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Preface 

This four volume report describes Romulus, a security modeling environment. 
Romulus includes a tool for constructing graphical hierarchical process rep- 
resentations; an information flow analyzer; a process specification language; 
and techniques to aid in doing proofs of security properties. Romulus also 
contains tools for specifying and analyzing authentication protocols. Using 
Romulus, a user can develop and analyze security models and properties. 
The foundations of Romulus are formal theories of security; applications of 
these theories are demonstrated in a library of models. 

The Romulus tool set includes a graphical interface, which is a customiz- 
able XI1 application that runs under Releases 4 or 5 of XI1 or under Re- 
lease 3 of OpenWindows from Sun Microsystems. It runs on any hardware 
supporting one of these windowing systems, particularly Sun SPARCstations. 
The Romulus theories, utilities, and tactics for the HOL prover work under 
HOL90. 

In this volume, we assume familiarity with either XI1 or OpenWindows. 
We also assume general familiarity with developing models and writing formal 
specifications; we do not assume familiarity with HOL. 

Organization of the Romulus Documentation Set 

Volume I of this documentation set is an overview of Romulus. Volume II 
describes the Romulus theories of nondisclosure, integrity, and availability. 
Volume III describes the Romulus library of models. This volume is Volume 
IV; it is the software user's manual. It describes the Romulus tools and gives 
enough information to try the examples presented in this volume. To begin 
using Romulus for other models, consult the other sources that are listed in 
the bibliography of this volume. 



Organization of This Volume 

This volume has six chapters and two appendices: 

• Chapter 1 is an introduction to the Romulus tools. 

• 

• 

Chapter 2 shows how to use the Romulus tools to confirm nondisclosure 

security for a simple example. 

Chapter 3 gives a full description of the graphical interface and explains 
each of its commands. 

• Chapter 4 introduces the HOL90 environment. 

• Chapter 5 describes IPSL, the Romulus interface process specification 
language, and PSL, the process specification language that IPSL uses; 
this chapter also provides a tutorial example of the analysis of the 
nondisclosure properties of a token ring station. 

• Chapter 6 describes how to use the Romulus implementation of the 
logic of authentication to analyze protocols and provides a tutorial ex- 
ample of the Denning-Sacco protocol using the authentication protocol 
toolkit. 

• Appendix A describes the user-customizable parameters of the graph- 
ical interface. 

• Appendix B describes the Romulus HOL90 library and its contents. 

Conventions 

This document set uses the following conventions. Computer code, specifi- 
cations, program names, file names, and similar material are typeset using a 
typewriter font. Interactive computer sessions are surrounded by a rounded 
box. Within this box, user input is typeset using an italic typewriter 
font; computer output is typeset using the typewriter font. Some computer 
output has been reformatted for presentation purposes; it may not appear in 
this document exactly as it appears on your screen. 
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Chapter 1 

Introduction to the Romulus 
Tools 

The Romulus environment is a collection of tools for modeling, analyzing, 
and verifying secure systems. The tools address two broad areas of concern: 
nondisclosure security and the analysis of authentication (cryptographic) pro- 
tocols. 

For analyzing nondisclosure security, the Romulus tools have two levels: 

• A graphical analysis of processes described as interconnected collec- 
tions of simpler subprocesses. (We call such processes composite pro- 
cesses.) The Romulus graphical interface makes it easy to describe 
such processes, their subprocesses, and the connections between these 
subprocesses. In addition, the graphical interface makes it easy to at- 
tach assumptions or assumptions about the security levels of messages 
entering or leaving composite processes and their subprocesses, and by 
flow analysis, to confirm that the full processes are nondisclosure secure 
if particular subprocesses are nondisclosure secure, the assignments of 
levels to events are consistent across connections between processes and 
the assumptions and conclusions about event levels are correct. 

• A formal analysis of processes that are not described in terms of sim- 
pler subprocesses. (We call such processes atomic processes.) Romulus 
tools, including the graphical interface, a language called the Inter- 
face Process Specification Language (IPSL) for specifying processes, a 
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compiler for translating IPSL into formal specifications in Higher Or- 
der Logic (HOL), and tactics for guiding the HOL90 prover in proving 
nondisclosure security, greatly aid in proving that atomic processes are 
nondisclosure secure. 

The graphical interface's use of flow analysis is implicitly based on the 
composability of restrictiveness, the version of nondisclosure security that 
Romulus uses; the composition of properly connected restrictive processes is 
itself restrictive. 

The Romulus tools for proving atomic processes restrictive assume that 
these processes are server processes, meaning that they wait for input, process 
each input (possibly producing output), and return to wait for the next input. 
These tools also assume that inputs to these processes are buffered, meaning 
that they are saved on a buffer until the process is ready to accept them. 
(This last assumption is not unreasonable in the typical case that processing 
of one input can be relied upon to finish before the next input.) 

More specifically, the current Romulus tools for analyzing nondisclosure 
security are the following: 

• A graphical interface for constructing hierarchical process representa- 
tions. The interface uses icons to show processes and the ports where 
information enters or leaves them, and uses arrows to show information 
flows between ports. The interface's description of a process includes 
the ranges of message security levels that the process's environment 
guarantees for input messages and that it requires for output messages. 

An information flow analyzer, invoked through the graphical interface, 
that identifies potential nondisclosure security failures. This tool shows 
which atomic subprocesses must be restrictive to guarantee that a full 
process is restrictive and can help indicate where trusted code must be 
placed in a system design. 

A simple language, the Interface Process Specification Language (IPSL), 
for describing processes and a translator for translating IPSL into the 
more complicated corresponding HOL90 process specifications. This 
translator also produces goal files, which set the goals that must be 
proved in HOL90 to show that these processes are restrictive. 



• A formal HOL90 theory of atomic processes, a formal language defined 
in this theory for specifying processes, a formal theory of process secu- 
rity, and utilities for defining types useful in specifying processes. All 
of these theories and utilities are implemented for the HOL90 proof 
construction system. 

• Tactics that aid in proving goals that show that buffered server pro- 
cesses are restrictive, that manifest security conditions hold, that the 
interface conditions for processes hold, and that connections between 
processes are properly made. Some of these tactics use other tactics 
for proving subgoals. These other tactics can be used independently, 
avoiding the reproving of major subgoals in proofs of security for com- 
plicated processes. 

• A HOL90 utility for communicating results proved in HOL90 back to 
the graphical interface, allowing it to identify processes as proved se- 
cure. 

The current Romulus tools for analyzing authentication protocols include 
the following: 

• A protocol specification language and a logic of authentication that can 
be used to formally specify and analyze authentication protocols. 

• A tool implementing the above language and logic that supports prov- 
ing that authentication protocols meet their formal specifications. 

This User's Manual describes the tools that are currently supported in 
the Romulus security modeling environment. 

Chapters 2, 3, and 5 describe the nondisclosure tools. Chapter 2 in- 
troduces a simple example and gives the mechanics of using the graphical 
interface and the other Romulus nondisclosure tools to prove that the ex- 
ample is nondisclosure secure. Chapter 3 gives detailed descriptions of the 
Romulus graphical interface and the flow analysis tool. Chapter 5 describes 
IPSL, the Romulus HOL90 process specification language (PSL) that it uses, 
and the Romulus tactics for proving processes restrictive; this chapter also 
gives a more complicated example of using the Romulus nondisclosure tools 
to analyze a system's security. Chapter 4 introduces the HOL90 theorem 
proving environment and provides background for the material in Chapter 5. 



Chapter 6 describes how to use the Romulus implementation of the logic 
of authentication to analyze protocols and provides a tutorial example of ver- 
ifying the Denning-Sacco protocol using the authentication protocol toolkit. 
The material on HOL in Chapter 4 is also relevant to these tools. 

Appendix A gives details about the user-customizable parameters of the 
graphical interface. Appendix B describes the Romulus HOL90 library and 
its contents. 



Chapter 2 

Introduction to the 
Nondisclosure Tools 

This chapter shows how to use Romulus to model, analyze, and verify that 
a simple system is nondisclosure secure. The example system consists of two 
subprocesses. One subprocess, a filter, accepts messages of all security levels 
and filters out those that are not unclassified. The other subprocess is an 

unclassified process. 
This chapter first illustrates how to use the graphical interface to draw 

a graphical representation of the whole system. It then shows how to use 
flow analysis to confirm that only the filter subprocess needs to be proved 
restrictive. It next shows how to create an Interface Process Specification 
Language (IPSL) specification of the filter subprocess, translate the spec- 
ification to produce a HOL90 specification of this subprocess, prove that 
this subprocess is restrictive, and call romrtheory to communicate the re- 
sult back to the graphical interface. Next, it shows a similar process for the 
other components in the system to prove the conditions necessary to ensure 
that all the components are properly connected. Finally, the chapter shows 
how to confirm with the graphical interface that the filter subprocess and the 
full system are nondisclosure secure. You can follow along at a terminal to 
construct the example as you read this chapter. 

This chapter primarily describes the mechanics of using the Romulus 
tools, though it does give brief informal descriptions of what the various 
actions accomplish. Chapters 3 through 5 give more detail on the Romulus 
tools and on HOL90. Chapter 5 also gives a thorough description of a more 



complicated nondisclosure security example. 

2.1    The Graphical Interface 

The graphical interface allows you to graphically create a system model and 
to analyze the information flows in this model. First we will bring up the 
Romulus graphical interface, then we will describe creating a model of our 

simple system. 
To start the Romulus graphical interface, enter 

romulus 

in a command window, for example, an xterm window. (We assume that you 
are running Xll Release 5 or Open Windows Release 3, that the Romulus 
executables are installed, and that your path includes the directory that 
contains these executables.) Because we did not specify any command-line 
options, the graphical interface will print the message 

unable to open theory file levels.rth: 
level information not found;  default values used. 

Since we will use the standard Romulus security levels, we can ignore this 
message. Figure 2.1 shows an example of the Romulus graphical interface. 

The Romulus window is divided into three areas: command buttons, a 
message window, and a canvas area. The command buttons are used 
to choose different commands, the message area displays information about 
the command buttons or the current state of command execution, and the 

canvas area is used to draw models of systems. 
To select any of the commands, click the left mouse button on the com- 

mand button. When you select a command button, the command is acti- 
vated. Some commands are carried out immediately (e.g., the quit com- 
mand), but others are carried out each time you enter necessary text and/or 
perform appropriate mouse actions for as long as the command is active. 
When a command is active, the message window summarizes the options 
available with mouse actions. Selecting another command, reselecting the 
active command, or clicking the right mouse button while the cursor is on 

the canvas deselects the active command. 



2.1.1    Designing a Model 

The basic objects in a Romulus design are components and ports. Compo- 
nents form a tree structure; the main component being studied corresponds 
to a system or top-level process, and subcomponents represent processes 
within that system or top-level process. Ports represent data connections 
through which data enters or leaves the process represented by a component 
or subcomponent. 

Figure 2.1 shows a component, (T), that comes up as the default com- 
ponent in the Romulus window. T is an example of a tree address; tree 
addresses identify unnamed components and are in parentheses, which dis- 
tinguishes them from component names. The tree address T is used for the 

top-level component. 
To create a model of the simple example, we first create the example's 

subcomponents, one for the message filter and one for the unclassified sub- 
process, as shown in Figure 2.1. Select (with the left mouse button) the 
create command in the second row of command buttons, the row labeled 
Component operations. Draw the box for each subcomponent by position- 
ing the mouse cursor on the canvas where you want the upper-left corner of 
the box to be, press and hold the left mouse button, drag the mouse to draw 
a rectangle, and release the button where you want the lower-right corner of 

the box to be. 
The (Tel) and (Tc2) in the subcomponents indicate that neither com- 

ponent is named. The tree address Tel indicates that this component is 
the first child component (i.e., first-created immediate subcomponent) of the 
top-level component and the tree address Tc2 indicates that the other is the 

second child component. 
We next name the top-level component and its subcomponents. Naming 

the components is necessary in order to have the graphical interface recognize 
results proved with the HOL90 prover. Select the modify command in the 
top line of buttons. The message window now explains the effects of using 
the three mouse buttons with this command. The left mouse button selects a 
component to modify and confirms the modification made to the previously 
modified component, if there was one. The middle mouse button selects a 
component and cancels the modification made to the previously modified 
component. The right mouse button confirms the change to the previously 
modified component and terminates the modify command.   Select the (T) 
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Figure 2.1: Creating components 

component by clicking the left mouse button anywhere inside the (T) box 

but outside the subcomponents' boxes. 
Figure 2.2 shows the top-level component selected for modification. When 

you select a component, a text-entry window appears where you make the 
selection, and keyboard output is directed to this text-entry window as long 
as the mouse cursor is in the Romulus window. A caret (~) shows where 
the next character will be entered. By default, the caret is initially at the 
beginning of the component name, or as in this case, at the beginning of the 
word None (which indicates that the component is unnamed). 

Use the arrow keys and the backspace key, or the Emacs-style control- 
d or control-k commands, to erase None; next type the new name, sim- 
ple_example.    Be careful not to enter a carriage return after the name 
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Figure 2.2: Naming components 

(Romulus treats it as an error), or to change the label Name: or the space 
separating this label from the name. You can also use the commands control- 
b and control-f to edit the text while in the text-entry window. 

Now we select a child component by clicking the left mouse button in- 
side its box. Selecting the first child component with the left mouse button 
confirms the top-level component's simple_example name and allows you 
to enter the name filter for this child. Selecting the second child component 
with the left mouse button confirms the first child's filter name and allows 
you to enter the name unclassified_process for the second child. Clicking 
the right mouse button confirms the second child's name and ends the mod- 
ify command. Make sure that the cursor is outside the text-entry window 
when you click the right mouse button to end the command. 



We next create the channels through which data flows into and out of 
our example process and its subprocesses. A port icon, on the edge of a 
component's box, represents an interface through which data enters or leaves 
the process represented by that component. The connections between ports, 

drawn as arrows, show how data flows between processes. 

We create ports for our example by selecting the create/connect com- 
mand in the Port operations line of buttons. Using this command, you 
can create individual ports and then connect them, or you can create pairs 
of ports and the connection between them at the same time, which is usually 
more convenient. Create a connection from the left edge of simple_example 
into the left edge of filter by pushing down the left mouse button inside and 
near the left edge of simple_example, holding it down and dragging the 
cursor inside and near the left edge of filter, and releasing the button. The 
command automatically deduces the types of the ports that could be con- 
nected to give this data flow, in this case both input ports; input ports are 
drawn as disks with holes in their centers. You should now have ports as 
shown in Figure 2.3. 

Repeat this process to create connections from the right edge of filter to 
the left edge of unclassified_process and from the right edge of unclassi- 
fied_process to the right edge of simple_example. The connection from 
filter to unclassified_process will be from an output port to an input port, 
and the connection between unclassified_process and simple_example 
will be between two output ports; output ports are drawn as solid diamonds. 

The [_,_] annotations displayed near each port icon indicate that no 
upper or lower limits have been set on the security levels of messages passing 
through that port. We next assign such limits to all ports using the modify 
command in the Port operations line of buttons. (The top-level modify 
command can be used to assign security-level limits to ports, but the port- 
operation modify command is usually more convenient for assigning limits.) 

Selecting the port modify command causes a text-entry window to re- 
place the Romulus logo in the upper-right corner of the graphical interface 
window. You enter the name of a security level in the empty rectangle in 
this window just as you enter names in the top-level modify command's 
text-entry windows. (The default limit strings are unclassified, confi- 
dential, secret, and top_secret.) After entering the level, you indicate 
whether it is to be used as a low limit or a high limit by selecting either 
the low or high button in the text-entry window.   For this example, enter 
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Figure 2.3: Creating ports 

unclassified and select low. 
Assign this limit to individual ports by clicking on them with the left 

mouse button or to the ports at both the ends of connections by clicking on 
these connections with the middle mouse button. Using the middle mouse 
button is more convenient for making initial limit assignments, but only the 
left mouse button is capable of overriding earlier assignments. Using the 
middle mouse button to assign unclassified as the lower limit to the ports 
on the connection from simple_example to filter produces the result shown 
in Figure 2.4. The U annotations are abbreviations for "unclassified." 

Note that the graphical interface checks that the ranges assigned to each 
end of a connection are consistent, that is, it checks that the range assigned 
to the port at the tail of arrow is a subrange of the range assigned to the 

11 



lüTffyi pr^i QQQ I^D ^^Q ^^21 iwffn ^^Q 
psww nwi C^Q PWW^ ff^i ^^^3 fwi EH PIW^ BESS 

Bgj^SBSJ B3 ESE9 rrram iill7^ 

rimple_«ample 

IU.J 
—^ 

filter uncla«ified_process 

df 

Figure 2.4: Setting security limits 

port at the head of the arrow. This may effect the order that Romulus allows 
you to change the limits on either end of a connection. Also, in a multi-layer 
model you may find it easier to assign level ranges if you start at the lowest 
level components and work your way up to higher level components. 

We use the same techniques to set the upper security limits for both ports 
on the connection from simple_example to filter to top_secret. Similarly, 
set the upper and lower security limits for all other ports to unclassified. 

Finally, we use the modify command in the Top-level operations line 
to assign names to all the ports. This command is used in exactly the same 
way as it was used to give names to components except ports are selected 
instead of components. (As with components, naming the ports is necessary 
in order to have the graphical interface recognize results proved in the HOL90 
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prover.) Since every component in our example has exactly one input port 
and exactly one output port, name simple_example's input port s_in and 
its output port s.out, name filter's input port f_in and its output port 
f _out, and name unclassified_process's input port u_in and its output 

port u_out. 
We next display port names next to each port in the canvas window using 

the names command in the Top-level operations row. 
Now we have a complete model. You can save it by selecting the top-level 

save command, entering simple_example in its text-entry window, and se- 
lecting the confirm button in this text-entry window; Figure 2.5 shows the 
complete example before the confirm button is pressed. The save com- 
mand uses four files to save the contents of this example. The file sim- 
ple_example.rom contains information that describes the sizes and positions 
of the components and ports. In addition to the . rom file, the save command 
produces an . ipsl file for each component that contains information about 
names of components and ports, level ranges, connections ports, etc. In this 
example, the three .ipsl files created by save are simple_example.ipsl, 
filter.ipsl, and unclassified-process.ipsl. 

If you were to exit from Romulus at this point (using the quit button), 
you could restart Romulus with the simple example with the command 

romulus -initial=simple_example 

Port names will not initially be displayed; use the names command to display 

the port names. 
Do not forget to save your model using the save command before you 

exit from Romulus. Also, you should always invoke the save command from 
the top-level component. If you invoke save from a lower-level component 
and then exit Romulus, only part of your model will be saved. 

2.1.2    Flow Analysis 

We now begin to establish that the model is secure. The Romulus flow 
analyzer checks for components that potentially allow insecure data flows. 
A possible insecure data flow is a path from a port, through at least one 
component, to another port where the upper security level on the first port is 
higher than the lower security level on the second port; high-level information 
might enter the first port and be conveyed in some form to a person or process 
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Figure 2.5: The simple example 
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Figure 2.6: Flow analysis of the simple example 

not authorized to receive it at the second port. The flow analyzer checks 
the model for possible insecure data flows and, if it finds one, highlights 
it by drawing boxes around the ports at its ends and drawing components 

contained in the flow with bold lines. 
Figure 2.6 shows the effect of selecting the flow command in the 

Top-level operations row to do a flow analysis on our simple example. 
It shows, as one would expect, that top-secret information could potentially 
enter the filter component and emerge to be observed by a user or process 

with no clearance at all. 
Figure 2.7 shows the effect of selecting the assume command in the Com- 

ponent operations row and clicking on the filter component with the left 
mouse button to assume that this component is secure. A single asterisk ap- 
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Figure 2.7: Flow analysis after assumption 

pears in the bottom-right corner of filter to show that it is assumed secure. 
Now, selecting the flow command shows no new insecure flows. Instead a 
message appears in the message window that indicates (under the assump- 
tion that the filter is secure) that simple example is secure if the connections 
between the ports are valid. The next step is to specify the atomic filter 
component more completely and then prove that it is restrictive. This is 
the topic of the next section. The validity of connections between ports is 
considered in sections 2.3 and 2.4. 
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2.2     A Trusted Process 

The filter process is an example of an atomic process that must be trusted to 
correctly handle multi-level information. Romulus proves that such processes 
are secure by proving that they are restrictive under the assumption that the 
level ranges for their input ports are valid. In addition, it is necessary to 
show that the assumptions made by the flow analyzer are correct, that is for 
each process, if all its inputs are in the specified input ranges, then all its 
outputs will be in the specified output ranges. This section describes how 
these conditions are proved using the filter process as an example. 

2.2.1    Specifying the Filter 

We prepare a formal specification of the filter component by first completing 
an IPSL specification for it, then translating this specification into a HOL90 

specification. 
We start with the file filter.ipsl produced by the save command. 

??Process: filter 

??OutPort: f_out 

??MessageVar: 

??LevelFun: 
??LevelRange: unclassified unclassified 

??InPort: f_in 
??MessageVar: 
??LevelFun: 
??LevelRange: unclassified top_secret 
??Response: 

??EndProcess:  filter 

This file is a partial IPSL specification of the filter process that contains 
everything that was specified using the graphical interface. 

IPSL is discussed more fully in Chapter 5, but for the moment we note 
that ??Process:, ??0utPort: , and ??InPort: identify the starts of pro- 
cess, output port, and input port specifications respectively. Messages pass- 
ing through a port are defined as tuples of variables.   A port specification 
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must have one ??MessageVar: entry for each variable in the tuple of vari- 
ables for that port. The ??LevelFun: value gives the security level, as a 
function of the variables in the message, of messages passing through the 
port. The ??LevelRange: entry gives the range of security levels of mes- 
sages passing through the port. The ??Response: value for an input port 
gives the response, as a function of the variables in an arbitrary message, of 
the process to messages entering through that port; this response is given 

using the Romulus formal process specification language, PSL. 
We edit f ilter. ipsl, without changing the fields that have already been 

filled in by the graphical interface, to produce the following file: 

??Process:  filter 
??H0L_functions: 
new_parent "string"; 
new_constant 

{Name="source_level", 
Ty= ==':string->standard_level'==} ; 

??OutPort:  f_out 
??MessageVar:  source:string 
??MessageVar:  data:string 
??LevelFun:  unclassified 
??LevelRange: unclassified unclassified 

??InPort:  f_in 
??MessageVar: source:string 

??MessageVar: data:string 

??LevelFun: source_level source 
??LevelRange: unclassified top_secret 

??Response: 

(If ((source_level source) = unclassified) 

(Send (f_out source data)) 

Skip);; 
(Call filterTop) 

??EndProcess:  filter 

The main additions here are the ??H0L_functions: entry, the names 
and types of message variables, the ??LevelFun: entries, and the value 
for the ??Response: entry. The ??H0L_f unctions: entry gives definitions 
of constants that are referred to in the rest of the IPSL specification.   It 
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makes the HOL90 theory string a parent of the current theory to define the 
type : string and defines source_level as a function that maps character 
strings (presumably the names of persons or processes originating messages) 
to security levels. The ??LevelFun: entry for port f_out assigns the level 
unclassified to data being sent out through f_out. The ??LevelFun: 
entry for port f _in assigns the level of the source to data coming in through 
f _in. The ??Response: value asserts that the filter will send a message out 
the port f_out if the message is from a source whose level is unclassified, 
but otherwise ignore it, and then call its top-level process to wait for the 

next message. 
Translating this file by invoking the ipsl2hol translator on the top-level 

process 

ipsl2hol simple_example 

produces the files filter, spec, sml, filter .goal, sml, and simple_exam- 
ple_globals . sml, as well as goal and specification files for each of the other 

processes. 
The file simple_example_globals .sml contains global definitions that 

are used by all the processes in a system. This file is used to create the global 
definitions theory with the following command: 

rhol <simple_example_globals.sml 

The command rhol invokes a version of HOL90 that has the Romulus li- 
brary preloaded. The HOL theory produced by this file is automatically 
made a parent of the HOL theories for each subcomponent when the top- 
level component is translated.1 This means that, if the specifications of the 
subcomponent use definitions from the global definitions file, then you should 
always translate the top-level component in order to generate the correct goal 
and HOL specification files for each component. 

We do not discuss the filter. spec. sml file here, but note that giving it 
as input to the HOL90 theorem prover with the UNIX command 

rhol < filter.spec.sml 

produces the two files f ilter.holsigand filter .thins, which together im- 
plement a saved HOL90 version of the theory of the filter process. 

^n the normal course of events you should complete the IPSL specification of the 
top-level process before starting work on the specifications of any of its subcomponents. 
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2.2.2    Proving the Filter Secure 

It now remains only to prove that the filter is restrictive and satisfies the 
interface conditions and then to store this result in a form that can be rec- 
ognized by the Romulus graphical interface. 

We then run the HOL90 theorem prover with the UNIX command 

rhol 

and give it the file filter.goal.sml as input with the command 

use "filter.goal.sml"; 

This file loads the HOL theory describing the filter process, defines a few 
names and constants, and then sets up the goal of proving BNPSP_restric- 
tiveness for the filter process. 

g( 'BNPSP_restrictive 

-filterlnPred 

-filterOutPred 

(standard_dom) 

-filterlnLevel 

"filterOutLevel 

"filterInvocVal 

-filterTop'); 

HOL responds by making this goal the top goal on the goal stack. 

(—'BNPSP_restrictive filterlnPred filterOutPred standard_dom 
filterlnLevel 
filterOutLevel 
filterInvocVal 
filterTop'--) 

val it =  ()   :  unit 
val it =  ()   :  unit 

BNPSP_restrictive describes the restrictiveness condition and interface 
conditions for buffered, non-parameterized (i.e., memoryless) server processes. 
In the above, filterlnPred and f ilterOutPred are functions that describe 
the level range conditions for input and output events (they are derived from 
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the filter's IPSL ??LevelRange: values), standard_dom defines the standard 
security levels in their standard order, f ilterlnLevel and f iIterOutLevel 
are functions that assign levels to input and output events (they are derived 
from the filter's IPSL ??LevelFun: values), f ilterlnvocVal is a function 
that assigns meanings to some of the symbols used in the PSL definition of 
the filter process, and f ilterTop denotes the full filter process. 

The first step in the proof is to apply a standard Romulus tactic that 
expands the definition of BNPSP_restrictive, makes case splits on possi- 
ble input events, and does rewrites to simplify away references to PSL. The 

command 

e(BNPSP_restrictive_TAC); 

reduces the goal to two subgoals 

2 subgoals: 
(—'standard_dom unclassified unclassified'—) 

(—'source_level source = unclassified'—) 
(—'standard_dom (source_level source) unclassified'—) 

(—'standard_dom top_secret (source_level source)'—) 

(—'standard_dom unclassified unclassified'—) 

(—'source_level source = unclassified'—) 
(—'standard_dom (source_level source) unclassified'—) 

(—'standard_dom top_secret (source_level source)'—) 

val it = () : unit 

each of which says that the standard level unclassified dominates itself. 
This subgoal is easily proved by rewriting with the definition of the stan- 

dard_dom. 

e(REWRITE_TAC  [definition "romlemmas" "standard_dom"] ); 

which proves first subgoal and gives the response 

Goal proved. 
|- standard_dom unclassified unclassified 
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Remaining subgoals: 

(—'standard_dom unclassified unclassified'—) 

(—'source_level source = unclassified'—) 

(—'standard_dom (source_level source) unclassified'—) 

(—'standard_dom top_secret (source_level source)'—) 

val it = () : unit 

Applying the same tactic again 

e(REWRITE_TAC  [definition "romlemmas" "standard_dom"]); 

produces the following response 

Goal proved. 
|- standard_dom unclassified unclassified 

Goal proved. 

|- BNPSP_restrictive filterInPred filterOutPred standard_dom 

filterInLevel 
f ilt erOutLevel 

f ilterlnvocVal 

filterTop 

Top goal proved, 
val it =  ()   :   unit 

which shows that the second subgoal and consequently the original goal have 
been proved. 

The final commands 

save_top_tnm("filter_BNPSP_restrictive"); 
romrtheory("filter"); 
export_theory(); 
exitO; 

produce new versions of the f ilter. holsig and f ilter. thms files, contain- 
ing the new theorem f ilter_BNPSP_restrictive,and produces the rtheory 
file f ilter.rth.for communicating this result back to the Romulus graphical 
interface. 

As a final note, it is usually desirable to save the proof so that it can 
be redone at a later date. One way to do this is to rename the file f il- 
ter. goal, sml to to filter, proof .sml, so that it will not be overwritten 
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by any future use of the ipsl2hol translator, and then to edit the file f il- 
ter.proof .sml to add each step of the proof. A .goal file contains com- 
ments to help you to do this. For longer proofs it is more convenient to edit 
the .proof file as you construct the proof rather than wait until the proof is 
finished. You can even copy text from the window in which you edit the proof 
file to the window in which you are running rhol to avoid typing everything 
twice. 

2.3    A Manifestly Secure Process 

The unclassifiecLprocess process is an example of an atomic process that 
handles data only at a single level and therefore is assumed by the flow 
analyzer to be manifestly secure. In fact, any process for which all its outputs 
are at higher levels than any of its inputs is assumed by the flow analyzer 
to be manifestly secure. All that needs to be checked for manifestly secure 
processes is that the assumptions made about them by the flow analyzer are 
correct. The condition that must be proved for such processes is that its 
output events are in the correct range and that if all its input events are in 
the specified range then the level of every output event will dominate the 
level of every input event. This manifest security condition depends only on 
the interface specified for the process, not on what the process does. 

It is possible that you will be unable to prove the manifest security con- 
ditions for a process that was assumed by the flow analyzer to be manifestly 
secure. This may mean that the process must be trusted, in which case 
you must provide additional information about what the process does. The 
process must then be proved secure as described in the previous section. 

2.3.1     Specifying the Unclassified Process 

We prepare a formal specification of the unclassified_process component 
by first completing an IPSL specification for it, then translating the spec- 
ification into a HOL90 specification.       We start with the file unclassi- 
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f iecLprocess .ipsl produced by the save command. 

??Process:  unclassified_process 

??0utPort: u_out 
??MessageVar: 
??LevelFun: unclassified 
??LevelRange: unclassified unclassified 

??InPort:  u_in 
??MessageVar: 

??LevelFun: 

??LevelRange: unclassified unclassified 

??Response: 

??EndProcess: unclassified_process 
This file is a partial IPSL specification of the unclassified_process process 
that contains everything that the graphical interface initially knows about 
this process. 

We edit unclassif iecLprocess. ipsl to produce the following file: 

??Process:  unclassified_process 
??H0L_functions: 
new_parent "string"; 

??0utPort:  u_out 
??MessageVar:  source:string 
??MessageVar: data:string 
??LevelFun:  unclassified 
??LevelRange:  unclassified unclassified 

??InPort:  u_in 
??MessageVar:   source:string 
??MessageVar:  data:string 
??LevelFun: unclassified 
??LevelRange:  unclassified unclassified 
??Response: 

??EndProcess: unclassified_process 

The main additions here are the ??H0L_f unctions: entry, the names and 
types of message variables, and the ??LevelFun: entries. These are similar 
to those for the filter process. No ??Response: entry is given for this process 
because, as long the manifest security conditions hold, the security of this 
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process does not depend on what it actually does. Leaving the ??Response: 
entry blank is the signal to the translator to generate the simpler security 
condition that only checks the manifest security conditions. 

Translating this file by invoking the ipsl2hol translator on the top-level 
component 

ipsl2hol simple_exaraple 

produces the files unclassified_process.spec.sml and and unclassi- 
f iecLprocess. goal. sml, as well as the globals file and goal and specification 
files for the other processes. Assuming that the globals theory has already 
been created, giving the unclassif iecLprocess. spec, sml file as input to 
the HOL90 theorem prover with the UNIX command 

rhol < unclassified_process.spec.sml 

produces the two files unclassif ied_process .holsigand unclassif ied_- 
process. thms, which together implement a saved HOL90 version of the the- 
ory of the unclassifiecLprocess process. 

2.3.2    Proving the Unclassified Process 

It now remains only to prove that the unclassified_process satisfies its 
manifest security conditions and then to store this result in a form that can 
be recognized by the Romulus graphical interface. 

We then run the HOL90 theorem prover with the UNIX command 

rhol 

and give it the file unclassif iecLprocess .goal. sml as input with the com- 
mand 

use "unclassified_process.goal.sml"; 

This file loads the HOL theory describing the unclassified_process pro- 
cess, defines a few names and constants, and then sets up the goal of proving 
the manifest security conditions. 

g('!outev inev. 
(("unclassified_processInPred inev) ==> 

((standard_dom) ("unclassified_processOutLevel outev) 

("unclassified_processInLevel inev))) A 

("unclassified_processOutPred outev)'); 
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HOL responds by making this goal the top goal on the goal stack. 

(—'!outev inev. 
(unclassified_processInPred inev ==> 

standard_dom (unclassified_processOutLevel outev) 

(unclassified_processInLevel inev)) A 

unclassified_processOutPred outev'—) 

val it = () : unit 

In the above, unclassified_processInPred and unclassified_pro- 
cessOutPred are the functions that describe the level range conditions for 
input and output events (they are derived from the unclassified_process's 
IPSL ??LevelRange: values), standard_dom defines the standard security 
levels in their standard order, and unclassif ied_processInLeveland un- 
classif ied_processOutLevel are the functions that assign levels to input 
and output events (they are derived from the unclassified_process's IPSL 
??LevelFun: values). 

The first step in the proof is to apply the standard Romulus tactic for 
this goal. 

The command 

e(ManifestlySecure_TAC); 

reduces the goal to one subgoal 

1 subgoal: 

(—'standard_dom unclassified unclassified'—) 

val it = () : unit 

which says that the standard level unclassified dominates itself.    This 
subgoal is easily proved by rewriting with the definition of the standard_dom. 

e(REWRITE_TAC  [definition "romlemmas"  "standard_dom"]); 

The application of this tactic produces the following response 
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Goal proved. 
|- standard_dom unclassified unclassified 

Goal proved. 
|-   !outev inev. 

(unclassified_processInPred inev ==> 
standard_dom (unclassified_processOutLevel outev) 

(unclassified_processInLevel inev))  A 
unclassified_processOutPred outev 

Top goal proved, 
val it =  ()   :  unit 

which shows that the subgoal and consequently the original goal have been 

proved. 
The final commands 

save_top_thm("unclassified_process_ManifestlySecure"); 
romrtheory("unclassified_process"); 
export_theory(); 
exit(); 

produce new versions of the unclassif ied_process .holsig and unclassi- 
f iecLprocess.thms files containing the new theorem unclassified.pro- 
cess.Manif estlySecure, and produce the rtheory file unclassif ied.pro- 
cess.rth for communicating this result back to the Romulus graphical in- 

terface. 
Again, it is usually desirable to rename the file unclassified_pro- 

cess.goal.sml to unclassif ied_process.proof .smland edit it to con- 

tain the proof. 

2.4    A Composite Process 

The simple_example process is an example of a composite process, a pro- 
cess constructed by connecting together other processes. Romulus proves 
that such processes are secure by proving each of their subprocesses restric- 
tive and then proving that the pieces are properly connected. The restric- 
tiveness of the composite process then follows from the hookup property of 
restrictiveness. This section describes how these conditions are proved using 
the simple_example process as an example. 
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2.4.1    Specifying the Simple Example 

We prepare a formal specification of the top-level process simple_example 
component by first completing an IPSL specification for it, then translating 
the specification into a HOL90 specification. 

We start with the file simple_example. ipsl produced by the save com- 
mand. 

??Process:  simple_example 

??0utPort:  s_out 
??MessageVar: 
??LevelFun: 
??LevelRange: unclassified unclassified 

??InPort:   s_in 
??MessageVar: 
??LevelFun: 
??LevelRange: unclassified top_secret 

??ProcessInFile: filter 
??ProcessInFile: unclassified_process 

??Connection: c2pl pi 
??Connection: p2 clp2 
??Connection:   clpl  c2p2 

??EndProcess:  simple_example 

This file is a partial IPSL specification of the simple_example process that 
contains everything that the graphical interface initially knows about this 
process. The ??ProcessInFile: declarations define simple_example in 
terms of the processes filter and unclassified_process and ??Connection: 
entries describe connections between ports using tree addresses. 

We edit simple_example. ipsl to produce the following file: 

??Process:   simple_example 
??H0L_functions: new_parent "string"; 

??0utPort:   s_out 
??MessageVar:   source:string 
??MessageVar:  data:string 
??LevelFun:  unclassified 
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??LevelRange: unclassified unclassified 

??InPort:  s_in 
??MessageVar:  source:string 
??MessageVar: data:string 
??LevelFun:  source_level source 
??LevelRange: unclassified top_secret 

??ProcessInFile:  filter 
??ProcessInFile:  unclassified_process 

??Connection: c2pl pi 
??Connection: p2 clp2 
??Connection:  clpl c2p2 

??EndProcess:  simple_example 

The main additions here are the ??H0L_functions: entry, the names and 
types of message variables, and the ??LevelFun: entries. These are similar 

to those for the filter process. 
Translating this file with the ipsl2hol translator using the UNIX com- 

mand 

ipsl2hol simple_example 

produces the files simple_example.spec.sml, simple_example.goal.sml, 
and simple_example_globals.sml, as well as goal and specification files 
for the other processes. Assuming that the global definitions theory has 
already been created, giving the simple_example.spec.smlfile as input to 

the HOL90 theorem prover with the UNIX command 

rhol < simple_example.spec.sml 

produces the two files simple.example.holsigand simple.example. trims, 
which together implement a saved HOL90 version of the theory of the sim- 

ple_example process. 

2.4.2    Proving the Simple Example 

It now remains only to prove that the parts of simple_example are properly 
connected and then to store this result in a form that can be recognized by 
the Romulus graphical interface. Two things must be proved for a connection 
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in order for it to be properly connected. Consider a connection from one port 
to another, that is, events are transmitted from the first port to the second 
port. First, the level range of the first port must be a subrange of the level 
range of the second port. Second, the same level must be assigned to an event 
leaving the first port as is assigned to the same event entering the second 
port. 

We run the HOL90 theorem prover with the UNIX command 

rhol 

and give it the file simple_example.goal.smlas input with the command 

use "simple_example.goal.sml"; 

This file loads the HOL theory describing the simple_example process, 
defines a few names and constants, and then sets up the goal of proving that 
the connections are properly made. 

g(' 
(!   (source:string)  (data:string). 
(unclassified_processOutPred (u_out  (source:string)   (data:string))) 
==> 

((simple_exampleOutPred (s_out (source:string) (data:string))) 
A ((unclassified) = (unclassified)))) 

A 
(! (source:string) (data:string). 
(simple_exampleInPred (s_in (source:string) (data:string))) 
==> 

((filterInPred (f_in (source:string) (data:string))) 
A ((source_level source) = (source_level source)))) 

A 
(! (source:string) (data:string). 
(filterOutPred (f_out (source:string) (data:string))) 
==> 

((unclassified_processInPred (u_in (source:string) (data:string))) 
A ((unclassified) = (unclassified)))) 

'); 

HOL responds by making this goal the top goal on the goal stack. 

(—'(Isource data. 
unclassified_processOutPred (u_out source data) ==> 
simple_exampleOutPred (s_out source data) A 
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(unclassified = unclassified)) A 
(!source data. 

simple_exampleInPred (s_in source data)  ==> 
filterlnPred (f_in source data)  A 
(source_level source = source_level source))  /\ 

(!source data. 
filterOutPred (f_out source data)  ==> 
unclassified_processInPred (u_in source data) A 
(unclassified = unclassified))'—) 

val it =  ()   :  unit 
val it =  ()   :  unit 

In the above, simple.examplelnPredand simple.exampleOutPredare 
the functions that describe the level range conditions for input and output 
events (they are derived from the simple_example's IPSL ??LevelRange: 

values). 
The first step in the proof is to apply the standard Romulus tactic for 

this goal. The command 

e(HookupValid_TAC); 

produces the following response 

Goal proved. 
|-  (!source data. 

unclassified_processOutPred (u_out  source data)  ==> 
simple_exampleOutPred (s_out source data) A 
(unclassified = unclassified)) A 

(!source data. 
simple_exampleInPred (s_in source data)  ==> 
filterlnPred (f_in source data)  A 
(source_level source = source_level source))  A 

(!source data. 
filterOutPred (f_out source data)  ==> 
unclassified_processInPred (u_in source data)  A 
(unclassified = unclassified)) 

Top goal proved, 
val it =  ()   :  unit 

which shows that the original goal has been proved. 
The final commands 
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save_top_thm(''simple_example_HookupValid"); 

romrtheory("simple_example"); 

export_theory(); 

exit(); 

produce new versions of the simple_example.holsig and simple_exam- 
ple.thms files, containing the new theorem simple_example_HookupValid, 
and produces the rtheory file simple.example.rthfor communicating this 
result back to the Romulus graphical interface. 

Again, it is usually desirable to rename the file simple_example. goal. sml 
to simple_example. proof .sml and edit it to contain the proof. 

2.5     Confirming Proof Completion 

To confirm the completion of all required security proofs, run the Romulus 
graphical interface on the saved system model with the UNIX command 

romulus -initial=simple_example 

Selecting the check command in the Component operations row and then 
clicking on the filter component with the left mouse button will cause the 
graphical interface to read the file filter.rth to confirm that the filter 
process has been proven secure. If everything checks out, two asterisks will 
appear in the lower-right corner of the component's box, indicating that it 
has been proved secure. 

Selecting the check command and clicking on the unclassified_process 
component with the left mouse button will cause the graphical interface 
to read the file unclassifiecLprocess.rth to confirm that the unclassi- 
fied_process's manifest security conditions have been proved. If everything 
checks out, two asterisks will appear in the lower-right corner of the compo- 
nent's box, indicating that its manifest security conditions have been proved. 

Selecting the check command and then clicking on the simple_example 
component with the left mouse button will cause the graphical interface 
to read the file simple_example.rth to confirm that the simple_example 
process's have been properly connected. If everything checks out, then two 
asterisks will appear in the lower-right corner of the component's box, indi- 
cating that it has been proved secure. 
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The following chapters discuss the graphical interface, the Romulus the- 
ories of processes and process security, and IPSL in detail. 
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Chapter 3 

The Romulus Graphical 
Interface 

The Romulus graphical interface is a tool for partially creating and display- 
ing formal specifications of multilevel systems and determining the extent to 
which they are restrictive, which means having a strong nondisclosure secu- 
rity property. The graphical interface, together with the translator ipsl2hol 
that is supplied with it, allows the user to do the following: 

• create graphical representations of communicating processes and the 
information flow connections between them; 

• save and restore these graphical representations; 

• produce PostScript files giving hard-copy images of these graphical rep- 
resentations; 

• attach level ranges to connections between processes that bound the 
security levels of the events passing through these connections; 

• determine, by flow analysis, assuming that the attached level ranges 
on connections are correct, which atomic (i.e., having no subprocesses) 
subprocesses must be restrictive in order to guarantee that the full 
system is restrictive; 

• automatically generate partial Interface Process Specification Language 
(IPSL) specifications of processes; 
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• translate user-completed IPSL specification files into pairs of files that 
give formal HOL90 specifications of these processes, formal HOL90 
statements of the properties that must be proved for the processes, a 
suggested major initial step for proving these properties, and a call 
to the Romulus HOL90 utility romrtheory, which produces files that 
communicate the results proved to the Romulus graphical interface; 

and 

• confirm which atomic subprocesses have been proved restrictive, which 
processes are manifestly secure, and which composite processes are 

properly connected. 

The graphical interface also uses the files produced by romrtheory, called 
rtheory files, to identify the security levels that it recognizes. 

The Romulus graphical interface and the ipsl2hol translator are used in 
conjunction with a HOL90 prover and files that specify Romulus-specific the- 
ories of processes and process security, Romulus-specific utilities for declaring 
event and state parameter types (including records), Romulus-specific tactics 
for proving restrictiveness, manifest security conditions, and proper connec- 
tivity, and the utility romrtheory. All these theories, utilities, tactics, and 
romrtheory are given in the Romulus HOL90 library, described in detail in 

Appendix B. 
The cores of Romulus atomic process specifications, both in IPSL spec- 

ifications and in the corresponding full HOL90 specifications, are given in 
terms of a concrete recursive type PSL (for "Process Specification Language") 
whose elements are interpreted as computer programs giving the remaining 
actions in the process. Several of the basic constructs in PSL—Skip, If, 
Send, Receive, and the followed-by operator ; ;—are modeled after analo- 

gous constructs in CSP [5]. 
Although PSL is used to specify processes, the standard Romulus tac- 

tics for showing restrictiveness typically remove all references to PSL in the 
remaining subgoals to be proved, leaving only relatively simple statements 
about the security levels of messages and the characteristics of process state 

parameters. 
This chapter gives basic information on the Romulus graphical interface's 

capabilities, the ipsl2hol translator's capabilities, and how they can be 
used.    The ipsl2hol translator is described in section 3.5.8 on the spec 
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command. The ipsl2hol translator provides the same functionality as the 
spec command but can be used independently of the graphical interface. 
Chapter 5 gives additional information about IPSL, PSL, and rtheory files. 

For the remainder of this chapter, "Romulus" will refer to the Romulus 

graphical interface. 

3.1    Basic Concepts and Terminology 

The basic objects in Romulus are components and ports. A component is an 
abstract representation of a process. Components in Romulus are arranged 
in a tree with the main component being studied, typically a process corre- 
sponding to a full system, at the top and the subcomponents of a component 
occurring below that component in the tree. A component's immediate sub- 
components are called its children; its general subcomponents are called its 
descendants. The component that has another component as an immediate 
subcomponent is called that subcomponent's parent; the general components 
that have that subcomponent as a descendant are called its ancestors. 

A port, which can be either an input port or an output port, is an ab- 
stract representation of a connection through which data enters or leaves a 
process. A port that is an entry or exit point for data into or from a compo- 
nent is said to be owned by that component, and that component is called 
the port's owner. A connection between an output port and an input port 
indicates that the data that flows from the output port flows into the input 
port. A connection between two input ports or two output ports can be 
made only when one port's owner is the parent of the other port's owner. 
Such a connection indicates either that the data that flows into the parent 
component's input port flows through to enter the child component's input 
port, or that the data that flows from the parent component's output port 
comes from the child component's output port. See Figure 3.1 for examples. 
In this figure, input ports are pictured as disks with holes in their centers, 
output ports are pictured as solid diamonds, and connections between ports 
are pictured as arrows pointing in the direction of data flow. 

The following information associated with a component can be set using 
the graphical interface: its name; its status identifying it as proven secure, 
assumed to be secure, or possibly insecure; a list of the ports owned by the 
component; and a list of the component's children. 
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The following information associated with a port can be set using the 
graphical interface: its name; possibly a lower bound on the possible security 
levels of events passing through the port; possibly an upper bound on the 
possible security levels of events passing through the port; and the port's 
type, either input or output. 

In addition, both components and ports have associated information that 
controls how and where icons representing them are displayed on the user 
interface's canvas. 

3.2     General Interface Principles 

The Romulus program uses several user-preference parameters that can be 
set in Romulus defaults files, environment variables, or in command-line ar- 
guments. These parameters are described in Appendix A. In addition, the 
code sets reasonable default values for these parameters and accepts stan- 
dard X command-line arguments, particularly -geometry, so the user can 
set the initial size and shape of the Romulus window. The Romulus window 
is not currently designed to be resizable, though, so the effect of resizing it 
is unpredictable. 

If it is run without setting the parameter initial to an appropriate 
basename, Romulus comes up describing an empty component. If it is run 
with the parameter initial set to a basename, and if the file with this 
basename and the extension .rom contains a valid saved description of a 
component—a saved description of the form produced by Romulus's top- 
level save command described below—Romulus comes up describing the 
component given in that file. 

Romulus comes up in an ordinary window managed by the currently 
active window manager. Figure 3.1 shows the Romulus graphical interface 
running in an XI1 window and displaying a model of a token ring station. 
Romulus divides this window into the following five areas, only four of which 
are initially visible: command buttons, a message window, the canvas window, 
inert background areas, and text-entry windows. The text-entry windows 
are not initially visible; they appear only when the commands with which 
they are associated are selected. At most one text-entry window is visible 
at a time. In addition, the top-level modify command and the port and 
component display commands are associated with special-purpose windows 
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that appear over the canvas. 

3.2.1 Command Buttons 

The top of the interface window contains three rows of buttons for top-level, 
component, and port operations respectively. Moving the mouse cursor onto 
one of these buttons enters it, and then clicking the left mouse button selects 
it. When a command button is entered, a short message describing the asso- 
ciated command appears in the message window; when a command button 
is selected, a message describing necessary further input, if any, appears in 
the message window. At most one command can be selected at any time. 
If a button is selected, the colors of the button and its label are reversed. 
Selecting a different command button automatically deselects any previously 
selected command button. Selecting the currently selected command button 

again deselects it. 
If a command button is selected, that command is said to be active. Some 

active commands (e.g., quit) are carried out as soon as they are activated; 
others (e.g., save) are carried out after the user enters necessary text in a 
text-entry window; others (e.g., delete) are carried out each time the user 
makes appropriate mouse clicks and/or movements on the canvas; others 
(e.g., load) are carried out only after the user enters necessary text and are 
then carried out each time the user makes appropriate mouse clicks and/or 
movements on the canvas; and still others (e.g., modify) are carried out each 
time the user makes appropriate mouse clicks and modifies text in an edit 

window that appears over the canvas. 
All commands can be deselected by selecting them again or by clicking 

on the right mouse button with the mouse cursor on the canvas. Commands 
that can be carried out immediately are deselected automatically. Commands 
that require additional user input stay active until that input is provided or 

until the user deselects them. 

3.2.2 Text-Entry Windows 

There are two different text-entry windows, at most one of which is visible 
at a time. These windows appear only when a command requiring the user 
to enter text is active. When one of these windows appears, it occupies the 
position otherwise occupied by the Romulus logo in the upper-right corner 
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of the Romulus window. The other kind of text-entry window appears where 
you make a selection on the canvas. 

Each of these windows contains two different types of active subareas: a 
text-editing window and one or more text-use subcommand buttons. 

The text-editing window is a short, empty rectangle used for entering 
character strings. When such a window appears, all keyboard output is 
directed to it whenever the mouse cursor is in the Romulus window. It 
supports all the Emacs-style editing capabilities of an Athena Widget Set 
"Text" widget. The editing capabilities that a user will typically need are 
the following: backspace, which deletes the last character typed; control-b, 
which moves the cursor to the left; and control-f, which moves the cursor to 
the right. If the user enters a line-feed or carriage-return character in this 
window, Romulus treats it as an error. 

The text-use subcommand buttons are entered and selected in the same 
way as the command buttons, a selected text-use subcommand button is 
similarly highlighted, and similar descriptive messages appear in the mes- 
sage window. Like the command buttons, only one subcommand button 
can be selected, and reselecting a selected subcommand button deselects it. 
(There is one exception: the confirm button serves no function for the load 
command and cannot be selected.) These buttons identify how the entered 
text will be used or confirm that entry of the text has been completed. 

3.2.3     Message Window 

The message window is a short, wide window right below the command 
buttons. It always contains a message reminding the user of the current 
command state and the user's options for continuing the command. 

When a command or text-use subcommand button is entered, this window 
contains a description of the command or text-use. If a command button is 
selected, and if the command requires additional user input before it can be 
carried out, the window contains a message describing that input. It prompts 
for text input if it is necessary. For commands that require canvas mouse 
clicks and/or movements, the window contains descriptions of the functions 
of the different mouse buttons and of the effects of clicking or holding them. 
For commands that require both text-window text entry and mouse clicks, 
after the command is selected the window describes the possible mouse clicks 
and prompts for the necessary text.   The message window changes to give 
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descriptive messages for the different text-use possibilities after the text-entry 
subcommand buttons are entered, but after a text-use subcommand button 
is selected the window changes back to contain the description of the effects 

of possible mouse clicks. 

3.2.4     Canvas Window 

The canvas is a large white rectangle that occupies most of the Romulus win- 
dow. Components are drawn on the canvas as rectangles with their names, 
if they have them, in their upper-left corners. An unnamed component has 
a tree address in the upper-left corner instead of a component name; tree ad- 
dresses are in parentheses, which distinguishes them from component names. 
In a tree address, T denotes the top-level component , and cl, c2, c3, and so 
on denote a component's first, second, third, and so on child component. The 
tree address Tc2c3, for example, denotes the third child component of the 
second child component of the top-level component. Child components are 
numbered in the order in which they were created. Components are drawn 
with zero, one, or two asterisks in their lower-right corners, showing that 
they are possibly insecure, assumed secure, or proved secure respectively. 

Input ports are drawn as disks having holes in their centers and output 
ports are drawn as solid diamonds. Connections between ports are repre- 
sented as arrows showing the directions of data flows through these connec- 
tions. Romulus also shows ports whose types have not yet been determined, 
during use of the create/connect command, as solid squares. The range 
of security levels of messages through each port is shown as an interval in 
brackets using the abbreviations given in the Romulus abbreviations pa- 
rameter. These abbreviations are expected to be short, one or two characters 
long, but Romulus will use them even if they are not short and will use full 
names of security levels for which no abbreviations are given. Romulus uses 
an underscore to denote an upper or lower security-level limit that is not 
present, so the level range [_,_] indicates that the associated port has no 

security-level limit information. 
The canvas always contains one component called the open component 

whose rectangle occupies almost all of the canvas; this rectangle contains 
the rectangles of all the open component's child components if it has any. 
All Romulus component operations affect only the open component and its 
children; all Romulus port operations affect only ports owned by the open 
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component and its children. The open and close commands, described 
below, allow the user to change which component is open. 

The user selects a child component of the open component by moving 
the mouse cursor into the rectangle for that component and clicking the left 
mouse button. The user selects the open component by moving the mouse 
cursor to a point inside its rectangle, but outside the rectangles of its children, 

and clicking the left mouse button. 
The user selects a port by moving the mouse cursor onto the icon for that 

port and clicking either the left or middle mouse button, depending on the 
currently active command and the desired results. Both input and output 
port icons are actually drawn in same-sized squares slightly larger than their 
visible boundaries, and the user can select a port by clicking on the left or 
middle mouse button with the mouse cursor at any point in this square. 

For the port delete and port modify commands, the user can also select 
the connection between two ports. The user selects a connection by moving 
the mouse cursor to within one port-width of the center line for the arrow 
showing this connection, then clicking either the left or middle mouse button, 

depending on the desired effect. 
Commands that display information do so by creating windows that over- 

write part of the canvas. Romulus's error-message windows also overwrite 
part of the canvas. Information displays and error messages stay up until 
the user clicks a mouse button with the mouse cursor either on the canvas or 
inside a command button, in which case the click removes the information 
display or error message, redraws the canvas, and has no further effect. 

When the mouse cursor is on the canvas, the functions of the left and 
middle mouse buttons vary with whichever command is active, as described 
below, but clicking the right mouse button will always deselect the active 
command unless it causes an information display or error message to be 

removed. 

3.2.5    Inert Background Areas 

The areas on the Romulus window that are not in the command buttons, 
the canvas, or any currently displayed text-entry window are inert. Mouse 
buttons with the mouse cursor in one of these areas have no effect. The 
interface is designed so that, in general, inert areas are black and other 
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areas are white—selected command buttons with their colors reversed are an 

exception. 

3.3     Command Levels 

As noted above, the Romulus commands are arranged in three rows, each of 
which roughly corresponds to a level of abstraction in viewing or analyzing 
the system being studied. Commands in the second two rows, which will 
typically be used most often, are arranged so that the expected sequence of 

commands will move from left to right. 
Commands in the first row, the top-level operations, refer to the global 

state of the interface, to the component that is currently open, or to both 
ports and components. The top-level commands are modify, flow, close, 
save, print, names, refresh, and quit. Of these commands, only save, 
which saves a description of the open component, and modify, which allows 
the user to modify text strings associated with ports and/or components, 
require additional user input after they are selected and before they are exe- 
cuted. The save command causes a text-entry window for entering the main 
save file's basename to appear. After the user selects a port or component to 
modify with a mouse click, the modify command causes an edit window to 
appear. All of these commands except modify and close deselect themselves 

when they are executed. 
Commands in the second row, the component operations, mainly refer to 

the children of the open component. The component commands are create, 
load, move, delete, open, assume, ipsl, spec, check, and display. Five 
of them, assume, ipsl, spec, check, and display, can also act on the open 
component itself. These five commands have this property mainly because 
they might need to be applied to the top component being studied, which has 
no parent component; allowing these commands to apply to the open compo- 
nent also frequently avoids having to change which component is open. The 
other five commands in this row are not meaningful, or are not appropriate, 

for the open component. 
All the component operations require mouse actions on the canvas before 

they are executed, but all of them remain active until the user deselects them. 
In addition, the load command requires the user to enter the basename of a 
file that contains a saved description of a component. 
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Commands in the third row, the port operations, refer to the ports owned 
by the open component and its children and to the connections between these 
ports. The port commands are create/connect, move, delete, display, 
and modify. All of these commands require mouse actions on the canvas 
before they are executed. One of them, modify, also requires the user to 

enter a text string and identify it as being the new lower or upper bound 
on the security levels of information passing through the port for any port 
selected to be modified. The modify command also allows the user to select 
a connection between two ports and in this case modifies both of the ports 
at the ends of this connection. 

3.4    Top-Level Commands 

This section describes the first row of the command buttons, the top-level 
commands . These do the following: make changes to both components and 
ports; analyze, save, and print the currently open component; or change the 
state of Romulus to control what is displayed. 

3.4.1    modify 

This command allows the user to modify the text strings give the name or 
security level limits associated with any displayed component or port. The 
user selects a component or port by clicking on its icon with the mouse, and 
the command then causes an edit window to appear at the point selected. 
This window displays the strings that can be modified and labels identifying 
these strings. 

The user modifies these strings using the Emacs-like Athena Text Wid- 
get editing commands. When editing modifications are completed, the user 
can make these modifications to the affected component or port by either 
keyboard input or additional mouse clicks. The user can also discard any 
modifications with either keyboard input or mouse clicks. Any modification 
of the identifying labels is treated as an error and causes all modifications to 
be discarded. 

By default, the keyboard sequences control-s and control-c carry out 
or cancel pending modifications, respectively. The user can change which 
keyboard sequences have these interpretations by adjusting the Romulus 
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translationstable parameter. 
Selecting a component or port with the left mouse button first carries 

out any pending modifications of a previously selected component or port, 
then causes an edit window to appear allowing the user to make pending 
modifications to all the text strings associated with the selected component or 
port. Selecting any point on the canvas with the middle mouse button cancels 
any pending modifications but leaves the modify command active. Selecting 
any point on the canvas with the right mouse button carries out any pending 
modifications and deselects the modify command. It is expected that the user 
will make a sequence of selections with the left mouse button, make pending 
modifications after each selection, then confirm the last modification and end 

the command with the right mouse button. 

3.4.2    flow 

This command either invokes the flow analyzer on the open component or 
removes the display of a previously identified, potentially insecure data flow. 

If the open component has already been proved or assumed secure, in- 
voking the flow analyzer has no effect. If the open component has not been 
proved or assumed secure, the flow analyzer examines all possible data flows 
inside the open component. It assumes, for every component C, that data 
entering any input port owned by C can flow to any output port owned by 
C—unless that input port is connected to an input port owned by one of C's 
child components, in which case the data can flow only to that child. If the 
lower bound on a port has not been specified, the flow analyzer assumes that 
the lower bound for that port is system low. Likewise, if the upper bound 
on a port has not been specified, the flow analyzer assumes that the upper 
bound for that port is system high. If all these data flows are manifestly se- 
cure, meaning that the highest level events passing through input ports have 
security levels that are no higher than the lowest level events passing through 
output ports, then a message is displayed that says the open component is 
secure if the hookups between its components are valid. If the flow analyzer 
finds a data flow that is not manifestly secure, hence possibly insecure, it 
shows this data flow by drawing all connections in it with bold arrows, draw- 
ing all port icons for ports in it with boxes around them, and drawing all 
components that own two of these ports with bold boundaries. For ports 
with no level ranges set, the flow analyzer assumes that information of any 
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level can pass through the port. 
When a possible insecure data flow is displayed, the user can still use all 

commands except flow as they are normally used. In particular, the user 
can invoke the open and close commands to view all of the flow if parts of 
it are hidden inside child components. If the user invokes a command that 
changes the conditions under which the possible insecure flow was detected 
(e.g., commands that delete ports or connections in the flow), the flow is 
automatically no longer displayed. 

If a possible insecure data flow is displayed and involves at least one port, 
connection, or component on the canvas, selecting flow causes this data flow 
to no longer be displayed. If the data flow does not involve a port, connection, 
or component showing on the canvas for the open component—which can 
happen if the user invokes the flow analyzer on a possibly insecure component, 
then opens one of that component's children that is not involved in the 
possibly insecure data flow—the flow command causes an error message to 
appear and has no further effect. 

3.4.3 close 

This command changes the open component to the parent of the previously 
open component. If the open component is already the full system, close 
causes an error message to appear and has no further effect. 

3.4.4 save 

This command saves a textual representation of the open component, its 
subcomponents, their ports, and the connections between these ports in text 
files. Graphical information that describes the sizes and positions of the com- 
ponents and ports of the open component is saved in a file whose basename 
is provided by the user and has the extension .rom. The save command 
causes a text-entry window to appear in which the user enters the basename 
of the file; it automatically adds the extension .rom. In addition to the 
. rom file, the save command produces an . ipsl file for the open component 
and for each of its subcomponents that contains information about names of 
components and ports, level ranges, connections between ports, etc. 

The save is actually performed when the user selects the confirm sub- 
command in this window. The saved version of the open component does not 
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contain connections to any port outside the open component. Saved compo- 
nents can be restored with the load command or by giving the basenames 
of their .rom files as initial parameters. If an .ipsl file for a compo- 
nent exists, Romulus renames the old .ipsl file before the new .ipsl file 
for the component is written. The first backup . ipsl file is given extension 
.oldl.ipsl; subsequent backup files are given the extension .oldn.ipsl, 
where n is one greater than the largest previously existing backup file. 

The save command puts all information that it knows about a component 
into a component's .ipsl file. This includes information that may have 
been read from an . ipsl file for the component but cannot be modified or 
displayed by the graphical interface. This guarantees that, if you edit an 
. ipsl file, the information you add to the . ipsl file will be not be lost by 
loading the component into the graphical interface and saving it again. 

We strongly recommend always invoking the save command from the 
top-level component. If you invoke save from a lower-level component and 
then exit Romulous, only part of your model will be saved. 

3.4.5 print 
This command produces a PostScript file giving the current contents of the 
canvas display. If the currently open component is named name, the com- 
mand will produce a file with basename name and extension .ps. If the 
currently open component is not named, it will produce a file whose base- 
name is the currently open component's tree address with the extension .ps. 
The PostScript file can be printed on any PostScript printer in the usual way. 

3.4.6 names 

This command toggles whether or not port names, or port tree addresses for 
ports that are unnamed, are displayed for the ports appearing on the canvas. 
A port tree address consists of the tree address of the port's owner followed 
by pi, p2, p3, and so on to denote the first, second, third, and so on of 
this owner's ports. The tree address Tc2c3pl, for example, denotes the 
first port on the third child of the second child of the top-level component. 
Ports are numbered in the order they were created. Romulus uses a simple 
algorithm to place these names where they are reasonably unlikely to overlap 
with other parts of the canvas display, but overlaps are still possible. 
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3.4.7 refresh 

This command redraws the canvas. Since redrawing happens automatically 
in all ordinary situations in which it is required, using refresh is seldom 

necessary. 

3.4.8 quit 

This command causes Romulus to exit. 

3.5    Component Commands 

This section describes the second row of the command buttons, the compo- 
nent commands. These modify or examine the currently open component or 

one of its children. 

3.5.1 create 
This command creates new child components of the open component. Press- 
ing down the left mouse button determines the position of the upper-left cor- 
ner of a new component, and moving the mouse cursor with the left mouse 
button held down changes the position of this new component's lower-right 
corner. The canvas display shows the rectangle that is currently the bound- 
ary of the new component. Releasing the left mouse button causes the new 
component to be created. When a new component is created, its ancestors' 

statuses are reset to "possibly insecure". 
The command causes an error message to appear and has no further 

effect if the user inputs a component boundary that overlaps an existing 
child component of the open component, falls outside the boundary of the 
open component, or is too small to contain a name and ports. 

3.5.2 load 
This command allows the user to load a previously saved component. It 
causes a text-entry window to appear in which the user specifies the base- 
name of the .rom file for the component; the command automatically adds 
the extension  .rom.   After the user enters such a basename, load makes 
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a copy of the saved component in the corresponding file into a new child 
component of the open component, doing so each time the user specifies a 
new child's location and dimensions. Pressing the left mouse button gives 
the position of the new child's upper-left corner and releasing the left mouse 
button, possibly after holding it and moving the mouse, gives the position 
of the child's lower-right corner. The canvas display shows the rectangle this 
process will determine while the left mouse button is being held and the 
mouse is being moved. If the dimensions of the new child are too small to 
contain a name and ports, load ignores the selected position of the lower- 
right corner and makes the new child's dimensions the same as those of the 
saved component. When it creates a new child component, load resets all 
that component's ancestors' statuses to "possibly insecure". 

The command causes an error message to appear and has no further effect 
if the user does not enter a basename, if the associated file is not found, if 
the file does not contain a valid description of a component, if a new child 
component location overlaps the location of another child component, or if 
a new child component includes points not inside the open component. 

The load command reads all the information in an . ipsl file and stores 
it internally, even though some of this information cannot be modified or 
displayed by the graphical interface. However, all this information is written 
to . ipsl files created by the save command. This guarantees that, if you 
edit an . ipsl file, the information you add to the . ipsl file will be not 
be lost by loading the component into the graphical interface and saving it 
again. 

3.5.3    move 

This command allows the user to move and/or resize child components of the 
open component. Pressing the left mouse button with the mouse cursor inside 
a child component selects that component as the one to be moved. Pressing 
the middle mouse button then gives the location to which that component's 
upper-left corner is moved. If the user holds down the middle mouse button 
and moves the mouse cursor, the cursor's position becomes the new position 
of the moved component's lower-right corner. The canvas display shows the 
rectangle that will be the new boundary of the moved component. Releasing 
the middle mouse button then moves and/or resizes the selected component. 

If the new rectangle is too small to contain a name and ports, the com- 
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mand leaves the selected component's size and shape unchanged and simply 
makes the point determined when the middle mouse button was pressed the 
new location of the moved component's upper-left corner. In particular, 
clicking the middle mouse button simply moves the selected component. 

The command causes an error window to appear and has no further effect 

if a new location is given before a component to be moved is selected, if the 
new component location overlaps the location of a child component other 
than the one being moved, or if the new location includes points not inside 
the open component. 

3.5.4 delete 

This command allows the user to delete child components of the open compo- 
nent. The user selects a child to be deleted with the left mouse button. The 
selected component, all its subcomponents, and all their ports are deleted. 
The command resets the statuses of all a deleted component's ancestors to 
"possibly insecure". If the deleted component was involved in a displayed 
possibly insecure data flow, it clears the display of this flow. 

3.5.5 open 

This command makes a child component of the open component into the 
new open component. The user selects this child component by clicking the 
left mouse button. 

3.5.6 assume 

This command allows the user to assume that a component is secure or possi- 
bly insecure, even if it was earlier proved secure. (This command is typically 
used in conjunction with flow analysis to see what potential insecure data 
flows are removed or created by changes in the security status of particu- 
lar components.) The user selects either the open component or one of its 
children with either the left or middle mouse button. Selecting a component 
with the left mouse button causes its status to be reset to "assumed secure', 
and selecting it with the right mouse button causes its status to be reset to 
"possibly insecure". Assuming that a component is possibly insecure resets 
the statuses of all of its ancestors to "possibly insecure".  If the component 
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whose assumed security status is changed was involved in a displayed possibly 
insecure data flow, the command clears the display of this flow. 

3.5.7 ipsl 

This command creates files containing a IPSL specifications of the selected 
component and its subcomponents. This command creates .ipsl files in 
exactly the same way as the save command. The only differences are that 
the ipsl command does not create a . rom file and the ipsl command can be 
used to create an .ipsl file for any currently displayed component whereas 
the save command always applies to the the open component. 

If the component is named, the basename of the file the command pro- 
duces is the component's name or the component's name suffixed with its 
tree address to make it unique, and otherwise the basename is the compo- 
nent's tree address. In all cases, the suffix of this file is . ipsl. Backup . ipsl 
files are made using the same technique as for the save command. 

The save command is the preferred method for creating .ipsl files. 

3.5.8 spec 

This command translates the IPSL specification information associated with 
the selected component to produce two files, a specification file containing a 
HOL90 specification of the process associated with the selected component 
and a goal file that sets up the appropriate goal to be proved for the process. 
Comments are included in the goal file that suggest the first step of the proof 
and actions to be followed after the proof. If the selected component is a 
composite process then each of its subcomponents is also translated. 

The HOL90 specification file produced by the translator removes any ear- 
lier versions of the process's theory, loads the Romulus library, and creates 
a new theory of the process in the environment determined by this library. 
It defines input events and output events for the process, defines functions 
assigning security levels to input and output events, and, for an atomic pro- 
cess, defines the process itself as a PSL object. For parameterized processes, 
it also defines the initial value of the process's state parameter, the invariant 
satisfied by this state parameter, and the projection function whose value on 
a security level and state parameter is the possibly sanitized state parameter 
giving all (but only) the process's behavior observable at that level. 
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The HOL90 goal file produced by the translator loads the Romulus library 
and the theory produced by the process's HOL90 specification file, sets the 

appropriate goal for the process, and gives (in a comment) the probable best 
first step in a proof of this goal. It also gives (again in a comment) the 
final lines that will save the resulting theorem, load romrtheory, and call 
romrtheory to produce an rtheory file for communicating the result back to 

Romulus. 
The translation fails if it is unable to open the specification or goal files, 

if the component has missing or extraneous attributes (if it specifies a state 
parameter it must also specify a projection function, for example), if the 
component does not have both input and output ports, or if some port does 
not specify the names and types of elements in messages through the port. 

If the component is named, the basename of the specification and goal files 
produced by the command is the component's name or the component's name 
suffixed with its tree address to make it unique, and otherwise the basename is 
the component's tree address. The suffix of the specification file is . spec. sml 
and that of the goal file is .goal. sml. Every successful translation overwrites 
the previous values of both of these files, so one should rename or copy the 
.goal.sml file before editing it to change it into a complete proof. 

The use of the spec command is currently limited because the Romulus 
graphical interface does not have the capability to enter complete compo- 
nent specifications. IPSL specifications should be completed by saving the 
top level component with the save command, exiting the graphical interface, 
and then editing the . ipsl files with a text editor. If you then restart the 
graphical interface using the saved component, the completed IPSL specifi- 
cations will be available to the spec command. Attempts to use the spec 
command without first completing all the IPSL specifications of the compo- 
nents will result in an error. Note that all the information contained in an 
. ipsl file is stored internally in the graphical interface, but the graphical 
interface can only be used to display or modify some of this information. 

This limitation can be avoided, though, by using the ipsl2hol translator 
supplied with Romulus. This translator performs the same function as the 
spec command, but operates directly on IPSL specification files rather than 
on the graphical interface's component data structures. It parses the IPSL 
specification file, produces a corresponding component data structure, and 
produces the appropriate specification and goal files for this component. By 
using ipsl2hol you can avoid reentering the graphical interface to translate 
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the IPSL specifications. If the IPSL file is a specification of a composite 
process, each of its subcomponents is also translated. We recommend that 
ipsl2hol always be invoked on the top-level process; this insures that globals 
files are always created and referenced correctly in the HOL translations. 

In addition to the possible failures for the spec command, the ipsl2hol 
translator fails if it cannot open the file containing the IPSL specification or 

if this file contains an IPSL syntax error. 
The one exception to the preference of using the ipsl2hol command over 

the spec button is when you define your own levels. (See Appendix C for an 
example.) The ipsl2hol command cannot be used when the specifications 
contain user defined levels; the spec button must be used instead. As with 
the ipsl2hol command, we recommend that the spec button always be 

invoked on the top-level process. 

3.5.9     check 

This command checks whether the rtheory file associated with the compo- 
nent, selected by clicking the left mouse button, is consistent with the Romu- 
lus graphic's description of that component, and if so whether this rtheory 
file identifies this component as proved secure. The rtheory file the command 
associates with a component is the file whose basename is the component's 
name and whose extension is . rth; the command causes an appropriate er- 
ror message to appear and has no further effect if the selected component is 

unnamed. 
The command checks, for the theory summarized in the component's 

rtheory file and its ancestors, that the following consistency conditions hold: 

• the set of possible security levels equals the set of security levels previ- 
ously supplied to Romulus through its built-in defaults or the rtheory 
file whose basename is the levelf ile parameter; 

• the dominance relation is consistent with the dominance relation pre- 
viously supplied to the graphical interface in the same way; 

• input ports are the same as the input ports on the component; 

• output ports are the same as the output ports on the component; 
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• the range of security levels for messages through each port includes the 
range of security levels Romulus assigns to that port; and 

• the theory identifies as distinct every pair of distinct ports on the com- 

ponent. 

If all these conditions are satisfied and the rtheory file identifies the compo- 
nent as proved secure, the command sets the component's status accordingly 
and redraws the display to confirm its action. A process is, in this context, 
considered to have been proven secure if the appropriate conditions for the 
process have been proved. 

If the selected component does not have an associated rtheory file, if it has 
a port with no name or no explicit security-level limits set, if it has two ports 
with the same name (a situation not modeled in rtheory files), if some error 
occurs in extracting information from the rtheory file or one of its ancestors, 
if the rtheory file does not identify the component as proved secure, or if one 
of the six consistency conditions given above is not satisfied, the command 
causes an appropriate error widget to appear but has no other effect. 

3.5.10     display 

This command allows the user to display information about a component. 
The information includes the component's name if it has one, and its tree 
address otherwise; the name or tree address of its parent; the names or tree 
addresses of its children, if any; and the names or tree addresses of its ports, 

if any. 
The user selects the component to be displayed, either the open compo- 

nent or one of its children, by clicking the left mouse button. The command 
then causes a window to appear, overwriting a portion of the canvas win- 
dow. Pressing any mouse button with the mouse cursor on the canvas then 
removes the information window and has no further effect. 

The display window contains a scrollbar in the rare cases when all of the 
information will not fit on a single page. On the scrollbar, clicking the left 
mouse button views a later part of the text, clicking the right mouse button 
views an earlier part of the text, and clicking the middle mouse button views a 
part of the text whose position is proportional to the mouse cursor's position 
on the scrollbar. 
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3.6    Port Commands 

This section describes the third row of the command buttons, the port com- 
mands. These modify or examine the ports owned by the currently open 
process or its children and modify the connections between these ports. 

3.6.1  create/connect 

This command allows the user to create a port without connecting it to any 
other ports, to connect two existing ports, to create a port and connect it 
to an existing port, or to create and connect two new ports. Pressing and 
releasing the left or middle mouse button, possibly after holding this button 
and moving the mouse, determines a pair of locations for new or existing 
ports. If these locations are sufficiently close together, as when the button is 
clicked and the mouse is not moved, the two are taken to be a single location 
and a port is created at that location unless one already exists there. If the 
two locations select two existing ports, then these ports are connected. If the 
locations select one existing port and give one new port location, then the 
new port is created and connected to the existing port. If the locations give 
two new port locations, then these ports are created and connected. 

If at least one existing port is selected, the type of any new port created 
and the direction of data flow between this new port and the existing one are 
determined by the type of the existing port and the parent-child or sibling 
relationships between the ports's owners. In this case, the left and middle 
mouse buttons are equivalent. 

Otherwise, clicking the left mouse button creates an output port, and 
creating a pair of ports with the left mouse button creates ports of whatever 
types give a data flow from the button-press port to the button-release port. 
Clicking the middle mouse button creates an input port, and creating a 
pair of ports with the middle mouse button creates ports of whatever types 
give a data flow to the button-press port from the button-release port. In 
these other cases, the types of the ports created will depend on the choice 
of mouse button and/or the parent-child or sibling relationships between the 
port's owners. 

No ports are actually created until the left or middle mouse button is 
released, and then ports are created only if the indicated connection between 
ports can be made without error. Several types of errors are possible. Ports 
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are also typically not created at the exact locations where mouse-button 
presses or releases occur, but at nearby locations determined by projecting 
the button-press locations to the nearest valid port locations. The command 
shows a port icon of indeterminate type at the location where a port will be 

created. 
Pressing or releasing the left or middle mouse button with the cursor on 

a canvas location determines the location of an existing port or a desired 

new port as follows: If the location is inside a child component of the open 
component, it is projected onto the nearest edge of that child component. 
Otherwise, if the location is outside or near the edge of the open component— 
"near" is currently defined as within eight times the distance from the open 
component's edge to the edge of the canvas—it is projected inward or out- 
ward to the nearest edge of the open component. If the projected locations 
determined by the press and release of a single mouse button are within one 
port-icon width of each other, the two events are taken to determine only a 

single port location. 
If a projected location is inside the rectangle bounding the icon for an 

existing port, the selection of that location is taken as the selection of that 
existing port. Otherwise, the projected location is the center of the icon for 
a new port to be created. If the projected location is on the edge of the open 
component, the new port is owned by the open component; if it is on the 
edge of one of the open component's children, the new port is owned by that 

child. 
Each time the command creates a new port, it resets that port's owner's 

status, and the statuses of all that owner's ancestors, to "possibly insecure". 
If it connects ports owned by two sibling components, it resets the statuses 
of their parent and its ancestors to "possibly insecure". If it connects ports 
owned by parent and child components, it resets the statuses of the parent 

and its ancestors to "possibly insecure". 
The command causes an error window to appear and has no further effect 

if the location of a port to be created is such that it would overlap with an 
existing port, if the location is inside the open component but not in a child 
component or close to an edge of the open component, if an attempt is made 
to reconnect to a port that is already connected, if an attempt is made to 
connect two ports owned by the same component, or if an attempt is made 
to connect two ports whose types and owners are such that they cannot be 

validly connected. 
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3.6.2    move 

This command allows the user to move ports to other points on the boundary 
of the same owner. The user selects the port to be moved by clicking the left 
mouse button. Clicking the middle mouse button determines the location 
to which the port is moved, a location determined by projecting onto the 
nearest edge of an enclosing component, if any, as described above for the 

create/connect command. 

3.6.3     delete 

This command allows the user to delete ports and/or connections between 
them. With the left mouse button, selecting a port deletes the port, and 
selecting a connection deletes the connection. With the middle mouse button, 
selecting a connection deletes the connection and the ports at both its ends. 
Deleting a port automatically deletes any connections to the port. 

If the command deletes a port, it resets the statuses of the port's owner 
and that owner's ancestors to "possibly insecure". If it deletes a connection 
between two ports owned by sibling components, it resets the statuses of 
their owner and all of its ancestors to "possibly insecure". If it deletes a 
connection between ports owned by parent and child components, it resets 
the statuses of the parent and all its ancestors to "possibly insecure". If it 
deletes a port or connection involved in a displayed possibly insecure data 

flow, it clears the display of this flow. 

3.6.4    display 

This command allows the user to display information about a port. The 
information includes the port's name if it has one, and its tree address other- 
wise; its type (input or output); the name or tree address of the port's owner; 
any lower bound on the security levels of users or processes capable of ac- 
cessing messages passing through the port; any upper bound on the security 
levels of users or processes capable of creating messages passing through the 
port; and the names or tree addresses of the ports it is connected to, if any. 

The user selects the port to be displayed by clicking with the left mouse 
button. The command then causes a window to appear, overwriting a portion 
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of the canvas window. Pressing any mouse button with the mouse cursor on 
the canvas then removes the information window and has no further effect. 

3.6.5    modify 

This command allows the user to modify, for one or two ports at a time, the 
upper and lower bounds on the security levels of messages passing through 
the port. The command is most useful for setting security-level limits that 
are the same for several ports. 

The command causes a text-entry window to appear in which the user 
enters the desired text string and indicates its use by clicking on one of the 
subcommand buttons. (The default strings are unclassified, confiden- 
tial, secret, and top_secret.) Afterwards, the user selects a port by 
clicking with the left mouse button or selects a connection between ports by 
clicking with the middle mouse button. If the user selects a port, and no 
errors arise for changing that port, that port is modified. If the user selects 
a connection, and no errors arise for changing either of the ports at the ends 
of that connection, both of these ports are modified. 

The command causes an appropriate error message to appear and has no 
further effect if the user attempts to modify a port before entering a text 
string and indicating its use, if the user attempts to use a string as a security 
limit and this string was not previously specified as a possible security level, 
if the user attempts to specify two security limits such that the lower bound 
is not less than or equal to the upper bound, or if the user attempts to change 
level ranges so that the range for source data is not contained in the range 
for destination data. 

The check that the ranges assigned to each end of a connection are con- 
sistent, that is, the check that the range assigned to the port at the tail of 
arrow is a subrange of the range assigned to the port at the head of the ar- 
row can make it difficult to assign and change level ranges. This check may 
effect the order that Romulus allows you to change the limits on either end 
of a connection. For example, you may need to narrow the range at the tail 
end of the arrow before you narrow it at the head end. Or, you may need 
to widen the range at the head end of the arrow before you can widen the 
range at tail end of the arrow. Also, in a multi-layer model these restrictions 
may propagate up and down through the different layers of the model. For 
example, you should start at the highest affected component and work your 
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way down to narrow level ranges, and start at the lowest affected component 
and work your way up to higher level components to widen level ranges. 

A left-button, single-port modification is taken as having precedence over 
a middle-button, double-port modification. A single-port modification can 
change an explicit earlier security limit value, but a double-port modification 
attempt causes an appropriate error message to appear and has no further 

effect in this situation. 
When the command changes a port's lower or upper security limits, it 

resets that port's owner's and all that owner's ancestors' statuses to "possibly 
insecure". If it modifies a security-level limit for a port involved in a displayed 
possibly insecure data flow, it clears the display of this flow. 

59 



Chapter 4 

Introduction to the HOL90 
Environment 

The Romulus tool set provides the means for constructing formal proofs of 
security properties. The HOL90 proof assistant system is used in Romulus 
for this purpose. HOL90 is a reimplementation, in Standard ML of New 
Jersey (SML), of the Cambridge HOL system (HOL88). This chapter pro- 
vides a very brief introduction to Standard ML, the HOL Logic, and HOL's 
approach to formal proofs. It is intended to provide only the minimum in- 
formation necessary to interact with the HOL90 system; it is not intended 
to be complete or comprehensive. For further information on Standard ML 
and HOL, refer to [8, 12, 11, 10, 9]. 

Romulus tools that use the HOL system are described in chapters 5 and 6. 
If you are familiar with HOL, you can skip this chapter without loss of 
continuity. 

4.1     Introduction to Standard ML 

The meta-language SML is an interactive, functional programming language 
that allows you to make declarations and evaluate expressions. The evalua- 
tion of an expression produces the value of the expression and its type. A 
declaration binds a value to a name. This section describes some of the basic 
data types available in SML and some of the basic things you can do in SML. 
For further information, see [8]. 
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The command hol starts the SML interpreter and loads in all the decla- 

rations specific to HOL90. 

'/.    hoi 

HHH LL 
HHH LL 
HHH LL 
HHH LL 
HHH 0000 LL 
HHHHHHH 00 00 LL 
HHHHHHH 00 00 LLL 
HHH 0000 LLLL 

HHH LL LL 

HHH LL   LL 

HHH LL     LL 

HHH LL       LL90.5 

Created on Tim Mar 18 14:08:34 EST 1993 
using: Standard ML of New Jersey, Version 0.93, February 15, 1993 

val it =  ()   :  unit 

V. J 
The hyphen (-) is the SML prompt, which indicates that the interpreter is 
ready for input. User input is in italic type. For example, if we input the 

constant expression 

-    17; 

^ J 
the interpreter responds with val it = 17 : int. This response tells us 
that the interpreter has bound the value of the expression (17) to the variable 
it and that the type of this variable is int. The interpreter always binds 
the value of the last expression to the variable it and always tells us what 
the type of that expression is. If we evaluate the variable it, we see that it 

has the value 17 and is of type int. 
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You can bind the value of an expression to a variable of your choosing using 
a val declaration. For example, 

val x = 17; 
val x = 17   :   int 

 J 
SML has several other atomic types, including real, bool, and string, 

and the usual arithmetic and relational operators on them. For example, 

- 1+3*4=17-4; 
val it = true   :  bool 

V J 
SML also allows you to construct compound data types such as lists, 

cartesian products, and records. For example, here is a list: 

- [1,2,3,43; 
val it =   [1,2,3,4]   :   int list 

V  
The type of this list is list of integers. We can just as easily have a list of 
strings: 

f 
- [•'cat", ,,dog", "pig"]; 
val it  =  ["cat","dog","pig"]   :   string list 

V J 
Note that all items in a list must have the same type. The functions hd and 
tl can be used to get the head and tail of a list. 

- hi ["cat", "dog", "pig"]; 
val it = "cat" : string 
- tl   ["cat","dog","pig"]; 
val it = ["dog","pig"] : string list 

. J 
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The cons constructor (: :) can be used to add an item to the beginning of a 

list: 

r _      > 
- l::[2,3j; 
val it =  [1,2,3]   :  int list 

v - J 
SML also allows the construction of cartesian products, or n-tuples. For 

example, 

- (1,2,3); 
val  it =  (1,2,3)   :   int * int *  int 

V : . 
creates a 3-tuple consisting of three integers.   The items in a tuple do not 

need to be of the same type 

r "    ^ 
- ("bob", 17,true); 
val it = ("bob",17,true) : string * int * bool 

is a 3-tuple consisting of a string, an integer, and a boolean. Individual items 
in a tuple can be extracted by binding the tuple to a pattern of the same 

form. For example, 

-    val   (name,age,flag) =  ("bob", 17, true); 
val name = "bob"   :   string 
val age = 17   :   int 
val flag = true   :   bool 

binds the string "bob" to the variable name, the integer 17 to the variable 
age, etc. The arity of the pattern and the tuple must be the same. 

SML also has a record type that is similar to a tuple type except that the 

individual fields are named. 

- val emprec = {name="bob",age=17,flag=true}; 
val emprec = {age=17,flag=true,name="bob"} : 

{age:int, flag:bool, name:string} 
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The order in which the fields are specified does not matter, that is, 
{name="bob",age=17,flag=true} is the same as {age=17,flag=true, 

name="bob"}. Individual fields can be extracted from this record by ap- 
plying the operators #age, #f lag, and #name to the record.   For example, 

#na,me emprec; 
val it = "bob"   :   string 

V J 
Tuples are implemented in SML as records whose fields are named by the 

integers, as in 

- #1   ("bob",  17,   true); 
val it = "bob"   :   string 

V __^ 

SML functions are first-class objects, meaning that they can be created 
and manipulated like other data objects. For example, you can use lambda 
notation to create a function that adds two integers as follows: 

- ^ 

- fn  (a:int,b:int) => a+b; 
val it = fn   :   int *  int -> int 

V J 
(The keyword f n takes the place of lambda in lambda notation.) This func- 
tion can be bound to a variable and applied to a 2-tuple as follows: 

r ; >> 
val  add = fn   (a:int,b:int) => a+b; 

val add = fn : int * int -> int 
- add(l,2); 
val it = 3 : int 

 J 
A more convenient means of defining this function uses the following short- 

hand notation: 
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which defines the same function. The type declarations on the function 
parameters are necessary, in this case, in order for the SML interpreter to 
determine the types of the parameters. The reason is that the addition 
operator can be applied equally well to ints or to reals and the interpreter 
does not have enough information to choose between these two types. 

Where possible, SML will automatically infer types, so that in many 
cases variables need not be explicitly typed. For example, the concatenation 
operator (") applies only to strings, so the following definition 

fun join a b = a~b; 
val join = in  :   string -> string -> string 

V  

does not require type declarations. 
The add function defined above takes a 2-tuple as its argument.   It is 

more typical to define curried functions. For example, 

- fun add (a:int)   (b:int) = a+b; 
val add = fn : int -> int -> int 
- add 1 2; 
val it = 3 : int 

It would appear that add is a function that takes two integers as arguments 
and returns an integer. In fact, add is a function that takes an integer as 
its argument and returns a function. This new function takes an integer as 
its argument and returns a integer. We can bind the function returned by 
add to its own variable, creating a new function that we can then apply. For 

example, the following 

val  inc = add 1; 
val  inc = fn   :   int ->  int 

inc 17; 
val  it =  18   :   int 

  J 

creates a new function inc that increments its argument by 1. 
Local declarations can be introduced in an expression.  For example, in 

the expression 
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r 
let val x  = [1,3,4]  *n hd x  :: 2 ::  tl x end; 

val it = [1,2,3,4] : int list 

V_ 

^ 

J 
val x =  [1,3,4] is a local declaration whose scope extends from the in to 
the end. 

4.2    The HOL Logic 

The HOL90 system supports higher order logic, a version of predicate calculus 
that is typed and allows variables to range over functions and predicates. The 
HOL logic is summarized in the Table 4.1. 

Kind of term HOL notation Kind of term HOL notation 
Truth T Equality tl = t2 
Falsity F V-quantification !x.t 
Negation ~t 3-quantification ?x.t 
Disjunction tl  \/ t2 e-term Ox.t 
Conjunction tl  A t2 Conditional (t => tl   |   t2) 
Implication tl ==> t2 

Table 4.1: The HOL Logic 

4.2.1     HOL Terms 

Logic expressions in HOL90 have the SML abstract type term.' Logic ex- 
pressions can be expressed using the HOL object language, which is in turn 
parsed by a parser to produce the corresponding term. HOL object language 
expressions are written inside of a pair of single quotation marks and must 
be explicitly parsed using the HOL90 function term_parser. For example, 
the conjunction of a and b is represented by the following SML expression: 
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The object language expression 'a A b' represents the conjunction of a and 
b. The two pairs of hyphens (—) invoke term_parser to parse the expression. 

Each HOL term also has a HOL type. HOL types are also written inside 
single quotes and are parsed using the HOL90 function type_parser. For 
example, in 

r >k 
- ==  ':bool' ==; 
val  it =  (==':bool'==)   :  hol_type 

V . 
' :bool' is HOL object language for a boolean type and the two pairs of 
equal signs (==) invoke the function type_parser. 

The HOL type of a HOL term can be determined using the function 
type_of. 

r ~~ 
- type_of (—'a A  b'—); 
val it =  (==':bool'==)   :  hol_type 

 J 
A HOL term can be a constant, a variable, a A-expression, or a function 
application. Here are some examples of constant terms: 

- — '17'—; 
val it = (—'17'—) : term 

type_of it; 
val it = (==':num'==) : hol_type 

val it = (—"T—) : term 
type_of it; 

val it = (==':bool'==) : hol_type 
- ~'F'—; 
val it = (—'F'—) : term 

type_of it; 
val  it  =   (==':bool'==)   :   hol_type 

> 

The type of a variable may be given explicitly: 
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- — 'x:bool' 
val it 
- type_of it; 
val it = (==':bool'==) : hol_type 

V J 
Or it may be inferred by the parser: 

val it =  (—'~x'—)   :   term 
-     type_of it; 
val it =  (==':bool'==)   :  hol_type 

If there is insufficient information for the parser to infer the type of a variable, 
an error results. 

Unconstrained type variable in the variable 
(x   :?1) 

uncaught exception H0L_ERR 

V  
The following A-expression defines a function of one variable that adds 1 

to its argument. 

- — '\x.x+l'—; 
val it = (—'\x. x + 1'—) : term 

type_of it; 
val it = (==':num -> num'==) : hol_type 

V. 
The type of this function is inferred to be num -> num since num (the set of 
non-negative integers) is the type on which addition is performed. 

The following term is a function application: 

r 
-     — '(\x.x+l)  y'—; 
val it = (—'(\x. x + 1) y'—) : term 

type_of it; 
val it = (==':num'==) : hol_type 
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The type of this term is the type of the result of the function, in this case 

num. 
The values of SML variables can be used in object language expression 

using the antiquotation operator ("). 

- val x = —'a A  b'—; 
val x =  (—'a A b'~)   :  term 
- val y = —'~x A  c'—; 
val y =  (—'a A b A c'—)   :  term 

, . J 
The value of the SML variable x is included in the value of y by antiquoting 
it with the caret (') character. SML variables denoting HOL types can be 
antiquoted as well, but their values must be wrapped in the constructor 

ty_antiq. 

- val h = ty_antiq(==':nwn list'==); 
val h = (—,(ty_antiq((==':num list '==))) '—) : term 

- —'k:'h'—; 
val it = (— 'k'~) : term 

type_of it; 
val it = (==':imm list'==) : hol_type 

4.2.2     HOL Theories 

The HOL90 system is used to create theory objects. A HOL theory contains 
sets of types, constants, definitions, axioms, and theorems that have been 
proven from the axioms and definitions. HOL theories can be saved in the- 
ory files. For example, in HOL90 the theory mytheory is saved in two files 
mytheory.holsigand mytheory.thms. The former gives the constants de- 
fined in the theory and the latter gives the facts assumed, defined, or proved, 
about these constants. Theory files also contain pointers to other theory 
files, known as parents of the theory. Anything in a parent theory can be 
referred to in the descendant theory. This structure provides a hierarchical 

representation of theories. 
The HOL system has two modes of operation:   draft mode and proof 

mode.   Draft mode is used to add constants, definitions, and axioms to a 
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theory. Proof mode is used to add theorems to a theory that can be formally 
proved from the definitions, axioms, and previously proved theorems of the 
theory. Proof mode cannot be used to add constants, definitions, or axioms 

to a theory. 
The HOL system provides a number of functions for manipulating theo- 

ries; brief descriptions of the most important of these functions follow. HOL 
initially starts in proof mode and the current theory is initially HOL, which 
contains basic facts about arithmetic, logic, lists, pairs, etc. The function 
current_theory returns a string containing the name of the current theory. 

current_theory() ; 
val it = "HOL"   :   string 

v J 
You can create a new theory with the function new_theory, which takes 

a string containing the name of the new theory as its argument. 

new_theory  "mytheory"; 

Declaring theory "mytheory". 

Theory "HOL" already consistent with disk, hence not exported. 
val it = () : unit 
- current_theory(); 
val it = "mytheory" : string 

V  

The new_theory function creates a new theory call mytheory, makes the 
new theory the current theory, makes the old theory the parent of the new 
theory, and puts HOL into draft mode. Other previously stored theories can 
be added as parents using new_parent. For example, the following 

new_parent  "string"; 
val it =  ()   :  unit 

new_parent  "integer"; 
val  it  =  ()   :  unit 
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makes the theories string and integer parents of mytheory. HOL must be 

in draft mode to use new_parent. 
At this point, you can add new constants, definitions, and axioms to 

the current theory. (Functions for these purposes are discussed in the next 
section.) When you are finished with this process, you can save the current 
theory in theory files using the following command: 

export_theory(); 

Theory "mytheory" exported, 
val it = () : unit 

. J 
The theory can then be used in a later HOL session. The export_theory() 
function can be used in either draft or proof mode. Another command 

close_theory() ; 

Theory "mytheory" closed, 
val it = () : unit 

V. 
changes HOL from draft mode to proof mode. It does not save the theory 
in theory files; export_theory must be used for that. The close_theory 
function leaves the current theory unchanged, and you can use the previously 
defined constants, definitions, and axioms to prove theorems in proof mode. 
However, you must be sure to use export_theory to save any new theorems 

in the theory files before exiting HOL. 
A theory can be loaded from its theory files using load-theory: 

load_theory "mytheory"; 

Loading theory "mytheory" 

Theory "HOL" already consistent with disk, hence not exported, 
val  it =  ()   :  unit 

^ 

This function makes mytheory the current theory and puts HOL in proof 

mode. On the other hand, 
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r 
extend_theory "mytheory"; 

Extending theory "mytheory" 

Theory "HOL" already consistent with disk, hence not exported. 

val it = () : unit 

^ 

makes mytheory the current theory and leaves HOL in draft mode. 
You can view the contents of mytheory with the command 

print„theory "mytheory"; 

As a convenience, the string "-" is always taken as the name of the current 
theory. Thus, the current theory can be printed using the command 

print„theory "-"; 

You can retrieve a definition or a theorem from a theory with the com- 

mands theorem and definition. 

- theorem "arithmetic" "LESS_SUC_NOT"; 
val it =   I-   !m n.  m < n ==> "(n < SUC m) 
- definition "arithmetic" "GREATER"; 
val it=   |-   !mn.  m>n=n<m  :  thm 

"^ 

thm 

The first example retrieves the theorem LESS_SUC JIOT from the theory arith- 
metic and the second example retrieves the definition GREATER from the 

theory arithmetic. 
Finally, there is an alternative way to open a new theory. HOL libraries 

are groups of files that have three components: logical theories, code, and 

help. Libraries are loaded with the command 

load_library{lib = library;  theory = "mytheory"}; 

This command puts HOL into draft mode (if necessary), opens a new theory 
mytheory, makes any theories in library the parents of this new theory, and 
performs other tasks that make the library accessible. 
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4.2.3    Defining HOL Types and Constants 

HOL users can define their own concrete recursive data types using the de- 
f ine_type function. Concrete recursive types are types whose values are 
generated by a set of constructors (i.e., functions) that yield concrete repre- 
sentations for these values. Examples include types that denote finite sets 
of atomic values (enumerated types), types that denote sets of structured 
values (record types) or finite disjoint unions of structured values (variant 
records), and types that denote sets of recursive data structures such as trees 
(recursive types). 

For example, if you are in draft mode, the definition 

val BinTree_Def = 
define_type 

{name = "bintree.DEF", 
type_spec =   'bintree = LEAF of num  I 

NODE of bintree#num#bintree', 
fixities =   [Prefix,Prefix]}; 

defines a data type of binary trees with non-negative integers at each leaf 
and node. The type_spec field defines a type bintree with two constructors 
LEAF and NODE. The LEAF constructor takes a single argument of type num 
and returns a binary tree consisting of a single node. For example, 

- — '(LEAF 17)'—; 
val it = (—'LEAF 17'—) : term 
- type_of it; 
val it = (==':bintree'==) : hol_type 

V 

The NODE constructor takes two binary trees and a non-negative integer as 
its arguments and returns a binary tree. 

"^ 
-     —'(NODE (LEAF 3) S  (LEAF 7))'—; 
val  it =   (—'NODE (LEAF 3)   5  (LEAF 7)'—)   :   term 

type_of it; 
val  it =  (==':bintree'==)   :  hol_type 

v . J 
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The fixities field indicates that LEAF and NODE are prefix operators. The 
def ine_type function constructs and proves a theorem that is an abstract 
characterization of the data type described in this specification. This theorem 
is stored with the name bintreeJDef in the current theory. In addition, 
def ine_type returns this theorem, which in this example is saved in the 

SML variable BinTree_Def, for ease in later use. 

You can define primitive recursive functions on concrete recursive types 
using the function new_recursive_def inition. For example, if you are in 

draft mode, the definition 

new_recursive_definition 
{name = "Sum", 
fixity = Prefix, 
rec_axiom = BinTree_Def, 
def= —'(Sum (LEAF n)  = n)  A 

(Sum (NODE tl n t2)  = 
n +  (Sum tl)   +  (Sum t2))'—}; 

defines a function Sum that adds up all the numbers in a binary tree. The 
name field names the new definition in the current theory where the results 
of the definition will be stored. The fixity field determines that Sum will be 
a prefix operator. The rec_axiom field is the name of the theorem describing 
the concrete recursive type for binary trees. The def field gives the actual 
definition of the Sum. The new_recursive_def inition function returns a 
theorem that states the requested definition. With this definition Sum can be 
used just like any other function. 

- —'(Sum  (LEAF S))'—; 
val  it  =  (—'Sum  (LEAF 5)' — )   :   term 

type_of it; 
val it =  (==':num'==)   :  hol_type 
- —'(Sum  (NODE  (LEAF 1) 2  (LEAF 3)))'—; 
val it  =  (—'Sum  (NODE  (LEAF  1)   2  (LEAF 3))' — )   :   term 

type_of it; 
val it  =  (==':num'==)   :  hol_type 

You can declare new constants using new_constant. For example, if you 

are in draft mode, the function 
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- new_constant{Name="X", Ty= ==':num'==}; 
val it =  ()   :  unit 
- — 'X'—; 
val  it =  (--'X'~)   :   term 

type_of it; 
val  it =  (==':num'==)   :  hol_type 

makes X a constant of type num in the current theory. 
The above declaration says nothing about the constant other than its 

type. Using new_def inition you can declare a constant together with a 
definitional fact about the constant. For example, if you are in draft mode, 

the following 

- new_definition("x",— 'x=17'—); 
val it = I- x = 17 : thm 
- —'«'—; 
val it = (— 'x'—) : term 

type_of it; 
val it = (==':num'==) : hol_type 

definitions "-"; 
val it = C("x",|- x = 17)] : (string * thm) list 

V 
declares a constant x of type num and stores an assertion in the current theory 

that x has a value equal to 17. 
HOL also allows using def ine_type as a polymorphic type constructor 

through the use of type variables. Consider the binary tree example. Instead 
of defining a binary tree of nums, we could have defined binary trees of objects 

of arbitrary type this way: 

val BinTree_Def = 
define_type { 

name = "bintree_DEF", 
type_spec = 'bintree = LEAF of 'a I 

NODE of bintree#'a#bintree', 

fixities = [Prefix,Prefix] 

}; 

The variable ' a is an example of a type variable. This definition of a binary 
tree allows a node or leaf to contain an arbitrary type, as long as the same 
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type is stored at each node and leaf of the tree. For example, the binary tree 

-    — '(LEAF 17)'—; 
val it = (—'LEAF 17'—)   :  term 

type_of it; 
val it =  (==':mim bintree'==)   :  hol_type 

contains numbers; its type is num bintree. The binary tree 

-    —'(LEAF (3,14))'—; 
val it =  (—'LEAF (3,14)'—)   :  term 

type_of it; 
val it =  (==':(num # num) bintree'==)   :  hol_type 

contains pairs of numbers; its type is (num # num)  bintree.   The binary 

tree 

-    —'(NODE (LEAF (1,2,3))   (2,1,3)  (LEAF (1,3,4)))'—; 
val it =  (—'NODE (LEAF (1,2,3))   (2,1,3)   (LEAF (1,3,4))'—)   :  term 

type_of it; 
val it =  (==':(num # num # num) bintree'==)   :  hol_type 

contains 3-tuples of nums. Its type is (num # num # num) bintree. 
It is also possible to explicitly instantiate a type.  For example, the ex- 

pression (num) bintree instantiates the type num bintree. 

-     val numtree = ty_antiq(==':(num)bintree'==); 
val numtree =  (—' (ty_antiq((==':num bintree' ==))) ' —)   :  term 

—' t:~numtree'—; 
val it =  (—'t'—)   :  term 

type_of it; 
val it =  (==':num bintree'==)   :  hol_type 

By wrapping the ty_antiq constructor around the type definition and saving 
the definition in an SML variable numtree, we can quote this definition in 
later expressions, as was done above to declare t to be of type num bintree. 
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4.3     Goal Oriented Proof: Tactics and Tacti- 
cals 

The HOL system allows the creation of only well-formed theories, that is, all 
theorems in the theory must be logical consequences of the definitions and 
axioms of the theory. To add a theorem to a theory you must construct a 
formal proof of its correctness. HOL supports both forward proof and back- 
ward proof. In a forward proof, new theorems are derived from previously 
existing axioms, definitions, or theorems. In a backward proof, the user starts 
with a desired theorem and reduces it to existing axioms, definitions, or the- 
orems. Forward proof is the underlying means for all theorem proving in 
HOL; backward proof, though, is usually more convenient. Backward proof 
gives a natural organization to the proof-search process and saves having to 

repeatedly enter the assertions being proved. 
Here are two examples of backward proof: 

• To prove tl A 12, it is sufficient to prove tl and prove t2. 

• To prove tl ==> t2, it is sufficient to prove t2 from the assumption 

tl. 

HOL90 provides support for having the user guide the creation of new 
theorems by backward proof. This support is in the form of a goal stack, tac- 
tics, and tacticals. After the user has completed a backward proof, HOL90 
then automatically applies the corresponding forward inference rules to pro- 
duce the theorem proved. We will describe goals, tactics, the goal stack, and 
tacticals, then give several examples of proofs of simple theorems. 

4.3.1     Goals 
A goal is an SML value isomorphic to, but distinct from, the SML abstract 
type thm of theorems. A goal consists of a list of assumptions and a conclu- 
sion. In HOL, an assumption or conclusion is just a term of type :bool, so in 
SML a goal is just a pair consisting of a term list and a term. For instance, 

([— 'a < b'--, --'0 < a'—], —'0 < b'—) 

is a goal. A goal gives the form of a desired theorem. The theorem corre- 

sponding to the above goal is 
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[a < b,  0 < a]   I- 0 < b 

4.3.2    Tactics 

A tactic is an SML function that, when applied to a goal, returns a list of 
subgoals and a justification. A justification is an SML function, typically a 

forward rule of inference, that when applied to the list of theorems corre- 
sponding to the list of subgoals produces the theorem corresponding to the 
original goal. For example, for the goal 

(D, — 'T A  (!n.  0 <= n)'—) 

the tactic C0NJ_TAC returns the list of subgoals 

C([],(--'T'-)),   ([],(-'!n.  0 <= n<-))] 

and a justification that uses the forward rule of inference CONJ to map the the- 
orems I- T and |- (!n. 0 <= n) to the theorem |- T A (!n. 0 <= n). 
A tactic solves a goal if it reduces the goal to the empty list of subgoals. 

Here are the most frequently used tactics and informal descriptions of 
what they do. Examples of the use of each of these tactics can be found in 
section 4.3.5. See the HOL documentation for formal, detailed descriptions. 

• ACCEPT_TAC solves a goal if the goal is the same as a supplied theorem 
after possibly renaming variables. MATCH_ACCEPT_TAC is a variation on 
this tactic that allows substituting terms for variables in matching the 
goal and the supplied theorem. 

• GEN.TAC strips off the outermost universal quantifier; for proving 
! x.  P x it suffices to prove P x for an arbitrary x. 

• CONJLTAC splits a goal tl A t2 into the two subgoals tl and t2. 

• EQ_TAC splits a goal u = v, where u and v both have type :bool, into 
the two subgoals u==>v and v==>u. 

• DISCH_TAC changes a goal (A,u==>v) into (A U u, v). 

• STRIP.TAC removes one outer connective from the goal using CON J_TAC, 

DISCH_TAC, or GEN.TAC. 

78 



• ASSUME_TAC adds the conclusion of a theorem to a goal's assumptions. 

• EXISTS_TAC, for a term u, changes a goal's conclusion from ?x. t [x] 

to t [u]. 

• IMP_RES_TAC takes an implicative theorem of the form I - u ==> v, 
matches each of a goal's assumptions against u (possibly making ap- 
propriate variable substitutions), and if a match succeeds, adds v (pos- 
sibly with appropriate substitutions for variables) to the goal's list of 
assumptions. IMP_RES_TAC deduces consequences of a known theorem 
and the goal's assumptions. 

• RES.TAC takes each of a goal's assumptions of the form I - u ==> v, 
matches each of a goal's remaining assumptions against u (possibly 
making appropriate variable substitutions), and if a match succeeds, 
adds v (possibly with appropriate substitutions for variables) to the 
goal's list of assumptions. RES_TAC deduces consequences of pairs of 
the goal's assumptions. 

• REWRITE_TAC transforms, or solves, a goal by using the conclusions 
of a list of equational theorems as rewrite rules (i.e., as left-to-right 
replacement rules). It applies these rewrites recursively, and to ar- 
bitrary depth, and automatically makes appropriate substitutions for 
variables in the equational theorems to produce matches with terms 
in the goal. Further, REWRITE_TAC automatically applies common tau- 
tologies (e.g., |- T A t = t) to further simplify the goal, and it takes 
conclusion terms t to be the equation t = T, so it solves goals that 
match the conclusions of arbitrary theorems. It can be used in place 
of MATCH_ACCEPT_TAC, but is more computationally expensive. 

There are a number of variations on REWRITE.TAC. PURE_REWRITE_TAC 
uses only the list of equational theorems as rewrite rules. ONCEJUE- 
WRITEJTAC applies the rewrite rules one time only. PURE_ONCE_RE- 
WRITEJTAC is a combination of the above two. 

• ASM_REWRITE_TAC acts as REWRITE_TAC does, but it also uses the goal's 

assumptions as rewrite rules. 

There are a number of variations on ASM_REWRITE_TAC. PURE_ASM_RE- 
WRITELTAC, ONCE_ASM_REWRITE_TAC, and PURE_ONCE_ASM_REWRITE_TAC 
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are similar to the corresponding variations on REWRITE_TAC. 

• MP_TAC reduces a goal to an implication from a known theorem. 
MATCH_MP_TAC is a variation on this tactic that uses more general match- 

ing techniques than MP_TAC. 

ASM_REWRITE_TAC and REWRITE_TAC are big hammers; they are very often 

the tactics that solve final subgoals. 

4.3.3    Goal Stack 

The goal stack maintains a record of all current subgoals and all current 
justifications that relate subgoals to earlier subgoals. The following functions 
are the most important ones for manipulating the goal stack: 

• Function set_goal puts a new goal onto the top of the goal stack. 

• Function g, applied to a conclusion, puts the goal of showing this con- 
clusion from an empty list of assumptions onto the top of the goal stack; 
g conclusion is equivalent to set^goal([] .conclusion). 

• Function expand, abbreviated as e, takes a tactic, applies it to the 
top subgoal, adds any subgoals returned by the tactic to the stack of 
subgoals, saves the justification returned by the tactic on the subgoal 
stack, and if the tactic solves the top subgoal, automatically applies 
the saved justifications to produce the theorem corresponding to the 

top subgoal. 

• Function rotate, abbreviated as r, applied to an integer, rotates the 
top list of subgoals on the stack by that integer, so the subgoals of a 
common goal can be considered in any order. 

• Function top_goal, with no arguments, returns the top goal on the 

goal stack. 

• Function backup, abbreviated as b, with no arguments, "backs up" and 
undoes the effect of the last command that affected the goal stack. 

• Function save_top_thm, with a string argument, stores the theorem 
just proved with the subgoal package in the current theory, using the 

string as the theorem's name. 
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4.3.4 Tacticals 

A tactical is an SML function that takes a tactic (or tactics) as arguments 
and returns a tactic (or tactics) as a result. Here are the most important 
tacticals and informal descriptions of what they do: 

• THEN is an infix operator that takes two tactics, applies the first one to 
a goal, and then applies the second one to each of the subgoals, if any, 
produced by the first one. THEN is very convenient for proving many 
subgoals of the same form. 

• REPEAT repeatedly applies a tactic until the tactic fails. (Failure occurs 
when a goal is not of the form expected by the tactic.) The best first 
step in proving a goal is often to use REPEAT STRIP_TAC. 

• ORELSE is an infix operator that takes two tactics, applies the first to a 
goal unless that fails, and if that fails, applies the second to the goal. 

4.3.5 Examples 

Here, then, are several examples of using the goal stack, tactics, and tacticals 
in HOL90. The lines entered by the user are those that begin with a hyphen 
(-) and are in italic type. 

The first example demonstrates the use of ACCEPT_TAC. Our goal is to 
prove that all boolean variables x either are true or are false. Fortunately, a 
theorem to this effect has already been proved and saved in the SML variable 
B00L_CASES_AX. The only difference between this theorem and our goal is the 
use of a different variable. We start by entering our goal; the interpreter 
responds by printing the goal in a standard form. The conclusion is printed, 
followed by a row of equal signs (=), then followed by the assumptions. In 
this case there are no assumptions so a blank line is printed. 

r >t 
-     g   '!x.   (x=T) \/ (x=F)'; 
(—'!x.   (x = T)  V  (x = F)< —) 

val  it =   ()   :  unit 

. J 
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Next we print the theorem B00L_CASES_AX. This is done for informational 
purposes only; this action has no effect on the proof or the goal stack and 
could just as well have been left out. After this, the tactic is applied. 

- BOOL_CASES_AX; 
val it =  I-   !t.   (t = T) \/  (t = F) 
- e (ACCEPT_TAC BOOL_CASES_AX) ; 
OK.. 

Goal proved. 
I-   !t.   (t = T)  V  (t  = F) 

thm 

Top goal proved, 
val it =  ()   :  unit 

^ 

The tactic ACCEPT_TAC performs the necessary variable substitution and uses 
the theorem to prove the goal. Note in this last example that the goal stack 
is affected only by the functions that explicitly manipulate it, so evaluating 
the SML variable B00L_CASES_AX has no effect on the goal stack. 

The following goal contains the universal quantifier (!). 

- g   '!x.   0 <= x'; 
(- -'!x.  0 <= x'-) 

va 1 it = () :  unit 
- e GEN_TAC t 

OK 
1 subgoal: 
(- -'0 <= x'- -) 

val it 0 unit 

The tactic GEN_TAC strips off the outermost universal quantifier from a goal. 
To prove a statement for all x it is sufficient to prove it for an arbitrary x. 

The next goal is a conjunction. 

82 



-    g   'A A B'l 
(--'A A B'—) 

val it =  ()   :  unit 
-     e CONJ_TAC; 
OK. . 
2 subgoals: 
( — 'B'—) 

(--'A'—) 

val it =  ()   :  unit 

V  
The tactic C0NJ_TAC makes this goal into two subgoals. If both these subgoals 

can be proved, then so can the original goal. 
The next goal claims the equality of two terms. 

r 
9 '(a. A b) ; : c'; 

c- -'a A b = = c'- -) 

val  it =  ()   :  unit 
-     e EQ_TAC; 
OK. . 
2 subgoals: 
(— <c ==> a A b'—) 

(--'a A b ==> c<—) 

val  it =   ()   :   unit 
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EQ_TAC replaces this equality with two subgoals, each of which is an implica- 
tion. We next apply DISCHJTAC to the topmost goal. 

-     e DISCH_TAC; 
OK.. 
1  subgoal: 
(—'c'-) 

(--'a A b'—) 

val it =  ()   :  unit 

J 
DISCH-TAC adds the left-hand side of the implication to the (initially empty) 
set of assumptions, leaving only the right side of the implication as the new 
goal. 

Next we have a more complicated goal. 

- g   '!x y z.  x ==> (y ==>  (y  A z))'; 
(~'!x y z. x ==> y ==> y A z'—) 

val it = () : unit 
-  e (REPEA T STRIP_ TA C) ; 
OK. . 
2 subgoals: 
(—'z'—) 

(—'I'— ) 

(-V-) 

(—'y'—) 

(—'x'—) 
(—'y'—) 

val it = () : unit 

V. 
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Repeated application of the tactic STRIP_TAC is used to simplify this goal. 
In this case, the same results could have been achieved by three applications 
of GEN_TAC, two applications of DISCH_TAC and finally one application of 
CONJJTAC. 

The next goal states that there exists an n that satisfies a certain condi- 
tion. 

r 
-    g   '?n.   (0 < n) A   (n <= SUC 0) '; 
(~'?n.  0 < n A n <= SUC 0'—) 

val  it =  ()   :  unit 
-     e(EXISTS_TAC (— '1'—)); 
OK.. 
1  subgoal: 
(—'0 <  1  A  1 <= SUC 0'—) 

val it =  ()   :  unit 

Here EXISTSJTAC is used to substitute a particular value (1) for the variable 
n. The quantifier is no longer needed. 

The next goal states that a boolean variable cannot be equal to its logical 
negation. 

-    g  '~(t = -t)'; 
(-'-(t = -t)«—) 

val  it =   ()   :   unit 
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r 
BOOL_CASES_AX; 

val it =  I-   !t.   (t = T)  V  (t = F)   :  thm 
-    e(ASSUME_TAC BOOL_CASES_AX); 
OK.. 
1 subgoal: 
(-'-(t = -t)'-) 

(—'!t.   (t = T)  V  (t = F)'—) 

val it =  ()   :  unit 

The theorem B00L_CASES_AX might be useful in proving this goal. The tactic 
ASSUME_TAC adds this theorem to the assumptions of the goal. 

The next goal has a non-empty list of assumptions. The theorem LESS_SUC. 
NDT is an implication whose left-hand side matches the assumption. 

-    set_goal([—'m < n'—],   —'n <= SUC m'—); 
(—'n <= SUC m'—) 

(—'m < n'—) 

val it =  ()   :  unit 
- theorem "arithmetic" "LESS_SUC_NOT"; 
val it =   I-   !m n.  m < n ==> "(n < SUC m)   :  thm 
- e(IMP_RES_TAC (theorem "arithmetic" "LESS_SUC_NOT")); 
OK.. 
1  subgoal: 
(---'n <= SUC m'~) 

(—'m < n'—) 
(~'-(n < SUC m)'—) 

val it  =  ()   :  unit 

^. 

IMP_RES_TAC adds the conclusion of this theorem to the assumptions of the 

goal. 
Other tactics can also be used to enrich a list of assumptions.  Consider 

the following goal. 
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r N 
-    set_goal([— 'a==>(b==>c)'—, — 'a:boole—, — 'b:bool'—■], — 'aA  c'—); 
(—'a A c'—) 

(—'b'—) 
(—'a'—) 
(—'a ==> b ==> c' —) 

val it =  ()   :  unit 
-     e RES_TAC; 
OK. . 
1  subgoal: 
(—'a A c'—) 

(—'b'-) 
(—'a'—) 
(—'a ==> b ==> c'—) 
(--'c'--) 

val it =  ()   :  unit 

V  

RES_TAC adds the term c to the list of assumptions, since it can be de- 
rived from the other assumptions. We can finish this example using ASM_RE- 
WRITE_TAC. 

r >> 
-     e(ASM_REWRITE_TAC D); 
OK.. 

Goal proved. 
..   I- a A c 

Goal proved. 
...   I- a A c 

Top goal proved, 
val  it =  ()   :  unit 

V. 
The multiple "goal proved" messages show several theorems, including the 
one corresponding to the top goal, being proved from the justifications accu- 
mulated in the goal stack. 

This example shows the power of REWRITE_TAC. 
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- g   'Im n.   (m > n) ==>  (m >= n) '; 
(--' !m n. m > n ==> m >= n' —) 

val it = () : unit 
- val GREATER_OR_EQ = definition "arithmetic" "GREATER_OR_EQ"; 

val GREATER_OR_Eq = |- !m n. m >= n = m > n \/ (m = n) : thm 
- val GREATER = definition "arithmetic" "GREATER"; 
val GREATER = |- !m n. m>n=n<m: thm 
- 0R_INTR0_THM1 ; 
val it =   I-   !tl t2.  tl ==> tl  \/ t2   :   thm 
- e(REWRITE_TAC [GREATER, GREATER_OR_EQ,0R_INTR0_THM1]); 

OK. . 

Goal proved. 
|-   !m n.  m > n ==> m >= n 

Top goal proved, 
val it =  ()   :  unit 

Note in this last example that some basic theorems do not belong to any 
theory and that HOL90 has already bound SML identifiers to these theorems. 
Although they are not used in this example, HOL90 also has functions for 
binding SML identifiers to all the theorems and/or all the definitions in 

arbitrary theories. 

The following goal states that 0 is less than the successor of any non- 

negative number. 

-    g  'o < m + 1'; 
(—'0 < m + 1'—) 

val it  =  ()   :  unit 

V  



r 
- val ADD1 = (theorem "arithmetic" "ADD1"); 
val ADD1 =   I-  !m.   SÜC m = m + 1   :  thm 
- e(MP_TAC ADD1); 
OK.. 
1 subgoal: 
(~'(!m.  SUC m = m +  1)  ==> 0 < m +  1'—) 

val it =  ()   :  unit 

V J 

The tactic MP_TAC makes this goal into an implication by making the con- 
clusion of the theorem ADD1 the antecedent of the implication and the original 
goal the conclusion of the implication. 

We conclude this section with a longer example. We start with our initial 
goal and apply C0NJ_TAC to it. 

-    g   '(HD[1;2;3J = 1) A   (TL[l;2;3j = [2;3j)r; 
(—'(HD  [1;  2;   3]   = 1)  A  (TL  [1;   2;   3]   =   [2;   3])'—) 

val it =  ()   :  unit 
-    e CONJ_TAC; 
OK.. 
2 subgoals: 
(—'TL  [1;  2;  3]   =  [2;   3]'—) 

(—'HD   [1;  2;  3]   = 1'—) 

val it =  ()   :  unit 

V J 

We can undo the last operation using backup. 

89 



backup O; 
(—'(HD  [1;   2;  3]  = 1)  A  (TL  [1;   2;   3]   =  [2;   3])'--) 

val it =  ()   :  unit 

V  

Reapplying CONJ_TAC we get. 

-     e CONJ_TAC; 
OK.. 
2  subgoals: 
(—'TL  [1;  2;   3]  =  [2;  3]'—) 

(—'HD   [1;   2;   3]   =  1'—) 

val it =  ()   :  unit 

V  

We can change the order of the subgoals using rotate. 

rotate i; 
(- -'HD [l; 2; 3] = 1'- -) 

(- -'TL [l; 2; 3] = C2; 3]' —) 

val it  =  ()   :  unit 

^ 

Finally we use REWRITE_TAC to apply the definitions of TL and HD. 
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-     e(REWRITE_TAC [definition "list" "TL"J); 
OK. . 

Goal proved. 
I- TL  [1;   2;   3]   =   [2;   3] 

Remaining subgoals: 
(—'HD   [1;   2;   3]   =  i'—) 

val it =  ()   :  unit 
-     e(REWRITE_TAC [definition "list" "HD"]); 
OK.. 

Goal proved. 
I- HD   [1;  2;   3]  =  1 

Goal proved. 
I-  (HD  [1;  2;  3]   = 1)  A  (TL  [1;   2;   3]  =   [2;  3]) 

Top goal proved, 
val it =  ()   :  unit 

Note in this last example that for HOL object-language lists, the "head" 
operation, the "tail" operation, and the list separator are HD, TL, and the 
semicolon; for SML lists, the "head" operation, the "tail" operation, and the 
list separator are hd, tl, and the comma. Also note that the proof given was 
much longer than necessary, being used to illustrate the b and r commands. 
The same result could have been proved with the application of a single 

tactic. 

-    g   '(HD[1;2;3] = 1) A   (TL[l;2;3j = [2;3])'; 
(—'(HD   [1;  2;   3]   = 1)  A  (TL  [1;   2;   3]   =   [2;  3])'—) 

val  it =  ()   :  unit 
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-     e(REWRITE_TAC[definition "list" "HD",   definition "list" "TL"]); 
OK.. 

Goal proved. 
I-  (HD   [1;   2;  3]   = 1)  A  (TL  [1;  2;   3]  =   [2;   3]) 

Top goal proved, 
val it =  ()   :  unit 

4.3.6    More HOL Help 

This chapter provides only the minimum information necessary to interact 
with the HOL90 system; it is not intended to be complete or comprehensive. 
Many resources are available to the reader who wishes to know more. Ad- 
ditional information on Standard ML can be found in ML for the Working 
Programmer [8]. More information on HOL can be found in [12, 11, 10]. 
Unfortunately, these references describe an older version of HOL, known 
as HOL88, and there is no corresponding set of documentation describing 
HOL90. However, many of the differences between HOL88 and HOL90 are 
simple matters of syntax, so the HOL88 documentation is still a useful ref- 
erence for HOL90. See [9] for a brief description of the differences. We 
hope that better documentation for HOL90 will become available in the near 
future. 

Another useful resource is the X window application xholhelp, which 
provides online documentation of HOL theorems, functions, and tactics. It 
is distributed as part of the HOL90 source. 
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Chapter 5 

Romulus Security Proofs 

This chapter describes the Romulus process specifications and special-purpose 
Romulus tactics for proving processes secure, then finishes with a tutorial ex- 

ample. 
The processes analyzed by Romulus for nondisclosure properties deal with 

multiple security levels (for example, unclassified, confidential, secret, and 
top secret). Romulus models these processes as rated state machines, which 
assign security levels to each input and output event. The raw information 
that can be obtained, or viewed, by an observer depends on that observer's 

security level. 
Romulus includes support for showing restrictiveness of buffered server 

processes. A buffered process consists of a FIFO queue and a process being 
buffered; it saves its inputs on the queue until the process being buffered is 
ready to receive them. The process being buffered is a server process if it 
waits for input in a (possibly parameterized) state, processes each input by 
producing zero or more outputs, and then calls itself to again wait for input 
in a (possibly different parameterized) state. 

5.1     Romulus Process Specifications 

Full process specifications are given in Romulus using the Romulus Interface 
Process Specification Language (IPSL). An IPSL specification contains de- 
scriptions of a process's input and output ports, the messages passing through 
the ports, the process's response to these messages, and other information 
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needed to translate the specification to HOL. The full description of this lan- 
guage is given in section 5.1.1. IPSL uses the Romulus Process Specification 
Language (PSL) for the process description itself. PSL is described more 
fully in section 5.1.2. 

IPSL specifications must be translated into HOL form before you can 

use HOL to reason about them. The command ipsl2hol translates process 
specifications written in IPSL into HOL90 process specifications. IPSL allows 
the user to write process specifications with minimal knowledge of HOL. 
Occasionally, it might be necessary to look directly at the HOL specification 
produced by the ipsl2hol command. For this reason, section 5.1.3 describes 
the output of the ipsl2hol command. Section 5.1.3 can be skipped without 
loss of continuity. 

5.1.1     The Romulus Interface Process Specification 
Language 

This section gives the complete description of the Romulus Interface Process 
Specification Language (IPSL). 

IPSL consists of text strings labeled and delimited by keywords beginning 
with ?? and ending with :. The ?? combination is used because it is not 
used anywhere in input for HOL90 or the Standard ML compiler. In IPSL, 
text strings giving HOL variables, constants, and expressions need not, and 
must not, explicitly invoke the HOL90 term parser with —' and '—; the 
translator will do this. 

Some keywords are optional, others are required, and some must be used 
in combination with others when they are used. Some keywords must have 
associated text string values in order for ipsl2hol translations to succeed. 

Process specifications describe either atomic server processes or composite 
processes. Atomic server process specifications are described first, followed 
by a description of composite process specifications. In these descriptions, a 
keyword is used to mean this keyword with its associated value, if any. 

An atomic server process specification consists of the following: 

• ??Process: — This keyword gives the name of the process. If the 
process is not named, the IPSL translator creates a name for the process 
from its tree address. 
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• 

??HOL_f unctions: — This optional keyword introduces arbitrary HOL 
text that defines type or function constants used in the rest of the 

process's specification. 

Information about the security levels that the process's specification 
will use is optional. This information is given by the following keywords: 

- ??LevelTheory: — the name of a HOL theory describing a set of 
levels and a dominance relation on these levels. 

- ??DomRelation: — the name and HOL type of the dominance 
relation. 

- ??LevelVar: — the name and HOL type of a variable denoting 
an arbitrary level. 

If any of these three values is given, all must be, and each must have 
a value for the translation to succeed. If this information is not given, 
the translator uses standard default values. 

Information on the process's state parameter, if it has one, is optional. 
This information is given by the following keywords: 

- ??StateVar: — a variable denoting an arbitrary state parameter. 

- ??Initial: — the initial value of the state parameter. 

- ??Invariant: — a predicate satisfied by all attainable values of 
the state parameter. The predicate is given as the right-hand 
side of an equation that defines the predicate as a function of the 
variable given by ??StateVar:. This keyword is optional; if it is 
not given, the predicate is taken to be T (i.e., the predicate that 
is always satisfied). 

- ??Pro j ect ion: — a function of a security level and a state param- 
eter intended to give all, but only, the information in that state 
parameter that will influence the process's future behavior visible 
at that level. The function is given as the right-hand side of an 
equation that defines the function as a function of the process's 
??LevelVar: value and the ??StateVar: value. 

If any of these four values are given, all except ??Invariant: must be, 
and all that are given must have values for a translation to succeed. 
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• ??OutPort: — This keyword gives the name of an output port and 
signals the start of an output port specification. If the output port is 
not named, the IPSL translator creates a name for the port from its 
tree address. At least one output port must be given for the translation 
to succeed. There must be one output port specification for each of the 

process's output ports. 

The following are the contents of an output-port specification: 

— ??MessageVar: — There must be one or more of these values. 
The translator assumes that the format of messages through a 
port is given by a tuple of variables naming and giving the types 
of the entries in this tuple. Each ??MessageVar: value gives one 
of these variables and its type. 

— ??LevelFun: — This function assigns security levels to arbitrary 
messages through the port. The function is given as the right- 
hand side of an equation defining the function in terms of the 
??MessageVar: variables. 

- ??LevelRange: — This keyword formally specifies the range of 
security levels of the messages passing through the port that must 
be proved to hold. 

Everything about the output port, with the exception of its name, must 
be given for the translation process to succeed. 

• ??InPort: — This keyword gives the name of an input port and signals 
the start of an input port specification. If the input port is not named, 
the translator creates a name for the port from its tree address. At least 
one input port must be given for the translation to succeed. There must 
be one input port specification for each of the process's input ports. 

The following are the contents of an input-port specification: 

- ??MessageVar: — There must be one or more of these values. 
The translator assumes that the format of messages through a 
port is given by a tuple of variables naming and giving the types 
of the entries in this tuple. Each ??MessageVar: value gives one 
of these variables and its type. 
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- ??LevelFun: — This function assigns security levels to arbitrary 
messages through the port. The function is given as the right- 
hand side of an equation defining the function in terms of the 
??MessageVar: variables. 

- ??LevelRange: — This keyword formally specifies the assumed 
range of security levels of the messages passing through the port. 

- ??Response: — This function gives the PSL process that the pro- 
cess being specified becomes in response to an arbitrary input 
message received through this port. This function is given as the 
right-hand side of an equation defining the function in terms of the 
??MessageVar: variables. The value associated with this keyword 
is a PSL process. 

Everything about the input port, with the exception of its name, must 
be given for the translation process to succeed. 

• ??EndProcess: — The optional name value associated with this key- 
word is not used and is provided only to allow you to create more 
readable specifications. 

A composite process specification consists of the following: 

• ??Process: — This keyword gives the name of the process. If the 
process is not named, the translator creates a name for the process 
from its tree address. 

• ??H0L_f unctions: — This optional keyword introduces arbitrary HOL 
text that defines type or function constants used in the rest of the 
process's specification. Constants that are used in two or more of the 
process's subprocesses must be declared here. 

• Information about the security levels that the process's specification 
will use is optional. This information is given by the keywords ??Level- 
Theory:, ??DomRelation:, and ??LevelVar: as described for atomic 
server processes. If any of these three values is given, all must be, and 
each must have a value for the translation to succeed. If this informa- 
tion is not given, the translator uses standard default values. 
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• 

• 

??OutPort: — Output ports are specified as described for atomic server 

processes. 

??InPort: — Input ports are specified as described for atomic server 

processes except that no ??Response: is specified. 

??ProcessInFile: — This keyword, used in the specification of a com- 
posite process, must be followed by the basename of an . ipsl file con- 
taining the IPSL specification of a child process. There must be one 
of these keywords for each child. In typical cases, this keyword will be 
generated only by the graphical interface. 

??Connection: — This keyword, used in the specification of a compos- 
ite process, must be followed by a pair of text strings each identifying a 
port on the process or one of its children. A port is identified by using 
its tree address. There must be one ??Connection: keyword for each 
connection between a pair of ports. In typical cases, this keyword will 
be generated only by the graphical interface. 

• ??EndProcess: — The optional name value associated with this key- 
word is not used and is provided only to allow you to create more 

readable specifications. 

An IPSL specification can be translated to a HOL specification using 
the graphical interface's spec command or the ipsl2hol translator. In 
either case, the IPSL specifications must be complete before they can be 
translated. An example of the output of the IPSL translator for an atomic 

process is given in section 5.1.3. 

5.1.2     The Romulus Process Specification Language 

The Romulus Process Specification Language (PSL) is used to specify pro- 
cesses. The syntax and an informal description of the semantics are given 
here; the formal semantics are given in [1] and in Volume II. A "process" is 
an abstraction of a state machine that describes its behavior solely in terms 

of input and output events. 
PSL is a simple language with four basic processes—Send, Receive, Call, 

and Skip—and the means to combine these basic processes into more complex 

processes. 



For technical reasons having to do with how HOL is defined, processes 
are defined in terms of process-valued functions and invocations. A process- 
valued function is a function that returns a process as its value. An invocation 
is a name for a process returned by an process-valued function. Later we will 
see how to map an invocation to the process it names. 

Each of the basic processes is described below. 

• The process Send transmits an output event; it takes a single argument: 

Send outputevent 

The argument is an output event. 

• The process Receive receives an input event; it takes two arguments: 

Receive select response 

The first argument, select, is a boolean predicate on input events; se- 
lect determines which input events the Receive process responds to. 
The second, response, determines how the Receive process responds 
to each input event. An invocation constructor that maps input events 
to invocations is always used here. 

• The process Call   invokes other processes; it takes a single argument: 

Call process 

The process argument is an invocation that identifies the process to 
invoke. This invocation is always specified using an invocation con- 
structor with the appropriate arguments, if any. 

• The process Skip is the finished process that does nothing; it takes no 

arguments: 

Skip 

PSL has four operators for combining processes: the infix operator ; ;, 
Orselect, If, and Buffered. Each of these operators is described below. 

• The infix operator ; ;   is a sequence operator; it takes two operands: 
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processA  ; ; process-2 

Each operand is a process. The infix operator returns the process that 
consists of processA and process-2 executed in sequence. 

• Orselectis a non-deterministic choice operator; it takes two operands: 

Orselect process-1 process^ 

Each operand is a process. Orselect returns the process that non- 
deterministically chooses to execute either process A or process-2. 

• If is   the if-then-else operator; it takes three operands: 

If condition processA process-2 

The operands are a boolean predicate, condition, and two processes, 
processA and process-2. If returns the process that executes processA 
if condition is true and executes process-2 otherwise. 

• Buffered creates   a process that buffers input events; it takes three 
operands: 

Buffered select buffer process 

The first operand, select, is a boolean predicate on input events; the 
second, buffer is a list of input events; and the third, process, is a pro- 
cess. Buffered returns the process that puts the input events satisfying 
the predicate into the buffer and passes them on to the process being 
buffered when that process is ready for them. 

Parentheses may be used to make a PSL specification unambiguous. It 
is recommended that PSL specifications be fully parenthesized to avoid any 
ambiguity in the specification. 

5.1.3    The HOL Embedding 

IPSL is embedded in HOL by defining the appropriate types, functions, and 
constants for the specification. While the HOL overhead for a specification is 
imposing, the majority of it is straightforward and is automatically generated 
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by the ipsl2hol translator. The average Romulus user will rarely need to 
look directly at the HOL version of a process specification as the Romulus 
tactics make this largely unnecessary. This section can be skipped by most 
readers. 

This section describes the HOL version of a process specification, that 
is, the HOL specification created by the ipsl2hol command. We use the 
filter process from Chapter 2 as an example. The IPSL specification for this 
example is given in Chapter 2. The HOL version of a process specification 
creates a HOL theory describing the process. In the following we describe 
each part of the file used to create this theory. For the filter process, this 
file is filter.spec.sml. 

The HOL specification starts with a command that deletes old versions, 
if any, of the filter theory files. The next lines create a new theory called 
filter, load the necessary Romulus libraries, and put HOL in draft mode. 

(* Remove any earlier versions of the theory.   *) 

System.Unsafe.SysIO.unlink "filter.holsig" 
handle e => print "no earlier filter.holsig to remove\ n"; 

System.Unsafe.SysIO.unlink "filter.thms" 
handle e => print "no earlier filter.thms to remove\ n"; 

(* Create the new theory in the Romulus environment.  *) 

new_theory "filter"; 
load_library_in_place(get_library_from_disk "romulus") ; 

Next, the theory giving the global declarations for the whole system is 
made a parent of the current theory. 

(* Parent globals theory.   *) 

new_parent "simple_example_globals"; 

This entry is added only if the translator is invoked on the top-level compo- 
nent simple_example, but not if the translator is invoked on filter. 

The specification continues by making the string theory a parent of the 
current theory, and declaring a function sourceJLevel, which takes a source 
string and returns a security level. 

(* filter-specific HOL and SML identifiers.  *) 
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new_parent "string"; 
new_constant 

{Name="source_level", 
Ty= ==':string->standard_level' ==}; 

The ipsl2hol translator copies these lines directly from the ??H0L Junctions: 
section of the IPSL specification to the HOL specification. 

The next section defines various types used in the specification. The 
ipsl2hol translator automatically generates these declarations. 

(* Define filter types and/or SML identifiers for them.   *) 

val filterLevel =  (ty_antiq(type_of (—'level:standard_level'—))); 

The next part of the theory uses romcontype to define HOL types for 
output events, input events, and invocations. The function romcontype is 
a convenience function for easily declaring non-recursive constructed types 
of the form needed for Romulus specifications. It takes as input input a 
string that names a constructed type and a list of (string, (hol_type)list) 
pairs that name the constructors for this type and give the types of their 
arguments. It returns the defining theorem for the newly defined type and 
the type of the new type. 

The translator takes the port name and the names and types of message 
variables from the ??0utPort, ??InPort, and ??MessageVar fields of the 
IPSL specification. The translator automatically generates the invocations. 

(* Define filter output and input event types.   *) 

val  (filterOutEv_Def, filterOutEv)  = 
romcontype 
"filterOutEv" 
[ 
("f_out", 

C 
(type_of(—'source:string'—)), 
(type_of(—'data:string'—)) 

]) 
]; 

val (filterlnEv.Def, filterInEv) = 

romcontype 
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"filterlnEv" 

[ 
("f_in", 

C 
(type_of(—'source:string'—)), 
(type_of(—'data:string'—)) 

]) 
]; 

(* Define filter invocations and PSL processes.  *) 

val  (filterInvoc_Def, filterlnvoc) = 
romcontype 
"filterlnvoc" 
C 
("filterTop", []), 
("filterResponse",   [==':"filterlnEv'==]) 

]; 

Next, the specification defines SML identifiers that give the type of a filter 
process and the types of various functions defined later in the specification. 
The translator automatically generates these type definitions. 

val filterProc = 
ty_antiq(==':("filterOutEv,"filterlnEv,"filterInvoc)process'==); 

(* Define SML identifiers giving the names and types of all 
additional filter functions to be defined.  *) 

val filterOutPred = —'filterOutPred:~filterOutEv -> bool'—; 
val filterlnPred = —'filterlnPred:"filterlnEv -> bool'—; 
val filterOutLevel = --'filterOutLevel:"filterOutEv -> "filterLevel'--; 
val filterlnLevel = --'filterInLevel:"filterlnEv -> "filterLevel'—; 
val filtertop = —'filtertop:"filterProc'—; 
val filterresponse = —'filterresponse:"filterlnEv -> "filterProc'--; 
val filterlnvocVal = —'filterInvocVal:"filterlnvoc ->  "filterProc'—; 

Next the specification defines the input and output predicates that check 
that levels assigned to input and output events are in the appropriate ranges. 
The translator takes the port name and the names and types of message 
variables from the ??0utPort:, ??InPort:, and ??MessageVar: fields of 
the IPSL specification. The level assignment is taken from the LevelFun: 
field and the upper and lower bounds of the level ranges are taken from the 
??LevelRange: field of the IPSL specification. 
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(* Define filter predicates identifying output and input events. *) 

new_recursive_definition { 
name = "filterOutPred", 
fixity = Prefix, 
rec_axiom = filterOutEv_Def, 

def = 
 r 

(~filterOutPred 
(f_out 
(source:string) 
(data:string) 

) = 
((standard_dom) 
(unclassified) 
(unclassified)) A 

((standard_dom) 
(unclassified) 
(unclassified))) 

new_recursive_definition { 
name = "filterlnPred", 
fixity = Prefix, 
rec_axiom = filterInEv_Def, 
def = 
 ( 

(*filterlnPred 
(f_in 
(source:string) 
(data:string) 

) = 
((standard_dom) 
(source_level source) 
(unclassified)) A 

((standard_dom) 
(top_secret) 
(source_level source))) 

Next, the specification defines the functions that assign security levels to 
input and output events. The translator takes the port names and the names 
and types of message variables from the ??0utPort, ??InPort, and ??Mes- 

ageVar fields of the IPSL specification. The translator takes the functions's 
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definitions from the ??LevelFun fields of the IPSL specification. 

(* Define filter functions assigning security levels to output and 
input events.  *) 

new_recursive_definition { 
name =  "filterOutLevel", 
fixity = Prefix, 
rec_axiom = filterOutEv_Def, 
def = 
 c 

("filterOutLevel 

(f_out 
(source:string) 

(data:string) 
) = (unclassified)) 

new_recursive_definition { 

name = "filterlnLevel", 

fixity = Prefix, 
rec_axiom = filterInEv_Def, 

def = 
 t 

(~filterlnLevel 

(f_in 
(source:string) 

(data:string) 
) = (source_level source)) 

The specification defines the filter process in two parts: a process called 
f iltertop and a process-valued function called f ilterresponse.1 Each of 
these parts has a corresponding invocation constructor; these constructors 
are called f ilterTop and f ilterResponse respectively. 

The translator automatically generates the definitions of f iltertop and 
f ilterresponse. The translator also automatically generates the names 
f iltertop, f ilterTop, f ilterresponse, and f ilterResponse. 

(* Define the filter functions giving the top-level PSL process and 
the response to input events.  *) 

xThe specification defines f iltertop as a process rather than a process-valued function 
because filter is a nonparameterized process. 
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new_definition( 
"filtertop", 

— '"filtertop = 
(Receive  (\ev:~filterlnEv. T)   (filterResponse)) 

The translator defines the process-valued function f ilterresponse using 
new_recursive_def inition with the process definition taken from the ??Re- 
sponse: field of the IPSL specification. 

new_recursive_definition { 
name = "filterresponse", 
fixity = Prefix, 
rec_axiom = filterInEv_Def, 
def = 
 t 

(~filterresponse 
(f_in 
(source:string) 
(data:string) 

)  = 
((If  ((source_level source) = unclassified) 

(Send (f_out source data)) 
Skip);; 

(Call filterTop))) 

Next, the specification defines the function that maps the invocations to 
the processes they name. This function maps the invocation filterTop to 
the process filtertop and the invocation constructor filterResponse to 
the process-valued function f ilterresponse. 

The translator automatically generates this mapping function. 

(* Define the filter function assigning meanings to invocations.  *) 

new_recursive_definition { 
name = "filterlnvocVal", 
fixity = Prefix, 
rec_axiom = filterInvoc_Def, 
def = 
 t 

("filterlnvocVal filterTop = filtertop) A 

(~filterlnvocVal (filterResponse inev) = (filterresponse inev)) 
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Finally, the specification exports the theory and exits from HOL. 

export_theory(); 
exitQ; 

5.2    Proving Processes Secure 

5.2.1     Trusted Processes 

This section provides an overview of the Romulus tactics for proving that a 
buffered server process is restrictive and that the required interface conditions 

hold. 

Restrictiveness 

The raw information that can be obtained, or viewed, by an observer of a 
system depends on that observer's security level. What an observer at a 
given security level can know about a system is described by three functions: 
functions giving the security levels associated with input and output events, 
and a projection function hiding state information. 

A projection function induces an equivalence partition on process state 
parameters, for the process being buffered, based on security level. Two 
parameters in the same equivalence partition with respect to one level must 
also be in the same equivalence partition with respect to any other level 
dominated by that level. The projection of a parameter to a level determines 
all the information, but only the information, necessary to determine the 
system's future behavior that can be viewed at that level. 

The following are informal descriptions of conditions that are sufficient for 
guaranteeing, for buffered server processes, that an observer at a particular 
security level can never deduce anything about higher or incomparable-level 

events: 

1. Any output produced in response to an input is at a level that domi- 

nates the level of that input. 

2. If the level of an input is not dominated by the observer's level, then 
the projection function induces a state parameter partition such that 
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the process being buffered appears not to have changed state (i.e., the 
process's state after responding to this input is in the same partition 

block as it was before receiving this input). 

3. If the security level of an input is dominated by that of the observer, 
then any two state parameters of the process being buffered that seemed 
equivalent to the observer are not distinguished by the response to this 

input: 

• If any arbitrary choices made for one state parameter are made 
identically for the other state parameter, the sequences of PSL 
operations performed for the two parameters are the same. 

• All outputs possible for one state parameter are also possible for 
the other. 

• Any possible next state parameter for one parameter is in the 
same partition block as any possible next parameter for the other 
state parameter. 

• The previous two conditions hold for any combination of visible 
outputs and seemingly equivalent next state parameters. 

The buffering guarantees that the full process is always ready to accept 
input, so there is never any information conveyed about the process's state 
by its ability or inability to accept input. Note that conditions 2 and 3 are 
always satisfied by nonparameterized processes. 

The predicates BNPSP.restrictive and BPSP_restrictive formalize 
these conditions for buffered, non-parameterized server processes and buffered, 
parameterized server processes respectively. Formal definitions of these con- 
ditions are given in Volume II of this documentation set. 

Using HOL to Prove Restrictiveness 

The two main Romulus HOL predicates for expressing restrictiveness of 
PSL processes are BPSP_restrictive and BNPSP.restrictive, which ap- 
ply to parameterized and non-parameterized processes, respectively. Both 
BPSP_restrictive and BNPSP.restrictive make additional assumptions 
beyond what is required to prove restrictiveness; they assume that the level 
of each input event arriving at an input port is in the level range for that 
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port. A process proved BPSP_restrictiveor BNPSP_restrictiveis restric- 
tive, but only for the environment denned by the assumptions on the input 
events. BPSP.restrictiveand BNPSP.restrictivealso state the necessary 
interface conditions for the process. These conditions are that if the level of 
every input event arriving at an input port is in the level range for that 
port, then the level of every output event for every output port will be in the 
level range specified for that output port. Proving these interface conditions 
proves that the process conforms to the environment that is claimed for it in 

the graphical interface. 
Each of these predicates is defined in terms of simpler predicates. Lists 

of these predicates and informal descriptions of what they mean follow. We 
give the much simpler nonparameterized case first. 

The following predicates define BNPSP_restrictive: 

• BNPSP.rightformis true of a nonparameterized process if that process 
is a server process (i.e., true if the process waits to receive an arbitrary 
input, processes this input, and calls itself to again wait for an arbitrary 

input). 

• BNPSP.nowritesdownis true of a nonparameterized server process if all 
the outputs it produces in response to an arbitrary input event are at 
security levels that dominate the level of the input and if all the outputs 
it produces in response to an arbitrary input event are in the specified 
output ranges. The latter condition states the interface condition. 

The following predicates define BPSP_restrictive: 

• BPSP_rightf ormis true of a parameterized process if that process acts 
as a server process for any value of its state parameter that satisfies the 
user-supplied invariant (i.e., true if, when the process's state parameter 
satisfies the invariant, the process waits to receive an arbitrary input, 
processes this input, and calls itself to again wait for an arbitrary input 
with a possibly new value of its state parameter). 

• BPSP.invpreserved is true of a parameterized process whose initial 
state parameter satisfies the invariant and that acts as a server process 
for any value of its parameter satisfying the invariant if its response 
to any input event ends with calling itself with a value of its state 
parameter that also satisfies the invariant. 
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BPSP_nowritesdown is true of a parameterized server process if all 
the outputs it produces in response to an arbitrary input event are at 
security levels that dominate the level of the input and if all the outputs 
it produces in response to an arbitrary input event are in the specified 
output ranges. The latter condition states the interface condition. 

BPSP_nolowchange is true of a parameterized server process whose 
state parameter always satisfies the invariant, and a user-supplied pro- 
jection function whose value for a security level and a state parameter 
is intended to capture just the information in the state parameter that 
influences the process's future behavior that is visible at that security 
level, if for every input not visible at a particular level the process's 
state parameter seems not to change — that is, if an input is not 
visible at a level, the projection to that level of the process's state pa- 
rameter in its call to itself after responding to the input is the same 
as the projection to that level of the process's state parameter before 

receiving the input. 

BPSP.samepathis true of a parameterized process and projection func- 
tion satisfying BPSP_nolowchangeif for any level, any two state param- 
eters whose projections to this level are equal, and any input visible at 
this level, if the process' responses to this input when parameterized 
by these parameters make the same nondeterministic choices then they 

execute the same sequence of PSL commands. 

BPSP.lowresponsesame is true of a parameterized process and projec- 
tion function satisfying BPSP.nolowchange if the process's responses 
to every input that is visible at a particular level does not distinguish 
any two possible values of its state parameter that seem equivalent at 
that level — that is, for any two possible values of the state parameter 
whose projections to a level are the same, the responses to an input 
visible at that level produce the same outputs visible at that level and 
produce seemingly equal new state parameters. 

Each of these security predicates has a corresponding tactic in the Ro- 
mulus library that automates much or all of the effort of proving that the 
predicate holds. The tactic corresponding to each Romulus security predicate 
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is named by appending _TAC to the name of the predicate: BPSP_restric- 
tive_TAC, BNPSP_restrictive_TAC,and so on. These tactics each do two 

or more of the following things: 

• They expand the definitions of the predicates they correspond to. 

• They apply other Romulus tactics that can be expected to automati- 
cally solve or simplify the subgoals they generate. For instance, BNPSP_- 
restrictivoTAC automatically applies BNPSP_rightf orm_TAC and 
BNPSP_nowritesdowii_TAC. 

• They perform case splits on all possible types of input events (essen- 

tially, on each input port). 

• They apply Romulus-specific theorems about security predicates and 
PSL processes as rewrite rules until all specific mention of security 
predicates and PSL processes goes away. For instance, being a server 
process is defined in terms of responding to any input event by ending 
with a call to itself to wait for the next input. Ending with a call to 
itself is defined by finishing all processing before making a call to itself. 
A process PI ;; P2 finishes all processing if and only if PI finishes 
all processing and P2 finishes all processing, and a Send or Skip PSL 
process always finishes all processing. 

• They expand definitions that the user will almost certainly need to 
expand to prove any remaining subgoals (e.g., the definition of the 
dominance relation on security levels for the BPSP_nowritesdown and 
BNPSP_nowritesdown goals). 

It is important that the various parts of showing restrictiveness (e.g., 
showing BPSP_nolowchange and BPSP_lowresponsesame) can be stated as 
separate goals and proved as separate theorems. This separation avoids 
wasteful repetition when proving restrictiveness for large, complicated pro- 
cesses. It is also important that the subgoals left by the various Romulus 
tactics are usually all of the same form, so the THEN tactical can often be 
used to solve several of these subgoals at the same time. 

A simple example of using the Romulus tactics to prove restrictiveness 

can be found in Chapter 2. 
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5.2.2 Manifestly Secure Processes 

This section provides an overview of the Romulus tactic for proving that the 

necessary conditions hold for manifestly secure processes. 
A process whose outputs are all at the same or higher levels than its 

inputs is assumed to be manifestly secure by the flow analyzer because there 
is no way for high level information to leak to low levels in such a process. 
The security of such processes depends entirely on the levels assigned to its 

inputs and to its outputs, not on what the process actually does. 
The conditions that must hold for a manifestly secure process are that 

• the level of every output event for a port is in the level range claimed 

for that port, and 

• if the level of every input event for a port is in the level range for that 
port, then the level of every output event dominates the level of every 

input event. 

For atomic processes whose specifications have at least one input port for 
which no ??Response: function is specified, the IPSL translator generates a 
goal file whose goal states these manifest security conditions for the process. 

Note that this goal is generated even if the level ranges on the process's 
ports do not indicate that the process is manifestly secure. The process 
may be manifestly secure if the level assignment functions are taken into 
consideration, but this can be proved only by using HOL and cannot be 
recognized by the graphical interface. 

Romulus provides a tactic that automates much or all of the effort of 
proving that the manifest security conditions hold for a process. This tactic, 
Manif estlySecura.TAC, makes case splits on input and output events, and 
then rewrites with the definitions of the input and output predicates, the 
input and output level-assignment functions, and the dominance relation on 
levels. In typical cases, it reduces this goal to showing that the levels of 
output events dominate the levels of input events. 

5.2.3 Composite Processes 

This section provides an overview of the Romulus tactic for proving that the 
components of composite process are properly connected. 
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Composite processes are composed of subprocesses whose components are 
connected together. These connections must ensure that the levels of events 
assigned by the sending port are consistent with the levels assigned these 
events by the receiving port. The checks that must be made to ensure this 
consistency are that 

the level range of the sending port is a subrange of the level range of 
the receiving port, and 

• 

• the level assigned to an event by the sending port is the same as the 
level assigned to the event by the receiving port. 

For composite processes, the IPSL translator always generates a goal file 
whose goal states connection conditions for each connection. 

Romulus provides a tactic that automates much or all of the effort of prov- 
ing that all the connection conditions hold for a composite process. This 
tactic, HookupValid_TAC, splits the goal into subgoals and then rewrites 
with the definitions of the input and output predicates. For validly con- 
nected processes, the conditions that must be proved are usually trivial, and 
HookupValicLTAC typically proves the goal automatically. 

5.3    Tutorial Example 

This section contains a somewhat more realistic example than the simple 
example given in Chapter 2 of how Romulus can be used to examine nondis- 
closure security for a system. The example in this section is a simple secure 
version of a token ring local area network (LAN). In section 5.3.1 we describe 
how token rings work and how a secure version can work. In section 5.3.2 
we describe how the Romulus graphical interface can be used to give a top- 
level decomposition of the architecture of a single station on the LAN. In 
section 5.3.3 we show how the Romulus graphical flow analyzer can be used 
to analyze the architecture to identify security problems and to determine 
which components need to be trusted. In sections 5.3.4 and 5.3.5 we give 
the specification of one of the trusted components of the token ring using 
IPSL. In section 5.3.6 we give the proof in HOL of the security condition 
for this component. In section 5.3.7 we consider the specification and proof 
of a single-level trusted component. Last, in section 5.3.8 we show how we 
confirm our results using the graphical interface. 
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5.3.1     Secure Token Ring Station 

A token ring LAN consists of a number of stations linked together in a 

circle. The main purpose of the token ring protocol is to control access to 
the transmission medium so that transmissions from different stations do not 

interfere with each other. 

Access is controlled by means of a unique message called the token. At 
initialization, a token is sent by some station. This token starts out traveling 
in a certain direction around the ring. A station receiving the token does one 
of two things: 

If the station has messages to send, it begins sending them in the di- 
rection that the token was going. Stations between the sender and 
the intended destination receive and retransmit these messages. When 
these messages reach the intended receiver, it sends them to the local 
host and also retransmits them in the direction in which they were 
traveling. When these messages reach the original sender, it trans- 
mits the token in the same direction in which the token was originally 
circulating. 

• If the station has no messages to send, it retransmits the token in the 
direction the token was traveling when received. 

This protocol ensures (modulo noise, dropped messages, etc.) that at 
most one station's messages are being transmitted at a time. 

In the secure version of the token ring that we examine in the remainder of 
this tutorial, each host on the ring handles a single security level of data, with 
possibly many different levels of host on the network. Thus, the hosts are 
single-level, but the network itself is multilevel. We assume that all stations 
on the ring know what level is associated with each host, and that messages 
on the ring (other than the token) are assigned the level of the station where 
they originated. Mediation is done at the receiving end; that is, when a 
message arrives at a station and the message header identifies that station 
as the destination, then the station checks to see that the originator's level 
is less than or equal to that of the station. 
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5.3.2     Graphical Interface 

In this section we describe the graphical decomposition of a single station on 
the secure token ring LAN; this station is attached to a host handling secret 
data. The decomposition is shown in Figure 5.1. This figure shows use of the 
names top-level graphical interface command or the portnamesdisplayed 

interface parameter to display all port names. 

The Station as a Whole 

The station as a whole is represented as a component whose bounding box 
is almost the entire picture; this component is labeled token_ring_station 
in the upper-left corner. The station has four ports to its environment. The 
input ports are represented as circles and the output ports as diamonds. All 
ports and components in this example have been given descriptive names. 

On the left side of the box, there is an input port labeled t_in. This is the 
port through which messages enter the station. As displayed in the picture, 
t_in has associated with it a range of security levels reflecting the range of 
levels of events that can pass through this port. Since all traffic on the ring 
goes through every station, this port must allow events of all levels to pass 
through it. The level range of t_in is therefore all levels from unclassified 
to top_secret, which are abbreviated by U and TS respectively. 

On the right side of the box, there is an output port labeled t_out. This 
is the port through which messages leave the station. Again, its level range 

is [U,TS]. 
On the bottom of the box, there is an input port labeled f romjiost. This 

is the port through which messages from the station's host enter the station. 
Since the station is single level secret, the level range on this port is from 
secret to secret (abbreviated by [S,S]), that is, only secret messages can 

pass through this port. 
On the top of the box, there is an output port labeled to_host. This is 

the port through which messages from the station enter the station's host. 

Again, the level range on this port is [S,S]. 

The Sorter 

The arrow from t_in indicates that it is connected to port s_in, which is an 
input port of the component sorter.  This component splits the stream of 
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incoming messages into three internal streams: 

1. tokens, which produce signals that go out through port s_tok to the 

sender component; 

2. messages from this station (presumably returning from a trip around 
the ring), which produce signals that go out port s.host to the token_- 

gen component; and 

3. messages from other stations, which go out port s_others to the 

receiver component. 

The Sender 

The sender component receives messages from the attached host through the 
ports fromjiost and to.send. When it has a message to send, it waits for 
a signal through the port old_token. This signal indicates that the station 
has the token. When and if it does get this signal, it sends the message out 
send_message to the labeler component. If it gets this signal and does not 
have a message to send, it sends a signal out port pass_sig to token.gen 
to generate a token to go out on the LAN (that is, to pass the token). 

The Receiver 

The receiver component gets messages from other stations through port 
from_others. If the message is for this station, receiver checks to see 
that the level of the originating station is less than or equal to that of this 
station. If it is, receiver strips off the header and sends the message to the 
host through ports accept and to_host. Whether or not the message is for 
this station, and whether or not it passed mediation, the receiver sends the 
message out through port pass_message to be passed on (this is so that it 
may return to the originating station, which will then regenerate the token). 

The Labeler 

The labeler component gets messages from the host via sender through 
port unlabeled. It attaches header information, including the security rel- 
evant information of the originating host, and sends the result out through 

port labeled. 
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The Token Generator 

The token generator, token_gen, gets signals from the sender through port 
send_sig and from the sorter through port reg_sig. Its response is to 
create a token and send it out port tok for transmission on the ring. 

The Merger 

The merger component takes three streams of messages (messages from other 
stations being passed on around the ring through m_others, tokens through 
m_tok, and messages from the attached host through m_host) and merges 
the three streams into a single stream that is sent out on the LAN medium 
through ports m_out and t_out. 

5.3.3    Flow Analysis 

Repeated use of the flow analyzer and the component assume command, as 
described in Chapter 2, reveals that every subcomponent except sender and 
labeler must be assumed or proved secure in order to have the security of 
the full station follow from the security of its parts. Later we will see that 
the labeler must also be secure, even though this fact is not revealed by 

flow analysis. 
For the sorter component, for example, multilevel information comes in 

through the sorter and can pass through the token generator to the merger 
and then out on the LAN. The reason this flow is found to be insecure is that 
there is nothing, in the absence of a more detailed analysis of the sorter, to 
ensure that the multilevel data coming in is not mixed or insecurely relabeled 
before it is passed on. Note that the graphical interface arbitrarily shows only 
one of the three possibly insecure flows through the sorter. 

The receiver and merger similarly could take messages in at one level 
and relabel them to go out on the network at another level, or pass on mes- 
sages to the host that the host is not authorized to receive. A more detailed 
specification of each is necessary. The labeler must be proved secure to 
make sure that messages are correctly labeled, but this is not revealed by 

flow analysis. 
For the token_gen component, we have secret signals entering to- 

ken-gen through reg_sig and send_sig. These signals cause the generation 
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of a token, which is unclassified. The token_gen component appears to 
be downgrading secret information. We cannot prove this component re- 
strictive since it is not. The Romulus analysis identifies this component as 
a place where there are potential security problems. Other analysis tech- 
niques, not provided by Romulus, can be used to determine the extent of 
the problem. In many cases, security engineering techniques such as channel 
bandwidth reduction are adequate to convince the analyst that the potential 
problem is not an actual security vulnerability. In this particular example, 
the token ring stations do not allow the token to be directly visible to hosts, 
thus severely reducing the channel bandwidth. 

5.3.4    Sorter Specification and Proof 

We next show how to use Romulus to prepare a formal specification of the 
sorter process and use standard Romulus tactics to prove in HOL90 that it 

is secure. 

Overview 

We first give an informal English description of the sorter process, the data 
types of the pieces of information going to and from it, and the level assign- 
ments we make for this data. 

Functionality The sorter takes inputs from a single port connected to a 
token ring LAN. Each message, except the token message, includes informa- 
tion about the message's origin and destination. If a message is identified 
as being "the token", none of its other components are defined. The sorter 
takes the messages it receives and sorts them into three groups: the token, 
messages from the station on which the sorter is running, and messages from 
other stations. 

Being Nonparameterized The sorter processes each input as it arrives 
and does not retain any information about an input after it has been pro- 
cessed. The sorter is thus a memoryless process and can be taken to be a 
nonparameterized server process. Proving security is significantly simpler for 
nonparameterized processes than parameterized ones, since possible transfers 
of information via the process's state parameter need not be considered. 
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Messages We take full messages as containing the following four pieces 
of information: a flag identifying whether the message is the token; the 
message's source and destination; and the data in the message. 

Inputs and Outputs The sorter takes inputs from the port to the LAN 
medium and generates outputs through the three ports corresponding to the 

three groups of messages. It takes in full messages from s_in and sends out 
full messages to s_others. It sends out simple signals, which we formalize as 
objects of the HOL type one, to acknowledge receipt of a message originally 
sent by the host station or receipt of a token. (The HOL type one contains 
one object, and the only thing known about this object is that it is the only 

object of its type.) 

Level Assignments We assign the level unclassified to full messages 
that are tokens and assign other messages the levels of their senders, which 
we take to be given by a HOL constant station.level, whose type is a 
function that maps names of stations to their levels. 

5.3.5    IPSL Specification 

We use the Romulus graphical interface's Top-level operations save com- 
mand to produce an IPSL specification of each of the token ring processes. 
We  edit the file sorter. ipsl to produce the following IPSL specification: 

??Process:  sorter 

??0utPort:   s_host 
??MessageVar:  x:one 
??LevelFun:   station_level this_station 
??LevelRange:  secret secret 

??0utPort:   s_others 
??HessageVar:  tokenflag:bool 
??HessageVar:  from:string 
??MessageVar:  to:string 
??MessageVar:  data:(num)list 
??LevelFun:  tokenflag => unclassified  I   (station_level from) 
??LevelRange:  unclassified top_secret 
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??OutPort: s_tok 

??MessageVar: x:one 

??LevelFun: unclassified 

??LevelRange: unclassified unclassified 

??InPort: s_in 
??MessageVar: tokenflag:bool 

??HessageVar: from:string 

??MessageVar: to:string 
??MessageVar: data:(num)list 
??LevelFun: tokenflag => unclassified I (station_level from) 

??LevelRange: unclassified top_secret 

??Response: 

(If tokenflag 

(Send (s_tok one)) 
(If   (from = this_station) 
(Send (s_host one)) 
(Send (s_others tokenflag from to data))));; 

(Call sorterTop) 

??EndProcess:  sorter 

The globals file for this example, token_ring_station_globals.sml, 
makes the theory string a parent of the current theory to define the HOL 
type : string, defines station-level as a function that takes a string nam- 
ing a station and returns the level of that station, defines this_station as 
an unspecified string naming the current station, and declares an axiom that 
says that station_level this_station is secret. 

The sorter specification treats the from and to components of messages 
as character strings and the data component of messages as a list of numbers, 
though this can easily be generalized by taking these things to be of variable 

types. 
The output port s_host outputs signals of type : one, and these signals 

have the level of the current station. The output port s_others outputs 
full messages, and these messages have the level of their sender, if they are 
not tokens. The output port s_tok outputs signals of type : one, and these 
signals have the level unclassified. 

The input port s_in defines the sorter's response to all inputs. If a 
message is a token, the sorter sends a signal out of s_tok. Otherwise, if the 
message is from the current station, the sender sends a signal out of s_host. 
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Otherwise, the sorter sends the full message out of s_others. Input messages 
are assigned the level unclassified if they are tokens and are assigned the 
level of their source otherwise. 

5.3.6    Showing Security Using HOL 

We now describe in detail how to prove in HOL90 that the sorter is restrictive. 

First, we prepare formal HOL90 specifications of the sorter component 
and the goal that must be proved about it to show that it is restrictive by 
running the translator ipsl2hol on the .ipsl file for the top-level process: 

ipsl2hol token_ring_station 

The translator takes the .ipsl extension as being implicit and adds it auto- 
matically. The translator produces three files of interest, sorter, spec, sml, 
sorter.goal.sml,and token_ring_station_globals .sml,as well as spec- 
ification and goal files for each of the other processes. The top-level com- 
ponent token_ring_stationis translated here so that the correct reference 
to the token_ring_station_globals theory is placed in the file sorter- 
.spec.sml. 

Next, we translate the global definitions file 

rhol <token_ring_station_globals.sml 

The HOL theory produced by this file is a parent of each of the HOL theories 
for each component. 

Next, we give the file sorter. spec. sml as input to HOL90 to produce a 
HOL theory of the sorter process. We use the version of HOL that has the 
Romulus library preloaded with the command 

rhol < sorter.spec.sml 

We note here, though, that using this technique is appropriate only after 
the .ipsl file has been debugged. Before then, it is more useful to run 
HOL90, give the specification file produced by ipsl2hol to HOL90 with the 
use command (as described below in constructing the proof of security), and 
have HOL90 available so that one can see error messages and experiment to 
find the problem. 

The goal file produced by the translator for the sorter contains the fol- 
lowing lines: 
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(* Load the Romulus library and the theory sorter. *) 

let 

val romulus_lib = find_library "roitmlus"; 
in 

load_theory "sorter"; 

load_library_in_place romulus_lib 
end; 

(* Using standard security levels in the Romulus library. *) 

(* Define SML identifiers giving names and types for possibly 

polymorphic sorter functions and predicates. *) 

val sorterOutPred = romgetconstant "sorterOutPred"; 
val sorterlnPred = romgetconstant "sorterlnPred"; 
val sorterOutLevel = romgetconstant "sorterOutLevel"; 
val sorterlnLevel = romgetconstant "sorterlnLevel"; 
val sorterlnvocVal = romgetconstant "sorterlnvocVal"; 
val sorterTop = romgetconstant "sorterTop"; 

(* Set the sorter restrictiveness goal. *) 

g('BNPSP_restrictive 

"sorterlnPred 

"sorterOutPred 
(standard_dom) 

"sorterlnLevel 

"sorterOutLevel 

"sorterlnvocVal 

"sorterTop'); 

(* DO PROOFS.  PROBABLE BEST FIRST STEP: e(BNPSP_restrictive_TAC); *) 

(* Save the result and close with a call to romrtheory to communicate 

the result to the Romulus graphical interface. *) 

(* UNCOMMENT THESE LINES WHEN YOU FINISH THE PROOF 

save_top_thm("sorter_BNPSP_restrictive"); 
romrtheory("sorter"); 

export_theory(); 

exit(); 

END OF COMMENTED-OUT LINES *) 
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The translator-produced comments in this file explain most of the lines 
in it, give a suggestion as to how to produce the proof, and contain the final 
lines one should use after the proof is completed to save the result proved, 
invoke the Romulus utility romrtheory to produce a file for communicating 
the result proved back to the Romulus graphical interface, and save the sorter 

theory. 
We note here that the utility romget const ant addresses a problem that 

does not arise in the current formulation of the sorter example: a polymorphic 
constant must be given an explicit type, though that type can be given by a 
type variable, before it can be used in a goal. The utility romget const ant 
finds appropriate instantiations of possibly polymorphic constants. 

Note that all the lines after setting the goal are comments, so that giving 
this file as input to HOL90 leaves HOL90 ready to prove the security goal. 
We run the Romulus version of HOL90 with the command 

rhol 

producing the usual HOL90 banner and prompt. 
At the - prompt, we give the goal file as input to the prover with the 

command: 

use "sorter.goal.sml"; 

producing the following response: 

[opening sorter.goal.sml] 

Loading theory "sorter" 

Theory "rom_temp" exported. 

The library "romulus" is already loaded. 

val it = () : unit 
val sorterOutPred = (—'sorterOutPred'—) : term 

val sorterInPred = (—'sorterInPred'—) : term 

val sorterOutLevel = (—'sorterOutLevel'—) : term 

val sorterInLevel = (—'sorterlnLevel'—) : term 

val sorterInvocVal = (—'sorterInvocVal'—) : term 

val sorterTop = (—'sorterTop'—) : term 
(—'BNPSP_restrictive sorterlnPred sorterOutPred standard_dom 

sorterlnLevel 

sorterOutLevel 
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s ort erInvo cVal 
sorterTop'—) 

val it =  ()   :  unit 
val it =  ()   :  unit 

This response confirms that the Romulus library is loaded and sets the 
goal of showing that the sorter is BNPSP_restrictive, since its inputs are 
taken to be buffered and it is a nonparameterized server process. The goal 
asserts that the BNPSP.restrictive relation holds for the predicates defin- 
ing the input and output level ranges, for the standard dominance relation 
on security levels, for the functions assigning security levels to the sorter's 
input and output events, for the function assigning meanings to names used 
in defining the sorter process, and for one of these names, sorterTop, which 
names the full sorter process. (Another of these names gives the response 
of the sorter to input events; the ipsl2hol translator typically generates all 
needed uses of such response names in the HOL specification files it pro- 

duces.) 
Taking the translator-recommended first step in producing the proof with 

the command 

e(BNPSP_restrictive_TAC); 

produces the following response: 

OK.. 
4 subgoals: 
(—'standard_dom (station_level from) (station_level from)'—) 

(— "tokenflag'—) 
(—'"(from = this_station)'—) 
(—'standard_dom (station_level from) unclassified'—) 
(—'standard_dom top_secret (station_level from)'—) 

(—'standard_dom 
(station_level this_station) (station_level this_station)'—) 

(—""tokenflag'—) 
(—'from = this_station'—) 
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(—'standard_dom (station_level this_station) unclassified'—) 

(—'standard_dom top_secret (station_level this_station)'—) 

(—'standard_dom secret (station_level this_station)'—) 

(—'"tokenflag'—) 

(—'from = this_station'—) 
(—'standard_dom (station_level this.station) unclassified'—) 

(—'standard_dom top_secret (station_level this_station) '—) 

(—'standard_dom (station_level this_station) secret'—) 

(-- '"tokenflag'—) 
(—'from = this_station'—) 
(—'standard_dom (station_level this_station) unclassified'—) 

(—'standard_dom top_secret (station_level this_station) '—) 

val it = () : unit 

The tactic BNPSP_restrictive_TAC expands the definition of BNPSP_re- 
strictive, does case splits on possible input events, applies rewrite rules 
that simplify away references to PSL processes, and rewrites with the defini- 
tions of the functions assigning security levels to input and output events. 

Four simple subgoals remain. 
The first subgoal 

(—'standard_dom (station_level this_station)  secret'—) 

(--'"tokenflag'—) 
(—'from = this_station'—) 
(—'standard_dom (station_level this_station) unclassified'—) 
(—'standard.dom top_secret  (station_level this_station)'—) 

asserts that the standard level of this station dominates the level secret. 
But this is true, of course, simply because the level of this station is secret. 

We rewrite this goal using this fact. 

e(REWRITE_TAC 
[axiom "token_ring_station_globals" "station_is_secret"]); 

This produces the following response: 
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OK. . 

1 subgoal: 

(—'standard_dora secret secret'—) 

(—'-tokenflag'—) 

(—'from = this_station'—) 
(—'standard_dom (station_level this_station) unclassified'—) 

(—'standard_dom top_secret (station_level this_station) '—) 

val it = () : unit 

This subgoal asserts that the standard level secret dominates itself. This 
is true, of course, simply because every standard level dominates itself. The 
Romulus library theory romlemmas contains a theorem standard_dom_re- 
f lexive making this assertion, so the command 

e(MATCH_ACCEPT_TAC (theorem "romlemmas" "standard_dom_reflexive")); 

produces the response 

OK.. 

Goal proved. 

|- standard_dom secret secret 

Goal proved. 

|- standard_dom (station_level this_station) secret 

Remaining subgoals: 
(—'standard_dom (station_level from) (station_level from)'—) 

(—'"tokenflag'—) 

(—'"(from = this_station)'—) 

(—'standard_dom (station_level from) unclassified'—) 

(—'standard_dom top_secret (station_level from)'—) 

(—'standard_dom 

(station_level this_station) (station_level this_station)'—) 

( — "tokenflag'—) 

(—'from = this_station'—) 

(—'standard_dom (station_level this_station) unclassified'—) 
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(—'standard_dora top_secret (station_level this_station)'—) 

(—'standard_dom secret (station_level this_station)'—) 

(— "tokenflag' —) 

(—'from = this_station'—) 

(—'standard_dom (station_level this_station) unclassified'—) 

(—'standard_dom top_secret (station_level this_station)'—) 

val it = () : unit 

We could produce separate proofs of each of the remaining subgoals, but 
a quick glance shows that all the four subgoals can be solved in the same 
way. The HOL THEN tactical automatically applies a tactic to all remaining 
subgoals, so rather than go on we back up and use THEN on the original goal. 
We back up to the original goal by using the command 

b(); 

three times, then give the command 

e(BNPSP_restrictive_TAC THEN 
REWRITEJTAC 

[axiom "token_ring_station_globals" "station_is_secret", 
theorem "romlemmas" "standard_dom_reflexive"]); 

which gives the response 

OK.. 

Goal proved. 
|- BNPSP_restrictive sorterlnPred sorterOutPred standard_dom 

sorterInLevel 

sorterOutLevel 

sorterlnvocVal 

sorterTop 

Top goal proved, 
val it =   ()   :   unit 

We have thus now proved that the sorter is restrictive. 
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5.3.7    Labeler Specification and Proof 

The labeler must also be proven secure, although this becomes apparent 
through an inability to prove the manifest security conditions for the process 
and not from flow analysis. Consider the following scenario. The labeler 's 
inputs and outputs are expected to be secret, so flow analysis assumes that 
this process is manifestly secure. This would lead you to complete the spec- 
ification of this process as a manifestly secure process. The specification for 
the labeler, as a manifestly secure process, is 

??Process:  labeler 

??0utPort:  labeled. 
??MessageVar:  tokenflag:bool 
??MessageVar:  from:string 
??MessageVar: to:string 
??MessageVar: data:(num)list 
??LevelFun:  tokenflag => unclassified  I   (station_level from) 
??LevelRange:  secret secret 

??InPort:  unlabeled 
??MessageVar:  to:string 
??MessageVar: data:(num)list 
??LevelFun:  station_level this_station 
??LevelRange:  secret secret 
??Response: 

??EndProcess:  labeler 

In this specification, no Response: is provided. The goal file for this specifi- 
cation sets the goal of proving the manifest security conditions for the labeler. 
Unfortunately, attempts to prove this goal will fail because they reduce to 

proving that 

standard_dom secret  (station_level from) 

and 

standard_dom (station_level from)  secret 

where from is the from field of the outgoing message. The specification does 
not specify how this field is to be filled in so it is impossible to draw any 

conclusions about it. 
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The specification of the labeler must contain additional information. This 
is done by completing the specification by filling in the ??Response: field 
and proving that the labeler is trusted. The complete specification is 

??Process:  labeler 

??0utPort:  labeled 
??MessageVar: tokenflag:bool 
??MessageVar:  from:string 
??MessageVar:  to:string 
??MessageVar:  data:(num)list 
??LevelFun: tokenflag => unclassified I   (station_level from) 
??LevelRange:  secret secret 

??InPort:  unlabeled 
??MessageVar:  to:string 
??MessageVar: data:(num)list 
??LevelFun:  station_level this_station 
??LevelRange:  secret secret 
??Response: 
(Send  (labeled F this_station to data));; 
(Call labelerTop) 

??EndProcess:  labeler 

This specification specifies that the from field of the outgoing message is 
this_station, which has level secret. 

The goal for this specification is to prove that it is BNPSP_restrictive; 

the proof is similar to the proof of the sorter. 

5.3.8     Confirming Security in the Graphical Interface 

We next save the proof of security, save the theorem that the sorter is secure, 
and produce a file for communicating this result to the Romulus graphical 
interface. 

To save the proof, we rename sorter.goal.sml to sorter.proof . sml 

and edit its final lines to 

e(BNPSP_restrictive_TAC THEN 
REWRITE_TAC 

[axiom "token_ring_station_globals" "station_is_secret", 
theorem "romlemmas"  "standard_dom_reflexive"]); 
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(* Save the result and close with a call to romrtheory to communicate 
the result to the Romulus graphical interface.  *) 

save_top_thm("sorter_BNPSP_restrictive"); 
romrtheoryC'sorter"); 
export_theory(); 
exitQ ; 

(It is often convenient to do this step earlier, as the proof is being developed, 
so the proof file can be used to record partial proofs.) 

Executing the final four lines, gives the following response: 

val it = 
I- BNPSP_restrictive sorterlnPred sorterOutPred standard_dom 

sorterlnLevel sorterOutLevel sorterlnvocVal sorterTop : thm 

val it = () : unit 

Theory "sorter"  exported, 
val it =  ()   :  unit 

followed by exiting from HOL. 
The call to romrtheory produces the file sorter.rth. This file notes 

that the parents of the sorter theory are the theories in the Romulus library, 
that the theory sorter does not define any security levels or any dominance 
relations on them, that appropriate bounds have been proved on the levels of 
messages going in or out of any of the sorter's ports, that the sorter's ports 
are distinct, and that the sorter has been proved to be restrictive. 

We can use the graphical interface to confirm that the sorter has been 
proved secure by starting it with the command 

romulus -initial=tokenring 

We select the graphical interface's component check command and then 
select the sorter component by clicking on it with the left mouse button. 
The file sorter.rth is consulted and, if everything checks out, the proof 
of security will be confirmed by placing a double asterisk in the lower-right 

corner of the sorter component. 
If you get the following error: 

unable to open theory file romlemmas.rth 
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you must produce rtheory files for the theories in the Romulus library. These 
files can be produced with the command 

echo  'romrtheory "";'   I   rhol 

This command will create the appropriate rtheory files in the current direc- 
tory. If desired, these rtheory files can be placed in a central directory and 
this directory can be added to the directories listed using the searchpath 
resource. 
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Chapter 6 

The Authentication Protocol 
Toolkit 

This chapter describes how to use the Romulus implementation of the logic of 
authentication that is presented in Volume II of the Romulus documentation 
set. First, in this section we outline the steps of using the tool. Next, we 
give the mechanics of using the tool to describe and specify a protocol and to 
derive a proof. Then, we provide a tutorial example. We recommend reading 
the entire chapter before trying to use the authentication protocol toolkit. 

While this tool is practical for proving protocols correct, it is the first 
version of the tool, and the interface is still primitive. We intend, in a later 
version, to provide an interface that enables you to relate the correctness 
proof to what is achieved at intermediate stages of the protocol execution. 
We will also provide proof support that will make most proving automatic. 
An ideal implementation would use a front-end language that would make 
it unnecessary for the user to deal with HOL. However, for someone doing 
detailed analysis of protocols, the small amount of work needed to deal with 

HOL is not significant. 
A convenient technique for constructing HOL theories and proofs is to 

open two windows, a HOL window and a text window. The HOL window 
runs HOL and the text window is used to edit your theory or proof file. HOL 
commands are first entered into the text window as a permanent record of 
the session and then copied into the HOL window to try them out. When 
you are finished, the text file you created can be used to recreate the HOL 
theory or proof. In this chapter, we describe only the text files. 
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Here are the general steps for using the authentication logic implemented 
in HOL. We invoke the tool by first invoking a version of HOL that has the 

Romulus library preloaded. We use the command 

rhol 

from a UNIX shell interface. (If you are unfamiliar with HOL, refer to Chap- 

ter 4.) 
The protocol to be analyzed must be described and specified (recall that 

we use the word "describe" to mean defining the protocol message sequence, 
which is like giving code at a high level). The next step, then, is to create an 
SML file that contains this information; we describe this step in section 6.1. 
We then proceed with the analysis by loading the information from the SML 
file into HOL. For example, if the information about the protocol is contained 
in the file f oo. sml, then it is loaded into HOL by typing the command 

use "foo.sml"; 

at the HOL prompt. Loading the SML file loads in the initial assumptions, 
as well the messages, and defines the desired final position, which will later 
be the goal to be proved. We can then use the full power of HOL to attempt 
to prove the goals. We currently use a few standard HOL tactics for this 
task, although we expect to almost completely automate this proof process 

in the future. 

6.1     Describing and Specifying a Protocol 

In this section, we explain the mechanics of describing and specifying a pro- 
tocol by showing how we would use it on the Denning-Sacco authentication 
protocol. We handle this example more fully in section 6.3. 

We commence building a new theory, in this case called ds_90, in an SML 
file called say, ds_90.sml), with the command: 

new_theory("ds_90"); 

Next, we declare the basic objects used in this particular protocol. 

new_constant{Name =  "A", 
Xy = ==':principal'==}; 

new_constant{Name =  "Svr", 
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Xy = ==':principal'==}; 

new_constant{Name = "Kas", 
Ty = ==':-textlist'==}; 

In this case, two principals A and Svr are declared along with a key, Kas, 

used to encrypt messages between them. 
The order in which we describe the protocol and specify it does not mat- 

ter. Suppose we specify it first. We declare the initial assumptions, one of 

which is shown here. 

(* Preconditions *) 
new_open_axiom("dsal", 

—'theorem(believes A  (is_shared_secret A Svr Kas))'—); 

This axiom declares that A believes that the key Kas is a shared secret between 

A and Svr. 
We next declare the things we want to be true at the end of protocol 

execution. All of the constants involved will have been declared already, 
though we have not shown all of them. The following is a sample goal, and 
not necessarily the usual thing one wants to prove of a protocol. 

new_definition ("postcond", —'postcondition = 
theorem(possesses A Kab)  A 
theorem(believes A  (convey Svr  ((name B)  APP Kab APP Ts)))  A 
theorem(believes A (is_fresh ((name B)  APP Kab APP Ts)))  A 
theorem(possesses B Kab)  A 
theorem(believes B  (convey Svr  ((name A)  APP Kab APP Ts)))  A 
theorem(believes B  (is_fresh ((name A)  APP Kab APP Ts)))'—); 

While we have given the initial assumptions as separate facts (axioms), we 
make the postcondition a single statement. This is so that we have a standard 
way of (later) presenting the criterion for correctness as a single proof goal. 
The definition gives the name postcondition to the postcondition. We will 
later make postcondition the goal of a HOL proof session. 

Finally, we describe the protocol in HOL form. 

(* The messages *) 
new_open_axiom("dsml", --'send A Svr ((name A) APP (name B))'—); 
new_open_axiom("dsm2", --'send Svr A (encrypt Kas ((name B) APP Kab 

APP Ts APP (encrypt Kbs ((name A) APP Kab APP Ts))))'—); 

new_open_axiom("dsm3", —'send A B 
(encrypt Kbs ((name A) APP Kab APP Ts))'—); 
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The theory is completed, and we save it, close it, and exit from HOL. 

export_theory(); 
close_theory(); 
exitQ ; 

6.2    Deriving a Proof 

We open a new SML file, called say, ds_proof_90.sml. We will build the 

proof in this file. 
We start by opening a new theory, loading the theory describing the 

protocol, and declaring the HOL proof goal. 

new_theory("ds_proof_90") ; 
new_parent "ds_90"; 
set_goal([],  —'postcondition'—); 

Now it is a matter of carrying out a HOL proof. Our first step should be 
to expand postcondition. The HOL tactic 

e(PURE_ONCE_REWRITE_TAC [definition "ds_90"  "postcond"]); 

will achieve this step. The goal is now the conjunction of six smaller state- 
ments, which are pulled off and proved one by one in standard HOL style. 

Certain facts are needed multiple times, and a sensible proof will first 
prove these facts before proving the postcondition. We will call such a fact a 
"lemma", though to HOL it is simply a theorem and has the same status as 
any other theorem. These lemmas—proved theorems—are then adduced as 
needed during the proof. As is usual with theorem proving, we cannot know 
in advance what lemmas are needed. And so during the proof, we sometimes 
suspend work on our current goal, stop and state a lemma, and make it a 
new goal and prove it. After proving and saving the lemma, we can continue 

with the original goal. 
In fact, instead of making the postcondition the initial goal, it is sensi- 

ble first to prove the six conjuncts separately, as lemmas. Then, when we 
make the postcondition our goal, it is quickly proved by calling upon the 
six lemmas. In the Romulus library of models (Volume III), we treat the 
Needham-Schroeder protocol in just this way. 

Suppose we decide to prove, as a lemma, the first conjunct. 
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set_goal([], —'theorem(possesses A Kab)'—); 

Through examination of the logical rules, we find a sensible axiom to 
apply at this stage (in fact it is axiom P4, which says that possession of a part 
of message follows from possession of the whole). Continuing, we eventually 
reduce the proof obligations (subgoals) to known facts (most commonly those 

axioms in the theory "ds_90"). 
Note that the method shown here is rather primitive. We intend to de- 

velop more advanced methods to facilitate users. For example, it would be 
desirable to write a more complicated tactic to repeatedly do 

CONJJTAC,  ACCEPT_TAC,  MATCH_ACCEPT_TAC, MATCH_MP_TAC 

which is a common pattern of arriving at proofs. 

6.3    Tutorial Example 

Here, we go over sufficient parts of the analysis of the Denning-Sacco protocol 
to demonstrate the use of the tool to the new user. After this tutorial, you 
should be able to analyze protocols on your own. For further reference, 
see Volume III of this documentation set; that volume covers this protocol, 
and also the Needham-Schroeder protocol, in greater depth. The full proof 

transcripts are presented there. 
From the previous sections, you should be familiar with the mechanics 

of using the tool. When we discuss the contents of the theories and proofs, 
therefore, we will not usually point out in what files they belong. 

The Denning-Sacco protocol is typically presented in the literature as 

follows. 

1. A      -> Svr:  A,  B; 
2. Svr -> A    :   {B,  Kab,  Ts,   {A,  Kab,  Ts}_e(Kbs)}_e(Kas); 
3. A      -> B     :   {A,  Kab,  Ts}_e(Kbs); 

We begin with an informal discussion of how the protocol works. It is 
assumed that A and B each has a key (Kas and Kbs, respectively) with which 
it can communicate securely with the server, Svr. A wishes to establish a new 
key to share with B, so that they may have a session using encryption. A sends 
a message, consisting of its and B's names, in the clear, to the server, the 
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intent of which is understood by the server. The server sends the new key Kab 
to A in a "certificate", containing a timestamp Ts. The timestamp ensures 
A that this message is fresh. The server signs the certificate by encrypting it 
with Kas, which is shared by it and A. This encryption also assures that no 
one else can read or tamper with the contents. The server avoids having to 
communicate with B by passing this responsibility to A: in its message to A, 
the server includes an analogous certificate for B. A (and anyone else other 
than Svr or B) is unable to read or alter the contents of this certificate. In 
the third message, A passes this certificate on to B. 

This protocol is efficient and simple, and it is commonly used. The use 
of timestamps is adequate to ensure freshness if process clocks are tightly 
synchronized. However, the protocol does not have a "handshake" at the 
end, and so A and B cannot be sure that the other has successfully received 

the key. 
We must express the protocol in a form suitable for the machinery im- 

plemented in HOL. We start with declarations of the various objects in the 
protocol and then give the protocol itself. You may wish to look first at the 
protocol definition and then at the declarations of the objects. 

(* The principals and necessary objects.*) 
new_constant{Name = "A", 

Ty = ==':principal': 
new_constant{Name = "B", 

Ty = ==':principal'==J 
new_constant{Name =  "Svr", 

Ty = ==':principal'== 
new_constant{Name = "Ts", 

Ty = ==' :~textlist'== 
new_constant{Name = "Kas", 

Ty = ==':"textlist'==} 
new_constant{Name = "Kbs", 

Ty = ==':~textlist'==] 
new_constant{Name =  "Kab", 

Ty = ==':~textlist'==] 

Now, it is simple to write this pro ocol in the HOL form: 

(* The messages sent between principals*) 
new_open_axiom("dsml", —'send A Svr ((name A)  APP  (name B))'—); 
new_open_axiom("dsm2", 

—'send Svr A (encrypt Kas ((name B) APP Kab APP Ts APP 
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(encrypt Kbs ((name A) APP Kab APP Ts))))'—); 

new_open_axiom("dsm3", 
--'send A B (encrypt Kbs ((name A) APP Kab APP Ts))'—); 

Next we enter the initial assumptions. These assumptions break naturally 
into three groups — one for each principal. Here are the assumptions for 

Principal A. We do not show those for B and Svr. 

(* Preconditions for A *) 
new_open_axiom("dsal", 

—'theorem(believes A  (is_shared_secret A Svr Kas))'—); 
new_open_axiom("dsa2", —'theorera(believes A  (is_fresh Ts))'—); 
new_open_axiom("dsa3", —'theorera(believes A  (is_recog (name B)))'—); 
new_open_axiom("dsa4", —'theorem(possesses A Kas)'—); 
new_open_axiom("dsa5", —'theorem(possesses A  (name A))'—); 
new_open_axiom("dsa6",  —'theorera(possesses A  (name B))'—); 

(* Preconditions for B *) 

(* Preconditions for Svr *) 

It is hard, if not impossible, to determine all the preconditions before 
beginning the proof. As with ordinary program development, it is natural to 
develop specifications, the executable, and the correctness proof or argument 
in concert. These initial conditions are enriched or modified as the proof 
progresses, and the user discovers assumptions he or she needs to make (in 
this context, the tool is functioning as an analysis tool). 

For the final conditions that we wish to hold after protocol execution, we 
will choose something very simple. For a more complete specification, see 
the library of models (Volume III). 

new_definition ("postcond", —'postcondition = 
theorem(possesses A Kab)'—); 

In the proof session, we define this as the goal, and then plan our proof 
strategy. We examine the messages of the protocol and the axioms of au- 
thentication logic. We see that A possesses the key Kab as a result of its 
receiving the message dsm2, which has the contents: 
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encrypt Kas  ((name B)  APP Kab APP Ts APP 
(encrypt Kbs  ((name A)  APP Kab APP Ts))). 

A gets this message and possesses the key Kas, which it shares with the 
server Svr. A can decrypt the message and extract Kab from the concatenated 

objects in the list. There are axioms that reflect all of these actions. We first 

use axiom P4 

!p x y.  theorem(possesses p(x APP y))  ==> theorem(possesses p y) 

to reduce the proof obligation to 

theorem(possesses A  ((name B)  APP Kab)) 

and then the analogous axiom P3 to produce the subgoal 

theorem(possesses A  ((name B)  APP Kab APP Ts APP 
(encrypt Kbs  ((name A)  APP Kab APP Ts)))). 

Continuing in the obvious fashion, we go on to use the relevant axioms 
to reduce this subgoal to a two subgoals: that A possesses an encrypted copy 
of this textlist, and that A possesses the encryption key. The former follows 
ultimately from the fact that A was sent the message, while the latter is an 

initial assumption. 
It is now a standard exercise in theorem proving, in the HOL theorem 

prover. Each of the subgoals generated is ultimately proved true, where the 
last step is usually showing that the subgoal is an initial axiom. For more 
details, follow the treatment of this protocol in the Romulus library of models 
(Volume III). Each step of the proof is in the proof transcript, and so the 
proof can be examined one step at a time. 
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Appendix A 

Graphics Interface Parameters 

As noted earlier, Romulus allows the user to set several parameters that 
control things such as how information is displayed, and it supplies reasonable 
default values for these parameters if the user does not set them. More 
precisely, these parameters are X windows application resource values, since 
they are values assigned to resource variables associated with Romulus as a 
whole rather than with particular widgets inside Romulus. 

Romulus is a customizable X application whose application resource val- 
ues can be set in various defaults files or with command-line arguments. The 
Romulus-specific application resource values can also be set in environment 
variables. Further, Romulus is customizable for some standard X application 
resource values, such as geometry, that are not Romulus-specific. 

If a Romulus application resource value is set in more than one way, 
Romulus uses the value with the highest priority. Romulus assigns priorities 

to the different possibilities, with the first highest, as follows: 

1. Command-line arguments. 

2. Environment variables. 

3. X defaults files in the priority order given by the windowing system and 
version of the X Toolkit Intrinsics being used. (See [6] for a discussion 
of the different possibilities and their priorities.) 

4. Romulus-supplied defaults. 
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The only aspect of this ordering that is specific to Romulus is giving envi- 
ronment variables a priority lower than command-line arguments but higher 
than any other source for resource values. 

The mechanisms Romulus uses for setting application resource values with 
defaults files or command-line arguments are standard for an X application; 
see [6] for a thorough discussion of these mechanisms. This chapter gives the 
additional information needed to set each Romulus-specific resource variable 
in each of three different ways: in an X defaults file; with an environment 
variable; or with a command-line argument. It also gives the default values 
Romulus assigns to each of these resource variables if they are not otherwise 
assigned values. The following general considerations apply in setting all 
Romulus application resources. 

Every Romulus-specific application resource value is either a text string, 
a nonnegative integer, or a boolean. All of these values can be specified 
in X defaults files, environment variables, or command line arguments as 
unquoted text strings. Integers can be given in ordinary base-10 notation, 
and booleans can be given with the strings True and False. Romulus and 
the X Toolkit Intrinsics automatically perform all necessary type conversions. 

A.l     X Defaults Files 

Values can be set in X defaults files in many different ways; see [6]. One way, 
requiring no special privileges, is setting the environment variable XENVIRON- 
MENT to the full pathname of a file, then setting values in this file. Another 
way, typically requiring system operator privileges, is creating a file named 
Romulus, after the class name of all Romulus applications, in the application- 
defaults directory for the operating system being used. On UNIX operating 
systems, this directory is usually named /usr/lib/Xll/app-defaults. De- 
faults in XENVIRONMENT files have higher priorities than defaults in application- 
defaults files. 

The unabbreviated syntax for specifying an application resource in an X 
defaults file is 

application-name. resource-name: value 
The application name for an executable version of Romulus is the name of 
the file containing it, typically romulus.   So, for example, the application 
resource geometry can be set in an X defaults file with the line 
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romulus.geometry:    1000x500+0+0 

This syntax is used for application resources that are not specific to Romulus- 
type applications and that apply to only one executable version of Romulus. 

For an application resource whose name identifies it as being unique to a 
particular type of application and whose value is to be used for all applica- 
tions of that type, the unabbreviated syntax can be abbreviated to 

* resource-name: value 
Thus, a Romulus-specific application resource such as initial can be set to 
the string tokeruring in an X defaults file with the line 

♦initial:    tokenjring 
There are other possibilities, and some forms for assigning values have higher 

priorities than others; see [6]. 

A.2    Environment Variables 

Every Romulus-specific application resource has a corresponding environ- 
ment variable, which can be set with the usual UNIX setenv command. For 
example, to set the application resource initial to the string token_ring 

with an environment variable, for example, one uses 

setenv R0M_INITIAL token_ring 
Romulus environment variable names are typically shorter than the corre- 
sponding application resource names to reduce the amount of typing needed. 

A.3     Command-Line Options 

Every Romulus-specific application resource has a corresponding command 
line option. All of these command-line options begin with a hyphen (-), end 
with an equals sign (=), and are "sticky," meaning that the text string giving 
the value to be set immediately follows the option. For example, to set the 
application resource initial to the string token_ring with a command-line 
argument, for example, one can use the command line 

romulus -initial=token_ring 
to start Romulus. The command-line options are uniformly generated from 
the corresponding environment variable names by removing the initial R0M_, 
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changing upper case to lower case, prepending an initial -, and appending a 
final =. Be careful about escaping wildcard characters in your shell. 

A.4    Romulus-Specific Application Resources 

The remaining sections of this chapter describe the Romulus-specific X ap- 
plication resources, which we refer to simply as "resources." Each section 
names a resource with the name it is given in an X defaults file, gives an 
English description of it, gives its default value, and gives the environment 
variable and command-line option corresponding to it. Default font names 
are given in full, but user-chosen font names can be given either in full, via 
aliases, or with wildcards; once again, see [6]. Be careful about escaping 
wildcards characters in your shell. 

A.4.1  abbreviations 

The resource abbreviations gives abbreviations for the names of security 
levels. Romulus uses these abbreviations in its displays of security-level 
ranges associated with ports and as the labels on buttons for selecting se- 
curity levels. The resource is a text string consisting of equations of the 

form 

name = abbreviation 

separated by new-line characters. In setting this resource, two characteristics 
shared by the C programming language, the UNIX operating system, and the 
XI1 resource processing tools are convenient: a new-line character is given 
by \n; and a carriage return preceded by a backslash (\) is ignored, so that 
long strings can be given on multiple lines. 
Default: 

systemlow = Lo\n\ 
unclassified = U\n\ 
confidential = C\n\ 
secret =  S\n\ 
top_secret = TS\n\ 
systemhigh = Hi 
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Environment variable: ROM-ABBREVIATIONS 
Command-line option: -abbreviations= 

A.4.2     abortsavefile 

The resource abortsavef ile names the file that Romulus produces contain- 
ing a saved-component representation of the system under study if Romulus 
aborts.  The format of this file is the same as if it had been produced with 
the top-level save command. 
Default: SAVED_SYSTEM_ON_ABORT 
Environment variable: ROM-ABORTSAVEFILE 
Command-line option: -abortsavef ile= 

A.4.3  arrowheadrise 

Romulus uses two numbers to determine the size and shape of the arrowheads 
that show the direction of data flow. Each arrowhead is the same size and 
fits in an isosceles triangle whose perpendicular bisector is the "shaft" of the 
arrow. Half the length of this triangle's base is the arrowhead's rise, and the 
triangle's height, measured along the perpendicular bisector, is the arrow- 
head's run. The resource arrowheadrise is the arrowhead's rise, measured 

in pixels. 
Default: 7 
Environment variable: R0M_ARISE 
Command-line option: -arise= 

A.4.4     arrowheadmn 

Romulus uses two numbers to determine the size and shape of the arrowheads 
that show the direction of data flow. Each arrowhead is the same size and 
fits in an isosceles triangle whose perpendicular bisector is the "shaft" of the 
arrow. Half the length of this triangle's base is the arrowhead's rise, and the 
triangle's height, measured along the perpendicular bisector, is the arrow- 
head's run. The resource arrowheadrun is the arrowhead's run, measured in 
pixels. 
Default: 14 
Environment variable: R0M_ARUN 
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Command-line option: -arun= 

A.4.5    buttonfont 

The resource buttonfont names the font used for command buttons. 

Default: 
-misc-fixed-medium-r-normal—13-120-75-75-c-80-iso8859-l 

Environment variable: R0M_BF 
Command-line option: -bf= 

A.4.6     comerroredge 

When Romulus detects a possibly insecure data-flow path with the flow 
command, it displays this path by emphasizing the arrows, icons, and boxes 
representing the connections, ports, and components that are involved in the 
path. The resource comerroredge is the thickness, in pixels, of an empha- 

sized box's walls. 

Default: 3 
Environment variable: R0M_CERR0R 
Command-line option: -cerror= 

A.4.7     comnormedge 

The resource comnormedge gives the thickness, in pixels, of the walls of the 
boxes Romulus displays to represent components that are not involved in a 
path showing a possibly insecure data flow detected by the flow command. 
Default: 0. A thickness of 0 is treated as a thickness of 1, but is drawn faster 

by some X servers. 
Environment variable: R0M_CN0RM 

Command-line option: -cnorm= 

A.4.8     componentfont 

Romulus represents a component as a box containing that component's name 
or its tree address in parentheses if it is unnamed. The resource component- 

font names the font used for displaying these names. 
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Default: 
-adobe-times-medium-r-normal—18-180-75-75-p-94-iso8859-l 
Environment variable: R0M_CF 
Command-line option: -cf= 

A.4.9     editfont 

The resource editfont names the font used in the edit windows that appear 
when the top-level modify command is used. 
Default: 
-misc-fixed-medium-r-normal—15-140-75-75-c-90-iso8859-l 

Environment variable: R0M_EF 
Command-line option: -ef= 

A.4.10     initial 

The resource initial gives a basename that together with the extension 
.rom names a saved-component file.   Romulus makes the component saved 
in this file into the main component initially being studied. 
Default: the empty string, which Romulus interprets as an empty component 
Environment variable: ROM_INITIAL 
Command-line option: -initial= 

A.4.11     labelfont 

The resource labelfont names the font used to label the rows of command 
buttons and also used in the message window. 
Default: 
-misc-fixed-medium-r-normal—15-140-75-75-c-90-iso8859-l 

Environment variable: ROMJLF 
Command-line option: -If= 

A.4.12     levelfile 

The resource levelfile gives a basename that together with the extension 
. rth names an rtheory file. If this file exists and is a valid rtheory file, Romu- 
lus takes the security levels named and assigned an order in this file as the set 
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of possible security levels.   Otherwise, Romulus takes the possible security 
levels as systemlow, unclassified, confidential, secret, top_secret, 

and systemhigh, in that order. 
Default: levels, input 
Environment variable: ROMXEVELFILE 
Command-line option: -levelf ile= 

A.4.13    logofont 

The resource logofont names the font used to display the "Romulus" logo 
when this logo has not been replaced by one of the text-entry windows. 

Default: 
-adobe-times-bold-r-normal—24-240-75-75-p-132-iso8859-l 

Environment variable: R0MX0G0F 
Command-line option: -logof= 

A.4.14    mineditwidth 

When the top-level modify command is active, selecting a component or port 
on the canvas causes an edit window to appear in which the user can modify 
all of the text strings associated with that component or port. These edit 
windows automatically resize themselves to fit the strings displayed if the 
user makes them longer. The windows only expand to the right, though, and 
cannot reposition themselves to prevent their right edges from going outside 
the canvas and disappearing. Romulus thus positions these edit windows 
so that they can become at least a minimum number of characters wide 
before their right edges go off the canvas. The resource mineditwidth is this 

number of characters. 
Default: 35 
Environment variable: R0M_MINW 
Command-line option: -minw= 

A.4.15     porterrorline 

When Romulus detects a possibly insecure data-flow path with the flow 
command, it displays this path by emphasizing the arrows, icons, and boxes 
representing the connections, ports, and components that are involved in the 
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path. The resource porterrorline is the thickness, in pixels, of the lines in 
an emphasized arrow's shaft and head. 

Default: 3 

Environment variable: R0M_PERR0R 

Command-line option: -perror= 

A.4.16     portfont 

The resource portfont names the font used for port names or port tree 
addresses when they are displayed. The display of port names is controlled 
with the top-level names command and the portnamesdisplayed resource. 

Default: 
-misc-fixed-medium-r-semicondensed—13-120-75-75-c-60-iso8859-l 

Environment variable: R0M_PF 

Command-line option: -pf= 

A.4.17    portnamesdisplayed 

The resource portnamesdisplayed determines whether Romulus initially 
displays port names. 

Default: False 

Environment variable: ROM_PNAMES 

Command-line option: -pnames= 

A.4.18     portnormline 

The resource portnormline gives the thickness, in pixels, of the lines in 
the shaft and head of the arrows Romulus draws to represent connections 
between ports that are not involved in a path showing a possibly insecure 
data flow detected by the flow command. 

Default: 0. A thickness of 0 is treated as a thickness of 1, but is drawn faster 
by some X servers. 

Environment variable: R0M_PN0RM 

Command-line option: -pnorm= 
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A.4.19     searchpath 

When searching for saved-component or rtheory files, Romulus looks in the 
current directory and in the directories given by the searchpath resource. 
The values of this resource are character strings containing directory names 

separated by colons. 
Default:  the empty string, which Romulus interprets by searching only in 

the current directory 
Environment variable: ROM_SEARCHPATH 
Command-line option: -searchpath= 

A.4.20     textbuttonfont 

The text-entry windows that appear when the top-level save, the compo- 
nent load, and the port modify commands are active contain subcommand 
buttons that confirm text entry or identify the use to be made of the text. 
The textbuttonf ont resource names the font used on these buttons. 

Default: 
-misc-fixed-medium-r-semicondensed—13-120-75-75-c-60-iso8859-l 

Environment variable: R0M_TBF 
Command-line option: -tbf= 

A.4.21     texteditfont 

The text-entry windows that appear when the top-level save, the component 
load, and the port modify commands are active contain an edit window into 
which all keyboard input is directed. The textbuttonf ont resource names 
the font used in this edit window. 
Default: 
-misc-fixed-medium-r-semicondensed—13-120-75-75-c-60-iso8859-l 

Environment variable: R0M_TEF 
Command-line option: -tef= 

A.4.22     textlabelfont 

The text-entry windows contain labels that identify these windows.    The 
textlabelf ont resource names the font used for these labels. 
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Default: 
-misc-fixed-medium-r-semicondensed~13-120-75-75-c-60-iso8859-l 

Environment variable: R0M_TLF 
Command-line option: -tlf= 

A.4.23     translationstable 
The edit windows produced with the top-level modify command are similar 
to invocations of an Emacs-style editor. Editing changes can be confirmed, 
which corresponds to saving the file being edited, or canceled, which cor- 
responds to exiting the editor without saving any changes, with particular 
combinations.of keystrokes. (They can also be confirmed or canceled with 
mouse-button clicks, as described earlier for the top-level modify command.) 
The resource translationstableis a character string defining which combi- 
nations of keystrokes invoke the actions of confirming or canceling all changes. 
See [6], under XtParseTranslationTable,for a description of the format of 

such strings and their interpretations. 

Default: 

CtrKKey>X, CtrKKey>S: conf irmeditO \n\ 
CtrKKey>X, CtrKKey>C:  canceleditO 

This default causes changes to be confirmed by the key sequence control-X 
control-S and canceled by the key sequence control-X control-C. 
Environment variable: ROM-TRANSLATIUNSTABLE 
Command-line option: -translationstable= 
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Appendix B 

The Romulus HOL90 Library 

The Romulus HOL90 library provides an environment for specifying and 
proving security and correctness properties of processes and protocols, and 
for communicating proof results to the Romulus graphical interface. It con- 
tains the Romulus theories giving HOL90 formalizations of processes, process 
nondisclosure security, protocols, and protocol correctness. It contains utili- 
ties useful for specifying processes and setting goals of proving these processes 
secure, and a utility for producing files that communicate selected contents of 
HOL90 theories to the Romulus graphical interface. It also contains tactics 
that greatly aid in producing proofs that processes have particular nondis- 

closure properties. 
This appendix describes the Romulus HOL90 library and its contents. It 

first describes HOL90 libraries in general and the aspects of using them that 
arise most frequently in Romulus. It then describes the individual elements 

of the Romulus HOL90 library. 

B.l     HOL90 Libraries 

A HOL90 library is intended to provide an environment for doing HOL work. 
A library is given by a group of files on disk, a group of files arranged in a 
particular way, together with identifying and initialization information. 

The files for a library must be contained in a directory with three sub- 
directories named help, src, and theories. The help directory contains 
on-line help information for the library.   The src directory contains func- 
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tions (typically utilities and tactics) that are loaded with the library, and the 
theories directory contains the theories that are loaded with the library. 

The theories subdirectory must itself contain subdirectories src and 
ascii. The src directory contains the Standard ML of New Jersey (SML) 
source code that defines these theories in HOL90, and the ascii directory 
contains the ASCII text files that HOL90 produces to store these theories on 
disk. (In the future, HOL90 will be able to store theories using binary formats 
appropriate to particular machines, in which case the theories directory will 
also contain subdirectories such as sun4 containing these binary files.) 

The path of a library is the absolute pathname of the directory containing 
the help, src, and theories subdirectories for the library. This path, infor- 
mation identifying the src functions and theories to load when the library 
is loaded, information giving the order in which the functions and theories 
are to be loaded, and information giving any additional code to be executed 
after the functions and theories are loaded, are given by a .hol_lib file for 
the library. Every .hol_lib file has a corresponding HOL90 internal repre- 
sentation as an SML object of type lib. 

All access to a library in HOL90 is through that library's lib object. 
The function f incLlibrary takes a library's name, and if the library has 
not already been loaded searches for its .hol_lib file in the directories given 
by the HOL90 global library_path. If it finds the library's .holJLib file, 
f incLlibrary computes and returns the corresponding lib object. 

The function load_library loads the library given by a lib object. Load- 
ing a library basically consists of loading the functions associated with the 
library and making the theories associated with the library into parent the- 
ories of the current theory. There is a subtlety, though: new theories cannot 
be added as parents of the current theory unless the current theory is in draft 
mode. The function load_library thus takes an additional string argument 
naming a new theory that it will create and make into the new current theory 
if the current theory is not already in draft mode and does not already have 
the library's theories as parents. If this string argument is "-", meaning "the 
current theory", it is ignored. 

In a situation where loading a library will not need to create a new theory 
(e.g., where the current library is already in draft mode, or already has all the 
library's theories as parents), one can use the function load_library_in_- 
place. It takes a lib value as its only argument. 

There is an additional subtlety in the case where one wishes to load a 
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theory having a library's theories as parents, leave that theory as the current 
theory, and leave HOL90 in proof mode. The following lines do this for theory 
f oo and library bar: 

let 
val bar_lib = find_library "bar"; 

in 
load_theory "foo"; 
load_library_in_place bar_lib 

end; 

This does the following things: 

1. make the bar library known to the system, which includes putting the 
paths to its theories on the HOL90 global theory_path; 

2. load the theory foo (which will work because the paths to the theories 
of bar are now on theory_path) and makes the needed theories of bar 
into parent theories of foo; 

3. load the bar library (which does not require the system to be put into 
draft mode because the theories of the library are already ancestors of 
the current theory). 

This technique is used in all the goal files produced by the Romulus ipsl2hol 
translator. 

The remainder of this appendix describes the contents of the Romulus 
library on a subdirectory by subdirectory basis and describes the code that 
is executed after the src functions and theories are loaded. For further 
general information on HOL90 libraries, see the file doc/library .doc in the 
HOL90 source directory. 

B.2     On-line Help Files 

On-line help files are not yet available for the Romulus library. The Romulus 
library subdirectory help is empty. 
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B.3    Utilities and Tactics 

The Romulus library subdirectory src contains signature and SML source 
files for the following functions. The signature files, with suffix .sig, give 
the SML types of these functions, and the source files, with suffix . sml, give 

their definitions. 
The functions romcontype and romrecord are utilities provided for user 

convenience in specifying processes. They are given by the files romdef types. 
sig and romdef types, sml. 

The function romget const ant is a utility provided for user convenience in 
setting possibly polymorphic goals. It is given by the files romget const ant. 

sig and romget const ant .sml. 
The function romrtheory is a utility for communicating HOL90 results 

to the Romulus graphical interface. It is given by the files romrtheory .sig 
and romrtheory.sml. 

The tactics BNPSP_rightformJTAC,BNPSP.nowritesdown.TAC^BNPSP.- 
restrictive.TA^BPSP.rightf ormJTAC,BPSP_invpreservedJTAC,BPSP_- 

nowritesdown_TAC, BPSP_nolowchange_TAC, BPSP_samepath_TAC, BPSP_- 
lowresponsesame_TAC, and BPSP_restrictive_TAC are tactics for proving 
restrictiveness, or some part of restrictiveness, for buffered, nonparameter- 
ized server processes (BNPSP) or buffered, parameterized server processes 
(BPSP). The tactics Manif estlySecure_TACand HookupValid_TACare tac- 
tics for proving the necessary conditions for manifestly secure and compound 
processes. These tactics are found in the files romtactics.sigand romtac- 

tics.sml. 
Detailed descriptions of each of these functions follow. The descriptions 

of the tactics contain frequent references to "PSL processes", which are mem- 
bers of the concrete recursive type PSL defined in the Romulus library theory 

romproc. 

B.3.1  romcontype 

Function romcontype is a convenience for easily defining non-recursive con- 
crete recursive types of the form needed for Romulus specifications.1 This 
function takes as input a string naming the type to be defined, and a list of 

1This function is needed for HOL90, Release 5 only. 
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(string, (liol_type)list) pairs naming the constructors for this type and 
giving the types of their arguments. It calls HOL90 function dtype with this 
information, naming the defining theorem for the type by appending _Def to 
the type name, assuming that all constructors are prefix, and applying the 
function Hty to identify the types as HOL types. It returns a pair consist- 
ing of the defining theorem for the newly-defined type, and the type of the 
new type with variable types instantiated by the same type variables used to 

declare them. 

B.3.2    romrecord 

Function romrecord defines what are effectively arbitrary record types. It 
takes as input a string naming a record type and a list of (string,hol-type) 
pairs giving the record type's entries and their types. It defines a concrete 
recursive type for this record with Make_ followed by the record type name as 
its sole constructor, and defines access and update functions for each entry 
in the record. It gives the access function for the entry named <entryname> 
the name <entryname>, and gives the update function for this entry the 
name update_<entryname>. 

(Note that entries of different records in the same theory must have differ- 
ent names.) It returns a pair consisting of the defining theorem for the new 
record and the type of the new record with variable-type entries instantiated 
by the same type variables used to declare them. 

B.3.3    romgetconstant 

Function romgetconstant is a simple utility for obtaining terms which are 
possibly-polymorphic constants with their unconstrained type variables in- 
stantiated to the same type variables used to declare them. It is useful for 
setting possibly polymorphic goals and determining whether a process is pa- 

rameterized. 

B.3.4 romrtheory 

Function romrtheory produces exactly the rtheory files needed to have the 
Romulus graphics interface identify the standard security levels and their 
order and to have it recognize that atomic processes have been proved secure, 
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manifest security conditions have been proved or that composite processes 
are properly connected. It assumes that the contents of the Romulus library 
are known. It determines which that no bounds have been assumed or proved 
on the security levels of messages into or out of any port, and assumes that 
the only security condition that must be checked is having a theorem of a 
standardized name asserting an appropriate security property for the process. 
If the function is called with an empty string it produces the rtheory files for 

the theories in the Romulus library. 

B.3.5     BNPSP_rightform_TAC 

BNPSP_rightf orm_TAC simplifies a goal involving BNPSP_rightf orm, which 
asserts that a PSL process is a non-parameterized server process, meaning 
that the end of its response to each input is to call itself to wait for the 
next input. It does case splits on possible inputs and applies rewrites that 
inductively define termination and calling oneself (Terminates and Loops- 
back) for PSL processes. In typical cases, it automatically proves the goal. 

B.3.6     BNPSP_nowritesdown_TAC 

BNPSP_nowritesdovra_TAC simplifies a goal involving BNPSP_nowritesdown, 
which asserts that a non-parameterized server process does not produce any 
outputs in response to an input that are at security levels not dominated by 
the security level of the input or that are not at levels in the specified ranges. 
It does case splits on possible inputs and applies rewrites that inductively 
define "not writing down" (NoWritesDown) for PSL processes. In typical 
cases, it reduces this goal to showing that the levels of output events are 

dominated by the levels of input events. 

B.3.7     BNPSP_restrictive_TAC 

BNPSP_restrictive_TAC is the main Romulus tactic for proving buffered, 
non-parameterized server processes restrictive. It takes the goal, rewrites it to 
expand out the definition of BNPSP_restrictive, and applies BNPSP_right- 
f orm_TAC and BNPSP_nowritesdown_TAC to the two main subgoals. 
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B.3.8     BPSP_rightform_TAC 

BPSP_rightf orm_TAC simplifies a goal involving BPSP_rightf orm, which as- 
serts that a PSL process is a parameterized server process, meaning that the 
end of its response to each input is to call itself to wait for the next input. 
It does case splits on possible inputs and applies rewrites that inductively 
define termination and calling oneself (Terminates and Loopsback) for PSL 

processes. In typical cases, it automatically proves the goal. 

B.3.9    BPSP_invpreserved_TAC 

BPSP_invpreserved_TAC simplifies a goal involving BPSP_invpreserved, 
which says that if a parameterized process's state parameter satisfies a user- 
supplied invariant before an input event is received then the possibly changed 
state parameter in the process's call to itself after processing this input also 
satisfies this invariant. It does case splits on possible inputs and applies 
rewrites that inductively define the possible state parameters in the pro- 
cess's next call to itself (PossibleNextParameter). In typical cases, when 
the invariant is trivial, it automatically proves this goal. 

B.3.10     BPSP_nowritesdown_TAC 

BPSP_nowritesdown_TAC simplifies a goal involving BPSP_nowritesdown, 
which asserts that a parameterized server process does not produce any out- 
puts in response to an input before calling itself that are at security levels not 
dominated by the security level of the input or are not at levels in the spec- 
ified ranges. It does case splits on possible inputs and applies rewrites that 
inductively define "not writing down" (NoWritesDown) for PSL processes. In 
typical cases, it reduces this goal to showing that the levels of output events 
are dominated by the levels of input events. 

B.3.11     BPSP_nolowchange_TAC 

BPSP_nolowchange_TAC simplifies a goal involving BPSPjiolowchange, which 
asserts that the projection of a parameterized process's state parameter be- 
fore and after it responds to an input event does not change if the projection 
is to a level not dominating the level of the input event. It does case splits on 
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possible inputs and applies rewrites that inductively define the possible state 
parameters in the process's next call to itself (PossibleNextParameter). In 
typical cases, it reduces this goal to showing that projections of before and 
after state parameters are equal. 

B.3.12     BPSP_samepath_TAC 

BPSP_samepath_TAC simplifies a goal involving BPSP_samepath, which asserts 
that if the projections of two state parameters to a level are equal, if an 
input event is visible at this level, and if the process's responses to this 
input for these state parameters make the same nondeterministic choices, 
then these responses execute the same sequence of PSL commands. It does 
case splits on possible inputs and applies rewrites that inductively define this 
"same path" property for pairs of PSL processes in terms of pairs of their 
subprocesses (SamePath). In typical cases, it reduces this goal to showing 
equalities between boolean expressions. 

B.3.13     BPSP_lowresponsesame_TAC 

BPSP_lowresponsesame_TAC simplifies a goal involving BPSP_lowresponse- 
same, which asserts that if the projections of two state parameters to a level 
are equal, then the process's responses to an input for each of those state 
parameters produce the same outputs visible at that level and also give state 
parameters for the process's next call to itself whose projections to that level 
are equal. It does case splits on possible inputs and applies rewrites that 
inductively define the possible state parameters in the process's next calls 
to itself (PossibleNextParameter). In typical cases, it reduces this goal to 
showing that output events and next state parameters produced for different 
process state parameters are the same. 

B.3.14     BPSP_restrictive_TAC 

BPSP_restrictive_TAC is the main Romulus tactic for proving buffered, pa- 
rameterized server processes restrictive. It takes the goal, rewrites it to ex- 
pand out the definition of BPSP_restrictive, and attempts to automatically 
prove the three of the six subgoals that can typically be proved automatically 
— that the initial state parameter satisfies the invariant, the process is of 

159 



the right form, and satisfying the invariant is preserved for successive state 
parameters. The tactics BPSP_nolowchange_TAC,BPSP_nowritesdown_TAC, 

BPSP_samepath_TAC,and BPSP_lowresponsesame_TACcan be used for prov- 

ing the remaining goals. 

B.3.15 ManifestlySecure_TAC 

Manif estlySecure_TACis the main Romulus tactic for proving the manifest 
security conditions for manifestly secure processes. This tactic makes case 
splits on input and output events, and then rewrites with the definitions 
of the input and output predicates, the input and output level-assignment 
functions, and the dominance relation on levels. In typical cases, it reduces 
this goal to showing that the levels of output events dominate the levels of 
input events. 

B.3.16    HookupValid_TAC 

HookupValid_TAC is the main Romulus tactic for proving that the subcom- 
ponents of composite processes are connected together correctly. This tac- 
tic splits the goal into subgoals, and then rewrites with the definitions of 
the input and output predicates. For validly connected processes, the condi- 
tions that must be proved are usually trivial, and HookupValid.TAC typically 

proves the goal automatically. 

B.4    Theories 

The Romulus library subdirectory theories contains SML source and saved- 
theory files for the theories made into parent theories of the new or current 
theory when the Romulus library is loaded. The subdirectory src contains 
the SML source, and the subdirectory ascii contains the saved-theory files. 

The subdirectory ascii contains two files for each theory, a .holsig file 
and a .trims file. The .holsig file gives the constants and types defined in 
the theory, and the theory's parent theories. The .thms file gives the axioms, 
definitions, and theorems in the theory. 

The subdirectory src contains SML source for each theory in the Romulus 
library, and a file romutils.sml of SML utilities that are used in defining 
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the Romulus libraries. These utilities include a function for automatically 
proving standard properties of concrete recursive types, a function for giving 
a more readable form of definitions for inductively defined predicates, and a 
function for automatically proving standard properties of inductively defined 

predicates. 
Descriptions of each of the theories in the Romulus library follow: 

B.4.1     romlemmas 

Theory romlemmas contains lemmas about the standard security levels and 
lemmas giving simple facts of logic that are used by the Romulus tactics. 
The theory provides definitions of the most commonly used security levels 
and their dominance and less-than-or-equal-to relations, and proves useful 
facts about them. This is done as a convenience for the user; the user can 
define arbitrary sets of security levels and arbitrary order relations on them. 

B.4.2     romproc 

Theory romproc gives the Romulus formalization of processes. (Here "pro- 
cess" can refer to either a state machine or one of such a machine's states.) 
It defines a particular family of atomic processes as program-like members 
of a concrete recursive type PSL, and defines transition relations specifying 
how these atomic processes are transformed by events. It also defines tran- 
sition relations specifying how composite processes and "parent" processes 
serving as interfaces to other, typically composite, processes are transformed 

by events. 
The most important part of the theory romproc is the following definition 

of the concrete recursive type PSL defining a particular family of atomic 

processes. 

define_type { 
name =  "PSL_Def", 
type_spec = 

'process = Skip  I 
;;   of process#process   I 
Orselect ol process#process   | 
If  of bool#process#process   I 
Send of   'outev   I 
Receive of   ('inev -> bool)#('inev ->   'invoc)   I 
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Call of   'invoc   I 
Buffered of   ('inev -> bool)#('inev)list#process ', 

fixities = 
[Prefix,Infix 1000,Prefix,Prefix,Prefix,Prefix,Prefix,Prefix]}; 

Intuitive descriptions of the intended interpretations of the PSL construc- 

tors follow: 

• Skip is the finished process that does nothing. 

• ; ; is the "followed by" operator; (pi ; ; p2) is the process that does 
whatever pi does and then does whatever p2 does. 

• Orselect is the "random choice" operator; (Orselect pi p2) is the 
process that does whatever pi does or whatever p2 does. 

• If is the "if-then-else" operator; (If b pi p2) is the process that 
does whatever pi does if b is true and does whatever p2 does if b is 

false. 

• Send produces output; (Send outev) causes the output event outev 

to occur. 

• Receive responds to input; (Receive received response) reacts to 
an input event inev that satisfies the predicate received by applying 
the function response to this input event to obtain a construct naming 
the process the receiving process becomes in response to this input 
event, then becomes this process. 

• Call becomes the process named by its argument. 

• Buffered is the "buffered process constructor"; (Buffered buffer- 
ing buf p) is the same as process p, but buffers inputs satisfying the 
predicate buffering on a buffer whose initial contents are given by 

buf. 

B.4.3     romsecure 

Theory romsecure, a companion theory to the process theory romproc, gives 
the Romulus formalization of security. It defines special-purpose conditions 
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that are sufficient to guarantee restrictiveness but easier to prove when they 
apply. It defines the following predicates on PSL processes: 

• Terminates. Terminates tells whether a process terminates in the 
context of a given function assigning values to invocations. It is used 
only in the subsequent definition of Loopsback. 

• Loopsback. Loopsback tells whether a process, in the context of a given 
function evaluating invocations, always makes a call to a particular 
process. The process can be non-parameterized, in which case it is 
given by an invocation, or parameterized, in which case it is given by 
a function mapping parameters to invocations. It is used to identify 
processes that wait for an input, process it, and return to waiting for 
another input. 

• NoWritesDown. NoWritesDown is a relation defined for a dominance 
relation, a level-assignment function for outputs, a security level as- 
sumed to be the level of some input, a function mapping invocations to 
processes, a process name (which is either an invocation or a function 
mapping parameters to invocations), and a PSL process. It holds if the 
level of every output produced before the process ends with a call to 
the process given by the process name dominates the given input level. 

• PossibleNextParameter. PossibleNextParameter is a relation de- 
fined for a function mapping invocations to processes, the name of a 
parameterized process, a parameter for this named process, and a PSL 
process. It holds if the parameter is possibly the parameter in the 
process's next call to the named process. 

• SamePath. SamePath is a relation defined for a function mapping invo- 
cations to processes and two PSL processes. It holds if the executions of 
the two process execute the same sequence of PSL commands whenever 
these processes make all the same nondeterministic choices. 

• PossibleLowOutputSequence. PossibleLowOutputSequence is a re- 
lation defined for a dominance relation, a level-assignment function for 
outputs, a security level, a list of output events, a function mapping 
invocations to process, the name of a parameterized process, and a PSL 
process.   It holds if the list of output events is a possible sequence of 
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the output events whose levels are dominated by the given level which 
are produced by the process before it calls the process with the given 
name. Earlier output events occur more toward the list's head. It is 
used only in the definition of PossibleLowResponse. 

• PossibleLowResponse. PossibleLowResponseis a relation defined for 
a dominance relation, a level-assignment function for outputs, a secu- 
rity level, a projection function, a list of output events, a parameter, 
a function mapping invocations to processes, the name of a parame- 
terized process, and a PSL process. It holds if: 1) PossibleLowOut- 
putSequence holds for the same dominance relation, level-assignment 
function for outputs, security level, list of output events, function map- 
ping invocations to processes, name of a parameterized process, and 
PSL process; and 2) after producing this sequence of low outputs, the 
process calls the named process with a parameter whose projection to 
the security level is the parameter. One must consider the low outputs 
and the low next parameter at the same time, because they might not 
occur together for some processes even if both can occur separately. 

In addition to defining these predicates, the theory proves, for each pred- 
icate, stronger, equational statements about the predicate that effectively 
define it by structural induction on the complexity of PSL objects — 

ünvocval pi p2. 
Terminates invocval  (pi   ;;  p2)  = 
Terminates invocval pi  A Terminates  invocval p2 

is such a statement. These statements are used as rewrite rules by the Romu- 
lus tactics, and doing so typically simplifies the predicates until all references 
to PSL have been removed. The theory also proves additional special-case 
statements that can be used as rewrites. 

The theory defines the following non-inductive predicate and function 
that are convenient for expressing security properties: 

• receivesall — a predicate that holds if and only if it is applied to a 
PSL Receive receiving an arbitrary input event. 

• reaction — a partial function (actually, a conversion rule) that is 
applied to an input event, a function assigning PSL processes to in- 
vocations, and a PSL process. If this process is a Receive, reaction 
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returns the process that the Receive process changes to in response 
to the input event. If the given process is not a Receive, reaction is 
undefined and expressions involving it cannot be reduced. 

Finally, the theory defines the following predicates expressing security 
properties. Each of these predicates assumes that the level of each input 
event arriving at an input port is in the level range for that port. 

• BNPSP_rightform. BNPSP_rightf orm is true of a predicate defining 
possible input events, a process and a function assigning meaning to 
invocations if the process receives any input event and responds to every 
input event by looping back to call itself. For instantiating the poly- 
morphic predicate Loopsback, non-parameterized processes are treated 

as having the parameter (—'one'—). 

• BNPSPjiowritesdown. BNPSP_nowritesdownis true of predicates defin- 
ing possible input and output events, and a process satisfying BNPSP_- 
rightf orm if for every input event the process's response to that input 
event satisfies "no writes are down", meaning that the levels of output 
events dominate the level of the input event that gave rise to them 
and the level of every output event passing through a port is in the 
level range for that port. For instantiating the polymorphic predicate 
NoWritesDown, non-parameterized processes are treated as having the 

parameter (—'one' —). 

• BNPSP_restrictive. BNPSP_restrictive is a relation among predi- 
cates defining possible input and output events, a dominance relation 
on security levels, a function mapping input events to security levels, 
a function mapping output events to security levels, a function map- 
ping invocations to processes, and an invocation. It holds if the process 
named by the invocation is a buffered, non-parameterized, PSL server 
process that is restrictive with respect to the given security-level order 
and level-assignment functions and whose outputs are in the required 

level ranges. 

• BPSP_rightf orm. BPSP_rightform is true of predicates defining pos- 
sible input and output events, an invariant, a process, and a function 
assigning meaning to invocations if for every parameter satisfying the 
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• 

• 

• 

invariant the process receives any input event and responds to every 

input event by looping back to call itself. 

BPSP_invpreserved. BPSP_invpreserved is true if for any parameter 

satisfying the invariant and any input event, any possible parameter 
in the process's response's call back to the process also satisfies the 

invariant. 

BPSP_nolowchange. BPSPjtiolowchange is true if for any input event, 
any level not dominating the level of that event, and any initial param- 
eter satisfying the invariant, at that level all possible parameters in the 
the process's next call to itself seem identical to the initial parameter. 

BPSPjnowritesdown. BPSPjiowritesdown is true if for any parameter 
satisfying the invariant and any input event, the response to that in-, 
put satisfies "no writes are down" and the output events are in their 

required output ranges. 

BPSP_samepath. BPSP_samepath is true if for any level, any two pa- 
rameters satisfying the invariant that seem equivalent at this level, and 
any input event visible at this level, if the process' responses to this 
input when it is parameterized by each of these parameters make the 
same nondeterministic choices then these responses execute the same 

sequence of PSL commands. 

BPSP_lowresponsesame. BPSP_lowresponsesameis true if for any level, 
any two parameters satisfying the invariant that seem equivalent at 
that level, and any input event: 1) Any possible output sequence visi- 
ble at that level for one of the two parameters is also possible for the 
other parameter; and 2) The parameters in the process's next calls to 
the named process after producing these output sequences also seem 

equivalent at that level. 

BPSP_restrictive. BPSP_restrictive is a relation among predicates 
defining possible input and output events, a dominance relation on se- 
curity levels, functions mapping input and output events to security 
levels, a projection function mapping a security level and a process pa- 
rameter to the possibly sanitized version of this parameter "seen" at 
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that security level, an invariant on process parameters, a function map- 
ping invocations to processes, the name of a parameterized process, and 
a parameter of the type appropriate for this process. It holds if the pro- 
cess named is a buffered, parameterized, PSL server process that is re- 
strictive with respect to the given security-level order, level-assignment 
functions, projection function, and invariant and whose outputs are in 
their required level ranges. 

B.4.4  sharedstate 

Theory sharedstate is a HOL90 formalization of shared-state restrictive- 
ness. Shared-state restrictiveness is described in Volume II, the Romulus 
library of models, under the generic-guard example. 

B.4.5     crypto _90 

Theory crypto_90 is the implementation in HOL of authentication logic. 
This contains the primitives needed to describe and specify authentication 
protocols. It also contains the inference rules of the logic, which are used to 
carry out proofs that protocols are correct. 

B.5     Code Executed After Loading 

After loading the Romulus utilities, tactics, and theories, loading the Romu- 
lus library executes code to bind the SML identifier text list to the value 
ty_antiq(==' :text list'==). (The type text is defined in the Romulus 
theory crypto_90.) This variable can then be used as a type abbreviation in 
theories defining and analyzing protocols. 
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Appendix C 

User Defined Levels 

Romulus comes with a default set of levels and a default dominance relation 
on these levels called standard_level and standarcLdom. The default levels 
are top-secret, secret, confidential, and unclassified, with the usual 
dominance relation. Romulus also allows the definition and use of alternative 
levels and dominance relations. This appendix shows how to do this. The ex- 
ample that will be demonstrated here is a set of levels that are classifications 

with categories with the usual dominance relations. 
There are several steps that must be taken in order to define and make 

full use of a new set of levels. 

1. Define a HOL theory describing the desired set of levels and the dom- 

inance relation on these levels. 

2. Create HOL tactics for proving that one level dominates another. This 
step is recommended, but not required. 

3. Create an .rth file describing the desired set of levels and the domi- 
nance relation on these levels to the Romulus graphics. 

4. Create an abbreviations resource that contains abbreviations for the 
graphics to use for the new levels as described in Appendix A. This 
step is recommended, but not required. 

5. Edit your IPSL specifications so that they use the new levels. 

Each of these steps will be described in detail for the categories example. 
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For the categories example, we will define our new levels by adding two 
categories to the standard levels. A new level will then consist of a pair: 

(standard_level,category_set) 

where standardJLevel is a standard Romulus level (unclassified, confi- 
dential, secret, or top_secret) and the categories are from the set {a,b}. 
Some example levels are: 

(unclassified,{}) 
(confidential,{a}) 
(secret,{a;b}) 
(top_secret,{}) 
(top_secret,{b}) 

Next we will define the HOL theory for these levels by defining a file 
categories.sml that will contain the definitions necessary for the theory. 
This file starts with the standard lines that remove old versions of the theory. 

System.Unsafe.SysIO.unlink "categories.holsig" 
handle e => print "no earlier categories.holsig to remove\ n"; 

System.Unsafe.SysIO.unlink "categories.thms" 
handle e => print "no earlier categories.thms to remove\ n"; 

Next, the new theory, called categories, is created and the HOL set 
library and Romulus library are loaded. 

new_theory "categories"; 
load_library_in_place(Sys_lib.set_lib); 
load_library_in_place(get_library_f rom_disk "romulus"); 

The following creates a new enumeration type called sample_categories 
that can have value a or b. 

val sample_categories_Def = 
define_type { 

name = "sample_categories", 
type_spec =   'sample_categories = a  I   b', 
fixities =   [Prefix,Prefix]}; 

The HOL type of a new level will be 

(standard_level # sample_category set) 
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but we do not need to explicitly define this type. Instead we will define our 
new dominance relation category_dom using polymorphic types. 

new_definition 
("cat egory_dom", 
let val category_dom = 
—'category_dom: 

(standard_level #  ('category)set) -> 
(standard_level #  ('category)set) -> 
bool' —; 

in 
 t 

"category_dom (slevl,setl) (slev2,set2) = 
(standard_dom slevl slev2) /\ set2 SUBSET setl 

<  

end); 

This says that one level dominates another level if the classification of the 
first dominates the classification of the second (using the standard Romulus 
dominance relation) and the set of categories of the second is a subset of the 
set of categories of the first. 

Finally, we export the theory and exit HOL. 

export_theory(); 
exitQ; 

Once this file has been created the HOL theory can be created. This is 
easy, but takes a few minutes. The command is: 

'/, rhol -«categories . sml 

If the new levels you define have a complex structure, such as the ones we 
have just described, it might be desirable to define HOL tactics for dealing 
with them. For this example, it would be convenient to define a tactic to 
solve subgoals of the form: 

— 'setl SUBSET set2' — 

A tactic that does this is easy to define: 

val SUBSET_TAC = REWRITE_TAC   [definition "set"  "SUBSET_DEF"]   THEN 
STRIP_TAC THEN 
REWRITE_TAC   [theorem "set"  "IN_INSERT"]  THEN 
DISCH_TAC THEN 
REPEAT  (POP_ASSUM  (fn th => DISJ_CASES_TAC th)  THEN ASM_REWRITE_TAC  []); 
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The next tactic solves goals of the form: 

—'category_dom level! Ievel2'— 

This tactic is easily defined as: 

val CATEGORY_DOM_TAC = 
REWRITE_TAC  [definition "categories"  "category_dom"] THEN 

C0NJ_TAC THEN 
REWRITE.TAC  [definition "romlemmas"  "standard_dom"]  THEN 
SUBSET_TAC THEN ASM_REWRITE_TAC  []; 

Next, it is necessary to define a file categories.rth that contains de- 
scriptions, in a form that can be read by the graphics, of the levels that are 
to be used and which levels dominate which others. 

The format of this file is quite simple, even if it is quite long. It starts 

with the text: 

BEGIN_ANCESTORS END.ANCESTORS 

Next comes an enumeration of all possible levels. 

BEGIN_LEVELS 
systemlow 
(unclassified,{}) 
(unclassified,{a}) 
(unclassified,{b}) 
(unclassified,{a;b}) 
(conf ident ial,{}) 
(confidential,{a}) 
(confidential,{b}) 
(conf ident ial,{a;b}) 
(secret,{}) 
(secret,{a}) 
(secret,{b}) 
(secret,{a;b}) 
(top_secret,{}) 
(top_secret,{a}) 
(top_secret,{b}) 
(top_secret,{a;b}) 
systemhigh 
END_LEVELS 
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The level systemlow is the lowest possible level and systemhigh is the high- 
est possible level; these levels must be defined in every . rth file. Note that 
the levels defined in this file are treated by the graphics as strings, so each 
level must always be typed exactly as it appears in this file when you are 
using these levels in the graphics. 

Next comes an enumeration of dominance pairs, that is, pairs of levels 
such that the first level dominates the second. 

BEGIN_D0M 
systemhigh (top_secret,{a;b}) ) 
systemhigh (top_secret,{a}) ) 
systemhigh (top_secret,{b}) ) 
systemhigh (top_secret,{}) ) 
systemhigh (secret,{a;b}) ) 
systemhigh (secret,{a}) ) 
systemhigh (secret,{b}) ) 
systemhigh (secret,{}) ) 
systemhigh (confidential,{a;b}) ) 
systemhigh (confidential,{a}) ) 
systemhigh (confidential,{b}) ) 
systemhigh (confidential,!}) ) 
systemhigh (unclassified,{a;b}) ) 
systemhigh (unclassified,{a}) ) 
systemhigh (unclassified,{b}) ) 
systemhigh (unclassified,{}) ) 
systemhigh systemlow ) 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 
(top_secret, 

a;b} 

b} 
b} 
b} 
b} 
b} 
b} 
b} 
b} 
b} 
b} 
b} 
b} 
b} 
b} 
b} 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

a» 

) (top_secret,{a}) ) 
) (top_secret,{b}) ) 
) (top_secret,{}) ) 
) (secret,{a;b}) ) 
) (secret,{a}) ) 
) (secret,{b}) ) 
) (secret,{}) ) 
) (confidential,{a;b}) ) 
) (confidential,{a}) ) 
) (confidential,{b}) ) 
) (confidential,{}) ) 
) (unclassified,{a;b}) ) 
) (unclassified,{a}) ) 
) (unclassified,{b}) ) 
) (unclassified,{}) ) 
) systemlow ) 
(top_secret,{}) ) 

172 



( (top_secret,{a}) (secret,{a}) ) 
( (top_secret,{a}) (secret,{}) ) 
( (top_secret,{a}) (confidential,{a}) ) 
( (top_secret,{a}) (confidential,!}) ) 
( (top_secret,{a}) (unclassified,{a}) ) 
( (top_secret,{a}) (unclassified,!}) ) 
( (top_secret,{a}) systemlow ) 
( (top_secret,{b}) (top_secret,{}) ) 
( (top_secret,{b}) (secret,{b}) ) 
( (top_secret,{b}) (secret,{}) ) 
( (top_secret,{b}) (confidential,{b}) ) 
( (top_secret,{b}) (confidential,{}) ) 
( (top_secret,{b}) (unclassified,{b}) ) 
( (top_secret,{b}) (unclassified,!}) )• 
( (top_secret,{b}) systemlow ) 
( (top_secret,{}) (secret,{}) ) 
( (top_secret,{}) (confidential,{}) ) 
( (top_secret,{}) (unclassified,{}) ) 
( (top_secret,{}) systemlow ) 
( (secret,{a;b}) (secret,{a}) ) 
( (secret {a;b}) (secret,{b}) ) 
( (secret {a;b}) (secret,{}) ) 
( (secret {a;b}) (confidential,{a;b}) ) 
( (secret {a;b}) (confidential,{a}) ) 
( (secret {a;b}) (confidential,{b}) ) 
( (secret {a;b}) (confidential,{}) ) 
( (secret {a;b}) (unclassified,{a;b}) ) 
( (secret {a;b}) (unclassified,{a}) ) 
( (secret {a;b}) (unclassified,{b}) ) 
( (secret {a;b}) (unclassified,!}) ) 
( (secret {a;b}) systemlow ) 
( (secret {a}) (secret,{}) ) 
( (secret {a}) (confidential,{a}) ) 
( (secret {a}) (confidential,!}) ) 
( (secret {a}) (unclassified,{a}) ) 
( (secret {a}) (unclassified,!}) ) 
( (secret {a}) systemlow ) 
( (secret {b}) (secret,{}) ) 
( (secret {b}) (confidential,{b}) ) 
( (secret {b}) (confidential,{}) ) 
( (secret {b}) (unclassified,{b}) ) 
( (secret {b}) (unclassified,{}) ) 
( (secret {b}) systemlow ) 
( (secret {}) (confidential,!}) ) 
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(secret,{}) (unclassified,{}) ) 

(secret,{}) systemlow ) 

(confidential, 

(confidential, 

(confidential, 

(confidential, 

(confidential, 

(confidential, 

(confidential, 

(confidential, 
(confidential, 

(confidential, 

(confidential, 
(confidential, 

(confidential, 
(confidential, 

(confidential, 

(confidential, 

(confidential, 

(confidential, 

(unclassified, 

(unclassified, 

(unclassified, 

(unclassified, 

(unclassified, 

(unclassified, 
(unclassified, 

(unclassified, 

(unclassified, 

END_D0M 

a;b}) (confidential,{a}) ) 

a;b}) (confidential,{b}) ) 

a;b}) (confidential,!}) ) 

a;b}) (unclassified,{a;b}) ) 

a;b}) (unclassified,{a}) ) 

a;b}) (unclassified,{b}) ) 

a;b}) (unclassified,{}) ) 

a;b}) systemlow ) 
a}) (confidential,{}) ) 

a}) (unclassified,{a}) ) 
a}) (unclassified,!}) ) 

a}) systemlow ) 
b}) (confidential,!}) ) 
b}) (unclassified,{b}) ) 

b}) (unclassified,!}) ) 

b}) systemlow ) 

}) (unclassified,!}) ) 

}) systemlow ) 

a;b}) (unclassified,{a}) ) 

a;b}) (unclassified,{b}) ) 

a;b}) (unclassified,!}) ) 

a;b}) systemlow ) 

a}) (unclassified,!}) ) 

a}) systemlow ) 
b}) (unclassified,!}) ) 

b}) systemlow ) 

}) systemlow ) 

Once again, the level names in this section must appear exactly the same 
as they did earlier. It is not necessary to list every dominance pair in this 
file; Romulus will compute the reflexive transitive closure of the set of pairs 
that are listed in this file. In other words, if A is a level then the dominance 
( A A ) holds. Also, if A, B, C are levels and the dominances (AB) and 
( B C ) hold, then the dominance (AC) holds. Also, the appropriate 
dominances for systemlow and systemhigh hold. Note that for this ex- 
ample many more dominance pairs are listed than are needed to define the 
dominance relation. 

The following lines end the file. 

BEGIN PORTS END_PORTS 
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BEGIN_DISTINCT END_DISTINCT 
SECURITY_PROVEN f 

It is also convenient to define a text string that provides abbreviations 
for the graphics to use for each level; otherwise the full name of each level is 
used. For this example, the following string could be used. 

systemlow = Lo\n\ 
(unclassified,{})  = U\n\ 
(unclassified, {a}) = U/a/\n\ 
(unclassified,{b})  = U/b/\n\ 
(unclassified,{a;b})  = U/a,b/\n\ 
(confidential,{}) = C\n\ 
(confidential,{a}) = C/a/\n\ 
(confidential,{b}) = C/b/\n\ 
(confidential,{a;b}) = C/a,b/\n\ 
(secret,{})  = S\n\ 
(secret,{a}) = S/a/\n\ 
(secret,{b}) = S/b/\n\ 
(secret,{a;b}) = S/a,b/\n\ 
(top_secret,{})  = TS\n\ 
(top_secret,{a}) = TS/a/\n\ 
(top_secret,{b}) = TS/b/\n\ 
(top_secret,{a;b}) = TS/a,b/\n\ 
systemhigh = Hi 

The level names used here must appear exactly the same as they did in the 

. rth file. 
It still remains to tell the graphics to use the levels defined in the file 

categories.rth and to use the abbreviations defined in the abbreviations 
string. This is done by setting the appropriate application resources. The 
Romulus installation procedure creates a directory $ROMDIR/Environment 
that contains, among other things, a defaults file which will look something 

like this 

*levelfile: romlemmas 
*searchpath: $ROMDIR/Environment 

where $R0MDIR has been replaced with the full path name of the directory 
where Romulus was installed on your system. If you set the environment 
variable XENVIRONMENT with the command 

setenv XENVIRONMENT $ROMDIR/Environment/defaults 
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then Romulus will use these application resources. To change these defaults, 
create your own resource file, romenvironment, that contains your applica- 
tion resources. For example, your file might look something like this: 

♦levelfile:  categories 
*searchpath:  $ROMDIR/Environment 
♦abbreviations:\ 
systemlow = Lo\n\ 
(unclassified,{}) = U\n\ 
(unclassified,{a}) = U/a/\n\ 
(unclassified,{b}) = U/b/\n\ 

(top_secret,{a}) = TS/a/\n\ 
(top_secret,{b}) = TS/b/\n\ 
(top_secret,{a;b}) = TS/a,b/\n\ 
systemhigh = Hi 

where $R0MDIR is replaced with the pathname in the original defaults file. 
You can also add default values for any of the application resources described 

in Appendix A. 
You will then need to set the XENVIRONMENT environment variable as 

follows. 

setenv XENVIRONMENT romenvironment 

All that remains is to change your specifications to use these newly defined 
levels. The only special action that you need to take is to add the following 
lines to the . ipsl file for the top-level component: 

??LevelTheory:  categories 
??DomRelation: 
category_dom: 

(standard_level #  (sample_categories)set) -> 
(standard_level #  (sample_categories)set) -> 
bool 

??LevelVar:  level:standard_level #  (sample_categories)set 

The ??LevelTheory: entry says use the categories theory. The ??Dom- 
Relation: gives the name of the dominance relation (category_dom) and 
its type. ??LevelVar: gives the name and type of a variable denoting an 

arbitrary level. 

176 



Last of all, an important warning. The ipsl2hol translator cannot be 
used to translate . ipsl files that have user defined levels. You will instead 
have to use the SPEC button. The process you need to use is this: 

1. Use the Romulus graphics to create your model, save it, then exit. 

2. Edit the . ipsl files for each process to complete their specifications. 

3. Start the graphics again, loading the saved model. 

4. Use the SPEC button to translate the specifications. 

See section 3.5.8 for more details. 
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Index 

.goal.sml file, 52 
creating, with ipsl2hol, 19, 25, 

29 
for simple example, 19, 22, 25, 

27, 29, 32 
for token ring example, 122 

.holsigfile, 19, 22, 25, 27, 29, 32, 
69 

. ipsl file, 46, 51 
backup, 47, 51 
for simple example, 13, 17, 18, 

24, 28 
for token ring example, 120, 122, 

129, 130 
.proof .sml file 

creating, for simple example, 32 
creating, for token ring exam- 

ple, 130 
for simple example, 22, 27 

. rom file, 46, 48 
for simple example, 13 

. rth file, 53 
for standard levels, 6 
for simple example, 22, 27, 32 
for token ring example, 131 

. sml file 
for proving a protocol, 136 
for specifying a protocol, 134 

. spec. sml file, see also HOL90, spec- 

ification file, 52 
creating, with ipsl2hol, 19, 25, 

29 
for simple example, 19, 25, 29, 

101 
for token ring example, 122 

.thms file, 19, 22, 25, 27, 29, 32, 69 
;; infix operator for PSL, 99, 162 
??Connection:,98 
??DomRelation:,95, 97 
??EndProcess:,97, 98 
??H0L_functions:, 18, 95, 97 
??InPort:, 17, 96, 98 
??Initial:,95 
??Invariant:, 95 
??LevelFun:,18, 19, 96, 97 
??LevelRange:,18, 96, 97 
??LevelTheory:,95, 97 
??LevelVar:,95, 97 
??MessageVar:,18, 96 
??0utPort:, 17, 96, 98 
??Process:,17, 94, 97 
??ProcessInFile:,98 
??Projection:,95 
??Response:, 18, 19, 97 
??StateVar:,95 

[_,J, 10,41 

ACCEPT_TAC tactic, 78, 81 
analyzing flow, see flow analysis 
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ancestors, 36 
application resource values, 141 
ASM _REWRITE_TAC tactic, 79, 87 
assume, 15, 50 
ASSUME_TAC tactic, 79, 86 
asterisk 

double, 32, 41, 131 
single, 15, 41 

atomic processes, 1 
security conditions, 2, 16, 23, 

34, 35, 157 
specifications, 3, 16, 35, 51, 94- 

97, 161 
tactic for proving, 26, 112, 155, 

160 
translating to HOL, 19, 25, 98, 

122 
authentication protocols 

describing, 134, 135, 138 
introduction to tools, 3 
specifying, 134-135 
toolkit, 133-140 
tutorial example, 137-140 

backup function, 80, 89 
BNPSP_restrictiveness,108 

_TAC tactic, 111, 126, 157 
predicates, 109 

BNPSP_nowritesdown, 109, 165 
BNPSP_restrictive,165 
BNPSP_rightf orm,109, 165 

tactics 
BNPSP_riowritesdown_TAC, 157 
BNPSP_rightf orm_TAC, 157 

using HOL to prove, 108-109 
BPSPjrestrictiveness,108 

_TAC tactic, 111, 159 

predicates 
BPSP_invpreserved, 109, 166 
BPSPJLowresponsesame, 110, 

166 
BPSP_riolowchange, 110, 166 
BPSP_nowritesdown, 110, 166 
BPSP_restrictive,166 

BPSP_rightf orm,109, 165 
BPSP_samepath, 110, 166 

tactics 
BPSP_invpreserved_TAC, 158 
BPSP_lowresponsesame_TAC, 

159 
BPSP_tiolowchange_TAC, 158 
BPSP_nowritesdown_TAC, 158 
BPSP_rightf orm_TAC, 158 
BPSP_samepath_TAC, 159 

using HOL to prove, 108-111 
Buffered, 100, 162 
buffered server process 

informal descriptions of condi- 
tions for, 107-108 

Buffered, Nonparameterized Server 
Process, see BNPSP_restrictive- 
ness 

Buffered, Parameterized Server Pro- 
cess, see BPSPjrestrictive- 
ness 

Call, 99, 162 
canvas window, 6, 41 
check, 32, 53 
children, 36 
close, 46 
command 

buttons, 6, 39 
assume,50 
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check, 53 
close, 46 
create, 48 
create/connect,55 
delete, 50, 57 
display, 54, 57 
flow,45 
ipsl,51 
load, 48 
modify, 44, 58 
move, 49, 57 
names, 47 
open, 50 
print,47 
quit, 48 
refresh, 48 
save,46 
spec, 51 

component level, 48 
deselecting a, 6, 39 
levels, 43 
port level, 55 
selecting a, 6, 39 
top-level, 44 

command-line options for graphi- 
cal interface, 143 

-abbreviations=,145 
-abortsavefile=,145 
-arise=, 145 
-arun=, 145 
-bf=, 146 
-cerror=,146 
-cf=,147 
-cnorm=,146 
-ef=,147 
-initial=, 147 
-levelfile= 148 

-lf=,147 
-logof=, 148 
-minw=, 148 
-perror=, 149 
-pf=,149 
-pnames=, 149 
-pnorm=, 149 
-searchpath=,150 
-tbf=,150 
-tef=,150 
-tlf=,151 
-translationstable=, 151 

component, 36 
child, 7, 41 
creating a, 7 
default, 7 
information associated with a, 

36 
naming a, 7 
open, 41 
proving a, 20, 25, 29 
selecting a child, 42 
specifying, 17, 23, 28 
structure, 7, 41 
top-level, 7, 41 

component commands, 43, 48 
assume,50 
check, 53 
create, 48 
delete, 50 
display, 54 
ipsl,51 
load,48 
move,49 
open,50 
spec, 51, 98 

limitations, 52 
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composite processes, 1, 27-32 
security conditions, 29, 35, 112— 

113, 157 
specifications, 28, 97-98 

tactic for proving, 31, 113, 155 
tactics for proving, 160 

translating to HOL, 29, 51, 53, 

98 
confirming proof completion, 32, 130 
C0NJ_TAC tactic, 78, 83, 89, 90 
conventions, ii 
create, 7, 48 
create/connect,10, 55 
crypto,167 
cryptographies protocols, see authen- 

tication protocols 

delete, 50, 57 
Denning-Sacco protocol, 137 
deriving a proof for a protocol, 136 
descendants, 36 
describing a protocol, 134 

in HOL form, 135, 138 
designing a model, 7 
DISCH_TAC tactic, 78, 84 
display, 54, 57 

environment variables for graphical 
interface, 143 

ROMJVBBREVIATIONS,145 
ROMJVBORTSAVEFILE,145 
ROMJVRISE, 145 
R0M_ARUN, 145 
R0M_BF, 146 
R0M_CERR0R, 146 
R0M_CF, 147 
R0M_CN0RM, 146 

R0M_EF, 147 
ROM_INITIAL,147 

ROM_LEVELFILE, 148 

R0M_LF, 147 

R0M_L0G0F, 148 

ROMJIINW, 148 

R0M_PERR0R, 149 

R0M_PF, 149 

ROM_PNAMES, 149 

R0M_PN0RM, 149 
ROM_SEARCHPATH, 150 
R0M_TBF, 150 
R0M_TEF, 150 

R0M_TLF, 151 
ROM-TRANSLATIUNSTABLE, 151 

EQ_TAC tactic, 78, 84 
error messages, 42 
EXISTS_TAC tactic, 79, 85 
exiting from the graphical interface, 

13 
expand function, 80 

flow, 15, 45 
flow analysis 

simple example, 13 
token ring tutorial, 118 

formal specification 
in Romulus IPSL, 17, 23, 28 
IPSL 

for simple example,  18,  24, 
28 

for token ring example, 120, 
129 

of atomic server process, 94 
of composite process, 97 

frequently used tactics, 78 

g function, 80 
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GEN_TAC tactic, 78, 82 
goal, 77 

proved, 21 
reduced to a subgoal, 21, 26 
setting a, for a protocol, 136 
setting a, for nondisclosure, 20, 

25, 30 
goal stack, 80 
graphical interface, 34 

canvas area, 6, 41 
command buttons, 6 
command levels, 43 
command-line options, 143 

-abbreviations=,145 
-abortsavefile=,145 
-arise=, 145 
-arun=,145 
-bf=,146 
-cerror=,146 
-cf=, 147 
-cnorm=,146 
-ef=,147 
-initial», 147 
-levelfile=,148 
-lf=,147 
-logof=,148 
-minw=, 148 
-perror=, 149 

-pf=,149 
-pnames=,149 
-pnorm=,149 
-searchpath=,150 
-tbf=,150 
-tef=,150 
-tlf=,151 
-translationstable=,151 

component commands, 43, 48 

assume,50 
check, 53 
create, 48 
delete,50 
display, 54 
ipsl,51 
load, 48 
move, 49 
open,50 
spec, 51 

editing in a text-entry window, 
9,40 

environment variables, 143 
ROM-ABBREVIATIONS,145 
ROM-ABORTSAVEFILE, 145 
R0M_ARISE, 145 
R0M_ARUN, 145 
R0M_BF, 146 
R0M_CERR0R, 146 
R0M_CF, 147 
R0M_CN0RM, 146 
R0M_EF, 147 
ROM_INITIAL, 147 

ROM-LEVELFILE, 148 

R0M_LF, 147 
R0M_L0G0F, 148 

R0M.MINW, 148 

R0M_PERR0R, 149 

R0M_PF, 149 

ROM_PNAMES, 149 

R0M.PN0RM, 149 
ROM_SEARCHPATH, 150 

R0M.TBF, 150 

R0M_TEF, 150 

R0M_TLF, 151 
ROM_TRANSLATIONSTABLE, 151 

inert areas, 42 
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introduction to, 6-16 
message area, 6, 40 
parameters, 141-151 
port commands, 44, 55 

create/connect,55 
delete,57 
display, 57 
modify,58 
move, 57 

quitting, 13 
starting the, 6 
terminology, 36 
top-level commands, 43, 44 

close, 46 
flow, 45 
modify, 44 
names, 47 
print, 47 
quit, 48 
refresh, 48 
save, 46 

user defined levels, 168-177 
window, 6, 37 
X defaults files, 142 

hardware requirements, i 
HD, 90, 91 
hd, 91 
HOL90, 20, 25, 30 

::,63 
antiquotation operator, 69 
backward proof, 77 
cartesian products, 63 
close_theory, 71 
cons constructor, 63 
crypto,167 
def ine_type, 73, 75 

defining HOL types and con- 
stants, 73 

describing an authentication pro- 
tocol, 135, 138 

draft mode, 69 
embedding IPSL in HOL, 100 
explicitly instantiating a type, 

76 
export_theory, 71 
extend_theory, 71 
fn, 64 
forward proof, 77 
goal file, 52 
goal stack functions, 80 
goals, 77 
hd, 62 
introduction to, 60 
invocation constructor, 105 
library, 152-167 
load_library, 72, 153 
load_theory, 71 
logic, 66 
mapping functions, 106 
n-tuples, 63 
new_constant, 74 
new_definition,75 
new_parent, 70 
new_recursive_def inition, 74 
new_theory, 70 
polymorphic type constructor, 

75 
print_theory, 72 
proof mode, 70 
record type, 63 
retrieving a definition, 72 
retrieving a theory, 72 
romcontype, 102, 155 
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romgetconstant, 156 

romlemmas,161 

romproc, 161 

romrecord,156 
romrtheory, 156 
romsecure, see romsecure 
sharedstate, 167 
showing security using, 122-128 
specification file, 51, 101-107 

created by ipsl2hol transla- 
tor, 101-107 

tacticals, 81 
tactics, 78 
term, 66 
term_parser, 66 
terms, 66 
theories, 69 
tl, 62 
ty_antiq, 69 
type_of, 67 
using, to prove BNPSP_restrictive- 

ness,108-109 
using, to prove BPSPjrestrictive- 

ness, 108-111 
val, 62 

HookupValicLTAC tactic, 31,  113, 
155, 160 

If, 100, 162 
IMP_RES_TAC tactic, 79, 86 
inert areas of graphical interface, 

42 
infix operator ;;, 99, 162 
input port, see ports 

specification, contents of, 96 
insecure data flow, 13 
installation 

hardware requirements, i 
software requirements, i 

Interface Process Specification Lan- 
guage, see IPSL 

invocation, 99, 102, 106 
constructor, 99, 105 

IPSL, 93 
complete description, 94-98 
introduction to, 17 

ipsl,51 
ipsl2hol translator, 19, 25, 29, 51, 

52,98 
command, 122 
HOL90 specification created by, 

101-107 

justification, 78 

levels.rth file, 6 
library, HOL90, 152-167 
load, 48 
loadJLibrary function, 153 

manifest security, 45-46 
manifest security conditions, 3, 23, 

25, 129 
manifestly secure processes, 23-27 

security conditions, 25, 35, 112, 
157 

specifying, 23-25 
tactic for proving, 26, 112, 155, 

160 
Manif estlySecure_TAC tactic, 26, 

112, 155, 160 
mapping functions 

in HOL90, 106 
message window, 6, 40 
modify, 44, 58 
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port operations, 10 
top-level, 7 

move, 49, 57 
MP_TAC tactic, 80, 89 

names,47 
naming 

errors, 9 
necessity of, 7, 12 

nondisclosure security 
simple example, 5-32 
token ring tutorial example, 113- 

132 
tools 

introduction to, 1-3 
mechanics, 5-32 

open,50 
ORELSE tactical, 81 
Orselect,100, 162 
output port, see ports 

specification, contents of, 96 

parent, 36 
port commands, 44, 55 

create/connect, 55 

delete,57 
display, 57 
modify, 58 
move,57 

ports, 7, 10, 36, 41 
connections between, 10, 41 

creating, 10 
information associated with, 37 

naming, 12 
selecting, 42 
setting security-level limits, 10 
specification, 17 

print, 47 
Process Specification Language, see 

PSL 
projection function, 107 
proving a component secure, 20, 25, 

29 
proving processes secure, 107 

PSL, 98-100 
Buffered, 100, 162 

Call,99, 162 
If, 100, 162 
infix operation ;;, 99, 162 
Orselect,100, 162 
Receive,99, 162 
Send, 99, 162 
Skip,99, 162 

PSL,35 

quit, 13, 48 
quitting the graphical interface, 13 

rated state machines, 93 
Receive,99, 162 
refresh, 48 
REPEAT tactical, 81 
RES.TAC tactic, 79, 87 
REWRITE-TAC tactic, 79, 90 

rhol,19 
romcontype, 102, 155 
romgetconstant,124, 156 

romlemmas, 127, 161 
romlemmas. rth file, 132 
romproc, 161 
romrecord, 156 
romrtheory,131, 156 
romsecure, 162 

Loopsback, 163 
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NoWritesDown, 163 
PossibleLowOutputSequen.ee, 

163 
PossibleLowResponse,164 
PossibleNextParameter,163 

reaction,164 
receivesall,164 
SamePath,163 
Terminates,163 

romulus command, 6 
Romulus-specific X application re- 

sources, 144 
rotate function, 80, 90 
rtheory file, see also .rth file, 53 

save, 13, 46 
save_top_thm function, 80 
security-level limits, 10, 41, 144 
Send,99,162 
set_goal function, 80 
setting a goal, 20, 25, 30, 136 
sharedstate, 167 
Skip, 99,162 
SML, 60 

source code, 153 
software requirements, i 
spec, 51, 98 

limitations, 52 
user defined levels, 53 

specifying a component, 17, 23, 28 
specifying a protocol, 134 

declaring initial assumptions, 135 

postcondition, 135 
Standard ML, see SML 
starting the graphical interface, 6 
STRIP_TAC tactic, 78, 85 
subcomponent, see component 

subgoals, 78 

tactic, 78 
tactical, 81 
tactics, 155-160 
text-entry window, 8, 39 

editing in, 40 
editing in a, 9 

THEN tactical, 81, 111 
TL, 90, 91 
tl, 91 
tools 

authentication protocols, 133— 

140 
authentication protocols,introduction 

to, 3 
for nondisclosure security 

mechanics, 5-32 
introduction to, 1-3 
nondisclosure security, 93-111 

introduction to, 1-3 
top-level commands, 43, 44 

names, 47 
close,46 
flow,45 
modify, 44 
print, 47 
quit, 48 
refresh, 48 
save, 46 

top-level component, 7, 41 
top_goal function, 80 
translating to HOL, 19, 25, 29, 51, 

52, 98 
tree address, 41 
tutorial examples 

authentication protocol, 137-140 
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nondisclosure security, 113-132 
simple nondisclosure, 5-32 

typeface conventions, ii 

user defined levels 
translating, 53 

window 
canvas, 6, 41 
editing in a text-entry, 9 
editing in text-entry, 40 
graphical interface, 6, 37 
message, 6, 40 
text-entry, 8, 39 

X defaults files for graphical inter- 
face, 142 

XENVIRONMENT environment variable, 
142 

xholhelp,92 
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MISSION 

OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


