AL/OE-TR-1996-0080

CONTROL EFFICIENCY DETERMINATION OF SUDDEN EXPANSION INCINERATOR BLDG 348, KELLY AFB, TEXAS

Robert J. O'Brien, Captain, USAF, BSC

OCCUPATIONAL AND ENVIRONMENTAL HEALTH DIRECTORATE Bioenvironmental Engineering Division 2402 E Drive Brooks Air Force Base, TX 78235-5114

June 1996

DTIC QUALITY INSPECTED 4

Final Technical Report for the Period 19 July 1995 to 11 January 1996

Approved for public release; distribution is unlimited.

19960702 015

AIR FORCE MATERIEL COMMAND BROOKS AIR FORCE BASE, TEXAS

NOTICES

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: DTIC, Building #5, Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161-2103.

Robert S. O'Brien

ROBERT J. O'BRIEN, Capt, USAF, BSC Consultant, Air Quality Function

Unes AMort

JAMES D. MONTGOMERY, H Col, USAF, BSC Chief, Bioenvironmental Engineering Division

DISCLAIMER NOTICE

UNCLASSIFIED DEFENSE TECHNICAL INFORMATION ENTER UNCLASSIFIED

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DO	Form Approved OMB No. 0704-0188			
Public reporting burden for this collection of informat and maintaining the data needed, and completing an information, including suggestions for reducing this b 1204, Arlington, VA 22202-4302, and to the Office of	ion is estimated to average 1 hour per respor d reviewing the collection of information. Se- burden, to Washington Headquarters Service: Management and Budget, Paperwork Reduc	nse, including the time for reviewing nd comments regarding this burden s, Directorate for Information Operati tion Project (0704-0188), Washington	Instructions, searching existing data sources, gathering estimate or any other aspect of this collection of ions and Reports, 1215 Jefferson Davis Highway, Suite on, DC 20503.	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED		
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS	
Control Efficiency Determination of Bldg 348, Kelly AFB, Texas	f Sudden Expansion Incinerat	or		
6. AUTHOR(S)				
Robert J. O'Brien				
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION	
Armstrong Laboratory (AFMC) Occupational and Environmental H Bioenvironmental Engineering Div 2402 E Drive Brooks Air Force Base, TX 78235-	ealth Directorate ision 5114		AL/OE-TR-1996-0080	
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(E	S)	10. SPONSORING/MONITORING	
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT		12b. DISTRIBUTION CODE	
Approved for public release; distrib	oution is unlimited			
13. ABSTRACT (Maximum 200 words)				
Compliance emissions testing and V the Sudden Expansion (SUE) Incin standards and requirements are four 1994. The purpose of the Kelly A stands located in Bldg 348. The inc supplemental fuel. Emissions testin purposes of determining the inciner stream was conducted on 19-20 Jul and included monitoring for Total V indicate that the SUE Incinerator is efficiency requirement.	Volatile Organic Compound (V erator located at the Kelly AFI nd in Operating Permit No. 64 FB SUE Incinerator is to dest cinerator can also be used to d ng was conducted during comh ator VOC destruction efficien y 1995. Emissions testing of t VOC, oxides of nitrogen (NOx in compliance with all applica	VOC) destruction efficie B Fuel Accessory Test F 493, as amended/renewe roy calibration fluid vap estroy liquid waste calib pustion of both vapors ar cy, monitoring for Total the incinerator exhaust w (a), carbon monoxide (Co able emission standards a	ncy determination were conducted on acility, Bldg 348. Compliance d by the State of Texas on 24 March ors emitted from fuel accessory test ration fluid by burning it as a nd liquid calibration fluid. For VOC concentration in the inlet air vas conducted on 10-11 January 1996 O), and visible emissions. Results and with the VOC destruction	
14. SUBJECT TERMS			15. NUMBER OF PAGES 132	
Kelly AFB Fuel Accessory Tes	t Facility SUE Incinerator t stands Calibration fluid	Emissions testing Inlet duct Exhaus	st stack 16. PRICE CODE	
VOC destruction efficiency les				
VOC destruction efficiency 1es 17. SECURITY CLASSIFICATION 18 OF REPORT 18	SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFI OF ABSTRACT	CATION 20. LIMITATION OF ABSTRACT	

a

TABLE OF CONTENTS

		Page
INTRODUCI	PION	1
Backgr Site D Applic	cound Description able Standards and Guidelines	1 1 10
METHODS A	ND MATERIALS	10
RESULTS .	•••••••••••••••••••••••••••••••••••••••	24
DISCUSSIO	DN	25
RECOMMEND	DATIONS	25
REFERENCE	2S	29
APPENDIXE	S:	
A B C	Personnel Information Calibration Fluid Information Operating Permit	31 33 37
D	Field Data	49
F	HP 41 Program Printouts	75 81
G H	VOC Analyzer Information ENERAC 3000 Analyzer Information	91 97
I	Example Calculations	119

List of Figures

Figure N	No.	Page
1	Locations of Test Stands	2
2	View of a Typical Test Stand	3
3	Flow Diagram of Calibration Fluid Use	5
4	Flow Diagram of Vapor Ventilation System	6
5	View of Kelly AFB's SUE Incinerator	7
6	Schematic of a Model F5,000 SUE Incinerator	8
7	Schematic of Burner Combustion Process	9
8	Flow Diagram of Fuel and Vapor Input into SUE Incinerator	11
9	View of Inlet Duct Sampling Ports	13
10	Locations of Inlet Duct Sampling Ports	14
11	Locations of Inlet Duct Sampling Points for Velocity, Temperature, and Moisture	14
12	View of Exhaust Stack	15
13	Locations of Exhaust Stack Sampling Ports	17
14	Locations of Exhaust Stack Sampling Points for Velocity, Temperature, and Moisture	18
15	Schematic of Method 5 Sampling Train	19
16	View of Meter Box	20
17	View of VOC Analyzer	23
18	View of ENERAC 3000 Analyzer	23

List of Tables

Table No.		Page
1	Inlet Duct Sampling Results	26
2	Exhaust Stack Sampling Results	27
3	VOC Destruction Efficiency Data	28

CONTROL EFFICIENCY DETERMINATION OF SUDDEN EXPANSION INCINERATOR, BLDG 348, KELLY AFB, TEXAS

INTRODUCTION

Background

On 19-20 Jul 95 and 10-11 Jan 96, emissions testing was conducted on the Sudden Expansion (SUE) Vapor Incinerator located at the Kelly AFB Fuel Accessory Test Facility (Bldg 348). Testing was performed by the Air Quality Function of the Air Force Armstrong Laboratory. This survey was requested by the Kelly AFB Environmental Management Office to satisfy State of Texas permit requirements. Pollutants monitored during this survey included Total Volatile Organic Compounds (VOC), Oxides of Nitrogen (NO_x), and Carbon Monoxide. Personnel involved with onsite testing are listed in Appendix A.

Site Description

The Kelly AFB Fuel Accessory Test Facility performs testing of F-100 unified fuel control and nozzle units. The inspection process involves passing a calibration fluid (Stoddard solvent, Military Specification MIL-C-7024D Type II) through fuel control units which are set up in functional test stands. Information on the calibration fluid is found in Appendix B. The test stands are large computer-controlled modules which simulate actual operation of the fuel control assemblies.^{1,2,3} There are currently 57 test stands located in Bldg 348. Figure 1 provides a layout of Bldg 348's 1st floor showing the locations of the test stands. A view of a typical test stand is shown in Figure 2.

At each test stand, fuel control units are tested directly over a sink equipped with a down draft ventilation system. The calibration fluid used for testing is pumped from a 500 gallon (gal) reservoir located at each test stand. Testing of the fuel control units is accomplished using one of two configurations, closed loop or open body, depending on which section of the fuel control assembly is being tested. In the closed loop configuration, calibration fluid is pumped through the fuel control unit in a closed system. After the test is completed, the flow control unit is disconnected from the test stand and any residual calibration fluid is dumped into the sink. In the open body configuration, calibration fluid is continuously pumped through the fuel control unit and directly into the sink.^{1,2}

Calibration fluid dumped into the test stand sink is drained back into the 500 gal reservoir. The fluid in the reservoir is

÷

Figure 2. View of a Typical Test Stand.

reused for testing until the lab determines (through visual, specific gravity, and viscosity tests) that the fluid is unuseable, at which point it is considered spent (waste) fluid.³ The spent calibration fluid is then drained out and replaced with clean fluid. Vapors from the calibration fluid dumped into the sink are captured by the ventilation system. 24 of the 57 test stands are ventilated to the SUE Incinerator while the other 33 test stands are vented to the atmosphere.

The calibration fluid used for testing the fuel control units is stored in two 20,000 gal underground storage tanks located at the northeast side of Bldg 348 (see Fig. 1). One tank supplies the clean fluid to the 500 gal reservoirs while the other tank receives the spent fluid drained from the reservoirs. Both tanks are vented to the sink vapor air entering the SUE Incinerator system.^{1,2,3} A flow diagram showing calibration fluid use at a typical test stand is presented in Figure 3.

A Robinson Industries blower is used to draw calibration fluid vapors through the ventilation system and into the SUE Incinerator. The blower is rated at 20,000 standard cubic feet per minute (SCFM) and 250 horsepower (hp).³ A flow diagram showing the vapor ventilation system is presented in Figure 4.

The SUE Incinerator (Model F20,000 manufactured by Kaiser Marquardt) consists of four 5,000 SCFM stainless steel burners equipped with integral recuperative heat exchangers which preheat incoming air. The incinerator is located in the courtyard on the northeast side of Bldg 348 (see Fig. 1). A view of the SUE Incinerator is shown in Figure 5. A schematic of a similar single burner SUE Incinerator (Model F5,000) is shown in Figure Each burner of the SUE Incinerator includes a cylindrical 6. combustion chamber which is joined to a smaller inlet pipe by a flat circular plate. Fuel nozzles protrude through the flat plate into the combustion chamber. The sudden expansion between the smaller inlet duct and the combustion chamber acts as a flame holder permitting stable combustion over a wide range of pressures, temperatures, and flows.³ A schematic showing the combustion process within a typical burner is presented in Figure 7.

The SUE Incinerator is currently fueled with either natural gas or natural gas supplemented with waste calibration fluid. Although the State operating permit also allows Kelly AFB to use waste shelf life oil as a supplemental fuel, shelf life oil is currently not burned in the SUE Incinerator. The waste calibration fluid burned by the SUE Incinerator comes from the "Spent" 20,000 gal underground storage tank located at Bldg 348 and from a 30,000 gal aboveground storage tank located at Bldg

Figure 4. Flow Diagram of Vapor Ventilation System.

Figure 5. View of Kelly AFB's SUE Incinerator.

Figure 6. Schematic of a Model F5,000 SUE Incinerator.

Figure 7. Schematic of Burner Combustion Process.

345.³ A flow diagram showing fuel and vapor input into the SUE Incinerator is presented in Figure 8.

Applicable Standards and Guidelines

The emission standards, destruction efficiency, and operating requirements for the SUE Incinerator are specified in Texas Natural Resource Conservation Commission (TNRCC) Permit No. 6493, as amended/renewed on 24 Mar 94.⁴ The entire permit is located in Appendix C and the major provisions applicable to the SUE Incinerator are summarized below:

1. The maximum allowable emission rates for VOC are 5.53 pounds per hour (lb/hr) and 24.20 tons per year (TPY).

2. The maximum allowable emission rates for NO_x are 7.69 lb/hr and 33.70 TPY.

3. The maximum allowable emission rates for CO are 21.80 lb/hr and 95.00 TPY.

4. Opacity of emissions from the SUE Incinerator stack must not exceed 5 percent averaged over a six-minute period.

5. A VOC destruction efficiency of 98 percent for the SUE Incinerator shall be demonstrated while burning Stoddard solvent and shelf life oils.

6. The exhaust exit gas temperature of the SUE Incinerator must be continuously monitored and recorded to ensure a minimum temperature of 1450°F is maintained whenever burning VOCs, Stoddard solvent, or shelf life oils.

7. Records listed under Item 10 of the permit (e.g., quantity of liquid fuel burned, hours of incinerator operation, incinerator temperature charts, etc.) shall be maintained for a period of 2 years.

METHODS AND MATERIALS

To determine compliance with the TNRCC Operating Permit, sampling was conducted on both the inlet and outlet sides of the SUE Incinerator. Sampling on the inlet side included measurements for VOC, moisture, temperature, and velocity determination. The velocity was multiplied by the crosssectional area of the duct to calculate the duct gas flow rate. Sampling on the outlet (exhaust) side of the SUE Incinerator included measurements for VOC, NO_x , CO, Opacity, moisture, temperature, velocity, oxygen (O_2), and carbon dioxide (CO_2).

The stack gas velocity was multiplied by the cross-sectional area of the stack to calculate the stack gas flow rate. Measurements for moisture, O_2 , and CO_2 were required for gas molecular weight determination. Field data from both the inlet and exhaust sampling are found in Appendix D.

The locations of the port holes and sampling points were determined using EPA Method 1. For velocity measurements, Method 1 requires the port holes to be located a minimum of 2 duct diameters downstream and 0.5 duct diameters upstream of the nearest flow disturbances. All EPA Methods used in this survey are found in 40 Code of Federal Regulations, Part 60 (40 CFR 60).⁵

Sampling of the inlet gas stream was performed on a horizontal rectangular duct which is 5' high, 2' wide, and 8' 7" long. This section of duct is located in a small room (closet) adjacent to the SUE Incinerator (see Fig. 1). The effective inside diameter of this section of duct was calculated to be 2.86 feet using the equation 2HW/(H+W) where H equals the height and W equals the Four port holes, located on the same vertical plane, were width. used for measuring the velocity, temperature, and moisture. These four port holes are located approximately 5.75 feet (2.0 duct diameters) downstream from the nearest disturbance. A fifth port hole, located approximately 1.5 feet (0.52 duct diameters) downstream from the first four port holes, was used to monitor Total VOC. A view of the inlet duct sampling ports is shown in In accordance with EPA Method 1, a total of 16 Figure 9. sampling points were used for measuring the velocity, temperature, and moisture. Total VOC were measured at a single point in the cross-sectional center of the duct. Figure 10 shows the locations of the five port holes for the inlet duct. Figure 11 shows the locations of the 16 sampling points used for measuring the velocity, temperature, and moisture.

Sampling of the exhaust gas stream was performed on the 30' high vertical stack located in the same courtyard as the SUE Incinerator. A view of the exhaust stack is shown in Figure 12. The exhaust stack is triangular with the inside opening having two 4' sides and one 5.66' side. The effective inside diameter of this stack was calculated to be 2.34 feet using the equation 4A/P where A equals the cross-sectional area and P equals the perimeter. Four port holes (located on the same horizontal plane) were used for measuring the velocity, temperature, and moisture. These port holes are located approximately 7 feet (3 stack diameters) downstream from the nearest disturbance (i.e., the horizontal exhaust duct connected to the side of the stack). A fifth port hole, located approximately 2 feet (0.85 stack diameters) above the first four port holes, was used to monitor the gaseous parameters (i.e., O_2 , CO_2 , NO_x , CO, and VOC). In

Figure 9. View of Inlet Duct Sampling Ports.

Figure 10. Locations of Inlet Duct Sampling Ports.

Figure 11. Locations of Inlet Duct Sampling Points for Velocity, Temperature, and Moisture.

Figure 12. View of Exhaust Stack.

accordance with EPA Method 1, a total of 16 sampling points was used for measuring the velocity, temperature, and moisture. The concentrations of O_2 , CO_2 , NO_x , CO, and VOC were measured at a single point in the geometric cross-sectional center of the stack. Figure 13 shows the locations of the five port holes for the exhaust stack. Figure 14 shows the locations of the 16 sampling points used for measuring the velocity, temperature, and moisture.

Prior to sampling at both the inlet and outlet locations, the degree of cyclonic flow was determined by measuring the gas rotational angle at each of the 16 sampling points chosen for velocity, temperature, and moisture monitoring. Measurements were made using a Type S pitot tube, a 10-inch inclined-vertical manometer, an angle finder, and the procedures described in Paragraph 2.4 of EPA Method 1. Flow conditions are considered acceptable when the arithmetic mean average of the rotational angles is 20 degrees or less. Rotational angle measurements showed the air flow in both the inlet duct and exhaust stack to be within the acceptable limit. Preliminary velocity, temperature, and static pressure readings were also taken at the same time the cyclonic flow measurements were conducted.

The moisture, velocity, and temperature of the exhaust stack gas were determined using an EPA Method 5 sampling train. The train consisted of a button-hook probe nozzle, heated stainless steel probe, heated glass-fiber filter, impingers, and a pumping/metering device (meter box). A schematic of the Method 5 sampling train is shown in Figure 15 and a view of the meter box is shown in Figure 16. Calibration data for the Method 5 equipment are found in Appendix E. Calibrations were performed in accordance with EPA's Quality Assurance Handbook.⁶ The probe nozzle was sized (with a micrometer) prior to sampling using EPA Method 5 criteria. Stack gas velocity pressure was measured at the nozzle tip using a Type S pitot tube connected to a 10-inch inclined-vertical manometer and the procedures described in EPA Type K thermocouples were used to measure stack gas as Method 2. well as sampling train temperatures. The probe liner was heated to minimize moisture condensation. The heated filter was used to filter out particulates prior to the impingers. The impinger train consisted of four glass impingers in series. The impinger train was placed in an ice bath which enabled the stack gas moisture to condense into the impingers. The first, third, and fourth impingers were of modified Greenburg-Smith design while the second impinger was a standard Greenburg-Smith type. The first and second impingers each contained 200 milliliters (ml) of distilled water, the third impinger was empty, and the fourth impinger contained 200 grams (g) of silica gel. The pumping and metering system was used to control and monitor the sample gas flow rate. In accordance with EPA Method 4, moisture sampling

Figure 14. Locations of Exhaust Stack Sampling Points for Velocity, Temperature, and Moisture.

was conducted at a constant flow rate and for an equal time (3.75 minutes) at each of the 16 sampling points. The velocity and flow rate of the stack gas were calculated using the EPA's HP 41 "METH 2" Calculator Program. The percent moisture of the exhaust stack gas was calculated using the EPA's Hewlett-Packard 41 (HP 41) "METH 4" Calculator Program.⁷ Printouts from all the HP 41 programs run for this survey are found in Appendix F.

The moisture and temperature of the inlet duct gas were determined using wet bulb-dry bulb temperature readings. Measurements were taken at each of the 16 sampling points using mercury-in-glass thermometers. The percent moisture of the inlet duct gas was calculated using the EPA's HP 41 "WBDB" Calculator Program.

The velocity of the inlet duct gas was determined using a Type S pitot tube and a 10-inch inclined-vertical manometer. Calculations for the velocity and flow rate of the inlet duct gas were performed using the EPA's HP 41 "METH 2" Calculator Program.

The VOC concentration in both the inlet duct and exhaust stack gas was measured with a JUM Model 3-300A Flame Ionization Detector (FID) analyzer and the procedures described in EPA Method 25A. Prior to entering the analyzer, the sample gas traveled through a sampling system consisting of a heated stainless steel probe, a particulate filter, and a heated Teflon line. The sample was drawn through the system by a heated pump built into the analyzer. A 40% Hydrogen/60% Helium gas mixture was used as the fuel for the FID. A view of the VOC analyzer is shown in Figure 17. Information on the VOC analyzer, including calibration procedures, is found in Appendix G. A member of the survey team recorded VOC concentration measurements at 1-minute intervals during each sampling run. Measurements were in units of parts per million by volume (ppmv) as propane. The average VOC concentration for each sampling run was later converted to a mass emission rate in pounds per hour (lb/hr) using the following equation:

$$E = (C) \times (MW) \times (FR) \times (1.55 \times 10^{-7})$$
 (1)

Where,

- E = The pollutant emission rate in pounds per hour (lb/hr) [Note - VOC emission rate is reported as propane].
- C = The measured pollutant concentration in ppmv.
- MW = The molecular weight of the pollutant [Note for VOC, the molecular weight of the calibration gas (propane) is used].

 $1.55 \times 10^{-7} = \text{Conversion Factor} [(\min \cdot g - \text{mole} \cdot \text{lb}) / (hr \cdot g \cdot ft^3)]$

Initial plans were to sample for NO_x , O_2 , and CO_2 in the exhaust stack gas with a Continuous Emission Monitoring (CEM) system manufactured by the Anarad Corporation. This system includes a sample conditioning/flow control module, a chemiluminescent NO_x analyzer, an infrared CO_2 analyzer, and an electrochemical O_2 analyzer. Unfortunately, because of mechanical problems with the sample flow control module, the analyzers could not be properly calibrated. Therefore, sampling for these parameters was instead accomplished using a backup method consisting of an ENERAC 3000 portable analyzer. This analyzer uses an electrochemical cell to measure O_2 concentration. NO_x concentration is computed by the analyzer by adding together the concentrations of nitric oxide (NO) and nitrogen dioxide (NO2), both of which are measured via electrochemical cells. The analyzer computes CO_2 based on the O_2 content and the type of combustion fuel. A member of the survey team recorded NO_x , O_2 and CO_2 concentration measurements at 2minute intervals during each sampling run. O_2 and CO_2 measurements were in units of percent while NO_x measurements were in units of ppm as NO_2 . The average NO_x concentration for each sampling run was later converted to a mass emission rate (lb/hr) using Equation 1. A view of the ENERAC 3000 analyzer is shown in Figure 18. Specifications and information, including calibration procedures, for the ENERAC 3000 analyzer are found in Appendix H.

Sampling for CO in the exhaust stack gas was attempted using an Anarad Model AR-411 non-dispersive infrared (NDIR) analyzer. However, due to excessive drift, this instrument was not used. Instead, CO was determined using the ENERAC 3000 analyzer. The analyzer measures CO concentration via an electrochemical cell. A member of the survey team recorded CO concentration measurements at 2-minute intervals during each sampling run. Measurements were in units of ppm. The average CO concentration for each sampling run was later converted to a mass emission rate (lb/hr) using Equation 1.

The rate of liquid waste calibration fluid (lb/hr Stoddard solvent) combusted in the SUE Incinerator during each sampling run was recorded from the incinerator's main console.

The VOC destruction efficiency of the SUE Incinerator was calculated using the following equation:

$$DE = [(CF - E_{ex})/CF] \times 100$$
 (2)

Where,

- DE = Destruction Efficiency (%)
- CF = Calibration Fluid combusted by SUE Incinerator (lb/hr as Stoddard solvent) [Note - includes both the VOC vapors in the inlet gas stream and the liquid waste calibration fluid

Figure 18. View of ENERAC 3000 Analyzer.

burned as supplemental fuel] E_{ex} = VOC emission rate in exhaust stack (lb/hr as Stoddard solvent)

The VOC destruction efficiency was calculated based on the total Stoddard solvent burned by the incinerator. This includes the VOC vapors in the inlet gas stream (i.e., vapors removed from the test stands in Building 348) and the liquid waste Stoddard solvent burned as a supplemental fuel. Since the liquid waste solvent is included, it was necessary to convert both the inlet VOC vapor concentration and the exhaust VOC concentration from "ppmv as propane" to "ppmv as Stoddard solvent." This was done by first converting "ppmv as propane" to "ppmv as carbon" by multiplying by 3 (the carbon equivalent correction factor) in accordance with EPA Method 25A.⁵ The concentration in "ppmv as carbon" was then converted to "ppmv as Stoddard solvent" by dividing by 7.05 (response factor determined by a contractor, Engineering Science, during emissions testing performed at Bldg 348 in Sep 92).² The molecular weight of Stoddard solvent (140) was then used with Equation 1 to convert "ppmv as Stoddard solvent" to a mass flow rate (lb/hr Stoddard solvent).

Example calculations, using Equations 1 and 2 above, are shown in Appendix I.

Opacity (visible emission) readings were recorded by a person who is certified by the Texas Natural Resources Conservation Commission. Three opacity runs were conducted. Each run consisted of taking readings every 15 seconds for 30 minutes. Due to a man-power shortage, each opacity run was conducted shortly before a stack sampling run. The incinerator was operated under the same conditions for the opacity runs and the corresponding stack sampling runs.

RESULTS

Sampling of the inlet duct gas stream was performed on 19-20 Jul 95 during normal test stand operations in Bldg 348. Although the SUE Incinerator was not operational at this time, permission to proceed with the inlet testing was given by the TNRCC. Table 1 provides a summary of the results from the inlet testing. The average VOC mass flow rate for the three sampling runs was 10.2 lb/hr as propane.

The SUE Incinerator became fully operational in early Jan 96. Sampling of the exhaust stack gas was therefore performed on 10-11 Jan 96 during normal test stand operations in Bldg 348. During testing, the incinerator was operated at approximately 70% capacity. The incinerator fuel combustion rate during all three sampling runs was approximately 108 pounds per hour (lb/hr) of liquid waste calibration fluid and 4,000 standard cubic feet per hour (scfh) of natural gas. Table 2 provides a summary of the results from the exhaust testing. In brief, the average VOC mass emission rate for the three sampling runs was 0.66 lb/hr as propane, the average NO_x mass emission rate was 1.9 lb/hr as NO₂, and the average CO emission rate was 3.4 lb/hr. All visible emission readings showed 0 percent opacity.

Based on the VOC inlet and VOC exhaust mass emission rates and on the amount of liquid waste calibration fluid burned, the average VOC destruction efficiency was calculated to be 99.3 percent. A summary of the data used to calculate this destruction efficiency is found in Table 3.

DISCUSSION

Results show that the VOC, NO_x , and CO mass emission rates from the SUE Incinerator were all well below TNRCC Permit limits. With no opacity readings above 0 percent, the SUE Incinerator also met the TNRCC limit for opacity. Finally, the 99.3 percent destruction efficiency demonstrated by the SUE Incinerator was above the TNRCC minimum requirement of 98 percent.

RECOMMENDATIONS

The following recommendations are provided to ensure compliance with TNRCC Permit No. 6493 regarding the Bldg 348 test stands and the SUE Incinerator:

1. Ensure the temperature inside the incinerator is always maintained above 1450° F during operation.

2. Ensure the following records are maintained on base for a period of at least two years:

a. Records of the amount of calibration fluid purchased and of waste calibration fluid sent to reclamation.

b. Inventory records on the contents of the Calibration Fluid Supply Tank and the Waste Calibration Fluid Storage Tank.

c. Records of the quantity of calibration fluid (Stoddard solvent) or shelf life oil burned in the SUE Incinerator.

d. Records of the hours of operation of the SUE Incinerator.

	Run 1	Run 2	Run 3	Average
Test Date	19 Jul 95	20 Jul 95	20 Jul 95	
Test Time (Military)	1256-1356	1042-1142	1327-1427	
Station Pressure ("Hg)	29.260	29.205	29.205	
Duct Static Pressure ("H ₂ O)	-1.46	-1.46	-1.46	
Avg Dry Bulb Temperature (°F)	82	80	84	
Avg Wet Bulb Temperature (°F)	70	70	70	
Gas Moisture Content (%H ₂ O)	2.1	2.2	2.0	
Gas Oxygen Content $(\%O_2)^1$	20.9	20.9	20.9	
Avg Velocity Pressure ("H ₂ O)	0.10	0.10	0.10	
Avg Gas Velocity (ft/sec)	18	18	18	
Actual Gas Flow Rate (ACFM)	10,858	10,901	10,847	10,869
Corrected Flow Rate (DSCFM)	10,094	10,132	10,028	10,085
Avg VOC Reading (ppmv) ²	202	100	144	149
VOC Emission Rate (lb/hr) ³	13.9	6.9	9.8	10.2

Table 1. Inlet Duct Sampling Results

<u>Units</u>

"Hg = inches of mercury "H₂O = inches of water °F = degrees Fahrenheit %H₂O = percent water %O₂ = percent oxygen ft/sec = feet per second ACFM = actual cubic feet per minute DSCFM = dry standard cubic feet per minute ppmv = parts per million by volume lb/hr = pounds per hour Note: lb/hr = (ppm) (MW) (DSCFM) (1.55 x 10^{-7})

<u>Notes</u>

¹ Based on ambient air

² Measured as propane

³ Calculated as propane

	Run 1	Run 2	Run 3	Average
Test Date	10 Jan 96	11 Jan 96	11 Jan 96	
Test Start Time (Military)	1416	1155	1442	
Station Pressure ("Hg)	29.305	29.460	29.410	
Stack Static Pressure ("H ₂ O)	-0.20	-0.20	-0.20	
Average Stack Gas Temperature (°F)	606	632	629	622
Stack Gas Moisture Content (%H ₂ O)	2.9	1.7	2.1	2.2
Stack Gas Oxygen Content (%O ₂)	18.8	18.7	18.8	18.8
Stack Gas Carbon Dioxide Content (%CO ₂)	1.6	1.7	1.6	1.6
Stack Gas Velocity (ft/sec)	41	41	42	41
Actual Stack Gas Flow Rate (ACFM)	19,440	19,446	19,940	19,609
Corrected Flow Rate (DSCFM)	9,155	9,097	9,297	9,183
Average CO Reading (ppmv)	91	108	54	- 84
Average NO_x Reading (ppmv)	26	29	31	29
Average VOC Reading (ppmv as propane)	14.7	9.1	8.1	10.6
CO Emission Rate (lb/hr)	3.6	4.3	2.2	3.4
NO_x Emission Rate (lb/hr as NO_2)	1.7	1.9	2.1	1.9
VOC Emission Rate (lb/hr as propane)	0.92	0.56	0.51	0.66
Opacity (%)*	0	0	0	0

Table 2. Exhaust Stack Sampling Results

* Opacity readings were taken just prior to the stack gas sampling with the incinerator operating under the same conditions

Units"Hg = inches of mercury"H2O = inches of water°F = degrees Fahrenheit $%H_2O$ = percent moisture $%O_2$ = percent oxygenft/sec = feet per secondACFM = actual cubic feet per minuteDSCFM = dry standard cubic feet per minuteppmv = parts per million by volumelb/hr = pounds per hourNote: lb/hr = (ppm) (MW) (DSCFM) (1.55 x 10⁻⁷)

TNRCC Permit Limits CO: 21.80 lb/hr NO_x: 7.69 lb/hr as NO₂ VOC: 5.53 lb/hr as propane Opacity: 5%

	Run 1	Run 2	Run 3	Average
Corrected Stack Gas Flow Rate (DSCFM)	9,155	9,097	9,297	9,183
Measured Stack Gas VOC Concentration (ppmy as propane)	14.7	9.1	8.1	10.6
Converted Stack Gas VOC Concentration (ppmy as Stoddard solvent)	6.3	3.9	3.4	4.5
Converted Stack Gas VOC Emission Rate (lb/hr as Stoddard solvent)	1.25	0.77	0.69	0.90
Corrected Inlet Air Flow Rate (DSCFM)				10,085*
Measured Inlet Air Stream Solvent Vapor Concentration (ppmy as propane)				149*
Converted Inlet Air Stream Solvent Vapor Concentration (ppmy as Stoddard solvent)				63.4
Converted Inlet Air Stream Solvent Vapor Rate (lb/hr as Stoddard solvent)				13.9
Liquid Waste Solvent Consumption Rate (lb/hr Stoddard solvent)	108	107	108	107.7
Total Stoddard Solvent Consumption Rate (lb/hr)	121.9	120.9	121.9	121.6
VOC Destruction Efficiency (%)	99.0	99.4	99.4	99.3

Table 3. VOC Destruction Efficiency Data

* Determined from testing performed in Jul 95

<u>Units</u>

DSCFM = dry standard cubic feet per minute

ppmv = parts per million by volume

lb/hr = pounds per hourNote: $lb/hr = (ppm) (MW) (DSCFM) (1.55 \times 10^{-7})$

TNRCC Permit Requirement: VOC Destruction Efficiency \geq 98%

e. Charts from the temperature monitor for the SUE Incinerator.

3. Ensure another VOC destruction efficiency determination is performed on the SUE Incinerator if the base decides to use waste shelf life oil as a supplemental fuel.

4. Ensure the VOC emissions from the 33 test stands vented directly to the atmosphere are calculated and tabulated monthly. The emission calculations shall be based on calibration fluid usage (i.e., mass-balance). The calculated emissions must also be reported in the annual base air emissions inventory.

Armstrong Laboratory will remain active in supporting the base's present and future needs.

REFERENCES

- USAF Occupational and Environmental Health Laboratory, <u>Volatile Organic Compound (VOC) Testing at Building 348,</u> <u>Kelly AFB TX, USAFOEHL Report 87-147EQ0094LEF, Brooks AFB TX,</u> November 1987.
- 2. Engineering-Science, Inc., <u>VOC Testing of the Carbon</u> <u>Adsorption Unit</u>, <u>Building 348</u>, <u>Kelly Air Force Base</u>, <u>Texas</u>, <u>Austin TX</u>, <u>April 1993</u>
- 3. San Antonio Air Logistics Center, <u>Vapor Incineration System</u> Program, Kelly AFB TX, 12 June 1995
- 4. Texas Natural Resource Conservation Commission, <u>Permit Number</u> 6493, Austin TX, 24 March 1994
- Office of the Federal Register National Archives and Records Service, <u>Code of Federal Regulations</u>, <u>Title 40</u>, <u>Part 60</u>, Washington DC, July 1994.
- 6. U.S. Environmental Protection Agency, <u>Quality Assurance</u> <u>Handbook for Air Pollution Measurement Systems: Volume III.</u> <u>Stationary Sources Specific Methods</u>, EPA/600/4-77/-07b, <u>Research Triangle Park NC</u>, December 1984
- 7. U.S. Environmental Protection Agency, <u>Source Test Calculation</u> and Check Programs for Hewlett-Packard 41 Calculators, EPA-340/1-85-018, Research Triangle Park NC, May 1987

APPENDIX A

Personnel Information

PERSONNEL INFORMATION

1. Armstrong Laboratory Air Quality Test Team

Maj Larry Kimm, Chief, Air and Hazardous Waste Branch Capt Robert O'Brien, Air Quality Consultant, Project Officer Capt Gregory Durand, Air Quality Consultant Capt T.C. Moore, Air Quality Meteorologist 2Lt Kyle Blasch, Air Quality Consultant MSgt Kurt Jagielski, Air Quality Technician SSgt Michael Dobbins, Air Quality Technician

AL/OEBQ 2402 E Drive Brooks AFB TX 78235-5114 Phone: DSN 240-3305 Comm (210) 536-3305

2. Kelly AFB On-Site Representatives

Capt Michael Blank, Air Quality Program Manager SA-ALC/EMC 307 Tinker Dr.(Bldg 306) Kelly AFB, TX 78241-5917 Phone: DSN 945-3100 ext 306 Comm (210) 925-3100 ext 306

Mr Robert Burns, Mechanical Engineer SA-ALC/LPPEC 505 Perrin Road (Bldg 324) Kelly AFB, TX 78241-6435 Phone: DSN 945-8655 Comm (210) 925-8655

Mr John Jurek, Mechanical Engineer SA-ALC/LPPEC 505 Perrin Road (Bldg 324) Kelly AFB, TX 78241-6435 Phone: DSN 945-7581 Comm (210) 925-7581

3. Kaiser Marquardt On-Site Representative

Mr Ray Wieveg, Design Engineer Kaiser Marquardt 16555 Saticoy Street Van Nuys, CA 91406-1739 Phone: (818) 989-6542

APPENDIX B

Calibration Fluid Information

MIL-C-7024D Calibrating Fluids, Aircraft Fuel System Components _____ Classification: Type II Special Run Rev D: 30 Aug 1990 FSCM (CAGE): 81349 Stoddard Solvent CH4*B6, M.W. = 140 NSN: 6850-00-656-0810 Chemical Family: Paraffinic and ----- VSMF ------Naphthenic Hydrocarbons Locator Code: H-24-15 Synonyms: Stoddard Solvent, Mineral Film Loc: X552-1268 Microfiche: 011268 Loc: 0163D06 Spirits, Short Range Mineral Spirits _____ Specific Gravity: 0.770 ± 0.005 @ 60°F, 15.6°CASTM Test Method D1298Viscosity: 1.17 ± 0.05 centistokes @ 77°F, 25°CASTM Test Method D445 ASTM Test Method D2276 Particulate Matter (min): 2.0 mg/liter Flash Point (min): 100°F, 38°C ASTM Test Method D56 Initial/Final Boiling Points: 300°F/410°F ASTM Test Method D86 ASTM Test Method D1319 Aromatics, Volume Percent (max): 20.0% ASTM Test Method D1319 Olefins, Volume Percent (max): 5.0% ASTM Test Method D3242 Total Acid Number (max): 0.015 mg KOH/g Gum, Existent (max): 5.0 mg/100 ml ASTM Test Method D381 ASTM Test Method D323 Vapor Pressure: 0.1 psi @ 100°F _____ Autoignition Temperature: >400°F Percent Volatile: essentially 100% Flammability Limits in Air: Lower Explosive Limit: 0.9% Upper Explosive Limit: 6.0% Vapor Density (air=1): <1.0 Solubility in Water: Negligible Water Weight: 8.33 lbs/gal at 80°F Appearance and Odor: Water white liquid with mild hydrocarbon odor NFPA Classification: Health: Slightly Hazardous (1) Fire: Moderate (2) Specific Hazard: not applicable Reactivity: Stable (0) Weight: 6.47 lbs/gal at 60°F and 6.34 lbs/gal at 80°F _____ SUPPLIERS

1. Solvents & Chemicals, Inc. 4707 Shank Road, P.O. Box 490 Pearland, Texas 77588-0490 Tel: (713) 485-5377	2. Southwest Solvents & Chemicals 225 Two Twenty-One Drive Buda, Texas 78610 Tel: (512) 282-6390

FUELS COMPARISON

FUEL	FLASHPOINT (°F)	SPEC GRAVITY (KG/L)	VISCOSITY . (CENTISTOKES)
JP8 MIL-T-83133	100	0.775 min 0.840 max	0'8
JP5/JP8 ST MIL-T-5624N	140	0.815 min 0.845 max	8 S S
JP5 MIL-F-5624	140	0. 788 min 0.845 max	8.5
CAL FLUID MIL-C-7024D TYPE 2	100	0.765 min 0.775 max	e e e

APPENDIX C

Operating Permit

SA-ALCZEN KELLY FRI DR 28 FM 1: 20

RECEIVED

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

Protecting Texas by Reducing and Preventing Pollution

March 24, 1994

Mr. Lawrence O. Bailey, Jr. Director, Environmental Management KEILY AIR FORCE BASE (AFB) 307 Tinker Drive, Building 306 Kelly AFB, Texas 78241-5917

> Re: Permit Amendment and Renewal Permit No. 6493 Fuel Accessory Test Facility Incinerator Kelly AFB, Bexar County Account ID No. 3G-0103-F

Dear Mr. Bailey:

iohn Hall, Chairman

Pam Reed, Commissioner

Peggy Gamer, Commissioner

Anthony Grigsby, Executive Director

This is in response to your permit application, Form PI-1, and renewal application, Form PI-1R, concerning the proposed amendment and renewal of Permit No. 6493. We understand that you propose to replace the current carbon absorption unit with a thermal oxidizer that will achieve 95 percent destruction of the volatile organic compounds (VOC) routed through it.

Pursuant to Texas Natural Resource Conservation Commission (TNRCC) Rule 116.116(a) of 30 Texas Administrative Code §116 (30 TAC §116) (commonly known as Regulation VI), Permit No. 6493 is hereby amended in accordance with your proposal. This information will be incorporated into the existing permit file.

Also, pursuant to TNRCC Rule 116.314(a) of 30 TAC §116, your permit is hereby renewed. Enclosed are new provisions and an emission allowable table. Please attach these to your permit. We will appreciate your carefully reviewing the conditions of the permit and assuring that all requirements are consistently met.

We have enclosed two operations certification forms (Form PI-3A and Form PI-3B). Rule 116.110(b) of 35 TAC §116 (commonly known as Regulation VI) requires you'to certify that operations addressed in this permit are in conformance with representations in the permit application.

Mr. Lawrence O. Bailey, Jr. Page 2 March 24, 1994

Please file these certifications with both the TNRCC Austin New Source Review Program and the appropriate TNRCC regional office in a timely manner as prescribed by rule.

Thank you for your cooperation in sending us the information necessary to evaluate your operations and for your commitment to air pollution control. Please let us know if you have any cuestions.

Sincerely, rector

Enclosures

cc: Mr. James Menke, Air Program Manager, San Antonio Mr. Sam Sanchez, Chief Sanitarian, Division of Environmental Services, San Antonio Metropolitan Health District, City of San Antonio

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

Office of Air Quality New Source Review Program Post Office Box 13087 Austin, Texas 78711-3087

FORM PI-3A Operations Certification (Part 1 of 2) TNRCC Rule 116.110(b)(1)(A)

A

For facilities permitted by authority of Title 30 Texas Administrative Code, Chapter 116.

This certification must be signed by an individual with process knowledge in a managerial capacity and must be submitted upon completion of construction and prior to start of operation of the authorized facilities.

Permit Number_____ Date of Permit Issuance or Last Amendment:

I. Permittee

Permit Issued To:______ Mailing Address:______

Technical Contact: (Person, Title, Mailing Address)

Telephone:(

ţ,

II. Permit Unit Information

Permit Unit Name:______ Location: Nearest City_____ County:_____ TNRCC Air Quality Account Number: ______

 III. Construction and Operating Schedule Dates

 Start of Construction:
 Proposed Start of Operation:

 Completion of Construction:
 Proposed Start of Operation:

IV. A copy of this certification must be sent to the TNRCC Regional Office. Regional Office (city) sent to:

V. Certification

I,

Name - please print or type State that I have knowledge of the facts herein set forth and that the same are true and correct to the best of my knowledge. I certify that the facilities or changes authorized by the referenced permit have been accomplished as represented, if those representations affect emissions, method of control, or character of emissions.

DATE

SIGNATURE

Note: Original signature in ink required.

A second certification, FORM PI-3B, must be submitted simultaneously with any report of testing or monitoring results required by the permit or, if no testing or monitoring is required, within 60 days of the commencement of operation.

Version 11/01/1993

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

Office of Air Quality New Source Review Program Post Office Box 13087 Austin, Texas 78711-3087

FORM PI-3B Operations Certification (Part 2 of 2) TNRCC Rule 116.110(b)(1)(B)

B

For facilities permitted by authority of Title 30 Texas Administrative Code, Chapter 116.

This certification must be signed by an individual with process knowledge in a managerial capacity, and must be submitted simultaneously with any report of testing or monitoring results required by the permit or, if no testing or monitoring is required, within 60 days of the commencement of operation.

Permit Number: Date of Permit Issuance or Last Amendment:

Submittal Date of Form PI-3A (Part 1 of Operations Certification):

I. Permittee

Permit	Issued	To:
Mailing	Addı	ress:

Technical Contact: (Person, Title, Mailing Address)

Telephone:() -

Π. Permit Unit Information

Permit Unit Name: _____ Location: Nearest City: County: TNRCC Air Quality Account Number: _____

III. Construction and Operating Schedule Dates

Start of Construction: Completion of Construction:

Start of Operation:

- IV. A copy of this certification must be sent to the TNRCC Regional Office. Regional Office (city) sent to:
- V. Certification

I, ______Name - please print or type Title - Owner, Plant Manager, President, Vice President, Environmental Director state that I have knowledge of the facts herein set forth and that the same are true and correct to the best of my knowledge. I certify that the facility complies with all terms of the preconstruction permit and that operations of the facility are in compliance with the Texas Clean Air Act (Chapter 382, Texas Health & Safety Code) and the air quality rules of the TNRCC.

DATE SIGNATURE

- 1. Equivalency of Methods It shall be the responsibility of the holder of this permit to demonstrate or otherwise justify the equivalency of emission control methods, sampling or other emission testing methods and monitoring methods proposed as alternatives to methods indicated in the provisions of this permit. Alternative methods shall be applied for in writing and shall be reviewed and approved by the Executive Director prior to their use in fulfilling any requirements of this permit.
- 2. <u>Sampling Requirements</u> If sampling of stacks or process vents is required, the holder of this permit must contact the Source and Mobile Monitoring Section of the Texas Natural Resource Conservation Commission (TNRCC) prior to sampling to obtain the proper data forms and procedures. The holder of this permit is also responsible for providing sampling facilities and conducting the sampling operations at his own expense.
- 3. <u>Appeal</u> This permit may be appealed pursuant to Rule 103.81 of the Procedural Rules of the TNRCC and Section 382.032 of the Texas Clean Air Act. Failure to take such appeal constitutes acceptance by the applicant of all terms of the permit.
- 4. <u>Construction Progress</u> Start of construction, construction interruptions exceeding 45 days and completion of construction shall be reported to the appropriate regional office of the TNRCC not later than 10 working days after occurrence of the event.
- 5. <u>Recordkeeping</u> Information and data concerning production, operating hours, sampling and monitoring data, if applicable, fuel type and fuel sulfur content, if applicable, shall be maintained in a file at the plant site and made available at the request of personnel from the TNRCC or any local air pollution control program having jurisdiction. The file shall be retained for at least two years following the date that the information or data is obtained.
- 6. <u>Maintenance of Emission Control</u> The facilities covered by this permit shall not be operated unless all air pollution emission capture equipment and abatement equipment are maintained in good working order and operating properly during normal facility operations.

EMISSION STANDARDS, FUEL SPECIFICATIONS, AND WORK PRACTICES

- 1. This permit covers only those sources of emissions listed in the attached table entitled "Emission Sources -Maximum Allowable Emission Rates," and those sources are limited to the emission limits and other conditions specified in the attached table. The annual rates are based on any consecutive 12-month period.
- 2. Compliance with the Volatile Organic Compound (VOC) emission limitation for the SUE Incinerator (EPN No. 20) shall be demonstrated by monitoring the temperature of the secondary chamber. Compliance with the VOC emissions for test stands vented to the atmosphere will be demonstrated by calculating emissions from carbon compound usage. The emissions shall be tabulated monthly and reported annually with the facility emissions inventory.
- 3. All waste carbon compounds must be stored in closed containers.
- 4. Opacity of emissions from the SUE incinerator stack must not exceed 5 percent averaged over a six-minute period.
- 5. Fuel for the SUE incinerator shall be limited to stoddard solvent, shelf life hydrocarbon materials, and pipeline-quality natural gas containing no more than 0.25 grains hydrogen sulfide and 5.0 grains total sulfur per 100 dscf.
- 6. The minimum exhaust exit gas temperature of the SUE incinerator of 1450°F must be continuously monitored and recorded whenever burning VOCs, stoddard solvent, or shelf life oils.
- A copy of this permit shall be kept at the plant site and 7. made immediately available at the request of personnel from the Texas Natural Resource Conservation Commission (TNRCC), Environmental Protection Agency (EPA), or any local air pollution control agency having jurisdiction. In addition, the holder of this permit shall clearly identify all equipment at the facility covered by this permit that has the potential of emitting air contaminants. Permitted emission points shall be clearly identified corresponding to the emission point numbering the maximum allowable emission rates table. on Grandfathered or exempt facilities shall be clearly identified corresponding to the emission point numbering used in the most recent emissions inventory submitted to the TNRCC.

Special Provisions 6493 Page 2

INITIAL DETERMINATION OF COMPLIANCE

- 8. The holder of this permit shall perform stack sampling and other testing as required to establish the actual pattern and quantities of air contaminants being emitted into the atmosphere from the SUE incinerator stack. The holder of this permit is responsible for providing sampling and testing facilities and conducting the sampling and testing operations at his expense.
 - A. The appropriate TNRCC regional office in the region where the source is located shall be contacted as soon as testing is scheduled but not less than 45 days prior to sampling to schedule a pretest meeting. The notice shall include:
 - (1) Date for pretest meeting.
 - (2) Date sampling will occur.
 - (3) Name of firm conducting sampling.
 - (4) Type of sampling equipment to be used.
 - (5) Method or procedure to be used in sampling.

The purpose of the pretest meeting is to review the necessary sampling and testing procedures, to provide the proper data forms for recording pertinent data, and to review the format procedures for submitting the test reports.

A written proposed description of any deviation from sampling procedures specified in permit provision or TNRCC or EPA sampling procedures shall be made available to the TNRCC prior to the pretest meeting. The Regional Manager or the Manager of the Source and Mobil Monitoring Section shall approve or disapprove of any deviation from specified sampling procedures.

- Requests to waive testing for any pollutant specified in B of this provision shall be submitted to the TNRCC New Source Review Program.
- B. Air contaminants emitted from the incinerator stack to be tested for include (but are not limited to) VOC, nitrogen oxides (NOx), and carbon monoxide (CO).
- C. If sampling ports and platforms meeting the specifications set forth in the attachment entitled "Chapter 2, Stack Sampling Facilities" are not required, alternate designs may be approved at the pretest meeting.

Special Provisions 6493 Page 3

- D. Sampling shall occur within 60 days after initial start-up of the SUE incinerator. Requests for additional time to perform sampling shall be submitted to the regional office.
- E. The VOC destruction efficiency of 98 percent for the SUE incinerator while burning stoddard solvent and shelf life oils shall be demonstrated at the maximum test stand VOC generation rate during stack emission testing. Primary operating parameters that enable determination of VOC generation rate shall be monitored and recorded during the stack test. These parameters will be determined at the pretest meeting.
- F. Copies of the final sampling report shall be forwarded to the TNRCC within 90 days after sampling is completed. Sampling reports shall comply with the attached provisions of Chapter 14 of the TNRCC <u>Sampling Procedures Manual</u>. The reports shall be distributed as follows:

One copy to the appropriate TNRCC regional office. One copy to the TNRCC New Source Review Program, Austin.

G. At least two 6-minute visual opacity readings will be taken during the testing.

CONTINUOUS DEMONSTRATION OF COMPLIANCE

9. Temperature in the SUE incinerator must be continuously monitored and recorded to ensure the minimum temperature of 1450°F is maintained.

RECORDKEEPING REQUIREMENTS

- 10. The following records shall be maintained by the source for a period of two years and shall be made available to the Executive Director or his designated representative upon request:
 - A. Records of the amount of calibrating fluid purchased and spent calibrating fluid sent to reclamation.

Special Provisions 6493 Page 4

- B. Inventory records on the contents of the Calibrating Fluid Supply Tank and the Spent Calibrating Fluid Storage Tank.
- C. Records of the quantity of stoddard solvent and shelf life oil burned in the SUE incinerator.
- D. Records of hours of operation of the SUE incinerator.
- E. Charts from the temperature monitor for the SUE incinerator.
- F. Inventory records of additions, recovery, and disposal of all degreasing solvents and cleaning solvents.
- G. Records of inspection and replacement of bags in the grit blast filter system.

Dated 3/24/94

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

	G	Air Contaminant	Emission Rates*	
Emission	Name (2)	Name (3)	≝/hr	TPY
7	Vapor Degreaser	VOC	0.80	2.50
8	Drying Oven	VOC	1.81	5.65
9	Vapor Blasting	PM/PM10 VOC	0.46 0.10	1.44 0.31
10	Abrasive Blasting	PM/PM10	0.03	0.09
11	3 Test Stands	VOC	0.12	0.37
	3 Test Stands	VOC	0.12	0.37
13	2 Test Stands	VOC	0.05	0.16
14	5 Test Stands	VOC	0.79	2.46
15	4 Test Stands	VOC	0.08	0.25
16	Abrasive Blasting	PM/PM10	0.03	0.09
17	2 Test Stands	VOC	0.21	0.66
18	2 Test Stands	VOC	• 0.20	0.62
19	Nitric Acid Tank	HNO3	0.05	0.16
20	Sue Incinerator 20,000 SCFM	VOC NOX CO	5.53 7.69 21.80	24.20 33.70 95.00
21	3 Test Stands	VOC	0.12	0.37
22	3 Test Stands	voc	0.12	0.37
° 3	3 Test Stands	VOC	0.12	0.37

APPENDIX D

Field Data

PRELIMINARY SURVEY DATA SHEET NO. 2 (Velocity and Temperature Traverse)						
BASE Kelly AF	6	DATE 19 Jul 75				
STURIC INC DU	et to Fuel Accessor	y Ship's SUE Inc	inerator (Run#1)			
INSIDE STACK DIAMETER Areq	DE STACK DIAMETER Areq 5' by 2' = 10 Ft -Inches					
STATION PRESSURE	60		In Hg			
STACK STATIC PRESSURE	46		In H20			
sampling team	OEBQ					
TRAVERSE POINT NUMBER	VELOCITY HEAD, VP IN H20	√ Vp	STACK TEMPERATURE, (OF) Dry full, wet full,			
]	0,050		87 72			
2.	VOZO		85 69			
3	0,078		83 69			
4	0,040		85 69			
5	0.0.80		85 70			
Ь	0.102		7 8 68			
7	0,105		77 67			
8	0,100.		83 69			
9	0.102	-	77 . 69			
10	0,115		83 73			
	0,100		78 69			
12	0 ,100		83 69			
[3	0,150		82 70			
14	0,130		8V 69			
15	0,139		81 70			
	0.141		81 71			
	Argop= 0.10	AKg =	82 70			
Arg FPS= 18						
Arg FPM = 1,086	ALFM=	10,858	1, H, v = 2.1			
	DSCFM=	10,094				
	AVERAGE					

OEHL FORM 16

A horizontal and a second

÷

.

50

PRELIMINARY SURVEY DATA SHEET NO. 2 (Velocity and Temperature Traverse)								
BASE KOLLY AFB	BASE Lally AFR 20 Jul 15							
BOILER NUMBER/ The Aut to End Accase Shirld SHE Encinerator (Ruh # 2)								
Inside stack diameter $f(t, t) = 10 + t^2$ Sinches								
STATION PRESSURE	$\frac{5 \text{ Uy} - 1 \text{ U} \text{ (T}}{1 \text{ TATION PRESSURE}}$							
STACK STATIC PRESSURE	4h		In H20					
SAMPLING TEAM	EBA							
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	√ V _P	STACK TEMPERATURE (OF) Dry Fulle Wet Fulle					
1	0.045		81" 72"					
2	0.065		79° 69°					
3	0.075		<u>79° 69°</u>					
4	0.025		79 70					
5	0.100		83° 71'					
6	0.115		<u>79° 76</u>					
7	0.110		79° 70'					
8	0.690		79° 69°					
. 9	10-115		81° 70°					
10	1.705		80° 70°					
	10.110		80° 69°					
12	1. 690		80° 69°					
13	0,175		84° 71°					
14	D.135		82° 70°					
15	0.740		80° 69°					
16	1.155		80° 69					
	AvgAP = 0.10	ALGE	80 70					
Avy FPS = 18	ALFM=	10,901	90 H2 0= 2.2					
Aug FPM = 1,090	DSCFM =	10,132						
,	AVERAGE							

OEHL FORM 16

· · ·

يشيه والمعاطية المعتمانية

51

	PRELIMINARY SURVE (Velocity and Te	EY DATA SHEET NO. 2 mperature Traverse)		
BASE KFILY AF	ß	DATE 20 JUL 95	-	
BOILER NUMBER	ALLESUNY STUDE SUN	E Incinerator	(Run # 3	,)
INSIDE STACK DIAMETER	$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = 10 \frac{1}{1} \frac{1}{1}$		-Inches-	/
STATION PRESSURE	145		In Hg	
STACK STATIC PRESSURE	146		In H20	
SAMPLING TEAM AL/OE(3 Q	· ·		
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	√ v _p	STACK TEMPE	RATURE (OF)
1.	6.030		86 ~	72°
2	0.655		83°	69°
3	<i>(), Ø5</i> 5		85°	71°
4	(D. 840		ga°	69.0
5	0.110		89°	70°
6	Ø.115		84 °	69°
7	P.105		835	69°
8	Q, \$95		89°	7\$°
9	D. 090		85°	70°
١¢	Q.120		84°	69
1	Ø.115		34°	69°
19	V. Ø95		847	69°
13	(), 35		82°	70°
14	Ø,145		6940	690
15	U, 165		840	692
16	Ø.160		860	69 °
	$A V g \Delta P = 0.10$	AVg	= 84	70
Avg FPS=18	· · · ·			
AUD FPM= 4085	ACFM=	10,841	9. H_U =	2.0
	NSCFM=	10,028		
	AVERAGE			

.

.

a second second

	VOC Emis	sions Dat	a Sheet			
Base: Kally Al	C P		Date:	10 TI	195	
Source: Inlet duc	Run #:	1				
SUE Encinerator						
Calibration Data: (N	ote - meter readings mu	st be within	$1 \pm 5\%$ of actual gas of	concentr	ations)	
		(7.7.7.)	Motor Dooding	(000)	Mil Time	
Llich Chony	Gas Concentration	(ppm)				
High Span. Medium Span:	<u> </u>		803		19 1164	
Low Span:	505		550		1147	
	<u> </u>					
Sampling Data:						
570		r	570			
-Military Time	Reading (ppm)		Military Lime	Re	ading (ppm)	
12:56	182		<u>7:30 pm</u>	<u> </u>	70	
72:57	185		pm			
72:58	708				214	
10.37 AM	192		7:34		2/8	
7:01	222		7:35		219	
7:07	208	•	7135		215	
7:03	224		7:37		2/3	
7:04	324		7.38		207	
7:05	214				197	
7:06	2/2		7:40	+	704	
7:07	218		1271		190	
7608	722		T, 43		186	
7.10	228		7144		186	
T.11	240		7:45		789	
7:12	237		tiy6		183	
7:13	238		7:47		782	
1:14	23/		7:48	·	183	
1:15	230		7:49	_	180	
1:16	276		7:50		[]]	
1:17	220		1:51	-	172	
1:18	<u>Z 18</u>		7:52		13	
1319			7.54		166	
1120	2/2		7.55		171	
1:01	204		1:55		167	
7:27	201					
7:24	199					
1,25	195	·			· · · · · · · · · · · · · · · · · · ·	
7:26	193		L			
2127	193			_		
1128	192		Desidence (second	-		
7.29	/9/	Avera	ge Reading (ppm) =	2	-02	

	VOC Emissi	ons Data Sheet					
Base 14 - 11	Aro	Date:	A Tul 9 -				
Source: $\tau = 1 d^2$ Duct t_0 End Accessive (5.0') Run #:							
SHE Incinerator							
Calibration Data: (N	lote - meter readings must l	be within ± 5% of actual gas c	oncentrations)				
	Gas Concentration (pp	m) Meter Reading	(ppm) Time				
High Span:	803	803	1006				
Medium Span:	506	10 08					
Low Span: 251 251 1010							
Sampling Data:							
Time	Pooding (nom)	Time	Peading (ppm)				
1042	12	11/6	80				
1043			× /				
1044			84				
10 44	110		84				
16127	110		\$7				
1040	108	1122	94				
1049	106	11-3	94				
10 50	105	1124	94				
1051	104	11.5	98				
1152	104	<u>17:5</u>	94				
1053	103	11:7	95				
1054	402	129	78				
1055	100	1/2.9	101				
1056	79	1/30	120				
11,57		1/3/	111				
105×	96	1/32					
1/1 < 1	27	1134					
1/01	97	1135	1/2				
1/ 1/2	95	1/36	114				
1/03	94	1137	112				
1104	95	1/38	1 115				
1/05	93	1/39	110				
1106	94	1/40	110				
1107	921	1141	108				
1108	90	1/42	1/3				
1109	91						
1/10	<u> </u>						
	40						
1/12		• • • • • • • • • • • • • • • • • • • •	· ·				
1/15							
1/15	88	Average Reading (ppm) =	100				

······································	VOC Emi	ssions Data She	eet			
Pase: 1/ 1/	C 0	. <u></u>	Date:	- Tul 95		
Source: $\pi_1 = 1 + \Lambda_{11} + \pi_{12} + \pi_{13} + \Lambda_{11} + \Lambda_{12} + \Lambda_{13} + \Lambda$						
Source. Later D	NET TO THE ALLE	<u> </u>		,		
Calibration Data: (N	lote - meter readings mi	ist be within ± 5%	6 of actual das co	oncentration	IS)	
Calibration Data. (it	iote « meter roudinge me		o or dottal. gab of			
	Gas Concentration	(mag)	Meter Reading ((mag	Time	
High Span.	C / 2	508	1209			
Medium Span:	50 b		501	500 43		
Low Span:	2 51		1 11		12 13	
Sampling Data:						
			T :	Deedin	- (2222)	
Time	Reading (ppm)			Reauling	1 (hhiu)	
1327	135		401	/ 32		
1328	135		140-	- 33		
1329	136		1403		<u></u>	
13 20	148		1404	1 - 1 - 1 - 1	2	
1331			1405	1.2	8	
1332	14/		1406	7.2	$\frac{0}{2}$	
1335			1401	150	<u>,</u>	
1334	132		17119	15	8	
1555	155		14/1	151	· · · · · · · · · · · · · · · · · · ·	
1 2 2 5 7	167		11/11	149		
1228			1412		156	
12 59	1.62		1112	1.57)	
1321	165		1014	145	-	
1341	160		1412	142	2	
134)	156		1416	140		
1243	155		1417	136		
1344	152		1418	134	5	
1345	152		14/9	134	t	
1346	150		1420	137	₹	
1347	148		1421	130	>	
1348	145		1422	130)	
1349	144		14:3	12	ζ	
1350	143		1424	13-	<u> </u>	
1351	148		1425	130)	
1352	153		1426	150	<u>†</u>	
1353	149		1421	13	ļ	
1354	147			<u> </u>		
13.55	144					
1356	140					
1357	138					
1358	1 39			1		
1527	174	Average Re	ading (ppm) =	14.1		
1400	1 75	, tronago i to		1 17 7		

PRELIMINARY SURVEY DATA SHEET NO. 1 (Stack Geometry)					
BASE	1 (a	PLANT	RI1 348		
DATE / Aun	95	SAMPL	ING TEAM		
SOURCE TYPE AND MAK	E SUE	I Inci	nerator		
SOURCE NUMBER		INSIDE	STACK DIAMETER	Inches	
RELATED CAPACITY			TY	refuel Natural bas	
DISTANCE FROM OUTSIC	E OF NIPPLE TO	INSIDE D	IAMETER	24.75 Inches	
NUMBER OF TRAVERSES	° 4	NUMBE	7, 5, 3,	and 1 respectively	
		OCATIO	N OF SAMPLING POIN	NTS ALONG TRAVERSE /	
POINT	PERCENT	OF R	DISTANCE FROM INSIDE WALL (Inches)	A TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inches)	
1			4''	28,75	
2	· · · · ·		10'	3475	
3			16 11	40.75	
4			22″	46.75	
5			2811	52,75	
6			34''	58.75	
7			40	64,75.	
· · · · · · · · · · · · · · · · · · ·					
			······································		
	· · ·				
				•	
·					
			. 56		

. .

	PRELIMINARY SURVI (Velocity and Te	EY DATA SHEET NO. 2 mperature Traverse)				
BASE Kelly AFB		DATE 8 Jah 95	start time 1444			
BOILER NUMBER / SUE Incinorator Bldg 348						
INSIDE STACK DIAMETER Trian gular	stack with Effective	l'amotor OF 28.01	Inches Areq of 8ft			
STATION PRESSURE		29.625	In Hg			
STACK STATIC PRESSURE	3 ന	,	In H20			
SAMPLING TEAM						
TRAVERSE POINT NUMBER	VELOCITY HEAD, VP IN H20	angle	STACK TEMPERATURE (⁰ F)			
1	0,301	17	620			
2	0,317	17	626			
3	0.265	14	627			
4	0.215	15	626			
5	0.155	7	625			
6	0.115	3	619			
7	0.100	0	616			
8	0.418	24	619			
9	0.308	1.9	622			
lv	b . 180	12	620			
1/	0,140	9	617			
12	0,135	9	614			
13	0.430	14	606			
14	0.350	8	616			
15	0.230	0	617			
16	6.360	0	597			
		<u>.</u>				
	AVERAGE 57					

OEHL FORM 16

₩S -

				Part	iculate Sam	pling Data SI	heet			-	
Date: 10	744 96		Nozzle Diam	leter: 0.	347 in	Pre Pitot Che	eck: מא		Sci	lematic of Sta	У
Base: K	110		Pitot Coeffici	lent, C_p : ρ ,	84	Post Pitot Ch	ieck: ₀ A		: (10401
Source ID:	WE INCH	or a lov	Meter Box Y	720 1 :		Pre Train Ch	eck: øK	(at 15 "Hg)	1 6	~ #	
Run Number	-		Meter Box A	H@: 1.14	f	Post Train C	heck: a K	(at <u>3</u> "Hg)		10 3 40	- Cuiding
Station Press	iure: 29_	305 "Hg	Meter Box #	: 6			Assumptions		2 91 2 191	100 1 8	115
Static Pressu	Ire: -0.1	"H ₂ O	Probe #: 6-	•		%H ₂ O: 8	MW _D :	29	101,107	in Ports	
Traverse	Sampling	Dry Gas	Gas Meter	r Temp, T _m	Stack	Velocity	Orifice Diff	Probe	Sample'	[/] Impinger	Vacuum
Point	Time	Meter Vol	Ľ	Out	Temp, T _s	Head, Δp	Press, AH	Temp	Box Temp	Outlet Temp	Pressure
Number	(min)	(ft ³)	(°F)	(°F)	(°F)	("H ₂ O)	("H ₂ O)	(°F)	(°F)	(°F)	(gH")
	0	188.053									
/	3.75		53	74	603	0.355	1.7	239	245	- 0 WASSI	2.5
7	7.50		78	hL	608	0.550	17	240	0/3 2.	CUUPLE	د .خ
~	1125		81	75	610	0.260	1.7	24/	242	+ " 2	5 7
4	15.00		83	76	611	0,10	1,7	174	イナイ	working	5,2
5	1875		86	17	609	0.175	1,1	242	243	` 	4
6	22 60		89	5/-	605	0.145	1.7	243	14 2		٢,٦
7	2642		68	78	709.	0.115	17	244	7 44		ک, ک
							•		-		
											ł
8	30.00	·	\$8	78	609	0.412	۲./	んちて	777		۲, ۲
6	35.55		6 8	79	10	1.275	1	147	てカマ		7
	· 37.50		9 0 0	79	× 11 1	0.151	17	レイ	7 42		1. 5)
	172		9/	80	611	0.128	1.7	242	7 (7		۲. ک
	u 5.00		92	80	b //	0.160	1.7	7 42	1/2-		2,7
-						-			-		
13	21817		89	80	6 00	0.461	17	741	243	-	57
71	52.50		16	81	607	0.360	1.7	てゆて	<u> </u>		2.2
1	5 6.25		7.6	81	6 0 X	5770	1.7	242	マカマ		ч. М
										, ,	(
16	60.00		90	٣	577	0 430		242	147	X	۲.>
		230.135								I MPihyers	
								-		K0pt	
										11-0-11	
										1000	
Total Gas V	01= 4 2	082	Avg T _m =	8 ک	Avg T _s = b	06	Avg AH =		Avg (P _s T _s) ^{ut}	11	
Nov 95									+		
		Meter Bo	x Operator:	K O	81,64			Signature:	KUM	U isner	

				Part	iculate Sam	pling Data SI	neet				
Date: 11	TAL UT		Nozzle Diam	eter:	0 347 in	Pre Pitot Che	sck: of		SC	nematic of Sta	<u>ы</u>
Base: Ko	110 452		Pitot Coeffici	ent, C _p : //	84	Post Pitot Ch	leck: $ ho$ $ ho$		709	1, # (, #	FPFEV .
Source ID: C		· · · · · ·	Meter Box Y _i	70 1 :	-	Pre Train Ch	eck: <i>nK</i>	(at 15 "Hg)	1, 24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	birldums
Run Numher:		- 12 (JL	Meter Box A	H@: 1 9	44	Post Train CI	heck: a K	(at <u>6</u> "Hg)		10 2 b	, , , , , , , , , , , , , , , , , , ,
Station Press		bH. 0 Ч.	Meter Box #:	9			Assumptions			-	
Static Pressul		0.H" 1,0	Probe #:	1-1		%H ₂ O:	MWD:		Camply 19	er tr.	
Traverse	Sampling	DIY Gas	Gas Meter	Temp, T _m	Stack	Velocity	Orifice Diff	Probe	Sample	Impinger	Vacuum
Doint	Time	Meter Vol	u	Out	Temp, T _s	Head, Δp	Press, AH	Temp	Box Temp	Outlet Terrip	Pressure
Niimber	(min)	(H ³) (Hul	(4°)	(°F)	(eF)	("H ₂ O)	("H ₂ O)	(°F)	(°F)	(°F)	(BH")
1001UDA											
	275		12	1 1	630	0.340	1.7	ノカー	ンケン	2.2	5.1
	1.12		U L	7 <	1 ~)	0,350	1 7	240	124	470	41
*	021		04	7, 1	1/1	0.285	5.1	2.41	イケイ	18	۲. ۲
~	1.25		0	1	8 2 1	2220	1.7	イン・	243	50	۲. ۲
8	15.00		91	14	4 × 4	0 185	11	、	732	51	ب ا
2	18.75		⊬ 1 × C	707	0 1	1, 2, 4		2 44 2	~ 5 ~	ر بر ا	5
9	12.50		8	- 1	b Sð	2112			2 2 2	~ U	2.6
4	26.25		84	17	- 75 q	0.11 2		<u> </u>	+		
			-				7	1 1 1 2	117 (54	0
ø	30.00		89	81	5 2 9	0.4/6		112			0
. 6	3755		9 2	82	638	0.285	1.1	2 4 3	2 4 4	2	. 1
. 5	27 50		44	83	636	0.144	1.7	546	7 22 4		
2	5117.		95	28	636	0.120	1.7	$hh\tau$	542	~ ~ ~	9.4
	4500		97	86	638	0.155	1.7	744	243	5	4 6
	2		_			-					١
,	3507		28	87	6 08	0.410	1.7	2 4.4	744	5	7.7
· · ·			00	8	1 6 3 2	0.348	1,7	243	7 4 3	20	۲.۲
>.	7		001	6. 4	6 3/	0170	1.7	243	イカイ	2	2.2
5	20.22		2	7							
			99	9.1	6/0	0 436	1.7	243	243	54	2.6
4/	60.00				- - - -		-		-		
		272.813		_							
				,							
			 				Ava AH =		Avg (P _e T _e) ⁰¹		
Total Gas Vi	n = 42.3	2,2	Avg Im =	8 5	SI RAL	54	0				
Nov 95		Meter Bo	x Operator:	R. 03	لا إه با		.1	Signature:	Ruber	r Vigues	

.

445	nauch	<u> u 96</u>		Dad	ticulata Sami	nling Data St	had		-		
						Ding Data Of	leet		100	of of of Oto	
	Jun 96		Pitot Coeffici	ent. C.:		Post Pitot Ch	eck: A K		5		5
Source ID:		rotorator	Meter Box Y		440	Pre Train Ch	eck: n k	(at 15 "Hg)	Tup 11.04	1 × 1 × + × ·	, e f o Y
Run Number:	~		Meter Box A	H@: /	444	Post Train Cl	heck: v K	(at <u> </u>			6 + 1 dins
Station Press	<u>ure: ביז,</u>	4/0 "Hg	Meter Box #	9			Assumptions		in al	s - s	 \.
Static Pressu	re: -0, ¹	<i>v</i> "H ₂ O	Probe #: (%H ₂ O:	MWD:	-	, / a 1412	اط به دلالم م	
Traverse	Sampling	Dry Gas	Gas Meter	r Temp, T _m	Stack	Velocity	Orifice Diff	Probe	Samplé	/ Impinger	Vacuum
Point	Time	Meter Vol	u	Out	Temp, T _s	Head, ∆p	Press, ∆H	Temp	Box Temp	Outlet Temp	Pressure
Number	(min)	(ft ³) (ft ³)	(F)	(°F)	(°F)	("H ₂ O)	("H ₂ O)	(°F)	(°F)	(°F)	(gH")
	0	273.327									
- - -	3.75		79	78	633	0,340	1.7	$\gamma \psi \chi$	ンクイ	58	۲. ۲
~	7.50		84	74	639	0.355	1.7	241	イガイ	5-1	2.4
~	11 ۶ ک		8 6	79	638	0.2.70	1.7	て/ち て	オオイ	22	2.4
7	10.00		88	79	641	0,240	1, 7.	¥ 4 >	トイン	トイ	۲, ۲
1	10.75		68	79	640	0.195	ľ, ť	ノオイ	7 17 7	5,2	۲, ۲
9	22.50		90	¢ Ø	634	0.150	1 1	ロカイ	243	. 5 <u>6</u>	۲. ۲
7	26.25		16	80	630	0.125	1.7	233	243	56	2.2
			-		•						
8	0002		8.7	80	631	0.415	1.7	2,40	トカト	57	5.1
6	23.75		b, 8	80	635	0,280	1.7	243	14/2	5-3	۲. ۲
01	37.50		90	80	الم الحريم	0,178	1.7	イカイ	243	5 1	シイ
	41.25		16	8 O X	635	25,10	1,7	243	てかて	5	۲. ۲
14	4500		16	80	635	0170	2.1.	242	777	15	2.5
							-			<u>`</u>	
~)	54.37		86	80	619	0.445	1.7	てカイ	747	i ک	3, 3
14	52.50		90	80	635	0.368	1.7	イカマ	てわて	21	3. /
15	۲66.25		90	60	633	0.250	1.7	57	24/	1-5	3./
							.	• • •			
/6	6 0,00		87	80	233	0.419	1.7	774	777	56	
		315.755									
										-	
Total Gas V(ו מדר נ	128	Avg T _m =	84	Avg T _s =	129	Avg ΔH =		Avg (P _s T _s) ^{0.t}	5=	
Nov 95)									
		Meter Bo	x Operator:	R. (16	rieu		I	Signature:	Racherit	10 Burn	-

						<u></u>	
SE	DAT	Έ.		RUN	INUMBER		
Kolly AFB		10 Jan .	16		4		
ILDING NUMBER			SOURCE NUM	ABER			· · ·
240			5	YEIN	icineratur	(•
2 ()		PARTI	CULATES				
		FINAL	WEIGHT	INITIAL	WEIGHT	WEIG	HT PARTICLES
	n 		6m) [·]	((gm)		(###
FILTER NUMBER							
ACETONE WASHINGS (P Half Filter)	robe, Front						
BACK HALF (il needed)							
		Tota	l Weight of Parti	culates Collec	ted		6
•			ATER			1	CICUT WATER
ITE	EM	FINA	L WEIGHT (fm)	INITIA	(gm)		(gm)
IMPINGER 1 (H20)		2	16	2	00		16
IMPINGER 2 (#20)		20	94	2	- 00		4
IMPINGER 3 (Dn)			0		0		0
IMPINGER 4 (Silice Gel) .	206	206 gm 2		- 00		6
-		Tot	al Weight of Wat	er Coliected			26
111.		G	ASES (Dry)				
ITEM	ANALYSIS	ANALYSIS 2	. AN	3	ANALTS 4		AVERAGE
VOL % CO2							
VOL % 02							
VOL % CO		·					
VOL Z N2				•	٤		•
		Vol % N2 = (10	0% - % CO ₂ - % (02 • % CO)			

ł

	AIR POLLUT	ION PARTICU	LATE ANAL'	TICAL D	ATA		
BASE	DAT	E		RU	N NUMBER		
Kelly AFB		11 3441	16				
BUILDING NUMBER			SOURCE NUM	BER			
- 348			50	1É I	ncinerator		
l		PARTIC	ULATES				
ITE	M	FINAL Y	NEIGHT n)	INITIA	L WEIGHT (gm)	WEIG	(gen)
FILTER NUMBER							
ACETONE WASHINGS (1 Hall Filler)	Probe, Front		·				
BACK HALF (if needed)							an general di second di seconda d
		Totol	Weight of Partic	ulates Colleg	ted		ĝin.
11.		AW	TER				
דו	EM	FINAL (4	WEIGHT fm)	INITI	AL WEIGHT (gm)	۱ 	(gm)
IMPINGER 1 (H20)		20	17	ĩ	00		7
IMPINGER 2 (#20)	<u></u>	2	00	۲	- 00		0
IMPINGER 3 (Dr.)	<u> </u>		0		0		D
IMPINGER 4 (Silice Ge	21	08	2	00		8	
		T o tal	Weight of Water	Collected	······································		15 em
111.	•	GA!	SES (Dry)				
ITEM	ANALYSIS 1	ANALYSIS 2	ANA	3	ANALYSIS		AVERAGE
VOL % CO2							
VOL % O2			·				
VOL % CO							
VOL % NZ					÷	-	
	_/	۷۵۱ % N ₂ = (100%	. % CO ₂ . % O ₂	2 - % CO)			

OEHL FORM 20

	AIR POLLUT	ION PARTICUL	ATE ANAL	YTICAL D	ATA	
BASE	DAT	E	· · · · · · · · · · · · · · · · · · ·	RU	N NUMBER	
Kelly AFB	b	11 Jan	96		3	<u></u>
BUILDING NUMBER			SOURCE NUM	BER		
348			5 4	EIn	cinerator	
•		PARTIC				
ITE	M	FINAL W	EIGHT		_ WEIGHT (gen)	(gon)
FILTER NUMBER					ŕ	· · · · · · · · · · · · · · · · · · ·
ACETONE WASHINGS (F Haii Fiitor)	Probe, Front		·			
BACK HALF (if needed)						
		Total W	eight of Partic	ulates Collec	ted	ĝm
II.		WA	TER			
176	EM	FINAL (8)	WEIGHT n)	INITIA	LWEIGHT (gm)	WEIGHT WATER (gm)
IMPINGER 1 (H20)		1	ጉ	2	.00	12
IMPINGER 2 (H20)		. 2	00	2	00	U
IMPINGER 3 (Dŋ)			0		0	0
IMPINGER 4 (Silica Gol	0	د	o 7	2	- U (J	7
	-	Total	Total Weight of Water Collected		•) 9 _{son}
10.		GAS	ES (Dry)			
ITEM	ANALYSIS 1	ANALYSIS 2	ANA	LYSIS 3	ANALYSIS 4	AVERAGE
VOL % CO2						
VOL % 02						
VOL % CO						
VOL % N2					ن	,
		Vol % N ₂ = (100%	- % C0 ₂ - % 0 ₂	2 • % CO)		
OEHL FORM 20						

START TIME STOPTIME OBSERVATION DATE SOURCE NAME Fuele Accessories Repair & Test Facility Jucinerator 1200 CST 1230 CST 10 JAN 96 sec sec ADDRESS 45 0 30 15 15 30 45 м ٥ 0 D 31 1 D D 0 0 32 2 0 0 ZIP STATE CITY Kelly AFB - TX 33 n 0 N 3 \cap SOURCE ID NUMBER PHONE 34 D 4 0 0 N OPERATING MODE PROCESS EQUIPMENT 35 5 0 \mathcal{O} 0 0 Thermal Dxid Er 70% 0 0 Alen Brody PLC-5 OPERATING MODE 6 0 36 Ø an brondie Ð 37 0 7 Oค DESCRIBE EMISSION POINT fan brick Stack located within the welled fenced area on the north side of bly 34B (FART Building) \bigcirc 0 0 38 8 Ο / HEIGHT RELATIVE TO OBSERVER HEIGHT ABOVE n 0 39 9 0 \cap GROUND LEVEL 307 30' 40 DIRECTION FROM OBSERVER \bigcirc \cap 10 \mathcal{O} DISTANCE FROM OBSERVER ଚ 250' · 320° 41 11 5 \mathcal{O} \cap \cap DESCRIBE EMISSIONS plume shape not visually detectable 42 Θ റ 12 ٠N 0 PLUME TYPE: CONTINUOUS EMISSION COLOR n 43 13 \mathbf{O} FUGITIVE D INTERMITTENT Clear 44 0 IS WATER DROPLET PLUME 14 0 WATER DROPLETS PRESENT ß 0 ATTACHED D DETACHED D YES NOK 45 Ο 15 \cap \mathcal{O} \bigcirc AT WHAT POINT IN THE PLUME WAS OPACITY DETERMINED O О 46 suct above stack tip 16 D 0 DESCRIBE BACKGROUND blue sky with scattered white cirruis clouds Ø 0 47 17 A 0 Scatterer bigh mosty clear (scatterer high cirrus dours) * О 48 N 18 Ń BACKG ROUND COLOR Blue 49 WIND DIRECTION \mathcal{O} 19 Ð n \cap WIND SPEED E 150° Ð 50 \cap \mathbf{C} 20 0 5KTS RELATIVE HUMIDITY AMBIENT TEMPERATURE \mathbb{O} 51 \bigcirc 21 \bigcirc 64° F \cap 6270 Ŕ DRAW NORTH ARROW 0 52 BLDE n \bigcirc 22 \mathcal{O} SOURCE LAYOUT SKETCH Faised -8106 348 Fifelin 0 53 ଚ 0 С 23 FUEL ACCESS DRIFS T ମ ଚ 54 AEPNIA : TEST 24 0 0 4 0 55 \cap FACILITY X EMISSION POINT Ð n 25 56 FENCE Ø 0 26 Ð Ø STREET 57 0 \cap 27 0 0 58 0 0 28 \cap Ξ. SUN SHADOW 59 D 0 0 29 0 SUN SHADOW LINE 60 С 30 Ю (0) 10 NUMBER OF READITIES ABOVE AVERAGE OPACITY FOR HIGHEST PERIOD OBSERVERS POSITION Ο % WERE RANGE OF OPACITY READINGS COMMENTS ()MAXIMUM () MINIMUM OBSERVER'S NAME (PRINT) THOMAS C. MOORE DATE OBSERVER'S SIGNATURE 10 man 96 Morras C. Mare ORGANIZATION U.J. Air Force (ALLOEBA) ٤. Philip J. Clark (TNACC) DATE I HAVE RECEIVED A LOPY OF THESE OPACITY OBSCHVATIONS 155495 SIGNATURE DATE VEHILIED BY DATE TITLE

VISIBLE EMISSION OBSERVATION FORM

START TIME STOP TIME OBSERVATION DATE SOUNCE NAME USAF 10:30 CST CSF 11:00 11 Jan 96 Fuel Accessories Acpairs Test Facility Inconerator sec sec ADDRESS 45 ٥ 15 30 45 15 30 м 0 0 \cap 0 31 ට 1 32 0 \mathcal{O} 2 \cap 0 STATE . ZIP Kelly AFB TX 0 0 33 0 3 0 SOURCE ID NUMBER $\overline{\mathcal{O}}$ · @ PHONE D 34 4 n OPERATING MODE PROCESS EQUIPMENT Ð D О 35 Ð 5 70% Thermal Dridizen CPERATING MODE 36 6 ก 0 0 Alten Bradley PLC-5 Altoriotic 37 7 д DESCRIBE EMISSION POINT (Squarestack with triangular isside) tan brick incinerator stack located in fenced/walled area or northside of blog n 0 38 Ю 0 8 0 HEIGHT RELATIVE 0 HEIGHT ABOVE 39 ÷ 9 \mathcal{O} GROUND LEVEL 30 30' 40 ·n Ð DIRECTION FROM OBSERVER 10 О Ø DISTANCE FROM OBSERVER 3200 0 О 250 0 41 11 0 emission/plume characteristics not visually D 42 Artecho ble 12 D D A CONTINUOUS 0 43 13 0 \mathcal{O} 0 FUGITIVE INTERMITTENT clear 0 ... 0 0 IS WATER DROPLET PLUME 14 0 WATER DROPLETS PRESENT ATTACHED D DETACHED B YESD NOX 45 0 15 0 0 0 AT WHAT POINT IN THE PLUME WAS OPACITY DETERMINED *'6''* 46 just above stack tip D 0 16 2 Δ DESCRIBE BACKGROUND CLEOR SKY UISome light have in distance 47 D Ð 17 \hat{U} О * 48 \mathcal{D} BACKEROUND COLOR 18 0 С clear wisome have along light blue SKY 49 19 \mathcal{D} 0 O0 herizin WIND DIRECTION WIND SPEED 0 О 50 0 Ø 20 8360 16 KB RELATIVE HUMIDITY AMBIENT TEMPERATURE 0 О 51 21 31% (sr=29,460) DRAW NORTH ARROW 630 52 O n 0 22 SOURCE LAYOUT SKETCH ELEVAND Ineline-BL60 34 53 23 ${}^{\circ}$ \mathcal{O} 54 24 Ο Ð 0 55 0 へ 0 N POINT 25 Ð 56 Ð Ð 0 0 26 57 д \bigcirc ก 27 ര STREFT 1 58 cD 6 28 SHADOUT 59 0 29 Λ DOW LINE SUN SHA 60 (\mathcal{C}) D 30 NUMBER OF READINGS ABOVE AVERAGE OPACITY FOR HIGHEST PERIOD ંછ OBSERVERS POSITION % WERE RANGE OF OPACITY READINGS COMMENTS O MAXIMUM · · · • OMINIMUM. OBSERVER'S NAME (PRINT) MODAE الم الموادينية بينا المراجع المراجع الموادي الم DATE OBSERVER'S SIGNATURE 11 Jan 46 Thomas C. More ORGANIZATION (AL OEBA, Brooks AFBTX) USAF ۰.

VISIBLE EMISSION OBSERVATION FORM

CITY

65

I HAVE RECEIVED A COPY OF THESE OFACITY OBSCHVATIONS

DATE

SIGNATURE

TITLE

CERTIFIED BY

VEHILLED BY

Philip J. CLARK (TNACC)

DATE

DATE

15 Sep 95
			OBSERV	ATION	DATE		START	TIME		STOP	TIME	
SOUNCE NAME	ir STAL	Faulth Incinember	11	Jan	95		1:4	/s c	s /	2:	150	c s/-
ADDRESS		Mulling - Chickeyee	sec M	0	15	30	45	Sec M	0	15	30	45
				0	D	n	\cap	31				
		710	2	0	$\hat{\mathcal{O}}$	0	$\overline{\mathcal{O}}$	32				1
CITY ICOLLY AFA	TX	211	-			0		33				
PHONE	SOURCE	ID NUMBER		$\overline{}$		0	$\frac{\partial}{\partial}$	34				
PROCESS EQUIPMENT	<u> </u>	OPERATING MODE			\sim	\mathcal{O}						
Thermal Oxidizen		70%	5	D	0	0	0	35				
Allen Broddey PLC - 5		OPERATING MODE	6	0	Ð	D	0	3.6				
DESCRIBE EMISSION POINT 14	quare Sto	(K with triongular inside)	7	\mathcal{O}	0	Ð	0	37			<u> </u>	<u> </u>
incinevator stack located in fr	need /wel	led orea on north side	8	$\overline{\mathcal{O}}$	<u>.</u> 0	5	Ο	38				
HEIGHT ABOVE	HEIGHT	RELATIVE of DIAJ 343	9	б	0	0	0	39				-
30 DISTANCE FROM OBSERVER	DIRECT	UN FROM OBSERVER	10	0	Û	D	0	40				
250'	3	320°	11	0	0	0	0	41		·		
emissimbelium character	istics n	ot visually detectable	12	Ñ	0	0	0	42			<u> </u>	
EMISSION COLOR	PLUME	TYPE: CONTINUOUS	13	7	0	D	0	43			<u> </u>	1
CIEM.	FUGITI	R DROPLET PLUME	14	<u></u>	6	0		44	İ	1		1
NO X YES	ATTACH	HED D DETACHED D	15	<u>,</u>			$\overline{0}$	45	1			1
AT WHAT POINT IN THE PLUME W	AS OPACI	TY DETERMINED					0	46				1
JUST ROOVE SINCE	PC	-						47	<u> </u>	1	1	1
Clear sky	T		<u> </u>					42	*			<u> </u>
BACKGROUND COLOR Blue SKA.	SKY CO	PAY			$\left \begin{array}{c} 0 \\ \alpha \end{array} \right $	10	$\frac{0}{2}$			+	+	1
WIND SPEED	WINDD	IRECTION	1 19	$ \mathcal{O} $		v			+			
IS KIS	RELATI	340 VE HUMIDITY	20	0		0	$ \underline{\partial}$	50		+		1
68°	14%	6 29.410	21			10	0	51	1		+	1
SOURCE LAYOUT SKETCH Elevated	11 2	DGDRAW NORTH A'RROW	22	0	0	0	10	52				1
BLOG IT	IM V	$(\land$	23	0	0	0	0	53	<u> </u>		<u> </u>	
U Martin	IAN		- 24	0	0	0	0	54	<u> </u>		<u> </u>	<u> </u>
	PEMISSI	ON POINT	25	0	0	D	0	55	<u> </u>		<u> </u>	
- HA	H	CINEET	26	0	0	0	0	56	<u> </u>		<u> </u>	<u> </u>
renue D	书刊		27	0	0	<u> </u>	G	57	<u> </u>			
	1		28	0	0	0	0	58	<u> </u>	<u> </u>	<u> </u>	<u> </u>
		SVN SHADOW	29	0	0	0	0	59			<u> </u>	
SUN SH 10	ADOW LI		30	0	Ð	0	0	60				
		RVERS POSITION	AVERA	GE OP	ACITY	FOR		NUMB	EROF	READI	IIGS A	BOVE
COMMENTS	HTS	······································	RANGE	OFO	PACITY	READ	INGS	1		76 WI		
					MIN	MUM	.:		MAXIN	AUM		
			OBSEH	VER'S	HOMI	1841N. 95	C. N	100R	E			
			OBSER	VER'S	SIGNA	TURE	Mar		DA	re I Ja	~ 9	6
	•		ORGA	IK AL	00 70 00 0 N	ar 11	DELO	<u> </u>		AFB	<i>τ</i> ×,)
I HAVE RECEIVED A COPY OF TH	ESE OPA	LITY OBSCHVATIONS	CERTI	V> / F	Y I	<u>n / (</u>	/	, 9.0		TE		
SIGNATURE		DATE	VEHI	Phili	<u>p J.</u>	Clark	(TN	49		15 Se	y 45	
TITLE		DATE	<i>22</i> ,							-		

VISIBLE EMISSION OBSERVATION FORM

			EN	ERAC Fiel	d Data She	et		
Deney k	11 1 ()					Deter	·	
Base: <u>A e</u>	117 4FB	. 1				Date: n	TAN	······································
Bun # /	JUE 7	ncinerat	(Y					
Fuel Type							····	
Recorders	Name:	-11					· · · · · · · · · · · · · · · · · · ·	
ILECOIDEI 3		/46						
Calibration	Informatio	<u>)n: <!--</u--></u>	31000	2106	Madel	300	Cold by	· An TAGMAN
Campranon					1.00.1		Caro pa	- / Kg UNSPAIN
Date/Time /	Analyzer wa	s last zero	ed: 103	AN 1133	 7			
Date/Time /	Analyzer wa	as last calib	rated: 9	AN/22	59			
							<u></u>	
Sampling I	Data: (Not	e - readings	s should be	taken at 2-	minute inte	rvals)		A matin an
Time	O ₂	CO	SO ₂	CO ₂	NO	NO ₂	NOX	Comments
	(%)	(ppm)	(ppm)	(%)	. (ppm)	(ppm)	(ppm)	
1416	18.8	95	3	1.6	25	6	25	<u> </u>
18.	18.8	93	3	1,6	25	0		
Z0	18.8	94	3	1.6	25	0		1
	18.8	93	3	1.6	25	0		· /
24	18.8	95	0	1,6	25	0		
26	18.8	97	0	1.6	25	0		
Z \\$	18.8	97	0	1.6	25	0	1	
.30	18.8	97	3	1.6	25	0	!	
<u> </u>	18.8	9.3	0	1.6	25	<u> </u>		
34	18.8	90	3	1.6	25	0		·
36	18.8	90		1.6	25	0	;	
38	8,8	89		1.6.	20	0		
40	17.6	90	<u>ు</u>	1.6	25		;	
	12.2	71	2	1.6	25			
74	10.0	90		1.6	25		L	Grand Inly
<u> </u>	10.7	90	~ ~	1.6	25			
50	18.8	90	 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.6	77			
57	18,9	90	3	1.6	27	0		
54	18.8	89	.3	1.6	27	0		· · · · · · · · · · · · · · · · · · ·
.56	18.8	89	3	1.6	27	0		1
58	18.9	88	3	. 1.6'	27	0		
1500	18.9	90	3	1,6	27	0		· · · · ·
OZ	18,9	90	.3	1.5	72	0		:
04	18.9	88	3	1.5	27	0		
06	18.9	87	3	1.5	25	0		•
08	18.9	90	3	1.5	25	0	<u> </u>	1
0	18,9	90	3	1,5	26	0	<u> </u>	
	18,9	88	3	1.6	27	0	+	ļ/
14	18.9	86	<u></u>	1.5		0		
16	- 18,9	83	3	1.5	27	<u> </u>	₩ ₩	<u>↓ </u>
Average =	18 9	91	3	1.6	26	0		
Nov 95	10,0					Y		-MAT
	Operator:	Superinte	dent, Air C	uality and	-	Signature	· An	Mynt-
•	•	Baserdo	ns Waste Br	ranch	57			/

ENERAC Field Data Sheet

Date:

11 JAN 96

KELLY Base:

Zncinerator Source: SUE ス

Run #:

Fuel Type:

Recorder's Name: JAG

Calibration Information:

11 JAN/1139 Date/Time Analyzer was last zeroed: 12259 Date/Time Analyzer was last calibrated: 9 JAN

Sampling Data: (Note - readings should be taken at 2-minute intervals)

Time	02	CO	SO ₂	CO ₂	NO	NO ₂	NOX	Comments
	(%)	(ppm)	(ppm)	. (%)	(ppm)	(ppm)	(ppm)	
1155	18.7	133	0	1,7	25	0		
57	18.7	128	0	1.7	25	0		
59	18.6	121	0	1,8	28	0		
1201	18,4	116	0	1,9	34 -	0		· · · · · · · · · · · · · · · · · · ·
03	18.5	114	0	1.8	29	0		
05	18.7	118	0	1.7	27	0		
07	<i>٦،8</i>	115	0	7.1	27	0		
09	דיאן	111	0	1.7	27	<u> </u>		
11	18.6	107	0	1.8	31	0		
13	18.4	100	0	19	35 -	0		
15	18,6	102	. 0	1.7	78	0		
7 ر	17.7	104	0	1.6	27	0		
19 .	18.7	104	0	1.6	<u> </u>	0		
Z1	18,8	102	0	1.6	27	0	ļ	
23	18.6	97	0	1.8	31	0		
25	18.4	93	6	1.9	36 v	0	ļ	
27	18.7	97	0	1.7.	<u> 78 -</u>	0		
29	18.8	104	0	1,6	27	0		
31	18.8	10Z	0	1.6	Z7	10		
33	18.7	104	0	1,6	28	0	<u> </u>	
35	18.6	102	0	1.7	31	0	<u> </u>	
75	18.5	106	0	1.8	35 1	0	<u> </u>	
39	18.5	109	0	1.8	35		<u> </u>	
41	18.7	110	0	1.6	28	0		
43	18.8	113	0	1.6	27	0		
45	18.8	112	0	1.6	27	0.		
47	18,8	109	0	1.6	27	0	<u> </u>	1
49	18.8	106	0	1.6	<u>Z.7</u>	0		
. 51	18,8	106	0	1.6	27	10		<u></u>
53	18.8	106	0	1.6	27 .	<u>· 0</u>		
55	18.7	106	0	1.7	30	0		
A	<u></u>					+		
Average =	18.7	1 108		1 1.7	129	1 0		ACIT
NOV 95	Onorotor				-	Signature	· Ki	71 - 11 -

Operator: KURT D. JAGIELSKI, MSgt, USAF Superintendent, Air Quality and Hasardous Waste Branch 6 68

			EN	ERAC Field	I Data Shee	et		· · · · · · · · · · · · · · · · · · ·
Rase.	KEIIY				[Date: //	JAN 96	
Source:		1 in rat	UV			<u> </u>		· · · · · · · · · · · · · · · · · · ·
2un #:	3	<u>c/ve/n</u>	<u></u>				·····	
uel Type:	<u> </u>							
ecorder's N	lame: T	AG						
Coorder 5 T								
alibration	Informatio	n:						
ate/Time A	nalyzer wa	s last zeroe	ed: //-	TAN/1426				
ate/Time A	nalyzer wa	s last calibi	rated: 93	TAN / 225	9			
			•					
ampling D	ata: (Note	e - readings	should be	taken at 2-r	ninute inter	vals)	·	
Time	0, 1	co	SO2	CO ₂	NO	NO ₂	NOx	Comments
	(%)	(nnm)	(nnm)	(%)	(npm)	(ppm)	(mqq)	
	100	(1)			27	~	w.r.vy	
<u>144Z</u>	18.8	66		1.0	- 26	0		
- 44	18.8	6.0	0	1,6	<u> </u>			
76		-62	0	1.5	- 68	0		
48	19,0	62	0	1.5	21	0		
50	18.8	60		1.0		0		
52	18.6		<u> </u>	1,7				
54	18.6			1.7	<u>58 /</u>			
56	18.9	59		1.5	200	<u> </u>		
58	19.0	58	0	1,5	28	0	·	
1500	19.0	58	0	1.5	21	0		······································
50	19.0	57		1,5	27.	0		
	18.9	58	0		24	0		<u></u>
0%	18.7	53	0	1,6	31.	0		
08	18.8	53		1.6		0		
	18.8	53	0	1.6	34	0	· · · ·	
12		48		1.7	367	0		
14	<u>19.0</u>		0	1.5	28_		++	
16	18.9	.53	0	1.3	28	0		· · · · · · · · · · · · · · · · · · ·
18	18.9		0	1.6	32			· · · · · · · · · · · · · · · · · · ·
20	18.8	51	0	1.2	30	0		
22	. 18.8		<u> </u>	1.6	37	0		
24	18.8	.53	0	1.6	37	0	+ +	
26	18.9	- 51	0		57			
28	18.8	5	0	1-1-6-	33			
	18.8	48	0	1.6	33/			
32	18.8	49	0	1.6	32			
34	19.0	53		1.5	18			
36	18.8	50	-0	1.6	33			
38	18.8	48		1.6	33	<u> </u>		
40		<u></u>	0	1.5		<u>+ 0</u>		· · · · · · · · · · · · · · · · · · ·
4Z	18,8	48	<u> </u>	1.6	7/	+0		
Average =	19 8	<u> </u>		1 1 6	31	0		
Nov 95	10.0	$\rightarrow T$		1.1.9		1	- ~	-A-II-
	Operator:	KURT D.	JAGIELSK	I, MSgt, USA Quality and	LF -	Signature	<u> </u>	Mall -

		VOC Emiss	ion	s Data Sh	eet			
20001					Date: 10	1AN 96		
	KELLY AFB				Run #: /			
	TNLINERATIR	· · · · · · · · · · · · · · · · · · ·				·····		
alibrati	on Data: (Note -	meter readings should be v	vith	in ± 5% of	actual gas conce	entrations)		
		Gas Concentration (ppm)		Meter R	eading (ppm)	Time		
7.1.11	Zero:	A	\dagger		C A	1287		
74=4	High Span:	8 W 2	\top		882	1312		
6 9	Mid Span:	.491			49.7	1314		
	Low Span:	24.4			252	1316		
<u> </u>	Line chark	using High Soun	6	as; 8	5.0			
<u>> yr e</u>	n Data: (Note - r	eadings should be taken at	1-r	ninute inter	vals)			
ampin	g Dutu: (Hoto I							
Time	Reading (ppm)	Comments		Time	Reading (ppm)	Co	mments	
1/1 • 17	// 4	·		14:48	14.2			
7.10	16.7			49	14.2			l
<u> </u>	161 U			E n	14,2			ļ
18	15.4			51	13.6			
19	13.4			52	14,6			
2.	<u>Ι</u> τ.Ψ			93	14.1			
20	15.1			54	13.9			
- 12	15.6			55	13.7			
23	17.7			56	13,7			
24	17.7			57	13.2]
20				5%	13.5]
26	10 10			14: 59	13.5		4	
27	18.0	-	Ĩ	15:00	13.2	TNRINER	ATAR TEMP WA	
00	19.9			15 : 01	13.0	INCRE	LED BY 200	
<u> </u>	17.4			02	13.0	DURNY	PERIOD SO D	ECR
4:30	12.0	TIM		(03	12.6	IN REI	POINGS SHOULD	BE
	17,9	TALSERIE		04	12.7	OBSER	160	
	16.7			05	12.6	Fuel rate	also instard	
	15.5			DL DL	12.5	trom 10	to 109 pph	
<u> </u>	1/1 9	· · · · · · · · · · · · · · · · · · ·		07	13.4	· ·	· · · · ·	
	19,1			m3	13,3			
	1217	1	- Ř	1)9	12,9]
<u> </u>	<u> </u>	1		1/2	12.9	1		
58	15 3			11	12,9			
				12	12.6			
<u> </u>	151			15	12.8			_
<u>- 41</u>	, C L			14	12.8			
<u></u>	17.0			15	12.6	,		_
	14.8			16	13.0			
-1-1 1/6	14 8	1 1		17	13.2			
41	14.1		Î	18	12.7			
14.112	14.11	<u>,</u>		19	13.2			
11077			E	Average	- 111-1			1
				Average	-1 14.1			

		VOC Emissio	ons	s Data She	et		
Base:	KELLY AFB	· · · · · · · · · · · · · · · · · · ·			Date: // J	IAN 95	
Source:	INCINERATO	<u>~</u>			Run #: 2		
Oslibustion	Data: (Noto	motor readings should be w	ithi	n + 5% of a	ctual das conce	ntrations)	
Calibration	Data: (Note -	meter readings should be w					· · · · · · · · · · · · · · · · · · ·
	· · ·	Gas Concentration (ppm)	T	Meter Re	ading (ppm)	Time	
	Zero:	0	+	4	0	10:32	
····	High Span:	80.2		84	Ŋ. Z	19:40	
	Mid Span:	49.6		40	7,6	10:45	
	Low Span:	24.4		و هم	T. O	10:51	I
	SYSTEM	BIAT CHECK 80.3		5	1./	11:26	
Sampling	Data: (Note - re	eadings should be taken at 1	-m	inute interv	als)		<u></u>
Time	Peading (nom)	Comments		Time	Reading (ppm)	Co	mments
		Commento		12.27	6 Q		
11:59	/3./			12:29	1.5		
1.157	18.3			29	7.8		
11:58	10.7			30	7.6		
11:51	10.1	,		31	7.8		
12:00	Ø,Ø			్రెసి	8.7		
:01	8.8			53	8.7		
02	8,4			<u>5</u> 4	9.6		, <u></u>
03	8.5			35	8,4		
<u> (// 4</u>	8.4			56	9,2		<u></u>
<u>(† 5</u>	<u>9.5</u>			<u> </u>	<u>7.2</u> au		
<u> </u>	0.7			<u></u> ₹4	89		
<u>67</u> 115	<u>8.0</u> 45	· · · · · · · · · · · · · · · · · · ·		40	10.2		
<u>00</u>	3,1			41	10.7		
10	7.5			72	10.9	·	
11	7.4			-43	11.1	***	
12	7,7	·		44	10,7		
/3	7.3			45	10.8		
14	7,9	······································		<u> </u>	$1\varphi_{i+1}$		
15	6.9			17	1016		
16	+ 9			479	10.8		
14	7.U			50	10,8		
19	7.1			51	10.9		
20	7.4			52	14.8		
21	7,7			53	11,4		
22	7,4			54	11.6		
23	7,2			55	11.1		
24	7.5			56	11.2		
25	1 7,5			57	10.7		· · · · · · · · · · · · · · · · · · ·
12:26	+.4			Average =	91		
L		1	998) 	, tronago	<u></u>	<u> </u>	

Nov 95

Operator:

KYLE BLACH

Signature:

Kyle Black

		VOC Emis	sion	s Data She	eet	· · · · · · · · · · · · · · · · · · ·	
Decei					Deter	A / 9/	
Base:	KELLY AFB				Date: γj	AN 76	
Source:	TNCINE	Q 470 C.		· ·	Run #: 3		
Calibratio	n Data: (Note -	meter readings should be	e with	in ± 5% of	actual gas conce	entrations)	
			<u></u>				
	Zoroj			MeterR	eading (ppm)		
	Zero:	0		<i>(</i>)	0	1346	
	Mid Span:	<u> </u>		50	p. 2	1350	
	Low Span:				<u>9.9</u> u a	1353	
	Low Opan.	~~,4		σ	<u> </u>	1329	
Sampling	Data: (Note - r	eadings should be taken a	at 1-n	ninute inter	vals)		
Time	Reading (ppm)	Comments		Time	Reading (ppm)	Co	nments
14:42	7,7			15:14	7.6		
43	7.7			15	7.3		
44	7,8			16	7,4		
45	7,9			17	7,9		
44	7.0			18	8,5		
47	7,4			19	9.5		
43	7.4			20	8.Φ	,	
49	2,3			21	8.2		
50	8.2			22	8.5		
51	8.6	·		23	8.0		
58	9.7			भुन	<u>8,</u> Ø		
53	9,2			25	7.8		
54	90			2/,	7,7		
55	2			27	<u>8.</u> Ø		
55	7.4			22	8.4		
57	7.5			्रीय	<u>8. </u>		
58	7.3	4		312	7.8		
59	7.8			21	7.9		
15:00	7.6			32	7.8		
<i>Q</i> /	<u>8.0</u>			33	7.5		
00	8.2			34	-+,6		
$\varphi \varsigma$	9.1			25	$\frac{1}{7}, \frac{1}{7}$		
09	9.1			36	8.0		
	<u> </u>			24	<u>β</u>		
<u>(115</u> 11-2				30			
10 T 14 4	8.8			40	7.6		
19	86			41	8.4		
10	9 m			412	7.8		<u></u>
11	9 0			42	8.0		······································
,2	80			<u>, , , , , , , , , , , , , , , , , , , </u>	8.4		· · · · · · · · · · · · · · · · · · ·
19:13	7.0			15:45	7.6		
	··· T			Average =	81		
New OF	L			·		La contraction de la contracti	

Operator: <u>KYLE BLASCH</u> · Sthuarch 1/11/96

Signature:

Kyll Ahal

Calibration Fluid Consumption During Emissions Testing of SUE Incinerator

Average Fluid Flow Rate Reading (pph)	108	101	108
End Fluid Flow Rate Reading (pph)	107	107.2	107.5
Initial Fluid Flow Rate Reading (pph)	(67	1075	108.1
Fuel Consumed (1b)))	108
End Fluid Reading (1b)	Nut Recorded	Not Recercled	19307
Initial Fluid Reading (1b)	Not Locorded	Not Recorded	19194
Sample Run #	1	2	3

Incinerator Burner Temperatures During Emissions Testing of SUE Incinerator

Average Burner	Temperature (°F)	-	1515	1520
End Burner	Temperature (°F)	Not Rocarded	اک ک ط	152.0
Initial Burner	Temperature (°F)	Not Recorded	1510	15-2 d
Set Burner	Temperature (°F)	0171	1 51 2	-5131
Sample	Run #		5	3

Sampling Date/Time

APPENDIX E

Calibration Data

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

:	Barometric	pressure,	$\frac{P_b = \mathcal{J}}{2}$	<u>3.990</u> in. T	Hg Ca	librate pres	d by <u>L</u>	10661	<u>ns/J</u>	<u>/T (c.</u>
:	Orifice manometer setting (ΔH), in H.O	Wet test meter (V _w), ft ³	Dry gas meter (V _d), ft ³	Wet test meter (t _w), °F	Dry Inlet (t _d), [°] F	gas met Outlet (t _d), °F	er Avg (t _d), °F	Time (Θ), min	Y _i	∆H@ in. H ₂ 0
5	0.5	5	4.99	72	79.5	74.5-	77	12.85	1.010	1.903
د ح	1.0	5	4.98	72	86	77	82	9.13	1.020	1.904
ک ک•ک	1.5	10	.9.995	72	91.5	80.5	86	15.24	1.023	1.975
	2.0	10	10.05	72	98	85	92	13.23	1.027	1.963
. ()	3.0	10	10.075	72	102	87.5	95	10.81	1.028	1.955
y. (4.0	10	10.085	TI	104	88.5	96	9.39.	1.026	1.963
• 5	. <u></u>	· · ·					•.	Avg	1.022	1.944
	$ \begin{array}{c c} \underline{AH}, & \underline{AH}\\ in. & \underline{AH}\\ H_2 0 & 13. \end{array} $	$\overline{6}$ $Y_i = \frac{1}{V_i}$	$\frac{V_{w} P_{b}(t)}{(P_{b} + \frac{\Delta H}{13.})}$	$\frac{d}{d} + 460$) $\frac{1}{6}$) (t _w + 4	ДН (60)	$e_i = \frac{0}{P_b}$	$\frac{0.0317}{(t_d^{+})}$	<u>AH</u> 460)	$\left[\frac{(t_w + t_w)}{v_w}\right]$	460) 0 460) 0 2 2 2 2 2 2 2 2 2 2 2 2 2

a If there is only one thermometer on the dry gas meter, record the temperature under t_d.

72+460

72+460

1460

. +460

72+460

5×28.11

78.

28.99

10

10

10

10-085

0.0737

0.110

0.147

0.221

0.294

1.0

1.5

2.0

3.0

4.0

(8)+440

(81+460)

8.99+4

192+460

8.9972

99 (95+40)

10,075 (28.99+3/13.6)

10×28.99 (96+460)

+1-0/13.6

13.

/13.6

+1.5

.0317(1)

+0317(1.5)

. 0317

•031

Q . 44

+ 0317.

2.10

2.8

99(82+460

8,99 (86+460

(م)

92+460

3]

76

Quality Assurance Handbook M5-2.3A (front side)

(72+460

(72

15.24

(13-46) 13-23

72+4601

(72+460

2

10.8

9.34

NOZZLE CALIBRATION DATA FORM

Kelly AFB Exhaust sampling of SUE Incinerator

Date 9 Jan 96

_ Calibrated by <u>R. O'Brien</u>

Nozzle	N	ozzle Diam	eter ^a	Ъ	C
identification number	D,, mm (1n.)	D ₂ , mm (in.)	D ₃ ; mm (in.)	ΔD, ² mm (in.)	Davg
28	0,346	. 0.347	0.347	0.001	0,347
•					
· · ·					
			- -		

where:

b

^aD_{1,2,3}, = three different nozzles diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

 ΔD = maximum difference between any two diameters, mm (in.), $\Delta D \leq (0.10 \text{ mm}) 0.004 \text{ in.}$

 $D_{avg} = average of D_1, D_2, and D_3.$

6-1 TYPE S PITOT TUBE INSPECTION DATA FORM

1 Apr 43
Pitot tube assembly level? yes no
Pitot tube openings damaged? yes (explain below) no
$\alpha_1 = \underline{\qquad } \circ (<10^\circ), \alpha_2 = \underline{\qquad } \circ (<10^\circ), \beta_1 = \underline{\qquad } \circ (<5^\circ),$
$\beta_2 = \underline{1.5}^{\circ} (<5^{\circ})$
$\gamma = \underline{0}^{\circ}, \Theta = \underline{1,0}^{\circ}, A = \underline{(0,gbb)}^{\circ} \text{ cm (in.)}$
$z = A \sin \gamma = 0$ cm (in.); <0.32 cm (<1/8 in.),
$w = A \sin \Theta = (0, 015)$ cm (in.); <.08 cm (<1/32 in.)
$P_{A} = (o.433) cm (in.) P_{b} = (o.433) cm (in.)$
$D_t = (0.372)$ cm (in.)
Comments: <u>calibrated by Obrien and Jagielski</u>
Calibration required? yes \vee no

Quality Assurance Handbook M2-1.7

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

Thermocouple number ____6-1 Date > Apr 93 Ambient temperature <u>22.2</u>°C Barometric pressure <u>29.250</u> in. Hg O'Brich/ Reference: mercury-in-glass <u>ASTM 3F</u> Calibrator Jugidski other Thermocouple Reference Temperaturec potentiometer thermometer Reference Source^b difference, temperature, temperature, point number^a % °C °C (specify) Ice water 0,40 1.1 0.0 0 0 35 Boiling water 99.V 100.6 100 0.96 Heated 304.4 298.9 corn oil

^aEvery 30°C (50°F) for each reference point.

^bType of calibration system used. ^c $\left[\frac{(ref temp, °C + 273) - (test thermom temp, °C + 273)}{ref temp, °C + 273}\right]$

100<u><</u>1.5%.

Quality Assurance Handbook M2-2.10

APPENDIX F

HP 41 Program Printouts

Kelly AFB	KellYAFB	Felly AFB
Incinerator Testing Run 1 10 Jan 96	Incinerator Testing Run - 11 Jan 96	Incinerator Testing Run 3 18 3An 96
XROM "METH 4" METER BOX Y? 1.0220 RUN DELTA H? 1.7000 RUN BAR PRESS 29.3050 RUN METER VOL 2 42.0820 RUN MTR TEMP F? 42.0820 RUN X OTHER GAS REMOVED BEFORE DRY GAS METER ? STATIC HOH IN ? -2000 RUN STACK TEMP. 606.0000 RUN 26.0000 RUN	XROM "METH 4" METER BOX Y? 1.0220 RUN DELTA H? 1.7000 RUN BAR PRESS ? 29.4600 RUN METER VOL ? 42.3230 RUN MTR TEMP F? 85.0000 RUN X OTHER GAS REMOVED BEFORE DRY GAS METER ? RUN STATIC HOH IN ? 2000 RUN STACK TEMP. 632.0000 RUN ML. WATER ? 15.0000 RUN	XROM "METH 4" METER BOX Y? 1.0220 RUN DELTA H? 1.7000 RUN BAR PRESS ? 29.4100 RUN METER VOL ? 42.4280 RUN MTR TEMP F? 84.0000 RUN X OTHER GAS REMOVED BEFORE DRY GAS METER ? STATIC HOH IN ? 2000 RUN STACK TEMP. 629.0000 RUN ML. WATER ? 19.0000 RUN

IMP. % HOH = 2.9 % HOH=2.9

IMP. % HOH = 1.7 % HOH=1.7

1

IMP. % FOH = 2.1 % HOH=2.1

HP 41 "METH 2" Program Printout for Exhaust Stack Sampling Run 1

				DELTA	P 7.		
SITE ? XR	OM "MET	H 2"		STACK	TEMP?	.115	RUN
KELLY AFB INC Stack, RUN 1,	INERATO 10 JAN	IR 196 RUN		FPS =	27.	602.	RUN
STACK DIA INC	H?	RUN		DELTA	P 8.		
AREA SQ FT ?	GAGA	DUN		STOCK	TEMD?	.412	RUN
NO TRAV PTS.	?	กบม		EDS -	E0.	609.	RUN
BAR PRESS ?	0000	2011		160 -	04.		
STATIC IN HOH	3000 ?	RUN		DELTA	P 9.		
× MOISTURE ?	2000	RUN		STACK	TEMP?	.275	RUN
PITOT CP ? 2.	9000	RUN		FPS =	42.	610.	RUN
2 002 2	8400	RUN					
* OVUCEN 7	6000	RUN		DELTA	P 10.	151	5104
* 02102A : 18.	8000	RUN		STACK	TEMP?	• 101	200
4 60 ?	_	RUN		FPS =	32.	511.	RUN
MOL WT OTHER	?	RUN					
MWd = 29.01				DELTA	P 11.	.128	RUN
MW WET = 28.6	;9			STACK	TEMP?	611.	RUN
-				FPS =	29.		
DELTA P 1.	955				0.12		
STACK TEMP?	.355	808		STOOM	F 12.	.160	RUN
FPS = 48.	603.	HUN		STHCK	IEMP?	611.	RUN
				FP3 =	32.		
DELTA P 2.	.350	จบพ		DELTA	P 13.		
STACK TEMP?	609.	RUN		STACK	TEMP?	.461	RUN
FPS = 48.				FPS =	55.	600.	RUN
DELTO D S							
CELIM P 3.	.260	RUN		DELTA	P 14.	970	DUN
STHUK LEMP?	612.	RUN		STACK	TEMP?	.000	NUN
FP3 = 41.				FPS =	49.	507.	RON
DELTA P 4.							
STACK TEMP?	.210	RUN		DELTA	P 15.	.225	RUN
FDS = 37	611.	RUN		STACK	TEMP?	608.	RUN
				FPS =	38.		
DELTA P 5.	. 75	200		DELTA	P 16.	•	
STACK TEMP?	.1/0	RUN	·	STECK	TEMD?	.430	RUN
FPS = 34.	609.	RUN		FDS =	Fo	577.	RUN
				1.5.9 -			
DELTA P 6.	.145	RUN		AVE F	PS = 41.		
STACK TEMP?	605.	RUN		AVE P	ELTA P	+30. =_0.26	
FPS = 31.				AVE S	KO. HES	= 29.29	
				DSCFM	ACFM = 9,15	19,440. 5.	

HP 41 "METH 2" Program Printout for Exhaust Stack Sampling Run 2

VDOM ^B MET	-u o#	· 0	ELIH P 7.		.
SITE ?	п <u>с</u>	· 5	TACK TEMP?	.125	RUN
KELLY AFB INCINERAT(STACK, RUN 3, 11 JA))R 196 RUN	F	PS = 29.	630.	RUN
STACK DIA INCH?	RUN	D			
AREA SQ FT ?	DUN	-	LLIM F 0.	.415	RUN
NO TRAV PTS. ?	RUN	5	THUR TEMP?	631.	RUN
16,0000 BAR PRESS ?	RUN	F	PS = 53.		
29.4100 STATIC IN HOH ?	RUN	'n	ELTO D S		
2000 7 MOISTUDE 2	RUN	-		.280	RUN
* MUISTORE : 2.1000	RUN		THUR TEMP?	633.	RUN
.8400 .8400	RUN	F	PS = 43.		
~% CO2 ? 1.6000	RUN				
% OXYGEN ? 18,8000	RUN	- -	TOCK TEMD?	.178	RUN
% c0 ?	DUN		THUR TEMP?	635.	RUN
MOL WT OTHER ?	ROA	F	PS = 34.		
	RUN	D	ELTA P 11.		
MWd = 29.01 MW WET = 28.78		S	Teck TEMP?	.132	RUN
		-	DS = SO	635.	RUN
DELTA P 1.		•	ro - 30.		
.340 STOCK TEMD?	RUN	D	ELTA P 12.		
633.	RUN	5	TACK TEMP?	.170	RUN
r¥5 = 48.	· · ·	F	PS = 34.	635.	RUN
DELTA P 2.			•		
.355 STACK TEMP?	RUN	D	ELTA P 13.	A A 5	50 M
639. FPS = 49	RUN	5	TACK TEMP?		RUN
110 - 451				619.	RUN
		F	PS = 54.		
DELTA P 3.		F	PS = 54.		
DELTA P 3. .270 STACK TEMP?	RUN	F	PS = 54. ELTA P 14.	. 368	RUN
DELTA P 3270 STACK TEMP? 638. FPS = 43.	RUN Run	F D S	PS = 54. ELTA P 14. TACK TEMP?	.368	RUN
DELTA P 3. .270 STACK TEMP? 638. FPS = 43.	RUN RUN	F D S F	PS = 54. ELTA P 14. TACK TEMP? PS = 50.	.368 635.	RUN RUN
DELTA P 3270 STACK TEMP? 638. FPS = 43. DELTA P 4. 240	RUN	F S F	PS = 54. ELTA P 14. TACK TEMP? PS = 50.	.368 635.	RUN RUN
DELTA P 3. STACK TEMP? FPS = 43. DELTA P 4. STACK TEMP?	RUN RUN RUN	F D S F D	PS = 54. ELTA P 14. TACK TEMP? PS = 50. ELTA P 15.	.368 635. .250	RUN RUN RUN
DELTA P 3. STACK TEMP? FPS = 43. DELTA P 4. STACK TEMP? FPS = 40. .270 638. .270 638. 641.	RUN RUN RUN RUN	F S F S S	PS = 54. ELTA P 14. TACK TEMP? PS = 50. ELTA P 15. TACK TEMP?	.368 635. .250 633.	RUN RUN RUN RUN
DELTA P 3. STACK TEMP? FPS = 43. DELTA P 4. STACK TEMP? 641. FPS = 40.	RUN RUN RUN RUN	F S S F S S	PS = 54. ELTA P 14. TACK TEMP? PS = 50. ELTA P 15. TACK TEMP? PS = 41.	.368 635. .250 633.	RUN RUN RUN RUN
DELTA P 3. STACK TEMP? FPS = 43. DELTA P 4. STACK TEMP? FPS = 40. DELTA P 5. .270 638. 240 641. 195	RUN RUN RUN RUN	F D S F D S F	PS = 54. ELTA P 14. TACK TEMP? PS = 50. ELTA P 15. TACK TEMP? PS = 41.	.368 635. .250 633.	RUN RUN RUN RUN
DELTA P 3. STACK TEMP? FPS = 43. DELTA P 4. STACK TEMP? FPS = 40. DELTA P 5. STACK TEMP? 640.	RUN RUN RUN RUN RUN	F D S F D S C	PS = 54. ELTA P 14. TACK TEMP? PS = 50. ELTA P 15. TACK TEMP? PS = 41. ELTA P 16.	.368 635. .250 633. .419	RUN RUN RUN RUN
DELTA P 3. STACK TEMP? FPS = 43. DELTA P 4. STACK TEMP? FPS = 40. DELTA P 5. STACK TEMP? FPS = 36. .270 633. .270 643. .270 638. .195 640.	RUN RUN RUN RUN RUN	F D S F D S S -	PS = 54. ELTA P 14. TACK TEMP? PS = 50. ELTA P 15. TACK TEMP? PS = 41. ELTA P 16. TACK TEMP?	.368 635. .250 633. .419 557.	RUN RUN RUN RUN RUN
DELTA P 3. STACK TEMP? FPS = 43. DELTA P 4. STACK TEMP? FPS = 40. DELTA P 5. STACK TEMP? FPS = 36. DELTA P 5.	RUN RUN RUN RUN RUN	F D S F D S F F F	PS = 54. ELTA P 14. TACK TEMP? PS = 50. ELTA P 15. TACK TEMP? PS = 41. ELTA P 16. TACK TEMP? PS = 51.	.368 635. .250 633. .419 557.	RUN RUN RUN RUN RUN
DELTA P 3. STACK TEMP? FPS = 43. DELTA P 4. STACK TEMP? FPS = 40. DELTA P 5. STACK TEMP? FPS = 36. DELTA P 6. STACK TEMP2 .150	RUN RUN RUN RUN RUN	F S F D S F A	PS = 54. ELTA P 14. TACK TEMP? PS = 50. ELTA P 15. TACK TEMP? PS = 41. ELTA P 16. TACK TEMP? PS = 51. VE FPS = 42.	.368 635. .250 633. .419 557.	RUN RUN RUN RUN RUN
DELTA P 3. STACK TEMP? FPS = 43. DELTA P 4. STACK TEMP? FPS = 40. DELTA P 5. STACK TEMP? FPS = 36. DELTA P 6. STACK TEMP? 634.	RUN RUN RUN RUN RUN RUN	F D S F D S F A A A A A	PS = 54. ELTA P 14. TACK TEMP? PS = 50. ELTA P 15. TACK TEMP? PS = 41. ELTA P 16. TACK TEMP? PS = 51. VE FPS = 42. VE FPM = 2,4	.368 635. .250 633. .419 557.	RUN RUN RUN RUN RUN
DELTA P 3. STACK TEMP? FPS = 43. DELTA P 4. STACK TEMP? FPS = 40. DELTA P 5. STACK TEMP? FPS = 36. DELTA P 6. STACK TEMP? FPS = 32. .270 638. .270 638. .127 640. .150 634.	RUN RUN RUN RUN RUN RUN	F D S F D S F D S F AAAASA	PS = 54. ELTA P 14. TACK TEMP? PS = 50. ELTA P 15. TACK TEMP? PS = 41. ELTA P 16. TACK TEMP? PS = 51. VE FPS = 42. VE FPM = 2,4 VE DELTA P = TK PRS. ABS VE STA TEMP	.368 635. .250 633. .419 557.	RUN RUN RUN RUN RUN
DELTA P 3. STACK TEMP? FPS = 43. DELTA P 4. STACK TEMP? FPS = 40. DELTA P 5. STACK TEMP? FPS = 36. DELTA P 6. STACK TEMP? FPS = 32. .270 638. .270 638. 195 640. 150 634.	RUN RUN RUN RUN RUN RUN	F D S F D S F AAASS SASS	PS = 54. ELTA P 14. TACK TEMP? PS = 50. ELTA P 15. TACK TEMP? PS = 41. ELTA P 16. TACK TEMP? PS = 51. VE FPS = 42. VE FPM = 2,4 VE DELTA P = 2,4 VE DELTA P = 2,4 VE STK TEMP TACK ACFM = 2,225	.368 635. .250 633. .419 557.	RUN RUN RUN RUN

HP 41 "METH 2" Program Printout for Exhaust Stack Sampling Run 3

VD	ом Иметн	1.91		DELTA P 7.		
SITE ?				STACK TEMP?	.113	RUN
STACK, RUN 2,	INERATOR 11 JAN	96 RUN		FPS = 27.	.632.	RUN
STHCK DIA INC	82	RUN		DELTA P 8.		
AREA SQ FT ? 8.	0000	RUN		STOCK TEMO?	.416	RUN
NO TRAV PTS.	? 0000	RUN		FDS = 53	633.	RUN
BAR PRESS ?	4200	DUN		170 - 00.		
STATIC IN HOH	7000 2000	RUN		DELTA P 9.		
* MOISTURE ?	2000	RUN		STACK TEMP?	.285	RUN
PITOT CP ?	7000	RUN		FPS = 44.	638.	RUN
% CO2 ?	8400	RUN				
2 OXYGEN ?	7000	RUN		DELTA P 10.	. 144	RUN
18. 4 co ?	7000	RUN		STACK TEMP?	636	DUN
MOL WT OTHER	?	RUN		FPS = 31.	000.	Non
		RUN		DELTO D ++		
MWd = 29.02 MW WFT = 28.8	3			STOCK TENOD	.120	RUN
	•			EDS - OG	636.	RUN
			:	FPO - 20.		
CTOOK TTYP	.340	RUN		DELTA P 12.		
STHCK TEMP?	630.	RUN		STACK TEMP?	.155	RUN
FPS = 47.				FPS = 32.	638.	RUN
DELTA P 2.						
STACK TEMP?	.350	RUN		DELTA P 13.	. 410	DUN
FPS = 48.	632.	RUN		STACK TEMP?	698	DUN
•				FPS = 52.	000.	NVD
DELTA P 3.	285	DIIN				
STACK TEMP?	641	DUN	1	STOCK TEMPS	.348	RUN
FPS = 44.	0111	Nen	1	EDS - 40	632.	RUN
				FP3 - 40.		
CTOCK TEND	.225	RUN	1 1	DELTA P 15.		
STHCK TEMP?	638.	RUN		STACK TEMP?	.210	RUN
FPS = 39.				FPS = 37.	631.	RUN
DELTA P 5.					·	
STACK TEMP?	.185	RUN		DELTA P 16.	.436	RUN
FPS = 35.	636.	RUN		STACK TEMP?	610.	RUN
				FPS = 53.	wawd .	
DELTA P 6.	.135	RIIN	:	AVE FOS = 24	4	
STACK TEMP?	238	DUN		AVE FPM = 2_{1}	431.	
FPS = 30.	800.	RUIT		STK PRS. ABS	= 29.45	
				STACK ACFM =	- 632. 19,446.	
				$v_{3}v_{7}n = 9,09$	1.	

Kelly A	f B	
Inlet. Dr.	+ RI	xn
19 Jul 45	/	
P.BAR 2	XROM "	WBDB"
STRTIC HOH?	2600	RUN
DOV BUUR TEMO	4600	RUN
NET DUED TEMP	9000	RUN
VET DOED TEMP 70.		RUN
V.P. WEI DULC	,, 7392	RUN
4 DUN = 2.1		

Kelly AFI Inlet Di 20 Jul 15	3 4.ct,	<u>Kun</u> 1
D DOD 0	XROM	"WBDB"
P BAR ?	2050	DHN
STATIC HOH?	2000	. Aon
-i.	4600	RUN
DET DULD IEMP 80.		RHN
WET BULB TEMP	?	
70. 11 n uet en e	9000	RUN
V.P. MCI BULD 0. V 404 - 0 0	, 7392	RUN
4 NUN = 2.2		

Kelly AFB Inlet Duct Runz 20 Jul 95

P BAR ? XRO.	M "WBDB"
STATIC HOH?	Ø RUN
DRY BULB TEMP?	9 RUN
WET BULB TEMP?	a RUN
70.0000 V.P. WET BULB?	RUN
% HOH = 2.0	RUN

.1

HP 41 "METH 2" Program Printout for Inlet Duct Sampling Run 1

XROM "M	ETH 2"		DELTA P 7.	
KELLY AFB			STACK TEMP?	4
INLET DUCT, RUN 1	51114		FPS = 19.	N.
STRCK DIA INCH?	RUN			
AREA SQ FT ?	RUN		.10 RU	N
10.0000 NO TRAV PTS. ?	RUN		STACK TEMP? 83. RUI	4
BAR PRESS ?	RUN		FPS = 18.	
29.2600 STATIC IN HOH ?	RUN		DELTA P 9.	
-1.4600 % MOISTURE ?	RUN		.102 RU! STACK TEMP?	4
2.1000 PITOT CP ?	RUN		FPS = 18. 77. RUN	4
.8400 .8400	RUN			
X DYYGEN 2	RUN		DELTA P 10.	J
20.9000	RUN		STACK TEMP?	т
MOL WT OTHER 2	RUN		FPS = 20.	7
HOL WY OTHER :	RUN	4	DELTO D 11	
MWd = 28.97 MW WET - 28 74			STOCK TEMP2 .10 RUN	ł
NM MC1 - 20.74			THE TEMP?	ł
			FP3 = 18.	
.05 .05	RUN		DELTA P 12.	
STRCK TEMP? 87.	RUN		.10 RUN STACK TEMP?	4
FPS = 13.			83. RUN FPS = 18.	ł
DELTA P 2.				
.08 STACK TEMP?	RUN		DELTA P 13. .15 RUI	ų
85. FPS = 16.	RUN		STACK TEMP? 82. Rut	4
			FPS = 22.	•
DELTA P 3. .078	RUN		DELTA P 14.	
STACK TEMP?	DIIN		.13 RUN	ł
FPS = 16.			50. RUN	4
DELTA P 4.				
.04 STACK TEMP?	RUN		DELTA P 15.	J
85. FDS = 12	RUN		STACK TEMP?	เ
			FPS = 22.	7
DELTA P 5.	DUM		NELTO D 14	
STACK TEMP?	NUN		STOCK TEMP2	4
ob. FPS = 16.	KUN		BERS T 20	4
DELTO D C			180 - 22.	•
.102	RUN		AVE FPS = 18.	
57HUR LEMP? 78.	RUN		AVE FPM = 1,086. AVE DELTA P = 0.10	
FP5 = 18.			SIK PRS. ABS = 29.15 AVE STK TEMP = 82.	
			STACK ACFM = 10,858. DSCFM = 10,094.	

HP 41 "METH 2" Program Printout for Inlet Duct Sampling Run 2

		DELTA P 7.	
SITE ? XROM "ME	TH 2"	.11 RUN STACK TEMP?	
KELLY AFB		FPS = 19 79. RUN	
INLET DUCT, RUN 2			
STACK DIA INCH?	RUN	DELTA P 8.	
AREA SQ FT ?	RUN	.09 RUN STACK TEMP?	
10.0000 NO TRAV PTS. ?	RUN	79. RUN	
16.0000 RAP PDF55 2	RUN		
29.2050 STOTIC IN HOH 2	RUN	DELTA P 9.	
-1.4600	RUN	STACK TEMP?	
A MOISTORE ? 2.2000	RUN	FPS = 20.	
	RUN		
A CUZ /	RUN	JELTH P 10. .105 RUN	
4 OXYGEN ? 20.9000	RUN	SINCK TEMP? 80. RUN	
% CO ?	RUN	FPS = 19.	
MOL WT OTHER ?	RUN	DELTA P 11.	
MWd = 28.97		STACK TEMP?	
MW WET = 28.73		FPS = 19. 80. RUN	
DELTA P 1.	DIG	DELTA P 12.	
STACK TEMP?	RUN	STACK TEMP?	
FPS = 12.	RUN	FPS = 17.	
.065	RUN	JELIH P 13. .175 RUN	
STACK TEMP? 79.	RUN	STACK TEMP? 84. RUN	
FPS = 15.		FPS = 24.	
DELTA P 3.		DELTA P 14.	
.075 STACK TEMP?	RUN	.135 RUN STACK TEMP?	
79. FPS = 16.	RUN	82. RUN FPS = 21.	
DELTA P 4.	DUN	DELTA P 15.	
STACK TEMP?	RUN	STACK TEMP?	
FPS = 9.	KUN	FPS = 22.	
DELTA D 5			
.10 STOCK TEMP?	RUN	STACK TEMP2	
83.	RUN	EDS - 20 80. RUN	
FFD = 18.		Fro - 23.	
DELTA P 6.		AVE FPS = 18.	
.115 .TACK TEMP?	RUN	HVE FPM = 1,090. AVE DELTA P = 0.10	
79. FPS = 20.	RUN	STK PRS. ABS = 29.10 AVE STK TEMP = 80.	
		STACK ACFM = 10,901. DSCFM = 10,132.	

HP 41 "METH 2" Program Printout for Inlet Duct Sampling Run 3

<u>Уром ^вмет</u>	"Ш ⁻ 2 "	DilTa e T,	
SITE ?		.125 Stack temp?	RUN
SUE INCINERATOR		68. 68 19	SUN
INLET DUCT, RUN 3	RIIN		
STACK DIA INCH?	DUN	DELTS P 8.	
AREA SQ FT ?	RUN	.895 STOCK TEMP?	RUN
10.0000 NO TROU DTS 2	RUN	3:HUN (CAF) 84.	RUN
16.0000	RUN	PP3 = 18.	
DHR PRESS / 29.2050	RUN	NF. TO D 9.	
STATIC IN HOH ? -1.4600	RUN	.39	RUN
% MOISTURE ?	DUN	31HCK (1997) 85.	9UN
PITOT CP ?	RUN	FPS = 17.	
,8409 % CO2 ?	RUN	DELTO D HO	
2 OYVEEN 2	RUN	JELIH P 18. ,12	RUN
20.9000	RUN	STACK TEMP? 84.	RUN
4 60 2	RUN	FPS = 20.	
MOL WT OTHER ?	BIIN		
MU4 = 00 07		DELIH P 11. .113	RUN
MW WET = 28.75		STACK TEMP?	SUN
		FPS = 20.	
.03	RUN	DELTA P 12.	RUN
STACK TEMP? 86.	RUN	STACK TEMP?	EG IN
FPS = 10.		FPS = 18.	200
	:		
JELIH P Z. .955	RUN	DELTA P 13.	SUN
STACK TEMP? 33.	RUN	STACK TEMP?	n
FPS = 14.		FPS = 21.	RUN
.055 JULIN P 3.	RUN	DELTA P 14.	RUN
STACK TEMP? 85.	RUN	STACK TEMP?	
.FPS = 14.		FPS = 22.	Ron
DELIH P 4. .04	RUN	DELTA P 15.	
STACK TEMP? 82.	RUN	STACK TEMP?	
FPS = 12.		595 = 24. 595 = 24.	ಗಳಗ
• • • • • •			
DELTA P 5. .11	RUN	YELYA P 16.	O!IN
STACK TEMP?	31/M	STACK JEMP?	
FPS = 19.		66. 278 = 23.	203
DELTA P 6. .115	RUN	AVE 793 = 19. Ave fom = 1.085	
STACK TEMP?	DIIN	AVE 06_TA P = 0.1	3
FPS = 20.	:.WH	114 -R5, 035 F 27 AVE STX 7542 F 84	
		3TACK ACFM = 10,8 >SCFM = 10,028,	47,

APPENDIX G

VOC Analyzer Information

GENERAL DESCRIPTION

The J.U.M. Flame Ionization Analyzer Model 3-300A is an analyzer designed to continuously measure the concentration of total organic hydrocarbons in a gaseous sample. The sample can be ambient air, or the exhaust gases from a combustion process. This measurement is obtained by using the Flame Ionization Detector (FID).

The Model 3-300A is supplied in various versions through the use of options. The standard instrument has five Total Hydrocarbons measuring ranges: from 0-10 to 100,000 ppm with 10:1 Decade Range adjustment; Flame Out Indication of the front panel Dual Color LED (Red LED - Flame is Out, Green LED - Flame is Lit); 0-10 VDC Recorder Output, and two (2) internal calibration valves. Calibration gases are introduced into the analyzer using the rear panel zero gasand span gas inlet fittings. The standard 3-300A has a backpurge function for the built-in permanent stainless mesh This sample filter backpurge function is sample filter. activated by selecting PURGE via the front panel mode turn switch. An air line (max. pressure 90 psig) must be connected to the back of the 3-300A to manually backpurge the sample filter.

Instruction Manual, FID 3-300A USA Version, Revision July 1994 © copyright 1994, J.U.M. Engineering

HEATED TOTAL HYDROCARBON ANALYZER MODEL 3-300 A

The 3-300 A meets the requirements of EPA CFR 60, Method 25A, and EPA CFR. Method 503

The J.U.M. Engineering Model 3-300 A is a very compact, heated total hydrocarbon analyzer for high accuracy, sensitivity and stability.

The Model 3-300 A uses a hydrogen flame ionization detector (FID) in a heated oven to prevent the loss of high molecular weight hydrocarbons, and to provide reliable performance in the analysis of trace levels of contaminants in high purity gases, in air and in other gases.

The permanent sample filter is cleaned by backpurging and has a replaceable stainless mesh filter disc. A rear adapter plate allows quick installation of a heated sample line inside of the oven without the need for special tools.

Features

- 19 inch relay rack mount or table top case
- Precision 1% full scale
- Digital output display
- All heated components
- Adjustable oven temperature control up to 400 °F (204 °C)
- Permanent heated stainless steel 2 micron sample filter with replaceable disc
- Backpurge system allows filter to be cleaned without dismantling
- Fast response within one second
- Automatic flame-out indicator with fuel shut-off valve
- Five selectable ranges can be gained by factor 10
- Automatic fuel enrichment for ignition
- Solenoid Valves for Sample, Zero Gas and Span Gas
- Remote control for sample, calibrate and backpurge is standard
- Automatic Sample Filter Backpurge (Option)

Applications

A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A S

- Raw exhaust vehicle emissions
- Catalytic converter testing
- Detection of trace hydrocarbon levels in purity gases used in the semiconductor industry
- Monitors hydrocarbon contaminants in air and other gases
- Carbon adsorption regeneration control
- Measuring engine combustion efficiency
- LEL monitor of solvent-laden air
- Cryogenics/liquefaction
- Clean room applications
- Stack gas hydrocarbon emissions monitoring

Model 3-300 A 🗆 Bulletin 17052

Principle of Operation:

The Model 3-300 A uses the flame ionization detection (FID) method to determine the presence of total hydrocarbon concentrations in a gaseous sample.

Burning hydrocarbon tree hydrogen in hydrocarbon free air produces a negligible number of ions. A hydrocarbon sample introduced into this flame starts a very complex ionization which creates a larger number of ions. A polarizing high voltage is applied between two electrodes around the burner jet and produces an electrostatic field. Now positive ions migrate to the collector electrode, and negative ions migrate to the high voltage electrode. The so generated ionization current between the two electrodes is directly proportional to the hydrocarbon concentration in the flame and is measured by the electrometer amplifier.

A sample pressure regulator provides a controlled back pressure at the sample capillary which gives admittance of a constant sample flow rate to the burner. This technique without the conventional sample back pressure regulator is used by J.U.M. Enginieering since 20 years for highest sample flow rate stability and lowest maintenance. A compactly designed flow control module for the control of fuel and air flow rates via needle valve restrictors uses high precision pressure regulators. The needle valves are adjustable for easy optimization of the burner.

Options:

- 0-20 mA or 4-20 mA recorder output
- Adjustable 100 mVolt to 5 mVolt DC recorder output
- Remote range control

FLOW DIAGRAM

HEATED

FLIDR

X

DVD: 4007 (2007 C

AR PURPER

AR VIEVE

VAL VE

LUS CUP

357 P.7

Automatic range control

Standard specifications:

Analysis Method: Sensitivity: Response Time: Zero Dritt: Span Dritt: Linearity: Oxygen Synergism: Ranges: Outputs: Display: Zero/Span Adjust: Fuel Consumption: Analysis Temperature: Power Requirements:

Ambient Temperature: Dimensions:

Weight:

Flame Ionization Detector (FID) Max.: 1 ppm CH, full scale 90% of full scale in less than 1 second 1.5% of full scale per 24 hours 1.5% of full scale per 24 hours Within 1% Less then 1% of selected range Any five of the following: 0–10, 100, 1000, 10,000, 100,000 ppm or 50, 100, 500, 1000, 5000, 10,000 or 0–100% LEL or other to be specified 0–10 Volts D.C. and 4–20 mA

Digital Manual on front panel Hydrogen: 20 cc min at 22 psig (1.5 Bar) 40% H₂/60% He: 80 cc min at 22 psig (1.5 Bar)

Adjustable 200 to 400 °F (93 to 204 °C) 110 Volts, 60 Hertz AC, 800 Watts 220 Volts, 50 Hertz AC, 800 Watts (other on request) 41 °F to 110 °F (5 to 43 °C) Width 483 mm (19 inch) Depth 460 mm (18 inch) Height 132 mm (5,19 inch) 33 lbs (15 kg)

J.U.M. Engineering Ges.m.b.H.: reserves the right, at any time and without notice, to change specifications presented within this data sheet, and assumes no responsibility for the application or use of devices herein described.

Warranty

J.U.M. Engineering Ges.m.b.H.: warrants each new unit of its manufacture to be free of defects in material and workmanship for one year from the date of delivery.

Made in Germany	© J.U.M. Engineering GmbH
J.U.M. Engineering Ges.m.b.H. Liebigstraße 13 85757 Karlsfeld Phone 011-49-81 31-9 87 95 Fax 011-49-81 31-9 88 94	ReprEnvironmental Equipment Systems5922 Portal DriveHouston, TX 77096Ph 713/723-064294FAX 713/635-3004

Procedures Used for Calibrating VOC Analyzer

The VOC analyzer was calibrated (prior to each sample run) in the following manner:

- a. A zero gas (Pure Nitrogen) was introduced into the analyzer and the Zero Control adjusted so that the analyzer read zero.
- b. A high-level calibration gas, with a concentration equal to approximately 80% of the applicable analyzer span, was introduced into the analyzer and the Span Control adjusted so that the analyzer read the tagged value of the calibration gas.
- c. A mid-level calibration gas, with a concentration equal to approximately 50% of the applicable analyzer span, was then be introduced into the analyzer. The analyzer reading was compared to the tagged value of the calibration gas.
- d. A low-level calibration gas, with a concentration equal to approximately 25% of the applicable analyzer span, will next introduced into the analyzer. As with the midlevel gas, the analyzer reading was then compared to the tagged value.
- e. The analyzer was considered acceptable for testing if the readings obtained during the mid-level and low-level calibration gas checks were both within ± 5% of the tagged value.

APPENDIX H

ENERAC 3000 Analyzer Information

ENERAC 3000sem quality assured, compliance level emission analyzer provides a sound, cost-effective approach to establishing a complete, comprehensive and reliable emissions database. Advanced SEMTM sensor technology, Quality Assured/Precision Control Modules (QA/PCM), Integrated Sample Conditioning System, and documented Quality Assured/Calibration Certification Protocol (QA/CCP) provide positive assurance of instrument performance, and the generation of compliance-level NO, NO₂, NO_x, SO₂, and CO data.

The ENERAC 3000sem provides facility operators a low cost, easyto-implement capability to develop timely and representative data for CAAA requirements:

- NO_X RACT
- Operating Permits
- CEMS Back-up
- Enhanced Monitoring
- Audits
 - Emission Rates

lel 3000sem Specifications

ICAL:

ASE: 18" x 13" x 6" Aluminum carrying case with ck. Weight: 22 lbs.

OBE: 24"L. x 3/8"OD. Inconel probe with astelloy X sintered filter and 1/2" deflector mountt on permeation drier housing. Probe housing innects to instrument via a 10 ft. Viton hose. ax, continuous temperature: 1800 deg. F. ax. sample dew point (past dryer) 50 deg. F. @ 10 cc/min. (Natural gas fuel @ 0% oxygen).

TRICAL POWER:

ATTERY: 6V rechargeable, sealed lead-acid cell. hree hour continuous battery operation. Quick 6 our recharge

120V/60 Hz. and 220V/50Hz standard. C: 11-40 VDC/3A standard.

AY:

5" High by 24 Character single line LCD with acklight illumination and adjustable viewing ngle.

TER:

EIKO 4*, 40 char. per line thermal printer with line ed button and with end of paper override. perates in any of four modes:

EXT MODE: 25 line printout of instant values of all heasured parameters. (time reg. 20 sec.) _OT MODE: Any one parameter vs. time plotted.

ordinate scales; full, half, quarter, me scale: Selectable, 1 sec/dot-1 min/dot in 1

>c/dot intervals. parameter plot CO-OXYGEN-NO_x-EFFICIENCY,

nale scale.

ALIBRATION CERTIFICATION ROTOCOL (QA/CCP): Automatic rintout of calibration test results, ncluding sensor and filter performance tatus and diagnostics.

XTERNAL PRINT MODE: Prints messages sent via S-232 port.

RAGE:

stemal: 80 individually selectable buffers hold one omplete set of measurements each in non volatile hemory. Buffer contents can be sent to printer or 5-232 port.

XTERNAL (OPTIONAL): Accessory pocket computer an store up to 300 measurements in non volatile hemory.

:MUNICATIONS:

S-232 PORT: RS232c port (DTE), 1200 baud efault, 300-9600 baud user selectable, half tuplex, 1 start bit, 8 data bits, 1 stop bit, no parity, FLEPHONE PORT: Internal 1200 baud modem onnects to a modular phone line for remote ommunication.

OFTWARE-

ENERCOM™ for WINDOWS® software. 3.5" diskette, includes monitor, alarms, programming fuels, bar graphs and multiple time plots. Also available on DOS

Complete package for SHARP 1600 pocket computer

CELLANEOUS:

UELS: 15 fuels, 3 in foreground, 12 in background standard. Custom fuels available on request.

O ALARM: Selectable 0-2000 PPM in 10 ppm steps. COMBUSTIBLES IN ASH: Presentable 0-100% in 5% steps.

MESSAGES: User friendly diagnostic and help nessages

AUBRATION: Autogas span plus user selectable Buto zero on start.

MEASURED PARAMETERS	Range	Resolution	Accuracy
1. AMBIENT TEMPERATURE IC sensor Degrees F or C	0-150° F	1° F or C	3° F
2. STACK TEMPERATURE Type K thermocouple Degrees F or C.	0-2.000° F (1.100° C)	1° F (1° C)	5° F
3. OXYGEN (O ₂) Electrochemical cell. Life 2 years	0-25%	0.1%	0.2%
4. SEM NITRIC OXIDE (NO) Electrochemical cell Life 2 years	0-1,000 PPM	1 PPM	2% of reading*
5. SEM NITROGEN DIOXIDE (NO ₂) Electrochemical cell. Life 2 years	0-500 PPM**	1 PPM	2% of reading*
6. SEM CARBON MONOXIDE (CO) Electrochemical cell. Life 2 years	0-2.000 PPM**	1 PPM	2% of reading*
7. SEM SULFUR DIOXIDE (SO ₂) ■ Electrochemical cell. Life 2 years	0-2,000 PPM**	1 PPM	2% of reading*
8. COMBUSTIBLES (GASES) Catalytic sensor. Life indefinite.	0-6%	0.01%	10% of reading in CH4 gas
9. SEM SINGLE, "DUAL RANGE" SENSOR	0-2,000 PPM ¹ 0-20,000 PPM	1 PPM [†]	2% of reading**
10. SEM SINGLE, "DUAL RANGE" SENSOR	0-1,000 PPM ¹ 0-4,000 PPM	1 PPM :	2% of reading**
11. TIME/DATE	Time in hours, minu	tes, seconds. Date in month, d	lay, year format.
COMPLETED BARAMETERS	Pance	Resolution	Accuracy

 COMBUSTION EFFICIENCY Heat loss method. Unique four loss factors computation (dry gas, water vapor, gaseous combustibles, combustibles in ash). 	0-100%	0.1%	(4 loss): 1% (above H ₂ O condensation) 2% (below H ₂ O condensation)
2. CARBON DIOXIDE (CO2)	0-40%	0.1%	5% of reading
3. EXCESS AIR	0-1000%	196	10% of reading
4. OXIDES OF NITROGEN (NO _X)	0-1500 PPM**	1 PPM	2% of reading*
5. EMISSIONS 1. (CO, NO _X , SO ₂)	0-2500 milligrams/ cubic meter	2 mg/m3	5% of reading*
6. EMISSIONS 2. (CO, NO _x , SO ₂) (Oxygen correction factor for emissions adjustable 0-20% in 1% steps plus TRUE).	0.000-9.999 lbs./ million BTU	0.001 lbs./ MMBTU	5% of reading*
7. EMISSIONS 3.	0-9.99 grams/ brake hp-hr	0.001 grms/ brake hp-hr	10% of reading*

When tested according to 40 CFR 60, RAA test. Other ranges available upon request.

Operational Flexibility

Historically, Clean Air Permits have been established using emission factors – half of these permits may be grossly understated, thus reducing long term operational flexibility. Many of the strategies being developed to provide future plant operational flexibility will rely on establishing accurate, defendable and cost-effective emissions data. ENERAC 3000sem provides the most comprehensive and complete NO_x measurement available. Numerous indépendent studies have demonstrated ENERAC's ability to supply data that meets EPA enhanced monitoring performance requirements.

- Passed 40 CFR 60, Appendix B Performance Specification 2
- Passed NO_x Conversion Efficiency of Method 20, 40 CFR 60, App. A
- Passed Method 6C.5.1.5 and 7E Integrated Sample Conditioning requirements, 40 CFR 60, App. A
- Received Blue Ribbon Certificate of Verification from the Center for Emissions Research & Analysis

*Low range measurements.

Operator Training & Certification

SEM electrochemical portable instrumentation is an important, cost-effective method to acquire compliance-level emission data. To ensure proper implementation, the operator should be trained as to the instrument's capabilities. ENERAC offers a Factory Training and Certification Program as proposed under 40 CFR 64 and detailed in the Enhanced Monitoring Reference document.

Remote Operation

2-way advanced communication and remote operation includes remote factory check and repair, and remote operation and reporting.

Accessories

A complete line of supporting accessories is available, and includes:

- Portable Gas Calibration Kit
- Dilution Kit for very high concentrations
- Computer Interfaced Software
- High Temperature Heat Shield
- SEM single, "Dual Range" Sensors CO and/or NO

99 ERAC⁻) 1300 Shames Drive, Westbury, NY 11590 (516) 997-2100 • 1-800-695-3637 • Fax: (516) 997-2129 SEM

Enerac is a trademark of EES, Inc SEM is a trademark of SEM Corp. Windows is a registered trademark of Microsoft Corp. Specifications subject to change without notice.

CHAPTER 1

FUNDAMENTALS

The ENERAC Model 3000 Integrated Emissions System is a portable state of the art analyzer designed for the following tasks:

- A. To measure the oxide of nitrogen emissions from stationary combustion sources in accordance with the EPA Provisional Reference Method (EMTIC CTM-022.WPF) for portable NOX analyzers.
- B. To measure the emissions of carbon monoxide, sulfur dioxide and gaseous combustibles and oxygen from stationary and mobile combustion sources.
- C. (OPTIONAL) To measure the stack gas velocity and volumetric flow rate and emission rates according to Method 2 Appendix A of 40CFR60.
- C. To assist the operator of a combustion source with the task of optimizing its performance and saving fuel.
- D. To be used as a management tool to assist the plant manager with keeping records and controlling costs.

The ENERAC Model 3000 is the most advanced instrument of its type. It uses the latest proprietary (SEM INSIDE (TM)) electrochemical sensor technology to measure emissions. To meet the accuracy requirements of the EPA reference methods each SEM sensor is supplied with three Precision Control Modules whose function is to select the measurement range (low, mid and high) that is appropriate for a particular measurement.

The ENERAC also uses the best available conditioning system technology (proprietary permeation drier configuration) for accurate transport of the sample . gas to the instrument. It also uses sophisticated electronics and programming design for increased accuracy and flexibility. It measures 3 temperatures and 6 different stack gases. It computes efficiency of combustion as well as excess air and carbon dioxide. In addition, it computes emissions in five different systems of units (ppm, milligrams/m3, lbs/MMBTU, grams/brake horsepower -hour and lbs / hour). It stores, prints and plots data. It communicates with a variety of other computers located near by via its RS-232 port, or remotely by telephone connection. It has a library of 15 fuels and over 100 diagnostic and help messages and can operate either on its rechargeable batteries, AC power, or from an external 6 Volt battery, or an 11-36 VDC (external battery system).

ENERGY EFFICIENCY SYSTEMS has years of experience in the manufacture and marketing of combustion and portable emission analyzers. The model 3000 is based on this experience, together with the latest innovations in electronic and sensor technology. It also expresses our basic conviction that communications and artificial intelligence are the basic ingredients of the instrument of the future.

The instrument operates basically as follows:

You select a sensor module (CO, NO and SO2) whose range is appropriate to the measurement and set the Enerac for the chosen modules. You then insert the probe in the stack of an operating combustion source such as a boiler, furnace or combustion engine. A pump located inside the instrument draws a small sample of the stack gas. The sample is conditioned before entering the analyzer. A number of sensors analyze the contents of the stack gas and its temperature and calculate and display the results. The results can also be printed, stored or send to another computer either by direct connection or by the telephone lines. The source operator makes the required adjustments based on the analysis of the stack conditions to optimize performance.

A. UNPACKING THE INSTRUMENT

Every ENERAC model 3000 includes as standard equipment:

1. One Emissions Analyzer model 3000 (includes a roll of printer thermal paper).

2. One stack probe and permeation drier housing.

3. One 14" inconel probe extension and Hastelloy X sintered filter.
CHAPTER 11 CALIBRATION

Every instrument must occasionally be calibrated against some known value of a parameter in order to make sure that its accuracy has not deteriorated.

The instrument software make sure that the display readout is always a linear function of the source excitation (i.e. gas concentration or temperature etc.). You therefore need only two points on the straight line to calibrate a parameter over its entire range. Usually, the first point chosen is the zero value (called zeroing the instrument). The second point has to be set by using some known value of the parameter being calibrated (i.e. using for example 200 PPM certified carbon monoxide gas to set the display to read 200). Sometimes the second point is not needed, if the slope of the parameter is known and is always the same (for example for the stack temperature the slope of the curve is well known and you don't need a span calibration).

Traditionally, both zeroing and span (i.e. second point) calibration was done manually, by rotating suitable potentiometers until the display was set to read first zero in ambient air and then the correct value using span gas.

With the introduction of microprocessors, it became a simple matter for instruments to zero themselves automatically upon start up (AUTOZERO), without having to use any adjustments However, this simplification requires caution. The instrument must be started in a true "zero" environment. Otherwise it will assume as "zero" non zero conditions and give erroneous readings. (Example: Never autozero the ENERAC, if the probe tip is still hot following a recent measurement.)

The ENERAC carries out this improvement in automatic calibration procedure one step further. It does away with all potentiometric span adjustments. You just tell it the value of the calibrating parameter that you are using and the instrument adjusts itself automatically.

In addition, it carries out a systematic checkout of sensor performance and instrument integrity through a novel approach called the "ENERAC

CALIBRATION PROTOCOL". This protocol is explained below.

The ENERAC will "auto zero" itself every time you start the instrument, provided you push the ENTER key. Span calibration will be carried out on request.

You should carry out a span calibration every 3-4 months to maintain an instrument accuracy within specifications. Some regulatory requirements specify that a span calibration be carried out before each measurement. In that case you may find the EES portable calibration kit very useful.

A. THE ENERAC CALIBRATION PROTOCOL

To maintain the integrity and accuracy demanded of a regulatory compliance apparatus, the ENERAC 3000 has been given an extensive and comprehensive "calibration protocol", that will appear on its printer every time a calibration is carried out.

The protocol checks both instrument zero and span performance and serves to instill to the operator confidence on the integrity of his data.

1. The autozero protocol.

Every time the ENERAC is autozeroed, the performance of the sensors is checked to make sure that sensor zero baselines are within the prescribed limits.

If one or more of the sensors are outside the specified limits a message will appear on the display and printed simultaneously on the ENERAC's printer for documentation.

2. The span calibration protocol.

Since the calibration protocol checks the sensor's selectivity against interfering gases, you must always use SINGLE TOXIC GAS MIXTURES (i.e. do not use mixtures containing two of the following gases in one cylinder: carbon monoxide, nitric oxide, nitrogen dioxide and sulfur dioxide).

(The only exception to the SINGLE TOXIC GAS rule is to use a blend of NO and SO2 gas bal. Nitrogen, in order to determine the performance of the NO sensor filter media. Cross interference of the NO sensor to SO2 gas is detected only, if NO gas is present! Do not use, however, this blend to carry out any calibrations. Use it just to check sensor response.)

Every time the ENERAC is calibrated using span gas, a number of different parameters are checked for satisfactory performance.

The following messages appear always on the ENERAC printer:

"ENERAC CALIBRATION PROTOCOL" " TIME: XX:XX:XX DATE: XX/XX/XX"

followed by a series of messages.

a. Air leak check.

The instrument is checked for air leaks during span calibration.

The air leak check is carried out only when calibrating the NO sensor, since NO span gas must always have zero oxygen.

If a leak is detected the following messages appear on the printer:

"SENSOR CALIBRATION FAILED" "DETECTED SYSTEM AIR LEAK"

If an air leak is discovered, first check the gas connection to the tip of the probe to make sure that it is air tight. Following this, determine if the leak is in the probe or in the instrument. You can do this by passing the probe and feeding the gas to the instrument directly. Contact EES for further assistance.

b. Sensor sensitivity check.

The output of the sensor undergoing calibration is checked against its original sensitivity that has been stored in its memory. If the sensor's sensitivity is within the acceptable limits, the following message appears on the printer:

"SENSOR CALIBRATION SUCCESSFUL" "XX SENSOR OK"

where XX refers to the sensor being calibrated.

If the sensor's sensitivity is slightly outside acceptable limits, but the sensor is still functioning properly, the following messages appear on the printer:

"SENSOR CALIBRATION SUCCESSFUL" "REPLACE XX SENSOR SOON OR CHECK GAS"

The purpose of the last message is to warn the operator that the sensor might soon need replacement, or that the wrong span gas value has been entered accidentally.

Be careful when calibrating the NO2 sensor with span gas. NO2 span gas concentration deteriorates with time. Don't use any cylinders that are more than 6 months old. Buy from a reputable supplier. Don't use any external desiccants or water traps.

If the sensor's sensitivity is considerably outside acceptable limits, the sensor is considered as not functioning properly and should be replaced. The following messages appear on the printer:

"SENSOR CALIBRATION FAILED" "REPLACE XX SENSOR OR CHECK SPAN GAS"

c. Sensor selectivity check.

The Precision Control Modules of the CO, NO and SO2 sensors have long life inboard filters to remove any interfering gases that may be present in the sample.

Filter life depends on the sensor, the concentration of the gas and exposure time of the interfering gas. Typically, for the ENERAC's SEM sensors it is 200,000 PPM-hours for the CO sensor and 20,000 PPM-hours for the NO sensor to NO2 gas and 70000 PPM-hours to SO2 gas.

If the cross sensitivity of the interfering gas rises to 2% for CO or 6% for NO the following warning message will appear on the printer:

"REPLACE XX SENSOR FILTER SOON"

If the cross sensitivity of the interfering gas rises further (i.e. 5% for the CO sensor) the following message will appear on the printer:

"REPLACE XX SENSOR FILTER "

Please keep in mind that irrespective of the inboard filter performance, the ENERAC mathematically compensates for any residual cross sensitivity, so that measurements can be taken with reasonable accuracy (but not compliance level accuracy), even if the filters need replacement.

B. AUTO ZEROING THE INSTRUMENT.

Every time you turn the instrument on, you should wait for 2 minutes for the ENERAC to warm up(OR UNTIL THE GREEN "PROBE OK LED TURNS ON). At the end of the warmup period the ENERAC reads the output of all sensors and sets them all to zero with the exception of the oxygen that it sets to 20.9%. (The ambient temperature is read directly). Consequently, it is very important that at the moment of "zeroing" the probe tip is at room temperature and the environment is clean from traces of carbon monoxide or other gases.

NOTE: In practice AUTOZEROING is only needed once at the beginning of a day of measurements. The ENERAC will not have sufficient zero drift during the next 24 hours to require additional autozeroing procedures.

You can bypass the AUTOZERO procedure by pressing any key other than the "ENTER" key, when prompted to do so by the display.

If the instrument has not been used for quite some time, it is a good idea to give it a longer warmup period. To do this turn the unit off at the end of its initial warmup and then turn it immediately back on.

If you accidentally shut off the unit, while the probe is still in the stack, turn the unit back on and bypass the Autozeroing procedure by pressing any key other than the

"Enter" key when the message "press enter to autozero" appears.

C. INSTRUMENT SPAN CALIBRATION.

Ideally, you should span calibrate the instrument every time you replace a Precision Control Module. At a minimum, once every 3-4 months you should perform a span calibration of the instrument. The parameters that require a span calibration are: carbon monoxide, combustibles, nitric oxide, nitrogen dioxide and sulfur dioxide.

There is, also, a span calibration for the ambient temperature sensor.

For instruments that have the stack-velocity (S-V) option, there is an additional calibration of the very low pressure sensor and a command to adjust the Pitot tube factor.

You can carry out all span calibrations in sequence or just one only, if you wish.

You can use your own span gas, or if you need to calibrate the ENERAC in the field, you can use the convenient gas calibration kit supplied by Energy Efficiency Systems.

1. Span calibration using the EES kit.

The gas calibration system supplied by EES is shown in Fig. 9. The kit comes with a gas cylinder containing a mixture of 200 PPM carbon monoxide (typically), 1.0% methane and balance nitrogen. For NO, NO2 and SO2 calibrations you must order extra gas cylinders containing the desired type of span gas. All four gas cylinders and apparatus fit inside a

carrying case for easy transportation to the field.

FIGURE 9

Follow the instructions supplied with the calibration kit for proper span calibration.

For the span calibration of the AMBIENT TEMPERATURE follow the directions in section 2 below.

2. Span calibration using your own gas.

If you wish to use your own gas to perform span calibrations you must take

certain precautions, in order to calibrate the sensors properly.

Preferably, for greatest accuracy it is recommended that you use a span gas value close to the emission concentration you expect to measure.

To carry out a span calibration USING YOUR OWN GAS APPARATUS

follow the steps below:

1. Set up your calibration apparatus as shown in fig. 10.

Notice that you need a number of certified gas cylinders. Make sure you use the calibration accessory supplied with your instrument. The accessory ensures proper gas flow to the ENERAC. You must not feed gas to the ENERAC under pressure and you must not starve the ENERAC's pump for gas. When feeding the gas to the ENERAC you must maintain the pressure reasonably constant. This is a requirement of all diffusion type sensors.

Connect the calibration accessory to the ENERAC probe. Make sure the rubber bulb is inserted past the square grooves located at the probe tip.

Connect the other end of the calibration accessory to the gas cylinder.

Make sure the concentration of the calibration gas is within the range of the Precision Control Module selected for each sensor. <u>Do not under any</u> <u>circumstances</u>, use gas that will over range the PCM. Preferably, do not calibrate with gas whose concentration is lower the PCM's range's lower boundary.

The Carbon Monoxide gas can be in the range 30-20000 PPM 2% accuracy with the balance nitrogen, preferably.

The Combustible gas can be in the range 0.07%-3.0% methane, 2% accuracy with the balance nitrogen or air.

The NO span gas can be in the range 10-3500 PPM, 2% accuracy with balance nitrogen.

The NO2 span gas should be in the range 50-500 PPM, 2% accuracy balance air, preferably.

The sulfur dioxide span gas can be in the range of 30-7000 PPM, 2% accuracy, balance nitrogen, preferably.

If you plan to calibrate all sensors, follow the order of their appearance on the display. This is desirable in order to set the compensating matrix for cross sensitivities, properly.

2. Turn the instrument on, press ENTER to autozero and wait until the following message appears on the display:

"INSERT PROBE"

3. Push the "SET" button and observe "SET" LED turn on.

4. Push the "NO/NO2" button. The following message will appear:

"CMB SPAN GAS: 0.11%"

Step #5 below demonstrates how to by pass an unwanted span calibration and proceed to the next one.

5. (If you wish to skip the Combustibles calibration push the "ENTER" button. The display will read :

"PUSH ENTER KEY!!".

Press any button, except the "ENTER" button and the unit will skip the combustibles calibration and proceed to the next one.)

6. To carry out the combustibles span calibration, use the "UP" or "DOWN" buttons until the display reads the same combustibles value as that printed on the combustibles (methane) gas cylinder label. Then press the "ENTER" button. The following message will appear on the display:

"PRESS ENTER KEY!!"

7. Open the span gas valve and set your gas bypass flow (as indicated by the small flow meter of the calibration accessory) to 200-400 cc/min Make sure the flow rate indicated is reasonably constant. Press the "ENTER" key. The following message will appear on the display:

"FEED GAS NOW and WAIT"

8. Make sure you keep the gas flow reasonably constant by monitoring the flow meter. At the end of approximately three minutes the ENERAC will record and store the combustibles sensor response and define it as the value that you set earlier on the display.

When the following message appears on the display:

"CO SPAN GAS: 200 PPM"

it means that you are finished with the combustibles span calibration and the instrument is prompting you to perform the CO calibration next. Shut off the gas!

9. To carry out the CO (carbon monoxide) span calibration follow the procedure outlined above for the combustibles calibration.

A number of important messages, that are part of the "ENERAC CALIBRATION PROTOCOL", will appear on the printer at the end of the CO calibration.

If you wish to skip the CO sensor calibration proceed as in step 5. The following message will appear on the display:

"NO SPAN GAS: 200 PPM"

prompting you to carry out this calibration.

Please note that according to "ENERAC Calibration Protocol" this calibration also checks the performance of the CO sensor filter.

You may carry out or by pass this calibration, as you wish.

10. The next sensor calibration in line is sulfur dioxide and the following message will appear on the display;

"SO2 SPAN GAS: 200 PPM"

If you wish to carry out any of these calibrations, proceed as outlined in steps 6, 7 and 8.

IMPORTANT NOTE: SO2 AND NO2 gases are "sticky" gases. That means

that they tend to adsorb partially to the surface of materials causing a slow down of the response time of the instrument. For this reason, it is a good practice when calibrating with SO2 or NO2 span gases, to begin feeding the gas at least four minutes before executing the span calibration!

11. The last sensor calibration to be carried out is nitrogen dioxide and the following message will appear on the display:

"NO2 SPAN GAS: 100 PPM"

prompting you to carry out this calibration in turn.

Please note that this span calibration also checks the performance of the NO sensor inboard filter and in addition, the performance of the SO2 sensor according to the "ENERAC Calibration Protocol".

At the end of all span gas calibrations the following message will appear on the display:

"ATEMP OFFSET +0 C"

12. The final span calibration corrects for any inaccuracy in the ambient temperature reading. This calibration allows you to make minor corrections so that the ENERAC will read the exact ambient temperature.

You can only enter the correction in degrees Celsius. Use a good thermometer to compare with the ENERAC's ambient temperature reading and correct accordingly.

At the end of the span calibration procedure the following message will appear on the display:

"WAIT TWO MINUTES!!"

The instrument is now purging any traces of remaining gas.

At the end of the two minute period it will perform an "auto zero" and it will

be ready for measurements by displaying any two stack parameters.

NOTE: IF you wish to exit the span calibration procedure at any time, other than when the message "FEED GAS AND WAIT" is displayed simply press the "SET" key and observe the "SET LED" turn off.

Whenever the message "FEED GAS NOW AND WAIT" appears, the ENERAC is inside a software loop and will not respond to any keys or communicate with external computers. SHUT THE INSTRUMENT OFF, IF YOU HAVE TO ABORT A SPAN CALIBRATION.

INCREASED ACCURACY REQUIREMENTS

- 1. ALLOW THE INSTRUMENT TO REACH AMBIENT TEMPERATURE BEFORE CARRYING OUT A SPAN CALIBRATION OR MEASUREMENT.
- 2. FOR NO, NO2 AND SO2 CALIBRATIONS, FEED THE SPAN GAS FOR A MINIMUM OF 10 MINUTES BEFORE EXECUTING THE SPAN CALIBRATION PROCEDURE.
- 3. DURING A MEASUREMENT MAINTAIN THE SAME FLOW RATE INTO THE INSTRUMENT (+/- 10%) AS DURING SPAN CALIBRATION BY ADJUSTING THE SAMPLE PUMP VOLTAGE, IF NECESSARY.
- 4. TO ACHIEVE THE BEST MATHEMATICAL COMPENSATION, USE NO2 SPAN GAS TO CALIBRATE, WHOSE CONCENTRATION IS APPROXIMATELY THE AVERAGE CONCENTRATION OF YOUR EXPECTED EMISSION.
- CHECK THE NO FILTER INTERFERENCE REJECTION OF SO2 GAS BY FEEDING A BLEND OF KNOWN CONCENTRATIONS OF no AND SO2 GASES.

MEASURED PARAMETERS:

1. AMBIENT TEMPERATURE. IC sensor. Degrees F or C. Range: 0-150 degrees F Resolution: 1 degree F or C. Accuracy: 3 degrees F 2. STACK TEMPERATURE. Type K thermocouple. Degrees F or C Range: 0-2000 degrees F (1100 C). Resolution: 1 degree F.(1 C.) Accuracy: 5 degrees F. Electrochemical cell. Life 2 years. 3. OXYGEN. Range: 0-25% Resolution: 0.1% Accuracy: 0.2% 4. NITRIC OXIDE(NO). Electrochemical (SEM (TM)) cell. Life 2 years. PCM Ranges: 0-300 PPM. 0-1000 PPM (300-1000) 0-3500 PPM (1000-3500) Resolution: 1 PPM Accuracy: 2% of reading (*) 5. NITROGEN DIOXIDE(NO2). Electrochemical (SEM (TM)) cell.Life 2 years. Range: 0-500 PPM. Resolution: 1 PPM Accuracy: 2% of reading (*) 6. CARBON MONOXIDE. Electrochemical (SEM (TM)) cell. Life 2 years. PCM Ranges: 0-500 PPM. 0-2000 PPM (500-2000) 0-20000 PPM (2000-20000)

Resolution:1 PPM

Accuracy: 2% of reading (*)

7. SULFUR DIOXIDE.

Electrochemical (SEM (TM)) cell. Life 2 years. PCM Ranges: 0-500 PPM. 0-2000 PPM (500-2000) 0-7000 PPM (2000-7000) Resolution:1 PPM Accuracy: 2% of reading (*)

8. COMBUSTIBLES(GASES).

Catalytic sensor. Life indefinite. Range: 0-6.00% Resolution:0.01% Accuracy:10% of reading in CH4 gas

9. TIME/DATE.

Time in hours, minutes, seconds. Date in month, day, year format.

(*) When tested according to 40CFR60, RAA test.

COMPUTED PARAMETERS:

1. COMBUSTION EFFICIENCY. Heat loss method. Unique four loss factors computation.

(dry gas, water vapor, gaseous combustibles,combustibles in ash) Range: 0-100% Resolution:0.1% Accuracy(4 loss): 1% (above H2O condensation) 2% (below H2O condensation)

2. CARBON DIOXIDE.

Range:0-40% Resolution:0.1% Accuracy:5% of reading. 3. EXCESS AIR.

Resolution:1% Accuracy:10% of reading

Range: 0-1000%

4. OXIDES OF NITROGEN.

PCM Ranges: 0-800 PPM. 0-1500 PPM (800-1500) 0-4300 PPM (1500-4300)

Resolution: 1 PPM Accuracy: 2% of reading (*)

5. EMISSIONS 1. (CO, NO, NO2, NOX, SO2) Range:0-2500 milligrams/cubic meter Resolution: 2 mg/m3 Accuracy: 5% of reading

6. EMISSIONS 2. (CO, NO, NO2, NOX, SO2) Range: 0.000-99.99 lbs./million BTU Resolution: 0.01 lbs./MMBTU Accuracy: 5% of reading

(Oxygen correction factor for emissions adjustable 0-20% in 1% steps plus TRUE).

7. EMISSIONS 3.

Range: 0-99.99 grams/brake hp-hr Resolution: 0.01 grms/bhp-hr Accuracy: 10% of reading

PRINTER:

SEIKO 4",40 char. per line thermal printer with form feed and line feed buttons and with end of paper override.

Operates in any of four print modes:

TEXT MODE.	25 line printout of instant. values of all measured
parameters.	(time req.20 sec.)
2. PLOT MODE.	Any one parameter vs. time plotted.
	3 ordinate scales: full, half,quarter.
	Time scale: Selectable, 1 sec/dot-1 min/dot in 1 sec/dot
	intervals.
	TEXT MODE. parameters. PLOT MODE.

APPENDIX I

Example Calculations

Example Calculations

1. Determine the mass emission flow rate (lbs/hr) of carbon monoxide from the SUE Incinerator during exhaust Sampling Run # 2.

$$E = (C) \times (MW) \times (FR) \times (1.55 \times 10^{-7})$$

Where,

- E = The pollutant emission rate in pounds per hour (lb/hr)
- C = The measured pollutant concentration in parts per

million by volume (ppmv). For Run # 2, the average CO concentration was 108 ppmv.

- MW = The molecular weight of the pollutant. For CO, <u>MW = 28</u>
- FR = The flow rate of the stack gas in dry standard cubic feet per minute (DSCFM). The flow rate for Run # 2 (as calculated by EPA's HP 41 "Meth 2" Calculator Program) was 9,097 DSCFM.

 $1.55 \times 10^{-7} = \text{Conversion Factor} \left[(\min \cdot g - \text{mole} \cdot 1b) / (hr \cdot g \cdot ft^3) \right]$

 $E = (108)(28 \text{ g/g-mole})(9,097 \text{ ft}^3/\text{min})(1.55 \times 10^{-7} \text{ min} \cdot \text{g-mole} \cdot \text{lb/hr} \cdot \text{g} \cdot \text{ft}^3)$

 $E = 4.3 \, lbs/hr$

2. Determine the VOC destruction efficiency of the SUE Incinerator during exhaust Sampling Run #1.

$$DE = [(CF - E_{ex})/CF] \times 100$$

Where,

DE = Destruction Efficiency (%)

- CF = Calibration fluid combusted by the SUE Incinerator (lb/hr as Stoddard solvent). This includes both the VOC vapors in the inlet gas stream and the liquid waste calibration fluid burned as supplemental fuel.
- Eex = VOC emission rate in exhaust stack (lb/hr as Stoddard solvent).

Since the SUE Incinerator burned liquid waste calibration fluid, it is necessary to determine both the inlet and exhaust VOC mass flow rates in units of "lbs/hr as Stoddard solvent" instead of "lbs/hr as propane." This is done by converting the measured concentrations from "ppmv as propane" to "ppmv as Stoddard solvent" using the following equation:

ppmv as Stoddard solvent = [(ppmv as propane) x (3)]/7.05
Where,

- 3 = the carbon equivalent correction factor (listed in EPA Method 25A) which converts "ppmv as propane" to "ppmv as carbon"
- 7.05 = response factor (determined by a contractor during previous VOC emissions testing at Kelly AFB) for converting "ppmv as carbon" to "ppmv as Stoddard solvent)

Average inlet VOC concentration = (149 ppmv as propane)(3)(1/7.05)= 63.4 ppmv as Stoddard solvent

Run 1 exhaust VOC concentration = (14.7 ppmv as propane)(3)(1/7.05) = 6.3 ppmv as Stoddard solvent

The inlet and exhaust VOC mass emission rates (in lbs/hr as Stoddard solvent) are then calculated as follows:

 $E = (C) \times (MW) \times (FR) \times (1.55 \times 10^{-7})$

Where,

- E = The pollutant emission rate (lbs/hr as Stoddard solvent)
- C = The pollutant concentration (ppmv as Stoddard solvent)
- MW = The molecular weight of the pollutant. For Stoddard solvent, MW = 140
- FR = The flow rate of the gas stream (DSCFM). The average inlet flow rate (as calculated by EPA's HP 41 "Meth 2" Calculator Program) was 10,085 DSCFM. The Run 1 2" Calculator Program) was 9,155 DSCFM. 1.55x10⁻⁷ = Conversion Factor 1.1 exhaust flow rate (as calculated by EPA's HP 41 "Meth
- = Conversion Factor [(min·g-mole·lb)/(hr·g·ft³)]
- E (in) = (63.4) (140 g/g-mole) (10,085 ft³/min) (1.55x10⁻⁷ min·g-mole·lb/hr·g·ft³) = 13.9 lbs/hr as Stoddard solvent
- $E(ex) = (6.3)(140 \text{ g/g-mole})(9,155 \text{ ft}^3/\text{min})(1.55x10^{-7} \text{ min} \cdot \text{g-mole} \cdot \text{lb/hr} \cdot \text{g} \cdot \text{ft}^3)$ = 1.25 lbs/hr as Stoddard solvent

The average inlet VOC mass flow rate (13.9 lbs/hr as Stoddard solvent) is then added to the liquid waste Stoddard solvent combusted during exhaust Sampling Run # 1 (108 lbs/hr) to obtain the approximate amount of total calibration fluid (121.9 lbs/hr) combusted during Run # 1. The destruction efficiency can now be calculated as follows:

DE = [(121.9 lb/hr - 1.25 lbs/hr)/121.9 lbs/hr] x 100

DE = 99.0%