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Preface 

This four volume report describes Romulus, a security modeling environment. 
Romulus includes a tool for constructing graphical hierarchical process rep- 
resentations; an information flow analyzer; a process specification language; 
and techniques to aid in doing proofs of security properties. Romulus also 
contains tools for the specification and analysis of authentication protocols. 
Using Romulus, a user can develop and analyze security models and proper- 
ties. The foundations of Romulus are formal theories of security; applications 
of these theories are demonstrated in a library of models. 

In describing Romulus in this volume, we assume that the reader is gen- 
erally familiar with computer security concerns, but not with Romulus, the 
HOL environment, or the underlying theories of Romulus. 

Organization of the Romulus Documentation Set 

This volume is Volume I of a four volume documentation set; this volume 
contains an overview of the Romulus environment. Volume II describes the 
Romulus theories for nondisclosure, integrity, and availability, and Volume III 
describes the Romulus library of models. Volume IV is the Romulus User's 
Manual; it contains descriptions of the Romulus tools, how to use them, and 

tutorial examples. 

Organization of This Volume 

This volume presents an overview of Romulus. Chapter 1 briefly describes 
the security methodology of Romulus and outlines the tools in the Romulus 
environment. In Chapter 2, we discuss the security properties that Romulus 
modeling supports. In Chapter 3, we demonstrate the Romulus toolset with 
some simple examples. In Chapter 4, we summarize the Romulus library of 

models. 

Conventions 

This document set uses the following conventions. Computer code, specifi- 
cations, program names, file names, and similar material are typeset using a 
typewriter font. Interactive computer sessions are surrounded by a rounded 



box. Within this box, user input is typeset using an italic typewriter 
font; computer output is typeset using the typewriter font. Some computer 
output has been reformatted for presentation purposes; it may not appear in 
this document exactly as it appears on your screen. 
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Chapter 1 

Introduction 

The Romulus Computer Security Properties Modeling Environment is a set 
of tools for modeling, analyzing, and verifying systems with critical require- 
ments for security. The Romulus models, methodologies, and analysis tech- 
niques are based on formal theories of three types of security policies: nondis- 
closure of information, integrity, and availability (also known as service as- 
surance or avoidance of denial of service). The Romulus system includes 
a graphical user interface for describing the structure of system models as 
a collection of communicating components and a specification language for 
describing the functionality of these components. Additional support for de- 
scribing and analyzing models is provided by a theorem prover for proving 
the correctness of components, a library of examples, and a tool for analyz- 
ing the information flow properties of the system. The Romulus system also 
includes tools for the specification and analysis of authentication protocols. 

Where possible, the methods and models that Romulus uses are put on 
a solid mathematical basis. The theoretical bases of nondisclosure security 
in Romulus are formal theories based on restrictiveness [18]. These theories 
provide a general way of representing systems mathematically as state ma- 
chines and provide a generic definition of security. The theoretical basis of 
integrity security in Romulus includes various models of integrity, including a 
belief logic that is used to describe and verify authentication protocols. The 
theoretical basis of availability security in Romulus includes formal theories 
of fault tolerance and timeliness requirements. 

1 



1.1    The Romulus Security Methodology 

The Romulus security methodology is designed to assist in the modeling of 
secure systems. The desired properties of these systems should be spelled out 
in a security policy, defined in [8] as a "statement of intent with regard to 
control over access to and dissemination of information". How a security pol- 
icy is put in place is described in a security model, which "precisely describes 
important aspects of security and their relationships to system behavior" 
[20]. A model serves to provide a clear understanding of those aspects of a 
system that affect security. In Romulus, we use an additional term, security 
theory, which is a mathematical definition of a security property. 

The Romulus environment provides support for a variety of methodolo- 
gies for investigating different kinds of security properties. Security analysis 
is not easy, as there are many ways in which security problems can arise. 
Because of the complexity of security analysis, it is often desirable for the se- 
cure system designer to first examine an abstract representation of a system. 
Such an analysis can shed early insight into potential system design issues. 
By applying this analysis early in the development process, secure system 
designers may be able to more rapidly identify potential security problems 
and thus reduce the overall system development cost. Designers may also be 
able to surface potential security flaws that would be difficult to detect by 

manual analysis. 
Romulus provides support for secure system analysis in three keys ways. 

First, Romulus supplies the basis for a system security model that describes 
high-level system security requirements. In this manner, Romulus allows the 
designer to obtain a clear understanding of the fundamental system security 
model without being prematurely distracted by implementation detail. The 
modeling provided by Romulus is particularly relevant to trusted applications 
that are intended to run on an underlying trusted computing base (TCB). 
Second, Romulus provides tool support to allow the secure system designer 
to check that the system model meets important security constraints. Al- 
though these checks are not an exhaustive set of requirements to guarantee 
the security of the implementation, the checks do provide insight into key 
security problems early in the system development. Finally, the system se- 
curity model and analysis provide the basis for the security argument of the 
overall system architecture, which is then supported by further refinement in 
the detailed design and implementation. 



It is important to remember that Romulus contains security modeling 
tools that are used to model and analyze selected aspects of security. Romu- 
lus does not currently provide facilities for mapping the model to code, nor 
is it a detailed design or code analysis tool. 

Romulus is a security modeling environment; it provides support for the 
development of security models and provides support for the analysis and 
verification of some of the security properties of these models. This support 
includes a language for the formal specification of a system model, a means for 
making formal statements about the desired security properties of the system, 
and techniques designed to aid in proofs of these properties. The HOL90 
[37, 42, 43, 44] proof assistant system is used in the current Romulus release 
for this purpose. For example, Romulus contains tools for the specification 
and the proof of nondisclosure properties of processes. Another Romulus 
tool, the graphical interface, is designed to aid in this process. Romulus also 
contains tools for the specification and analysis of authentication protocols. 

The Romulus nondisclosure security methodology includes definitions of 
security for system models together with collections of theorems that aid in 
constructing proofs of security for particular system models. Each definition 
of nondisclosure security used in Romulus is composable. This composability 
property allows the conditions for inferring the security of a whole system to 
be expressed as security conditions on its components. We believe that the 
security enforcement and composability provided by restrictiveness make it 
an attractive choice for a security policy on trusted systems and processes. 

Romulus can be used to analyze the security of systems that handle in- 
formation at multiple security levels. On a multilevel system, users should 
not be able to learn through their interaction with the system any sensitive 
information that they are not authorized to learn. A property that formal- 
izes this condition is restrictiveness. Romulus provides special support for 
showing that systems meet this property. Part of the support is provided by 
the graphical user interface; another part of this support comes in the form 
of formal theories and techniques that aid in constructing security proofs. 

The Romulus integrity methodology includes various models of integrity. 
One of these, a belief logic, is the basis for a tool for specifying and analyzing 
authentication protocols. Authentication protocols are important contribu- 
tors to integrity assurance because they are used to establish the correct 
identity of processes and to distribute encryption keys. An authentication 
protocol is an exchange of messages between a number of processes, called 



"principals". A typical aim of a protocol is to establish an encryption key 

shared by two principals. 
The authentication protocol tool includes a protocol description language, 

which describes a protocol as a sequence of messages, and a protocol specifi- 
cation language, which specifies not only the messages, but their meanings. 
This specification language allows one to reason about a protocol to deter- 
mine if it satisfies its design goals. The tool contains support for constructing 

formal proofs that the design goals are satisfied. 
Other integrity models we have investigated are distributed database in- 

tegrity based on one-copy serializability and a method for surfacing memory 
management attributes needed to ensure that the integrity of an MLS secu- 
rity level is being maintained.  These efforts are described in the library of 

models. 
The Romulus availability methodology includes a model that enables a 

user to specify and prove availability requirements for hard real-time systems. 
It illustrates how Romulus can be used to specify state machines with timing 
information and how such timed state machines can be used to model real- 
time systems. In an example application of this technique, we use this kind of 
model to model periodic tasks that must be executed with a certain frequency 
and sporadic tasks that must finish execution within a certain time after they 

are requested. 
The Romulus availability methodology also includes a model that explores 

some aspects of fault tolerance. It is an illustrative example of how Romulus 
can be used to model systems where information storage is made fault toler- 
ant by replicating information and using a voting algorithm to determine the 
correct information. These examples are described in the library of models. 



Chapter 2 

Security 

All computer systems are vulnerable to interference with the performance of 
the services that they provide. Maintaining the security of computer systems 
is important to ensure their proper performance. Computer security can 
be divided into three areas: nondisclosure, integrity, and availability (also 
known as service assurance or avoidance of denial of service). Nondisclosure 
deals with preventing unauthorized disclosure of information to unauthorized 
users. Integrity deals with protecting the information stored or transmitted in 
a computer system from corruption or unauthorized destruction. Availability 
makes sure that authorized users of a computer system can obtain access to 
the information and services of a computer system and do so in a timely 

manner. 

Threats to computer systems can come from a variety of places. They 
can be internal due to authorized users through inadvertent actions, or to au- 
thorized users through deliberate actions, or to hardware or software failure. 
They can be external due to deliberate attacks by unauthorized users, or to 
things beyond anyone's control, such as power failures, fires, floods, etc. All 
computer systems should have a well defined security policy. This security 
policy should be formulated in a way that takes into account the expected 
threats to a system in a way appropriate for that system. 



2.1     Nondisclosure 

Nondisclosure is what is most often referred to by the term "computer se- 
curity". Nondisclosure concerns itself with access controls, that is, the de- 
termination of the kinds of access to information to grant to an authorized 
user. Nondisclosure techniques can be roughly divided into two groups. Dis- 
cretionary access control (DAC) techniques place the control over who has 
what access to what information into the hands of users. Examples of DAC 
techniques are explicit read, write, and execute permissions granted to spe- 
cific categories of users, usually the owner, the group, and everyone else, 
and access control lists that allow granting and denying access to a specific 
list of users and groups. Mandatory access control (MAC) techniques place 
the control over who has what access to what information into the hands of 
a system administrator or security officer. MAC techniques are most often 
used in the context of multilevel security where each user and each object 
is assigned a security level and access is granted according to the security 
levels of the user and the object being accessed. For example, a user should 
be allowed to read a file only if the user's security level is greater than or the 
same as the file's security level. 

A number of models of multilevel security have been developed. The 
most well known of these is the Bell-LaPadula model [1]. In this model, all 
entities in a computer system are divided into two classifications, subjects and 
objects. Subjects are active entities, such as users and processes. Objects are 
passive containers for information, such as files. Subjects that are processes 
are further divided into trusted processes and untrusted processes. Users 
can be considered to be untrusted subjects. Every object and every subject 
is assigned a security level. The Bell-LaPadula model requires that two 
properties hold. The simple security property states that untrusted subjects 
may read only from objects of lower or equal security level, and the ^-property 
states that untrusted subjects may write only to objects of greater or equal 
security level. The Bell-LaPadula model defines rules of operations that are 
designed to enforce these properties. The simple security property ensures 
that a subject is allowed to read only information it is entitled to read. The 
♦-property ensures that all objects are correctly labeled. The Bell-LaPadula 
model also introduced the concept of a trusted subject, a user or process 
exempted from the restrictions of the *-property. (For example, a process 
for system backup might be trusted since it needs to access information 

6 



at all security levels.) However, this model does not provide guidance for 
determining the security level of information leaving trusted processes, that 

is, that it has the correct security label. 
A security model that addresses trusted processes is Goguen-Meseguer 

noninterference [9]. Here we will concern ourselves with one kind of trusted 
process, multilevel processes. These processes take in information at different 
security levels, process it, and output information at different security levels. 
We assume that each input is a discrete input labeled with a security level 
and that information leaves the process in the form of labeled outputs. A 
subject at a specific security level is restricted in its view of a multilevel 
process, that is, the subject can observe only input and output events that 
have equal or lower security level than the subject. All other events are 
hidden at that security level. For example, a secret subject can observe secret 
and unclassified events, but cannot observe top secret events. A multilevel 
process is secure only if low-level events do not contain any information about 
high-level events. Goguen-Meseguer formalized this idea for deterministic 
systems by requiring that the hidden high-level inputs cannot interfere with 

the sequence of low-level outputs. 
Deducibility Security [38] is more general than Goguen-Meseguer nonin- 

terference and can be applied to nondeterministic systems. A system is said 
to be deducibility secure if any possible set of observations in the view is con- 
sistent with any possible sequence of hidden inputs. That is, it is impossible 
for a subject to "rule out" any sequence of hidden inputs. This implies that 
for a deducibility secure system that initially has no classified information in 
it, an unclassified user of that system will never learn any classified informa- 
tion through the system. Unfortunately, deducibility secure systems are not 
composable, that is, if one connects two deducibility secure systems together 
the resulting system may not be deducibility secure [27]. 

Romulus uses restrictiveness as its theory of nondisclosure security. Re- 
strictiveness has the advantage that it is composable, that is, if two restrictive 
systems are combined into a single system, the resulting system will also be 
restrictive. There are several different definitions of restrictiveness, includ- 
ing trace restrictiveness [14], state restrictiveness [17, 18], and shared state 
restrictiveness [39]. The term restrictiveness generally refers to state restric- 
tiveness in Romulus. Restrictiveness plays an important role in Romulus. 

State restrictiveness is based on a representation of systems known as 
the state machine representation. The state machine representation models 

7 



systems that interact with their environment by exchanging events. We start 
with an informal definition of state machines. 

A state machine consists of a set of states; a set of events, which are 
divided into three disjoint types, namely inputs, outputs, and internal events; 
a set of initial states; and a state transition relation, which is a relation that 
takes a state, an event, and another state and says whether it is legal for the 
state machine to make a transition from the first state to the second state 

accompanied by that event. 
Two states of a state machine are equivalent if they differ only in their 

high-level information, that is, equivalent states are indistinguishable to low- 
level users. Two sequences of events are equivalent if they agree on their low- 
level events, that is, the subsequence consisting of the low-level inputs events 
is the same for each sequence. Equivalent sequences are also indistinguishable 
to low-level users. 

Restrictiveness is a security property that requires that equivalent states 
be affected equivalently by equivalent input sequences, that is, they produce 
equivalent output sequences and end up in equivalent states. In other words, 
high-level inputs and high-level information cannot affect the behavior of the 
system as viewed by the low-level user. Restrictiveness is a generalization of 
Goguen-Meseguer noninterference to nondeterministic machines. 

Rosenthal [35, 34] identified conditions sufficient to guarantee state re- 
strictiveness in the broad case of buffered server processes. Brackin and Chin 
[4] developed a similar set of conditions known as Server-Process Restrictive- 
ness that are equivalent to the Rosenthal conditions, but are easier to use 
for producing specifications and proofs. Tools for proving server-process re- 
strictiveness of buffered server processes are included in the current Romulus 
release. 

2.2    Integrity 

Computer system integrity is a catch-all phrase to describe the assurance 
that data is protected from unauthorized modification or destruction. (For 
a general discussion of integrity see the NCSC publication "Integrity in Au- 
tomated Information Systems" [19].) Our discussion of integrity is divided 
into two general areas. First, we consider some selected models of integrity. 
Second, we consider authentication protocols, listed in [19] as a technique for 



establishing the identity of processes and distributing encryption keys. 

2.2.1     Integrity Models 

We start this section with a general discussion of integrity and then discuss 
integrity in Romulus. 

There are a number of existing techniques to attain integrity. The most 
common approach to maintaining integrity is the use of discretionary access 
controls. These access controls restrict the modification of data to users who 
are explicitly given permission. The Biba model provides more structure 
to access control by associating degrees of integrity with users and data 
objects; a mandatory access control rule prevents a low-integrity user from 
modifying a high-integrity data object [3]. A different approach is to use type 
enforcement [45]. This approach associates types with each program and with 
each data object. The type of a program determines what type data objects 
can be read or modified by the program. For instance, files in a software 
development environment can be divided into source files and object files. The 
type of a compiler is given by saying it takes source files and returns object 
files. A word processor is allowed only to act on source files, and only object 
files can be executed. In this approach, integrity is associated with programs, 
rather than users, and the integrity is determined by functionality. One of 
the first attempts at a comprehensive and general policy for system integrity 
was the Clark-Wilson model [6]. They define a set of enforcement rules and 
certification rules that are designed to guarantee that only authorized users 
operate on trusted data and that they do so only through the use of trusted 
operations. The Clark-Wilson model touches on many of the elements that 
one would expect in a model of the informal description of integrity. However, 
their model does not provide a real semantics for the notions used. 

The Romulus theories of integrity are a collection of formal properties that 
are meant to formalize various notions of integrity for computer systems. 
Romulus does not cover all possible meanings of the word "integrity". It 
instead focuses on (1) formalizing some of the meanings of integrity that are 
currently used in the computer security community, such as the Biba model 
and the Clark-Wilson model, and (2) some original work on meanings of 
integrity that are relevant to current concerns in the distributed computing 
community, such as distributed data integrity and distributed authentication. 

The informal meanings of integrity that we mean to capture with our 
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theories include the following: 

• Data is trustworthy, that is, the data that users get from the system is 
reliable. 

• Users cannot spoof the system. 

Data cannot be corrupted, that is, modified in inappropriate ways. 

Certain operations are accessible only to authorized users. 

• 

• 

The threats to integrity we mean to capture with our theories include the 
following: 

• Distributed information management and concurrency control prob- 
lems: concurrent updates, concurrent access, interleaving of atomic 
parts of nonatomic transactions. 

• Trojan horses and viruses. 

• Modification in unprotected media (e.g., transmission media). 

• Inadequate authentication. 

These informal notions of integrity are formalized in Romulus in the fol- 
lowing formal theories. These theories have not been developed to the point 
of application, but are included here for completeness. The first is a simple 
version of restrictiveness with integrity levels instead of security levels. This 
model stands in relation to restrictiveness as the Biba integrity model stands 
to the Bell-LaPadula model of security. The second is a formal theory of 
Clark-Wilson-like requirements that certain data be accessed only by certain 
operations, and that certain operations be invoked only by certain users. The 
third is a belief model of integrity. The fourth is a probabilistic version of 
deducibility security that is a first step towards being able to analyze crit- 
ical systems that use encryption. These theories are described in detail in 
Volume II of this document set. 

10 



2.2.2    Authentication Protocols 

In this section we are not concerned with general integrity. We concentrate 
here on a particular part of integrity that is vital to certain situations. Au- 
thentication protocols are presented in [19] as a mechanism for establishing 
identity and for supporting encryption. Among the aims of these protocols 
is the distribution of encryption keys, which is needed for cryptographic pro- 
tection of data, another part of integrity. 

In recent years, several logics of authentication have been developed that 
use belieflogics [5, 11]. These logics enable the user to reason about the beliefs 
of the "principals" (i.e., the various processes) involved in a protocol. Typical 
beliefs are that "this key is good", that "this message is fresh", that "a 
particular principal really sent this message", or that "a particular principal 
is trustworthy". To build the logic, inference rules from the problem domain 
are formalized, as is the relation between protocol messages and beliefs. 

Romulus incorporates an authentication logic that is based on [5, 11] and 
enriched by several new constructs. This logic is presented fully in Volume II 
of this document set. The logic has been implemented (the tool is described 
in the next chapter) and is used to formally verify protocol correctness. 

To verify a protocol, the user lists the initial assumptions and final goals as 
statements in the belief logic, and describes the concrete protocol messages. 
Using the inference rules the user attempts to prove the protocol correct. The 
logic exposes the meanings of the various parts of a protocol and exposes the 
root of a problem if the protocol is flawed (within the scope of the logic). 

2.3    Availability 

Availability has broad meaning, encompassing a wide variety of issues of 
resource allocation and management in computer systems, real time service 
requirements, and fault tolerance. The literature in each of these areas is too 
vast to be summarized here. 

The Romulus theories of availability, or service assurance, are a collection 
of formal properties that are meant to formalize various notions of availabil- 
ity for computer systems. Romulus does not cover all possible meanings of 
the term "availability". It instead focuses on two kinds of availability: (1) 
requirements that services are provided in a timely manner, which implicitly 

11 



includes requirements on efficient allocation of resources in general, and (2) 
fault tolerance. Romulus also examines the general topic of making policies 
dynamic so as to facilitate tradeoffs with other requirements and reconfigu- 

ration to assure service. 
The informal meanings of availability that we mean to capture with our 

theories include the following: 

• The system will continue to function in the presence of faults. 

• The system responds in a timely fashion. 

• The system can reconfigure itself to optimize response. 

The threats to service we mean to capture with our theories include the 
following: 

• Hardware and software faults. 

• Resource competition, both from legitimate competitors and malicious 

processes (e.g., "worms"). 

• Unpredictable scheduling algorithms. 

• Thrashing. 

These informal notions of availability are formalized in Romulus in the 
following formal theories. The first is a general theory of fault tolerance. The 
second is a general approach to stating timeliness requirements. The third 
are dynamic versions of deducibility and restrictiveness. These theories are 
described in detail in Volume II of this document set. 

12 



Chapter 3 

The Romulus Toolset 

In this chapter, we use simple examples to introduce the Romulus tools. 
First, we analyze a model of a simple system using the graphical interface 
and the flow analyzer. Second, we formally specify and prove a piece of 
the model correct. Third, we describe how to specify and prove correct an 
authentication protocol. 

3.1     The Graphical Interface 

Using the Romulus graphical interface, a user designs a model and analyzes 
the data flow of the model. Figure 3.1 shows an example of the Romulus 
graphical interface. The Romulus window is divided into three areas: com- 
mand buttons, a message window, and a canvas area. The command buttons 
are used to choose different commands, the message area displays informa- 
tion about the command buttons and the execution of their commands, and 
the canvas area is used to draw models of systems. 

3.1.1     Design 

For our first example, we created the design shown in Figure 3.1 using the 
graphical interface. 

The basic objects of a Romulus design are components and ports. Compo- 
nents are in a tree structure; the main component being studied corresponds 
to a system or high-level process, and subcomponents represent subprocesses 
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Figure 3.1: The simple example 

within that system or high-level process. Ports represent data connections 
through which data enters or leaves the process represented by a component. 
A range of security levels is assigned to each port; inputs passing through an 
input port are assumed to have security levels in the assigned range and out- 
puts passing through an output port are required to have security levels in the 
assigned range. The level range for a port is indicated in the graphics next 
to the port. In the example, the main component is called simple_example 
and has input port s_in and output port s_out. The subcomponents repre- 
sent processes called filter, with one input port f _in and one output port 
f_out, and unclassifiecLprocess, with one input port u_in and one output 
port u_out. 

We used the Component operations commands to create the subcom- 
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ponents. We used the Port operations commands to create the ports, 
connect ports, and assign a range of security levels to each port. We used 
the Top-level operations commands to name the components and ports 
and to display the port names in the canvas. We describe how to use all 
these commands in the Romulus User's Manual, which is Volume IV of this 
documentation set. 

In our example, the input port labeled f _in receives messages from the 
input port labeled s_in. Both of these ports handle messages of all security 
levels in the range unclassified to top secret. This range is indicated next to 
these ports by the abbreviation [U,TS]. The filter component's task is to 
filter messages so that only unclassified messages are sent to the unclassi- 
fied_process. The filter's output port, f _out, has unclassified as its low and 
high security limits, as do the ports u_in, u_out, and s_out. This range is 
indicated next to these ports by the abbreviation [U,U]. 

3.1.2    Flow Analysis 

The Romulus flow analyzer allows the user to check a component for possible 
insecure data flows. A possible insecure data flow is a path from a port, 
through at least one component, to another port where the upper security 
level on the first port is higher than the lower security level on the second port. 
This path might be insecure because high-level information from the first port 
might be encoded into low-level data that reaches the second port, that is, 
high-level information might flow to a low-level output. To analyze the data 
flow of our model, we use the Top-level operations flow command. The 
flow analyzer checks the model for potential insecure data flows and, if it 
finds one, highlights it by drawing the affected parts using bold lines. An 
example of a potential insecure flow is shown in Figure 3.2. 

The potential insecure flow in this case is from the port f _in to the port 
f_out on the filter process. Unless the filter component is proven to be 
secure, it might pass classified data that comes in through the input port 
out through the output port to the unclassified_process. In this simple 
example, only the filter component has a potential insecure flow. 

At this point, the user can try to prove that the filter correctly handles 
data or can assume that the component is secure. If the user invokes the 
Component operations assume command and selects the filter component, 
Romulus marks the filter component with an asterisk in the lower right 
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Figure 3.2: Flow analysis of the simple example 

corner; this asterisk indicates that the component is assumed secure. Now 
when the user invokes the flow analyzer, there is no longer an insecure data 
flow. 

In a more complex example, multiple components could have potential 
data flow insecurities. Romulus shows one data flow insecurity at a time. In 
that case, the user might consecutively assume that pieces of the model are 
secure to step through potential insecure flows. 

Instead of assuming that a component is secure, a user has the option of 
trying to prove that it is. To prove that one or more components are secure, 
the user uses the save command to save the design, exits the graphical 
interface, and begins the steps to prove the components secure. 
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3.2    Proving Security 

Proving that components are secure is a multi-step procedure. First, the user 
writes a specification for the component using the interface process specifica- 
tion language (IPSL). Next, the user translates the IPSL specification into the 
form required by the Higher Order Logic (HOL) system using the ipsl2hol 
translator, or the graphics spec command, and uses the HOL prover to create 
a HOL theory describing the process. Next, the user loads the process theory 
into the HOL environment and proves the desired nondisclosure property of 
the process. Finally, the user creates a Romulus theory, or rtheory, file that 
contains the information necessary for the graphical interface to verify that, 
the process has been proved secure. If this rtheory file is loaded into the 
graphics, then the component for this process will be marked as having been 
proven secure by placing a double asterisk in the lower right corner. These 
steps are illustrated here; they are fully described in the Romulus User's 

Manual, Volume IV of this document set. 

The specification for the filter process is given in Figure 3.3. The key- 
words ??Process:, ??0utPort:, and ??InPort: identify the starts of pro- 
cess, output port, and input port specifications respectively. The ??H0L Junc- 
tions: entry gives definitions of constants that are referred to in the rest 
of the interface process language specification. The ??MessageVar: entries 
give the names and types of the components of a message passing through 
the port. The ??LevelFun: value gives the security level, as a function of 
the variables in an arbitrary message, of messages passing through the port. 
The ??LevelRange: entry gives the range of security levels of messages pass- 
ing through the port. The ??Response: value for an input port gives the 
response, as a function of the variables in an arbitrary message, of the pro- 
cess to messages entering through that port; this response is given using the 
Romulus PSL formal process specification language. The ??Response: value 
asserts that the filter will send a message out the port f _out if it is from a 
source whose level is unclassified, but otherwise ignore it, and then return 
to wait for the next message. The interface process specification language is 
fully described in Volume IV, the Romulus User's Manual. 

The filter specification is translated into the form used by HOL with the 

command 
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??Process: filter 

??HOL_functions: 

new_parent "string"; 

new_constant 

{Name="source_level", 

Ty= ==':string->standard_level'==}; 

??0utPort: f_out 

??MessageVar: source:string 

??MessageVar: data:string 

??LevelFun: source_level source 

??LevelRange: unclassified unclassified 

??InPort: f_in 

??MessageVar: source:string 

??MessageVar: data:string 

??LevelFun: source_level source 

??LevelRange: unclassified top_secret 
??Response: 

(If ((source_level source) = unclassified) 
(Send (f_out source data)) 

Skip);; 
(Call filterTop) 

??EndProcess:  filter 

Figure 3.3: The filter process specification 

ipsl2hol filter 

This translation creates two files, filter.goal, sml and 
filter.spec.sml. The file filter.goal.sml is used to guide the proof 
process. The filter.spec.sml file is used to create a HOL theory file de- 
scribing the filter process with the command 

rhol < filter.spec.sml 

Once this specification has been completed and a HOL theory for the process 
has been created, the user can prove the appropriate nondisclosure property 
for the process. 
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In the case of the filter process, this nondisclosure property is that the 
process is BNPSP_restrictive. BNPSP_restrictiveness is a nondisclosure prop- 
erty (described in [4]) that can be applied to buffered, non-parameterized 
server processes. 

The user starts by loading the theory file for the filter process, various 
declarations, and special purpose Romulus tactics for restrictiveness proofs. 
Next, the user sets the goal of proving BNPSP_restrictiveness. 

g('BNPSP_restrictive 

"filterInPred 

"filterOutPred 
(standard_dom) 

~filterlnLevel 

"filterOutLevel 

"filterInvocVal 

"filterTop'); 

The user then can do the actual proof. The Romulus tactic for prov- 
ing BNPSP_restrictiveness, BNPSPjrestrictive_TAC, and a standard HOL 
tactic, REWRITEJTAC, are used for this proof. 

e(BNPSP_restrictive_TAC); 
e(REWRITEJTAC  [(definition "romlemmas"  "standard_dom")]); 
e(REWRITE_TAC [(definition "romlemmas" "standard_dom")]); 

Finally, the user creates the rtheory file. 

save_top_thm("filter_BNPSP_restrictive"); 

romrtheory("filter"); 

Further details can be found Volume IV. 

3.3     Authentication Protocol Analysis Tool 

Romulus incorporates a tool for the verification and analysis of authentication 
protocols. The user of this tool defines the protocol to be examined and 
writes a specification (requirements) of what it is intended to achieve. The 
user then performs a formal verification of the protocol, or in the event that 
the protocol is flawed, the user examines, through the logical framework, 
why it is flawed. Owing to the limited nature of the problem domain, this 
tool does not suffer from the usual problems (expense) of applying formal 
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methods. It is eminently practical, as the reader can see by reading the 
two full examples in the library of models (Volume III), where we verify and 
analyze standard protocols in common use. Background on authentication 
protocols can be found in [7, 21]. 

The system for verifying protocols is built within HOL, and the user 
works directly in HOL. We have designed a front-end language for the de- 
scription and specification of protocols, and we intend that an interface for 
this language will be available in the next release of Romulus. This front end 
will enable users to define protocols using the same sort of language that is 
used to define protocols, in the literature, for implementors. Our front-end 
language is presented in Volume II. Here, we discuss the current system. 

We will sketch the treatment of an example in order to describe the tool. 
HOL details will be omitted here for clarity. Suppose the user wishes to 
verify the familiar Denning-Sacco key distribution protocol [7]. This protocol 
is presented in the literature like so: 

1. A -> s 
2. S -> A 
3. A -> B 

A,  B; 
{B,  k,  t,   {A,  k,  t}_e(kb)}_e(ka); 
{A,  k,   t}_e(kb); 

The notation A -> B: M means that principal A sends principal B the message 
M. Here messages are preceded with sequence numbers for reference purposes. 

In this protocol there are three messages sent between principals A, B, 
and S. S is a key server, and A and B are clients who wish to obtain a secret 
key that they can use for encryption of messages sent between them. For 
clients A and B, k is the session key chosen by the server S; The timestamp t 
is taken from the server's clock. A and S share the secret key ka, and B and 
S share the secret key kb. Finally, {. . .}_e(kb) is the result of encrypting 
the contents of the curly braces with the key kb. 

3.3.1     Describing and Specifying a Protocol 

Definitions of some of the objects necessary for describing and specifying 
protocols are contained in a HOL theory crypto_90. These objects are the 
belief predicate, the types of the principals and messages, and the encryp- 
tion function. Various axioms in this theory determine needed relationships 
between the objects.   Of special significance is the turnstile of our logic — 
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the predicate theorem, which indicates that a HOL term is a theorem in our 
logic. 

Other objects necessary for describing and specifying a protocol are spe- 
cific to the protocol. The user defines these objects in another HOL theory. 
The user defines the protocol in this theory using the protocol specification 
language. For example, 

send A S  ((name A)  APP  (name B)) 
send S A  (encrypt ka ((name B)  APP k APP t APP 

(encrypt kb ((name A)  APP k APP t)))) 
send A B  (encrypt kb  ((name A)  APP k APP t)) 

Here APP is the means of appending separate message components and 
(name A) is the name of principal A. 

The user must also define the initial assumptions needed for the protocol; 
for this protocol, some of these assumptions are 

theorem(believes A (is_shared_secret A S ka)) 
theorem(believes A  (is_fresh t)) 

The first assumption states A's belief that the key ka is known only to A and 
S, and that no one else could guess it. The second states A's belief that the 
timestamp A has used is indeed recently generated. 

Finally, the user states what the user hopes to achieve by executing the 
protocol. This statement, called postcondition, is a conjunction of a num- 
ber of things like: 

theorem(believes A  (is_shared_secret A B k)) 

together with the claim that the key k is freshly generated, etc. 

3.3.2     Proving a Protocol 

The user wants this postcondition to be a theorem of the authentication logic 
and declares this postcondition to be goal of a HOL proof session. A proof is 
then carried out, using the inference rules of our logic, which are contained 
in the theory crypto_90. 

To get the flavor of the inference rules, we will look at one: 
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theorem(believes p  (is_fresh x))  /\ theorem(possesses p k) 

theorem(believes p  (is_fresh (encrypt k x))) 

This rule reflects one thing we can deduce, based partly on the properties 
of encryption functions. That is, if principal p believes that the text x is 
recently generated and p possesses the encryption key k, then p believes that 

x encrypted with key k is also recently generated. This rule is used to show 
that a message containing an encrypted version of a fresh string is itself fresh. 

If the proof succeeds, the protocol meets its specification. It can happen 
that the proof cannot be completed because the protocol is flawed. In this 
case, it becomes clear from the logic where the problem is. 

The theory and use of the tool are described fully in Volume II and 
Volume IV respectively. Detailed examples of the analysis of two protocols 
are presented in the library of models, Volume III. The design for the front- 
end language is described in Volume II. 
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Chapter 4 

Library of Models 

The Romulus library of models is a collection of examples that provide in- 
sight into building and analyzing models for security properties. The library 
includes examples from the areas of nondisclosure, integrity, and availability. 
These properties are described in Volume II of the Romulus documentation 
set. Because the areas of nondisclosure, integrity, and availability are so 
broad, our models address specific aspects of each area. For nondisclosure, 
the focus is on mandatory access control, and in particular, the restrictiveness 
theory. For integrity, the models handle label integrity (network driver), cor- 
rectness of distributed authentication, and a method of achieving one-copy 
serializability (distributed databases). For availability, the models address 
fault tolerance and real-time scheduling. 

We give a brief description of each model below.  Complete descriptions 
of each model can be found in Volume III of the Romulus documentation set. 

4.1     Abstract Guard 

The abstract guard is a generic description of a process that filters out mes- 
sages that should not be delivered to processes operating in a given security 
range. This model models the use of a shared resource (shared directories); 
we use a variation on restrictiveness, called shared-state restrictiveness, to 
show that it is secure with respect to nondisclosure. 

The generic guard process formalized in Volume III is very abstract, mod- 
eling virtually any program for analyzing messages and choosing which mes- 
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sages can be released. In this model, input messages are placed into an input 
directory. The guard examines the security level of each input message and, 
if it is safe, (i.e., if it can be released to processes in the specified security 
range) puts it into an output directory. If it is not safe, the guard places 
the message into an audit directory. The guard design guarantees that only 
one message is accessed at a time and that if a new (or moved) message is 
created from an old one the new message has the same or higher level as the 

old one. 
We prove that a simple security property is sufficient to guarantee shared- 

state restrictiveness. Although this property is rather strong, we believe it 
could be shown to follow from simpler and more specific properties of guard 
components — properties that would be easier to establish in themselves 
than shared-state or regular restrictiveness. These properties could then be 

used as guides by the designers of actual guards. 

4.2    MINIX 
The MINIX model is a specification for a secure (i.e., restrictive) operat- 
ing system based on the MINIX operating system [40]. The main additions 
to MINIX in the system modeled here are data structures for maintaining 
security-level information and procedures for imposing mandatory access con- 
trols. The system model given here is believed to be restrictive, but we do 

not give a full proof of restrictiveness. 
The security model used in the operating system modeled here is for the 

most part standard. The active "subjects" in the model are user processes, 
and the "objects" are data files or user processes. (The kill command 
provides an example of treating a user process as an object.) Subjects and 
objects are assigned security levels, and a subject is not permitted to obtain 
information about an object unless the subject's level dominates the object's 
level or permitted to affect an object unless the object's level dominates 
the subject's level. Since the model assumes that security levels are given 
by information stored in the operating system itself, the model might be 
generalized to describe an operating system that allows security levels to be 
changed dynamically. Also, since the model's security is analyzed in terms 
of restrictiveness in the special case of buffered server processes, the model 
also implicitly addresses possible "covert channels" involving shared resources 
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such as system data tables. 
The operating system model given here is primarily of interest because 

when the proof that it is restrictive is completed, it will provide insight into 
the design of restrictive operating systems. If proven restrictive, it will show 
that even something as complicated as this model of an operating system can 
be made restrictive. The model and the proofs of its properties given here 
also serve as nice examples of how the Romulus techniques and utilities for 
specifying processes and proving facts about them can be used to manage 
complexity and simplify proofs. 

4.3    Network Driver 

A secure network device driver [32] must ensure that the integrity of MLS in- 
formation is maintained across the network. In the network driver described 
in [32], a security level is added to a packet before it goes out to the network, 
and this information must be used to route the packet to the appropriate 
security level when it arrives at its destination. Maintaining the integrity of 
the label is essential in order for this scheme to maintain security. In partic- 
ular, care must be taken to ensure that the label on a packet is not corrupted 
between the time that the packet is labeled and the time that it is sent out 
over the network. Ensuring that the label is not corrupted requires careful 
memory management techniques. 

In the secure network driver, a labeled packet is stored in a buffer while it 
is waiting to be sent out over the network. If a process other than the sending 
process, the labeler, or network driver is allowed access to this buffer, then 
the label could be corrupted. Corruption could occur in a number of different 
ways. For example, more than one process could be allocated the same piece 
of memory, allowing one of the processes to inadvertently overwrite the label 
in a buffer belonging to another process. Or, a process could maintain a 
pointer to a piece of memory that it had deallocated and that had been 
allocated to another process, again allowing that process to inadvertently 
overwrite the label in a buffer belonging to the other process. Or, a process 
might purposely seek out the memory allocated to other processes in hopes 
of deliberately changing the labels on high-level packets so that a low-level 
confederate on another node of the network could gain access to the packets. 

The network driver model describes a method for managing these memory 
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management issues to ensure that the integrity of an MLS security level is 
being maintained. This integrity property is used in the security argument 
that the network labeler and network driver correctly set and maintain the 
security level. Included in this argument are formal specifications of the 
relevant parts of the network labeler and its properties. 

4.4    Authentication Protocols 

We present an analysis of two authentication protocols, the Denning-Sacco 
protocol and the Needham-Schroeder protocol. Authentication protocols are 
important contributors to integrity assurance because they are used to es- 
tablish the correct identity of processes and distribute encryption keys. An 
authentication protocol is an exchange of messages between a number of 
processes, called "principals". A typical aim of a protocol is to establish an 
encryption key shared by two principals. The message exchange often in- 
volves a third party — a "keyserver"— who is trusted to generate good keys 
and keep secrets. Protocol messages employ a variety of techniques to ensure 
the identity of a principal, that the messages have been recently generated, 
and that the keys exchanged are protected. 

We deal here with protocols modeled at the level of the messages between 
the processes (or "principals") involved, as is standard in this area. We use 
the Romulus implementation of authentication logic to state requirements 
on particular protocols and prove that they are correct, or in the case of 
an inadequate protocol, examine what the protocol lacks and what it can 

establish. 

For each protocol, we present the description of the protocol and its spec- 
ification, and we describe the proof of correctness. We perform the analysis 
in the Romulus implementation of authentication logic. This logic is a belief 
logic, which enables us to express the belief-states of principals and prove that 
after protocol execution, the principals are operating with a correct set of 
beliefs about the identity of other principals and the adequacy of encryption 

keys. 
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4.5    Distributed Database 

The distributed database model describes a method of building multilevel 
databases that takes into account both integrity and nondisclosure require- 
ments, together with a formal specification of the trusted part of the method. 
The trusted part of the method is a protocol developed by Kogan and Jajo- 
dia [12] for distributed, replicated databases; this protocol is both restrictive 
and satisfies the integrity property, one-copy serializability [2]. 

Serializability is the standard integrity property for concurrency control 
in databases. Serializability ensures that if a number of transactions are 
interleaved, then the effect will be equivalent to some scenario in which the 
transactions are not interleaved. When dealing with distributed databases, 
we need a modified form of serializability, called one-copy serializability, to 
handle the fact that there are multiple versions of the same information on 

different hosts. 
The replicated database described in [12] consists of a number of different 

interconnected databases called containers. Each individual database con- 
tains all of the information at or below some security level, that is, data in 
lower level containers is replicated in higher level containers. Each container 
is single-level, and information is not permitted to flow from a high-level 
database to a low-level database. Any number of containers can reside on a 
single host. This database model uses an MLS approach, where all of the syn- 
chronization responsibility between databases on a particular host is placed 
into a single trusted process. This approach may be able to more efficiently 
manage shared updates. 

For integrity, control is needed on the propagation of information from low 
to high levels to preserve database consistency. This control must be done, in 
order to achieve nondisclosure, in a way such that there is no communication 
from higher level containers to lower level containers. The protocol described 
in [12] has the desired integrity and nondisclosure properties. We provide a 
formal specification of the trusted part of their protocol. 

4.6    Fault Tolerant Reference Monitor 

The Fault Tolerant Reference Monitor (FTRM) is designed to support multi- 
ple clients with arbitrary security classifications accessing data in a hierarchi- 
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cal file system with files and directories at arbitrary security classifications. 
It is intended to implement an access control policy that allows clients to 
obtain information only at an equal or lower security level, or output infor- 
mation only at an equal or greater security level. The FTRM accomplishes 
fault tolerant multilevel security by replicating files and tables of security 
levels on multiple network nodes. The replicated data is used to mask data 
corruption faults by implementing a collection of voting algorithms. The 
FTRM is designed so that any number of faults can be withstood if there 
are sufficiently many nodes and sufficient replication of file system data and 
security level tables. In particular, secure mediation of access to data will be 
unaffected by faults if there is a sufficient degree of replication. 

The FTRM model is designed to satisfy both nondisclosure and avail- 
ability security properties. Nondisclosure security is assured by designing 
the FTRM to be restrictive. Availability security is assured by designing 
the FTRM to be fault tolerant with respect to various kinds of faults in the 
nodes on the network, including nodes crashing, disks and other devices for 
maintaining the file system crashing, and corruption of data (either in ordi- 
nary files or in files containing records of client and file security levels) on 
disks. 

Faults are modeled as inputs to the system; by assigning the security level 
systemhigh to these inputs, the fault tolerance properties of the FTRM can 
be established by showing it to be restrictive. This model includes a complete 
specification of the FTRM, but a proof of restrictiveness has not been done. 

4.7    Real-Time Scheduler 

The purpose of this model is to explore some aspects of availability require- 
ments for hard real-time systems. It is an illustrative example of how Ro- 
mulus can be used to specify state machines with timing information, and 
how such timed state machines can be used to model real-time systems. In 
this example, the real-time system is required to schedule two representative 
tasks similar to those handled by the Operational Flight Program (OFP) of 
the A-7E Navy aircraft: 

• a periodic task, which repeatedly updates a navigational database with 
the current position of the aircraft, and 
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• a sporadic task, which is initiated at the request of the pilot and fires 

a missile. 

These tasks must be executed in such a way that the availability requirements 

of both are met. 
A hard real-time system is one designed to meet requirements not only 

on what actions it performs, but also when it performs them. Such a system 
must schedule processes to perform tasks that are time-critical (i.e., they 
must be performed in a "timely" fashion). 

In the context of a hard real-time system, availability properties relate 
to the timeliness of time-critical tasks and are expressed as constraints on 
the timing of processes. Timing constraints can of course be arbitrarily 
complex. However, in this notoriously difficult (and hazardous) field, there 
have evolved certain useful models of processing and their hard real-time 
requirements. These models are both general and powerful enough to deal 
with a wide variety of real-time processing needs, in particular for avionics 
processing. They are also simple enough to admit full analysis and safe 
implementation. 

The real-time scheduler model models the scheduling of one periodic task 
and one sporadic task using a static priority interrupt scheduling algorithm 
[41]. The sporadic task is given a higher priority than the periodic task. The 
requirements on this model are that each task completes execution within 
a fixed period of time after it is requested. The periodic task is requested 
at fixed intervals; the sporadic task can be requested at any time, but two 
requests must be separated by a minimum fixed interval. This model in- 
cludes a proof that the sporadic task meets its requirements and an almost 
completed proof that the periodic task meets its requirements. 
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