even when only one is unstable, is a reflection of nonlinear 
coupling, due either to gasdynamics (known to be present) or to combustion. 
If the assumption is true, then there may be significant implications for 
successful multi-mode control of combustion instabilities but this matter 
remains open. 

2.1.1 Modeling Oscillations in the Rijke Tube 

The unstable modes in a Rijke tube (Figure 1) are purely longitudinal. 
Hence the problem of modeling is apparently easily solved. Plane waves, 
having appropriate speeds of sound in the two regions up and downstream of 
the heater, are matched at the heater. Boundary conditions at the entrance 
and exit require admittance functions representing the fact that both pressure 
and velocity fluctuations are nonzero at the ends. Those admittance 
functions can only be estimated, but the errors are probably not large and if 
the processes are assumed linear, these values have little effect on the 
qualitative features of nonlinear behavior.    Of course, the values of the 



admittance functions affect linear stability directly, and have a strong 

influence on the amplitudes of oscillations.* 

Figure 1 

The truly difficult problem arises with determining the correct matching 

conditions at the heater or flame. In our experiments we have been using an 

electrical heater constructed as a grid. We have yet to settle on satisfactory 

matching conditions for the following reasons. 

We assume that the tube is separated into two sections: cold section upstream 

of the heater (section 1), and hot section downstream of the heater (section 2). 

The mean quantities of the flow are constant in each section, but undergo an 

abrupt change through the interface. This becomes the familiar problem of 

heat addition in a one-dimensional duct.   The solution is 

fc/pi = l-7Mi (A-1)^)0, 
ü2/üi = pi/p2 = A, 

%l% = A/3- 

(1) 
(2) 

(3) 

An early result by Awad (1984)  showed that if a combustor has uniform 
internal   temperature   and   only   two   modes   are   considered,   the   time-averaged 
equations   give   rj /r2=^j\al /a2\  where   r,- is the amplitude of the itn   mode. 
Similar results  have  been  obtained  for transverse  modes.     See  Culick  (1994)   for 
a   review. 



The strength of the jump, X=X{q,M\), is a monotonically increasing function 

of <?, and X=\ when q=0. 

The conservation equations and state equation for heat addition in a one- 
dimensional duct written to first order in small fluctuations are 

p'2     v!0     p\     u\ , v 
9- + — = zr + zr, (4) 
P2       U2        Pi       «i    . 

p2 + 2p2Ü2u2 + ülp'2 = pi + 2P1ÖXU1 + ü\p\, (5) 
CpTa + ü2u'2 = CpT[ + üi«i, (6) 

P2       P2       T2        ft        ft        Ti" U 

Solving these simultaneously, and make use of the solution for the mean 
quantities and assuming that both M and M' are small leads to 

P2=Pi + 0(M2), (8) 
u'2 = \v!1 + 0(M2), (9) 

n = T[-(j-l)(\2-l). 1LU>I + 0(M% (10) 
\ 7# 

P2 = ^;+^II+0(M2)- (11) 

The fluctuating heat release is not included in this calculation;  it will appear 
as a source term in the wave equation. 

A problem arises when we also examine the differential equations governing 
the model Rijke tube. 

dp        du       dp     .      ,. ,, .. 

The last equation is the energy equation written in terms of pressure. These 
equations together with the equation of state, p=pRT, adequately describe the 
system.     We   can  derive  the  matching  condition  by  integrating   the 



conservation equations across the region of discontinuity at the heater. We 
take the space of integration, Ax, to be infinitesimally small. Since all 
dependent variable are smooth functions of time, i.e., time derivatives are 
finite, as Ax-»0, the integrals with time derivatives also go to zero. 
Integrating to first order in fluctuations and neglecting terms of second order 
in fluctuation and Mach number, we have 

[pu'] = 0 + O(M2), (15) 
b'] = 0 + O(M2), (16) 
[u'] = 0 + O{M2), (17) 

where [•] indicates jump across the heater. The first and third conditions 
obviously contradict each other. It remains unresolved at this point as to why 
the differential equations give different results. It should be noted that 
equations (9) and (15) are equivalent, and we believe this to be the correct 
matching condition for the fluctuating velocity. Work on this technical 

difficulty is continuing. 

2.1.2 Modeling Oscillations in the Dump Combustor 

Modeling unsteady motions in the dump combustor is a more 
elaborate form of the approach taken to analyze the Rijke tube. Neglecting 
combustion and the mean flow, Smith (1985), Sterling (1987), Zsak (1993) and 
Kendrick (1995) have all addressed this problem. If the temperature 
distribution is approximated reasonably well (even with no combustion) so 
the speeds of sound are close to actual values, then the linear results give 
frequencies and mode shapes approximating quite well the actual values. 

In the present program, the JPC dump combustor sketched in Figure 2, has 
been modeled in fashion similar to the Rijke tube. An additional feature in 
the dump combustor is that it is composed of several different sections with 
differing cross-sectional areas. Since the observed oscillation is planar, a 
quasi-one-dimensional form of the approximate analysis, together with the 
matching conditions at an abrupt change in the mean quantities at the dump 
plane, can be used to simulate the system. 
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Using these dimensions and A=2.24 corresponding to ^=335 K and f2=750K, 

we are able to calculate the natural oscillation modes of the chamber shown 

in Figure 2 
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One surprising result is the existence of the bulk mode of oscillation at 17 hz. 

This mode has not been observed or reported in previous investigation. 
Since this frequency is so low, it may be obscured by background noise, or 
filtered by the data acquisition system. In simulation, the bulk mode 
introduces DC shift in higher modes. Also, when the bulk mode is included, 
the system does not seem to reach a limit cycle. The settling time becomes 
very long so that none of our simulations have reached a truly stable limit 

cycle (the limit cycle amplitude will shift given enough simulation time). 
We are currently using LSODE (Livermore Solver), which may have some 
difficulties with the jumps and nonlinearities in our simulation code. We 
are exploring other ODE solvers, e.g., Numerical Recipes. 

We have also found a subcritical bifurcation in numerical simulation with 
nonlinear heat release. This behavior in the dump combustor has been 
observed by Knoop (1996). Work on comparison between the analytical and 
experimental results is in progress. 

The most important aspect of the numerical work is in identifying the proper 
model describing the nonlinear heat release which affects the dynamics of the 
system. Current models, though crude, capture some of the essence of the 
problem. We are intending to enhance our numerical models to give 
quantitative agreement. 

2.3 Analysis of Nonlinear Combustion Instabilities with Nonlinear 
Combustion Responses 

For many years a puzzling unsolved problem has been the behavior of 
combustors subject to pulsed disturbances. If a combustor is linearly stable, 
then small disturbances, including sufficiently small pulses generated by 
external means, decay. However, it has long been known that in both liquid 
and solid rockets, sufficiently large pulses will often excite oscillations that 
develop into limit cycles. The earliest examples seem to have arisen with 
pulsing of liquid or gas rockets in the 1960's during development of engines 
for the Apollo vehicle. In the present program we have concentrated on the 
problem in solid propellant rockets. 

10 



Formally the problem consists in determining the conditions under which 

subcritical bifurcations will occur (Figure 6). During the past few years we 
have established beyond doubt, but without a formal proof, that nonlinear 
gasdynamics alone does not contain subcritical bifurcations (Culick 1994). The 
physical reason seems to be that the energy in the initial pulse is simply 
redistributed by nonlinear mode coupling and dissipated by the stable modes. 
A source of energy is required to sustain a motion in the presence of the 

losses. 

A few years ago, Baum and Levine (1982 and other works) successfully 
showed numerically that a simple nonlinear representation of velocity 

coupling, really a kinematically nonlinearity associated with the combustion 
response, does contain subcritical bifurcations. They were able to produce 
remarkably good agreement between their calculations and the behavior of 
pulses observed both in laboratory tests at room temperature and in hot 
firings. Numerical calculations are suggestive but are difficult to use for 
obtaining understanding of the phenomenon, particularly in respect to 
learning what really causes pulsed instabilities to occur. 

In his thesis, Burnley (1996) has examined essentially two representations of 
the nonlinear combustion response: the velocity-coupled model used by 
Baum and Ee<§, and in slightly modified form by Green (1990); and a pressure- 
coupled model in which the nonlinearity arises from the Arrhenius factor in 
the gas-phase reactions. If s an interesting result that the pressure coupled 
model does not produce pulsed instabilities unless the burning solid is 
intrinsically unstable. Apparently the difference between the two cases is 
connected, in an unknown way, with the structure of the equations 
containing both nonlinear gasdynamics_and nonlinear combustion. 

Stable limit cycles subsequent to pulsing seem not to exist if the only 
nonlinear processes are gasdynamics or combustion: it is necessary to have 
both nonlinear contributions. The reason, of course, is that the motions 
treated are those of the coupled systems (combustion and gasdynamics); the 
character of the global dynamics must depend on the dynamics of the 
combustion processes and of the gasdynamics, but the ways in which the two 

11 



parts of the whole system work together are not understood. The analysis 
proceeds, briefly, in the following way. 

The formulation begins with the conservation equations for two-phase flow. 
Those equations can be combined to give an equivalent form for a single 
medium characterized by the mass-averaged properties of the actual mixture. 
All flow variables are written as sums of average and fluctuating values. 
Eventually a nonlinear wave equation can be derived for the pressure 

fluctuation, with the corresponding boundary 

a    at 

h-WP'=-f (19) 

The functions h and f are nonlinear functions of the pressure and velocity 
fluctuations, as well as other flow variables. It is a good approximation to 
write the pressure fluctuation as a synthesis of classical acoustic modes yn{f) 

having time-dependent amplitudes nn{t): 

p'=PIvM¥n,(r) (20) 
m=l 

Substitution of this representation in the left hand side of (18) and spatial 
averaging with y/n as a weighting function gives the set of ordinary 
differential equations for the amplitudes, 

A 

dt2 + KVn=FH (21) 

where ®=aK and 

a2 
Fn=-^{\hWndV+$fxi,nds} (22) 

After the functions h and f are inserted in (20), some manipulations lead to 
the formula for F, valid to second order in fluctuations: 

12 



~^Fn=^ Aö •Vu'+u' •Vö) • ^ndV+hwt /^p'v 'ü+ü' v^ndV 

linear gasdynamics 

J  [ P dt J a?dtj (23) 

nonlinear gasdynamics 

+ j> p-7jj- • n\l)ndS - j a1 at 
dV 

linear and nonlinear other contributions 
surface processes 

This result is very general, subject of course to restrictions arising in steps 
from the primitive conservation equations to the approximate forms in 
which h and f appear. Properly interpreted, the representation (20) is not as 
serious a constraint as might appear to be the case. The approach taken here 
provides only a theoretical framework: explicit results can be obtained only 
after the processes other than gasdynamics are modeled. With care, the 
framework can be used for analyzing unsteady motions in any combustor. 

For examining the consequences of a nonlinear combustion response in solid 
propellant rockets, we use the surface integral involving du I dt, plus the 
nonlinear gasdynamics, plus all linear processes, not specified explicitly, but 
all linear effects are contained in the parameters aH,e„ one pair for each mode. 
The set of nonlinear oscillator equations can be written for second order 

gasdynamics, 

fin + riTin =2<*nT}n +2coHenr)n - £ f^/^ +B„ijviTlj}+jP~ndS (24) 
i=i/=r ai 

In the derivation of this equation, the velocity fluctuation in h and f has 

been approximated by the series 

m=l    l^n 

The two series (20) and (21) satisfy the classical linear acoustics equations 
term-by-term. Use of (25) in the formula for FH will produce results correct to 
order MM' and M'2. The reasons, and extension to include terms of order 
MM'

2
, are explained in Culick (1996). 

13 



As shown by (23) and (24), the boundary condition at the surface is expressed 
in terms of the velocity fluctuation, whereas analysis of the surface 

combustion processes leads in a natural way to results for the mass flux, m. 
The relation between (du'ldt)-h and (dm11dt)■ h is 

-dW «   dm' .     .du' s   dp'f=,-,\ - 
dt dt dt dt 

(26) 

Baum and Levine (1982) proposed, and used, the model for the mass flux 

m=mpc[l + ÄreF(ü)] (27) 

where m^ depends on pressure only and leads to pressure coupling. 
Here, fluctuations of m^ contribute only to aH andöB. For illustration 

here we examine velocity coupling dependent on rectification only, with 

a threshold velocity, and m' is 

ma' 
(28) 

For the case of purely longitudinal motions, both M
1
 and «, have only 

axial components and F{u')=-\u'-u\ has the form shown in Figure 4. 

1      -o.oe    -0.06    -co«    4.02        o        0.02      0.04      o.oe      o.oe      0.1 

Figure 4 
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We have been investigating the consequences of nonlinear processes by 
applying a continuation method to construct bifurcation diagrams 
(Jahnke and Culick, 1994; Burnley 1996). Figure 5 shows one important 
conclusion from the present work: if gasdynamics is the only nonlinear 
process, then only supercritical bifurcations are found; the usual case for 
a linearly unstable system. If a combustion response of the form (10) 

provides the only nonlinear process, then no stable limit cycles are 

found. 

I  0.15 

Stable limit cycles 

Unstable limit cycles 

■ Nonlinear combustion only 

-40 -30 -20 -10 

Figure 5 

However, if both nonlinear combustion and nonlinear gasdynamics are 
included, then as Figure 6 shows, the form (27) does present the 
possibility for subcritical bifurcations providing the threshold velocity u, 
is non-zero. Although we have not made sufficient calculations and 
comparison with the limited data available to show that the values of 
the parameters are realistic, these results already show that if there is a 
problem with pulsed instabilities in a motor, then probably the first place 
to look for a means of correction is in the response of burning to velocity 

fluctuations. 
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2.3 Analysis of Nonlinear Combustion Instabilities with Stochastic 
Sources 

Unlike the case for the Rijke tube, the amplitude of pressure in a limit cycle 
reached in an actual combustor is never constant. Apart from changes on a 
relatively long time scale (many periods) due to changes of parameters, 
fluctuations normally occur, often over one or two periods. The true reasons 
for those apparently random changes of amplitude are not known - in fact 
the work in this program is the only attempt to address the matter. A logical 
speculation is that non-acoustic fluctuations in the flow, including 
'combustion noise' and 'turbulence' generate pressure fluctuations that add to 
the organized oscillations associated with the acoustic waves. There are two 
problems that arise if this speculation is pursued. 

1) identifying and modeling the dominant physical processes, to 
give representations of the stochastic sources; and 

2) obtaining solutions to the governing equations containing the 
stochastic sources 

So far we have not attempted to construct models of physical processes that 
might be responsible for noise generation. Rather, their random behavior 
appears to be that of white noise. The equations we use are constructed by 
beginning with the general result of applying Galerkin's method to a 
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combustor as outlined in Section 2.2. Random processes are taken into 
account by introducing the fundamental result (Chu and Kovasznay, 1958) 
than in the limit of vanishingly small amplitude; any disturbance in a 
compressible flow can be synthesized of three types of waves: acoustic waves 
which carry pressure but no entropy disturbances); vorticity waves, (free of 
pressure and entropy disturbances); and entropy or temperature waves (also 
possessing no pressure disturbances). 

This approach, with some preliminary results, was reported by Culick et al 
(1991). Some technical errors of detail in the formulation have been corrected 
in the past year and calculations have been done for more complicated 
problems closer, we believe, to realistic cases (Burnley, 1996; Burnley and 
Culick, 1996). 

The idea is to follow Chu and Kovasznay's discussion and write «' as the sum 
of acoustic, vortical and entropic contributions, 

ü'=ü'a+ü'a+ü's (29) 

where U'a is given by (25) and the fluctuations Ua, Us associated with vorticity 
and entropy waves are unspecified at this point. Our view is that to first 
approximation, the observed pressure field, irrespective of its origin is due 
entirely to acoustic waves, characterized by the variable p'a and ü'a. The 
acoustic field will in general consist of two parts: that associated with 
coherent motions, the oscillations identified in a combustion chamber as 
'combustion instabilities'; and the field generated by stochastic sources 
included in the vorticity and entropy velocity fields «; and «; which required 
modeling not yet accomplished. 

This approach bears a resemblance to Lighthill's theory of aerodynamic noise 
(Lighthill 1953) but is of course restricted to internal problems (Culick et al 
1991). The great advantage of analyzing the internal problem is that natural 
modes and the expansions (20) and (25) are available. Nevertheless, the great 
problem eventually is to model the vorticity and entropy fields as sources of 
the stochastic or random pressure field. 
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Formula (23) shows explicit dependence of the 'force' FH on the total velocity 
field; there may be additional contributions contained in p' and f'. The next 
step is substitution of (29) in (23) and collect terms. Because the contributions 
to FH arising from gasdynamics have nonlinear terms, the results contain 
coupling between the three kinds of waves as well as terms involving squares 
of ü'a,ü^ and «; alone.  Now the oscillator equations have the form 

oo    oo oo 

Vn + "lVn = 2an»)n ■+ 2W„M„ -X £ lA™Mj + BnijWj] + Wither + £ l&* + &"»] + E"'   (30) 
i=lj=l t=l 

where the ££, £„. and s„ depend on the «; and «; , presumably representing 

the stochastic sources referred to above. 

The problem of modeling the stochastic has not yet been addressed in this 
work. Rather, the approach taken here has been to assume forms, guided by 
experimental observations. For simplicity, as a first step, we have taken the' 
sources to be the limiting case of white noise having zero mean values. 
Figure 7 is an example of a simulation for a case in which the fundamental 
mode is unstable. The most satisfying feature is that the waveform and 
spectrum appear quite realistic, looking quite like actual test data. True 
quantitative comparison of predictions based on this theory with 
measurements is far off. 

1.S 2 2.S 3 3.s 
Nondlm«ns!onal Frequency, rum 

Figure 7 

A different sort of problem is calculation of probability density functions for 
the amplitude of the fluctuations when the combustion response is 
nonlinear,  having   the  form  shown  in  Figure  4  which  produces   the 
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bifurcation diagram given in Figure 6. This problem has previously been 

examined by Clavin, Kim and Williams (1994) but in simplified form based 
on heuristic reasoning. The ;analysis in that work is very useful for gaining 
understanding of some central features of the problem. Because the authors 
assume that only a single mode is present, the formulation strictly cannot be 
applied to combustors and in fact it is not clear that the single nonlinear 
equation has any substantial connection to the physical situation. 
Nevertheless, that formulation contains two essential aspects: a subcritical 
bifurcation followed by a turning point (as here in Figure 6) and, of course, 
stochastic driving. Hence much of the general qualitative behavior is 
captured. 

To gain an initial assessment of the validity of this approach we have carried 
out a few Calculations for the following problem: 

i)        four modes included; 
ii)       stochastic sources in the lowest two modes 

iii)      nonlinear combustion response (Figure 54 giving the bifurcation 
diagram in Figure 6; 

iv)      growth constant a\ varied from -35.T1 to 25s~u, 

v)       the initial condition is a pulse of pressure, p'/p constant over 
the leftmost one-quarter of the chamber. 

A Monte-Carlo method was used to solve the equations. Approximately 
10,000 'experiments' were conducted for each value of ax and initial condition. 
For each experiment, after the flow has become developed (about 1000 periods 
of the fundamental mode) the amplitude of the acoustic modes are sampled. 
Histograms are then constructed from which the probability density function 
can be formed. Figures 8 shows results for a pulse having shape defined in v) 
above. (Burnley, 1996, Chapter 6). Perhaps the most obvious feature of this 
display is the appearance of a bimodal probability density function. The 
physical reason is the existence of two stable states in the range -30*-1 <al <0. 
There is a peak in the probability density function in the vicinity of the stable 
quiescent state and near the stable limit cycle represented by the upper branch 
in Figure 6.   For the first mode strongly unstable (a, =10^, Figure 8) only a 
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Single peak is found because there is only one stable dynamical state, the 

periodic limit cycle. In the range 0< ax < 5s'1, three peaks appear 

Amplitade of the fast 

1(a)   a^-35*-1 
(b)    aj=-25r! 

(c)    a, =-20.T1 
(d)    a^-iOj-1 

*****"**-  
O.OB 0.1 O.I 2 0.14 

Amp&twfa of the first >cmuüc mode, rt 

(e)   a, =5s~l 

AmpEtwfe of UM first 

(f)     Cf^lOj"1 

Figures 8 
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We have only just begun to explore the ramifications and practical 
implications of this approach. Further discussion has been given by Burnley 
(1996). One interesting point is the following. Suppose ax is in the range 
where a linearly stable system can be pulsed to give a stable limit cycle, here 
-30<al<5s~1. Consider the case ai=-20j~1, say. If noise is not included, then a 
pulse having amplitude 0.02 is stable and the stable limit cycle cannot be 
excited. However, with noise included, if fluctuations add in the correct 
phase to the pulse, the total pressure perturbation can exceed the value given 
by the unstable branch in Figure 6 and the stable limit cycle is triggered. That 
is the reason that the second peak appears in the probability density function, 
in the vicinity of finite values of rx . 

The chief motivation for investigating the influences of noise have been 
largely the need to understand the extent to which stochastic sources are 
significant in the development and nature of combustion instabilities. For 
example, a question raised occasionally is: can noise in a combustor excite 
and sustain coherent oscillations? The answer seems to be 'no/ that driving 
combustion processes are required. However, as indicated by the results just 
described for the behavior of pulses, noise can certainly have noticeable 
effects. 

Another reason, not yet a pressing motivation, is related to future 
applications of active control to full-scale combustors. The possible problems 
of exercising control in the presence of high noise levels intrinsic to the 
system are not understood, and in fact have hardly been considered. 
However, it seems that eventually the matter must be addressed and to do so 
requires knowledge of the behavior of the combustor with stochastic sources. 
The work on the problems discussed in this section is part of the basis for 
modeling. 

2.4 Control of an Unstable Combustor With Time Lag 

Time delays are unavoidable in physical systems. Combustion chambers 
contain many sources of delays, of which the larger are probably due to 
transport of reactants and ignition delays.    Chemical kinetics alone are 
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normally fast compared with other processes but there are circumstances 
when the characteristic times of fluid dynamics are comparable with those 
associated with the chemical dynamics. In the context of control, sensor and 

actuator delays cannot be ignored. 

It is a fundamental principle in the subject of controls that time delays 
inevitably tend to destabilize a system. Hence in efforts to develop the use of 
active feedback control to combustion systems it is essential that the 
influences of time delays be examined and understood. For example, 
Kendrick (1995) has reported ignition delays of the order of the period of the 
fundamental mode of the Caltech dump combustor, a large delay if one is 

interested in controlling that mode. 

Control of a system having a time delay is rendered even more difficult if the 
system alone is unstable. A simple example, the simplest possible, makes the 
point. Consider a single oscillator having undamped natural frequency fl. 
Although we know that a single-mode approximation is not a faithful 
representation of a combustion instability, we ignore the inaccuracy and 
assume that a combustion instability can be modeled as a single mode, 
unstable with growth constant a due to the intrinsic processes. Suppose in 
addition that control is to be exerted by a secondary fuel supply producing the 
rate of energy addition q which then appears as the source dq/dt=q in the 

oscillator equation: 

fi-2aT]+Q2T}=q (31) 

We assume that the rate energy addition is controlled by sensing the pressure 
and using it to generate a control signal but with a time delay  T 

q(t)=k{ri(t-r)} (32) 

The Laplace transform of equations (14) and (15) gives 

N(J) ^        s 

Q(s)    sz-2as + ti 
■=H(s) (33) 
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Q(s)=-K(S)e-"N(S) (34) 

where K(s) is the transform of k{n(t)} and N(s) is the transform of 77(f).  Figure 

9 is a block diagram of the system. 

-^O ■N     q 

J           H(s) 

Plant 

MS; e 

Controller Delay 

Figure 9 

-*-   v 

The closed-loop transfer function is 

N(*)_ H(s) 

U(s)   l + K(s)H(s)et (35) 

Because the system itself has negative damping, it is open-loop unstable: H(s) 
has two unstable poles in the right half plane. If the time delay is zero, the 
system can be stabilized, for example, by setting K(s) equal to a suitable 
constant value.  The denominator of (35) is 

l + K(s)H(s)±l + K(s) 2 2 =-y 
s -las+Q.1    s -las 

l—^[s^ + (K{s)-2als + 0?)] 

and the characteristic equation is 

s2 + (K(s)-2a)s + Q2=0 (36) 

If K(s) is constant and K > 2a, then the two roots are stable, a familiar example 
of stabilization by derivative control. 

But the real question is: how does the stability vary and how does the 
effectiveness of feedback control change as the time delay increases? If x is not 
too large, and K(s) is taken to be constant, control to stabilize the system is still 
possible but only in a restricted range of K, a result most clearly displayed by 
the root locus plot, Figure 10.  For this plot, T=0.1, referred to the normalized 
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period T=2a\ When T±0.... When T±0, the plot has many branches, most of 
which eventually end up in the right half plane so the closed-loop system 

becomes unstable. 

Exact Root Locus with uu=.l 

-20 

-40 
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■80 

-100 
0 

Real Axis 

Figure 10 

As the time delay increases with an unstable oscillator, feedback stabilization 
becomes more difficult and virtually impossible when x is of the order of the 
period of the oscillator. We have carried out simulations using various sorts 
of controllers, including state space control, observer control, lead 
compensation and a Smith regulator. None work. Hence there is a basic 
problem of controlling an unstable system having a time delay. 

That conclusion is not new, and probably not surprising. The puzzling 
feature in the present context is that some experimental success has been 
achieved using straightforward strategies, to control instabilities in 
combustion chambers having time delays associated with internal processes. 
Two questions arise: 

1) In view of the reasoning summarized above, why has success 
been possible? 

2)       Will this success translate to larger systems? 
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It seems that one must admit that the case of a single linear oscillator does not 
represent well the situation in a combustor. There are at least two 

deficiencies already mentioned: 

1) the motions in a combustor are not linear; and 

2) it is misleading to consider only a single mode. 

Therefore we are led once again to conclude that to understand fully the 
potential for application of active feedback control to combustion systems, we 
must investigate nonlinear behavior. In this program, analysis of nonlinear 
multi-modal (i.e. multi-dimensional) systems possessing time lags is 
continuing. 

2.5 Active Control of a Combustor Using Pulsed Injection of a 
Secondary Fuel Supply 

Central to practical applications of active feedback control of a combustion 
chamber are issues of sensing and actuation. In this work we have used only 
pressure as the sensed variable, measured at only one location. Early in the 
program we decided to investigate the possibility of using pulsed injection of 
secondary fuel as the means of actuation. There are two reasons for this 
choice: 

1) At the present time, using a secondary fuel supply as the means 
of control seems by far the most likely basis for actuation in full- 
scale systems because that seems to be the most efficient and 
direct way of affecting the combustion processes responsible for 
the instabilities. It is highly unlikely that generating pressure 
waves by speakers, pistons, etc. could be successfully used in 
operational combustors. 

2) Steady or modulated secondary fuel supply has been used 
previously in laboratory tests with some success, but the amount 
of fuel used has been usually a substantial fraction of the total 
fuel flow. Pulsing offers the prospect of reducing the flow used 
for control. 
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All tests have been conducted in the Caltech dump combustor constructed 

and operated for many years under funding from AFOSR. The experiments 
were conducted largely by a visitor from Germany who completed his 
undergraduate thesis with this work (Knoop, 1996). The only modifications 
have been provision for fuel injection at the dump plane, into the 
recirculation zone, or into the shear layer upstream of the step (Figure 11); 
and the addition of the apparatus required to supply the fuel. Figure 12 is a 
diagram of the equipment and instrumentation. 

f    s*- ̂  f              ^     ^% 
PILOT FUEL"^ 

(a) 

PILOT FUEL"'*' 

(b) 

Figure 11 

One advantage of using this combustor is that it is well-characterized. Figure 
13 is an example of the stability regions in the coordinates average speed Vd 

past the step and equivalence ratio <p (Sterling 1987). All of the initial tests 
were conducted for a steady operating condition within the unstable region. 
Results have been reported by Knoop (1996). Some success was achieved in 
reducing the amplitudes of oscillations, but the significant accomplishment 
followed upon Knoop's re-discovery of hysteresis on the lean side of the 
instability region 
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Figure 13 

The existence of hysteresis in this combustor was first found by Smith (1985) 
and investigated further by Sterling (1987). Because the emphasis in those 
works was on other characteristics of the combustor, the details and 
implications of hysteresis were not investigated. The significant point here is 
that a bifurcation diagram having a subcritical bifurcation point and a turning 
point (cf. Figure 6) implies hysteresis. A stylized sketch more closely 
illustrating the behavior in the dump combustor is shown in Figure 14. The 
lower ranch suggests small non-zero pressure oscillations and the upper 
branch represents stable limit cycles. For the dump combustor, vd is 
essentially constant for this diagram so the hysteresis loop degenerates to a 
line in the Vd - 0 plane of Figure 14. 
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Figure 14 

Tiysteresis' means here that the current dynamical state of the system 
depends on its history. If the equivalence ratio lies between <p2 and <t>u the 
amplitude of the pressure oscillation depends on the direction from which <p 
was approached, as indicated by the arrows. As <p is increased from an initial 
value less than <t>2, the amplitude is low until <p=<pu when a jump occurs and 
the system executes a relatively high-amplitude limit cycle. On the other 
hand if $ is decreased from a value within the region of instability, the 
amplitude of the limit cycle remains high until <j>=^2 and the transition is 
made to a low amplitude motion. 

The idea of taking advantage of hysteresis to exercise active control is not 
new; recently it has been applied to problems of surge and stall in 
compressors (Fu, J.-H. 1988; Abed et al, 1993). Suppose that the combustor is 
in a limit cycle, say at the point A' in Figure 13. Then if a short disturbance or 
pulse is applied, \p'\ will either increase or decrease momentarily. If the 

bifurcation diagram remains applicable during this transient period, an 
increase of \p'\ should decay to the upper branch. A decrease of \p'\ remaining 

above the dashed unstable branch should also return to the stable branch. 
However, a sufficiently large pulse may produce the transition to the point B' 
on the lower branch. 
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When that strategy was tried, the transition to the lower branch was soon 
demonstrated. The process has been confirmed in many subsequent tests. 
Figure 15 is a plot of a measured hysteresis loop and the transition A -> B 
actually achieved. A time-trace of the event is shown in Figure 16 
. The dashed line indicates the pulse of injected fuel. In this case two pulses 
were injected, partly an artifact of the injection system. 

400 

Figure 15 

Figure 17 shows the region of hysteresis established experimentally a few 
months ago. These results show that for this combustor, the region of stable 
operation can be extended from the left hand part of the diagram to the right 
hand edge of the shaded region. This is a substantial increase in the range of 
values of equivalence ratio. 
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