
RL-TR-95-295, Vol II (of four) 
Final Technical Report 
April 1996 

ROMULUS, A COMPUTER 
SECURITY PROPERTIES 
MODELING ENVIRONMENT: 
ROMULUS THEORIES 

Odyssey Research Associates, Inc. 

S. Brackin, S. Foley, L. Gong, B. Hartman, A. Heff, G. Hird, 
D. Long, D. McCullough, I. Meiseis, D. Rosenthal, 
I Sutherland, and A. Weitzman 

APPROVED FOR PUBL/C RELEASE; DISTRIBUTION UNL/M/TED. 

19960724 066 
OHO QUAUre EJECTED 3 

Rome Laboratory 
Air Force Materiel Command 

Rome, New York 



DISCLAIMEl NOTICE 

THIS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE   LEGIBLY. 



This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is 
releasable to the National Technical Information Service (NTIS). At NTIS, it will be releasable 
to the general public, including foreign nations. 

RL-TR- 95-295,   Vol:lI (of  four),   has been  reviewed  and  is  approved  for 
publication. 

APPROVED: 

JOHN C. FAUST 
Project Engineer 

FOR THE COMMANDER: 

JOHN A. GRANIERO 
Chief Scientist 
Command, Control & Communications Directorate 

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list. 
or if the addressee is no longer employed by your organization, please notify Rome Laboratory/ 
(   C3AB), Rome NY 13441. This will assist us in maintaining a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a specific 
document require that it be returned. 



REPORT DOCUMENTATION PAGE 
Pubic reporting burden for this cotection of Hormaticn is esttnstedti 

Form Approved 
OMBNo. 0704-0188 

rl" r^^JiTB ouroen tor n cctecnon at rtaii lalo I S estimated to average 1 hour Der rosccm» rrt rt-n tt» *™> f™ ,»^„, ]_*„ _,  H~—~ — 

Day« Highway, Set» 1204, Arlngton, VA 22202-4302, and to the Office of Manegemert and Budget, Paperwork Reduction Project (070W Be), Washhgon, DC 20SOa 

1. AGENCY USE ONLY (Leave Blank) Z REPORT DATE 

April  1996 
4. TITLE AND SUBTITLE 

ROMULUS, A COMPUTER SECURITY PROPERTIES MODEL 
ENVIRONMENT:  Romulus Theories 

a REPORT TYPE AND DATES COVERED 
Final   Aug 90 - Jun 94 

6. AUTHOR(S) 
S. Brackin, S. Foley, L. Gong, B. Hartman, A. Heff, 
G. Hird, D. Long, D. McCullough, I. Meiseis, D. Rosenthal, 
I. Sutherland, and A. Weitzman 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Odyssey Research Associates, Inc. 
301 Dates Drive 
Ithaca NY 14850-1326 

9. SPONSORING/MONrrORING AGENCY NAME(S) AND ADDRESSES) 
Rome Laboratory/C3AB 
525 Brooks Rd 
Rome NY 13441-4505 

5. FUNDING NUMBERS 

C - F30602-90-C-0092 
PE - 35167G 
PR - 1065 
TA - 01 
WU - 03 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

RL-TR-95-295,   Vol   n 
(of  four) 

11. SUPPLEMENTARY NOTES 

Rome Laboratory Project Engineer:  John C. Faust/C3AB/(315) 330-3241 
12a. DßTRIBUnON/AVAILABILTrY STATEMENT 

Approved for public release; distribution unlimited. 

13. ABSTRACT(Mstfrum 200 words) 

12b. DISTRIBUTION CODE 

The Romulus security properties modeling environment contains tools, theories, and 
models that support the high-level design and analysis of secure systems. 

The Romulus nondisclosure tool supports development and analysis of distributed 
composite security models and their properties.  The Romulus modeling approach 
establishes the models on a solid theoretical basis and uses formal mathematical tools 
to aid in the analysis.  Romulus allows a user to express a model of a secure system 
using a formal specification notation that combines graphics and text.  Verification of 
the model proves that it satisfies its critical properties.  The user verifies the 
model by using a combination of automatic decision procedures and interactive theorem 
proving.  The primary emphasis in the current system is the analysis of multilevel 
trusted system models to see if they satisfy nondisclosure properties.  Romulus also 
includes a tool for formally specifying and verifying authentication protocols.  This 
tool can be used to reason about the beliefs of the parties engaged in a protocol in 
order to analyze whether the protocol achieves the desired behavior.  The Romulus 
theories include formal theories of nondisclosure, integrity, and (see  reverse) 

14.SUBJECT TERMS 
Computer security, Nondisclosure, Integrity, Availability, 
Security properties modeling, Information flow analysis, Design 
verification, Authentication protocol analysis, (see reverse) 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

1a SECURrTY CLASSIFICATION 
OF THIS PAGE 
UNCLASSIFIED 

19. SECURrTY CLASSIFICATION 
OF ABSTRACT 
UNCLASSIFIED 

15. NUMBER OF PAGES 
160 

16. PRICE CODE 

20. UMITATION OF ABS;>: 

UL 
NSN754TM1-280-5500 Standard For— .•-« 

Prescrbed by A.'. - 
298-102 



13. (Cont'd) 

availability security.  The Romulus library of models demonstrates the 
application of these theories. 

14. (Cont'd) 

Multilevel security, Security policy 



Preface 

This four volume report describes Romulus, a security modeling environment. 
Romulus includes a tool for constructing graphical hierarchical process rep- 
resentations; an information flow analyzer; a process specification language; 
and techniques to aid in doing proofs of security properties. Romulus also 
contains tools for the specification and analysis of authentication protocols. 
Using Romulus, a user can develop and analyze security models and proper- 
ties. The foundations of Romulus are formal theories of security; applications 
of these theories are demonstrated in a library of models. 

In this volume, we assume that the reader has some familiarity with the 
Romulus tools, the HOL system, and security issues in general. 

Organization of the Romulus Documentation Set 

This volume is Volume II of a four volume documentation set; this volume 
describes the Romulus theories for nondisclosure, integrity and availability. 
Volume I contains an overview of the Romulus environment. Volume III 
describes the Romulus library of models. Volume IV is the Romulus User's 
Manual; it contains descriptions of the Romulus tools, how to use them, and 
tutorial examples. 

Organization of This Volume 

In this volume, we describe the formal theories of nondisclosure, integrity, 
and availability that form the basis for the Romulus tools and models. The 
Romulus theories of nondisclosure are described in Chapter 2, the Romulus 
theories of integrity are described in Chapter 3, and the Romulus theories of 
availability are described in Chapter 4. 

Conventions 

This document set uses the following conventions. Computer code, specifi- 
cations, program names, file names, and similar material are typeset using a 
typewriter font. Interactive computer sessions are surrounded by a rounded 
box. Within this box, user input is typeset using an italic typewriter 
font; computer output is typeset using the typewriter font. Some computer 



output has been reformatted for presentation purposes; it may not appear in 
this document exactly as it appears on your screen. 
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Chapter 1 

Introduction 

The methods and models that Romulus uses are based, where possible, on a 
formal mathematical foundation. This volume describes the security theories 
that form the basis of the Romulus environment. These theories are grouped 
into three general areas, theories of nondisclosure, theories of integrity, and 
theories of availability (also known as service assurance or denial of service). 
Each of these areas covers a broad spectrum of issues and none of them can 
be covered by a single theory. The Romulus approach uses multiple theories, 
each focusing on specific aspects of nondisclosure, integrity or availability. 
This volume describes those formal theories that have been developed as 
part of the Romulus project. The theories presented here do not attempt 
to provide a comprehensive answer to questions of nondisclosure, integrity, 
or availability. Other theories, covering other aspects of nondisclosure, in- 
tegrity, or availability could well be included in future versions of Romulus. 
Applications of the theories described in this volume can be found in Volume 
III, the Romulus library of models. 

This volume is divided into three main chapters, one each for the theories 
of nondisclosure, integrity and availability. Chapter 2 starts with a discussion 
of the primary Romulus nondisclosure theory, continues with two variations 
on this theory and concludes with a discussion of the current implementa- 
tion of the Romulus the primary nondisclosure theory. Chapter 3 discusses 
authentication protocols in addition to the Romulus theories of integrity. 
Chapter 4 discusses the Romulus theories of availability. 



Chapter 2 

Theories of Nondisclosure 

In this chapter we present the formal theories of nondisclosure security used 
in Romulus, which are based on restrictiveness. Restrictiveness is a hookup 
security property, which means that a collection of secure restrictive systems 
when "hooked together" form a secure restrictive composite system. We 
believe that the security enforcement and composability provided by restric- 
tiveness make it an attractive choice for a security policy on trusted systems 

and processes. 
In section 2.1 we give the definition of restrictiveness based on a state 

machine model. This section describes why restrictiveness is used as the basis 
for our formal theories, gives a formal definition of restrictiveness, and proves 
that restrictive processes are composable. In section 2.2 and section 2.3 we 
describe variations on this approach that handle shared resources. The first 
variation, shared state restrictiveness, uses a different process model than 
restrictiveness. The second variation, server/client restrictiveness, uses the 
same process model as restrictiveness, but decomposes the security property 
to handle servers and clients, section 2.4 discusses the current Romulus 

implementation of restrictiveness. 

2.1     Restrictiveness 

In this section, we discuss the background for the Romulus theory of security 
and sketch a proof of the main result, that restrictiveness is a composable 
security property [23], [24], [25].   This material previously appeared in [36] 



and [25]. 

2.1.1     Introduction 

Multilevel security requires that sensitive information be disclosed only to 
authorized personnel. In the "paper world", this is enforced by assigning 
to each document and each employee a security level indicating sensitivity 
and authority. Commonly used levels in the government are unclassified, 
confidential, secret and top-secret. The levels form a partially ordered set, so 
that an employee can be said to be authorized to read a document only if 
his level is greater than or equal to that of the document. 

Multilevel security becomes more complicated for information processing 
systems because not all information is in the form of documents and not 
all consumers of information are employees. Generally for such systems the 
problem of multilevel security consists of two aspects: 

1. Access control—determining who can see information of a given sensi- 
tivity leaving the system 

2. Correct labeling—determining the sensitivity of information entering 
and leaving the system 

The second issue, correct labeling, becomes much more important in com- 
puter systems because of the possible presence of Trojan Horse programs. A 
Trojan Horse program is a malicious program that when run by a high level 
user will try to surreptitiously obtain classified information from that user 
and convey it to an accomplice, usually the user who programmed the Trojan 
Horse. These programs often masquerade as useful programs such as word 
processors or compilers. 

Rather than inspect each program on a system to see if it is a Trojan 
Horse program (it may not be possible to decide by inspection whether a 
program is a Trojan Horse or not), people instead try to build computer 
systems which are secure even in the presence of malicious programs. 

In this section we describe a security property that addresses these issues, 
called restrictiveness. It is composable, which means that for a collection 
of trusted processes "hooked up" to make a system, or for a collection of 
systems "hooked up" to make a network, the system or network is secure if 
each component is. 



Using restrictiveness as a definition of security for trusted systems pro- 
vides confidence in building large, complex systems from smaller, easier to 
verify trusted components. Security is modularized and so becomes more 
manageable. We first consider two earlier models for security, and point out 
some of their short-comings. 

2.1.1.1    The Bell-LaPadula Model:   Trusted and Untrusted Pro- 
cesses 

The issues of access control and correct labeling are addressed by the Bell- 
LaPadula model [6]. In this model, all entities involved with a computer 
system—users, files, programs, etc.—are divided into two classifications: sub- 
jects and objects. Subjects are the active entities, such as users and processes 
which are capable of reading and modifying system state information, while 
objects are passive containers for information, such as files. Subjects which 
are processes are further divided into trusted processes and untrusted pro- 
cesses. 

Rules for Untrusted Subjects To enforce security for untrusted pro- 
cesses, the Bell-LaPadula model requires that every object and every un- 
trusted process be assigned a security level. The model then demands that 

1. An untrusted process may only read from objects of lower or equal 
security level. (Motto: Read down) 

2. An untrusted process may only write to (or modify) objects of greater 
or equal security level. (Motto: Write up) 

The read down rule insures that a process is only allowed to read infor- 
mation it is entitled (by its security classification) to read. The write up rule 
insures that all objects are correctly labeled; it is impossible to put informa- 
tion into an object which comes from a source whose level is higher than the 
security label on the object. 

In the Bell-LaPadula model, users are interpreted as untrusted subjects, 
except that allowance is made for users to act at any security level less 
than their maximum. For example, a secret user may login as a secret or 
unclassified subject, but not as a top-secret subject. 



Trusted Processes The answers the Bell-LaPadula model provides are 
incomplete since it does not provide guidance for determining the sensitivity 
of information coming from the trusted processes of a system. A trusted 
process is any process which is exempted from the stringent requirements 
enforced on untrusted processes. Since trusted processes are not bound by 
the normal rules, it is necessary to have reason to trust that they do not 
behave maliciously. 

Trusted processes are needed whenever an activity potentially involves 
information at several different security levels. For example, the file server 
must be able to read and write files at all different levels, and so cannot 
possibly be bound by the access control rules given above. In the Bell- 
LaPadula model, the need for such multi-level processes was recognized, but 
no standard security rules for the behavior of such processes were given. 

To fill this gap, it is desirable to have a security property for a trusted 
process that guarantees that information leaving the process is correctly la- 
beled: that high-level information does not "leak" into low-level outputs. We 
next consider a candidate for such a property. 

2.1.1.2    Noninterference and Deducibility Security 

A multilevel process is a system which takes in information of different secu- 
rity levels, processes it and outputs information of different security levels. 
Note that this description can equally well describe a trusted process, or 
an entire computer system, or a network of computer systems. A general 
framework for defining security for such systems, called deducibility secu- 
rity is found in Sutherland [56]. In this section, we will present an informal 
description of a special case of Sutherland's model. 

We will assume that all the sensitive information contained in a process 
enters the process in the form of discrete inputs labeled with a security level 
indicating their sensitivity, and that information leaves the process in the 
form of labeled outputs.1 The word event will be used to refer to an input or 
an output. 

For each security level / we will call the events of level less than or equal to 
/ the view for that level, and all other events we will say are hidden from that 
level.   By the assumption that access control is enforced on the untrusted 

xWe are ignoring the possibility that new sensitive information might be created inside 
the process. 



parts of the system, we can know that users of level / are unable to see any 
events outside their own view. The hidden events for a level / are the inputs 
made by users of higher (or incomparable) level. Under these circumstances, 
we will say that a multilevel process is deducibility secure if for each security 
level / and for every sequence of events possible in some history of the process 

The information contained in the events in the view for level I 
does not reveal anything about information in inputs hidden from 

level I. 

Goguen-Meseguer Noninterference To formalize this statement, it is 

necessary to say what it means for one set of observations (the sequence of 
events in the view of some level) not to reveal anything about some other 
source of information (the sequence of inputs hidden from that level). Goguen 
and Meseguer [15] formalized this notion by saying that the hidden high-level 
inputs cannot interfere with the low-level view, the sequence of low-level out- 
puts. For their model, they considered systems such that the sequence of 
outputs produced by the system is a deterministic function of the input se- 
quence. A system is then said to obey the Goguen-Meseguer noninterference 
policy if, for any possible input sequence, if one removes all the high-level 
inputs, the low-level part of the corresponding output sequence will be un- 
changed. 

Deducibility Security Goguen-Meseguer noninterference is not as gen- 
eral as one would like, since it is only meaningful for deterministic systems 
(ones where what is observed is completely determined by the inputs). A 
more general definition is the requirement of deducibility security [56]. With 
the choices of the views and the hidden information given above, we say 
that a system is deducibility secure if any possible set of observations in the 
view is consistent with any possible sequence of hidden inputs. That is, it 
is impossible for a user to "rule out" any sequence of hidden inputs. Since 
we intend to consider cases, such as concurrency, where there is nondeter- 
minism, we will base our security theory on deducibility security rather than 
noninterference. 

Deducibility security prevents leaks due to Trojan Horses. If an 
entire system, both verified trusted and untrusted software (including any 
Trojan Horses that may be lurking around) is deducibility secure, and it 



initially has no classified information in it, then no unauthorized user of that 
system will ever learn any classified information through the system. In other 

words, any system which allows illegal information flow through the system 
is not deducibility secure. The informal argument goes as follows: 

Suppose that a low level user learns through the system some 
piece of high level information on the system. This means that 
the user's view of the system behavior, call it 6, has revealed 
that some condition C holds for the system, and the fact that 
this condition holds is classified information. Since we are only 
considering systems which do not create any new classified in- 
formation internally, if C holds, then there must have been an 
earlier moment at which high level information was put into the 
system by high level users; some action must have been taken by 
the high level user which caused condition C to hold. 

Therefore, behavior b allows the low level user to infer C, 
which allows him to infer that high level users performed some 
action. So the high level behavior described by "doing nothing" 
can be ruled out. Since some high level behavior can be ruled 
out, the system is not deducibility secure. 

If deducibility security prevents all leaks due to Trojan Horses, then what 
more could one want in a definition for multilevel security? Well, in practical 
terms, one does not verify everything, one only verifies certain "security 
relevant" portions of the system. Is it possible that a user can combine 
information obtained from two different components of a system in order to 
learn information that he couldn't receive from either system in isolation? 
The answer turns out to be yes, as the next section shows. 

Deducibility Security Is Not Preserved by Hookup A multilevel sys- 
tem may have many interacting trusted processes, so it is not sufficient to 
guarantee that each process is secure in isolation; it is necessary to also show 
that several processes working together cannot conspire to violate security. 
In other words, for trusted processes, it is necessary to have a definition of se- 
curity that is composable. While deducibility security may be a good overall 
definition of security for an entire system, it unfortunately is not composable. 
In this section we will demonstrate this result by showing two processes which 

7 



alone are deducibility secure, but which when "hooked up" form a composite 
system which is not secure. 

In the following example, we will consider systems with only two levels: 
high and low. 

Conventions and Notations for Systems: To illustrate the possible 
behavior of systems, let us introduce a pictorial notation for the traces, or 
possible histories, of systems. We depict a trace of a system by giving a 

timeline running vertically, with the future of the system toward the top 
and with the past of the system toward the bottom. Horizontal vectors 
directed toward or away from the time line of a system represent inputs to 
and outputs from that system, respectively. We will use unbroken lines to 
represent low inputs and outputs, and broken lines to represent high inputs 
and outputs. To represent two systems operating in parallel, we show their 
timelines together. Messages sent from one machine to another will be shown 
as a horizontal arrow pointing away from the time line of the sending system 
and toward the time line of the receiving system. 

A Counterexample: Consider a system, called A, which has the fol- 
lowing set of traces: each trace starts with some number of high-level inputs 
or outputs followed by the low-level output stop followed by the low-level 
output odd (if there have been an odd number of high-level events prior to 
stop) or even (if there have been an even number of high-level events prior 
to stop). The high-level outputs and the output of stop leave via the right 
channel of the process, and the events odd and even leave via the left channel. 
The high-level outputs and the output of stop can happen at any time. 

Two possible event sequence of system A is portrayed in the top left 

corner of Figure 2.1. 
System A actually is deducibility secure; regardless of high-level inputs, 

the possible low-level sequences are (1) stop followed by odd or (2) stop fol- 
lowed by even. A high-level input does not affect these possibilities, because 
it is always possible for such an input to be followed by a high-level output, 
and the pair would leave the low-level outputs unaffected. 

System B behaves exactly like system A, except that: 

• its high-level outputs are out its left channel 

• its even and odd outputs are out its right channel. 

• stop is an input to its left channel, rather than an output. 



1 
even 

i 

stop 

 >- 

 =D- 

odd 

A 

A 

stop 
 =»- 

Traces of A 

B 

stop 
 =»- 

even 
 =»- 

stop 
 =► 

odd 

Traces of B 

A 

it 

even 

B 

h 

stop 

even 
 =>- 

Traces of A&B (No External Inputs) 

A B 

odd even 
 =»- 

stop 

A B 

1 

even 
1 
odd 

stop 

 >. 

 =B- 

Traces   of A&B   (One   input) 

Figure 2.1: Deducibility Security is not Composable 
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System B, like system A, is deducibility secure. A typical event sequence 
of system B is shown in the upper right corner of Figure 2.1. 

If systems A and B are connected, so that the left channel of B is con- 
nected to the right channel of A then we have the situation pictured in the 

bottom of Figure 2.1. 
Now we see that the combined system is no longer deducibility secure: 

Since the number of shared high-level signals is the same for A and B, the 
fact that A says odd while B says even (or vice-verse) means that there has 
been at least one high-level input from outside. If all high-level inputs are 

deleted, then systems A and B will necessarily both say even or both say 
odd. By looking at the low-level events, a user can deduce something about 

the high-level inputs. 
Composition allows one to turn small information leaks into 

large leaks. Although the example above leaks only a small amount of 
information, it is not difficult to devise schemes for combining several slightly 
leaky systems to get get a very leaky system. For some examples of how 
insecurities can multiply see [22]. 

2.1.2    Introducing Restrictiveness 

An important thing to notice about the failure of composability for deducibil- 

ity security is that, although a system obeying the property insures that no 
single high-level input will affect the future low-level behavior, it does not 
guarantee that a pair, consisting of a high-level input followed immediately 
by a low-level input, will have the same effect on the low-level behavior as 
the low-level input alone. From Figure 2.1, it is clear that system B does 
not insure this latter, stronger form of noninterference. For example, the 
pair consisting of a high-level input followed by stop does not have the same 

effect as stop alone. 
The additional requirement can be intuitively understood as follows: Only 

some facts about the past of a system are relevant for the future low-level 
behavior of the system. These relevant facts can be thought of as defining 
the "low-level state" of the system. The requirement of noninterference is 
that a high-level input may not change the low-level state of the system. 
Therefore, the system should respond the same to a low-level input whether 

or not a high-level input was made immediately before. 
Restrictiveness is a property of systems which formalizes this requirement 

10 



2.   In the next sections, we formalize restrictiveness as a property of state 
machines3, and prove that it is composable. 

2.1.2.1     State Machines 

A state machine is a way of describing a computer system in terms of its 
internal structure, and its input-output behavior. To describe a system as a 
state machine, one must give 

1. The set of possible states. 

2. The set of possible events, the inputs, outputs and internal signals of 
the system. 

3. The set of possible transitions. 

4. The initial state. 

A transition is denoted by 

e 

where <T0 is the state of the machine before the transition, e is the accom- 
panying event for the transition, and G\ is the state of the machine after 
the transition.   A sequence of transitions starting in a0 and ending in a"„, 

[ei,...,e„] 
involving events [el5..., e„] is denoted by a0 »■ an. We say that a0 can 

e 
accept event e if for some state Ui, o"o —*&i- 

The Traces: Traces of a state machine are all sequences of events 7 such 

that for some state 0\ start—► 01, where start is the initial state. 

2Goguen and Meseguer's notion of noninterference formalized this notion for deter- 
ministic state machines. For the class of machines they considered, restrictiveness and 
noninterference in their sense agree. 

3In [21] a similar property was defined solely in terms of the traces of a system; states 
were not involved. 

11 



Input Total State Machines A state machine is said to be input total 
if in any state it can accept an input. The significance of this property for 

our purposes is that for an input total machine, one can only learn about 
its state by watching its outputs; no information is conveyed to the user 
by accepting inputs. In contrast, in systems which are not input total, one 
learns something about the state of the system whenever an input is accepted; 
namely that it is in an accepting state for that input. 

By restricting our attention to input total processes, we achieve a tech- 
nical simplification for our theory of security: information enters a system 
through its inputs, and leaves a system through its outputs. We will make 
input totality a condition for a state machine to be restrictive, but this is not 
intended to imply that only such machines are secure. Rather, restrictiveness 
as a definition of security only applies to input total machines. 

2.1.2.2    Security for State Machines 

Once again, we will only consider the case of two security levels, low and 
high.4 To prevent a low-level user from discovering information he is not 
allowed to know, we first need to specify the high-level state information, 
and event information. We can summarize this information through the use 
of two equivalence relations, one on states and one on event sequences. 

If o\ and <r2 are two states, then we say o\ K, a2 if the states differ only 
in their high-level information. In other words, if to each state variable we 
assign either the security level high or low, then ax ~ c2 if the values of all 
low-level variables are the same in the two states. 

If 71 and 72 are two sequences of events, then we say that 71 f« 72 if the 
two sequences agree for low-level events. For example, if the event a is low, 
and the event b is high, then the following three events are all considered 
equivalent: 

[a, 6, b, a] « [b, a, 6, a] as [a, a] 

A low-level user's view of the system, the state information he may know, 
and the events he may see, is completely determined by the equivalence 
relations on states and event sequences (both of which we will denote by «. 

4State machines with multiple security levels are known as rated state machines. 
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2.1.3    Restrictive State Machines 

A state machine is defined to be restrictive for the view determined by « if 

1. It is input total. 

2. For any states a1, a[ and a2, and for any two input sequences ßx and 

Ä,if 

(a) ax—><7X 

(b) <x2 ~ o"i 

(c) Ä » ft 

then for some state a'2 

(a) CT2—KT^ 

(b) a2 » crj 

3. For any states <rl5 u^ and <r2, and for any output sequences 71, if 

Tl 
(a) ax—>a[ 

(b) <r2 w o"i 

then for some state a2 and some output sequence 72 

72 
(a) 0-2—X72 

(b) a2 « a[ 

(c) 72 ~ 7i 

Rules 2 and 3 say, roughly, that "Equivalent states are affected equiv- 
alently by equivalent inputs, produce equivalent outputs and then remain 
equivalent". This is a noninterference assertion; that high-level inputs and 
high-level state information cannot affect the behavior of the system, as 
viewed by a low-level user. Restrictiveness thus generalizes the Goguen- 
Meseguer definition of noninterference to nondeterministic systems. (For the 
particular kind of deterministic machines that Goguen and Meseguer consid- 
ered, restrictiveness and noninterference reduce to the same property.) 
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One should note that an immediate consequence of 2 is that if ßi is a 
high-level input sequence, then it must not affect the state at all. Also, in 
rule 3, it is easy to show by induction that it is enough to consider cases in 
which 7i (but not necessarily 72) consists of a single event. 

2.1.4    Hooking Up Machines 

If A and B are two machines, then hook them up by sending some of the out- 
puts of A to be inputs to B, and vice-versa. These common communication 
events are internal events of the composite machine, which will be treated 

the same as output events for the purposes of security. The inputs of the 
composite machine are the inputs of either component machine which are 
not supplied by the other. The states of the combined machines are pairs 
(a, v), where cr is a state of A, and v is a state of B. 

The Events: An event of the composite machine is any event from 
either component machine. For any sequence of events 7 from the composite 
machine, we will let 7 f EA be the sequence of events in 7 engaged in by 
machine A, and 7 j Eß be the sequence of events engaged in by B. Because 
of the shared communication events, some events from gamma will occur in 

7 I EA and in 7 t E&. 

The Transitions: (a, v) —»(a1, v') is a valid transition for the composite 

machine if and only if a * a' and v > v' are valid transitions of the 
component machine. This notion of hookup, or parallel composition, is taken 
from CSP [19]. It assumes that the only correlation between state transitions 
of the two components is through the shared communication events. 

Security: The equivalence relations for the composite machine are in- 
herited from those of the component machines: 

• (cr, v) fa (cr', v') if and only if v « v' and a ~ a'. 

• 7 fa 7' if and only if 7 | EA fa 7' f EA and 7 | EB fa 7' f EB. 

2.1.4.1    Restrictiveness is Composable 

If state machines A and B are restrictive, then a composite machine formed 
from hooking them up is restrictive. 
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The composite machine is input total. If ß is any sequence of inputs 
for the composite machine, then ß j E^ is a sequence of inputs for A, and 
ß t EB is a sequence of inputs for and (a, v) is any starting state, then 
ß t EA is a sequence of inputs for A, and ß | Es is a sequence of inputs 
for B.   Since .4 and B are input total, there are states a' and 1/ such that 

ß\EA ß]EB ß 
a y a' and v ► v'. Therefore, (a, v) —>(<x', v'). 

Inputs affect equivalent states equivalently. If (e^, i^), (a[, i/[), and 
(<7x, V]) are states and ß\ and ß2 are input sequences, then since A and B are 
restrictive, there must be states a2 and v2 such that 

1. (a) a2 >cr2 

(b) v2 n/2 

2. (a) a2 w <Ti 

(b) z/2 « i/{ 

Therefore, 

1. {a2,u2)—>{<r2,v2) 

2. (a'2,v'2) ^(a2,i/2) 

Equivalent states produce equivalent outputs, which lead again 
to equivalent states. As remarked earlier, it is sufficient to consider out- 
puts of single events. Suppose then that e is an output, and that 

e 
1. (<7i,i/i)->(ai,i/l) 

2. (oi,i/i) « (o-2,z/2) 

An output for the composite machine must be an output for one of the 
component machines. We assume then that e is an output from A; the other 
case is handled similarly. 

e 
Since A is restrictive, and U\ —*<r[, and a2 « crx, then for some state <r2 

and some output sequence 7^: cr2 —► <T2, and (72 w a[, and 7^4 ~ [e]. 
Now, since the sequence 7^ is an output sequence, any events shared 

by both A and B must be inputs to B. Since 74 ft! [e], it follows that 
1A T EB ~ [e] t jEß. Therefore, we have 
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1. VX K, V 2 

[e]TBß 
2. V\ > vx 

3. 7^ T ^ß ~ [e] T EB 

From the fact that B is restrictive, we get that for some state v'2 

1. v2 >v2 

2. v'2 « z/j 

Therefore, we have that 

7 
1.  (cr2>i/2)—►(<T£,I4) 

2.1.5     Conclusions 

In analogy with the Bell-LaPadula model, we can require that every un- 
trusted process be assigned a security level, and also require that every out- 
put be greater than or equal to this level (motto: send up), and that every 
input be less than or equal to this level (motto: receive down). It is easy to 
see that every such untrusted process is manifestly secure; it is necessarily 
restrictive, if we assume that the level of all state information is the same as 
the level of the process. Therefore, an immediate consequence of the hookup 
theorem for restrictive machines is that: 

If every component of a system is proved restrictive, or is 
untrusted and manifestly secure, then the entire system is re- 
strictive. Therefore, any Trojan Horse in a restrictive system is 
harmless, as long as it is only allowed to send up and receive 
down. 

In this section we have argued for the need for a formal definition of secu- 
rity that is applicable for a wide range of processes, systems, and networks. 
The Bell-LaPadula model is not sufficient for this purpose, because while it 
defines security in terms of access controls, it does not provide sufficient guid- 
ance for the security of trusted processes. Sutherland's deducibility security 
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provides a general definition of security for total systems, but unfortunately 
is not composable, and so cannot be applied to components of a large system. 
The final property described, restrictiveness, is generally composable and so 
can be used as a definition of security for small processes and entire systems. 

2.2     Shared-State Restrictiveness 

Restrictiveness is a security property that can be used when the process to 
be modeled can be modeled as a state machine. There are situations, how- 
ever, where the use of restrictiveness is difficult or cumbersome because it 
is difficult or cumbersome to model with process with a state machine. The 
modeling of shared resources is such a case. This section introduces a ver- 
sion of restrictiveness, called shared-state restrictiveness, based on machines 
that share state information. Like restrictiveness, shared-state restrictiveness 
is a composable property, so that the result of properly connecting shared- 
state restrictive components is shared-state restrictive. Unlike restrictive- 
ness, shared-state restrictiveness describes process behavior purely in terms 
of transformations on system variables rather than in terms of input and 
output events. 

Shared-state restrictiveness distinguishes the system variables that can 
be changed by entities outside the system (labeled variables) from the system 
variables that can be changed only by the system itself (unlabeled variables). 
Input events in ordinary restrictiveness are analogous to changes in labeled 
variables made by entities outside the system; output events in restrictiveness 
are analogous to changes in labeled variables made by the system itself. 
Shared-state restrictiveness can hold, though, for systems in which "input" 
changes to system variables and "output" changes to system variables can 
occur simultaneously, and in which more than one system variable can change 
at a time. 

Shared-state restrictiveness defines all sensitivity-level information for 
system variables in terms of a security structure projection function that 
captures only the information in system variables that is legitimately acces- 
sible to one having clearance at a particular level. This function subsumes 
both ordinary restrictiveness' functions assigning security levels to input and 
output events and its projection functions capturing just the information 
in system variables needed to give the future system behavior visible at a 
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particular level. 
Shared-state restrictiveness is a natural tool for analyzing systems involv- 

ing shared state. The simplest way of applying ordinary restrictiveness to 
systems involving shared state is to introduce new processes that manage 
the shared resources; this approach raises issues such as whether these new 
processes are always guaranteed to reply to requests and whether these new 
processes are themselves secure, section 2.3 describes this approach to shared 

resources. 

2.2.1     Overview 

In section 2.2.2 we describe the formalism we will use for representing state 
machines and their security parameters. In section 2.2.3, we give the defini- 
tion of shared-state restrictiveness. In section 2.2.4, we define what it means 
to hook up an ensemble of state machines by sharing state. In section 2.2.5, 
we prove that the secure hookup of a collection of shared-state restrictive ma- 
chines is shared-state restrictive. In section 2.2.6, we prove that shared-state 
restrictiveness implies an information security property.5 

For this section, we will assume that there are only two security levels, 
"high" and "low". We will describe how to generalize to an arbitrary partially 
ordered set of levels in section 2.2.7. 

2.2.2     Shared-state Machines 

A shared-state machine consists of: 

• a set of state variables, each of which has an associated nonempty set 
of values called the variable's type; an assignment of the set of state 
variables to values that assigns each variable to an element of its type 
will be called a state of the machine 

5We include this proof because shared-state restrictiveness is not prima facie an in- 
formation security property. It's clear from the definition that it has something to do 
with information security, but it's not intuitively clear that it ensures nondisclosure. The 
result in section 2.2.6 is meant to demonstrate that restrictiveness ensures the kind of 
nondisclosure that is desired. 
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• 

• 

• 

a subset of the state variables called the labeled variables; these are the 
variables that can be shared with other machines; variables that are 
not labeled variables will be called unlabeled variables 

a nonempty set of initial states, interpreted as the set of all states the 
machine can start in 

a binary relation on states called the state transition relation; this 
defines what states a machine can go to from a given state; the pairs 
in the state transition relation will often be referred to as the legal 
transitions 

a subset of the state transition relation called the inner state tran- 
sitions; these are the state transitions that are thought of as being 
initiated by the shared-state machine, rather than by the shared-state 
machine's environment; all state transitions that are not inner will be 
called outer 

The security parameters of a shared-state machine consist of the following: 
for each labeled variable, an equivalence relation on the type of that variable. 
This equivalence relation is meant to be a general mechanism for "separating 
out" the "low data" contained in the value of a labeled variable. Two values 
in the type of a labeled variable being equivalent means that the values 
contain the same low data. 

2.2.3     Shared-State Restrictiveness 

First, we will define a few auxiliary terms. 

We define the reachable states of a shared-state machine in the usual way, 
that is, a state s is reachable if and only if there exists a nonempty sequence 
of states such that (1) the first state is an initial state, (2) every consecutive 
pair of states is a legal transition, and (3) the last state is s. 

We will use the term unlabeled state to refer to an assignment of each 
unlabeled variable of a state machine to an element of its type. The unlabeled 
state induced by a given state will be called the unlabeled part of the state. 
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If ~„ is the equivalence relation on the labeled variable u, and ~ is an 
equivalence relation on the unlabeled states of the shared-state machine, 
then the induced equivalence relation on states is the equivalence relation 
that makes two states equivalent if (1) for each labeled variable v, the values 
assigned to v by the two states are equivalent by ~„, and (2) the unlabeled 
parts of the two states are equivalent by ~. 

If = is any equivalence relation on states, and sj. and s2 are states with 
Si = s2, and (si,2i) is a legal transition of the shared-state machine, we say 
that the transition shifis to s2 or can be shifted to s2 if there exists a sequence 
of states {tW,...,«(")) such that 

. W = s2 

• every consecutive pair of states in the sequence is a legal transition 

• *("> = tx 

We call the sequence (t^\ ... ,*M) a shifting of (si,<i). 

Now, we will give the definition of shared-state restrictiveness. 

We say that a shared-state machine (with security parameters) is shared- 
state restrictive if and only if there exists an equivalence relation ~ on the 
unlabeled states of the machine such that if = is the induced equivalence 
relation on states, then for every pair of reachable states sa and s2 with 
s-i = s2, every inner transition (si,2i), can be shifted to s2 with a shifting 
consisting entirely of inner transitions. 

2.2.4     Shared-State Hookup 

In this section we define what it means to hook up an ensemble of state 
machines by sharing state. To simplify our exposition, we will assume that 
there is a universal set of state variables with associated types, and that the 
state variables of all shared-state machines are some subset of this universal 
set, with the same types associated. We will start with a few auxiliary 
definitions. 

Given a collection of state machines, let V be the union of the state 
variables of the machines in the collection.   We define a common state of 
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the collection to be an assignment of each element of V to an element of its 
associated type. If s is a common state and M is a machine in the collection, 
we denote the restriction of s to the state variables of M by s \M. 

We define the common initial states to be the set of all common states 
s such that for all machines M in the collection, s\M is an initial state of 
M. We define the common transitions to be the set of all pairs of common 
states (s,t) such that for each machine M in the collection, (s\M,t\M) is a 
legal transition of M. We define the common reachable states to be the set 
of all states reachable from a common initial state by a sequence of common 
transitions. It is immediate that if s is a common reachable state and M is 
a machine in the collection, s \M is a reachable state of M. 

We say that a collection of shared-state machines is compatible if and 

only if: 

• The set of common initial states of the collection is nonempty. 

• For every pair of distinct machines Mx and M2 in the collection: 

- any variable shared by Mi and M2 is a labeled variable of both of 

them, and 

— for any common reachable state s of the collection, if (s\Mi,t) 
is an inner transition of Mu then (s\M2,t') is a legal transition 
of M2, where t' is the state in which the variables shared by Mx 

and M2 have the same values as in t and the rest of the variables 
of M2 have the same values as in s. (We will refer to the latter 
condition by saying that M2 accepts all inner transitions of Mi). 

A collection of shared-state machines with security parameters is secure 
if and only if it is compatible, and whenever two machines share a variable, 
they assign the same equivalence relation to that variable. 

The composition of a secure collection of shared-state machines with secu- 
rity parameters is the shared-state machine with security parameters defined 

as follows: 

• The set of state variables is the union of the sets of state variables of 
machines in the collection. 
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• 

• 

The set of labeled variables is the union of the sets of labeled variables 

of machines in the collection. 

The initial states of the composite are the common initial states of the 

collection. 

The state transitions of the composite are the common transitions of 

the collection. 

The inner transitions of the composite are all transitions made by tak- 
ing an inner transition of a machine M in the collection and expanding 
it to a state transition of the composite by leaving all variables not 
of M fixed (such a state transition is legal for the composite by the 
definition of a compatible collection). 

The security parameters of the composite are the equivalence relations 
inherited from the machines in the collection (this is well-defined by 

the definition of a secure collection). 

2.2.5    Comp usability 

In this section we prove the following composition theorem for shared-state 

machines. 

Theorem: The composite of a secure collection of shared-state restrictive 

machines is shared-state restrictive. 

Proof: For each machine M in the collection, there exists an equivalence 
relation ~M on the unlabeled states of M satisfying the conditions of restric- 
tiveness. Let ~ be the equivalence relation on the unlabeled states of the 
composite obtained by taking the conjunction of all of the ~M's. We will 
show that ~ satisfies the conditions of restrictiveness for the composite. 

Let = be the equivalence relation on the states of the composite which 
is induced by ~. Let sx and s2 be reachable states of the composite with 
5i = s2, and (3!,ii) an inner transition of the composite. Obviously, Si 
and s2 are common reachable states of the collection. By definition of the 
composite, there is some machine M in the collection such that (si \M, h \M) 
is an inner transition of M and all variables of the composite which are not 
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variables of M are the same in sy and ty. As remarked above, sy |~M and s2 \M 
are reachable states of M, and sj \M =M s2 \M. By restrictiveness of M, 

(sy \M, t-y \M) can be shifted to s2 \M with a shifting (<$,..., ij?) consisting 

entirely of inner transitions of M. Let t® be the result of expanding t$ to 
a common state of the collection with the assignments of s2. Thus, t^ — s2. 
By a simple inductive argument, each t^ is a common reachable state of 
the collection, and each transition in the sequence {t^\ ... ,*(")) is an inner 
transition of the composite. The last thing we must show is that t^> = ty. 
To do this, we must show two things: 

1. For each of the labeled variables v of the composite, t^n\v) 
and t1(v) are equivalent by the security parameters of the 
composite. 

If v is not a variable of M, then t^(v) = ty(v). If v is a variable of M, 

then t(n\v) = % (t>), which is equivalent (by the security parameters) 
to ti(v). 

2. For each machine M' in the collection, the unlabeled states of 
M' in *(") and t1 are equivalent by ~M>- 

If M' ^ M, then the unlabeled states of M' in t^ and U are the same. 
If M' = M, then the unlabeled state of M' in t^ is the unlabeled state 
of M' in tfo , which is ~M> to the unlabeled state of M' in t-y. 

2.2.6    Fundamental Security Theorem 

The classical result to prove to show that a property is an information se- 
curity property is to show that it implies some reasonable instantiation of 
deducibility security. For shared-state restrictiveness, it's not immediately 
obvious how to instantiate deducibility security because the equivalence re- 
lations define a notion of what the low view is, but don't define what the 
high information is that should not be deducible by low users. One possi- 
bility would be to adopt McCullough's preference functions [20] as the high 
information, and prove that instantiation of deducibility security. This would 
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probably be a useful and revealing exercise. We will prove a slightly different 

result than the classical one involving deducibility security. 

Let M be a restrictive machine which is closed, that is, that has no 
outer state transitions. Let H be an equivalence relation on initial states 
of M such that for every pair of initial states s0 and sx, there exists an 
initial state s2 such that H(s0,s2) and for every labeled variable V of M, 
sx{V) ~v s2(V), and for every unlabeled variable I of M, Si(J) = s2(I) 
(where ~y the equivalence relation on V). What this means is that the 
value6 of H is independent of both the unlabeled part of the state and the 

part of the state which is labeled "low". 

Let D be a function which takes a state of M and returns a set of H 
equivalence classes such that for any states s0 and sx, if s0(V) ~v Si(V) for 
all labeled variables V, then D(s0) = Z>(sx) (that is, D depends only on the 

part of the state which is labeled "low"). 

Let ~ be an equivalence relation on the unlabeled states of M satisfying 
restrictiveness and let = be the induced equivalence relation on states of M. 

We say that M is accurate if and only if for all initial states s0 of M and 
all states s reachable from s0, H(s0) e D(s) (that is, D can be interpreted as 
correct information about the initial value of H). 

We say that M says something about H if and only if there exists a 
reachable state s of M such that D(s) does not contain all the if-equivalence 
classes of initial states of M (that is, some possible initial value of H is ruled 

out by D(s)). 

Theorem: If M is accurate, then M does not say anything about H. 

Proof: Suppose M says something about H. Let 5 be a reachable state 
of M in which D(s) does not contain all the H-equivalence classes of initial 
states of M. Let s0 be an initial state such that H(s0) j. D(s). 

Let (ti,... ,tn) be a sequence of states of M such that 

• ti is an initial state of M. 

• Each consecutive pair of states in the sequence form a legal (and there- 

6 We will abuse notation and also use H to represent the function which takes a state 
and returns the #-equivalence class of the state. 
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fore inner) transition of M 

• tn = s 

From the fact that the initial value of H is independent of the low and 
unlabeled parts of the state, there exists an initial state t[ such that 

• H(t[) = H(s0) 

• t[(V) ~v ti(V) for all labeled variables V 

• t'^I) = ti(I) for all unlabeled variables / 

Thus, in particular, t[ = t-^. By repeatedly shifting transitions in 
{ti,---,tn), we can construct a sequence (t[,..., t'n,) such that each pair of 
consecutive states is a legal (and therefore inner) transition, and t'n, = tn = s. 
Therefore, t'n,(V) ~y s(V) for all labeled variables V, so D(t'n,) = D(s). 
Thus, t'n, is reachable from t[, and H(t[) = H(s0) I D(s) = D{t'n,), so M is 
not accurate. 

2.2.7    Afterword 

2.2.7.1 Multiple Security Levels 

For multiple security levels, we just need to have each of the labeled vari- 
ables have one equivalence relation for each security level. The equivalence 
relation for a level / says when two values in the variable's type contain the 
same information of level < /. Restrictiveness for the machine for the en- 
tire level lattice is then just the conjunction of the definition of share state 
restrictiveness for the security parameters for each of the levels. 

2.2.7.2 Interpreting the Fundamental Security Theorem 

We think of H as describing some "secret" embedded in the initial state of 
a closed system. The value of this "secret" is assumed to be independent of 
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the unlabeled and "low" parts of the state, because otherwise there might be 
some part of the state labeled as "low" by the = relation which can influence 
the value of H. This would allow the "low" entities within the system to 
conclude something about the value of H, but it would in effect be something 
which they had "written" into that value by constraining it, rather than 
something they had deduced. This is essentially the same reason for input- 
totality; if the thing which must be hidden is not free to vary through its 
set of possible values, then the classical meaning of "deduction" (being able 
to rule out some value) is not what we really want to mean by "information 
flow". Shared-state restrictiveness allows inputs to be constrained, but the 
fundamental security theorem requires that whatever the "ultimate secret" 

that must be protected is, it must be unconstrained. 

We think of D as a function which interprets some part of the labeled 
low part of the state of the closed system as a belief about the "secret". For 
example, in an actual M, there might be some variable which ranges over 
some kind of expressions which stand for statements about the secret. D just 
takes the entire labeled low part of the state and extracts the beliefs about 
the secret that the low part of the closed system has collectively arrived at. 

We are not dealing with probabilistic reasoning here. In probabilistic 
settings, it often makes sense to "guess" something about a secret which 
might be wrong, but which has a reasonable probability of being correct. In 
a nonprobabilistic setting like that of restrictiveness, however, there is no 
way of distinguishing between a "good" guess which might be wrong and a 
"bad" guess that might be wrong. There are only state transitions which may 
take you to a state in which you believe something false, and state transitions 
which do not. In the absence of such a distinction, we are essentially assuming 
that the low entities only want to make valid deductions, that is, they only 
want to conclude something about the "secret" if it is true. Thus, in this 
way of thinking, if M is not accurate, then we have successfully protected the 
secret. The fundamental security theorem says that if the low entities in the 
closed system limit themselves to valid deductions, they can never determine 

anything about the secret. 

There is reason to believe that there is no real loss of generality in as- 
suming that the secret is encoded in the initial state of M. There are two 
sources of information in a "run" of M which are not built into the design 
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(and therefore assumed known by the low entities). The first is the initial 
state, and the second is nondeterministic choices made during the run. The 
theorem above clearly covers the first source. However, it also covers the 
second, because, given any M, we could augment M by a variable which 
contains a sequence of McCullough's preference functions (even including 
one for the initial state), and augment the initial states and state transition 
relation so that all nondeterminism is resolved by the contents of the new 
variable. The new machine would have exactly the same possible behaviors 
of the original machine with respect to the original variables, but all sources 
of possible "secrets" would be packaged into the value in the new variable. 

2.2.7.3    Why Only Inner Transitions? 

A slightly suspicious feature of shared-state restrictiveness is that we only 
require inner transitions to be "shiftable". This reflects the assumption 
that outer transitions are caused by the environment, and that it is up to 
the environment to act securely. If the environment cannot be assumed to 
act securely, then the security of the system plus environment cannot be 
guaranteed. Also, in view of the composability theorem, if we keep hooking 
together restrictive machines until we have the machine and its environment 
included, we still have a restrictive machine, and that machine (if the entire 
environment has been included) is closed. In this case, restrictiveness will 
apply to all transitions, and the fundamental security theorem tells us that 
the result does not transmit information illegally. 

2.3     Server/Client Restrictiveness 

This section appeared as a paper in [52]. 

2.3.1     Introduction 

Processes that make requests to shared resource handlers are often most nat- 
urally modeled with blocking reads. That is, such processes can be modeled 
as making a request and then waiting for the reply from the shared resource 
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handler. If we try to directly model such processes and then apply the re- 
strict veness security theory [25, 24], we may encounter a problem because 
the level of the reply is not directly connected to the level of the request. 
There is also a covert storage channel problem due to a high-level request 
potentially blocking a low-level activity. A number of methods have been 
developed to handle these problems, but those methods use models that are 
more complicated or less natural, or else use a weaker security property than 

restrictiveness. 

For example, one way we can model shared resources is to use the method 
of [36, 49]. However, the expression of the models becomes complicated. This 
is because inputs are handled one at a time as separate transactions. For 
example, if one wants to read a file as part of some transaction one has to 
split the transaction into two pieces. The process does the first part of the 
transaction and terminates with a request for a file. The process then waits 
for the file to arrive as input and starts the second part of the transaction 

when that input is ready to be handled. 

A method for handling states shared between machines has been devel- 
oped by Ian Sutherland [58] and is described in section 2.2 That model, 
however, uses a different formulation of how processes communicate, and it 
is not as natural for describing input and output handling. 

Another kind of composition of systems for shared resources is presented 
in [26]. In that paper, they weaken the restrictiveness security property in 

order to get the composition to work. 

In this section, we present a natural method of decomposing a system 
into servers and clients and we identify security properties that they should 
satisfy. If the servers and clients satisfy these specified properties then the 
resulting combined system will be restrictive. (Unlike [26], the specified 
properties on the server and the client are not the same.) The method does 
not require splitting up a transaction as in [49]. It seems better suited for 
modeling communication with a shared file system than [58]. It also does 
not weaken the security property on the composite system as in [26]. 

The general security properties for the client and server can be compli- 
cated to work with. However, for a wide variety of models these properties 
can be significantly simplified. We will show how a variation of the methods 

of [49] can be used to make this simplification. 
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Similar results could be obtained for other security properties similar to 
restrictiveness. However, this work uses non-deterministic models as a step in 
the proof of the composition theorem and so it will not be directly applicable 
to non-interference [14]. 

The remainder of this section is divided into two parts. In section 2.3.2 
we describe restrictiveness, the decomposition, and the properties that the 
parts should satisfy to make the composite system restrictive. We then prove 
the composition theorem. In section 2.3.3 we describe how, for many models, 
these properties can be simplified and how the analysis can be performed, 
using methods similar to [49]. 

2.3.2    Theory 

2.3.2.1    Restrictive state machines 

The definition of restrictiveness presented in this section is taken from [51], 
but it is essentially the same as [25].7 This section provides only the basic no- 
tation and definition of restrictiveness. For an introduction to restrictiveness, 
see [25]. 

A state machine is a set of states, an initial state (or set of states), a 
set of events, and a transition relation. The events may be inputs, outputs, 
or internal transitions. The transition relation may be non-deterministic. A 

typical transition will be represented as Si—>s2, that is, state 5X goes to 
state s2 by the event sequence a. For a rated state machine we also have a 
level function, which assigns a security level to each event (the security levels 
are a set with a partial order). We will use the word lev to refer to the level 
function. In this discussion all of the state machines will be rated. 

For each security level £, we define an equivalence relation on the states, 
usually denoted as «^. Intuitively, this relation defines when two states 
appear the same to someone who has clearance only up to level £. An event 
is said to be low with respect to some £ if the level of the event is less than 
or equal to L An event is said to high with respect to some £ if it is not low. 

If v is a subset of events and 7 is a sequence of events, then we will denote 

7Also given in section 2.1.2.1. 
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that subsequence of 7 restricted to events from v by 7 | v. We will use the 
notation 7 j £ to mean the subsequence of 7 restricted to the events that are 

low with respect to I. 

The empty sequence will be written as (). The concatenation of two se- 
quences is represented by A. The concatenation of a singleton event sequence 
(e) and another sequence / will be represented as eAl. 

For a state machine with security relation ft^ as above, we say that it is 

restrictive if 

1. for every level £, for all states s1,s'1,s2 such that sx &i s2, 
and f°r an 

input sequences ßi and ß2 such that sj —> s[ and ßi | £ = ß2 T A there 

exists a state s2 such that 

(a) s2—>s'2 

(b) s'2 FÜ£ s[. 

A state machine that satisfies this condition is input-total except for 
possibly the lowest level events. That is, the machine can always accept 
a sequence of non-lowest level inputs. (Just choose ß\ = () and s^ = 

■si = s2.) 

It also follows that high-level inputs leave the low-level view of the 
state (i.e., the equivalence class under s^) unchanged, as can be seen 
by letting ß\ be a sequence of high level inputs and letting ß2 be (). 

2. for every level £, for all states s1,5
,

1,s2 such that 5a PS^ S2, and for 

all noninput events e such that sx —> s[, there exist a state s'2 and a 
sequence 7 of noninputs such that 

(a) 
7    / s2 —y s2 

(b) s2 ~e sx 

(c) 7|^ = e |£. 

2.3.2.2    Shared resource decomposition 

In general, we are interested in how to securely compose a system consisting 
of processes that make blocking requests and processes that handle those 
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requests. For simplicity we will initially assume that the decomposition in- 
volves only two process. We will call the process that handles the requests 
(e.g., manages some resource) the server and the property that it should 
satisfy server restrictiveness. We will call the process that may make block- 
ing requests on the server the client process and the property that it should 
satisfy client restrictiveness. 

Suppose C is a client process and S is a server process. We will partition 
the events of these processes as follows: Ecs are those events from C causing 
C to block on a reply from S, Esc are those events from S to C in response 
to a blocking request, Es are events of S that are not in Esc U Ecs, and 
Ec are events of C not in EcsUEsc- (Remark: We do not exclude the 
possibility that C and S may communicate in nonblocking ways. However, 
in a composition of C and S they must both use the same definitions of Ecs 

and Esc-) 

We will prove that a proper composition of a server restrictive process and 
a client restrictive process is restrictive. In section 2.3.2.6 we will describe 
how this can be generalized to multiple clients and servers. 

Client restrictiveness Client restrictiveness is much like restrictiveness, 
but it differs in how unblocking responses from the server are handled. In- 
stead of directly analyzing a client we will transform it into a similar process, 
where the replies from a server are replaced with nondeterministic transitions. 
Replies that are clearly not secure will not be allowed in the transformed ma- 
chine. We will then have to strengthen the restrictiveness property on the 
transformed machine, because not all of its transitions will really be possible 
in a composite system. 

First we describe the construction of the new machine. For each oc- 
currence of a request followed by inputs that are not unblocking and then 
followed by receiving an unblocking reply from the server, we will replace the 
unblocking replies by a collection of "allowable" nondeterministic transitions 
based on the level of that request. (The reason for including intervening in- 
puts that are not unblocking is that we want the blocked process to continue 
to buffer inputs.) 

A replaceable occurrence in the Client is any state c\ where o is a 
blocking request, ß is a sequence of inputs that are not unblocking, and 
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oAß 
d has the collection of transitions cx »c2 —> c3(i) for each possible un- 
blocking reply i from the server. We also require that the only transitions 
to c2 end with a blocking request at level o followed by some sequence of 
inputs that are not unblocking, and that the only events to c3(i) are un- 
blocking replies. (Expressed in a process algebra syntax the transitions are 
send(o);receiveiev(0)(fromserver,\i.c3(i)) in parallel with some input buffer- 

ing mechanism.) 

This   occurrence   will   be   replaced   by   a   collection   of   transitions 

oAß 
Cl >c2—>c3(i) for each i where lev(i) > lev(o) and where r is a silent 
transition (i.e., T is a delay or internal event). In other words, the potential 
unblocking input transitions are replaced by non-deterministic transitions to 
a state that could be arrived at by some input from an arbitrary server be- 
having securely. (Or equivalently, send(o); Select(J, Xj.c3(j)) in parallel with 
some input buffering mechanism, where J is the set of events to the Client 
whose level is greater than or equal to the level of o.) 

Call this transformation function, which replaces the input from the server 

with nondeterminism, Change. 

Client restrictiveness is a strengthening of restrictiveness on 
Change(Client). Let us call the transformed machine Change(Client), 
Client'. Notice that the states of Client' are the same as those of the Client, 

only the transitions have changed. 

Client' will have more potential behaviors than the Client in a compos- 
ite system, because not all of the non-deterministic responses of Client' will 
really be possible responses of the Server of the composite system. For this 
reason we will have to impose extra conditions on Client' besides restrictive- 
ness to make sure the composite system will be restrictive. 

For client restrictiveness, we require the following: 

The Client process should be of the right form. Blocking requests to 
the server are immediately followed by a sequence of inputs that are not 
unblocking, and then an unblocking reply from the server. Unblocking 
replies from the server are immediately preceded by a blocking request 
followed by sequences of inputs that are not unblocking. 
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2. The state machine Client' satisfies restrictiveness. 

3. We will make a slightly stronger constraint on low blocking outputs to 
the server than is provided by restrictiveness, because the extra non- 
determinism of Client' will not be available in the combined machine. 

For every level £, for all client states Ci, c'1; c2 such that c\ rae c2, and for 
e 

all low blocking outputs e to the server such that cx —» c[, there exist 
a state c'2 and a sequence 7' of noninputs such that 

,A 

(a) c2 >c'2 

(b) c'2 «, c[ 

(c)VT^=(>. 

The reason why this is stronger than restrictiveness is that the output 
property of restrictiveness permits choosing a sequence with high-level 

outputs after e. 

4. For each transformed input from the server we will need to assure that 
high-level requests will cause only an effect to the high-level state. 

oAß 
If o is a high-level request to the server with ca ► c2 —> c3(i) a tran- 
sition sequence of Client', we require that c3(i') ~^ c2. 

5. We need a condition similar to the restrictiveness input condition for 
states making nondeterministic transitions in place of server responses. 

If cx tat c2 and if i and j are nondeterministic events introduced by 

Change such that Ci—*Ci(i), c2^c2(j), and (i) | I = (j) | £, then 

Ci(i) ^t c2(j). 

6. We will not allow equivalence relations where a state that is blocked 
after sending a low-level request is equivalent to a nonblocked state. 

If o is a low-level request to the server, ßi is a sequence of inputs, 
A, 

0    PI T 
c\ > c2 —i-c3(i), and £2 tae c2, then the transitions from t2 are the 
nondeterministic transitions introduced by Change and inputs. 
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7. Restrictiveness involves a liveness constraint, which requires some 
added constraint on Client'. We require that for every state of Client1 

there is a bound on how many times the server can be called from that 
state, without an intervening input. More formally, we require that 
there be a function from states into ordinals, which we call rank, such 
that 

(a) for all noninput events e, if cx —> c2 then rank{cx) > rank(c2), and 

(b) for every request o to the server, if d Ac2^ c3(i) then rank(c2) > 
rank(c3). 

Note: We can typically build a rank function that assigns natural num- 
bers to states and decreases by one on each return from the server. 

We will call these properties (CR1-CR7). 

Server restrictiveness A server process needs to satisfy a property 
stronger than restrictiveness because it must properly respond to blocking 
requests. (Not all inputs need be blocking requests from the client.) 

For server restrictiveness, we require the following: 

1. The Server process should be of the right form. 

(a) Every blocking request can get a response. 

For each pair of states s1 and s2, blocking request from the client 
e, and ^ containing events which are not unblocking, such that 

A 

■Si ► S25 there is a state s3, a noninput sequences of events not 
to the client 72, and an unblocking event e' to the client such that 

A 
72   e' 

•52  >S3. 

(b) An unblocking response to the client can be made only after a 
blocking request. 

A 
7   e 

If si ► s2 , where e is an unblocking output to the client and 7 
contains no blocking requests from the client, then there is a block- 
ing request from the client e', noninput sequence 7' containing no 
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other replies to the client, and a "ready" state s0 (i.e., a state 
such that there does not exist a noninput sequence 7" containing 

1" 
an unblocking output with s0 —► S3), so that if 

,A   , A 
e    7 7   e _ 

So ► S\ ► 52, then the number of blocking requests of e' 7' 
is greater then the number of unblocking outputs of 7'. (In fact, in 
the parallel composition, the client will not make multiple requests 
without an intervening reply, so this condition will say that there 
are no requests and no replies in 7'.) 

2. The Server must be restrictive. 

3. For states Sj and s2, high blocking request e from the client, and 72 
A 

e   71 
containing no unblocking replies where Si >s2, there is a state 53 
and high noninput sequences of events 72,73, and a high unblocking 

A  .A 

event to the client e' such that s2 > s3 with s2 ~^ S3. 

This condition requires that on high-level blocking requests from the 
client, the server could complete that request invisibly. The techni- 
cal reasons for this requirement and the implications are discussed in 
section 2.3.2.7. 

4. On low-level requests the equivalence relation should make a distinction 
between whether a high response to that request has been made, since 
responses will unblock the client. 

A 
e   71 

If e is a low-level blocking request from the client, and if si > s[ 

■—> s" where ji does not contain an unblocking reply to the server and 
7i contains a high-level unblocking reply with no blocking requests, and 

if s'2 —> s" where 5^ ~^ s2 and s" «^ s2', then 72 contains an unblocking 
reply. 

We will call these properties (SR1-SR4). 
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2.3.2.3    Composition theorem 

In this section we will show that the composition of a client restrictive process 
and a server restrictive process is a restrictive process. 

The parallel composition of these machines R=C\\S is defined as follows. 
We define the set of potential states of R as ordered pairs from C and 5". We 
will use the notation c\\s to refer to a potential state. Some of these pairs do 
not make sense. In particular, if c is a state of C that is blocked waiting for 
a return value from S after a request e, then for c||.s to make sense s must be 
a state that can be arrived at from some s' by some transition eAj where 7 
has no other blocking requests or unblocking replies. Also, if c is a state of C 
that is not blocked for a read, then for c\\s to make sense s cannot be a state 
that could eventually send an unblocking output to the client (without an 
intervening request). Pairs that satisfy these conditions will be called good 
potential states and pairs that don't will be called bad potential states. If S 
is server restrictive and C is client restrictive, these bad potential states are 
not reachable from good potential states. The states of R consist of just the 
good potential states. 

The input and output events are the input and output events from 
EsijEc (defined in the beginning of section 2.3.2.2), which are not events 
from S to C or from C to S. (We have not excluded the possibility that the 
server and client may communicate through nonblocking requests.) For any 

e 
e in Es that is not to or from C, c\ a state of C and transition of S, Si —-> 52, 

e 
we have c-i\\si —► c^^- For any e in Ec that is not to or from S, s1 a state 

e e 
of S, and transition of C, c\ —>c2, we have C\]\s\ —+ C2||si. 

If e is an event from S to C or from C to S (including events from Ecs 
e e T 

or Esc ) and we have c\ —>■ c2 and si —>62, then ci||5i —>■ c2||s2. (Note that 
T, an internal transition, is used since the effect is not to receive inputs or 
produce outputs to the external environment of R.) 

Before we begin the composition theorem we show three lemmas that we 
will use to convert sequences of events in Client' into sequences of events for 
R. The reason this result is not trivial is that not all of the nondeterministic 
responses of Client' may be possible in the combined machine. 

Lemma 1: Suppose R is a parallel composition of a client restrictive 
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and server restrictive process as described above. For any c\\s that is a state 
-y 

of R such that c—>c' where 7 is a sequence of noninput events of Client' 
with no low-level events to the server and not starting with an unblocking 
transition based on a low-level request, there is a 7' of R such that 

1. c\\s^c"\\s' 

2. c" &£ c', s &e s', and 

3. 7' 11 = 7 I £ (when events between the server and client are replaced 
by r). 

Proof:  We prove the result by induction on the rank of c.  Pick any 
c, s, c', 7 as in the hypothesis of the lemma. 

1. Suppose 7 does not contain any unblocking events. Since it is a nonin- 
put sequence of Client', the only events of 7 that pertain to the server 
are high level outputs to the server. Let 6 be the restriction of 7 to 
these events. By restrictiveness of the server (SR2) we can find a s' such 

5 7' 
that s —> s' with s ft^ s'. Then just let c" = c' and we have c\\s —► c"\\s' 
with the desired properties. 

2. Otherwise 7 contains an unblocking reply from the server. 
7 

We can express c—>c' as 
71 ei T 72 

d\ —> di —-► ds —> d± —»■ c , where c is one of di, di, or J3, e\ is an event 

to the server, d3 —> d4 is one of the non-deterministic transitions intro- 
duced by Change, and ji contains no blocking or unblocking events. 
Note that 71 and 72 may be empty. 

71 61       I, 
If c is di or d2 as in the case above, we have d^\\s —> d2\\s —> d3\\s'" for 
some s'" &£ s.  If c is d3, then just let 5'" = s.  In either case we have 
d3||s'" with 5'" ~t s. We still have to adjust the rest of the transition. 

In the case that c is d%, by assumption the internal transition is made 
based on a high-level request. Otherwise, e will be high since 7 contains 
no low-level events to the server. Hence, in any case we have that d3 is 
a state blocked because of a high request. 
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By server restrictiveness (SR3), there is a transition, 8iAe2 <*>2, where 8-^ 
and 82 are noninput sequences of the server with events from Es and 

Oj    &2    02 

e2 is in Esc, such that 5'" ► s" and such that all of the events of 
this transition are high and such that s'" «* s". Some of the events of 
81 and 82 may be inputs (which are not unblocking) to the client. Let 
8[ and 8'2 be the restrictions of these sequences to events to the Client. 

As they are high, by (CR2) we can find a d'3 such that d3 —> d3 with 
d'3 equivalent to d3. Since the request e1 was high by (CR4) we have 

d'3 —»■ d3 (where tau is the internal transition of Client' used for e2) and 
S2 

d3 rae d'z. And then we can find a d3 with d3 —>■ d3 with d3 equivalent 
to d3. This adjustment does not change the low-level view of 7 in the 
composite machine. We also have d3 fae d3. Again, by (CR4) d3 &e d4, 

so we have d'3" «* d4. Let d\ = d'3". We have d3\\s'" *> d'4\\s" with 
d4 fü£ d'4 and s" « s'". All of the added events of this sequence are high 
(and the r of 7 corresponds to the internal transition of R, e2 .) We 
still need to adjust the last part of 7. 

By restrictiveness of Client' (CR2), there is a 72 with d'4 —> c" with 
c" &t c' and -y'2 j £ = 72 | ^- Note that this means 72 also contains no 
low-level requests to the server. By (CR1) and (SRI) 72 cannot start 
with an unblocking transition. 

Now d'4 has a lower rank than c2 (since c2 is one of di,d2,c?3), so 
by the induction hypothesis we can find a 72' that is high such that 

d'4\\s" ^ c'"\\s' with c'" «, c", s' &e s", and 7£ | * = 72 T *• So we 
have c'" ft^ c", and hence 5 ft^ 5' and 7" T ^ = 72 T ^- 

Hence we have ^[[j -^ d2||s -^-»«fells'" ' ^ '» ^4 IK -^"Ik'» with 

c'" R^ c' and s' &t s, and the entire sequence of events restricted to / is 
equal   to   7    \    I.        (Or,    in   case   the   sequence   starts   at   d3, 

d3\\s^^d'4\\S"Sc'"\\s'.) 

D 
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Lemma 2: Suppose R is a parallel composition of a client restrictive 
and server restrictive process as described above. For any c\\s that is a state 

'V e 
of R such that c —>d—+c', where 7 is a sequence of noninput events of Client' 
with no low-level events to the server and not starting with an unblocking 
transition based on a low-level request, and e is a low blocking event to the 
server, there is a 7' such that 

1. c\\s^d\\s"-^c'"\\s' 

2. d"^ed 

O.   S ~£ s 

4. yf£ = ^fü (when events between the server and client are replaced 
by r). 

Proof: We prove this result by induction on the rank of c. Pick 
c, c',s,d, 7, e to meet the hypotheses so that the lemma is true for all c's 
of lower rank. 

If there are no unblocking events in 7, then as in the proof of Lemma 1, 

we have that c\\s —>d||,s/" for some s'" ttt s. So, since the next transition of 
e 

d is by e and d\\s'" is a good state, there is an s' such that d\\s'" —>c'\\s'. 

Otherwise we can use Lemma 1 for the 7 part to obtain a d' and a sequence 
1' 

7' such that c\ \s —>■ d'\ \s" in R where 7' corresponds to 7, d s=^ d1', and s" Fü£ S. 

Since 7 contains an unblocking event, by the construction of Lemma 1, so 
will 7' and hence, d' will have a rank less than c. 

,A r' 
Since d' £=^ d and d —► d by (CR3), we have a c" with d' ► c", c" w c', 

and 7" I £ = (). As d' is of lower rank, we can apply the inductive hypothesis 
-y'" e 

to obtain d'\\s" ►d||s//,->c"/||s' in Ä where c"' fat c", 5'" «< s", and 7"' | 
£ = (). Hence d" &e d and 5'" &e s. 

D 

Lemma 3: Let R be a parallel composition of a client restrictive and 
server restrictive process as described above.  Suppose Ci\\si is a state of R 
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such that ci-^di^+di —>c2, where ^ and j2 are sequences of noninput 
events of Client' with no low-level events to the server and such that 7X does 
not start with an unblocking transition based on a low-level request, and 
e is a low event to the server which is not blocking. Further suppose that 

5i —> s2. Then there is a -y[, a <y'2, and a s'2 such that 

1. cl\\sl^d'l\\s'l^d2\\4^c!2\\s'2 

2. c2 &e c2 

3. s'2 &1 s2 

4. >y' | £ = 7X I £ and 72 T ^ = 72 T ^ (when events between the server 

and client are replaced by r). 

Proof: We prove this result by induction on the rank of c. Pick 
d,di,d2,c2,<si,s2,7i,72,e to meet the hypotheses so that the lemma is true 

for all C\ 's of lower rank. 

If there are no unblocking events in 71, then as in the proof of Lemma 1, 

we have that cx||si -^ dx\\s\ for some s[ »* sx. By (SR2) we can find a state 

4 such that diWs1!-^d2\\s'2 and s2' «* s2. Now 72 does not start with an 
unblocking response, since e is not a blocking request. Hence we can apply 

Lemma 1 to 72 and find c2, s2 and i2 so that <f2||4—►c^» with 4 ~* c2 
and s'2 ~ s2. 

Otherwise we can use Lemma 1 for the 71 part to obtain a d[ and a 
Ti 

sequence 7^ such that cx||si —► di||si in i?, where -y{ corresponds to 71, dx &e 

d[, and si tat Si. Since 71 contains an unblocking event, by the construction 
of Lemma 1 so will 7^ and hence, d[ will have a rank less than cx. 

A A 
73   e   74 

Since di «/ di and dx -> d2, by (CR2) we have a d2 with d'x ► d'2, 

d'2 « d2, 73 T ^ = (), and 74 T ^ = ()•   Note that from di' 7s cannot start 
with an unblocking event based on a low level request, by the construction 

T2 
of 7J. Again, by (CR2) we can find a 72 such that 4 —► c'2, with c'2 « c2 and 

A  A     A 
73    e   74   7j 

7^ I £ = 72 T ^ So we have d[ >■ c'2. 
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Since s[ ~^ sx, we can find an s'2 with s[ —> s2 and s2 ~ 62. As c?x is of 
lower rank, we can apply the inductive hypothesis with di||sj and obtain the 
desired result. 

D 

We are now ready to prove the main result. 

Theorem: If C is client restrictive, S is server restrictive, and R is 
the parallel composition of C and S as defined above, then R is restrictive. 

Proof: For the machine R we will use an equivalence relation on states 
used in the restrictiveness proofs of the parts. Let Client' be the machine 
Change{C). We will also use the abbreviation D for Client1. For D, we 
can use the same state names as for C but some of the transitions may 
be different (see definition of Change above). Let ~eto 

and ~^,s De the 
equivalence relations used for showing restrictiveness of D and S. Let Pü( on 
R be defined as 

ci||5i ~/ c2||52 if an<i only if ci ~t,D c2 and 5i ~^,s 52- 

When using the equivalence relations we will drop the D and S from the 
notation for ~^, since they can be inferred from the context. 

The proof of restrictiveness of R naturally falls into two obligations — 
showing the input and the output properties. 

2.3.2.4    Input property 

The proof of the input property is straightforward. 

Pick any level £ and any states r1? r[, r2 of R, such that r1 füf r2, and any 
ßi 

input sequences ß\ and ß2 such that r\ —> r[ and ß\ | £ — ß2 | I. 

We need to show that there exists a state r2 of R such that 

1. r2—>r2 

2. r'2^r'v 

Since i? = S'HC, there are states Si,s'1,52,Ci,c'1,C2 such that rx = si||ci, 
ri =5illci> and r2 = -52||c2- 
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By restrictiveness of S there exists an s'2 meeting: 

ß2]{Es\jECs) , .     . .    , 
1_ s2 >s'2 (Recall that | is just the restriction of the event 

sequence to some subset.) 

Since ß2 is just a sequence of inputs for R, it contains no events from 
ß2\Es     t 

Ecs, and so the first condition is just s2 ► 52- 

For the client process C, we have assumed it is client restrictive so that 

D is restrictive. 

Notice that input transitions from Ec are the same for both D and C 
(only the transitions from ESc are changed). Further, the input sequences of 

ßi\Ec     , 
R do not include events from ESc- Hence we still have in D that cx > c1. 

By restrictiveness of D there exists a c'2 meeting: 

MEc 
1. c2 >c2 

o     J  ~„ ,,' Z/.    Co   r^fg  C-i . 

So in R we can let r2 = c2||.s2 where c'2 and s'2 are chosen as above. Then 

1. r2—>r'2 since ^2 has input events from the disjoint sets Ec and Es, 

and 

2. r2 «£ rj by the definition of ~^. 

2.3.2.5     Output property 

Pick any level £ and any states ri,r[,r2 of R such that rx «^ r2, and pick 
e 

any noninput event e such that rx —> ra. 

We must show there exists a state r'2 and a sequence 7 of noninputs such 

that 
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7 
1. r2-^r2 

2. r2 7ü£ r1 

3. 7 T £ = e T £ 

Since ß = 'S'IICJ 
we have s1,5

/
1,52,c1,0^,02 such that rx = c^l-Si, r[ — 

cillsi, and r2 = c2||s2. 

We prove the result by cases, depending on whether e is from the client 
or server. 

1. Case: e is in Ec or Ecs- 

We divide this case into subcases: 

(a) Case: e is not a low-level event to the server. 

By the definition of «^ we have C\ R^ c2. Note that for e in Ec or 
e 

-EcS) Ci —> Cj is a transition of Z). 

Choose 7 and c2 to satisfy 

1. c2—>c2 

11.   Co ^t C-t 

iii. 7 T ^ = e T £■ 

Notice that 7 contains no low-level events to the server. It cannot 
start with an unblocking transition based on a low-level request, 
because otherwise by (CR6) C\ must also be a blocked state. But 
that is not possible by the case assumption that e is in Ec or Ecs- 
So by Lemma 1 we can extend it to a transition in R. That is, 
there exist c2, 7' such that 

7' 
i.  c2||.s2      >'C2||'52 

111. So ~e s2 

iv. 7' j £ — 7 I £ with the appropriate hiding of internal events 
(and hence 7' f £ = e f ^). 
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If e is not to the server then we have s[ = sx. Else by case 
hypothesis it is a high input to the server. Then by restrictiveness 
of the server (SR2), we must have s[ tat sx (it must be equivalent 
to a state where no inputs have arrived). So in either case we have 

S^ ~£ S\. 

We have s2 ~t sx by hypothesis and we have just found an s'2 with 

s2 «^ s2. So s'2 K,t s[. Then we have c2||.s2 &e c'^s'-^ as desired. 

(b) Case: e is a low-level blocking event to the server. 

Since e is in Ecs, by (CR3), we can choose 7 and c'2 to satisfy 

A 
T   e       , 

1. c2  >c2 

ii. c2 ~e c'i 

iii. 7T'=0- 
7 does not contain any low requests to the server, and it cannot 
start with an unblocking transition based on a low-level input 

by (CR6). By Lemma 2, we have c2\\s2 —->d\\s'2^c'^\\s'2" with 

c'2' fvt c'2, 4 Pae s2, and 7' | £ = 7 | £ = (). Since 5^4, by 
restrictiveness of the server (SR2) we can find an s'2 such that 

e 
s2 —*s2 and s2 ~^ 5i- Hence we also have c2||s2 —> d\\s2 —>c2||.s2? 

which is the desired result. 

(c) Case: e is a low-level event to the server that is not blocking. 

By (CR2), we can choose 7 and c'2 to satisfy: 
A A 

71    «   12 
1.   C2  >c2 

11.   C2 ~£ C^ 

iii. 71T^=()and72T^=(). 

7l\ 72 
bay, c2 »■ a —► c2. 

71 and 72 do not contain any low requests to the server, and 71 
cannot start with an unblocking transition based on a low-level 
input by (CR6). Hence, we can apply Lemma 3 and we get the 

desired result. 

2. Case: e is an event in Es or ESc- 
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(a) Case: e is not a low-level unblocking output to the Client. 
e 

We have c\ \ \s\ —> c\ | \s[. 
7 

By restrictiveness of the server (SR2) we can find s2 —► s'2 with 
7 1£ = (e) T £ and s'2 fae s[. 

(i) Suppose 7 contains no unblocking events to the client. Then, 
by (SR4), e cannot be a reply made on the basis of a low-level 
request from the server. If e is not an output to the Client then 
we have cV = c\ and hence c\ «^ c\. If e is an unblocking reply 
then since it is to due to a high request, by (CR4) we have c[ rat cx. 
So in these two cases we can use (CR2) on the events of 7 and 
the fact that 7 does not contain an unblocking reply to choose 

7 
c2 ~£ c'x so that C2II.S2 —*"c211^2■> and we ge^ the desired transition. 
Otherwise, e is an output to the Client which is not unblocking. 
Then by applying restrictiveness to the events of 7 that are inputs 
to the Client (there are no unblocking replies), we can just choose 

7 
c2 me c\ so that, c2||s2 —► c2||52, and we get the desired transition. 

(ii) Suppose 7 does contain an unblocking reply. We then know 
that 7 is of the form 7iAe'A72 where e' is an unblocking reply 
to the Client and ji, 72 contain no other unblocking replies by 
(SR1),(CR1). e' must be high, since e is not a low unblocking 
event to the server and 7 f £ = e | £. 

c2 must be ready to receive a reply since c2 j |-s2 is a state of R. 

If e is not an unblocking reply to the Client, then by (SR4) e' 
cannot be made on the basis of a low-level request. Let j[ and j'2 

be the inputs to the Client from 7J and 72. By (CR2) choose c" 

so that c2 —► c2' with c2 ~^ c2 or c2 ~^ c[ in the case that e is low 

and in j[. By (CR4), we have c2—*-c2' (where r is the internal 
transition corresponding to e') with c2 R^ c2'.   Again by (CR2) 

choose c2 so that c2" —> c2 with c2 «^ c2' or c2 ~^ c[ in the case 
;A /A   11 

•     e     T 
that e is low and in 72.   So c2 —> c'2 with either C2 ~^ c2 

in case e is high or c2 w^ c[ in case e is low. If e is high, but 
not a reply to the Client, we have c[ = c\ or in case its a high 
input c'x ^1 C\.  Hence when e is high, we have, c2 ~^ c[.  In the 
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D 

case e is low, we have already chosen c2 ~/ c[.   We thus have 

C2|JS2  ► C211s"  *■ c2 1152W *■ C2 1152 Wi^ C2 ~^ Cl• 

Otherwise e and e' are both replies to the Client.   By case hy- 
pothesis, e is high and thus e' is high, since 7 | ^ = (e) | £. 

Let #! be the restriction of ji to the inputs of the Client and 62 

be the restriction of 72 to the inputs of the Client. By (CR2) and 

(CR5) we can find c2 with c'2 fat c[ with c2 > c'2. 
A A 

71   e   72 

We then have c2||s2 >c2lls2 as desired. 

(b) Case: e is a low-level unblocking output to the Client. 
e 

We have cx|\si —>c[\\s[ i- 
A A 

71    e   72 
By server restrictiveness (SR2) we have s2 >■ <52 with s'2 ^e s[ 
and 7i,72 are high noninput sequences. By (SRI) and (CR1), 71,72 
do not contain unblocking outputs to the client. 

Let Si be the restriction of 7X to the inputs of the Client and 
62 be the restriction of 72 to the inputs of the Client. By client 
restrictiveness (CR2) and (CR5), we can find c2 with c2 R^ c[ with 

61   e   A2 

C2  >C2. 

A  A 
71    e   72 

We then have c2||s2 *'c2||
,s2 as desired. 

2.3.2.6    Combining multiple servers and clients 

In the previous sections we composed just one client and one server. This 
composition can be generalized to multiple clients and multiple servers. A 
parallel composition of server restrictive processes is still server restrictive 
(using a slightly stronger version of the (SR) requirements where the replies 
must go to the appropriate client connection). When a client restrictive 
process is connected to the composite server, the resulting process is not 
only restrictive, but in fact server restrictive with respect to the potential 
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Communications with other clients.   So we can stepwise connect all of the 
clients to this process and the final system will be a restrictive system. 

Note, however, that if a server needs to make blocking requests (i.e., if it 
also needs to play the role of the client) then a more complicated argument 
is needed. There are potential deadlock problems. If we can rank the servers 
(by some well-order, e.g., the natural numbers) so that lower ranking servers 
do not make calls on servers at or above their rank, then we can build a 
server restrictive process by inductively combining the servers. At each stage 
we treat the servers of the next highest rank as clients to the server built 
so far. The combined process will be server restrictive (as there will be no 
blocking reads left in the combined system). 

If the servers cannot be ranked, then a composition may still be possible 
but one needs to use some more complex liveness property. 

2.3.2.7    Discussion of condition (SR3) 

None of the conditions for client and server restrictiveness, except (SR3), are 
very constraining. They limit some forms of nondeterministic behavior, but 
the conditions are unlikely to cause significant limitations on secure modeling. 

However, (SR3) is fairly strong. On a high-level request from a client it 
must be possible to handle that request without first performing some lower 
level task. A simple buffering and handling of requests will not be sufficient 
to meet (SR3). 

The (SR3) requirement is needed to prevent a small covert channel. Sup- 
pose the server needs to produce low-level outputs. If the client has a high- 
level input that requires a call to the server, followed by a low-level input that 
does not require the server, then without (SR3), the client will not be able 
to make outputs based on the low-level input until the server first produces 
its low-level outputs. So the high-level input to the client can eliminate one 
possible ordering of the low-level outputs. It is a rather small and hard to 
control channel, but it is a potential problem. 

Just insisting on meeting (SR3) is not a completely satisfactory solution. 
The problem is that restrictiveness does not handle timing channels, yet 
in the end, the implementation should take steps to handle them. It is very 
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likely that the (unspecified) steps to solve the timing channels will sufficiently 
control, or eliminate, the (SR3) sequencing channel either by handling the 
(SR3) constraint through scheduling or by not really allowing the client to 
block on high-level requests. (If the timing channels are not controlled, the 
(SR3) channel is only a side issue by comparison.) 

This difficulty is not a problem with the decomposition method presented 
here, but rather part of the more general problem about how much covert 
channel elimination should be handled at the modeling level. 

If the demonstration of (SR3) is not too constraining, then we can just 
model server restrictiveness. Alternatives include the following: 

1. One could insist on a more stringent theory then restrictiveness that 
would involve timing (for example, J. Milken's theory [30] or I. Suther- 
land's theory [57]). Indeed, such an approach does shed more insight 
into potential security problems. But the models will be more compli- 
cated and it may be difficult to get a reasonable characterization of the 
timing channels at the modeling level. 

2. One could just show the model satisfies server restrictiveness without 
(SR3) and handle that condition during the covert channel analysis. 

3. One could still use [49] in which the high-level requests do not block 

lower level activity. 

2.3.3     Practice 

It is convenient to have a simpler way of expressing and proving server re- 
strictiveness and client restrictiveness than just using state transitions and 
directly showing (CR1)-(CR7) and (SR1)-(SR4). In this section, we present 
a modification of the method of [50] to show server restrictiveness and client 

restrictiveness. 

The method of [50] examines models of a particular procedural syntactic 
form that get an input from a buffer, produce a finite number of outputs, 
and then wait for the next input from the buffer. The process carrying out 
this activity is parameterized (i.e., the process maintains information). The 
parameters together with the input being processed, the nondeterministic 

48 



choices, and the current location in the process syntax define the state of the 
process. A projection function, proj, on the parameters is used to describe 
the view of the parameters at a particular level. Security conditions are 
generated to check that the outputs are at the correct level and that high- 
level information does not leak into the lower level parameters of future 
transactions. For a careful presentation of this approach one should see [50]. 

To handle client restrictiveness we first need to extend the allowable syn- 
tactic forms to handle blocking reads. We just add a new primitive to the 
process specification language. (Of course the precise syntax does not mat- 
ter.) 

Request (p:port,ml:message) 

receiving (q:port,m2:message) then 

begin 

end 

In the rest of this section we give a brief description of how to adapt the 
input limited restrictive methods for showing client restrictiveness and server 
restrictiveness. 

2.3.3.1     Client 

If the Client is represented as Buf\\P where Buf buffers all inputs except 
those in response to a client's requests on the server, and where P is the 
almost input limited restrictive process (i.e., input limited restrictive but 
with requests to the server), then Change(Client) is Buf \\C hang e(P). So 
we can treat the request construct as if it represented the nondeterministic 
transitions of Change(Client) and apply input limited restrictiveness anal- 
ysis. Since the number of non-deterministic choices is likely to be infinite, 
we will need to add an extra parameter to the path analysis following each 
request. The level of the returning event is the level of that parameter, which 
must be greater than or equal to the level of the request. We will use this 
level definition in checking the conditions involving the levels of outputs and 
changes to the parameters. 
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If we want to include models that contain high server responses that effect 
the high-level part of the state, then we need to interpret the level of the 
extra parameter in terms of an extended projection function to make sure 
differences in the state will not effect future low-level outputs or the low- 
level parts of other parameters. If proj is the original projection function 
describing the view of the parameters at some level, then we extend the proj 
definition. 

For any level /, old parameters x and x', and unblocking server events y 
and y'\ 

proj'(I, x, y) - proj'{I, x', y') if and only if 

(proj(l,x) = proj(l,x') and lev(y) > / and lev(y') > I) or (proj(l,x) = 
proj(l,x') and y = y'). 

Output and parameter conditions are generated with respect to the ex- 
tended projection function. 

Two states may have different parameters and so the induced equivalence 
relation is slightly more complicated. We must also slightly alter how states 
are equated to accommodate (CR4). The adjustment to handle (CR4) does 
not alter what output and parameter conditions should be satisfied. Also, 
the restrictiveness argument for Change(Client) (i.e., Buf\\Change(P)) is 
easily adapted. 

Two states are equivalent when their input buffers are equivalent and: 

1. both states are ready to handle the next transaction or are handling a 
high-level input, and the projection on the starting parameters are the 
same, or 

2. both states are handling low-level requests and are "essentially" at the 
same point on the path, (i.e., in the process syntax), and the extended 
projection function on the parameters are the same. 

The word "essentially" is used because we equate a state blocked after 
sending a high blocking request (and receiving high inputs that are not 
unblocking) with the next (unblocked) state. 

We do not need to generate any new theorems to handle the other parts 
of client restrictiveness if we apply this modification to the input limited 
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analysis. In the next paragraph we explain why this is so. 

The condition (CR1) is met by the use of the request construct. (It 
forces the reply to come immediately after the send.) (CR2) is handled as 
described above. (CR3) is true because one can choose either the 7' to be () if 
the process is in a state performing a low-level transaction, or the 7' to finish 
the high-level transaction before producing the low-level output. (CR4) is 
true by the adjusted definition of the equivalence relation and (CR5) is true 
by the choice of the extended projection function. (CR6) holds because in a 
low-level transaction two states will be equivalent only if they are at the same 
spot in the process (although the high-level parts of their parameters may 
be different). (CR7) is true because all of the execution paths for producing 
outputs must be finite. (The infinite branching introduced for receiving a 
reply is collapsed back into one path by the introduction of the new param- 
eter.) So we can take the rank to be the maximum number of transitions on 
the possible paths from a state. 

2.3.3.2    Server 

A process is server restrictive with respect to a list of pairs of ports, repre- 
senting blocking communication with the clients. (Each client will use a pair 
of ports to communicate with the server.) 

For each pair of ports we have to show the server condition (SRI). We 
can show this condition by modifying the existing output history analysis. 
We have to show that the output port to a client is used only if the input 
event is a message from that client. Further, we have to show that on any 
path starting with an input message from a client, exactly one reply is made 
back to the client using the corresponding output port. This condition can 
be simplified if we require the server to behave in some standard way. For 
example, we might require that the server transaction end with an output 
to the client. Special-purpose proof methods could be made available for 
handling models in certain standard simple forms. 

To show restrictiveness (SR2) and accommodate (SR3), we need to mod- 
ify the buffering method in a fashion similar to [51]. An arriving input can 
either temporarily preempt the current transaction or wait to be processed. 
The input limited restrictive part will be the same. Alternatively, if we choose 
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not to show (SR3), then we can just assume that a simple buffer is being 
used. The property (SR4) comes for free because, by the definition of the 
equivalence relation, both states s[ and s'2 need to complete the handling of 
the low-level request and if s" has completed handling the low-level request 
then s'2 must have also completed that request. (We do not have to handle 
extra parameters as in client restrictiveness.) 

2.3.4    Summary 

The server and client restrictiveness decomposition method is sufficient to 
show the combined process is restrictive. It is useful because it permits block- 
ing requests in the description of a client. It is also practical to demonstrate 
both of these properties with only small modifications to existing technology. 

2.4    Implementation 

2.4.1     Background 

The Romulus toolset includes tools for establishing the restrictiveness of cer- 
tain classes of processes, known as buffered server processes. Conditions 
sufficient for establishing state restrictiveness for this class of processes were 
given in [49, 50, 39]. Earlier versions of Romulus [36] implemented these 
conditions using a process specification language known as SL[38] and a the- 
orem prover based on the theory of constructions [40, 37]. A later version of 
Romulus used a HOL based specification language and the HOL system for 

theorem proving [43]. 

This release of Romulus improves on the HOL based specification lan- 
guage, and improves the support for security proofs. This effort is described 

in the next section. 
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2.4.2     Server-Process Rest riet iveness 

This section appeared as a paper in [7].8 

2.4.2.1    Introduction 

Designing and evaluating the most trusted computer systems requires for- 
mally specifying and proving that these systems have specified security prop- 
erties [12]. Restrictiveness, a security property developed by McCullough 
[21, 24, 23] is of particular interest for such an analysis. Restrictiveness is 
composable, meaning that a system composed of properly connected restric- 
tive parts is itself restrictive. 

The original version of restrictiveness, which we will call trace restric- 
tiveness, was behavioral [21]; it defined system security in terms of possible 
sequences of input, output, and internal events. Unfortunately, proving the- 
orems with this form of restrictiveness was extremely difficult, as it required 
complicated inductions over possible extensions to sequences [23, 3]. Differ- 
ent researchers chose two different approaches to this problem, both of which 
involve strengthing trace restrictiveness to provide more useful induction hy- 
potheses: 

• Alves-Foss and Levitt developed incremental restrictiveness, a condi- 
tion on single-event extensions to event sequences; it implies trace re- 
strictiveness and is itself composable [1, 2, 3, 4]. 

• McCullough [23, 25] developed what we will call state restrictiveness, 
which is usually simply called restrictiveness. State restrictiveness de- 
fines conditions on machine states that produce all of the system be- 
havior observable at a security level, but allow no deductions about 
other behavior. 

Rosenthal [49, 50] identified conditions sufficient to guarantee state re- 
strictiveness in the broad case of buffered server processes. A buffered pro- 
cess consists of a FIFO queue and a process being buffered; it saves its inputs 

8This section describes an older version of PSL that lacks the samepath condition and 
predates the development of IPSL. See Volume IV for complete details of the current 
implementation. 
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on the queue until the process being buffered is ready to receive them. The 
process being buffered is a server process if it waits for input in a parameter- 
ized state and processes each input by producing zero or more outputs and 
then calling itself to again wait for input in a possibly different parameterized 

state. 

Sutherland, McCullough, Rosenthal, and others [36] developed process 
specification languages (similar to subsets of CSP [19]) for conveniently defin- 
ing state machines, and they identified syntactic analyses that could be per- 
formed on such specifications to generate conditions sufficient for establishing 
state restrictiveness of buffered server processes. They and others at Odyssey 
Research Associates developed the Romulus (nee Ulysses) design analysis 
tool, which can take a specification of a buffered server process and compute 
from it a list of conditions sufficient for establishing Rosenthal's conditions 

for guaranteeing state restrictiveness [36]. 

For largely historical reasons, the HOL version of the Romulus specifi- 
cation language was defined only partially, with axioms, giving extensibility 
but making the language and its semantics hard to understand [43]. The 
Romulus implementation also depended on a "meta"-level approach, gener- 
ating Rosenthal-style verification conditions with an impure tactic that was 
itself hard to understand [43]. Further, the language's semantics required 
that all state-machine parameters and all messages received as inputs or sent 
as outputs be coerced to a single type :datatype, losing the advantages of 
HOL's strong typing and significantly complicating proofs of the verification 

conditions [43]. 

We developed the results presented here, using Slind's HOL90 Release 5, 
to address these limitations in Romulus. We modeled our process specifica- 
tion language, PSL, on the Romulus specification language [43], but defined 
it as a concrete recursive type using Melham's automated type definition fa- 
cility [27] and gave it an operational semantics using Camilleri and Melham's 

inductive definitions package [10]. 

We defined security properties analogous to Rosenthal-style verification 
conditions using the inductive definitions package, and we proved simple the- 
orems about these properties that can be used as rewrite rules in proofs and 
taken as alternative definitions of the security properties, definitions requir- 
ing no extensive knowledge of security theory or HOL. Finally, we used poly- 
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morphic concrete recursive types to impose strong typing on state-machine 
parameters and message contents, in the process developing a simple tech- 
nique for effectively defining processes in terms of process-valued functions. 

All of our definitions are conservative extensions of the HOL logic. In 
addition, having the actual security definitions, abstract syntax, and opera- 
tional descriptions available at the object level clarifies the intended meaning 
of the security properties and simplifies the proofs. 

We do not intend to argue here that one version of restrictiveness is prefer- 

able to another, or that our version is equivalent to another. For the sake of 
simplifying the implementation, our version of restrictiveness was made inter- 
mediate in strength between trace and state restrictiveness; we believe that 
it could be made equivalent to Rosenthal's conditions for state restrictiveness 
of buffered server processes with a modest additional implementation effort. 

The results presented here were part of an experiment to test the prac- 
ticality of reasoning about state restrictiveness at the object level, that is, 
reasoning about PSL descriptions when PSL was formally embedded in HOL. 
These results indicate that the definitional approach is both practical and 

preferable. 

We give an intuitive explanation of conditions giving state restrictive- 
ness for buffered server processes in section 2.4.2.2, we formally define the 
process specification language PSL and give its operational semantics in sec- 
tion 2.4.2.3, we give security definitions in HOL using PSL in section 2.4.2.4, 
we specify and prove secure a simple message sorter in section 2.4.2.5, and 
we conclude in section 2.4.2.6. 

2.4.2.2    Server-Process Restrictiveness 

This section gives an informal description of conditions similar to those iden- 
tified by Rosenthal [50] for showing state restrictiveness of buffered server 
processes.9 section 2.4.2.4 contains the formal definitions. The theories of 
trace, incremental trace, and state restrictiveness presented in [23, 3] are 
more general, and incremental trace restrictiveness has HOL proofs showing 

9 Restrictiveness for server processes should not be confused with "server restrictive- 
ness," a different concept introduced by Rosenthal in [52]. 
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that it guarantees trace restrictiveness [1,2], HOL proofs of the sort not yet 
produced for our conditions. We believe, though, that our conditions are 

much easier to establish in the broad class of cases where they apply. 

Views and Projection Functions The processes we analyze deal with 
multiple security levels (e.g., unclassified, confidential, secret, and top secret). 
We model these processes as rated state machines, which assign security levels 

to each input and output event. The raw information that can be obtained, 
or viewed, by an observer depends on that observer's security level. 

What an observer at a given security level can know about a system is de- 

scribed by three functions: functions giving the security level associated with 
input and output events; and a projection function hiding state information. 

A projection function induces an equivalence partition on process states, 
for the process being buffered, based on security level. Two states in the 
same equivalence partition with respect to one level must also be in the same 
equivalence partition with respect to any other level dominated by that level. 
The projection of a state to a level determines all the information, but only 
the information, necessary to determine the system's behavior that can be 
viewed at that level. 

Restrictiveness Conditions Informally, these conditions are sufficient for 
guaranteeing, for buffered server processes, that an observer at a particular 
security level can never deduce anything about higher- or incomparable-level 

events: 

1. Any output produced in response to an input is at a level that domi- 

nates the level of that input. 

2. If the level of an input is not dominated by the observer's level, then 
the projection function induces a state partition such that the process 
being buffered appears not to have changed state (i.e., the process' 
state after responding to this input is in the same partition block as it 
was before receiving this input). 

3. If the security level of an input is dominated by that of the observer, 
then any two states of the process being buffered that seemed equivalent 
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to the observer are not distinguished by the response to this input: 

• All outputs possible for one state are also possible for the other. 

• 

• 

Any possible next state for one state is in the same partition block 
as any possible next state for the other state. 

The previous two conditions hold for any combination of visible 
outputs and seemingly equivalent next states. 

The buffering guarantees that the full process is always ready to accept 
input, so there is never any information conveyed about the process' state 
by its ability or inability to accept input. 

2.4.2.3    Process Specification Language 

This section defines PSL, our process specification language. By "process" we 
mean either a state machine or a program-like description of a machine state. 
PSL is a simple language with the basic processes Skip, Send, Receive, and 
Call. Skip is the finished process that does nothing. Send transmits an 
output event. Receive takes a predicate on input events determining which 
input events it receives and a function determining how it responds to each 
event it receives. Call invokes the process associated with a function name 
and possible arguments. 

Processes are combined using the PSL operators ;;, Orselect, If, and 
Buffered. Infix operator ;; is like the sequence operator in CSP [19]. 
Orselect is like the non-deterministic choice operator + in CCS [31]. If 
is the if-then-else operator. Buffered takes a predicate on input events, a 
buffer, and a process to be buffered. It returns the process that puts the 
input events satisfying the predicate onto the buffer, then passes them on to 
the process being buffered when that process is ready to receive them. 

Syntax The abstract syntax of PSL is given below. It is embedded in HOL 
in the usual way using def ine_type. Recall that : 'name in type signatures 
in HOL90 is the same as :*name in HOL88. 
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process = 
Skip  I   ;;   of process # process   I   Orselect oi process # process   I 
If of bool # process # process   I   Send of   'outev  i 
Receive of  ('inev -> bool)  # ('inev ->  'invoc)   |   Call of   'invoc   I 
Buffered of   ('inev -> bool) #  ('inev)list # process' 

The type variables 'inev, 'outev, and 'invoc are meant to stand for 
possibly polymorphic concrete recursive types of input events, output events, 

and function invocations. The type constructors for input and output events 
are meant to correspond to ports where messages enter or leave the process, 
and the types of the arguments to these constructors are meant to be the 
types of these messages; this imposes strong typing constraints on message 
contents. Function invocations are meant to correspond to names for calls 
to process-valued functions; as described in the following section on PSL 
semantics, they effectively allow processes to be defined in terms of process- 
valued functions. 

Semantics There are three kinds of events: input events; output events; 
and silent or internal events called Tau. We introduce event types into HOL 
using def ine_type. 

event = Out of   'outev  I   In of   'inev  |   Tau 

In defining the semantics of PSL, the function invocval is a parameter to 
the function returning the transition relation that shows how PSL processes 
are transformed by events. The meaning of a PSL process thus varies with 
the mapping of invocations to PSL processes. 

The 14 rules that define the behavior of PSL are shown in Figure 2.2. We 
use SML variable proc to abbreviate the polymorphic type 
: ('outev, 'inev, 'invoc)process. The rules are defined inductively using 
new_inductive_def inition. The function transition takes as a parameter 
a function invocval of type : ' invoc -> "proc assigning interpretations to 
invocations, and returns a transition relation of type 
: ~proc->('outev, 'inev)event->"proc-*ool that shows how PSL pro- 
cesses of type ~proc are transformed by events. We denote the transition 

from state p to state q via event e by p —> q. SNOC element list puts element 
onto the end of list. 
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V1  -^F 
(Skip ;; p2)  -^ P2 (pi  ;; p2) ^ (px ;; P2) 

(Orselect pi p2)  -^ pi    (Orselect pi p2)  —> p2 

 b   n6  
(If 6 pi p2)  -^ pi (If 6 pi p£) -^ p£ 

(Out outev) 
(Send ouieu) —>■ Skip 

(received inev) 
(In inev I 

(Receive received response)       —>       (invocval (response inev)) 

(Call invocation)  —^  (invocval invocation) 

 (buffering inev)  
, (In inev) , ,   „   .      /„„„„ •        i   r\    \ 

(Buffered buffering buf p)      —>      (Buffered buffering (SNOC inev buf) p) 
(In inev) 

V        —>        px 
(Buffered buffering (CONS inev buf) p) -^  (Buffered buffering buf px) 

(In inev)                          .      .      . 
p       —»       pa:,   -^{buffering inev)  

f III  ZTICV ) 
(Buffered buffering buf p)      —>      (Buffered buffering buf px) 

(Out outev) 
V —» PJL 

, (Out outev) , .      ,   .      , 
(Buffered buffering buf p)        —►        (Buffered buffering buj px) 

Tau 
  jP   -—»   px  

(Buffered buffering buf p)   ^  (Buffered buffering buf px) 

Figure 2.2: PSL Process Semantics 
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We have also defined the semantics for the composition of processes (i.e., 
when the output of one process is the input of another), but for brevity omit 

the description. The details can be found in [8]. 

2.4.2.4    Security Definitions 

This section defines security properties sufficient for showing security of non- 
parameterized PSL server processes when these processes are buffered; these 
security properties do not involve the projection function. Space limita- 
tions prevent giving the similarly defined properties for showing security 
with parameterized processes (see [8]), but the predicates Loopsback and 
NoWritesDown given here apply to both parameterized and 
non-parameterized processes. 

We establish security for buffered non-parameterized server processes by 
examining the process being buffered; we do not consider the case in which 
the process being buffered is itself buffered. The buffered process Buffered 
(Xinev. T) [ ] P is secure if P is a non-parameterized server process that 
satisfies "all outputs are up." A projection function need not be considered, 
since a non-parameterized process always starts in the same state each time 
it takes a new input off the buffer. 

The section includes collections of theorems in if-and-only-if form that 
effectively define the security properties by induction on the structural com- 
plexity of PSL processes. Our tactics for showing security properties of PSL 
processes use these theorems as rewrite rules. These theorems can also be 
taken as the definitions of these properties by those unfamiliar with HOL or 
security theory. We derived the theorems from their implicative forms after 
defining the security properties with new_inductive_def inition. We chose 
the definitions so that security properties hold only when they hold indepen- 
dently of any nondeterministic choice made and the occurrence of any input 

event. 

A process is a server process if it receives any possible input, finishes its 
processing of this input, and then loops back by calling itself to wait for the 
next input. The predicates Terminates, Loopsback, and BNPSP_rightf orm 
confirm that a process is a server processes. The predicate NoWritesDown 
confirms that this process only produces "up" outputs. 
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Terminates    Terminates tells whether a PSL process finishes its processing. 
Informally, the rules for termination are the following: 

1. Skip always terminates. 

2. (pi ;; p2) terminates if both pi and p2 terminate. 

3. (Orselect pi p2) terminates if both pi and p2 terminate. 

4. (If b pi p2) terminates if pi terminates when b is true and p2 termi- 
nates when b is false. 

5. Send always terminates. 

6. Receive never terminates. 

7. (Call invocation^ terminates if the process invoked by (invocval 
invocation,) terminates. 

8. Buffered never terminates. 

The formal rules for termination follow: 

(Winvocval. Terminates invocval Skip) 
(V'invocval pi p2. 
Terminates invocval (pi ;; p2)  = 
(Terminates invocval pi)  A (Terminates invocval p2)) 

(Vinvocval pi p2. 

Terminates invocval (Orselect pi p2)   = 
(Terminates invocval pi)  A (Terminates invocval p2)) 

(Vinvocval b pi p2. Terminates invocval (if b pi p2)  = 
b  =>- (Terminates invocval pi)   |  (Terminates invocval p2)) 

(V'invocval outev. Terminates invocval (Send outev)) 
(Vinvocval received response. 

-■(Terminates invocval (Receive received response))) 
(V'invocval invocation. 

Terminates invocval (Call invocation) = 
Terminates invocval (invocval invocation)) 

(V'invocval buffering buf p. 
-■(Terminates invocval (Buffered buffering buf))) 
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Loopsback Loopsback tells whether a process eventually calls a named pro- 
cess, where the "name" is an invocation for a non-parameterized process and 
is an invocation type constructor for a parameterized process. Informally, 

the rules for looping back are the following: 

1. Skip never loops back. 

2. (pi ;; p2) loops back if pi terminates and p2 loops back. 

3. (Orselect pi p2) loops back if both pi and p2 loop back. 

4. (If b pi p2) loops back if pi loops back when b is true and p2 loops 

back when b is false. 

5. Send never loops back. 

6. Receive never loops back. 

7. Whether (Call invocation) loops back depends on a case analysis; see 

the comments following this list. 

8. Buffered never loops back. 

To handle both parameterized and non-parameterized processes consistently 
with HOL's typing requirements, we take the (polymorphic) type of the 
name of a process, pname, to be :' invoc+('par->'invoc),where 'par can 
be instantiated with an arbitrary process-parameter type.  If pname names 
a non-parameterized process, (ISL pname) is true, and if pname names a 
parameterized process, (iSRpname) is true.   (Call invocation) loops back, 
when pname is a non-parameterized process, if invocation = (OUTL pname) 
or (invocval invocation) loops back.   A similar set of conditions apply for 
parameterized processes. The formal rules for looping back follow: 

(\/invocval pname.-n(Loopsback invocval pname Skip)) 

(Vinvocval pname pi p2. 
Loopsback invocval pname (pi ;; p2) = 
(Terminates invocval pi)  A (Loopsback invocval pname p2)) 

(Vinvocval pname pi p2. 
Loopsback invocval pname (Orselect pi p2) — 
(Loopsback invocval pname pi)  A  (Loopsback invocval pname p2)) 
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(Vinvocval pname b pi p2. 
Loopsback invocval pname (if b pi p2)   = 
b =>• (Loopsback invocval pname pi)   |  (Loopsback invocval pname p2)) 

{^invocval pname outev. -"(Loopsback invocval pname (Send outev))) 
(V'invocval pname received response. 
-■(Loopsback invocval pname (Receive received response))) 

(V'invocval pname invocation. 
(Loopsback invocval pname (Call invocation))   = 

((ISL pname) =$■ (invocation =  (OUTL pname)) V 
(Loopsback invocval pname (invocval invocation)))   \ 
((Bparam. invocation = ((OUTR pname) param)) V 
(Loopsback invocval pname (invocval invocation)))) 

(V'invocval pname buffering buf p. 
-■(Loopsback invocval pname (Buffered buffering buf p))) 

BNPSP_rightform BNPSP_rightform, where BNPSP stands for "buffered, 
non-parameterized server process," is true of a function mapping invocations 
to processes and an invocation naming a non-parameterized process if this 
non-parameterized process is a server process. For instantiating the pred- 
icate Loopsback in the definition of BNPSP_rightf orm, non-parameterized 
processes are treated as having the parameter (—'one'—). For brevity, we 
do not give receivesall and reaction here, but they are straightforward. 
The predicate receivesall is true if it is applied to a PSL Receive process 
which receives arbitrary input events. The conversion rule reaction is ap- 
plied to an input event, a function mapping invocations to PSL processes, 
and a PSL process. If this process is a Receive, reaction returns the process 
that the Receive process changes into in response to the input event. 

(V'invocval nppname. 
BNPSP_rightf orm invocval nppname   = 
receivesall (invocval nppname) A 
(Winev. 
Loopsback 
invocval (INL nppname) (reaction inev invocval (invocval nppname)))) 
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NoWritesDown NoWritesDown is defined for a dominance relation, a level- 
assignment function for outputs, a security level assumed to be the level of 
some input, a function mapping invocations to processes, a process name, 
and a PSL process. It holds if, before the process ends with a call to the 
named process, the level of every output produced dominates the input level. 
Informally, the rules for always producing "up" outputs are the following: 

1. Skip satisfies NoWritesDown. 

2. (pi ;; p2) satisfies NoWritesDown if both pi and p2 satisfy it. 

3. (Orselect pi p2) satisfies NoWritesDown if both pi and p2 satisfy it. 

4. (If b pi p2) satisfies NoWritesDown if pi satisfies NoWritesDown when 
b is true and p2 satisfies NoWritesDown when b is false. 

5. (Send outev) satisfies NoWritesDown if the level of outev dominates the 

level of the input. 

6. Receive never satisfies NoWritesDown. 

7. (Call invocation) satisfies NoWritesDown if the invocation is a call to 
pname or if (invocval invocation) satisfies NoWritesDown. The cases 

are similar to those for Loopsback. 

8. Buffered processes never satisfy NoWritesDown. 

The formal rules defining NoWritesDown follow: 

(Vdom outlev level invocval pname. 
NoWritesDown dom outlev level invocval pname Skip) 

(Vdom outlev level invocval pname pi p2. 
NoWritesDown dom outlev level invocval pname (pi ;; p2) = 

(NoWritesDown dom outlev level invocval pname pi) A 
(NoWritesDown dom outlev level invocval pname p2)) 

(Vdom outlev level invocval pname pi p2. 
NoWritesDown dom outlev level invocval pname (Orselect pi p2) = 

(NoWritesDown dom outlev level invocval pname pi) A 
(NoWritesDown dom outlev level invocval pname p2)) 
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(Vdom outlev level invocval pname b pi p2. 
NoWritesDown dom outlev level invocval pname (If b pi p2) = 

b =4> (NoWritesDown dom outlev level invocval pname pi)   \ 
(NoWritesDown dom outlev level invocval pname p2)) 

(Vdom outlev level invocval pname outev. 
NoWritesDown dom outlev level invocval pname (Send outev) — 
(dom (outlev outev) level)) 

(Vdom outlev level invocval pname received response. 
-«(NoWritesDown 

dom outlev level invocval pname (Receive received response))) 
(Vdom outlev level invocval pname invocation. 

NoWritesDown dom outlev level invocval pname (Call invocation) = 
((ISL pname) =>• 
((invocation = OUTL pname) V 
(NoWritesDown dom outlev level invocval pname (invocval invocation))) 
((Bparam. invocation = ((OUTR pname) param)) V 

(NoWritesDown dom outlev level invocval pname (invocval invocation))))) 
(Vdom outlev level invocval pname buffering buf p. 
-■(NoWritesDown 

dom outlev level invocval pname (Buffered buffering buf p))) 

BNPSP_restrictive BNPSP_restrictive is a relation between a dominance 
relation on security levels, a function mapping input events to security levels, 
a function mapping output events to security levels, a function mapping 
invocations to processes, and an atomic invocation. 

(Vdom inlev outlev invocval nppname. 
BNPSP_restrictive dom inlev outlev invocval nppnamel = 

(BNPSP_rightform invocval nppname) A 
(NoWritesDown dom inlev outlev invocval nppname)) 

2.4.2.5    Example 

This section presents an example using our techniques to specify a process 
and prove it secure. The example is a sorter for a token ring station. It 
sends out signals showing the receipt of the token or a message from the host 
station and sends on messages from other stations. 
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We first define input events, output events, sorter invocations, and sorter 
PSL processes. For generality, we let the types of token ring stations and 
message contents be given by type variables. There are two invocations, one 
for the sorter itself and the other for giving the sorter's response to input 
events. 

val SortInEv_Def = 
define_type{name = "SortInEv_Def", 

type_spec = 
'SortlnEv = All of bool #  'station # 'station #  'data', 

fixities =  [Prefix]}; 
val SortlnEv = ty_antiq(==':('station,'data)SortInEv'==); 
val SortOutEv_Def = 
define_type{name = "SortOutEv_Def", 
type_spec = 

'SortOutEv = Others of bool #   'station #   'station #  'data  I 
Host of one   I   Tokens of one', 

fixities =   [Prefix,Prefix,Prefix]}; 
val SortOutEv = ty_antiq(==':('station,>data)SortOutEv'==); 
val SortInvoc_Def = 
define_type{name = "SortInvoc_Def", 
type_spec =  'Sortlnvoc = Sorter  I  Sortlnput of "SortlnEv', 
fixities =  [Prefix.Prefix]}; 

val Sortlnvoc = ty_antiq(==':('station,'data)Sortlnvoc'==); 
val SortProc = 
ty_antiq(==': ("SortOutEv,"SortlnEv,"Sortlnvoc) process'==) ; 

Now we introduce a constant for an unspecified function assigning security 
levels to token ring stations, a constant for the host station, and a constant for 
the lowest security level. Again for generality, we let the type of security levels 
be given by a type variable. With these, we define the functions assigning 
security levels to input and output events. For input events, the token is 
assigned systemlow and other messages are assigned station-level of the 
station that sent them. For output events, messages passed on from another 
station are assigned the level of the message's sender, signals showing receipt 
of a message from the current station are assigned the level of the current 
station, and signals showing receipt of the token are assigned systemlow. 

new_constant{Name="station_level",Ty= ==':'station->'level'==}; 
new_constant{Name="this_station",Ty = ==':'station'==}; 
new_constant{Name="systemlow",Ty= ==':'level'==}; 
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new_recursive_d.efinition{name="Sort IlLevel", 
fixity=Prefix, rec_axiom=SortInEv_Def, 
def= let val SortInLevel= —'SortlnLevel:"SortInEv->'level'— in 

—'("SortlnLevel (All tokenflag sender receiver data)  = 
(tokenflag => systemlow  I   (station_level sender)))'— end}; 

new_recursive_definition{name="SortOutLevel", 
fixity=Prefix, rec_axiom=SortOutEv_Def, 
def= let val SortOutLevel= —'SortOutLevel:"SortOutEv->'level'—; 

val station_level= —'station_level:'station->'level'—; in 
—'("SortOutLevel (Others tokenflag sender receiver data)  = 

("station_level sender)) A 
("SortOutLevel (Host x)  =  ("station_level this_station)) A 
("SortOutLevel (Tokens x)  = systemlow)'— end}; 

We define the dominance relation on security levels as the reflexive- 
transitive closure of an unspecified basic order on them, define the process- 
valued functions interpreting the invocations, and define the function map- 
ping the invocations to their interpretations. The process sorter, inter- 
preting Sorter, waits for an arbitrary input event and invokes Sort Input 
on that event. The function sortlnput, interpreting Sortlnput, sends event 
(Tokens (—'one' —)) after receiving the token, sends event 
(Host (—'one'—)) after receiving a message from the host station, sends 
an event passing on the received message otherwise, and then calls the sorter 
process to wait for the next input. 

new_constant{Name="basic_order",Ty= ==': 'level->'level->bool'==}; 
new_definition("dom", 

let val dom = —'dom:'level ->  'level -> bool'— in 
—'("dom x y)  = RTC basic_order x y'— end); 

new_definition("sorter", 
—'sorter:"SortProc =  (Receive (\ev:"SortlnEv. T)  Sortlnput)'—); 

new_recursive_definition{name="sortInput", 
fixity=Prefix, rec_axiom=SortInEv_Def, 
del = 
let val sortlnput = —'sortlnput:"SortlnEv -> "SortProc'— in 
—'("sortlnput  (All tokenflag sender receiver data)  = 

(If tokenflag 
(Send (Tokens one)) 
(If   (sender = this_station) 
(Send  (Host one)) 
(Send  (Others tokenflag sender receiver data))))   ;; 

(Call Sorter))'— end}; 
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new_recursive_definition{name="SortInvocval", 
fixity=Preiix, rec_axiom=SortInvoc_Def, 
del = 
let val SortlnvocVal= —'SortlnvocVal:~SortInvoc->~SortProc'—in 
—'('SortlnvocVal Sorter = sorter)  /\ 

("SortlnvocVal (Sortlnput inev)  =  (sortlnput inev))'— end}; 

Now we give the proof that the sorter is secure, omitting the trivial proof 
that the dominance relation on levels is transitive as it was defined to be. 
For brevity, we do not give our specialized tactics here (see [8]), but they are 
straightforward; they expand out definitions, do case splits on possible input 
events, and apply structural-complexity rewrite rules until all PSL constructs 
and all security predicates defined in terms of them disappear. The only 
subgoals not proved automatically are "all outputs are up" conditions that 
all follow from the reflexivity of the dom relation. 

val BNPSP_restrictive = 
— 'BNPSP_restrictive: 

('level ->'level->bool) ->  (~SortInEv->'level) -> 
(~SortOutEv->'level) ->  (~SortInvoc->"SortProc) --> 
"Sortlnvoc -> bool'—; 

g('~BNPSP_restrictive 
dom SortlnLevel SortOutLevel SortlnvocVal Sorter'); 

use "/home/projects/roraulus/chin/new/romtactics.sml"; 
add_definitions_to_sml "-"; 
e(BNPSP_restrictive_TAC THEN 

ASM_REWRITE_TAC  [SortOutLevel,  SortlnLevel]  THEN 
MATCH_ACCEPT_TAC dom_reflexive); 

The three-line proof here is as simple as the intuitive reason why the sorter 
is secure: Every output has the same level as the input that causes it. In 
a parameterized-process example comparing our techniques to the earlier 
approach of using type coercions and impure tactics, a "high water mark" 
file system, our techniques produced a clearer, more securely founded proof 
that was shorter by roughly a factor of four [8]. 

2.4.2.6    Conclusions 

We have shown that making HOL object-language definitions of a process 
specification language and security properties sufficient for guaranteeing se- 
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curity of buffered server processes is both possible and practical, and seems 
preferable to an earlier, meta-level approach. In doing so, we have developed 
techniques for imposing strong typing restrictions on security specifications 
and effectively defining processes in terms of process-valued functions. 

Possible future work includes strengthening our security conditions to 
make them equivalent to the conditions identified by Rosenthal [50] for es- 
tablishing state restrictiveness, and then constructing a HOL proof that these 
conditions guarantee state restrictiveness for buffered server processes. 
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Chapter 3 

Theories of Integrity 

In this chapter we present the formal theories of integrity used in Romulus. 
Computer system integrity is a catch all phrase to describe the assurance 
that data is protected from unauthorized modification or destruction. (For a 
general discussion of integrity see [33].) Our discussion of integrity is divided 
into two general areas. In section 3.1 we consider some selected models of 
integrity. In section 3.2 we consider authentication protocols, a standard 
technique for establishing the correctness of authorization. 

3.1     Integrity Models 

In this section we present a collection of formal properties that are meant 
to formalize various notions of integrity for computer systems. The word 
"integrity" is used to mean many things in the software community, from very 
specific meanings like consistency of replicated data in a distributed database 
to very general meanings amounting to "correct functioning". (For a general 
discussion of integrity see [33].) We have not tried to cover all possible 
meanings of the word "integrity". We have focussed on (1) formalizing some 
of the meanings of integrity that are currently used in the computer security 
community, such as the Biba model and the Clark-Wilson model, and (2) 
doing some original work on meanings of "integrity" that are relevant to 
current concerns in the distributed computing community, such as distributed 
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data integrity and distributed authentication. 

In section 3.1.1 we give some simple requirements on theories of integrity, 
including some informal meanings and some threats to integrity that we want 
our theories to capture. In section 3.1.2 we describe some techniques for en- 
suring some of the meanings of integrity that we want our formal theories 
to deal with. In section 3.1.3 we describe the way we will formally repre- 
sent systems with integrity requirements as mathematical objects. In section 
3.1.4 we present the formal properties we have developed to capture vari- 
ous aspects of integrity. In section 3.1.5, we give a semiformal example we 
have formulated to help drive the development of our formal theories. In 
Appendix A we give some technical details of a construction associated with 

one of our integrity theories. 

3.1.1     Requirements of Integrity Theories 

In order for our theories of integrity to be reasonable, they must meet two 
requirements. First, they must capture certain informal notions of integrity, 
in the sense that systems that do not meet those informal notions of integrity 
should fail to meet one of our theories, and conversely, that systems that 
satisfy those informal notions of integrity should satisfy one of our theories. 
Second, our theories of integrity must capture certain threats to integrity, in 
the sense that systems which do not include adequate countermeasures to 
those threats should fail to satisfy one of our theories. 

The informal meanings of integrity that we mean to capture with our 

theories include the following: 

• Data is trustworthy, that is, the data that users get from the system is 

reliable. 

• Users cannot spoof the system. 

• Data cannot be corrupted, i.e. modified in inappropriate ways. 

• Certain operations are accessible only to authorized users. 

The threats to integrity we mean to capture with our theories include the 

following: 
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• Distributed information management and concurrency control prob- 
lems: concurrent updates, concurrent access, interleaving of atomic 
parts of nonatomic transactions. 

• Trojan horses and viruses 

• Modification in unprotected media (for example, transmission media) 

• Inadequate authentication 

3.1.2    Techniques for Ensuring Integrity 

In this section we describe some of the techniques for ensuring integrity that 
we want our formal theories to deal with, in the sense that some of our formal 
theories may be satisfied by the proper use of these techniques. 

3.1.2.1    Locks and Protocols 

First of all, we wish to be able to deal with some of the techniques that 
are used to ensure consistent management of distributed data. Specifically, 
we wish to be able to represent and prove systems that use data locks and 
agreement protocols. A data lock is a simple primitive for controlling the 
order in which accesses are made to a piece of data. At any given time, a 
piece of data is either locked or unlocked. A process may attempt to lock 
a piece of data at any time. If the data is currently not locked, it becomes 
locked, and the process proceeds. If the data is currently locked, the process 
is suspended pending unlocking. When a piece of data is unlocked, if there 
are any processes waiting to lock it, one of them is chosen according to some 
algorithm, and that process locks the data and proceeds. Locks on data 
can be used to ensure that all the atomic actions associated with a given 
transaction occur and finish before those associated with another transaction 
start. 

Agreement protocols are another technique for ensuring consistent ac- 
cess to distributed data. Agreement protocols are protocols which exchange 
messages between remote sites to ensure that the various sites agree on a 
consistent picture of the distributed data in the system. We will see a simple 
example of this in section 3.1.5. 
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3.1.2.2    Type Enforcement Mechanisms 

Type enforcement mechanisms can be used to ensure conditions like those 
in the Clark-Wilson model, for example, that certain kinds of data objects 
can only be accessed by certain operations. By making those data objects 
elements of a special type, and making the trusted operations on them the 
sole operations on that type, ordinary type-checking will enforce the integrity 

requirements. 

3.1.2.3    Cryptographic Techniques 

Another group of techniques we wish to address with our theories is tech- 
niques based on the use of cryptography. For readers who are not not familiar 
with these techniques, we include the following short tutorial on crypto- 
graphic techniques for ensuring integrity. 

Information processing and communication environments are constantly 
under threat of adversaries who attempt to eavesdrop (passive attacks) and 
tamper (active attacks) with information in storage and in transit. In passive 
attacks, adversaries try to deduce sensitive information by observation, while 

in active attacks, they try to modify or forge information. 

Unless in an isolated environment where physical protection against such 
attacks is possible and available, system integrity (including information se- 
crecy and integrity) is best protected by cryptographic measures, such as en- 
cryption and digital signature, which use cryptographic algorithms together 
with keys. The success of these cryptographic measures relies solely on the 
keys being kept secret so malicious parties cannot obtain the keys by legiti- 

mate or illegitimate means. 

This section gives a brief introduction to the cryptographic methods for 
assuring integrity. First, the methods themselves are introduced. We then 
examine how they are used to provide information secrecy and integrity. 
After that, authentication and key distribution, which are integral parts of 
the application of cryptographic methods, are introduced, pending a further 

discussion in section 3.2. 
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Cryptographic Methods in a Nutshell The basic cryptographic mech- 
anisms are one-way functions (including one-way hash functions) and cryp- 

tosystems (both conventional cryptosystems and public-key cryptosystems). 
They are the basis on which more complicated cryptographic mechanisms are 
built. We will not specifically discuss these more complicated mechanisms, 
because they are all built out of one-way functions and cryptosystems. 

One-Way (Hash) Functions A one-way function is also known as a 
modification detection code [29], a fingerprint [46], a one-way cipher [62], a 
message digest algorithm [47], and by other terms. Needham first introduced 
the idea of a one-way cipher in a login procedure for the Cambridge multiple- 
access system [62]. Diffie and Hellman gave a more formal definition of a 
one-way function [13]. Merkle gave the first definition of a one-way hash 
function. He also made a distinction between a weak and a strong one- 
way hash function [28]. For brevity, we only introduce strong one-way hash 
functions, since their range of application is the widest. Note that the role of 
hashing is the traditional one — to reduce the size of the data (in this case, 
the data to be encrypted). 

A hash function / is a strong one-way function if (1) given f(x), it is 
computationally infeasible to compute x; (2) given x and f(x), it is infeasible 
to compute y such that x ^ y but f{x) = f(y); (3) it is infeasible to compute 
a pair of inputs x and y such that x ^ y but f(x) — f(y). 

Cryptosystems A cryptosystem is also commonly referred to as an 
encryption system. It includes an encryption algorithm and a decryption 
algorithm. It can be used in various ways, including as a one-way hash 
function. 

An encryption algorithm E represents a family of functions. An encryp- 
tion key k uniquely determines a particular member of the family (except 
perhaps in the case of randomized encryption, which will not be addressed 
here), denoted as E(k,-). There is another corresponding decryption D, 
which is also a family of functions. For a key, the uniquely determined de- 
cryption function is the inverse of the encryption function that is determined 
by the same key, i.e. D(k,E(k,-)) = 7, where I is the identical function. In 
other words, for any x and k, D{k1E{k,x)) = x. 
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E has the property that given {(xilE(k,xi) | i = l,...,n}, E(k,x) and 
?/, it should be impossible or computationally infeasible for any party who 
does not possess k to compute x or E(k,y). 

The encryption algorithms existing today fall into two categories [13]. 
One is called the conventional encryption algorithm, typified by the Data 
Encryption Standard (DES) [54]. Here, the encryption key is the same as 
the decryption key, so the originator and recipient of an encrypted message 
must share the same key. The second one is called public-key algorithms. 
Here, each party has a pair of corresponding keys, a public key and a private 
key. The public key can be known to anyone while the private key is never 
published and is known only to the owner. An originator will use the recipi- 
ent's public key to encrypt a message and the recipient will use its private key 
to decrypt it. The most widely studied and used public-key algorithm is the 
RSA scheme [48]. The RSA scheme also has a property that if an originator 
encrypts a message with its private key, then anyone can verify the identity of 
the originator by using the corresponding public key to decrypt the message. 
This particular usage constitutes a digital signature scheme, the encrypted 
(or signed) message being the signature. Although digital signature schemes 
are usually based on public-key systems, they could also be built on top of 
conventional systems. 

A public-key system offers some advantages over a conventional system. 
For example, suppose that two communicating parties are far apart physically 
and only conventional encryption is used. If one party is compromised, all 
secret information will be assumed to be known to malicious parties, so it is 
necessary to immediately update the key the two parties have been using. If 
the other party is on a satellite, the update would not be as easy as asking a 
user to go to the administrator's office and choose a new password. If public- 
key technology is used, it is merely necessary to inform the satellite (securely) 
that someone's public key has been compromised. It is never necessary to 
change the satellite's public key because no one else ever knows its private 
key. Thus damage is confined locally. 

To use the public-key technology, several mechanisms must be available. 
One is the generation of quality public and private key pairs. Another is a 
registration of public keys maintained by a trusted authority. However, it is 
widely known that public-key encryption algorithms are generally slower and 
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more costly than conventional encryption algorithms. For example, DES is 
much more efficient than RSA in routinely encrypting large amounts of data. 
Fortunately, it is feasible for the parties to use their public-key technology to 
first establish a session key for each conversation session, using a Needham- 
Schroeder style protocol, and then use the session key to encrypt subsequent 
communication. Such a hybrid scheme not only combines the best of the 
two types of encryption schemes but also has an added security, because now 
each session uses a different key and the public keys are used much less often, 

so it is much harder to break them. 

A basic encryption algorithm works on a certain length of input (plain- 
text). For example, DES operates on a block of 64 bits. It is not difficult to 
extend the basic algorithm to handle longer plaintexts. For example, DES 
can be used in a CBC mode [54] which uses a chaining method to encrypt 
arbitrarily long plaintexts. A block in RSA is typically around 512 bits, and 
a similar chaining method can be used there too. 

Assuring Information Secrecy Given an encryption algorithm and a 
key, a plaintext x can be transformed into a piece of ciphertext E(k,x). 
Given the ciphertext, the intended recipient who possesses the relevant secret 
information (for example, the key) can perform a decryption on the ciphertext 
to retrieve the plaintext, since D(k,E(k,x)) = x. 

According to i?'s property, given a number of corresponding pairs of plain- 
texts and ciphertexts, and a particular ciphertext E(k,x), it should be im- 
possible or computationally infeasible for any party who does not possess 
the key k to compute the corresponding plaintext x. Thus encryption helps 
to protect the secrecy of the plaintext. An encryption algorithm with this 
property is resistant to so-called known-plaintext attacks. 

There are more types of attack against which the strength of an encryp- 
tion can be evaluated. The weakest is probably the ciphertext-only attack. 
A stronger one is the chosen-plaintext attack. A good encryption algorithm 
should be resistant to all such attacks. For example, DES and RSA have 
been extensively subjected to such attacks and no significant weakness has 
been reported. Note that generally the longer the key, the more difficult it is 
to break a cryptosystem. DES's key length is 64 bits, which is regarded as 
sufficient for some applications and insufficient for others. RSA is typically 
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used with keys of around 512 bits, though there is no theoretical limit on the 
key length. 

Assuring Information Integrity Techniques for authenticating texts have 
existed in the literature for many years. Traditionally, these methods have 
depended upon encryption. Recall the property of encryption that without 
knowing key k, it is infeasible to compute E(k,y) for an arbitrary y. There- 
fore, if the ciphertext is modified in any way, decryption with the same key 
will not recover the original plaintext. Most probably, such a modification 
will destroy the structure of the plaintext, so that decryption will produce 
an illegible text. Thus any modifications to the ciphertext can be detected, 
and integrity of the plaintext is provided in the sense that forgery is always 
detectable. 

Integrity can also be protected by other means. For example, for any text 
x, one could compute a checksum/(x), where / is a one-way (hash) function. 
Now anyone who possesses x' and f{x) can easily verify whether x' is a copy 
of x or not. Note here that of course the verifier has to compare with the 
original checksum, so the integrity of the checksum needs to be protected, 
by encryption perhaps. Now if / is also a hash function, one needs only to 
encrypt the checksum, which is significantly shorter than the original text x. 

Methods for authenticating texts based upon pseudorandom functions are 
also useful. Informally, a pseudorandom function / has the property that if 
/ is unknown, it is computationally infeasible to produce f(x) for any x with 
a probability of success greater than random guessing, even after having 
seen several other (x', f(x')) pairs. Thus, given a family of pseudorandom 
functions {fk}k t K, indexed by keys from some key space )C, one who possesses 
the secret key k can compute fk{x). Later one can authenticate text x by 
recomputing this function and compare the result with the earlier value [45]. 
In practice, this use of pseudorandom functions is usually approximated by 
defining fk(x) = g(k,x), where g is a one-way hash function, because several 
efficient implementations of one-way hash functions exist (for example, [47]). 

Authentication and Key Distribution Authentication and key distri- 
bution is the subject of a major Romulus effort, which is described in sec- 
tion 3.2. 
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Some preliminary arrangement has to be made before encryption or sig- 
nature signing can begin. In the case of conventional encryption, the parties 
wishing to communicate must first establish a shared secret key among them- 
selves. In the case of public-key encryption, each party has to choose its pair 
of keys and register the public key at a trusted place, for example, a key 
directory managed by a trusted authority. This phase of the operation is 
generally done via a key distribution protocol, sometimes also known as an 

authentication protocol. 

The process to arrange this is called key distribution. Needham and 
Schroeder described the principles for key distribution [34]. The basic idea 
is to establish a trusted third party — an authentication server or key dis- 
tribution server — whose responsibility includes initial key assignment and 
subsequent key changes. 

Initially, each user must acquire a key in a secure fashion. In particular, 
a user can choose or be assigned a suitable password as in a typical system. 
Alternatively, a user can use a so-called "smart card". It is a card of the size 
of a credit card, which stores important information, some of which is difficult 
to remember for a human user, such as a very long key. The card can only 
be used in conjunction with a Personal Identification Number (PIN). Each 
system component also securely receives a key, for example, at booting time, 
to communicate with the key distribution server. This initial set up probably 
involves human intervention. Afterwards, parties who wish to communicate 
with each other must ask the server to set up session keys for them through a 
key distribution protocol or an authentication protocol [5, 11, 34, 35, 44, 55]. 

The advantages of this arrangement are manifold. The server is trusted 
to generate and distribute quality keys so that cryptographic attacks on weak 
keys are less likely to succeed. Session keys are changed frequently so that 
other forms of cryptographic attack, such as known-plaintext attacks and 
dictionary attacks, are impossible or very difficult. Each party does not need 
much secure storage to communicate to a large number of partners. 
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3.1.3     System Representations for Integrity 

3.1.3.1 State Machine Representation 

The way we will represent systems with critical integrity requirements is 
based on the representations of systems used in the restrictiveness model, 
namely, state machines that interact with their environment by exchanging 
events. The relevant definitions are given in section 2.1.2.1 and section 2.1.3. 

3.1.3.2 Representing Probabilistic Properties 

The principal extension we will make to the state machine framework for pur- 
poses of integrity analysis is to incorporate probabilistic information about 
the machine's execution into the model. This is relevant to integrity for two 
reasons. First, we need probabilistic information in order to do a nontrivial 
analysis of systems which use encryption (see section 3.1.4.4 for more detail). 
Second, we eventually want to be able to analyze the reliability of data from 
a probabilistic point of view, for example, determining probabilistic degrees 
of confidence in data. 

The simplest way to incorporate probability would be to attach probabili- 
ties (real numbers between 0 and 1) to state transitions, with the caveat that 
for each state s, the sum of the probabilities for all the transitions from s to 
another state, accompanied by some event, is 1. We will call such an assign- 
ment a probabilistic state transition relation (or just "probabilistic transition 
relation" for short). In fact, this is almost what we will do, with a slight 
modification. 

The problem with the above simple approach is that it requires that we 
determine probabilities for all state transitions, including state transitions 
accompanied by inputs. The probabilities of inputs, however, are not deter- 
mined by the system being designed or analyzed, but by the environment. 
An assignment of probabilities to input transitions should not be part of a 
system's design. 

We can fix this problem in the following simple way: instead of defining 
a single probabilistic transition relation, we define a set S of such relations, 
and specify that the probabilistic transition relation that the system actu- 

79 



ally obeys is one of those in S. In the ideal case, the set S will place no 
restrictions on the probabilities of input transitions. In other words, for 
every assignment A of probabilities to input transitions, there will a proba- 
bilistic transition relation Re S which agrees with A. In practice, however, 
we may need to specify certain restrictions on how the environment behaves. 
These restrictions can be expressed by choosing the set S so that only certain 
assignments of probabilities to input transitions occur in S. 

To illustrate how the set S might be defined, we will give a simple ex- 
ample. We will first describe the example informally, and then give a math- 
ematical description in English. The system we have in mind is a system 
which has two inputs, "0" and "1". When the system receives an input, it 
stores the value input. At any given time, the system can probabilistically 
choose either to emit the value it has stored, or 1 — the stored value. We 
suppose that it chooses to output the value stored r times more frequently 
than it chooses to output the opposite. 

We can represent this system by a state machine with 3 states: "0", "1", 
and "null" ("null" being the state in which the system has no last input to 
remember, either because none has occurred yet or because it has made an 
output). The initial state is "null". The set S is the set of all probabilistic 
transition relations T such that: 

1. T assigns probability 0 to any transition where the accompanying event 
is an input i (0 or 1) and whose final state is not the same as i. (In 
other words, input transitions must change the state to remember what 

was input). 

2. T assigns probability 0 to any internal transition which is not a null 
transition. (In other words, the state can only change by external 
transitions). 

3. T assigns probability 0 to any output transition whose first state is 
"null". (In other words, outputs can only happen from a state in which 
the machine is remembering some previous input value). 

4. T assigns probability 0 to any output transition whose final state is not 
"null". (In other words, outputs clear the value being remembered by 
the machine). 
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5. The probability T assigns to an output transition from a state s ^ null 
to state "null" with output s is r times the probability T assigns to the 

same transition with output 1 — 5. 

This set of probabilistic transition relations captures the informal spec- 
ification of the machine, including the relative probability of emitting the 
opposite of the value that was input, but does not bias the probabilities of 
various input events. There are T's in S in which nothing but O's are input, 
where nothing but l's are input, where O's and l's are input according to 
some distribution, etc. 

For a given T e S, we can define the probability of a given finite trace 
of the machine. This probability is just the product of the probabilities 
of each of the transitions in the finite trace. This can in turn be used to 
define a probability measure for the complete traces. A probability measure 
is a function which takes certain sets of complete traces and returns the 
probability of a complete trace being in that set. Since the definition of this 
probability measure is a bit technical, we will defer it to an appendix. Proofs 
of probabilistic properties of a probabilistic state machine are essentially 
proofs that for every TeS, a certain property holds of the probability measure 
generated from T. The definition of a probability measure, and a number 
of classical results about probability measures, can be found in [53]. We 
will discuss probability measures again in section 3.1.4.4 when we define 

probabilistic inference. 

3.1.4    Formal Integrity Properties 

In this section we describe the formal theories we have developed to express 
our informal notions of integrity. In section 3.1.4.1 we describe a simple 
version of restrictiveness with integrity levels instead of security levels. This 
model stands in relation to restrictiveness as the Biba integrity model stands 
to the Bell-LaPadula model of security. In section 3.1.4.2, we describe a 
formal theory of Clark-Wilson-like requirements that certain data only be 
accessed by certain operations, and that certain operations only be invoked 
by certain users. In section 3.1.4.4, we describe a probabilistic version of 
deducibility security which is a first step towards being able to analyze critical 
systems which use encryption. 
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3.1.4.1    Restrictiveness with Integrity Levels 

The Biba integrity model is the dual of Bell-LaPadula, that is, it can be got- 
ten by taking the Bell-LaPadula model and (1) replacing security levels with 
integrity levels, and (2) turning the order relation around in the simple and 
*-properties. Similarly, we can take the dual of restrictiveness by replacing 
security levels with integrity levels and turning the order relation around, 
that is, replacing "high" with "low" everywhere and making the low security 
projection into the high integrity projection. This makes a Biba-like integrity 

policy which requires that low integrity information cannot flow into high in- 
tegrity information, even through covert channels. Like Biba, it has the 
drawback that, unlike security levels, there are no standard integrity classifi- 
cations or categories which experience has shown captures important degrees 
of integrity or trustworthiness. However, given the more general paradigm for 
representing information in restrictiveness, we could use integrity categories 
to control authorization.1 For example, if only certain users were allowed to 
modify certain files, use certain resources, or use certain devices, the various 
privileges could be equated with integrity categories, and restrictiveness for 
integrity would require that individuals who do not have the privilege (cate- 
gory) would not be allowed to affect the appropriate objects. We generalize 
this use of restrictiveness to limit authorization in the next section. 

3.1.4.2    Authorization Requirements Stated as Restrictiveness 

Many integrity requirements in Clark-Wilson are requirements that various 
activities can only take place if authorized, and can only take place via a 
certain limited interface (trusted operations). There are also "metaautho- 
rization" requirements that certain authorization is required to change au- 
thorization. 

We can formalize some requirements of this sort by an application of a 
form of restrictiveness. Suppose a certain system has a requirement that 
a certain data item D can only be accessed by a certain operation 0. We 
formalize this requirement in the following steps. First, we define the values 
that D can have.  Next, we define a notion of the "state" of an invocation 

1In fact, the categories of the XTS-2000 are being used for this very purpose in the 
design of the WWMCCS/CAT guard for MAC 
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of 0. This state will include things like the parameters to the invocation, 
internal variables of O, any other parts of the system state which O may 
affect, etc. Next, we define how 0 acts on D as a state machine (which we 
will call the 0/D state machine) whose states are (1) a value for D, and (2) a 
collection of states of invocations of 0. The 0/D machine will have its own 
transition relation which will define how invocations of 0 act on D. The 0/D 
machine may have events of the system state machine as part of it. Finally, 
we define a projection function proj which takes a state of the system and 
returns a state of the 0/D state machine. We treat this projection function 
as the "low" projection in restrictiveness, and we call an input or output 
"low" only if it is an event of the 0/D state machine. All other inputs and 
outputs are "high". 

We can now define a second transition relation on the O/D machine, 
which it "inherits" from the system state machine. This transition function 
is defined as follows: a transition from state s of the O/D machine to state 
s' of the 0/D machine with event e is inherited from the system machine 
if and only if there exist states t and t' of the system state machine and an 
event e' such that: 

1. the system machine can make a transition from t to t' accompanied by 
event e' 

2. proj(t) = s and proj(t') = s' 

3. either (1) e = e' or (2) e' is not an event of the 0/D machine and e is 
the silent event. 

We formalize the requirement that all modifications of D are performed 
by 0 as: the transition relation the O/D machine inherits from the system 
state machine is the same as the state transition of the O/D machine possibly 
with some extra null transitions added. 

This formal statement captures the authorization requirement because 
every change in the value of D that can be made by the system must cor- 
respond to some behavior of the O/D state machine, and the 0/D state 
machine represents only the actions of invocations of O. Thus, all modifi- 
cations of D by the system must correspond to modifications made by an 
invocation of O. 
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This general approach can also be used to formalize requirements that 
invocations of certain operations 0 can only be initiated through certain 
interfaces / (for example, the system manager's interface, or the system 
security officer's interface). This can be done by associating / with the set 
of events that correspond to inputs to and outputs from /. We then define 
a state machine (which we will call the 0/1 machine) for that interface 
whose state includes a set of states of invocations of 0, and whose events are 
exactly those associated with / and 0. We then define a projection function 
which takes a state of the system machine and returns a state of the 0/1 
machine. As in the case of the 0/D machine, we define a transition relation 
that the 0/1 machine inherits from the system machine, and require that 
the inherited transition relation be the same as the 0/1 transition relation 
except for null transitions. As in the case of the 0/D machine, this formal 
statement requires that all invocations of 0 in the system must correspond to 
invocations that take place in the 0/1 machine alone, and so must correspond 
to operations initiated through the / interface. 

Formal requirements of the above sort are the first step towards a formal 
theory of the sort of integrity dealt with by the Clark-Wilson model. In 
particular, most of the so-called "enforcement rules" of the model are of one 
of the above forms. We have not tested formal requirements of the above 
types in examples yet. We are, however, currently formulating an operating 

system model which we will apply these requirements to. 

3.1.4.3    Belief Models of Integrity 

In some sense, integrity levels, integrity categories, trusted interfaces to data, 
and authorization rules are all trying to accomplish a more high-level goal, 
namely, the goal of ensuring that the data contained in the system is an accu- 
rate reflection of reality, whether it is the reality of the system itself or of its 
environment. Integrity levels attempt to keep "high integrity" data (which 
presumably is a very good reflection of reality) from being "tainted" by "low 
integrity" data. Authorization rules attempt to keep data "untainted" by 
the manipulations of individuals who cannot be trusted to maintain its cor- 
respondence with reality. Trusted interfaces attempt to ensure that no one, 
trustworthy or not, can make certain accesses to data which might damage 
its reliability. 
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In this section we describe a general approach to formalizing the high- 
level goals of such measures directly, that is, integrity requirements of the 
form: 

"The system only tells you true information." 

or, to put it another way, 

"The beliefs you hold based on what the system has told you are 
always true." 

We will begin by formalizing some of the notions in terms of which the 
informal definition is stated. 

What is meant by a "belief" that is held by some entity within or external 
to the system? A user of an information system might believe things like: 

1. that a certain variable, file, or field of a database has a certain value v 

2. that some external entity e made certain inputs i at some point in the 
past 

3. that some other entity has received certain outputs o 

All of these beliefs can be expressed in the form "the user believes that 
the finite trace he is in is in a certain set S.v In case 1 above, S is the set of 
all finite traces t such that the variable, file, or field has value v at the end of 
t (i.e. in the state at the end of t). In case 2 above, S is the set of all finite 
traces t such that e has made inputs i in the course of t. In case 3 above, S 
is the set of all finite traces t such that outputs o have occurred in t. We will 
therefore formalize beliefs as sets of finite traces. 

What does it mean for the system to "tell" an entity something? First 
of all, the "something" told will be a belief, as defined above. Thus, the 
system is always "telling" an entity "Believe £"'. How does the system tell 
an entity such a thing? If the entity is external to the system, it tells it by 
a certain pattern of outputs which the entity interprets as a belief. If the 
entity is internal, it may be told by internal communication events.   If the 
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entity being "told" is not a separate process at all, but it is just part of the 
state of the system, its beliefs will be some function of that part of the state. 
For example, a file might be modeled simply as a component of the state of 
the entire system. The data in the file may be interpreted as beliefs, and 
the system writing into the file may be interpreted as the system "telling" 
the file "entity" something. This way of telling an entity something would 
be reflected simply as a change in system state which affects the component 

which represents the entity. 

Whether an entity is told something by outputs, internal communication 
events, or state changes, there is a function which takes a finite trace of 
the system and returns a belief about the system for a given entity. (One 
might think that it would be more general to return a set of beliefs about 
the system, but a set of beliefs can always be replaced by the conjunction 
of those beliefs into a single belief). Telling the entity something just means 
making a transition which changes the value of this function, that is, which 
changes the entity's beliefs. 

Finally, what does it mean for an entity's beliefs to be true? Suppose B 
is the function which takes a finite trace of the system and returns the belief 
that that entity has at the end of the trace. Given a finite trace of the system 
t, B(t) is true if and only if t e B(t). 

We are now ready to formally define what we mean by a true belief 
integrity policy for a system, and define when the system satisfies such an 
integrity policy (the definition of integrity). 

Definition 1: Given a state machine, a belief about the system is a set 
of finite traces of the system. A belief function for the system is a function 
which takes a finite trace and returns a belief about the system. A true belief 
integrity policy (or true belief policy for short) for the system is a set of belief 

functions. 

D 

Definition 2: Given a state machine and a true belief policy P for the 
state machine, the system is said to satisfy the policy if and only if for every 
B eP and every finite trace t of the system, t e B(t). 

D 

We will often state true belief policies in the following way: 



• 

• 

We define a language L of statements in which an entity's beliefs may 
be expressed. 

We describe a semantics for L which specifies, for a given statement S 
in L, whether S is true for a given finite trace of the system. 

• We describe the belief function for an entity by giving a definition of 
the set of statements of L that the entity believes by recursion on finite 
traces. In other words, we specify (1) what set of statements the entity 
believes initially, and (2) how the set of statements the entity believes 
changes in response to each possible state transition of the system. 

If we can define the true belief policy using the above approach, it may be 
possible to prove the true belief policy for the system by induction on finite 
traces. In other words, we would show that (1) each entity's initial beliefs 
are true, and (2) if each entity's beliefs are true before a state transition, 
they are all true afterwards. 

We will see examples of true belief policies in section 3.1.5. We will also 
see an example of a policy which is stated using the notions of true belief 
policies, but which does not have the form of a true belief policy. 

3.1.4.4    Probabilistic Inference 

In this section we describe a probabilistic version of the deducibility security 
model, and give an example to show how it can be applied. Before we give the 
definition of probabilistic deducibility security, we should mention why we are 
looking at probabilistic inference and security under the heading of theories 
of integrity. The reason is that many methods for ensuring integrity, such as 
passwords for authentication integrity and cryptographic methods, rely on 
certain keys remaining secret. It is generally not possible to protect these 
keys absolutely, but the methods for discovering them all use probabilistic 
inference. For example, codebreaking relies on regularities in the plaintext 
that are only probabilistic, and the breaking of these codes relies on guesses 
made on the basis of probabilistic reasoning using these regularities. In order 
to ensure certain kinds of integrity, therefore, it is necessary that we be able 
to analyze certain kinds of security, and that our analysis take probabilistic 
inference into account. 
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In nonprobabilistic deducibility security (as described in [56]), a secure 
system is described by a collection of possible worlds, i.e. possible execution 
histories of the system, and a set of information functions which represent the 
views of the system seen by various users and the information which should 
not be deducible by various users. A user with view v tries to deduce things 
about an information function i which he is not allowed to see directly by 
considering the set of possible worlds which are consistent with the observed 

value of v and the possible values of i in those worlds. The system is said to 
be secure if nothing can be deduced about such an i from v. 

To add probability to deducibility security, we require that a collection 
of probability measures be put on the set of execution sequences. In section 
3.1.3.2, we described how we associate probabilities with a state machine. 
The method for generating a set of probability measures on the set of execu- 
tion sequences is described in Appendix A. For each probability measure, the 
system is treated as a probabilistic game in which users with a view v can use 
a certain strategy to try to guess facts about an information function i that 
they are not supposed to have access to. Probabilistic deducibility security 
essentially says that a system is secure if, for any yes/no question about the 
value of i, the users with view v can't guess the answer to the question with 
any greater probability than if they were guessing "blind", that is, without 
seeing the system at all. We will now make this precise. 

Denote the set of all execution sequences of the probabilistic state machine 
under consideration by E, and let ji be one of the probability measures on 
E that are generated as described in Appendix A. Fix information function 
i and view v. The function i will have domain E, and range some set /. The 
function v will have domain E and range some set V. A yes/no question 
about the value of v can be represented as a subset Q of / (the question 
corresponding to Q is "Is the value of v in the execution sequence we're in 
an element of QV). We first want to say what we mean by the probability 
of guessing the answer to question Q "blind". The users of the system are 
assumed to know what the possible execution sequences of the system and 
the probability measure (i are. Guessing "blind" means trying to guess, for 
an arbitrary execution sequence e, whether i(e) is in Q or not. A probabilistic 
strategy for making such a blind guess has the form "guess that i(e)eQ with 
probability p" where p is a number between 0 and 1. Given such a strategy, 
what is the probability that it guesses correctly?   There are two cases in 



which this strategy guesses correctly: 

1. i(e)eQ and the strategy guesses "yes": the probability of this case is the 
product of (1) the probability that i(e)eQ, and the (2) the probability 
that the strategy guesses "yes". The first probability is 

fi({eeE\i(e)eQ}) 

Call this number qyes. The second probability is p. The probability of 
this case is therefore pqyes. 

2. i(e){Q and the strategy guesses "no": the probability of this case is the 
product of (1) the probability that i(e) j. Q, and the (2) the probability 
that the strategy guesses "no". The first probability is 1 - qyes- The 
second probability is 1 - p. The probability of this case is therefore 

(1 -p)(l -qyes). 

The probability of guessing correctly in one of the two cases is the sum 
of the probabilities of being in each case separately, i.e. 

(P9yes) + (1 -P)(l -?yes) 

which can be rearranged to yield 

(2qyes- l)p + (l -qyes) 

By our assumptions, the low users know the value of qyes. We further as- 
sume that, whatever the value of qyes, the low users will choose their strategy 
(in other words, they will choose the value of p) in such a way as to maximize 
their chance of guessing right. What value of p will maximize the expression 

above? 

If qyes > .5, the coefficient of p will be positive, so the probability of 
guessing blind correctly will be maximized by letting p be as large as possible, 
i.e. 1. With this value, the probability of guessing correctly is gyes- 



If <7yes < -5, the coefficient of p will be negative, so the probability of 
guessing blind correctly will be maximized by letting p be as small as possible, 
i.e. 0. With this value, the probability of guessing correctly is 1 — qyes. 

If qyes = .5, the coefficient of p is 0, and the probability of guessing blind 
correctly will be .5 regardless of the value of p. 

In each of these cases, the maximum probability for guessing blind cor- 
rectly is the larger of the two numbers ^yes and 1 — qyes. We will denote this 
number by G&. This, then, is the maximum probability of blindly guessing 

the answer to question Q correctly. 

We now want to compute the probability of guessing the answer to ques- 
tion Q correctly knowing the value of v. A probabilistic strategy for making 
such a guess has the form "seeing the value v(e) guess that i(e) e Q with 
probability s(u(e))" where s is a function which takes an element of V and 
returns a number between 0 and 1. Given such a strategy, what is the prob- 
ability that it guesses correctly? There are two cases in which this strategy 
guesses correctly: 

1. i(e) eQ and the strategy guesses "yes". The probability of being in this 
case is gotten by integrating the function s over the set of execution 
sequences e in which i(e) t Q. The set being integrated over is 

{eeE | i(e)eQ} 

We will denote it by Qye5. The probability of this case is therefore 

/ s(v(e))dn(e) 
Je t Qyes 

2. i(e) f. Q and the strategy guesses "no". The probability of being in this 
case is gotten by integrating the function 1 — s over the set of execution 
sequences e in which i(e){Q. The set being integrated over is E — Qyes. 
The probability of this case is therefore 

I. (1 - s(v(e)))dft(e) 
e e E—Qyes 
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The probability of guessing correctly in one of the two cases is the sum 
of the probabilities of being in each case separately, i.e. the sum of the two 
integrals above. Call this sum G>,s. We say that a probabilistic state machine 
is probabilistically deducibility secure if and only if for every pair v and i where 
v is a view of users at level I and i is the information hidden from users at that 
level, and for every probability measure \i on the set of execution sequences, 
and for every set Q of values for i, and for every strategy s for guessing 
whether the value of i is in Q, the value Gß>s is < Gb. Intuitively, what 
this says is that the low users at a given level cannot probabilistically guess 
the answer to any yes/no question about the high inputs any better using 
the low view than they can guessing blind. This game-theoretic definition of 
security is consistent with classical information theory, which examines how 
well a user at one end of a noisy channel can "guess" what was input by a 

user at the other end of the channel. 

We will finish this section with a simple example of applying probabilistic 
inference to analyzing encryption. As with our other examples, we will not 

give all the formal details. 

The system we wish to analyze is a simple channel over which data is being 
passed in encrypted form. The data is sent in units called messages. The set 
of messages is a finite set M with m elements. The encryption algorithm is 
simply a randomly chosen permutation e of the set M (since there are only 
finitely many such permutations, it is well-defined to say the permutation 
is chosen at random). The hidden information is the sequence of plaintext 
messages. The low view is the sequence of encryptions of the plaintext. 
(It is simple to make this system into a probabilistic state machine, but it 
would add nothing to the exposition to do so, so we will just talk about the 
information functions and not worry about how the system which generates 

them is modeled). 

First, suppose that the probability distribution on the occurrences of 
plaintext messages is uniform, that is, every element of M has a 1/ra chance 
of coming up each time a new plaintext message is sent out. Suppose the 
question we are trying to guess the answer to is a question about the nt 

plaintext message, that is, there is some set C of plaintext messages such 
that the value of the high information is in the question set Q if and only if 
the nth message is in C. We can easily show that if the number of elements 
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of C is c, then 

d — max((c/m), (1 — (c/m))) 

Fix a strategy s for guessing the answer to question Q. Suppose syes 

is the probability of the strategy s guessing "yes". Since the probability 
distribution on the nth ciphertext can easily be shown to be independent of 
the probability distribution on the nth plaintext, the integrals in GßiS can 
easily be evaluated to obtain 

G^s = syes(c/m) + (1 - 5yes)(l - (c/m)) 

This expression is maximized by choosing s so that syes = 1 if c > ra/2, 
and by choosing s so that syes — 0 if c < m/2. In either case, the value of 
Gß>s turns out to be Gb, so no strategy can do better than guessing blind. 
Thus, if the plaintexts are randomly distributed and the key is randomly 
chosen, nothing can be deduced about any given plaintext. 

Now, however, consider a question which involves more than one plain- 
text. For example, suppose the question is "are the first two plaintexts the 
same?". We can choose a strategy which looks at the low view and guesses 
"yes" with probability 1 if the first two ciphertexts are the same, and guesses 
"no" with probability 1 if the first two ciphertexts are different. It is easy 
to show that this strategy always guesses the correct answer to the question, 
i.e. GßtS = 1, and that Gb = 1 — 1/m2, so it is possible to guess the answer 
to this question better from seeing the low view than guessing blind. This 
essentially demonstrates that while encryption may hide the contents of any 
given message perfectly, simple encryption will not encrypt extended patterns 
of plaintexts. 

3.1.5    Examples 

In this section we describe one of the examples we've looked at to drive the 
formulation of our theories of integrity. This example is described semifor- 
mally. Other examples can be found in Volume III, the library of models. 
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3.1.5.1    Distributed Database 

In this section we describe a distributed airplane database example. The 
database maintains a schedule of airplane flights. This schedule is stored 
in a central location, and is queried and updated from multiple terminal 
interfaces. Users make requests to schedule or cancel flights, and receive 
reports on the system's response. Users interpret the reports as information 
about database state. The integrity requirement is that users' beliefs, based 

on system reports, are true. 

We considered four versions of the database. Each version has the same 
integrity policy, but the different versions use slightly different measures for 
ensuring integrity. The reason for having four versions was to test whether 
the integrity policy correctly captured our informal notions of integrity for a 
distributed database, and whether the policy "recognized" certain measures 
for ensuring integrity. To this end, we deliberately designed two of the four 
versions with "integrity flaws". The other two versions used standard meth- 
ods to "fix" the flaws. Our analysis showed that the two "flawed" versions 
failed to satisfy the integrity policy, whereas the two "fixed" versions did. 
These results validate the use of true belief policies to specify certain kinds 

of integrity. 

We will first describe the elements of the database which are common 
to all four versions. First, there is a fixed set of planes and destinations. 
For simplicity, there are only two kinds of input: commands to schedule a 
flight, and commands to cancel a flight. A scheduling command takes place 
at a certain location (i.e. terminal), and specifies a plane, a departure time, 
an arrival time, and an arrival location. There is only one kind of output, 
namely action reports. Action reports take place at a certain location, and 
specify whether a particular command was acted on or not. (Action reports 
could also contain the information of why a command was not acted on if it 
was not, but this would not affect our analysis). 

There is a function sched which takes a state of the system and returns 
the schedule for the planes. The schedule just consists of times and places of 
arrival and departure for each plane. The value of sched must satisfy certain 
constraints, including the following:2 

2These constraints themselves are a form of integrity policy, in that they are require- 
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• The time between the departure of a plane for a destination and the 
arrival time for that destination must be long enough for the plane to 
make the trip, and short enough to allow it to do so without refueling 
(refueling stops count as arrivals). 

• The departure of a plane must be from the last place it arrived. 

• There cannot be two departures in a row or two arrivals in a row for a 
given plane. 

• The time between arrival and departure for a plane must be long enough 
that the plane can be serviced. 

Informally, the operation of the database is to accept scheduling com- 
mands from terminals and make the update directed by the command unless 
(1) the command doesn't make sense, for example, it is a cancellation of a 
flight that is not scheduled; (2) making the update would put the system 
in a state in which the value of sched would fail to satisfy one of the above 
constraints; or (3) the command is a cancellation of a flight which was sched- 
uled from another terminal (this last requirement is just to simplify the belief 
policy we will state in a moment). Whether the command is acted on or not, 
the database sends a report through the terminal from which the command 
came saying whether it was acted on or not. 

For each terminal, we can give a recursive definition of a function which 
takes a finite trace and returns the set of commands from that terminal 
to schedule flights which have been acted on, and which we have not sent 
a cancel command for. When an output is received that a command to 
schedule a flight has been acted on, that command is added to the set. 
When a command is issued to cancel a command in the set, that command 
is removed from the set. It remains out of the set unless an output comes 
back saying the cancellation has not been acted on, in which case it is put 
back in the set. The set of commands currently in the set can be interpreted 
as a set of statements about the current schedule in the obvious way, and so 
can be interpreted as a set of statements about the current trace (namely, 
that the value of sched on the state at the end of the current trace contains 

ments that the database be consistent with the real world, but they are not the sort of 
integrity requirements we are interested in here. 
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all the flights corresponding to commands in the set). This gives rise to a 
belief function for each terminal. This set of belief functions constitutes the 

true belief policy for the database. 

The differences between the versions of the database are in how they 
handle multiple overlapping transactions. We will now describe the different 

versions. 

In version 1, each database update spawns an update process which (1) 
checks to see if the update would make the database inconsistent, (2) updates 
database if it wouldn't, and (3) reports back. Each of the 3 steps above are 
assumed to be atomic, but the sequence of them is not. A state machine for 
this version would have a component of state for each currently active update 
process. This state component would include the information of what update 
the process was doing, whether it had performed the consistency check, what 
the result was if it had, and whether it had done the update. 

Even without writing down a formal specification of this version of the 
database, we can give a semiformal argument that it won't satisfy the in- 
tegrity policy because transactions are not serializable. Consider the follow- 

ing scenario: 

1. A user at terminal A issues a command to schedule plane P to fly to 
destination D at time T. Suppose the state of the database is such that 
it would be consistent to act on this update. 

2. A user at terminal B (^ A) issues a command to schedule plane P to fly 
to destination E (^ D) at time T. Suppose it would also be consistent 
to act on this update. 

3. The update process for the first command is spawned, checks the up- 
date for consistency, and finds it consistent. 

4. The update process for the second command does the same. 

5. The update for the first command is made, and the result reported to 

terminal 1. 

6. The update for the second command is made, overwriting the previous 
update, and the result is reported back to terminal 2. 
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At the end of this sequence, the set of traces that terminal 1 users believe 
they are in does not include the actual current trace, so the integrity policy 
is violated. 

In version 2 of the database, update processes lock the database vari- 
ables until update and report are done. A state machine for this version 
would have the additional information of a boolean value for each part of 
the database that could be independently locked. For simplicity, we'll just 
imagine that update processes just lock the entire database, so there's only 
one additional boolean value in the state of version 2. The state component 

for an update process would include the additional information of whether 
the update process had locked the database, and whether it had unlocked it. 
Update processes start up in the state of not yet having locked the database, 
and can only proceed past that state if the database is unlocked. 

This system satisfies the integrity policy because locking ensures serializ- 
ability. The proof of this would require that we prove certain state invariant 
by induction on traces. This invariant would include the following clauses: 

1. The current state of the database, plus any updates which update pro- 
cesses have checked for consistency but not yet performed, is consistent. 

2. There is at most one update process which is not waiting to lock the 
database, and if there is one, then the database is locked. 

3. Any reports which an update process is about to make are consistent 
with the current state of the database. 

This invariant is satisfied because of the way locking functions. The last 
clause of the invariant allows us to show that the belief based on commands 
and reports at a given terminal are always true, so the integrity policy is 
satisfied. If we tried to prove a similar invariant for version 1, the proof 
would fail because clause 1 can be true in one state, but false after a state 
transition in which an update process checks its update for consistency with 
the database and finds it consistent with the database, but not with the 
other pending updates. In version 2, if a process is checking an update for 
consistency, it must be the sole process doing so (by clause 2 of the invariant), 
so checking against the database is sufficient to maintain consistency. 
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In version 3 of the database, the terminals through which updates are 
entered and reports received are remote in the sense that an update process 
sending a report and the terminal receiving that report are separate events. 
In this version, processes send off their action report, unlock the database, 
and exit, but the report does not reach the terminal until later. A state 
machine for this version would be like that for version 3, except that its state 
would include the additional information of what action reports were on their 

way to which terminals. 

Again, even without writing down a formal specification of this version 
of the database, we can give a semiformal argument that it won't satisfy 
the integrity policy because reports can arrive in a different order than the 
commands they report on were processed. Consider a situation in which 
a terminal sends a command to schedule a flight, then one to cancel that 
flight, then a third command to schedule it after all. Suppose the reports for 
these commands come back in the same order in which the commands were 
sent, each command reporting success. The value of the belief function for 
such a trace includes the belief that the flight in question is now scheduled. 
However, if the two commands to schedule the flight were processed first, 
then the command to cancel, and the report on the cancellation passes the 
report on the second schedule command on the way back to the terminal, 
the flight will actually be cancelled. In other words, the belief function for 
that terminal will not contain the current trace, in violation of the integrity 

policy. 

In version 4 of the database, the database and the remote terminals run 
a simple agreement protocol. The remote terminals acknowledge receipt of 
reports. Update processes keep the database locked until the acknowledge- 
ment is received. A state machine for this version would have the additional 
information of where the terminals and the update processes were in the pro- 
tocol, and what messages and acknowledgements had been sent but not yet 

received. 

This system satisfies the belief policy because the acknowledgement mech- 
anism ensures that reports are always current. The proof of this would be 
similar to that for version 2, with the invariant having the additional clause 
that any reports or acknowledgements in transit are associated with an up- 
date process which is not waiting to lock the database. With the other clauses 

97 



of the invariant of version 2, this ensures that reports arrive in the same order 
that their corresponding commands are processed, so the integrity policy is 
satisfied. 

3.2    Authentication Protocols 

In this section we are not concerned with general integrity. We concen- 
trate here on a particular part of integrity that is vital to certain situations. 
Authentication protocols are presented in the National Computer Security 
Center publication, "Integrity in Automated Information Systems" [33], as a 
mechanism for establishing identity and for supporting encryption. Among 
the aims of these protocols is the distribution of encryption keys, which 
is needed for cryptographic protection of data, another part of integrity. A 
typical aim of a protocol is to establish an encryption key shared by two prin- 
cipals. The message exchange often involves a third party — a "keyserver"— 
who is trusted to generate good keys and keep secrets. Protocol messages 
employ a variety of techniques to ensure the identity of a principal, that 
the messages have been recently generated, and that the keys exchanged are 
protected. 

In recent years, several logics of authentication have been developed that 
use belieflogics [18, 9]. These logics enable the user to reason about the beliefs 
of the "principals" (i.e., the various processes) involved in a protocol. Typical 
beliefs are that "this key is good", that "this message is fresh", that "a 
particular principal really sent this message", or that "a particular principal 
is trustworthy". To build the logic, inference rules from the problem domain 
are formalized, as is the relation between protocol messages and beliefs. This 
section presents an authentication logic that is based on [18] and enriched by 
several new constructs. A tool for the verification of authentication protocols 
based on the implementation of this logic is described in Volume IV, the 
Romulus User's Manual. 
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3.2.1     Authentication 

There is a conventional way in which cryptographic protocols are documented 
in the literature. A protocol is often described as a sequence of messages. 
Each message consists of a message header, which describes the source and 
destination of the message, and a message body, which represents the data 
to be transmitted. For convenience of reference, each message is normally 
preceded by a sequence number. 

Such a protocol description clearly targets an audience of implementors, 
but is quite inadequate in expressing what a protocol is or is not supposed 
to do (for example, why the protocol is secure). Thus one always finds a 
corresponding text explanation (for example, in the English language) of the 
working of a protocol. To analyze a protocol, we need to rigorously specify 
both the messages and their meanings in an unambiguous way.3 

Therefore, we would like to document a protocol in two ways, one for 
implementors and one for analyzers. For analyzers, we incorporate imple- 
mentors' descriptions into a logic. This logic is implemented within the logic 
of the HOL theorem prover. In section 3.2.2 we describe the conventions 
used to describe protocols for implementors; In section 3.2.3 we discuss the 
logical statements used to describe protocols for analysts. In section 3.2.4 
we describe the HOL implementation of the whole logic. 

3.2.2     Protocol Descriptions 

This section describes the conventions that are commonly used (with minor 
variations) to describe cryptographic protocols in the literature. We present 
this to give the reader background in conventional notation, which we use 
from time to time in our discussion. We implement this language, translated, 
in HOL , which is described in section 3.2.4. 

A protocol consists of a series of messages in a particular form. A message 
consists of a header and a body. The header tells us who is sending the 
message and who is receiving the message. The source (or destination) of a 
message is denoted by the identifier of its sender (or of its intended recipient). 

3There is at least one published protocol where the authors wrongly explained that the 
protocol was secure. 
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Communicating parties such as the sender or the recipient are also called 
principals. A principal's identifier is denoted by a string beginning with a 
capital letter. We use the arrow -> to denote that a message is being sent 
from one principal to the other. Thus, the header of a message sent from 

principal A to principal B is simply 

A -> B 

where the space is a separator. The data item that is sent in a message is 
called a message body and is sometimes simply referred to as a message when 
there is no ambiguity. This data item is denoted by a mathematical expres- 
sion describing how it is computed. Any identifier (i.e., a string beginning 
with a letter, thus including a principal identifier) can be a data item by 
itself. As an example, suppose x and y are data items, then their bit-wise 

exclusive-or is also a data item, which can be denoted by 

x XOR y. 

A list (similar to concatenation) of two data items forms a new data item by 

joining with the operator ',': 

x,y. 

Encryption of a data item with another data item as an encryption key also 

results in a data item: 

{x}_e(k) 

where x is the plaintext, k is the key, and {x}_e(k) is the ciphertext. Note 
that '(' and ')' also serve as separators. Decryption is denoted in a similar 

fashion: 

{x}_d(k). 

These encryptions and decryptions represent conventional algorithms such 
as the Data Encryption Standard (DES). To represent public key algorithms 

such as the RSA system, we use 
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{x}_pe(k) 

and 

{x}_pd(k). 

According to the properties of encryption, expression {{x}_e(k)}_d(k) is 
equivalent to x. If kl and k2 are a pair of corresponding public and private 
keys, then expression {{x}_pe(kl)}_pd(k2) is equivalent to x. For public 
key systems like RSA, expression {{x}_pd(k2)}_pe(kl) is equivalent to x. 

The header and the body of a message are separated by a ':', thus A 

sending {x}_e(k) to B is described as 

A -> B:   {x}_e(k) 

A protocol is a sequence of messages to be exchanged in the order as they 

are listed. The message are separated by the operator ';'• 

The familiar Denning-Sacco key distribution protocol can thus be de- 

scribed as: 

1. A -> S:   A,  B; 
2. S -> A:   {B,  Kab,  Ts,   {A,  Kab,  Ts}_e(Kbs)}_e(Kas); 
3. A -> B:   {A,  Kab,  Tsj_e(Kbs); 

Here messages are preceded with sequence numbers for reference pur- 
poses. In this protocol, three messages are sent among principals A, B, and 
S. S is a trusted key server and A and B are clients who wish to obtain a 
secret key they can use for encryption of messages between them. For clients 
A and B, Kab is the session key chosen by the server S; Ts is the timestamp 
taken from the server's clock. A and S share the secret key Kas, and Kbs is 

the secret key shared between B and S. 

3.2.3     Protocol Specifications 

As we said before, a protocol description is sufficient for a protocol imple- 
mentor, but not adequate for the purpose of analyzing protocols. We will use 
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a logic of authentication to analyze the protocol and see if it could achieve its 
design objectives. This logic is essentially the logic by Burrows, Abadi, and 
Needham, but enhanced with a few constructs suggested by Gong, Needham, 
and Yahalom. This logic is the subject of this section. 

Initial assumptions, final goals, and message meanings are all some form 
of logical statement in the logic of authentication. We first describe what 
kinds of logical statements the user can make, and then we describe how to 

put them in a protocol specification. 

Several other entities, needed for the constructing and sending of mes- 
sages, along with the inference rules, are introduced in the following section, 
which presents the HOL version of the whole system. The key notion of 
statements warrants a separate introduction here. 

Often the fact that a principal sends a data item x reflects the principal's 
current state of mind. A statement (say s) about this state could be attached 
to the data item as an extension to denote the meaning of sending the data 
item. We need some way to attach extension statements to the message text 
they apply to. We use a function extension, which maps message text to the 
extension statement, and define the extensions of message parts that way. It 
corresponds in a natural way to what extensions are—kinds of preconditions 
for the message to be sent, rather than objects actually sent with a message. 
A drawback, however, with this approach is that the one bit of message text 
cannot mean different things in different positions in the messages. This 
is not a problem in any of the protocols encountered. A full solution is to 
include information in the extension function about the particular occurrence 
intended, and we will do this in a future version. 

Suppose p and q are principal identifiers and x is a data item, then the 
following are all logical statements that we explain one by one. 

send p q x. Principal p sends data item x to principal q. 

receive p x. Principal p receives data item x, possibly after performing 
some computation such as decryption. That is, a data item received 
can be the data item itself or an item that is feasible to compute by p 
using its own resources together with x. 

possesses p x.  Principal p possesses data item x.  Principal p is able to 
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repeat this data item in future messages in the current session. At 
any particular stage of a session, p possesses the data items p initially 
possessed when the session began and the data items p has received so 
far. The data items a principal generates during a session are considered 
to be included in the principal's initial possessions. In addition, p 
possesses a data item that is feasibly computable from the data items 

p already possesses. 

convey p x. Principal p conveyed data item x. Such an item can be a data 
item explicitly exchanged or some feasibly computable (by the intended 
recipient of the data item) content of such a data item. Thus a data 
item can also be conveyed implicitly. 

is_fresh x. Data item x is fresh. It has never been used in a previous 
message. An example is a "nonce" — a random number generated for 

the purpose of being fresh. 

is_recog x. Data item x is recognizable. An intended recipient would rec- 
ognize the data item if the recipient has certain expectations about its 
contents before actually receiving it. The recipient may recognize a 
particular value (for example, the recipient's own identifier), a particu- 
lar structure (for example, the format of a timestamp), or other forms 

of redundancy. 

is_shared_secret p q x. Data item x is a suitable secret for principals p 
and q. They may properly use x to prove each other's identity. They 
may also use it as (or derive from it) an encryption key for secure com- 
munication. This notation is symmetrical in that is_shared_secret p 
q x and is_shared_secret q p x are equivalent. 

By default, we assume that secrets will never be discovered by any princi- 
pal except the legitimate owners or principals the owners trust. In the latter 
case, the trusted principals never use the secret as a proof of identity or as 

an encryption key. 

Suppose s is a statement, then the following are also statements: 

believes p s. Principal p believes that statement s holds. If s is an empty 
statement, then so is believes p s. 
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elig p x. Principal p is eligible to convey data item x. p possesses the 
data item and believes that the statement expressed as the extension 

of the data item holds. 

believes p (juri q s). Principal p believes that principal q has juris- 
diction over statement s. Principal p believes that q is an authority on 
s and should be trusted in this respect. 

believes p (juris_star q). Principal p believes that principal q has 
jurisdiction over all q's beliefs. That is, principal q is considered by p 

to be honest and competent. 

Also, statements can be joined by standard logical operators such as A 
(meaning AND) and \/ (meaning OR) to form new statement. 

3.2.4    The crypto_90 Theory 

In this section we give an annotated description of the crypto_90 theory as 
implemented in the file crypt o_90. sml. The notions of the previous sections 
are translated in a fairly straightforward way into the HOL setting. Also, in 
this section, we present the inference rules of the logic. The crypto_90. sml 
file starts with some standard commands to remove old versions of the HOL 
theory. 

System.Unsafe.SysIO.unlink "crypto_90.holsig" 
handle e => print  "no earlier crypto_90.holsig to remove\n"; 

System.Unsafe.SysIO.unlink "crypto_90.thms" 
handle e => print  "no earlier crypto_90.thms to remove\n"; 

To set up the proof environment, a number of new things need to be 
defined and/or declared in HOL. First, we need to enter draft mode (by 
starting a new theory) to do this. 

new_theory "crypto_90"; 

The function APP is defined here as an infix variant of the HOL APPEND 
function. 
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new_inf ix_def init ion( 

"APP_def", 

—'APP (ll:('a)list) (12: ('a)list) = APPEND 11 12' — , 

600); 

Now we will build theory crypto_90 once, and later the user would simply 
load it in. To implement the logic within HOL, we have two main goals. 
One is to define the statements of the logic: these are the objects of type 
statement. The other is to define the turnstile of the logic: the predicate 
theorem. Statements mapped to the HOL Boolean value true by theorem 
are the theorems of our logic. 

The following declares a type for principals, another for text (plaintext 
or ciphertext), and one more for (logical) statements. 

new_type{Name= "principal", Arity= 0}; 
new_type{Name= "text",  Arity= 0}; 
new_type{Name= "statement", Arity= 0}; 
val textlist = ty_antiq(==':(text)list'==); 

The current release of HOL90 unfortunately does not support type abbre- 
viations; as a work-around, we define the SML variable textlist as above 
and use "textlist in the logic to refer to the intended type. 

The function name is used to designate the name of a principal in a form 
that can be included in messages. 

new_constant{Name =  "name", 
Ty = ==':principal ->  "textlist'==}; 

Encryption takes the first argument as the key and encrypts the second 
argument to yield a piece of text. We define functions encrypt and decrypt 
for encryption and decryption. Likewise, we define pencrypt and pdecrypt 
for public key encryption and decryption algorithms. 

new_constant{Name = ' 
Ty = 

new_constant{Name = " 
Ty = 

new_constant{Name =  ' 

'encrypt", 
':~textlist -> ("textlist -> "textlist)'==}; 

'decrypt", 
':"textlist -> ("textlist -> "textlist)'==}; 

"pencrypt", 
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Ty = ==':"textlist ->  ("textlist ->  "textlist)'==}; 
new_constant{Name = "pdecrypt", 

Ty = ==':*textlist ->  ("textlist -> "textlist)'==}; 

The function f eas represents a known one-to-one function such that the 
function and its inverse are feasible to compute. 

new_constant{Name =  "feas", 
Ty = ==':"textlist -> "textlist'==}; 

In the HOL version of the logic all messages must have an extension. 
Some inference rules require belief in the extension of a message, in the 
hypothesis, and it is convenient to define the distinguished statement nil. 
This statement corresponds loosely to "true". 

new_constant{Name = "nil", 
Ty = ==':statement'==}; 

Certain properties may hold for a piece of text. For example, it can be 
"fresh" or "recognizable". It can be a "shared secret" between two principals. 
A principal can have "conveyed" a text, or might "possess" it. These and 
other properties mentioned in the previous section are declared, and later, 
axioms are stated about their properties. In particular, we define the operator 
of "belief". 

new_constant{Name = "possesses", 
Xy = ==':principal -> ("textlist -> statement)'==}; 

new_constant{Name = "convey", 
Ty = ==':principal -> ("textlist -> statement)'==}; 

new_constant{Name = "elig", 
Ty = ==':principal -> ("textlist -> statement)'==}; 

new_constant{Name = "is_fresh", 
Ty = ==':"textlist -> statement'==}; 

new_constant{Name = "is_recog", 
Ty = ==':'textlist -> statement'==}; 

new_constant{Name = "is_shared_secret", 

Ty = ==':principal -> 
(principal -> ("textlist -> statement))'==}; 

new_constant{Name = "believes", 
Ty = ==':principal -> (statement -> statement)'==}; 
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new_constant{Name = "juris", 
Ty = ==':principal -> (statement -> statement)'==}; 

new_constant{Name = "juris_star", 

Ty = ==':principal -> statement'==}; 

new_constant{Name = "receive", 
Ty = ==':principal -> ("textlist -> statement)'==}; 

For extensions, we have: 

new_constant{Name = "extension", 
Ty = ==':~textlist -> statement'==}; 

After these declarations and more ground work, we need to state all the 
inference the rules of the logic. We declare the turnstile of our logic, as 
mentioned at the beginning of this section. 

new_constant{Name =  "theorem", 
Ty = ==':statement -> bool'==}; 

We declare send for sending messages from one principal to another. 

new_constant{Name = "send", 
Xy = ==':principal -> 

(principal ->  ("textlist -> bool))'==}; 

Next we define laws regarding symmetric and public key encryption. 

new_open_axiom("Yi",  —'!x k.  decrypt k  (encrypt k x)  = x'—); 

new_open_axiom("Y2",  —'!x k.  pdecrypt k  (pencrypt k x)  = x'—); 

new_open_axiom("Y3", —'!x k.  pencrypt k  (pdecrypt k x)  = x'—); 

The first set of inference rules is about receiving messages 

new_open_axiom("Rl", —'!p q x. 
send p q x /\ 
theorem (elig p x) 

==> theorem (receive q x) '—); 
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Rule Rl says that if a protocol specifies a message in which p sends x to q, 
and p is eligible to convey such a data item, then q receives x. This rule 
prevents the specification of protocols that are infeasible to implement. It is 
a feature of the logic we use here and distinguishes our logic from previously 
published logics. The eligibility concept was first discussed by Gong, in [16]. 
This rule relates the implementable protocol messages to the logic and thus 
is the basis of the formal semantics of protocols. 

new_open_axiom("R2", —'!p x y. 
theorem(receive p(x APP y)) 
==> theorem(receive p x)'—); 

new_open_axiom("R3", —'!p x y. 
theorem(receive p(x APP y)) 
==> theorem(receive p y)'—); 

Rules R2 and R3 say that receiving a list implies receiving each member in 
the list. (There is no rule R4 owing to a typographical oversight that will be 
corrected in the next release.) 

new_open_axiom("R5",  —'!p x k. 
theorem(receive p  (encrypt k x))  A 
theorem(possesses p k) 
==> theorem(receive p x)'—); 

Rule R5 says that if p receives an encrypted item and if p also possesses the 
encryption key then p has received the corresponding plaintext. 

new_open_axiom("R6", —'!p x. 
theorem(receive p  (feas x)) 
==> theorem(receive p x)'—); 

Rule R6 says that if p receives some feasibly computable invertible function 
of x, then p has received x. 

The next set of inference rules is about possession. 

new_open_axiom("Pl", —'!p x. 
theorem(receive p x) 
==> theorera(possesses p x)'—); 
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Rule PI says that a principal possesses a received item. 

new_open_axiom("P2", —'!p x y. 
theorem(possesses p x)  A 
theorem(possesses p y) 
==> theorem(possesses p(x APP y))'—); 

Rule P2 says that a principal who possesses and item x and possesses an item 

y, also possesses the list of x and y. 

new_open_axiom("P3", —'!p x y. 
theorem(possesses p(x APP y)) 
==> theorem(possesses p x)'—); 

new_open_axiom("P4", —'!p x y. 
theorem(possesses p(x APP y)) 
==> theorem(possesses p y)'—); 

Rules P3 and P4 say that a principal who possesses the list of x and y, also 

possesses x and y individually. 

new_open_axiom("P5", —'!p x k. 
theorem(possesses p x)  A 
theorem(possesses p k) 
==> theorem(possesses p  (encrypt k x))'—); 

new_open_axiom("P6", —'!p x k. 
theorem(possesses p  (encrypt k x))A 
theorem(possesses p k) 
==> theorem(possesses p x)'—); 

new_open_axiom("P7",  —'!p x k. 
theorem(possesses p x)  A 
theorem(possesses p k) 
==> theorem(possesses p  (decrypt k x))'—); 

Rules P5, P6, and P7 say that anyone can perform encryption and decryption, 
provided they possess the proper keys. 

new_open_axiom("P8", —'!px. 
theorem(possesses p (feas x)) 

==> theorem(possesses p x)'—); 

new_open_axiom("P9", —'!p x. 
theorem(possesses p x) 
==> theorem(possesses p (feas x))'—); 
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Rules P8 and P9 says that if p possesses some feasibly computable invertible 
function of x, then p possesses x and vice versa. 

The next set of rules are about freshness. A message is regarded as fresh if 
it is believed that a principal could not possibly generate the message before 
the current protocol execution. 

new_open_axiom("Fl",  —'!p x y. 
theorem(believes p  (is_fresh x)) 
==> 
theorem(believes p  (is_fresh (x APP y)))'—); 

new_open_axiom("F2", —'!p x y. 
theorem(believes p  (is_fresh x)) 

theorem(believes p  (is_fresh (y APP x)))'—); 

Rules Fl and F2 say that if a principal p believes that item x is fresh, then 
p will believe that any list containing x will also be fresh. 

new_open_axiom("F3", —' !p x k. 

theorem(believes p (is_fresh x)) A 

theorem(possesses p k) 

theorem(believes p (is_fresh (encrypt k x)))'—); 
new_open_axiom("F4", —'!p x k. 

theorem(believes p (is_lresh x)) A 
theorem(possesses p k) 
==> 

theorem(believes p  (is_fresh (decrypt k x)))'—); 

Rules F3 and F4 say that encryption or decryption of fresh data will also be 
fresh. 

new_open_axiom("F5", —'!p x k. 

theorem(believes p (is_fresh k)) A 

theorem(possesses p k) A 

theorem(believes p (is_recog x)) 
==> 

theorem(believes p  (is_fresh (encrypt k x)))'—); 
new_open_axiom("F6", —'!p x k. 

theorem(believes p  (is_fresh k))  /\ 
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theorem(possesses p k) /\ 

theorem(believes p (is_recog x)) 

==> 
theorem(believes p  (is.fresh (decrypt k x)))'—); 

Rules F5 and F6 say that if p believes a key to be fresh and p can recognize a 
data item then p will believe that the encryption or decryption of that item 

with that key will also be fresh. 

new_open_axiom("F7", —'!p x. 
theorem(believes p  (is_fresh x)) 
==> 
theorem(believes p  (is_fresh (feas x)))'—); 

Rule F7 says that if p believes that an item is fresh then p will believe that 
any feasibly computable function of the item is fresh. 

The next set inference rules have to do with recognizability. 

new_open_axiom("Gl",  —'!p x y. 
theorem(believes p  (is_recog x)) 
==> 
theorem(believes p (is.recog (x APP y)))'—); 

new_open_axiom("G2", —'!p x y. theorem(believes p (is_recog x)) 

==> 
theorem(believes p  (is_recog (y APP x)))'—); 

Rules Gl and G2 say that if p believes it can recognize item x, then p believes 
it can recognize any list that contains x. 

new_open_axiom("G3", —'!p x k. 
theorem(believes p (is_recog x)) A 

theorem(possesses p k) 

theorem(believes p (is_recog (encrypt k x)))'—); 

new_open_axiom("G4", —'!p x k. 
theorem(believes p (is_recog x)) A 

theorem(possesses p k) 

==> 
theorem(believes p  (is_recog (decrypt k x)))'—); 

Rules G3 and G4 say that if p believes it can recognize item x and possesses 
an encryption key, then p believes it can recognize an encrypted or decrypted 
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form of item x. (There is no rule G5 owing to a typographical oversight that 
will be corrected in the next release.) 

new_open_axiom("G6", —'!p x. 
theorem(believes p  (is_recog x)) 
==> 
theorem(believes p  (is_recog (feas x)))'—); 

Rule G6 says that if p believes it can recognize item x then p believes it can 
recognize any feasibly computable function of x. 

The next inference rule states that a principal who believes that k is a 
shared secret between p and another principal q will also believe that k is a 
shared secret between q and p. 

new_open_axiom("Sl", —'!p q k. 

theorem(believes p (is_shared_secret p q k)) 
==> 

theorem(believes p  (is_shared_secret q p k))'—); 

The next set of inference rules are rules of conveyance. Rules in this 
section govern how a principal advances its beliefs by analyzing the messages 
it receives. 

new_open_axiom("Ml", —'!p q x k. 

theorem(receive p (encrypt k x)) A 

theorem(possesses p k) A 

theorem(believes p (is_shared_secret p q k)) A 
theorem(believes p (is_recog x)) A 

theorem(believes p (is_fresh(x APP k))) 
==> 

theorem(believes p (convey q x))'—); 
new_open_axiom("M2", —'!p q x k. 

theorem(receive p (encrypt k x)) A 
theorem(possesses p k) A 

theorem(believes p (is_shared_secret p q k)) A 

theorem(believes p (is_recog x)) A 

theorem(believes p (is_fresh(x APP k))) 
==> 

theorem(believes p (convey q (encrypt k x)))'—); 
new_open_axiom("M3", —'!p q x k. 

theorem(receive p (encrypt k x)) A 
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theorem(possesses p k) /\ 
theorem(believes p (is_shared_secret p q k)) /\ 

theorem(believes p (is_recog x)) /\ 

theorem(believes p (is_fresh(x APP k))) 

==> 

theorem(believes p  (possesses q k))'—); 

Rules Ml, M2, and M3 essentially reflect the fact that if you receive a properly 
encrypted data item that is also both fresh and recognizable, then you should 
believe that the other party who has the proper secret must be the sender 
and that the sender possesses the data item and the keys. 

new_open_axiom("M4", —'!p q x. 
theorem(believes p  (convey q x))  A 
theorem(believes p  (is_fresh x)) 
==> theorem(believes p (possesses q x))'—); 

Rule M4 says that if p believes that q conveyed an item and that the item is 
fresh then p believes that q possesses that item. 

new_open_axiom("M5", —'!p q x y. 
theorem(believes p (convey q (x APP y))) 
==> theorem(believes p (convey q x))'—); 

new_open_axiom("M6", —'!p q x y. 
theorem(believes p  (convey q (x APP y))) 
==> theorem(believes p (convey q y))'—); 

Rules M5 and M6 say that if p believes that q conveyed a list of items then p 
believes that q conveyed each item in the list. 

The next set of rules deal with jurisdiction. 

new_open_axiom("Jl",   —'!p q s. 
theorem(believes p (juris q s)) A 
theorem(believes p (believes q s)) 
==> theorem(believes p s)'—); 

Rule Jl says that if p believes that q is an authority on statement s and that 

q believes s, then p should also believe s. 
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new_open_axiom("J2", —'!p q x s. 
theorem(believes p  (juris_star q))       /\ 
theorem(believes p  (convey q x)) /\ 
theorem(believes p  (is_fresh x)) /\ 
(extension x = s) 
==> theorem(believes p  (believes q s))'—); 

Rule J2 says that if a principal sends a fresh data item, then the sender 
should believe in the statement specified in the extension of the item, if the 
sender is honest and competent. 

new_open_axiom("J3", —'!p q s. 
theorem(believes p  (juris_star q))  A 
theorem(believes p  (believes q (believes q s))) 
==> theorem(believes p  (believes q s))'—); 

Next come rules of eligibility. This category determines what items a 
principal is eligible to convey according to the items it possesses and the 
beliefs it holds. 

new_open_axiom("El", —'!p x. 
theorem(possesses p x) 
==> theorem(elig p x)'—); 

Rule El says that a principal is obviously eligible to repeat in future messages 
a data item that it possesses. Recall that x ranges over data items with or 
without extensions. 

new_open_axiom("E2", —'!p x k. 
theorem(elig p x) A 
theorem(possesses p k) A 
theorem(believes p (is_shared_secret p q k))  A 
theorem(believes p (extension x)) 
==> theorem(elig p (encrypt k x))   A 

theorem(elig p (decrypt k x))'—); 

Rule E2 says that a principal can convey its own belief by sending a properly 
encrypted message. 
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new_open_axiom("E3",  —'!p x y. 
theorem(elig p x)  A 
theorem(elig p y) 
==> theorem(elig p  (x APP y))'—); 

Rule E3 says that if p is eligible to send x and is is eligible to send y then p 
is eligible to send the list of x and y. 

Next, we have an axiom that says that everyone believes nil. This state- 
ment is often defined as the extension of a message object. 

new_open_axiom("Xl", --'!p.  theorem(believes p nil)'—); 

Axiom E2 gives sufficient conditions under which a principal is eligible 
to perform encryption and decryption. We often want to use just the part 
about eligibility to encrypt, and so we prove a theorem that extracts this half 

of the axiom. 

save_thm ("elig_encr", GEN.ALL (DISCH_ALL (C0NJUNCT1 (UNDISCH 
(SPEC_ALL (axiom "crypto_90" "E2")))))); 

We expect to add further such theorems to the theory crypto_90 over time. 

Finally, the theory is exported and HOL is exited. 

export_theory(); 

exit(); 

3.2.5     Analyzing a Protocol 

To analyze a protocol in the implemented theory, we first declare the various 
objects (for example, principals) involved in the protocol. Then the messages 
are defined in HOL form. We only mention here what is needed to show the 
structure of the theories and the proving environment. For example, the 
messages of the Denning-Sacco protocol are stipulated by the axioms: 

new_open_axiom("dsml", —'send A Svr  ((name A)  APP   (name B))'—); 
new_open_axiom("dsm2", —'send Svr A  (encrypt Kas   ((name B)  APP Kab APP 

Ts APP   (encrypt Kbs   ((name A)   APP Kab APP Ts))))'—); 
new_open_axiom("dsm3", —'send A B   (encrypt Kbs   ((name A)  APP 

Kab APP Ts))'—); 
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The initial assumptions are given as axioms, also. 

new_open_axiom("dsal", —'theorem(believes A 
(is_shared_secret A Svr Kas))'—); 

new_open_axiom("dsa2", —'theorem(believes A  (is_iresh Ts))'—); 
new_open_axiom("dsa3", —'theorem(believes A  (is_recog (name B)))'—); 
new_open_axiom("dsa4", —'theorem(possesses A Kas)'—); 
new_open_axiom("dsa5", —'theorem(possesses A  (name A))'—); 
new_open_axiom("dsa6", —'theorem(possesses A (name B))'—); 

new_open_axiom("dsbl", —'theorem(believes B 
(is_shared_secret B Svr Kbs))'—); 

new_open_axiom("dsb2", —'theorem(believes B  (is_fresh Ts))'—); 
new_open_axiom("dsb3", —'theorem(believes B  (is_recog (name A)))'—); 
new_open_axiom("dsb4", —'theorem(possesses B Kbs)'—); 

new_open_axiom("dssl", —'theorem(possesses Svr Kas)'—); 
new_open_axiom("dss2", —'theorem(possesses Svr Kbs)'—); 
new_open_axiom("dss3", —'theorem(possesses Svr Kab)'—); 
new_open_axiom("dss4", —'theorem(possesses Svr Ts)'—); 
new_open_axiom("dss5", —'theorem(possesses Svr  (name A))'—); 
new_open_axiom("dss6", —'theorem(possesses Svr  (name B))'—); 
new_open_axiom("dss7", —'theorem(believes Svr 

(is_shared_secret Svr B Kbs))'—); 
new_open_axiom("dss8", —'theorem(believes Svr 

(is_shared_secret Svr A Kas))'—); 

The final conditions that we wish protocol execution to achieve are col- 
lected and named as the postcondition. For example: 

new_definition ("postcond",  —'postcondition = 
theorem(possesses A Kab)  A 
theorem(believes A  (convey Svr  ((name B)  APP Kab APP Ts)))  A 
theorem(believes A  (is_fresh ((name B)  APP Kab APP Ts)))  A 
theorem(possesses B Kab)  A 
theorem(believes B  (convey Svr  ((name A)  APP Kab APP Ts)))  A 
theorem(believes B  (is_iresh ((name A)  APP Kab APP Ts)))'—); 

Proving the protocol is then a matter of proving that the postcondition 
follows from the axioms (the initial conditions and the message axioms). 
The inference rule that links the messages with the specification (the initial 
assumptions and the postcondition) is 
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new_open_axiom("Rl", --'!p q x. 
send pqx/\ theorem (elig p x) 

==> theorem (receive q x)'—); 

and thus this axiom is the key to the formal semantics of protocols. 

The proof proceeds by calling upon appropriate axioms mentioned in this 
section and relevant inference rules of the logic. This and another example 
are treated in depth in Volume III, the library of models. 
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Chapter 4 

Theories of Availability 

In this chapter we present a collection of formal properties which are meant 
to formalize various notions of availability (also known as service assurance 
or denial of service) for computer systems. We have not tried to cover all pos- 
sible meanings of the term "availability". We have focussed on two kinds of 
availability: (1) requirements that services are provided in a timely manner, 
which implicitly includes requirements on efficient allocation of resources in 
general, and (2) fault tolerance. We have also examined the general topic of 
making policies dynamic so as to facilitate tradeoffs with other requirements 
and reconfiguration to assure service. 

In section 4.1 we give some simple requirements on theories of availability, 
including some informal meanings and some threats to availability that we 
want our theories to capture. In section 4.2 we describe some techniques 
for ensuring some of the meanings of availability that we want our formal 
theories to deal with. In section 4.3 we describe the way we will formally 
represent systems with availability requirements as mathematical objects. In 
section 4.4 we present the formal properties we have developed to capture 
various aspects of availability. In section 4.5, we give one of the semiformal 
examples we have formulated to help drive the development of our formal 
theories. 
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4.1    Requirements of Availability Theories 

In order for our theories of availability to be reasonable, they must meet 
two requirements. First, they must capture certain informal notions of avail- 
ability, in the sense that systems that do not meet those informal notions 
of availability should fail to meet one of our theories, and conversely, that 
systems that satisfy those informal notions of availability should satisfy one 
of our theories. Second, our theories of availability must capture certain 
threats to service, in the sense that systems which do not include adequate 
countermeasures to those threats should fail to satisfy one of our theories. 

The informal meanings of availability that we mean to capture with our 

theories include the following: 

• The system will continue to function in the presence of faults. 

• The system responds in a timely fashion. 

• The system can reconfigure itself to optimize response. 

The threats to service we mean to capture with our theories include the 

following: 

• hardware and software faults 

• 

• 

resource competition, both from legitimate competitors and malicious 

processes (e.g. "worms") 

unpredictable scheduling algorithms 

• thrashing 

(These threats fall naturally into two groups: (1) not having enough 
resources, due to excessive demand or faults or both, and (2) having enough 
resources but not managing them correctly). 
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4.2    Techniques for Ensuring Availability 

In this section we describe some of the techniques for ensuring service that 
we want our formal theories to deal with, in the sense that some of our formal 
theories may be satisfied by the proper use of these techniques. 

4.2.1 Replication 

One way to tolerate parts of a system becoming faulty is by replicating the 
parts that can fail. The system must then manage the replicated elements 
correctly to achieve fault tolerance. Voting algorithms can be used to combine 
the reports of replicated sensors into fault tolerant reports. Voting is also 
used to resolve conflicting actions directed by replicated processors, some of 
which may be faulty. Various kinds of agreement protocol are used to ensure 
that distributed communication does not create an erroneous impression that 
a system is faulty when it is not (e.g. by causing inconsistencies in data due 
to different interleavings of atomic parts of distributed transactions. Such 
inconsistencies will be treated as faults by voting algorithms). We want our 
theories of availability to be able to take account of the assurance provided 
by replication, while at the same time being sensitive to the possibility that 
replication is not managed correctly. 

4.2.2 Static and Dynamic Resource Allocation 

Resource allocation problems can sometimes be handled by static allocation 
and scheduling of resources. In this approach, resources are allocated accord- 
ing to a fixed cyclic schedule, so that it is completely predictable at any given 
time what processes, tasks, or users will have access to which resources. A 
corollary to this is that mechanisms for demand-driven service requests, such 
as hardware interrupts, must be excluded. When using static scheduling, I/O 
and service requests must be handled by polling. Utilization of resources can 
fluctuate even with static scheduling, but the allocation of resources (that is, 
ceilings on resource usage by various entities) must be static. 

Static resource allocation has the advantage of being very predictable 
and very tractable to analyze rigorously.    It has the disadvantage that it 
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does not optimize resource usage. There are some techniques known for 
improving on static resource allocation [32], but for applications with critical 
availability requirements, the state of the art in scheduling does not support 
any great degree of dynamic resource allocation. Most schemes for dynamic 
resource allocation cannot be shown to yield predictable behavior in arbitrary 
situations. We want our availability theories to be capable of modeling both 

static and dynamic resource allocation strategies. 

4.3     System Representations for Availability 

4.3.1 State Machine Representation 

The way we will represent systems with critical availability requirements is 
based on the representations of systems used in the restrictiveness model, 
namely, state machines that interact with their environment by exchanging 
events. The relevant definitions are given in section 2.1.2.1 and section 2.1.3. 

4.3.2 Representing Timing Properties 

The principal extension we make to the state machine framework for pur- 
poses of availability analysis is to incorporate timing information about the 
machine's execution into the model. This is relevant to availability for two 
reasons. First, we need timing information to be able to state timeliness 
requirements. Second, we need to have the passage of time represented in 
order to be able to state dynamic versions of policies like restrictiveness that 

can adapt to system reconfiguration. 

In this section we describe how we will incorporate timing information 
into the state machine formalism. In the project proposal, we said that we 
would use synchronous deterministic security as the basis for representing 
systems with availability properties, because synchronous deterministic se- 
curity has the notion of hard real time built into it. We have developed ways 
to incorporate timing information into the restrictiveness formalism which 
are adequate for stating the availability properties we need to state. We 
have therefore decided to use extensions of the restrictiveness formalism in- 
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stead of synchronous deterministic security. There are several reasons why 
this is desirable. It is better to have one formalism for modeling systems 
in Romulus for pedagogical reasons. By using restrictiveness, we can adapt 
existing tools and techniques instead of building entirely new ones for a new 
formalism. Finally the restrictiveness formalism is closer to commonly used 
formalisms for specifying systems like CSP and CCS. 

We have developed two ways of incorporating timing information into 
the restrictiveness formalism. We will now describe each approach, contrast 
them, and then describe how we model users' observations of time in each of 
the approachs. 

The first way of adding timing information to a state machine is by having 
special events which mark the passage of time, which we will call "ticks". 
Ticks are outputs of the machine. Time in this approach means "number of 
ticks". Inputs are of necessity treated as happening instantaneously, because 
an arbitrary number of inputs can happen between any two ticks by input 
totality. There can be more than one kind of tick associated with a system, 
and they can have different levels. For example, a system can express the 
smallest granularity of time by one kind of tick, and coarser granularities by 
other kinds of tick, with many of the first kind of tick occurring between 
two successive ticks of the second kind. The finest granularity "tick" can be 
used solely for specifying timing properties, and can have level "system-high" 
if security is being specified and we don't want to assume that users have 
arbitrarily good clocks. Ticks corresponding to users' clocks can have level 
"system-low". 

The second way of adding timing information to a state machine is by 
having a clock or clocks as part of the state. In this approach, the amount 
of time that an input, output, or internal transition takes is specified by 
the transition relation. Inputs need not be regarded as instantaneous, be- 
cause the transition relation can force the response to an input to include 
incrementing the clock. Multiple clocks can be used for the same purpose 
as multiple kinds of tick in the previous approach, that is, to keep track of 
different granularities of time. 

The choice of approach depends on a variety of factors, most of which 
are application specific. One general comment which can be made contrast- 
ing the two approachs is that the "tick" approach lends itself to specifying 
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"soft" timing properties, whereas the "state clock" approach lends itself to 
specifying "hard" timing properties. For example, ticks can easily be used 
to add time to a state machine without specifying anything about the rate 
at which things happen, just by specifying the machine so that it allows a 
tick to happen at any time, nondeterministically. The state clock approach 
is useful for hard time because it allows us to specify timing properties for 

inputs as well as outputs. 

How do we model the observation of time by users? In the "tick" ap- 
proach, observation of time is just observation of the occurrences of ticks. 
This is the normal notion of "observation" from the original, timeless restric- 
tiveness model. As mentioned above, different ticks with different security 
levels can be used to represent different granularities of time, with observ- 
ability being controlled by security levels. In the "state clock" approach, 
we can model observation of the clocks by requiring that various projection 
functions contain the values of various clocks. Observability of a given clock 
can be controlled by including it in the projection functions for some levels, 

and not others. 

4.4    Formal Availability Properties 

In this section we describe the formal theories we have developed to express 
our informal notions of availability. In section 4.4.1 we describe a general 
theory of fault tolerance. In section 4.4.2 we describe a general approach 
to stating timeliness requirements. In section 4.4.3, we describe dynamic 
versions of deducibility security and restrictiveness. 

4.4.1     t-Fault Tolerance 

In this section we describe the theory of what is called t-fault tolerance in 
the fault tolerance literature. Informally, a system is t-fault tolerant if it is 
the case that the system will continue functioning normally as long as there 
are at most t faults. This is the informal notion we wish to formalize here. 

First of all, we model the notion of a fault in the state machine frame- 
work as a particular class of inputs called fault events. These are the actual 
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events of a fault occurring. For example, a sensor beginning to act erratically 
would be modeled as the occurrence of a fault event. The kinds of faults al- 
lowed, and the effects of those faults on system performance, are part of the 
description of the state transition function (see section 4.5.1 for examples). 

The inputs and outputs which are not fault events are referred to as 
the fault tolerant events because they should occur correctly, even in the 
presence of faults, as long as there are fewer than t faults, and the system's 
fault tolerance is correctly implemented. For example, the report of a sensor 
value to a user which is generated by combining the reports of redundant 
sensors would be a fault tolerant event. 

The parameter t is incorporated into the analysis by specifying the tran- 
sition relation of the system so that fault events do not change the state of 
the system after there have been t of them. Thus, the system is defined in 
such a way that only the first t faults have any effect. This effectively means 
that in any trace of the state machine, there are only t "real" faults. Given 
this, the fault tolerance requirement is reduced to the requirement that the 
state machine behave "normally" in all possible traces. 

How do we formalize the notion of the system behaving "normally" in 
the presence of faults? We have developed an approach to formalizing this 
notion based on restrictiveness. We imagine that we are trying to prove 
security for the system, with two security levels: fault and nonfault, where 
nonfault < fault. The fault events are assigned level fault and the fault 
tolerant events are assigned level nonfault. The fault tolerance policy for 
the system is then just restrictiveness for this assignment of "levels". If we 
unpack the definition of restrictiveness, we arrive at the following definition: 

Definition 3: Given a state machine and a division of its events into fault 
events and fault tolerant events, the state machine satisfies its fault tolerance 
policy (or simple is fault tolerant) if and only if the following condition is 
satisfied: there exists a function p (called the fault tolerant projection) whose 
domain is the set of states of the machine, such that: 

1. For every reachable state s and every fault event /, if the state machine 
can make a transition from s to s' accompanied by /, then p(s) = p(s') 
("Fault events do not affect the fault tolerant projection"). 

2. For every pair of reachable states s and t and every fault tolerant input 
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i, if p(s) = p(t) and the machine can make a transition from 5 to s' 
accompanied by i, then there exists a state t' such that the machine 
can make a transition from t to t' accompanied by z, and p(t') = p(s') 
("The effect of fault tolerant inputs on the fault tolerant projection 
depends only on the projection"). 

3. For every pair of reachable states s and t and every output o, if p(s) = 
p(t) and the machine can make a transition from s to s' accompanied by 
o, then there exists a state t' such that the machine can make a sequence 
of transitions, beginning at t and ending at t', with one of the transitions 
in the sequence accompanied by o, and all the others internal, and such 
that p(t') = p(s') ("The fault tolerant outputs depend only on the fault 
tolerant proj ection"). 

4. For every pair of reachable states 5 and t, iip(s) = p(t) and the machine 
can make an internal transition from s to s', then there exists a state 
t' such that the machine can make a sequence of internal transitions 
beginning at t and ending at t', and p(t') = p(s') ("Fault tolerant 
internal processing depends only on the fault tolerant projection"). 

D 

The fault tolerant projection is meant to be a function which takes a state 
of the machine, possibly including some faulty components, and returns a 
kind of "sanitized version" of the state in which the effects of faults have 
been removed. The clauses of the above definition of fault tolerance ensure 
two things: (1) that the value of the fault tolerant projection can only reflect 
nonfaulty inputs and processing (i.e. that it really is a "sanitized version" 
of the state), and that (2) all observable behavior that is supposed to be 
immune to faults depends only on the fault tolerant projection (and so is not 
influenced by faults). The choice of the fault tolerant projection implicitly 
defines what the "normal" or "nonfaulty" behavior of the system is. The 
above definition essentially states necessary and sufficient conditions on what 
we define to be "normal" behavior for the behavior in the presence of faults 

to be "normal". 

The basic idea of formalizing fault tolerance as a form of security or 
noninterference property was originally put forth in [61]. The theory of fault 
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tolerance presented in this section is essentially a formal working-out of the 
details of the idea in [61]. 

4.4.2     Timeliness Properties 

Many availability requirements are simple timeliness requirements. These 
timeliness requirements can be "hard time" requirements, by which we mean 
requirements that things happen within certain bounds on elapsed time, or 
"soft time" requirements, by which we mean requirements that things hap- 
pen within some elapsed time. A requirement that a system provide certain 
services periodically is essentially a requirement that the system either "do 
something" at least once every T seconds (the hard time case), or "do some- 
thing" infinitely often (the soft time case). A requirement that the system 
provide a certain service on demand is essentially a requirement that the sys- 
tem either "do something" within T seconds of receiving some request (the 
hard time case), or "do something" eventually after receiving some request 
(the soft time case). 

What about these kinds of requirement should be formalized generically? 
We have spent some time attempting to formalize the general notions of "ser- 
vice" and "request", but this seems to be relatively unbeneficial because (1) 
what constitutes a "service" or a "request" is highly specific to the particular 
application being modeled, and so is difficult to generalize without making it 
trivial, and (2) the major problem in satisfying getting these kinds of prop- 
erty does not seem to be errors in writing down precisely what is meant by 
"service" and "request", so formalizing these notions will not address the real 
problems of meeting timeliness requirements. The real problems associated 
with timeliness requirements are classical scheduling problems, e.g. how can 
system resources be allocated to tasks in such a way that all deadlines are 
met? These problems are being addressed by a large community of people, so 
it would not be profitable or appropriate for the Romulus project to attempt 
to solve these problems. What is appropriate is to provide formalisms capa- 
ble of (1) formalizing the timeliness requirements on systems, (2) expressing 
the solutions that workers in the field come up with, and (3) proving that 
the solutions satisfy the requirements. 

The "tick" and "state clock" approachs to incorporating timing behavior 
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into a state machine are very general approachs which should be general 
enough to express various scheduling solutions. The question we will address 
in the remainder of this section is how we formalize timeliness requirements 
on systems. 

The answer to this is actually quite simple. Timeliness requirements, 
either hard or soft, can be formalized simply as statements about the set of 
complete traces of a system which incorporates time by the "tick" or "state 
clock" approach. In fact, most timeliness requirements can be stated in 
the form "every complete trace of the system has property P". We can go 
further and say that most of the properties P are statements about finite 
traces within C. For example, a typical soft time scheduling requirement 
would be the requirement that a schedule be fair, which would be formalized 
by an assertion like 

Every complete trace C has the property that there is no process 
p which, at some point in C, becomes ready to run and remains 
ready to run for the rest of C, but is never run. 

The system about which this statement is made would need to have some 
components of state giving the set of processes which are ready and the set 
of processes which are currently running. 

A hard time fairness requirement would be formalized by an assertion like 

Every complete trace C has the property that there is no process 
p which, at some point in C, becomes ready to run and remains 
ready to run for t seconds without being run. 

The system about which this statement is made would need to have the 
same components of state as the system with the soft time requirement, but 
with hard time incorporated into the state. 

In short, if we incorporate timing information into state machines, it is 
relatively straightforward to state timeliness properties as statements about 
complete traces. Further, it is often possible to transform such requirements 
from statements about complete traces to state invariants, particularly in 
the hard time case. For example, consider the hard time fairness assump- 
tion above. If we add "history variables" to the state of the machine which 
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record the last time at which a process became ready to run, then the above 

statement on complete traces reduces to the statement 

In every reachable state, there are no processes which became 
ready to run more than t seconds before the current time which 

are not running now. 

Since this is a universal quantification over reachable states, it is a state 

invariant, and so may be susceptible to proof by induction. 

The Romulus library of models, Volume III, contains a model that further 

explores real-time systems. 

4.4.3     Dynamic Security Properties 

4.4.3.1     Need for Dynamic Security Properties 

Current theories of security like deducibility security and restrictiveness model 
systems as state machines with certain security parameters "attached" to 
them. The state machines themselves (the states, the events, the states that 
the machine can start in, the state transitions that it can make) just describe 
how the system behaves. In terms of information, the state machines them- 
selves only describe how information flows through the system. One cannot 
determine from looking at the state machine alone whether the system it 
defines is secure or not. To determine whether the system is secure, one 
needs to examine the security parameters. In the case of restrictiveness, the 
security parameters are the assignments of security levels to the inputs and 
outputs of the machine. The security parameters define the sensitivities of 
the various kinds of information that pass through the system. Once these 
sensitivities are defined, the information flows which can be found from the 
state machines alone can be labeled secure or insecure, depending on whether 
the information is flowing from lesser to greater security levels or not. 

Existing models are static in the sense that the security parameters of 
the system (the assignments of security levels to inputs and outputs) cannot 
change. There are several reasons why it is desirable to have the security 
parameters be dynamic, that is, to have it be possible for events to have 
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different levels at different times, and to be able to change the classification 
which an event is regarded as being. First, the same physical events will 
often have different levels at different times, e.g. inputs on a given physical 
interface during different login sessions. Second, tradeoffs between security 
and other properties may require that information is leaked; dynamic security 
properties can model such leakage as a downgrade, and specify exactly what 
is allowed to be downgraded, and how fast. Finally, system reconfiguration 
to meet changing conditions may require changes in security policy. 

The approach of regarding leakage as downgrading is a relatively untried 
alternative to bandwidth analysis (although it is suggested by the work in 
[60]). In this approach, instead of specifying a system which is not restrictive 
and then trying to determine how much leakage there is, one specifies the 
leakage and then tries to prove that the specified allowable leakage is all the 
leakage. It seems possible that it would be easier to prove the absence of any 
channels except those specifically allowed and specified than it would be to 
find the channels in a specification which was just written to express certain 
functionality. It also seems a better approach to security engineering, in that 
it forces the designer to make decisions about what security "slippage" is 
allowed, and to design that slippage in, with the designer in control, than to 

just "let the chips fall where they may". 

We will first describe how we make deducibility security for state ma- 
chines dynamic. We will then describe how dynamic deducibility security is 
strengthened to get a dynamic version of the restrictiveness model. A dy- 
namic version of deducibility security was previously formulated in [59], but 
the version presented below is much simpler, and also more general. 

4.4.3.2    Dynamic Deducibility Security 

The idea for making deducibility security dynamic is very simple, and can 
be stated at the level of possible worlds. We will first state it this way, and 
then say how it is instantiated to state machines. 

The original instantiation of deducibility security had one pair of informa- 
tion functions for each security level /. One information function represented 
the information possessed by users at level / in a given world (the low view), 
and the other represented the information which was not supposed to be 
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inferable by users at level / in a given world (the hidden information). This 
definition of security can be made dynamic merely by having two information 
functions for each security level / and each time t (where time is represented 
by some set of values such as the integers or real numbers). One information 
function represents the information which is possessed by users at level / at 
time t in a given world (the low view at time t), and the other represents the 
information which is not supposed to be inferable by users at level / at time 
t in a given world (the hidden information at time t). 

How would this approach be used to model things like downgrading in- 
formation? Suppose some input is SECRET when it occurs, and is later 

downgraded to UNCLASSIFIED. Suppose the input occurs at time tu and 
is downgraded at time t2. For times t such that tx < t < t2, the input would 
be part of the hidden information at time t for level UNCLASSIFIED, and 
would not be part of the UNCLASSIFIED view at time t. For times t > U, 
the input would be part of the UNCLASSIFIED view at time t, and would 
not be part of the hidden information at time t for level UNCLASSIFIED. 
Since there are separate hidden and view functions for each time, events can 
be in the view for a given level at some times and not others, and likewise 
for the hidden information. 

How do we instantiate dynamic deducibility for possible worlds to the 
state machine framework? The basic definition of "state machine" is un- 
changed, but the security parameters must be generalized. Instead of a fixed 
mapping from inputs and outputs to security levels, the security parameters 
associated with a state machine are expressed as a function which takes a 
finite trace t and a particular occurrence e of an input or output in t and 
returns a security level. Thus, a particular input or output may have one 
level in a trace t, and another level in a trace t' extending t. 

Given such a security structure, we can now define the view and hidden 
information function for a given security level / and time t. The possible 
worlds are now complete traces of the state machine. The view of a complete 
trace C at level / and time t is the sequence of inputs and outputs in C which 
(1) occur at or before time t in the trace, and (2) have level < / in the trace 
at time t. The hidden information for level I and time t is the sequence of 
inputs in C which (1) occur at or before time t in the trace, and (2) do not 
have level < / at time t in the trace. 
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The above definition requires that there be some notion of time defined 
for the state machine being used. This notion of time can be any of those 
discussed in section 4.3.2. 

4.4.3.3    Dynamic Restrictiveness 

In this section we describe a version of the restrictiveness model which uses 
dynamic security parameters. Like dynamic deducibility security, we obtain 
dynamic restrictiveness simply by taking something which formerly only de- 
pended on a security level and make it depend on a security level and a time. 
The "something" in question now is the projection function. The static re- 
strictiveness model requires that there exist a projection function pi for each 
security level / satisfying certain properties. For dynamic restrictiveness, we 
require that there exist a projection function p/]t for each security level / and 
each time t which satisfies a similar set of properties. 

We will now give the formal definition of dynamic restrictiveness. The 
reader who is familiar with ordinary restrictiveness will recognize the clauses 
of the definition as a straightforward translation of the clauses of ordinary 
restrictiveness with the following replacements: 

• "Reachable state" is replaced by "state reachable by time tn. 

• "< r is replaced by "< I at time f. 

• "Can make a transition" and "Can make a sequence of transitions" re- 
placed by "Can make a transition by time tn and "Can make a sequence 
of transitions by time t" respectively. 

Definition 4: Given a state machine with an associated notion of time, 
and dynamic security parameters as described in section 4.4.3.2, the machine 
is dynamically restrictive if and only if there exists a function P;)t for each 
security level / and each time t (called the level I -projection at time t) which 
satisfies the following conditions: 

1. For every state s reachable by time t and every input i which is not 
< / at time t, if the state machine can make a transition from 5 to s' 
accompanied by i by time t, then pj,<(s) = pij(s'). 
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2. For every pair of states s and r reachable by time t and every input i 

which is < Z at time t, if pitt(s) = Pi,t{r) an<^ the machine can make a 
transition from s to s' accompanied by i by time t, then there exists 
a state r' such that the machine can make a transition from r to r' 

accompanied by i by time i, and pi,t{r') — Pl,t(s')- 

3. For every pair of states s and r reachable by time t and every output 
o which is < / at time t, if pi,t{s) = pi,t(r) and the machine can make 
a transition from s to s' accompanied by o by time t, then there exists 
a state r' such that the machine can make a sequence of transitions by 
time t, beginning at r and ending at r', with one of the transitions in 
the sequence accompanied by o, and all the others either internal or 
accompanied by an output d which is not < I at time t, and such that 

Pi,t{r')=Pi,t(s)- 

4. For every pair of states s and r reachable by time i, if pi,t{s) = pi,t(r) 
and the machine can make a transition from s to s' by time t which is 
either internal or accompanied by an output which is not < / at time i, 
then there exists a state r' such that the machine can make a sequence 
of transitions by time t, beginning at r and ending at r', with each 
transition in the sequence either internal or accompanied by an output 
which is not < / at time i, and such that pi,t(r') = pi,t(s'). 

a 

4.5     Example 

In this section we describe one of the examples we've looked at to drive 
the formulation of our theories of availability. This example is described 
semiformally. Other examples can be found in Volume III, the library of 
models. 

4.5.1     Fault Tolerant Sensor 

In this section we describe two versions of a simple fault tolerant sensor 
system as state machines, state their fault tolerance requirements using the 
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theory of fault tolerance described in section 4.4.1, and derive necessary and 
sufficient conditions on the degree of replication and the fault tolerance algo- 
rithm for the two systems to be able to withstand t faults. The conditions we 
derive agree with the classical conditions from the fault tolerance literature. 

The difference between the two versions of the sensor system we will 
consider is in the kinds of fault that are allowed to occur (commonly referred 
to as the failure modes or failure semantics of the systems). In the first 
version of the system, a faulty sensor will be assumed to simply become 
inert, that is, it will stop reporting values for what it is measuring. Such 
faults are commonly called crash failures in the literature on fault tolerance. 
In the second version of the system, a faulty sensor will be permitted to begin 
reporting arbitrary values for the quantity it is measuring. Such faults are 
commonly called Byzantine faults in the literature on fault tolerance.1 

4.5.1.1    Fault Tolerant Sensor with Crash Faults 

We will first describe the system informally. The fault tolerant sensor system 
has n copies of a given kind of sensor, all measuring the same quantity. At 
any time, a sensor may become faulty. Nonfaulty sensors report their values 
to a voting algorithm. The voting algorithm will report a given value for the 
quantity being monitored if it gets r or more votes for that value, where r is 

some value greater than 0. 

We model this situation as a state machine as follows. The sensors report 
measurements from some set M. The collection of sensors is a set S with n 
elements in it. The state of the machine consists of (1) a function from S 
into M (the values currently reported by the sensors, if any), (2) a boolean 
value saying whether the last value received by the sensors has been reported 
yet, and (3) a subset of S (the sensors which have become faulty). We will 
use the notation (V, 6, F) for the state in which V is the function giving the 
values of the sensors, b is the boolean saying whether the last value has been 

reported, and F is the set of faulty sensors. 

There are two kinds of input: (1) for each s e 5, there is an input faults 

xThis phrase derives from the behavior of certain generals of the Byzantine Empire 
who, while allegedly working together on the same side, would commonly betray each 
other. 
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which represents sensor 5 becoming faulty, and (2) for each value m e M, 
there is an input inm which represents the sensor ensemble receiving value 
m from the environment. There is one kind of output: for each m e M, there 
is an output outm which represents the voter reporting value m. 

The initial states of the machine are any state in which the set of faulty 
sensors is the empty set (all sensors are assumed to be working correctly 
initially), the boolean value indicated that the last value has been reported, 
and all sensors are reporting the same value. 

If the machine is in a state (V, 6, F), and faults occurs, the machine will 
remain in the same state if F contains t or more sensors, and will otherwise 
make a transition to the state {V,b,FU{s}). If inm occurs, the machine will 
make a transition to some state (V, false, F) where V'(s) = m for all s ^ F 
(in other words, all nonfaulty sensors will report the correct value, and the 
faulty sensors will do something arbitrary). 

If the machine is in a state (V, 6, F), it can make a transition to (V, true, F) 
with output outm if and only if b is "false" (that is, the last sensor value 
received has not yet been reported), and there are at least r sensors s not 
in F such that V(s) = m. (It is in this part of the definition that that the 
failure semantics is expressed: since faulty sensors do not report a value, 
the voter will produce an output if sufficiently many of the nonfault sensors 
report that value). These are all the possible transitions of the machine. 

Note that it is an invariant of this state machine that the nonfaulty sensors 
all report the same value. We will now describe the fault tolerant projection 
of the state, as described in section 4.4.1. The fault tolerant projection takes 
a reachable state (V,b,F) and returns the pair {m,b) where m is the value 
reported by the nonfaulty sensors (if any), and some fixed default value ra0 

otherwise. This definition follows that intuitive guidelines described in sec- 
tion 4.4.1 for the fault tolerant projection: it picks out the state information 
residing in the nonfaulty components of the machine. The fault events are, 
of course, the events of the form faults. 

We will now analyze what relationships would have to hold between the 
values of n, t, and r in order for the above machine to satisfy the fault 
tolerance policy associated with the above fault tolerant projection and col- 
lection of fault events. To do this, we will go through the clauses of the fault 
tolerance policy. 
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Fault events do not affect the fault tolerant projection. Since 
occurrences of fault events do not affect the boolean b or the function V, if 
there are nonfaulty sensors remaining after the occurrence of an event faults, 
then there must have been nonfaulty sensors before that event, and they 
must all be reporting the same value after as they did before. If there were 
no nonfaulty sensors before the event, then there will be none after, and 
again the fault tolerant projection will not change. Thus, the only way that 
the value of the fault tolerant projection could change with the occurrence of 
an event faults is if there were nonfaulty sensors before the event, and none 
after. Such a transition is reachable if t (the maximum number of faults that 
the sensor system will respond to) is > n (the number of replicated sensors 
there are). If t < n, then there will be at least one nonfaulty sensor in every 
reachable state, and so there will be no reachable transition in which a fault 
event affects the fault tolerant projection. Thus, for the system to satisfy its 
fault tolerance property, it must be the case that t < n. 

The effect of fault tolerant inputs on the fault tolerant projec- 
tion depends only on the projection. Given that the requirement from 
the previous clause, that t < n, this clause will be satisfied, because if Sx and 
s2 are reachable states which have the same fault tolerant projections, then 
(if t < n) both Si and s2 will have nonfaulty sensors. The effect of a fault 
tolerant input inm will be to make the nonfaulty sensors of both Si and s2 

register the value m, and to make the boolean value in the state "false", so 
the states after the transitions will have the same fault tolerant projections. 

The fault tolerant outputs depend only on the fault tolerant 
projection. Suppose (Vy,bi,Fi) and (^,62,^1) are reachable states with 
the same fault tolerant projection, and the machine can make a transition 
from state (Vi,bi,Fi) to state (V/, b\, F{) accompanied by output outm. For 
the system to satisfy its fault tolerance policy, it is necessary that there exist 
a state {V2\ b'2, F2) with the same fault tolerant projection as (V2, &2, F2) and 
such that the machine can make a transition from (V2, &25-F2) to (V^ib^F^) 
accompanied by output outm. We will now consider what values of n, i, and 
r make this true. 

First, since (Vi,6i,Fi) can make an output, bx must be "false". Since b\ 
is part of the fault tolerant projection, 62 must be "false" too. By definition 
of the transition relation, V{ = Vy, b[ = true, and F[ = F\. There must be at 
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least r nonfaulty sensors in (14, 6X, Fx) reporting value m. Since (Vi, &i, Fj) is 
reachable, all nonfaulty sensors must be reporting value m. Since (V2, b2, -^2) 
is reachable and has the same fault tolerant projection, all nonfaulty sensors 
in (V2, b2, F-i) must also be reporting value m. If there are at least r nonfaulty 
sensors in (V2, b2, F2), then the machine can make a transition to (V2, true, F2) 
accompanied by outm, and (V^true, F2) will have the same fault tolerant 
projection as (Vi,true, F\). Thus, the fault tolerance policy will be satisfied 
if, in the above circumstances, there will necessarily be at least r nonfaulty 
sensors in {V2, b2, F2). This could fail if it is possible to have enough faults to 
leave fewer than r nonfaulty sensors, that is, if n — t < r. Thus, in order to 
satisfy this clause of the fault tolerance policy, it is necessary the n — t>r. 

The above system will then satisfy its fault tolerance policy with crash 
fault failures if and only iff t < n and n — t > r. Assuming a fixed t, this 
means that n must be at least t + 1, and r can be at most n — t. The first 
condition is the classical one from the fault tolerance literature: a voting 
algorithm needs one more replicated element than the number of faults in 
order to tolerate crash failures. The second condition is really a condition on 
the number of votes required by the voting algorithm. The voting algorithm 
must not require too many votes (at most n — t) before it will report a value. 
In fact, since n — t > 1, this requirement can be satisfied by letting r equal 
1. This will ensure that the voting algorithm does not require too many 
votes whenever there is enough replication to overcome the required number 
of faults. The reason the voting algorithm only needs to get one vote for a 
value before it reports the value is because the failures are assumed to be 
crash failures; the voter will never get an incorrect vote. 

4.5.1.2    Fault Tolerant Sensor with Byzantine Faults 

Describing the fault tolerant sensor system with Byzantine failure seman- 
tics as a state machine requires only one change to the description above, 
namely, it will now be the case that the machine will make a transition from 
{V, false, F) to (V,true, F) accompanied by output outm if there are at least 
r sensors, faulty or not, which are reporting the value m. This reflects the 
fact that with Byzantine faults, faulty sensors are allowed to report faulty 
values. 
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We will now go through the clauses of the fault tolerance policy and see 
what new conditions on n, t, and r are necessary to satisfy the policy with 
Byzantine faults. 

Fault events do not affect the fault tolerant projection.   The 
analysis here is the same as that in the crash failure case.  This clause will 
be satisfied if t < n. 

The effect of fault tolerant inputs on the fault tolerant projec- 
tion depends only on the projection. Again, this will be satisfied if 
t < n, by the same argument as above. 

The fault tolerant outputs depend only on the fault tolerant 
projection. The analysis of this clause is different than in the crash fail- 
ure case. Suppose (Vi,&i,i?i) and (V2, b2,Fi) are reachable states with the 
same fault tolerant projection, and the machine can make a transition from 
state (Vi,&i,.Fi) to state (V{, b'^F[) accompanied by output outm. For the 
system to satisfy its fault tolerance policy, it is necessary that there exist a 
state (V!/, 62, -^2) with the same fault tolerant projection as (V2,b2,F2) 

and 
such that the machine can make a transition from (V2, b2, F2) to (V2, b'2, F2) 
accompanied by output outm. We will now consider what values of n, t, and 
r make this true in the Byzantine failure case. 

First, since (Vi,bi,Fi) can make an output, b\ must be "false". Since 61 
is part of the fault tolerant projection, 62 must be "false" too. By definition 
of the transition relation, V{ = \\, b[ = true, and F[ = F\. 

If there are r or more faulty sensors, then it could be that (1) (Vi, 6l5 Fi) 
is a state in which the nonfaulty sensors are reporting a value m' ^ m, (2) at 
least r faulty sensors are reporting the value m, and (3) (V2, b2, F2) is a state 
in which all sensors are reporting the value m'. Such states (1) are reachable, 
(2) have the same fault tolerant projection, and (3) {Vi,bi,Fi) can make a 
transition with output outm, but {V2,b2,F2) cannot make such a transition. 
In order to rule out this possibility, it must be the case that there are less 
than r faulty sensors in any reachable state. The only way for this to be true 
is if the largest number of faulty sensors that there can be in any reachable 
state is less than r. The largest number of faulty sensors there can be is t, 
so it must be that t < r. 

If there are fewer than r nonfaulty sensors in (Vi, 61, Fa), then it could 
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be that F2 = i*i and V2 is the function which maps a sensor s to Vi(s) if 
s is nonfaulty, and maps it to some value m! 7^ m otherwise. Such a state 
is reachable, and has the same fault tolerant projection as {Vi, 61, i^i), but 
cannot make a transition to another state accompanied by outm. Thus, in 
order to satisfy the fault tolerance property, it must be that there are at 
least r nonfaulty sensors in every reachable state. The only way for this to 
be true is if the smallest number of nonfaulty sensors that there can be in 
any reachable state is at least r. The smallest number of nonfaulty sensors 

there can be is n — t, so it must be that n — t > r. 

If the above three conditions (t < n, t < r, and n — t > r) are satis- 

fied, then the fault tolerance policy for the system with Byzantine failures is 
satisfied. We will now give the semiformal argument for this. 

By the three conditions, there must be at least r nonfaulty sensors, and 
fewer than r faulty sensors, in both (14, 61, Fj) and (V2, b2, F2) (although the 
collections of faulty sensors in the two states need not be the same). Thus, 
in both of these states, the measurement reported by the nonfaulty sensors 
is reported by at least r sensors, and any different values which are reported 
by the nonfaulty sensors are reported by fewer than r sensors. Thus, m 
must be the value reported by the nonfaulty sensors in (Vi,bi,Fi). Because 
(V2,b2,F2) has the same fault tolerant projection, all the nonfaulty sensors 
in this state must be reporting the value m as well, so there are at least r 
sensors reporting the value m. By the definition of the transition relation, 
the machine can make a transition from {V2,b2,F2) to (V^true, F2), which 
will have the same fault tolerant projection as (V^b^Fl). 

Assuming a fixed t, the above conditions require that n > 2t + 1 and 
t-\-l<r<n — t. The first condition is the classical one from the fault 
tolerance literature: a voting algorithm needs one more replicated element 
than twice the number of faults in order to tolerate Byzantine failures. The 
second condition requires that the voter requires neither two many nor too 
few votes to report a value. In the crash failure case, no number of votes 
greater than 0 was too few, because all votes were reliable. In fact, since 
n — t>t + l, this requirement can be satisfied by letting rbet + 1. This will 
ensure that the voting algorithm requires enough votes to only get that many 
votes for a correct value, and does not require too many whenever there is 
enough replication to overcome the required number of faults. 
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The fact that our restrictiveness-based theory of fault tolerance allows us 
to derive the classical results in fault tolerance is fairly good evidence that it is 
a correct generic formulation of fault tolerance requirements. Further, since 
it is a version of restrictiveness, we can use the present Romulus Security 
Condition Generator to reduce the proof of a fault-tolerance property to 

simple statements about inputs and outputs. 
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Appendix A 

Probability 

A probability measure is a function that takes a set of possible worlds and 
returns the probability that an execution history of the system will be in 
that set. Probability measures do not usually assign probabilities to every 
set of possible worlds, but only to some. Thus, the description of the prob- 
ability measure must include what sets are assigned a probability, and what 
probability those sets are assigned. 

We will now describe how a probability measure on the set of complete 
traces of a probabilistic state machine is computed from a probabilistic tran- 
sition relation for the machine. Given a finite trace of such a machine, we 
can compute a probability (called the weight) associated with the trace by 
taking the probabilities of each of the transitions occurring in the trace and 
multiplying them together. Using this, we can compute a value for an arbi- 
trary set S of complete traces (called the outer measure of S and denoted 
by /i0(S')) as follows: for any integer n, let Sn be the set of truncations of 
elements of S to finite traces of length n. We can then compute the weights 
of all the elements of Sn and add them up. Call this number fi0in(S). It is 
easy to show that n > m implies that ji0^n{S) < fJ.0,m(S). Define fl0{S) to be 
the greatest lower bound of all the //0)„'s. 

Denote the set of all complete traces not in a set S by — S. We say a set 
S of complete traces is measurable if and only if 

fi0(S) + (i0(-S) = 1 
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The probability associated with a measurable set S is fi0(S)- 

It is beyond the scope of this document to prove that this function satisfies 
the axioms for a probability measure, so we will omit the proof. 
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