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Preface 

This four volume report describes Romulus, a security modeling environment. 
Romulus includes a tool for constructing graphical hierarchical process rep- 
resentations; an information flow analyzer; a process specification language; 

and techniques to aid in doing proofs of security properties. Romulus also 
contains tools for the specification and analysis of authentication protocols. 
Using Romulus, a user can develop and analyze security models and proper- 
ties. The foundations of Romulus are formal theories of security; applications 
of these theories are demonstrated in a library of models. 

In this volume, we assume that the reader has some familiarity with the 
Romulus tools, the HOL system, and security issues in general. 

Organization of the Romulus Documentation Set 

Volume I of this documentation set is an overview of Romulus. Volume II 
describes the Romulus theories of nondisclosure, integrity, and availability. 
This is Volume III; it describes the Romulus library of models. Volume IV 
is the Romulus User's Manual; it contains descriptions of the Romulus tools, 

how to use them, and tutorial examples. 

Organization of This Volume 

This volume is the library of models. It provides a collection of examples 
that show how to build and analyze models for security properties. The 
examples described in this volume are: a Generic Guard Model, a Secure 
Minix Model, a Network Driver Model, Authentication Protocol Models, 
a Multilevel Distributed Database Integrity Model, a The Fault Tolerant 
Reference Monitor Model, and a Real-Time Scheduling Model. 

Conventions 

This document set uses the following conventions. Computer code, specifi- 
cations, program names, file names, and similar material are typeset using a 
typewriter font. Interactive computer sessions are surrounded by a rounded 
box. Within this box, user input is typeset using an italic typewriter 
font; computer output is typeset using the typewriter font. Some computer 



output has been reformatted for presentation purposes; it may not appear in 
this document exactly as it appears on your screen. 
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Chapter 1 

Introduction 

The Romulus library of models contains a collection of examples that pro- 
vide insight into how to build and analyze models for security properties. 
The library includes examples from the areas of nondisclosure, integrity, and 
availability. These properties are described in Volume II of the Romulus 
Documentation Set. The examples are 

• an abstract guard (nondisclosure), 

• Minix -- an operating system (nondisclosure), 

• a network driver (nondisclosure and integrity), 

• authentication protocols (integrity), 

• a distributed database (integrity), 

• the Fault Tolerant Reference Monitor (nondisclosure and availability), 
and 

• a real-time scheduler (availability). 

Because the areas of nondisclosure, integrity, and availability are so broad, 
our models address specific aspects of each area. For nondisclosure the focus 
is on mandatory access control, and in particular, the restrictiveness theory. 
For integrity, the models handle label integrity (nelwork driver), correctness 
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of distributed authentication, and a method of achieving serializability (dis- 
tributed databases). For availability, the models address fault tolerance and 

real-time scheduling. 
We give a brief description of each model below.   We then provide a 

complete description in the following chapters. 

Abstract Guard 

The abstract guard is a generic description of a process that filters out mes- 
sages that should not be delivered to processes operating in a given security 
range. Because it models the use of a shared resource (that is, shared directo- 
ries), we use a variation on restrictiveness, called shared-state restrictiveness, 
to show that it is secure with respect to nondisclosure. 

Minix 

The Minix model is a specification of an MLS operating system based on the 
Minix operating system created by Tanenbaum. The model includes varia- 
tions of Tanenbaum's kernel, memory management, and file system adapted 
to handle Mandatory Access Control. This model shows that it is feasible to 
formalize and prove restrictiveness of a complex system. 

Network Driver 

The network driver model describes a method for surfacing memory manage- 
ment attributes needed to ensure that the integrity of an MLS security level 
is being maintained. This integrity property is used in the security argu- 
ment that the network labeler and network driver correctly set, and maintain 
the security level. The model concentrates on an intuitive description of the 
methodology. We formalize relevant parts of the network labeler specification 

and its properties. 

Authentication Protocols 

The models here describe two separate authentication protocols. We analyze 
the Denning-Sacco protocol and the Needham-Schroeder protocol. The pro- 
tocol messages are formally defined and specified. We formally state pre- and 



post-conditions for each protocol. We perform the analysis in the Romulus 
implementation of authentication logic. This logic is a belief logic, which en- 
ables us to express the belief-states of principals and prove that after protocol 
execution, the principals are operating with a correct set of beliefs about the 
identity of other principals and the adequacy of encryption keys. We discuss 
some interesting flaws exposed in the second example. 

Distributed Database 

The distributed database model specifies the trusted part of a protocol de- 
veloped by Kogan and Jajodia for distributed, replicated databases; this 
protocol is both restrictive and one-copy serializable. The restrictiveness ar- 
gument is straightforward, as the trusted protocol simply has to maintain 
and deliver messages to databases at particular levels. The serializability 
proof is not included here; it is contained in [11]. However, this model does 
contain a formal specification of how the trusted part of the protocol should 
be constructed. 

Fault Tolerant Reference Monitor 

The fault tolerant reference monitor (FTRM) is a model of a file access con- 
trol mechanism, that is both secure with respect to storage channels (restric- 
tive) and is fault tolerant. The main type of failure that is modeled is data 
corruption caused by disk failures. This failure is addressed by replicating 
the data. When a read or write request arrives, the request is propagated to 
the different servers and the retrieved information is compared. The result 
on which the majority of servers agree is used as the actual result. If there is 
a sufficient amount of replication and the number of faults at a given time is 
not too large, then this method provides the desired protection against these 
faults. 

Real-Time Scheduler 

This model explores some aspects of availability for real-time systems. In 
particular, it examines a part of the task scheduling loosely based on the 
operational flight program of the A-7E Navy Aircraft.   This model shows 



how to formally augment the typical Romulus state machine models with 
timing to handle the analysis of these kinds of properties. 



Chapter 2 

The Shared-State Generic 
Guard Model 

2.1    Introduction 

This chapter gives a HOL90 formalization of the theory of shared-state re- 
strictiveness, a mandatory access control property that simplifies the stan- 
dard nondisclosure theory of restrictiveness [14, 15] and applies it in a nat- 
ural way to processes involving shared state (e.g., processes communicating 
through shared directories). The chapter uses this theory to formalize secu- 
rity for a case naturally involving shared state, a generic guard program that 
chooses which messages can be released to a relatively untrustworthy entity 
and which are sent to an audit directory in order to be investigated. The 
chapter concludes with a formal proof that a guard is shared-state restrictive 
if its components satisfy a strong but simple security property. 

For more information on HOL90, see Volume IV of the Romulus Docu- 
mentation Set. For more information on shared-state restrictiveness, see [21] 
and Volume II of the Romulus Documentation Set. 

The next few paragraphs list several properties of shared-state restric- 
tiveness that indicate why we believe it to be of interest. These properties 
generally contrast it with ordinary restrictiveness. 

Like restrictiveness, shared-state restrictiveness is a composable property, 
so that the result of properly connecting shared-state restrictive components 
is shared-state restrictive. Unlike restrictiveness, shared-state restrictiveness 



describes process behavior purely in terms of transformations on system vari- 

ables rather than in terms of input and output events. 
Shared-state restrictiveness distinguishes the system variables that can 

be changed by entities outside the system (labeled variables) from the system 
variables that can be changed only by the system itself (unlabeled variables). 
Input events in ordinary restrictiveness are analogous to changes in labeled 
variables made by entities outside the system; output events in restrictiveness 
are analogous to changes in labeled variables made by the system itself. 

Shared-state restrictiveness can hold, though, for systems in which "input" 
changes to system variables and "output" changes to system variables can 

occur simultaneously, and in which more than one system variable can change 

at a time. 
Shared-state restrictiveness defines all sensitivity-level information for 

system variables in terms of a security structure projection function that 
captures only the information in system variables that is legitimately acces- 
sible to one having clearance at a particular level. This function subsumes 
all of ordinary restrictiveness' functions assigning security levels to input and 
output events and its projection functions capturing just the information in 
system variables needed to give the future system behavior visible at a partic- 
ular level. See [21] for a proof that being shared-state restrictive guarantees 
that a system has appropriate nondisclosure properties. 

Shared-state restrictiveness is a more natural tool for analyzing systems 
involving shared state than ordinary restrictiveness is. The simplest way 
of applying ordinary restrictiveness to systems involving shared state is to 
introduce new processes that manage the shared resources; this approach 
raises issues such as whether these new processes are always guaranteed to 
reply to requests and whether these new processes are themselves secure. 

The generic guard process formalized in this chapter is very abstract, 
modeling virtually any program for analyzing messages and choosing which 
ones can be released. The results presented here could presumably be strength- 
ened to show that specific guard programs are shared-state restrictive. 

The "objects" for the generic guard are messages and bags of messages; 
a bag is an abstraction of a directory. The labeled variables for the guard 
model, which determine its external interfaces, are just three bags of mes- 
sages: a bag for input messages, a bag for output messages, and a bag for 
messages that have been rejected for output and saved for auditing. The 
model's security structure assigns fixed security levels to each message. The 
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guard design guarantees that only one message is accessed at a time and that 
if a new (or moved) message is created from an old one the new message has 

the same level as the old one. 
We prove that a simple security property is sufficient to guarantee shared- 

state restrictiveness. An informal statement of this property follows: the 
guard's single-step behavior visible at a security level would be a possible 
system behavior if the system variables visible at that security level were the 
only ones that had ever existed. Although this property is rather strong, 
we believe it could be shown to follow from simpler and more specific prop- 
erties of guard components — properties that woidd be easier to establish 
in themselves than shared-state or regular restrictiveness. These properties 
could then be used as guides by the designers of actual guards. 

2.2    Shared-State Restrictiveness 

This section contains and describes the specification of the general theory of 
shared-state restrictiveness. 

2.2.1 Front Matter 

The specification begins by removing any earlier versions of the theory of 
shared-state restrictiveness, creating a new theory of it, loading the HOL 
inductive definitions library, and loading a file of Romulus utilities that make 
it easier to make and use inductive definitions. 

System.system "rm -f  sharedstate.holsig sharedstate.thms"; 

new_theory "sharedstate";; 

load_library{lib = Sys_lib.ind_def_lib, theory = "-"}; 

open Inductive_def; 

use "romutils.sml"; 

2.2.2 Type Declarations 

The specification next describes the type of the state of a system as it is 
viewed in the theory of shared-state restrictiveness. The state is a collection 



of variables with associated values, and the variables are divided into two cat- 
egories: the labeled variables are those accessible to and possibly modifiable 
by agents outside the system itself, while the unlabeled variables are those 
internal to the system, accessible to it alone, and modifiable by it alone. 

In the specification, the type variables 'labeled and 'unlabeled are 

intended to be instantiated with the types of records containing all the labeled 
and unlabeled variables, respectively, of an arbitrary system to be analyzed 
for being shared-state restrictive. These records are further intended to be 
records of the form defined by the Romulus type-defining utility romrecord, 
which not only defines the record types but also defines functions for accessing 
and updating the entries in these records; the specification given later for the 
generic guard model assumes that the functions for accessing and updating 
record entries follow the naming conventions used for these functions by 
romrecord. 

Since type abbreviations are not yet implemented for HOL90 theories, 
the specification defines SML variables as abbreviated names for types, and 
then accesses these types with antiquotation. 

val state = ty_antiq(==':'labeled #  'unlabeled'==); 

The specification also assumes that the type variable ' level will be in- 
stantiated with the arbitrary type of security levels for whichever system is 
being analyzed. 

2.2.3    Reachable States and Nondeterminism 

The specification then defines those system states that can possibly be at- 
tained by inductively defining the predicate reachable as a function of the. 
system's initial state and its possible state transitions. 

A system's state transitions fall into one of two disjoint categories: 

• An outer transition is one made by an agent external to the system 
being analyzed, an agent such as a person or another system. Typical 
external transitions are adding a file to an input directory or removing 
it from an output directory. An outer transition can affect only the 
labeled part of the system's state. 

8 



• An inner transition is one made by the system itself. An inner transi- 
tion can change both the labeled and unlabeled parts of the system's 

state. 

In the specification, a system's possible initial states and the possible 
outer transitions affecting it are given straightforwardly by predicates, but 
the description of a system's possible inner transitions is slightly more com- 
plicated. The inner transitions are given by a function whose first argument 
is an integer "nondeterminism argument" representing something like the 
time or the current value of the seed to a random number generator. The 
nondeterminism argument expresses the notion that although a system's ac- 
tions need not be determined by its state variables, these "choices" cannot 
be made on the basis of information that is not available at all security lev- 
els, so they can be computed from knowledge of the state variables and the 
nondeterminism argument. 

The named_rules_new_inductive_def initionfunction used in the spec- 

ification's definition of reachable is a Romulus utility that calls the standard 
HOL function new_inductive.def inition,but allows explicit names to be 
associated with each rule for the inductive relation being defined. In the 
definition, the variables initial, inner.trans, and outer_trans denote an 
arbitrary predicate giving possible initial states, an arbitrary function of non- 
determinism arguments and states giving inner transitions, and an arbitrary 
predicate giving possible outer transitions, respectively. The specification 
says simply that every initial state is reachable, that every state produced by 
an inner transition from a reachable state is reachable, and that every state 
produced by an outer transition from a reachable state is reachable. 

val {desc = reachable_rules,  induction_thm = reachable_ind} = 
let 
val reachable = 
—'reachable: 

("state -> bool)  -> (*  initial state *) 
(num -> "state -> "state)  -> (*  inner transitions *) 
("state -> "state -> bool)  -> (* outer transitions *) 
"state -> 
bool' — ; 

val initial = —'initial:"state -> bool'—; 
val  inner_trans =  —'inner_trans:num ->  "state -> "state'—; 
val outer_trans =  —'outer_trans:"state ->  "state -> bool'—; 

in 



named_rules_new_inductive_definition 
"reachable" 
Prefix 
(—"reachable initial inner_trans outer_trans state' —, []) 

C 
("initial_reachable", 
{hypotheses = [] , 
side_conditions = [—'"initial s'—], 
(* *) 

conclusion = 
(—'"reachable initial inner_trans outer_trans s'—)}), 

("inner_reachable", 
{hypotheses = 

[—'"reachable initial inner_trans outer_trans s'—], 
side_conditions = 
[—'"inner_trans n s = s''—], 

(* *) 

conclusion = 
(—'"reachable initial inner_trans outer_trans s"—)}), 

("outer_reachable", 
{hypotheses = 
[—'"reachable initial inner_trans outer_trans s'—], 

side_conditions = 
C—'"outer_trans s s''—3, 

(* *) 

conclusion = 
(--'"reachable initial inner_trans outer_trans s"—)}) 

] 
end; 

Tlie specification calls the Romulus utility show_ induct ive_def_props 
to call HOL functions proving results that are often convenient when dealing 
with inductively defined predicates: a theorem giving a slightly strengthened 
form of the basic induction theorem, which restricts attention to cases in 
which the relation being defined actually holds; and a cases theorem that 
allows one to prove that an inductively defined relation holds if and only if 
it holds by virtue of one of the rules defining the relation. 

show_inductive_def_props 
reachable_rules 
reachable_ind 
"reachable"; 
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2.2.4    Extended Inner Transitions 

The specification then defines an extended inner transition as the result of 
one or more inner transitions for some values of the nondeterminism argu- 
ment. The specification uses named_rules_new_inductive_def initionas 
before and again calls show_inductive_def .props to prove standard useful 
theorems about the relation defined. 

val {desc = ext_inner_trans_rules, 
induction_thm = ext_inner_trans_ind} = 

let 
val ext_inner_trans = 
—'ext_inner_trans: 

(num -> "state -> "state) -> (* inner transitions *) 
"state -> 
"state -> 
bool'--; 

val inner_trans = —'inner_trans:num -> "state -> "state'—; 
in 
named_rules_new_inductive_definition 
"ext_inner_trans" 
Prefix 
(—'"ext_inner_trans inner_trans s s''—,   []) 

C 
("inner_ext_inner", 
{hypotheses = □ , 
side_conditions = [—'"inner_trans n s = s"—], 
(* *) 

conclusion = 
(—'"ext_inner_trans inner_trans s s''—)}), 

("ext_ext_inner", 
{hypotheses = 

[—'"ext_inner_trans inner_trans s s''—], 
side_conditions = 
[—'"inner_trans n s'  = s'''—], 

(* *) 

conclusion = 
(—'"ext_inner_trans inner_trans s s"'—)}) 

] 
end; 

show_inductive_def_props 
ext_inner_trans_rules 
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ext_inner_trans_ind 

"ext_inner_trans"; 

2.2.5 Security Structures 

A security structure is a projection function that takes a security level and 
a state (labeled, unlabeled, or total, where a total state is a labeled state 
together with an unlabeled state) and returns the state containing all, but 

only, the information in that state visible at that security level. The security 
structure on the labeled state corresponds to the level-assignment functions 

for input and output events in ordinary restrictiveness, while the security 
structure on the unlabeled state corresponds to the projection function in 

ordinary restrictiveness. 
The specification defining shared-state restrictiveness does not assert any- 

thing about security structures on the labeled and unlabeled parts of a sys- 
tem's state, since these structures will be specific to the system being an- 
alyzed, but it does define a convenience function totalss that defines the 
projection to a level of a total state as the product of the projection's to that 
level of the total state's labeled and unlabeled parts. 

new_definition( 

"totalss", 

let 
val totalss = 

—'totalss: 

'level -> 
('level -> 'labeled -> 'labeled) -> 

('level -> 'unlabeled -> 'unlabeled) -> 

"state -> 

"state'—; 

in 
— '"totalss lev lss uss (Is,us) = (lss lev Is, uss lev us)' — 

end); 

2.2.6 Shared-State Restrictiveness 

With these simple preliminaries out of the way, the specification then formally 
defines shared-state restrictiveness. A system given by a predicate initial 
that defines possible initial states, a function inner_trans mapping nonde- 
terminism arguments and states to states that defines inner transitions, a 
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predicate outer_trans that defines possible outer transitions, and a security 
structure labeledss on the system's labeled state variables is shared-state 
restrictive if there exists a security structure unlabeledss on the system's 
unlabeled state variables such that the following condition holds: 

For any two reachable states si and s2, any nondeterminism ar- 
gument n, and any security level lev, if the total security struc- 
tures on si and s2 induced by labeledss and unlabeledss for 
level lev are equal, then any inner transition made on si with 
nondeterminism argument n is to a state whose total security 
structure for level lev is the same as the total security structure 
for that level of some state obtained from s2 by an arbitrary 
positive number of inner and outer transitions. 

Very informally, if two states seem equivalent at a level and the system could 
do something in one of these states, whatever it does that is visible at that 

level could also have been the part visible at that level of some combination 
of actions the system or those acting on it could have taken in the other 
state. 

In understanding the specification, note that the states si and s2 are 
given by the pairs (lsl,usl) and (Is2,us2), respectively, showing the la- 
beled and unlabeled parts of each state. 

new_def init ion( 

"ssrestrictive", 

let 

val ssrestrictive = 

—'ssrestrictive: 

("state -> bool) -> 
(nvun -> "state -> "state) -> 

("state -> "state -> bool) -> 
('level -> 'labeled -> 'labeled) -> 

bool'--: 

'ssrestrictive initial inner_trans outer_trans labeledss = 

?(unlabeledss:'level -> 'unlabeled -> 'unlabeled). 

!lsl usl ls2 us2 n lev. 

((reachable initial inner_trans outer_trans (lsl.usl)) A 

(reachable initial inner_trans outer_trans (Is2,us2)) A 

(totalss lev labeledss unlabeledss (lsl.usl) = 
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totalss lev labeledss unlabeledss (Is2,us2))) —> 

(?ls2> us2'. 
(ext_inner_trans inner_trans (Is2,us2) (Is2',us2')) /\ 

(totalss 
lev labeledss unlabeledss (inner_trans n (lsl.usl)) 

totalss 
lev labeledss unlabeledss (ls2',us2'))) 

end); 

2.2.7    Final Lines 

The final lines of the specification normally write the theory ss of shared- 
state restrictiveness just created to the disk and cause HOL90 to exit. In this 
version of the specification, since the generic guard specification and proof 
follow, the specification does not cause HOL90 to exit. 

export„theory(); 

2.3    Generic Guard Specification 

This section gives the specification of a generic guard program that examines 
messages in an input directory and either accepts them as safe and passes 
them on to an output directory or rejects them as unsafe and sends them to 

an audit directory. 
This specification uses the following naming conventions: if something is 

speciiic to a particular guard, its name begins with g_ for a function or G 
for a type; if it is specific only to any guard described in the generic way 
developed in this file, its name begins with gg_ for a function or GG for a 
type; if it is not specific to guards, its name begins with a letter other than 

gor G. 

2.3.1    Initial Lines 

The initial lines of the generic guard specification remove any older versions 
of the theory of generic guards, create a new theory gg, make the previous 
theory ss of shared-state restrictiveness one of its parent theories, and load 
the Romulus utility romrecord for creating record types with associated 
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access and update functions. These lines normally load in the theory ss 
previously saved to disk and make it a new parent theory, but in this version 

that is not necessary, since HOL90 never exited. 

System.system "rra -f gg.holsig gg.thms"; 

new_theory "gg"; 

load_librarylib = find_library "romulus", theory = "-"; 

2.3.2    Type Definitions 

The specification then defines all the types used, particularly the labeled and 
unlabeled parts of the state, both of which are given as records defined with 
romrecord. In these definitions, the type variables 'Message and 'Level 
denote completely arbitrary types of messages and security levels, and the 
type variable 'GInState denotes the type of a completely arbitrary data 
structure characterizing an executing guard program's internal state. (These 
data structures might be lists of the files in particular directories that a guard 
component had not yet finished processing, for example.) 

The specification first defines the labeled part of a guard state. The la- 
beled part of the state consists of three bags containing the messages waiting 
to be processed, those cleared for output, and those rejected for output and 
sent to be audited. A bag is treated as a function from messages to natural 
numbers, where the value of the bag on a message is the number of times 
the message appears in the bag. A labeled variable is treated as a pair of 
functions, one for accessing and the other for modifying, a particular ele- 
ment of the labeled state. The predicate validlvar is true only of the pairs 
of functions intended to be treated as labeled variables, pairs of functions 

defined by romrecord. 

val GGBag = ty_antiq(==':'Message -> num'==); 

val (GGLState_Def, GGLState) = 

romrecord 

"GGLState" 

[ 
("Inputbag",   ==':-GGBag'==), 

("Outputbag",  ==':"GGBag'==), 

("Auditbag",   ==':"GGBag'==) 
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]; 

val GGLVar = 
ty_antiq 

(==':("GGLState -> "GGBag)  # 
("GGBag -> "GGLState -> "GGLState)'==) ; 

new_def init ion 
("validlvar", 
let 
val validlvar = —'validlvar:"GGLVar -> bool'—; 

in 
—'"validlvar (accessbag.updatebag) = 

(((accessbag.updatebag) =  (Inputbag,update_Inputbag)) V 
((accessbag.updatebag) =  (Öutputbag,update_Outputbag)) \/ 
((accessbag.updatebag) =  (Auditbag,update_Auditbag)))'— 

end); 

The specification then defines the unlabeled part of a guard state as a 
single object of the unconstrained type 'GInState, and then defines SML 
variables as abbreviations for the labeled, unlabeled, and total guard states. 

val  (GGUState.Def, GGUState) = 
romrecord 

"GGUState" 
C 
("Internal". ==':'GInState'==) 

]; 

val GGLState = ty_antiq(==':('Message)GGLState'==); 

val GGUState = ty_antiq(==':('GInState)GGUState'==); 

val GGState = ty_antiq(==':"GGLState # "GGUState'==); 

2.3.3     Primitive Constants and Functions 

The specification then declares functions and constants taken as primitive in 
the generic guard model. These functions and constants involve details that 
are not specified or that can vary in different guards. Several of the functions 
take an integer nondeterminism argument. For ease in future reference to 
polymorphic constants and functions, the specification defines an SML vari- 
able for each function or constant whose value is this constant or function 
with an appropriate type binding. 
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Several of the definitions use the type GGObject, which is the type of a 
pair consisting of a labeled variable, necessarily a bag, and a message in this 
bag. 

val GGObject = ty_antiq(==':*GGLVar #  >Message'==); 

Function dom gives the dominance relation on security levels: 

new_constant{Name="dom", Ty= ==':'Level ->  'Level -> bool'==}; 

val dom = —'dom:'Level ->  'Level -> bool'—; 

Function msg_level assigns security levels to messages: 

new_constant{Name="msg_level", Ty= ==':'Message ->  'Level'==}; 

val msg_level = —'msg_level:'Message ->  'Level'—; 

Constant systemhigh is the highest security level: 

new_constant{Name="systemhigli", Ty= ==':'Level'==}; 

val systemhigh = —'systemhigh:'Level'—; 

Constant systemlow is the lowest security level: 

new_constant{Name="systemlow", Ty= ==':'Level'==}; 

val systemlow = —'systemlow:'Level'—; 

Function g_proj_in_state maps a level and a guard internal state to a 
guard internal state intended to be a state the guard would have been in if 
no messages not dominated by that level had ever been in any of the guard's 
input, output, or audit bags. This function is not used in the definition of 
the guard itself, but is used in the definition of a security structure on the 
guard's unlabeled state, and this security structure is later used in the proof 
that the guard is shared-state restrictive. 

new_constant 
{Name="g_proj_in_state", 
Ty= ==':'Level ->  'GInState ->  'GInState'==}; 

val g_proj_in_state = 
— 'g_proj_in_state:'Level ->   'GInState ->  'GInState' —; 
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Function g_init_in_stateis the initial value of the guard internal state: 

new_constant{Name="g_init_in_staten, Ty= ==':'GlnState'==}; 

val g_init_in_state = —'g_init_in_state:'GlnState'—; 

Predicate g_makes_no_access is true for a nondeterminism argument 
and a guard state if the guard's next action does not access any message: 

ne»_constant 
{Name="g_makes_no_access", 
Ty= ==':num -> "GGState -> bool'==}; 

val g_makes_no_access = 
—'g_makes_no_access:num -> "GGState -> bool'—; 

Function g_no_access_intemalmaps a nondeterminism argument and 
a guard internal state to the internal state the guard will assume for this 
nondeterminism argument if it makes a state transition without accessing 
any message: 

new_constant 
{Name="g_no_access_internal", 

Ty= ==':num ->  'GlnState ->  'GlnState'==}; 

val g_no_access_internal = 
—'g_no_access_internal:num ->  'GlnState ->   'GlnState'—; 

Function g_accessed_obj ectfor a nondeterminism argument and a guard 
state is the message object — basically, the bag and the message in this bag 
— if the guard's next action accesses such a message: 

new_constant 
{Name="g_accessed_object", 
Ty= ==':num -> "GGState -> "GGObject'==}; 

val g_accessed_object = 
—'g_accessed_object:num -> "GGState -> "GGObject'—; 

Function g_msg_access_internal maps a nondeterminism argument, a 
guard internal state, and a message object to the internal state the guard 
will assume for this nondeterminism argument after accessing the message in 
this message object: 
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new_constant 
{Name="g_msg_access_internal", 

Ty= ==':num ->   'GInState -> "GGObject ->  'GInState'==}; 

val g_msg_access_internal = 
—'g_msg_access_interiial:imm ->  'GInState ->  "GGObject ->   'GInState'—; 

Predicate g_makes_no_deletionis true for a nondeterminism argument, 
a guard state, and a message object if the guard's next action does not delete 
or move the message in this message object: 

new_constant 
{Name="g_makes_no_deletion", 
Ty= ==':num -> "GGState -> "GGObject -> bool'==}; 

val g_makes_no_deletion = 
—'g_makes_no_deletion:num -> "GGState -> "GGObject -> bool'—; 

Predicate g_makes_no_new_msgis true for a nondeterminism argument, a 
guard state, and a message object if the guard's next action does not change 
or relocate this message: 

new_constant 
{Name="g_makes_no_new_msg", 

Ty= ==':ntun ->  "GGState ->  "GGObject -> bool'==}; 

val g_raakes_no_new_msg = 
—'g_raakes_no_new_rasg:imm ->  "GGState -> "GGObject -> bool'—; 

Function g_new_msg_object for a nondeterminism argument, a guard 
state, and a message object is the changed or moved message object produced 
by the guard in its next action. If the message is only moved, only the 
labeled-variable components of the two message objects will differ. 

new_constant 
{Name="g_new_msg_object", 

Ty= ==':num ->  "GGState -> "GGObject -> "GGObject'==}; 

val g_new_msg_object = 
—'g_new_msg_object:num ->  "GGState ->  "GGObject ->  "GGObject'—; 
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2.3.4    Security Structures 

The specification then defines the labeled and unlabeled security structures 
for a generic guard. The labeled security structure's value at a security level 
lev simply removes those messages whose levels are not dominated by lev. 
Since the structure of the guard's internal state is not assumed to be known, 
the unlabeled security structure is taken to be given by the primitive function 
g_proj _in_state. 

new_def init ion( 
"projectbag", 
let 
val projectbag = —'projectbag:   'Level ->  "GGBag ->  ~GGBag'—; 

in 
—'"projectbag level bag msg = 

((dom level  (msg_level msg)) => 
(bag msg) 

I 
0)'- 

end); 

new_def init ion( 

"gg-l-ss", 
let 
val gg_l_ss = —'gg_l_ss: 'Level -> "GGLState -> 'GGLState'—; 

in 

—'~gg_l_ss lev Is = 
(update_Inputbag (projectbag lev (Inputbag Is)) 

(update_Outputbag (projectbag lev (Outputbag Is)) 

(update.Auditbag (projectbag' lev (Auditbag Is)) 

Is)))'- 

end); 

new_definition( 

"gg_u_ss", 

let 

val gg_u_ss = —'gg_u_ss: 'Level -> "GGUState -> "GGUState' —; 

in 

—'~gg_u_ss lev us = 
(update_Internal (g_proj_in_state lev (Internal us)) us)'- 

end) ; 
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2.3.5    Guard Initial State 

The specification then defines the guard's initial state as having all input, 
output, and audit bags empty, and having the guard's internal state given 
by the primitive constant g_init_in_ state. 

new_definition("emptybag", —'(emptybag:"GGBag) m = 0'—); 

new_definition( 
"gg_initial", 
let 
val emptybag = —'emptybag:"GGBag'—; 

in 
 t 

gg_initial (Is,us) = 
((Is = (Make_GGLState "emptybag "emptybag "emptybag)) A 

(us = (Make_GGUState "g_init_in_state))) 
t  

end); 

2.3.6    Internal and External Transitions 

This section gives the core of the guard specification, the internal transitions 
that define the guard's actions and the external transitions that define the 
environment's actions on the guard. 

The internal and external transitions are given in terms of the convenience 
functions addtobag, remf rombag, and change. As their names indicate, the 
first two of these functions add messages to bags or remove them from bags. 
(In the definition of remf rombag, note that HOL's subtraction operation on 
non-negative integers is already defined so that 0 — 1 =0.) Function change 
replaces one of the labeled-variable bags in a guard labeled state with the 
result of applying an arbitrary bag-valued function to this bag; it saves having 
to describe a bag twice, once to access its old value and again to replace its 
old value with a new one. 

new_definition 
("addtobag", 
let 
val addtobag = —'addtobag:'Message -> "GGBag -> "GGBag'—; 

in 
—'"addtobag addm bag m = 
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((m = addm) => ((bag m) + 1) I (bag m))' — 

end); 

new_def init ion 
("remfrombag", 
let 
val remfrombag = —'remfrombag:'Message -> "GGBag -> "GGBag'—; 

in 
—'"remfrombag remm bag m = 

((m = remm) => ((bag m) - 1) I (bag m))'~ 

end); 

new_definition 
("change", 
let 
val change = 
—'change: 

"GGLVar ->   ("GGBag ->  "GGBag)  -> "GGLState -> "GGLState'—; 
in 
—'"change  (accessbag.updatebag) f Is = 

updatebag (f  (accessbag Is))  Is'— 
end); 

The specification of the guard's inner transitions covers all of the possibil- 
ities that the guard makes a transition without accessing a message, makes 
a transition by accessing a message but not changing any message, accesses 
a message and deletes it, or accesses a message and changes and/or moves 
it. The specification expresses the assumptions that a guard will access only 
one message at a time, will change state only on the basis of the contents 
of the message accessed, and will delete and/or modify only the message 
it is accessing. The unspecified details are given by the following primitive 

functions: 

• g_makes_no_access tells whether the guard accesses a message; 

• g_no_access_internal tells which internal state change the guard 
makes if it does not access a message; 

• g_msg_access_internal tells which internal state change the guard 
makes, as a function of the message's contents, if the guard does access 

a message; 
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• g_accessed_object tells which message, and its location, if the guard 
accesses a message; 

• g_makes_no_delet ion tells whether the guard deletes the message it 
accesses; 

• g_makes_no_new_msg tells whether the guard moves or modifies the 
message it accesses; and 

• g_new_msg_obj ect tells what new message the guard creates from the 
message it accesses if it moves or modifies this message and where it 
puts the new message. 

new_definition( 
"gg_inner_trans", 
let 
val gg_inner_trans = 

— 'gg_inner_trans:num -> "GGState -> "GGState' —; 

in 
 i 

*gg_inner_trans n (Is, us) = 

let us' = 

(updat e_Internal 
((~g_makes_no_access n (Is,us)) => 

(~g_no_access_internal n (Internal us)) 

I 
(~g_msg_access_internal 

n 
(Internal us) 
(~g_accessed_object n (ls.us)))) 

us) in 

let Is' = 

((~g_makes_no_access n (Is,us)) => 
Is 

I 
(let obj = (~g_accessed_object n (Is,us)) in 

((~g_makes_no_deletion n (Is,us) obj) => 

Is 

I 
(let ((accessbag.updatebag),msg) = obj in 
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(~g_makes_no_new_msg n (Is,us) obj) -> 

(change (accessbag.updatebag) (remfrombag msg) Is) 

I 
(let obj' = (g_new_msg_object n (Is,us) obj) in 
let ((accessbag'.updatebag').rasg') = obj' in 

(change (accessbag'.üpdatebag') (addtobag msg') 

(change (accessbag.updatebag) (remfrombag msg) 

is))))))) in 

(Is',us') 
t  

end); 

The definition of outer transitions simply says that messages can be added 
to the input bag or removed from the audit or output bags at any time. Outer 
transitions cannot change the unlabeled state variables. 

new_definition( 
"gg_outer_trans", 

let 
val gg_outer_trans = 
—'gg_outer_trans:"GGState -> "GGState -> bool'—; 

in 
 t 

~gg_outer_trans (Is, us) (Is', us') = 

((?msg. 

(Is' = 
(change (Inputbag,update_Inputbag) (addtobag msg) Is)) V 

(Is' = 
(change (Outputbag,update_Outputbag) (remfrombag msg) Is)) V 

(Is' = 
(change (Auditbag,update_Auditbag) (remfrombag msg) Is))) A 

(us' = us)) 
(  

end); 

2.3.7    Assumptions About Primitive Functions 

This section lists the assumptions made about the constants and functions 
taken as primitive. The first four of these assumptions are straightforward, 
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asserting that the dominance relation on security levels is reflexive and transi- 
tive and that systemlow and systemhigh are minimal and maximal security 
levels, respectively. 

new_open_axiom( 
"dom_reflexive", 
~'!1.   "dorn 1 1'—); 

new_open_axiom( 
"dom_transitive", 
— '111 12 13.   (("dorn 11 12)  A  (dom 12 13))  ==>  (dom 11 13)'--); 

new_open_axiom( 
"systemlow_low", 
—'!1.   "dom 1 systemlow'—); 

new_open_axiom( 
"systemhigh_high", 
—'!1.   "dom systemhigh 1'—); 

The final assumption is not straightforward and should eventually be 
replaced with weaker assumptions about the specific primitive functions used 
in the definition of inner transitions. It says that for given values of the 
nondeterminism argument and a security level, and an arbitrary reachable 
state, the security-structure projection to this level of the inner transition 
made with that nondeterminism argument from that state is the same as 
the inner transition that would have been made with that nondeterminism 
argument if the guard's state had been the security-structure projection to 
that level of the guard's true state. 

new_open_axiom( 
"appearances_would_be_realities", 

let 

val reachable = 
—'reachable: 

("GGState -> bool) -> 

(mm -> "GGState -> "GGState) -> 

("GGState -> "GGState -> bool) -> 
"GGState -> 
bool' — ; 

val totalss = 

— 'totalss: 
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'Level -> 
('Level -> "GGLState -> "GGLState) -> 

('Level -> "GGUState -> "GGUState) -> 

"GGState -> 

"GGState'—; 

in 
 c 

!n Is us lev. 
"reachable gg_initial gg_inner_trans gg_outer_trans (Is,us) 

("totalss 

lev 

gg_l_ss 

gg_u_ss 
(gg_inner_trans n (Is,us))  = 

gg_ inner_trans 
n 
("totalss lev gg_l_ss gg_u_ss  (Is,us))) 

(  

end) ; 

2.4    Proof 

This section gives the proof that, under the assumptions made, the generic 
guard is shared-state restrictive. A complete proof transcript, including all 
of HOL90's responses, is given in Appendix 2.A. 

The proof begins by stating the polymorphic goal in appropriate general- 
ity, so that it will hold for all values of the type variables 'Message, 'Level, 
and 'GInState. 

g(' ssrestrictive 
(gg_initial:"GGState -> bool) 
(gg_inner_trans:num -> "GGState -> "GGState) 
(gg_outer_trans:"GGState -> "GGState -> bool) 
(gg_l_ss:'Level -> "GGLState -> "GGLState)'); 

The proof then expands out the definition of ssrestrictive and starts 
showing that gg_u_ss is a security structure on the labeled state having the 
required properties for showing that the guard is shared-state restrictive. 

e(REWRITE_TAC  [definition "sharedstate"  "ssrestrictive"]); 
(EXISTSJTAC  (--'gg_u_ss:'Level ->  "GGUState ->  "GGUState'—)); 

26 



The first step is to show that the property holds for all pairs of states and 
all nondeterminism arguments and levels if it holds for arbitrarily selected 
states, nondeterminism arguments, and levels; the next step is to move the 

hypotheses into the goal's list of assumptions. 

e(REPEAT STRIPJTAC); 

It turns out to be sufficient, thanks to the strong assumptions made, to 
take the extended inner transition with required properties that must exist 
from state (Is2,us2) to be a one-step inner transition. 

val gg_inner_trans = 
— 'gg_inner_trans:num -> "GGState -> "GGState'—; 

e(EXISTS_TAC (—'FST ("gg_inner_trans n (Is2,us2))'--)); 
e(EXISTS_TAC (—'SND  (~gg_inner_trans n (Is2,us2))'—)) ; 
e(REWRITE_TAC  [theorem "pair"  "PAIR"]); 

The proof then shows that the one-step inner transition is an extended 

inner transition. 

e(CONJ_TAC); 
e(MATCH_MP_TAC (theorem "sharedstate" "inner_ext_inner")); 
e(EXISTS_TAC (—'n:num'—)); 
e(REWRITE_TAC []); 

Finally, the proof shows that the totalss projections of the two one-step 
inner transitions from states (lsl,usl) and (Is2,us2) are equal. 

e(IMP_RES_TAC (axiom "-"  "appearances_would_be_realities")); 
e(ASM_REWRITE_TAC []); 

The following lines save the result for future use and write the gg theory 

to the disk: 

save_top_thm "gg_ssrestrictive"; 
export„theory(); 
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2.A Appendix: Transcripts of Proofs 

This appendix contains transcripts of the HOL90 sessions proving the result 
described in section 2.4. The user inputs are in the lines beginning with - 
and are in italic type. 

- g('ssrestrictive 
(gg_initial:~GGState -> tool) 
(gg„inner_trans:num -> 'GGState -> 'GGState) 
(gg_outer_trans:'GGState ->  'GGState -> bool) 
(gg_l_ss: 'Level ->  'GGLState -> 'GGLState)'); 

(—'ssrestrictive gg_initial gg_inner_trans gg_outer_trans gg_l_ss'—) 

val it =  ()   :  unit 
-  e(REWRITE_TAC [definition "sharedstate" "ssrestrictive"]); 
OK. . 
1 subgoal: 
(—'?unlabeledss. 

!lsl usl ls2 us2 n lev. 

reachable gg_initial gg_inner_trans gg_outer_trans (lsl.usl) A 

reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2) A 

(totalss lev gg_l_ss unlabeledss (lsi.usi) = 

totalss lev gg_l_ss unlabeledss (Is2,us2)) ==> 
(?ls2> us2'. 

ext_inner_trans gg_inner_trans (Is2,us2) (Is2',us2') A 

(totalss lev gg_l_ss unlabeledss (gg_inner_trans n (lsl.usl)) 

totalss lev gg_l_ss unlabeledss (ls2',us2')))'—) 

val it = () : unit 

- e(EXISTS_TAC (—egg_u_ss:'Level -> 'GGUState ->  'GGUState'—)) ; 
OK. . 

1 subgoal: 
(~'!lsl usl ls2 us2 n lev. 

reachable gg_initial gg_inner_trans gg_outer_trans (lsl.usl) /\ 

reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2) /\ 
(totalss lev gg_l_ss gg_u_ss (lsl.usl) = 

totalss lev gg_l_ss gg_u_ss (Is2,us2)) ==> 
(?ls2' us2'. 

ext_inner_trans gg_inner_trans (Is2,us2) (Is2',us2') /\ 

(totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 
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totalss lev gg_l_ss gg_u_ss (ls2',us2')))'—) 

val it = () : unit 
- e(REPEAT STRIP_TAC); 
OK.. 
1 subgoal: 
(— '?ls2' us2'. 

ext_inner_trans gg_inner_trans (Is2,us2) (Is2',us2') A 
(totalss lev gg_l_ss gg_u_ss (gg_inner„trans n (lsl.usl)) 
totalss lev gg_l_ss gg_u_ss (ls2',us2'))'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (lsl.usl)'—) 
(—'reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2)'—) 
(—'totalss lev gg_l_ss gg_u_ss (lsl.usl) = 
totalss lev gg_l_ss gg_u_ss (Is2,us2)'—) 

val it = () : unit 
-val gg_inner_trans = 
—'gg_inner_trans:num ->  'GGState -> 'GGState'—; 

val gg_inner_trans = (—'gg_inner_trans'—) : term 

- e(EXISTS_TAC (—'FST (~gg_inner_trans n (Is2,us2)) '—)); 
OK.. 
1 subgoal: 
(—'?us2'. 

ext_inner_trans gg_inner_trans (Is2,us2) 
(FST (gg_inner_trans n (Is2,us2)),us2') A 

(totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 
totalss lev gg_l_ss gg_u_ss 

(FST (gg_inner_trans n (Is2,us2)),us2'))'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (lsl.usl)'—) 
(—'reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2)'—) 
(—'totalss lev gg_l_ss gg_u_ss (lsl.usl) = 
totalss lev gg_l_ss gg_u_ss (Is2,us2)'—) 

val it =  ()   :  unit 
-  e(EXISTS_TAC (—'SND (~gg_inner_trans n (Is2,us2)) '—)); 
OK. . 
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1 subgoal: 
(—'ext_inner_trans gg_inner_trans (Is2,us2) 

(FST (gg_inner_trans n (Is2,us2)), 

SND (gg_inner_trans n (Is2,us2))) A 

(totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 

totalss lev gg_l_ss gg_u_ss 

(FST (gg_inner_trans n (Is2,us2)), 

SND (gg_inner_trans n (Is2,us2))))'—) 

(—'reachable gg_initial gg_inner_trans gg_outer„trans (lsl.usl)'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2)'—) 

(—'totalss lev gg_l_ss gg_u_ss (lsl.usl) = 

totalss lev gg_l_ss gg_u_ss (Is2,us2)'—) 

val it =  ()   :   unit 
-  e(REWRITE_TAC [theorem "pair" "PAIR"]); 
OK. . 
1  subgoal: 
(—'ext_inner_trans gg_inner_trans (Is2,us2) 

(gg_inner_trans n (Is2,us2)) /\ 

(totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 

totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (Is2,us2)))'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (lsl.usl)'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2)'—) 

(—'totalss lev gg_l_ss gg_u_ss (lsl.usl) = 

totalss lev gg_l_ss gg_u_ss (Is2,us2)'—) 

val it = () : unit 
- e(CONJ_TAC); 
OK.. 

2 subgoals: 

(—'totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 
totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (Is2,us2))'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (lsl.usl)'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2)'—) 

(—'totalss lev gg_l_ss gg_u_ss (lsl.usl) = 

totalss lev gg_l_ss gg_u_ss (Is2,us2)'—) 

(—'ext_inner_trans gg_inner_trans (Is2,us2) 

30 



(gg_inner_trans n (Is2,us2))'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (lsl.usl)'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2)'—) 

(—'totalss lev gg_l_ss gg_u_ss (lsl.usl) = 
totalss lev gg_l_ss gg_u_ss (Is2,us2)'—) 

val it = () : unit 

- e(MATCH_HP_TAC (theorem "sharedstate" "inner_ext_inner")); 
OK.. 
1 subgoal: 
(—'?n'. gg_inner_trans n' (Is2,us2) = gg_inner_trans n (Is2,us2)'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (lsl.usl)'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2)'—) 

(—'totalss lev gg_l_ss gg_u_ss (lsl.usl) = 

totalss lev gg_l_ss gg_u_ss (Is2,us2)'—) 

val it = ()   : unit 
-  e(EXISTS_TAC (—'n:nvm'—)); 
OK.. 
1  subgoal: 
(—'gg_inner_trans n (Is2,us2) = gg_inner_trans n (Is2,us2)'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (lsl.usl)'—) 
(—'reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2)'—) 
(—'totalss lev gg_l_ss gg_u_ss (lsl.usl) = 

totalss lev gg_l_ss gg_u_ss (Is2,us2)'—) 

val it = () : unit 

- e(REWRITE_TAC O); 
OK.. 

Goal proved. 

I- gg_inner_trans n (Is2,us2) = gg_inner_trans n (Is2,us2) 

Goal proved. 

|- ?n'. gg_inner_trans n' (Is2,us2) = gg_inner_trans n (Is2,us2) 

Goal proved. 
|- ext_inner_trans gg_inner_trans  (Is2,us2)   (gg_inner_trans n  (Is2,us2)) 
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Remaining subgoals: 
(—'totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 

totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (Is2,us2))'—) 

(—'reachable gg.initial gg_inner_trans gg_outer_trans (lsl.usl)'—) 

(—'reachable gg.initial gg_inner_trans gg_outer_trans (Is2,us2)'—) 

(—'totalss lev gg_l_ss gg_u_ss (lsl.usl) = 

totalss lev gg_l_ss gg_u_ss (Is2,us2)'~) 

val it = () : unit 

- e(IMP_RES_TAC (axiom  "-" "appearances_would_be_realities")); 
OK.. 
1 subgoal: 
(—'totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 

totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (Is2,us2))'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (lsl.usl)'—) 

(—'reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2)'—) 

(—'totalss lev gg_l_ss gg_u_ss (lsl.usl) = 

totalss lev gg_l_ss gg_u_ss (Is2,us2)'—) 

(—'!n lev. 
totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (Is2,us2)) = 

gg_inner_trans n (totalss lev gg_l_ss gg_u_ss (Is2,us2))'—) 

(— '!n lev. 
totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 

gg_inner_trans n (totalss lev gg_l_ss gg_u_ss (lsl.usl))'—) 

val it =  ()   :  unit 
-  e(ASM_KEWRITE_TAC O); 
OK.. 

Goal proved. 

I- totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) 
totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (Is2,us2)) 

Goal proved. 

I- totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) 

totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (Is2,us2)) 
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Goal proved. 

I- ext_inner_trans gg_inner_trans (Is2,us2) 

(gg_inner_trans n (Is2,us2)) /\ 
(totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 

totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (Is2,us2))) 

Goal proved. 

I- ext_inner_trans gg_inner_trans (Is2,us2) 

(FST (gg_inner_trans n (Is2,us2)), 

SND (gg_inner_trans n (Is2,us2))) A 

(totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 

totalss lev gg_l_ss gg_u_ss 
(FST (gg_inner_trans n (Is2,us2)), 

SND (gg_inner_trans n (Is2,us2)))) 

Goal proved. 

I- ?us2'. 

ext_inner_trans gg_inner_trans (Is2,us2) 

(FST (gg_inner_trans n (Is2,us2)),us2') /\ 

(totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 
totalss lev gg_l_ss gg_u_ss 

(FST (gg_inner_trans n (Is2,us2)),us2')) 

Goal proved. 

I- ?ls2' us2'. 

ext_inner.trans gg_inner_trans (Is2,us2) (Is2',us2') A 

(totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 

totalss lev gg_l_ss gg_u_ss (Is2',us2')) 

Goal proved. 

I- !lsl usl ls2 us2 n lev. 

reachable gg_initial gg_inner_trans gg_outer_trans (lsl.usl) /\ 
reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2) /\ 
(totalss lev gg_l_ss gg_u_ss (lsl.usl) = 

totalss lev gg_l_ss gg_u_ss (Is2,us2)) ==> 

(?ls2> us2'. 

ext_inner_trans gg_inner_trans (Is2,us2) (Is2,,us2') /\ 

(totalss lev gg_l_ss gg_u_ss (gg_inner_trans n (lsl.usl)) = 

totalss lev gg_l_ss gg_u_ss (ls2',us2'))) 
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Goal proved. 

|- ?unlabeledss. 

!lsl usl ls2 us2 n lev. 

reachable gg_initial gg_inner_trans gg_outer_trans (lsl.usl) A 

reachable gg_initial gg_inner_trans gg_outer_trans (Is2,us2) /\ 

(totalss lev gg_l_ss unlabeledss (lsl.usl) = 

totalss lev gg_l_ss unlabeledss (Is2,us2)) ==> 
(?ls2> us2'. 

ext_inner_trans gg_inner_trans (Is2,us2) (Is2',us2') /\ 

(totalss lev gg_l_ss unlabeledss (gg_inner_trans n (lsl.usl)) = 

totalss lev gg_l_ss unlabeledss (ls2',us2'))) 

Goal proved. 

|- ssrestrictive gg_initial gg_inner_trans gg_outer_trans gg_l_ss 

Top goal proved, 
val it = () : unit 

- save_top_thm "gg_ssrestrictive"; 
val it = I- ssrestrictive gg_initial gg_inner_trans gg_outer_trans gg_l_ss 

: thm 

- export_theory(); 

Theory "gg" exported, 

val it = () : unit 

- exit(); 
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Chapter 3 

The Secure Minix Model 

3.1     Introduction 

This chapter gives a specification for a secure (in the sense of restrictive 
[14, 15]) operating system based on the Minix operating system created 
by Tanenbaum and described in the book "Operating System: Design and 
Implementation" [22]. The main additions to Minix in the system modeled 
here are data structures for maintaining security-level information and proce- 
dures for imposing mandatory access controls. The system model given here 
is believed to be restrictive, and the chapter proves some of the conditions 
sufficient to guarantee that it is so. The chapter proves that the model is 
a server process and proves that its outputs in response to any input are at 
security levels greater than or equal to the security level of the input. Sec- 
tion 3.3.4 lists further conditions whose proofs would suffice to show that the 

model is restrictive.1 

For further discussion of restrictiveness, see Volume II of the Romulus 

Documentation Set. 
The security model used in the operating system modeled here is for the 

most part standard. The active "subjects" in the model are user processes, 
and the "objects" are data files or user processes. (The kill command pro- 
vides an example of treating a user process as an object.)    Subjects and 

^his model uses a version of Romulus that allows the levels of input and output events 
to depend on the process's state, something that is not supported in the current Romulus. 
Further work is needed to support this feature in a robust manner. 
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objects are assigned security levels, and a subject is not permitted to obtain 
information about an object unless the subject's level dominates the object's 
level or to affect an object unless the object's level dominates the subject's 
level. Since the model assumes that security levels are given by informa- 
tion stored in the operating system itself, the model might be generalized to 
describe an operating system that allows security levels to be changed dynam- 
ically. Also, since the model's security is analyzed in terms of restrictiveness 

in the special case of buffered server processes, the model also implicitly ad- 
dresses possible "covert channels" involving shared resources such as system 

data tables. 
The operating system model given here is primarily of interest because 

when and if the proof that it is restrictive is completed, it will provide in- 
sight into the design of restrictive operating systems. If proven restrictive, it 
will show that even something as complicated as this model of an operating 
system can be made restrictive. The model and the proofs of its properties 
given here also serve as nice examples of how the Romulus techniques and 
utilities for specifying processes and proving facts about them can be used 
to manage complexity and simplify proofs. Although the two proofs given 
here are short, they together include proving over 60 distinct subgoals. 

The restrictive process in this specification roughly corresponds to the ker- 
nel, file system, and memory management of Tanenbaum's system. Tanen- 
baum's user processes, plus the memory allocated to these processes, corre- 
spond to the user processes in this specification. In the remainder of this 

chapter, "kernel" will refer to the restrictive process and "user processes" or 
just "processes" will refer to the user processes. The model specified here 
primarily differs from Minix in that it maintains and uses information on 

security levels to make its actions secure. 
The model also differs from Minix in being a partial description. It in- 

cludes the process management, signal, file management, protection, and 
time management calls alarm, brk, chmod, chown, close, create, exec, 
exit, fork, fstat, getuid, ioctl, kill, lseek, mknod, open, pause, read, 
setgid, setuid, signal, stat, stime, time, times, umask, utime, wait, 
and write, but it takes several functions involved in performing these op- 
erations as primitive and characterizes them only by their names, the types 
of their arguments and return values, and assumed properties about them. 
The model does not include the following process and directory management 
calls:   access, chdir, chroot, dup, pipe, link, unlink, mount, unmount, 
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and sync. 

3.2     Formal Model 

This section contains and describes the SML code formally specifying the 
kernel model for HOL90. The kernel is given as a server process that waits 
for input from a user process, processes this input by possibly producing 
output and changing its state parameters, and then returns to wait for the 
next input from a user process. 

3.2.1 Front Matter 

The specification creates a HOL90 theory named minix, defining types, con- 
stants, and functions and assigning properties to the constants and functions 
with definitions or axioms. The specification begins with lines removing 
any older versions of the theory minix, setting the theory path to include 
the library of Romulus process and security theories, and creating the minix 
theory as a child theory of the Romulus security theory. These lines also load 
the code for Romulus convenience functions for creating concrete-recursive 
and record types. 

System.system "rm -f minix.holsig minix.thms"; 

new_theory "minix"; 

load_librarylib = get_library_from_disk "romulus", 

theory = "-"; 

3.2.2 Type Declarations 

The specification next declares all the types used in the specification of the 
kernel process, culminating in the definition of the type of PSL object ap- 
propriate as a model of the kernel process. The types defined include the 
kernel state parameters, the input events, and the output events. For maxi- 
mum generality, the specification uses type variables instead of explicit types 
wherever possible, so the types it declares are actually polymorphic type con- 
structors.  The type variables 'UserProcess, 'File, 'FileContents, 'Arg, 
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and 'Level denote the arbitrary types of user process identifiers, file identi- 
fiers, file contents, arguments to calls executing files, and security levels. 

SML Abbreviations 

Since type definitions are not yet implemented in HOL90, the specification 
defines SML variables to use as convenient abbreviations for complicated 
types; this type information can then be conveniently obtained by antiquo- 
tation. The SML variables Segments, PermissionsMask, and CreateMask, 
give the types of the following: the text, data, and stack segments allocated 
to user processes; the read, write, and execute permissions requested by pro- 
cesses for files; and the bits characterizing a newly created file. 

val Segments = 
ty_antiq(==': (num # num) #  (num # num) #  (mun # num)'==); 

val PermissionsMask = 
ty_antiq( ==':bool # bool # bool'==);     (* read,  write,  execute *) 

val CreateMask = 
ty_antiq( 

— i. 

bool # (* read access allowed *) 

bool # (* write access allowed *) 

bool # (* execute access allowed *) 

bool # (* directory *) 

bool # (* special file *) 

bool # (* setuid allowed *) 

bool (* setgid allowed *) 

'==); 

State Parameters 

With these preliminary definitions out of the way, the specification gives 
its first major type declarations, those of process records, inode records, 
and access records. It then defines the kernel's state parameter as a record 

containing five fields: 

• A function assigning a process record, giving process information, to 

every user process. 
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• A function assigning an inode record, giving file information, to every 

file. 

• A function assigning an access record, giving information on a process' 
current access to a file, to every user process and file. 

• A function assigning (possibly empty) contents to every file. 

• The system time. 

In recognition of how these things are typically implemented, the four func- 
tions in the kernel state parameter are called tables. The precise definitions 
of process, inode, and access records follow. 

In these definitions, the Romulus utility romrecord returns a pair con- 
sisting of 1) a theorem giving an abstract characterization of the concrete- 
recursive type being defined and 2) an SML variable giving an abbreviation 
for this type with all polymorphism replaced by instantiation with appropri- 
ate type variables. This utility also defines functions for creating each record 
and for accessing and updating each entry in each record. 

val  (ProcessRecord_Def, 
romrecord 

"ProcessRecord" 
[ 
"p_segs", 

"p_exitstatus", = 

("p_sigstatus", = 

("p.pid", 

("p_parentid", = 

"p_procgrp", = 

"p_realuid",   = 

("p_effuid", 

("p_realgid",   = 

("p_effgid", 
"p.func", 

"p.ignore", 

("p_catch",     = 
("P-Scheduled", = 

"p_in_use", = 
"p_waiting", = 

"p_hanging", = 

"p_paused",     = 

ProcessRecord) 

;"Segments' 

:num'= 

:num'= 

:num'= 
:num'= 

:num'= 

:num'= 

:num'= 

:num'- 

:num'= 

:num'= 

:bool'==), 
:bool'==), 

:bool'==), 
:bool'==), 
:bool'==), 

:bool'==), 

:bool'==), 

=), (* text, data, stack *) 

* exit status *) 

* signal for killed *) 

* process ID *) 

* process ID of parent *) 

* process group *) 
* real process user ID *) 

* effective process user ID *) 

* real process group ID *) 

* effective process group ID *) 
* pointer to single user? *) 

* ignore signal *) 
* catch, signal *) 

* process scheduled *) 

* process slot in use *) 
* process waiting *) 

* process hanging *) 

* process paused *) 
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("p_alarm_on", 
("p_separate", 
("p_mask", 
("p_level", 

==':bool'==), (* process alarm on *) 
==':bool'==), (* separate I and D space *) 
==':~PermissionsMask'==), (* default mask *) 
==':'Level'==) (* security level *) 

]; 

val (InodeRecord_Def, 
romrecord 
"InodeRecord" 

C 
("i_uid", = 
("i_filesize", = 
("i_modtime", = 
("i_gid". 
("i_nlinks", = 
("i_zone", = 
("i_dev", 
("i_inodenum", = 
("i_count", = 
("i.ioctl", = 
("i_in_use", = 
("i_setuid", = 
("i_setgid", = 
("i_perm_x", = 
("i_perm_w", = 
("i_perm_r", = 
("i_mode_f", 
("i_mode_d", = 
("i_dirt", = 
("i_pipe", = 
("i_mount", = 
("i.seek", 
("i_level", 

]; 

InodeRecord) 

:num'= 
:num'= 
:num'= 
:num' = 
:num'= 
:num'= 
:num'= 
:num'= 
:num'= 
:num'= 
:bool'== 
:bool'== 
:bool'== 
:bool'== 
:bool'== 
:bool'== 
:bool'== 
:bool'== 
:bool'== 
:bool'== 
:bool'== 
:bool'== 
:'Level' ==) 

(* owner's process ID *) 
(* current file size in bytes *) 
(* time of last modification *) 
(* group number of file *) 
(* number of links to file *) 
(* zone #s: direct, ind, dbl ind? *) 
(* device inode is on *) 
(* inode number on minor device *) 
(* number of times inode used *) 
(* I/O mode of special file *) 
(* file slot in use *) 
(* setuid allowed? *) 
(* setgid allowed? *) 
(* rwx bit for exec? *) 
(* rwx bit for write? *) 
(* rwx bit for read? *) 
(* special file *) 
(* directory *) 
(* CLEAN (false) or DIRTY (true) *) 
(* pipe *) 
(* mounted *) 
(* lseek in progress *) 
(* security level *) 

val (AccessRecord_Def, AccessRecord) = 
romrecord 

C 
"AccessRecord" 

[ 
("a_lcount", 
("a_pos", 
("a_in_use", 
("a_read", 
("a_write", 

==':num'==), (* length count *) 
==':num'==), (* current index position *) 
==':bool'==), (* file in use *) 
==':bool'==), (* read access *) 
==':bool'==) (* write access *) 
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romrecord 
"MinixState" 
C 
("s_ptbM, 
==':'UserProcess->~ProcessRecord'==),     (* Process Table *) 

("s_itb", 
==':'File -> *InodeRecord'==), (* Inode Table *) 

("s_atb", 
==':'UserProcess->'File->~AccessRecord'==), (* Access Table *) 

("s_itb", 
==':'File -> 'FileContents'==), (* File Table *) 

("s_systemtime", 
==':num'==) (* system time *) 

]; 

Input Events 

The specification next defines the input events to the kernel. These in- 
put events are themselves defined in terms of the concrete recursive type 
MinixRequest, which names the various requests to the kernel and gives the 
types of the additional pieces of information provided with each request — for 
example, the name of the file to close. An input event is defined as the type 
constructor Inport, corresponding to a single abstract input port conveying 
messages to the kernel, applied to a user process and a MinixRequest; the 
input event Inport user request is interpreted as the receipt of request 

from user. 
In these definitions, the Romulus utility romcontype returns a pair con- 

sisting of 1) a theorem giving an abstract characterization of the concrete- 
recursive type being defined and 2) an SML variable giving an abbreviation 
for this type with all polymorphism replaced by instantiation with appropri- 

ate type variables. 

val  (MinixRequest_Def, MinixRequest)  = 
romcontype 

"MinixRequest" 
C 
("alarm",     []), 
("brk", []), 
("chmod",     [==':'File'==,  ==':~PermissionsMask'==, 

==':bool'==,  ==':bool'==]), 
("chown",     [==':'File'==, ==':num'==,  ==':num'==]), 
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("chmod", [==' 

("chown", C==' 
("close", [==' 
("create", [==' 
("exec", [==' 

("exit", □ ), 
("fork", □ ). 
("fstat", [==' 
("getgid", D). 
("getuid", □ ). 
("ioctl", [==' 
("kill", [==' 
("lseek", [==' 
("mknod", [==' 
("open", [==' 
("pause", □ ), 
("read", [==' 
("setgid", [==' 
("setuid", [==' 
("signal", [==' 
("stat", [==' 
("stime", [==' 
("time", □ ). 
("times", D), 
("umask", [==' 
("utime", [==' 
("wait", D), 

:'File'==, ==':"Permiss ionsMask'==, 
:bool'==, ==':bool'==]), 
:'File'==, ==':num'==, ==':num'==3), 
:'File'==]), 
:'File'==, ==':*CreateMask'==]), 
:'File'==, ==':('Arg)list'==]), 

'File'==]), 

:'File'==, == 
:'UserProcess 
:'File'==, == 
:'File'==, == 
:'File'==, == 

:'File'==]), 
:num'==]), 
:num'==]), 
:num'==]), 
:'File'==]), 
:num'==]), 

:*PermissionsMask'==]), 
:'File'==, ==':num'==]), 

:num'==]), 

==]). 
:num'==]), 
:"CreateMask'==]), 
:"PermissionsMask'==]), 

"write", [==':'File'==, ==':'FileContents'==]) 

] 

val (MinixInEv_Def, MinixInEv) = 
romcontype 
"MinixInEv" 
C 
("Inport", [==':'UserProcess'==, ==':"MinixRequest'==]) 

]; 

Output Events 

The specification next defines the output events produced by the kernel. 
These output events are themselves defined in terms of the concrete recursive 
type MinixReply, which gives the types of the information appropriate to 
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those requests receiving information in addition to a status value. An output 
event is denned as the type constructor Outport, corresponding to a single 
abstract output port conveying information other than a status reply, applied 
to a user process and a MinixRequest, or as the type constructor Statport, 
corresponding to a single abstract port conveying status information, applied 
to a user process and a non-negative integer. The output event Outport user 
reply is interpreted as sending non-status information reply to user. The 
output event Statport user n is interpreted as sending status value n to 
user. 

In these definitions, the Romulus utility romcontype returns a pair con- 
sisting of 1) a theorem giving an abstract characterization of the concrete- 
recursive type being defined and 2) an SML variable giving an abbreviation 
for this type with all polymorphism replaced by instantiation with appropri- 
ate type variables. 

val  (MinixReply_Def, MinixReply) 
romcontype 

"MinixReply" 
[ 
("execreply", 
("forkreply", 
("fstatreply", 
("getgidreply", 
("getuidreply", 
("killreply", 
("readreply", 
("statreply", 
("timereply", 
("timesreply", 
("umaskreply", 

:'UserProcess'==]), 
:'UserProcess'==]), 
:num'==]), 
:num'==]), 
:num'==]), 
:num'==]), 
:'FileContents'==]), 
:num" =]), 
:num'==]), 
:num # num'==]), 
:~PermissionsMask'==]) 

3; 

val (MinixOutEv_Def, MinixOutEv) = 
romcontype 
"MinixOutEv" 

C 
("Outport",  [==':'UserProcess'== 
("Statport", [==':'UserProcess'== 

]; 

=':"MinixReply'==]), 
:':num'==]) 
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Invocations 

The specification next defines the invocations to be used later in defining the 
kernel process. Invocations are essentially names for calls to PSL-valued func- 
tions; they are mapped to the PSL processes resulting from these calls. Invo- 
cations provide a means for overcoming the limitation in HOL's def ine_type 
function that concrete recursive types cannot be defined in terms of functions 
whose values are of the type being defined. 

The invocations name calls to the kernel process itself and to the function 
computing the kernel process' response to input events. All these calls include 
the kernel's state parameter as an argument. 

val  (MinixInvoc_Def, Minixlnvoc) = 
romcontype 

"Minixlnvoc" 
C 
("Minix", [==':"MinixState'==]), 
("MinixResponse",   [==':~MinixState'==, ==':*MinixInEv'==]) 

]; 

PSL Processes 

The invocations complete the definition of the type of PSL processes ap- 
propriate as models of the Minix kernel. The specification defines the SML 
variable MinixProc as an abbreviation for this type. 

val MinixProc = 
ty_antiq(==': ("MinixOutEv.'MinixInEv,"Minixlnvoc) process'==) ; 

3.2.3    Functions Taken as Primitive 

The specification then declares constants for the functions taken as primitive 
in the model. These functions involve details of the implementation that the 
model excludes. 

Function allocate_process_segments returns the text, data, and stack 
segments of a new process. 

new_constant { 
Name = "allocate_process_segments", 
Ty = ==':'UserProcess -> 

"MinixState -> 
(num # num) # (num # num) # (num # num)'==}; 
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Function args.okay tells whether the arguments given in a call to an 
executable file are of the types appropriate to that file. 

new_constant { 
Name = "args_okay", Ty = ==':('Arg)list ->  'File -> bool'==}; 

Constant function catch.sig names the value sent to a process in order 

to cause it to terminate. 

new_constant{Name =  "catch_sig", Ty = ==':num'==}; 

Function date is assumed to be the current time. 

new_constant{Name = "date", Ty = ==':num'==}; 

Function dom is the dominance relation on security levels. 

new_constant{Name = "dom", Ty = ==':'Level ->  'Level -> bool'==}; 

Function dummy.process returns dummy processes with given security 

levels. 

new_constant{Name="dummy_process",Ty = ==':'Level->'UserProcess'==}; 

Constant function empty.file_contentsis the content of an empty file. 

new_constant{Name="empty_iile_contents",Ty = ==':'FileContents'==}; 

Function execute.okay tells whether a particular user process has per- 
mission to execute a particular file for a particular kernel state parameter. 

new_constant{ 
Name = "execute_okay", 
Ty = ==':'UserProcess ->   'File -> "MinixState -> bool'==}; 

Function file.status computes an integer summarizing selected infor- 

mation from a file's inode entry. 

new_constant{Name="file_status",Ty = ==':"InodeRecord -> num'==}; 

Function id.process returns the process having a particular ID. 
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new_constant{Name = "id_process",Ty = ==':num -> 'UserProcess'==}; 

Function image maps an executable file and a list of arguments to the 
corresponding process when that file is executed on those arguments. 

new_constant{ 
Name = "image", Ty = ==':'File -> ('Arg)list ->  'UserProcess'==}; 

Function new_pos returns the actual file position number corresponding 

to an index from the start of the file. 

new_constant{ 
Name = "new_pos", Ty = ==':'File -> "MinixState -> num -> num'==}; 

Function new_process returns a new process for a given kernel process 

state parameter. 

new_constant{ 
Name = "new_process",  Ty = ==':"MinixState ->   'UserProcess'==}; 

Function new_zone returns the zone for a newly created file. 

new_constant{Name="new_zone",Ty = ==':'File->"MinixState->num'==}; 

Function process_effgid creates an effective group ID for a new process. 

new_constant{Name="process_efigid",Ty = ==':'UserProcess -> num'—}; 

Function process_ef f uid creates an effective user ID for a new process. 

new_constant{Name="process_effuid",Ty = ==':'UserProcess -> num'==}; 

Function process.id creates an ID for a new process. 

new_constant{Name =  "process.id",Ty = ==':'UserProcess -> num'==}; 

Function process_time returns the time a process has been executing. 

new_constant{Name =  "process_time", Ty = ==':'UserProcess -> num'==}; 

Function room_in_access_table tells whether there is space for one 

more entry in the access table. 
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new_constant{ 
Name = "room_in_access_table", Ty = ==':"HinixState -> bool'==}; 

Function room_in_inode_table tells whether there is space for one more 

entry in the mode table. 

new_constant{ 
Name = "room_in_inode_table", Ty = ==':~MinixState -> bool'==}; 

Function room_in_process_table tells whether there is space for one 

more entry in the process table. 

new_constant { 
Name = "room_in_process_table", Ty = ==':"MinixState -> bool'==}; 

Constant functions sig_catch and sig.ignore name arguments to the 
signal command. 

new_constant{Name =  "sig_catch",Ty = ==':num'==}; 
new_constant{Name = "sig_ignore", Ty = ==':mim'==}; 

Function space_fcr_new_process tells whether there is enough space in 
memory to add another user process. 

new_constant{ 
Name = "space_for_new_process", Ty = ==':"MinixState -> bool'==}; 

Function space_to_load tells whether there is sufficient space in memory 
to load an executable file. 

new_constant { 
Name = "space_to_load", Ty = ==':'File -> "MinixState -> bool'==}; 

Function stack_size_okay tells whether the memory segments assigned 
to a process overlap. 

new_constant { 
Name = "stack_size_okay", Ty = ==':"Segments -> bool'==}; 

Function stat_rep computes the appropriate successful execution status 
reply for a process and a MinixRequest. 
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new_constant { 
Narae="stat_rep",Ty = ==':'UserProcess -> "MinixRequest -> num'==}; 

Function super tells whether a process is a super-user process. 

new_constant{Name = "super", Ty = ==':'UserProcess -> bool'==}; 

Constant function systemlow is the lowest security level. 

new_constant{Name = "systemlow", Ty = ==':'Level'==}; 

Constant function systemhigh is the highest security level. 

new_constant{Name = "systemhigh", Ty = ==':'Level'==}; 

Function used.times returns the user and system times used by a pro- 

cess. 

new_constant { 
Name = "used_times", 
Ty = ==':'UserProcess -> "MinixState -> (num # imm)'==}; 

3.2.4    Assumptions for Primitive Functions 

The specification next states assumed properties of the functions taken as 
primitive in the model. These assumptions are stated in terms of essentially 
arbitrary constants, two of which are polymorphic. 

Make_ProcessRecord, Make_InodeRecord, and Make_AccessRecord were 
defined by the earlier calls to the utility romrecord. 

new_def init ion 
("empty.p", 
 c 

empty_p:"ProcessRecord = 
Make_ProcessRecord 
((0,0),(0,0),(0,0)) 0000000000 
FFFFFFFFF  (F.F.F)  systemhigh 

new_def inition 
("empty_i", 
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empty_i:*InodeRecord = 
Make_InodeRecord 
OOOOOOOOOOFFFFFFFFFFFF systemhigh 

new_def init ion 
("empty_a", 
 * 

empty_a:~AccessRecord = 
Make_AccessRecord 0 0 F F F 

After making these preliminary definitions, the specification asserts as- 
sumed properties of the functions taken as primitive in the model: 

new_open_axiom( 
"systemlow_low", 
(—'!1:'Level, dom 1 systemlow'—)); 

new_open_axiom( 
"systemhigh_high"» 
(—'!1:'Level,  dom systemhigh 1'—)); 

new_open_axiom( 
"dom_reilexive", 
(—'!1:'Level, dom 1 1'—)); 

new_open_axiom( 
"dom_transitive", 
(—'! (11:'Level) 12 13. 

((dom 11 12)  A  (dom 12 13))  ==>  (dom 11 13)'--)); 

new_open_ax iora( 
"dummy_process_injective", 
let 
val dummy_process = —'dummy.process:'Level -> 'UserProcess' —; 
in 
(--'111 12. 

((~dummy_process 11) = (dummy„process 12)) = (11 = 12)'—) 
end) ; 

new_open_axiom( 
"new_process_new", 
let 
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val new_process = —'new_process:"MinixState -> 'UserProcess'—; 
in 

(—'!state:"MinixState. 

((s_ptb state) ("new_process state)) = empty_p'—) 
end); 

3.2.5    Initial State Parameter 

The specification next defines the initial value of the kernel's state parame- 
ter. Intuitively, the only user processes with entries in the process table are 
dummy processes for each of the security levels, no file has an entry in the 
inode table, no user process has any access to any file, no file has nonempty 
contents, and the system time is 0. 

The update.. . . functions were defined by earlier calls to romrecord. 
The call update_p_pid id procrec, as a typical instance, returns the pro- 
cess record whose value in the p_pid entry is id and whose values in all other 
entries are the same as the values of the corresponding entries in procrec. 

new_def init ion( 
"HinixInitParam", 
let 
val MinixInitParam = —'MinixInitParam:"MinixState'—; 

val empty_p = —'empty_p:"ProcessRecord'—; 
val empty_i = —'empty_i:"InodeRecord'—; 

in 
 t 

"MinixInitParam = 

let initptb (p:'UserProcess) = 

((?level:'Level, p = (dumray_process level)) => 

(update_p_pid (process_id p) 

(update_p_level («level:'Level, p = (dummy„process level)) 
"empty_p)) 

I 
empty_p) in 

let inititb (f.-'File) = 

~empty_i in 

let initatb (p:'UserProcess) (f:'File) = 

empty_a in 
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let initftb (f:'File) = 

(empty_iile_contents:'FileContents) in 

let initsystime = 0 in 

Make_MinixState initptb inititb initatb initftb initsystime 
r  

end); 

3.2.6 Invariant 

The specification next defines the invariant, a predicate to be shown by 
induction to be true of every state parameter attained by the kernel process. 
The invariant serves as an optional, useful induction hypothesis about the 
kernel process' state parameter. Intuitively, it says that the level of the 
dummy process for each level is always that level, that the level of every 
empty or undefined file is systemlow, that a user process has read access to 
a file only if the level of that process dominates the level of that file, and that 
a user process has write access to a file only if the level of that file dominates 
the level of that process. 

new_deiinit ion( 
"Minixlnvariant", 
let 
val Minixlnvariant = —'Minixlnvariant:"MinixState -> bool'—; 

val dummy_process = —'dummy„process:'Level -> 'UserProcess'—; 
in 
 c 

"Minixlnvariant mstate = 

((level. 

(p_level ((s_ptb mstate) ("dummy„process level))) = level) A 

(!f. 
(((s_ftb mstate) f) = empty_file_contents) ==> 
((i_level ((s_itb mstate) f)) = 

systemlow)) A 

!p f. 

((a_read ((s_atb mstate) pf)) 

==> (dom 

(p_level ((s_ptb mstate) p)) 
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(i_level ((s_itb mstate) f)))) /\ 

((a_write ((s_atb mstate) pf)) 

==> (dom 

(i_level ((s_itb mstate) f)) 

(p_level ((s_ptb mstate) p)))) 

end); 

3.2.7    Projection Function 

The specification then defines the projection function, a function of a security 
level and a kernel state parameter. The projection's value at a level and a 
state parameter is the state parameter containing all, but only, the informa- 
tion necessary to produce that part of the kernel's behavior produced with 
the original state parameter that is visible at that level. Intuitively, every 
process whose level is not dominated by the projection level is removed from 
the process table, every file whose level is not dominated by the projection 
level is removed from the inode table, every entry involving one of these pro- 
cesses or one of these files is removed from the access table, and every file 
whose level is not dominated by the projection level is removed from the file 
table. The system time is unchanged. 

The specification uses several of the record-entry access functions defined 

by earlier calls to romrecord. 

new_definition( 

"MinixProjection", 

let 
val MinixProjection = 

—'MinixProjection: 
'Level -> "MinixState -> "MinixState'—; 

in 
 < 

"MinixProj ect ion 
level 

mstate = 

let startptb = s_ptb mstate in 
let startitb = s_itb mstate in 
let startatb = s_atb mstate in 
let startftb = s_ftb mstate in 
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let projectedptb p = 
(dom level (p_level (startptb p))) => 

(startptb p) 

I 
empty_p in 

let projecteditb i = 
(dom level (i_level (startitb f))) => 

(startitb f) 

I 
empty_i in 

let projectedatb p f = 
((dom level (p_level (startptb p))) A 

(dom level (i_level (startitb f)))) => 

(startatb p f) 

I 
empty_a in 

let projectedftb f = 
(dom level (i_level (startitb f))) => 

(startftb f) 

I 
empty_file_contents in 

(update_s_ptb projectedptb 
(update_s_itb projecteditb 

(update_s_atb projectedatb 

(update_s_ftb projectedftb 

mstate)))) 
t  

end); 

3.2.8    Security-Level Assignments 

The specification then defines the functions assigning security levels to input 
and output events. Intuitively, the level of any input or output event is the 
level of the user process sending or receiving the event, where the level of each 
user process is part of the information in the process table for the current 
kernel state parameter. Separate functions must be defined for inputs and 
outputs, since input events and output events are of distinct types. 

The specification uses new_recursive_def inition, which defines func- 
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tions on concrete recursive types. One of its arguments, rec_axiom, is the 
theorem giving an abstract characterization of the concrete recursive type 
over which the function is being defined. 

new_recursive_definition { 
name = "MinixInLevel", 
fixity = Prefix, 
rec_axiom = MinixInEv_Def, 
def = 
let 
val MinixInLevel = 
—'MinixInLevel:"MinixState ->  "MinixInEv ->   'Level'—; 

in 

("MinixInLevel instate  (Inport rp request)  = 
(p_level 

((s_ptb mstate)  rp))) 
c  

end}; 

new_recursive_definition { 

name = "MinixOutLevel", 

fixity = Prefix, 

rec_axiom = MinixOutEv_Def, 

def = 

let 

val MinixOutLevel = 

—'MinixOutLevel:"MinixState -> "MinixOutEv -> 'Level'—; 

in 
 t 

("MinixOutLevel mstate (Outport receiver response) = 
(p_level 

((s_ptb mstate) receiver))) A 

("MinixOutLevel mstate (Statport receiver n) = 

(p_level 

((s_ptb mstate) receiver))) 
t  

end}; 
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3.2.9    Invocation Interpretations 

The specification then gives the core of the kernel model, the interpreta- 
tions of the invocations of the kernel server process and the function giving 
the kernel's response to input events. The function MinixInvocVal, de- 
fined last, asserts that functions minix and minixResponse are called from 
PSL processes via the invocations Minix and MinixResponse, respectively. 
The specification leads up to the definition of MinixInvocVal, first defining 
the minixResponse subroutine reqresponse, then defining minixResponse 
and minix, and finally defining MinixInvocVal. The function reqresponse, 
which gives the response for a kernel state parameter and requesting user 
process to an arbitrary Minix request, contains most of the details of the 
model of the kernel process. 

Function reqresponse 

The function reqresponse gives the kernel's response to each possible request 
from a user process. It is defined using new_recursive_def inition, over 
the concrete-recursive type MinixRequest. 

Initial Lines The initial lines of the reqresponse definition name the func- 
tion, provide the appropriate theorem giving an abstract characterization of 
the function's domain, and define local SML variables that are used to pro- 
vide type information for polymorphic constants or which serve as convenient 
abbreviations. 

new_recursive_definition { 
name = "reqresponse", 
fixity = Prefix, 
rec_axiom = MinixRequest_Def, 
def = 
let 

(* typed polymorphic constants *) 

val reqresponse = 
—'reqresponse: 

~MinixState->'UserProcess->~MinixRequest->~MinixProc'—; 
val  id_process = 
—'id_process:num ->   'UserProcess'—; 
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val image = —'image:'File ->  ('Arg)list ->  'UserProcess'—; 
val new_zone = 
—'new_zone:'File ->  "MinixState -> num'—; 

val stat_rep = 
—'stat_rep:'UserProcess -> "MinixRequest -> num'—; 

(* useful abbreviations *) 

val oldptb = —'s_ptb (mstate:"MinixState)'— 
val olditb = —'s_itb (instate: "MinixState)' — 
val oldatb = —'s_atb (mstate:"MinixState)'— 
val olditb = —'s_ftb (mstate:"MinixState)'— 
val rf_dominates_rp = 

—'dom (i_level ("olditb rf))   (p_level ("oldptb rp))'—; 
val rp_dominates_rf = 
—'dom (p_level ("oldptb rp))   (i.level ("olditb rf))'--; 

val rp_using_rf = —'a_in_use ("oldatb rp rf)'—; 
in 

The remaining paragraphs in this section give the rest of the definition 
of reqresponse, with one paragraph for each form of MinixRequest. 

Specification for alarm For an alarm request, the kernel produces an 
appropriate status reply and sets the alarm_on bit in the requesting process' 

process-table record to "true". 

("reqresponse mstate rp  (alarm) = 
(Send (Statport rp ("stat_rep rp alarm)));; 
(Call 

(Minix 
(let newptb p = 

((p = rp)  => 
(update_p_alarm_on T  ("oldptb rp)) 

I   ("oldptb p))  in 
(update_s_ptb newptb mstate)))))  A 

Specification for brk For a brk request, which changes a user process' 
allocated data segment, the kernel first produces an appropriate status reply. 
If the data and stack segments of the memory of the requesting process 
overlap, it ignores the request.  Otherwise, it allocates new text, data, and 
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Stack segments for the requesting process, making corresponding changes in 

the process table. 

("reqresponse mstate rp (brk)  = 
(Send (Statport rp  ("stat_rep rp brk)));; 
(If  ("(stack_size_okay (p_segs  ("oldptb rp)))) 
(Call  (Minix mstate))     (* then cannot carry out request *) 
(Call (* else can carry out request *) 

(Minix 
(let newptb p = 

((p = rp) => 
(update_p_segs (allocate_process_segments rp mstate) 

("oldptb rp)) 

I 
("oldptb p)) in 

(update_s_ptb newptb mstate)))))) /\ 

Specification for chmod For a chmod request, which changes a file's per- 
missions, the kernel first produces an appropriate status reply. If the request- 
ing process is neither the owner of the file whose permissions it is trying to 
modify nor a superuser, or the level of the file does not dominate the level 
of the requesting process, the kernel ignores the request. Otherwise, it resets 
the permissions mask and the setuid and setgid bits in the file's inode 

table entry as requested. 

("reqresponse mstate rp (chmod rf pmask uidbit gidbit)  = 
(Send (Statport rp  ("stat_rep rp  (chmod rf pmask uidbit gidbit))));; 
(If  (("((i_uid ("olditb rf))  =  (p_realuid ("oldptb rp)))  A 

"(super rp))  V 
"(*rf_dominates_rp)) 

(Call  (Minix mstate))   (* then cannot carry out request *) 
(Call (* else can carry out request *) 

(Minix 
(let  (m_perm_r,  m_perm_w,  m_perm_x)  = pmask in 
let newitb f  = 
((f = rf)  => 

(update_i_perm_r m_perm_r 
(update_i_perm_w m_perm_w 
(update_i_perm_x m_perm_x 
(update_i_setuid uidbit 
(update_i_setgid gidbit 

("olditb rf)))))) 
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("olditb f))  in 
(update_s_itb newitb mstate)))))) /\ 

Specification for chown For a chown request, which changes a file's per- 
missions, the kernel first produces an appropriate status reply. If the request- 
ing process is not a superuser, or the level of the file does not dominate the 
level of the requesting process, the kernel ignores the request. Otherwise, 
it resets the user ID and group ID values in the file's inode table entry as 
requested. 

("reqresponse mstate rp  (chown rf newuid newgid)  = 
(Send (Statport rp ("stat_rep rp  (chown rf newuid newgid))));; 
(If  ("(super rp)  \/ 

"(~rf_dominates_rp)) 
(Call  (Minix mstate))     (* then cannot carry out request *) 
(Call (* else can carry out request *) 

(Minix 
(let newitb f = 

((f = rf)  => 
(update_i_uid newuid 
(update_i_gid newgid 

("olditb rf))) 
I 
(-olditb f))  in 

(update_s_itb newitb mstate)))))) /\ 

Specification for close For a close request, the kernel first produces an 
appropriate status reply. If the access table entry for the requesting process 
and requested file does not indicate that this process has the file open, the 
kernel ignores the request. Otherwise, it decrements the access count in the 
access table entry, and if this makes the count 0, resets the in_use flag to 
"false". 

("reqresponse mstate rp  (close rf)  = 
(Send  (Statport rp  ("stat_rep rp  (close rf))));; 
(If   (~(~rp_using_rf)) 
(Call  (Minix mstate))     (* then cannot carry out request *) 
(Call (*  else can carry out request *) 

(Minix 
(let oldaccesscount = a_lcount  (~oldatb rp rf)   in 
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let newatb p f = 
(((p = rp) A (f = rf)) => 

((oldaccesscount = 1) => 
(update_a_in_use F 
(update_a_lcount 0 

("oldatb rp rf))) 
I 
(update_a_lcount (oldaccesscount - 1) 

("oldatb rp rf))) 
I 
("oldatb p f)) in 

(update_s_atb newatb mstate)))))) A 

Specification for create For a create request, which creates a new file 
or truncates an existing one, the kernel first produces an appropriate status 
reply. If the file already exists, and the level of the file does not dominate 
the level of the requesting process, the file is not writable, or the file is a 
directory, the kernel ignores the request. If the file does not exist, and there 
is no room for a new entry in the inode or access tables, the kernel also 
ignores the request. 

Otherwise, the kernel creates or modifies the inode table entry for the 
created or truncated file, resetting the modification time, the number of links, 
the zone, and the count of times the inode is used. If it creates a new file, the 
kernel sets the file's inode permission, mode, uid, and gid bits as requested, 
except that it only sets the read, write, and execute permissions "true" if the 
requesting process' default permissions mask also has these values set "true", 
and it gives the newly created file the security level of the process creating 
it. 

Whether it creates or truncates the file, the kernel resets the file's access 
table entry for the requesting process to indicate that the file is in use, read- 
able, writable, empty, and indexed from the beginning, and resets the file's 
file table entry to indicate that it is empty. 

("reqresponse mstate rp (create rf cmask) = 
(Send (Statport rp  (~stat_rep rp  (create rf cmask))));; 
(If  ((i_in_use ("olditb rf)) => 

("(*rf_dominates_rp) \/ 
"(i_perm_w ("olditb rf))  \/ 
(i_mode_d ("olditb rf))) 

I 
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(~(room_in_inode_table instate) \/ 

~(room_in_access_table mstate))) 

(Call (Minix mstate))  (* then cannot carry out request *) 

(Call (* else can carry out request *) 
(Minix 

(let (m_perm_r, m_perm_w, m_penn_x, 

m_mode_d1 m_mode_f, m_setuid, m_setgid) = cmask in 

let (p_perm_r, p_perm_w, p_perm_x) = (p_mask ("oldptb rp)) in 
let newitb f = 

((f = rf) => 

(update_i_modtime date 

(update_i_nlinks 1 

(update_i_zone (~new_zone rf mstate) 
(update_i_count 1 

((i_in_use ("olditb rf)) => 
("olditb rf) 

I 
(update_i_in_use T 

(update_i_perm_r (m_perm_r /\ p_perm_r) 

(update_i_perm_w (m_perra_w /\ p_perm_w) 

(update_i_perm_x (m_perm_x /\ p_perm_x) 

(update_i_mode_d m_mode_d 
(update_i_mode_f m_mode_f 

(update.i_setuid m_setuid 

(update_i_setgid m_setgid 

(update_i_uid (p_effuid ("oldptb rp)) 
(update_i_gid (p_effgid ("oldptb rp)) 

(update_i_level (p_level ("oldptb rp)) 
empty_i)))))))))))))))) 

I 
("olditb f)) in 

let newatb p f = 

(((p = rp) A (f = rf)) => 

(update_a_in_use T 

(update_a_write T 
(update_a_read T 
(update_a_lcount 0 

(update_a_pos 0 
empty_a))))) 

I 
("oldatb p f)) in 

let newftb f = 

((f = rf) => 

empty_file_contents 
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("oldftb 1)) in 
(update_s_itb newitb 
(update_s_atb newatb 
(update_s_ftb newftb 
mstate)))))))) A 

Specification for exec For the exec request to execute a requested file 
on a supplied argument list, the kernel generates only a status reply to the 
requesting process and otherwise ignores the request if the requesting process 
does not have execute permission for the requested file, if there is not suffi- 
cient space to load the requested file into memory, or if the number or types 
of the supplied arguments are invalid. The status reply should indicate "file 
not found", regardless of the actual problem, if the level of the requesting 
process does not dominate the level of the requested file. 

Otherwise, if the level of the requesting process dominates the level of 
the requested file, the kernel replaces the requesting process' memory image 
with the image of the file to be executed. The kernel replaces the image 
by sending the requesting process the image it is to replace itself with as a 
non-status reply to the exec request, and by replacing one or both of the 
requesting process' effective user and group IDs, doing so as determined by 
the setuid and setgid flags in the executed file's inode table entry. 

Again otherwise, if the level of the requesting process does not dominate 
the level of the requested file, the kernel sends the requesting process a status 
reply indicating "file not found" and checks whether there is sufficient space 
in the process table for a new entry and sufficient space in memory for a 
new process. If not, the exec request has no further effect. If so, the kernel 
executes the requested file as if its execution had been requested by a dummy 
process having the same level as the file, but gives the fields in the new pro- 
cess' process-table entry, which normally are given the corresponding values 
for the parent process, the corresponding values for the requesting process. 
The kernel sends a status reply to the newly created process. 

("reqresponse instate rp  (exec rf arglist) = 
(If  (~(execute_okay rp rf mstate)  V 

"(space_to_load rf mstate) \/ 
~(args_okay arglist rf)) 

(* then request impossible to carry out *) 
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((Send (Statport rp (~stat_rep rp (exec rf arglist))));; 
(Call (Minix instate))) 

(* else request possible to carry out *) 

(If ("rp_dominates_rf) 

(* file low case *) 

((Send (Outport rp (execreply (image rf arglist))));; 

(Call 
(Minix 
(let newptb p = 

((p = rp) => 
(((i_setuid ("olditb rf))/\(i_setgid ("olditb rf))) => 

(update_p_effuid (process_effuid ("image rf arglist)) 
(update_p_effgid (process_effgid ("image rf arglist)) 
("oldptb rp))) 

I 
((i_setuid ("olditb rf))A("(i_setgid ("olditb rf)))) => 
(update_p_effuid (process_effuid ("image rf arglist)) 

("oldptb rp)) 

I 
(C(i_setuid ("olditb rf)))/\(i_setgid ("olditb rf))) => 
(update_p_effgid (process_effgid ("image rf arglist)) 

("oldptb rp)) 
I 
("oldptb rp)) 

I 
("oldptb p)) in 

(update_s_ptb newptb mstate))))) 

(* file not low case *) 

((Send (Statport rp ("stat_rep rp (exec rf arglist))));; 
(If ("(room_in_process_table mstate) \/ 

"(space_for_new.process mstate)) 

(* impossible to fork child case *) 

(Call (Minix mstate))) 

(* possible to fork child case *) 
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((Send 

(Outport 
(new_process mstate) 
(execreply (image rf arglist))));; 

(Send 
(Statport 

(new_process mstate) 
("stat_rep (new_process mstate) fork)));; 

(Call 
(Minix 
(let child = new_process mstate in 

let level = (i.level ("olditb rf)) in 

let parent = dummy_process level in 

let newptb p = 

((p = child) => 
(update_p_segs (allocate_process_segments child mstate) 

(update_p_scheduled T 

(update_p_in_use T 

(update_p_pid (process_id child) 
(update_p_parentid (p_pid ("oldptb parent)) 

(update_p_level level 
("oldptb rp))))))) 

I 
("oldptb p)) in 

let newatb p f  = 
((p = child) => 

((a_in_use ("oldatb parent 1)) => 

(update_a_lcount ((a_lcount ("oldatb parent f)) + 1) 

("oldatb parent f)) 

I 
("oldatb parent 1)) 

I 
(~oldatb p f))  in 

(update_s_ptb newptb 
(update_s_atb newatb 

mstate)))))))))) A 

Specification for exit For the exit request, if the requesting process' 
parent is waiting, the kernel terminates the requesting process by setting its 
process-table in_use value to "false". If the requesting process' parent is not 
waiting, the kernel terminates the requesting process by setting its process- 
table entry's hanging bit on and alarm and scheduling bits off. In either case, 
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the kernel turns off the waiting bit, for the requesting process' parent. 

("reqresponse instate rp  (exit)  = 
(Call 

(Minix 
(let parent = "id_process (p_parentid ("oldptb rp))  in 
let newptb p = 
((p = rp) => 

((p_waiting ("oldptb parent)) => 
(update_p_in_use F ("oldptb rp)) 

I 
(update_p_hanging T 
(update_p_alann_on F 
(update_p_scheduled F 
("oldptb rp))))) 

I 
(p = parent) => 

(update_p_waiting F ("oldptb parent)) 
I 
("oldptb p))  in 

(update_s_ptb newptb mstate))))) /\ 

Specification for fork For the fork request, the kernel first sends a status 
reply to the requesting process. If there is not room in the process table for 
another entry, or if there is not sufficient space in memory for a new process, 
the kernel ignores the request. If there is sufficient space, the kernel creates a 
new process, making appropriate additions to the process and access tables. 

("reqresponse mstate rp (fork) = 
(Send (Statport rp ("stat_rep rp fork)));; 
(If   ("(room_in_process_table mstate)  \/ 

"(space_for_new_process mstate)) 

(* then cannot carry out request *) 

(Call  (Minix mstate)) 

(* else can carry out request *) 

((Send (Outport rp (forkreply (new_process mstate))));; 
(Send 

(Statport 

(new_process mstate) 
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(*stat_rep (new_process mstate) fork)));; 
(Call 

(Minix 
(let child = new_process mstate in 
let newptb p = 
((p = child) => 

(update_p_segs (allocate_process_segments child mstate) 
(update_p_scheduled T 
(update_p_in_use T 
(update_p_pid (process_id child) 
(update_p_parentid (p_pid ("oldptb rp)) 

("oldptb rp)))))) 
I 
("oldptb p))  in 

let newatb p f = 
((p = child)  => 
((a_in_use ("oldatb rp f))  => 

(update_a_lcount ((a_lcount  ("oldatb rp f)) +  1) 
("oldatb rp f)) 

I 
("oldatb rp f)) 

I 
("oldatb pf)) in 

(update_s_ptb newptb 
(update_s_atb newatb 

mstate)))))))) A 

Specification for f stat For the f stat request, the kernel first sends a 
status reply to the requesting process. If the requesting process does not 
have the requested file open, or if the level of the requesting process does not 
dominate the level of the requested file, the kernel ignores the request. (Note 
that, as in exec, the appropriate status reply if the level of the requesting 
process does not dominate the level of the requested file is "file not found".) 
If neither of these conditions hold, the kernel sends the requested status 
information for the requested file to the requesting process. 

("reqresponse mstate rp (fstat rf)  = 
(Send (Statport rp  (~stat_rep rp  (fstat rf))));; 
(If  ("("rp_using_rf) \/ 

"("rp_dominates_rf)) 
Skip (* then request impossible to carry out *) 

(*  else request possible to carry out *) 
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(Send (Outport rp (statreply (file_status  ("olditb rf))))));; 
(Call (Minix mstate))) A 

Specification for getgid For the getgid request, the kernel sends a status 
reply to the requesting process and then sends it the requested group ID 
information about itself. 

("reqresponse mstate rp (getgid) = 
(Send (Statport rp ("stat_rep rp (getgid))));; 
(Send (Outport rp (getgidreply (p_effgid ("oldptb rp)))));; 
(Call  (Minix mstate))) A 

Specification for getuid For the getuid request, the kernel sends a sta- 
tus reply to the requesting process and then sends it the requested user ID 
information about itself. 

("reqresponse mstate rp  (getuid)  = 
(Send (Statport rp ("stat_rep rp  (getuid))));; 
(Send (Outport rp  (getuidreply (p_effuid ("oldptb rp)))));; 
(Call (Minix mstate))) A 

Specification for ioctl For the ioctl request, the kernel first sends a 
status reply to the requesting process. If the requesting process does not have 
the requested file open, if the requested file is not a special file, or if the level 
of the requested file does not dominate the level of the requesting process, 
the kernel makes no further response. Otherwise, it makes the requested 
changes to the file's IOCTL values. 

("reqresponse mstate rp (ioctl rf n) = 
(Send (Statport rp  ("stat_rep rp  (ioctl rf n))));; 
(If   (-(-rp_using_rf) V 

'(i_mode_f  ("olditb rf))  \/ 
"(("rf_dominates_rp))) 

(Call  (Minix mstate))     (* then cannot carry out request *) 
(Call (*  else can carry out request *) 

(Minix 
(let newitb f = 

((f = rf)  => 
(update_i_ioctl n  ("olditb rf)) 

I 
("olditb f))  in 

(update_s_itb newitb mstate)))))) A 
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Specification for kill For the kill request by a requesting process to 
kill a "victim" process, the kernel first sends a status reply to the requesting 
process. If the requesting process does not have the same real user ID as 
the victim, if the victim is hanging, if the victim's "ignore kill requests" flag 
is set, or if the victim's level does not dominate the level of the requesting 
process, the kernel makes no further response. Otherwise, the kernel kills the 
victim process. If the victim is set to catch the kill signal, the kernel kills 
it by sending it the catch.sig signal, then resets it so that it is no longer 
set to catch this signal. If the victim is not set to catch the kill signal, the 
kernel kills it in one of two ways, depending on whether its parent process 
is hanging, and then resets its parent so that this parent is not waiting. If 
the victim process' parent is hanging, the kernel terminates the victim by 
setting the victim's in_use value to "false"; otherwise, the kernel terminates 
the victim by setting its hanging bit on and its alarm and scheduling bits off. 

("reqresponse instate rp (kill victim) = 
(Send (Statport rp ("stat_rep rp (kill victim))));; 
(If (~(p_realuid ("oldptb victim) = p_realuid ("oldptb rp)) \/ 

(p_hanging ("oldptb victim)) \/ 
(p_ignore ("oldptb victim))  \/ 
"(dorn (p_level ("oldptb victim))   (p_level  ("oldptb rp)))) 

(* then request impossible to carry out *) 

(Call  (Minix mstate)) 

(* else request possible to carry out *) 

((If (p_catch ("oldptb victim)) 

(Send (Outport victim (killreply catch_sig))) 
Skip);; 

(Call 

(Minix 

(let parent = 

(id_process (p_parentid ("oldptb victim))) in 
let newptb p = 

((p = victim) => 

(("(p_catch ("oldptb victim))) => 

((p_hanging ("oldptb parent)) => 
(update_p_in_use F ("oldptb victim)) 

I 
(update_p_hanging T 
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(update_p_alarm_on F 
(update_p_sch.edu.led F 

("oldptb victim))))) 
I 
(update_p_catch F ("oldptb victim))) 

I 
(p = parent) => 

((~(p_catch ("oldptb victim))) => 
(update_p_waiting F ("oldptb parent)) 

I 
("oldptb parent)) 

I 
("oldptb p))  in 

(update_s_ptb newptb mstate))))))) /\ 

Specification for lseek For the lseek request to reposition the index into 
a file, the kernel first sends a status reply to the requesting process. If the 
requesting process does not have the requested file open, the kernel makes 
no further response. Otherwise, it makes the requested change in the file's 

access table entry. 

("reqresponse mstate rp (lseek rf position) = 
(Send (Statport rp ("stat_rep rp (lseek rf position))));; 
(If  ("(~rp_using_rf)) 
(Call  (Minix mstate))     (* then cannot carry out request *) 
(Call (* else can carry out request *) 

(Minix 
(let newatb p f = 

(((p = rp)  A  (f = rf))  => 
(update_a_pos (new_pos rf mstate position) 

("oldatb rp rf)) 
I 
("oldatb p f))  in 

(update_s_atb newatb mstate)))))) A 

Specification for mknod For the mknod request to create a special file, the 
kernel first sends a status reply to the requesting process. If the file already 
exists, or there is no room for a new entry in the inode or access tables, or 
the requesting process is not a superuser process, the kernel makes no further 

response. 
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Otherwise, the kernel creates the inode table entry for the new file, setting 
the modificaiion time, the number of links, the zone, and the count of times 
the inode is used. The kernel sets the file's inode permission, mode, uid, and 
gid bits as requested, except that it only sets the read, write, and execute 
permissions "true" if the requesting process' default permissions mask also 
has these values set "true", and it gives the newly created file the security 
level of the process creating it. 

The kernel resets the file's access table entry for the requesting process to 
indicate that the file is in use, readable, writable, empty, and indexed from 
the beginning, and resets the file's file table entry to indicate that it is empty. 

("reqresponse mstate rp (mknod rf cmask) = 
(Send (Statport rp ("stat_rep rp (mknod rf cmask))));; 
(If ((i_in_use ("olditb rf)) V 

"(room_in_inode_table mstate)  \/ 
~(room_in_access_table mstate)\/ 
"(super rp)) 

(Call  (Minix mstate))   (* then cannot carry out request *) 
(Call (* else can carry out request *) 

(Hinix 
(let  (m_perm_r, m_perm_w, m_perm_x, 

m_mode_d, m_mode_f, m_setuid, m_setgid) = cmask in 

let (p_perm_r,p_perm_w,p_perm_x) = (p_mask ("oldptb rp)) in 

let newitb t  = 
((f = rf) => 

(update_i_in_use T 

(update_i_perm_r (m_perm_r A p_perm_r) 

(update_i_perm_w (m_perm_w A p_perm_w) 

(update_i_perm_x (m_perm_x A p_perm_x) 

(update_i_mode_d m_mode_d 

(update_i_mode_f m_mode_f 

(update_i_setuid m_setuid 

(update_i_setgid m_setgid 

(update_i_modtime date 

(update_i_uid (p_eifuid ("oldptb rp)) 
(update_i_gid (p_effgid ("oldptb rp)) 

(update_i_nlinks 1 

(update.i_zone (~new_zone rf mstate) 

(update_i_count 1 

(update_i_level (p_level ("oldptb rp)) 
empty_i))))))))))))))) 

I 
("olditb f)) in 
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let newatb p f = 
(((p = rp) A  (f = rf)) => 

(update_a_in_use T 
(update_a_write T 
(update_a_read T 
(update_a_lcount 0 
(update_a_pos 0 

empty_a))))) 
I 
("oldatb p f))  in 

let newftb f = 
((f = rf)  => 

empty_file_contents 
I 
("oldftb f))  in 

(update_s_itb newitb 
(update_s_atb newatb 
(update_s_ftb newftb 

mstate)))))))) A 

Specification for open For the open request, the kernel first sends a status 
reply to the requesting process. If the file does not exist, if there is no room 
in the access table for another entry, if one of the permissions requested in 
the open is not one of the permissions possessed by the requesting process, 
or if the level of the requesting process does not dominate the level of the 
requested file, the kernel makes no further response. Otherwise, the kernel 
carries out the request by making appropriate modifications in the access 
table. 

("reqresponse instate rp  (open rf pmask)  = 
(Send (Statport rp  (~stat_rep rp  (open rf pmask))));; 
(If   (let  (m_perm_r, m_perm_w, m_perm_x) = pmask in 

"(i_in_use ("olditb rf))  V 
"(room_in_access_table mstate)  \/ 
(m_perm_x A  "(i_perm_x ("olditb rf))) V 
(m_perm_w A 

C(i_perm_w ("olditb rf))  V 
~(~rf_dominates_rp) \/ 
(i_mode_d ("olditb rf))))  V 

(m_perm_r A 
(~(i_perm_r ("olditb rf))  V 

"("rp_dominates_rf)))) 
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(Call (Minix instate)) (* then cannot carry out request *) 
(Call (* else can carry out request *) 

(Minix 
(let (m_perm_r, m_perm_w, m_perm_x) = pmask in 
let newatb p f = 
(((p = rp) A (1 = rf)) => 
(update_a_in_use T 
(update_a_lcount 1 
(update_a_pos 0 
(m_perm_w => 

(update_a_write T 
(m_perm_r => 

(update_a_read T empty_a) 

I 
empty_a)) 

I 
(m_perm_r => 

(update_a_read T empty_a) 
I 
empty_a))))) 

I 
("oldatb p f)) in 

(update_s_atb newatb mstate)))))) /\ 

Specification for pause For the pause request, the kernel first sends a 
status reply to the requesting process, then sets the paused flag in that 
process' process-table entry to "true". 

(~reqresponse mstate rp  (pause)  = 
(Send (Statport rp  (~stat_rep rp pause)));; 
(Call 

(Minix 
(let newptb p = 

((p = rp)  => 
(update_p_paused T  ("oldptb rp)) 

I 
("oldptb p))   in 

(update_s_ptb newptb mstate)))))  A 

Specification for read For the read request, the kernel first sends a status 
reply to the requesting process. If the access table shows that the requesting 
process does not have read access to the requested file, the kernel makes no 
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further response, but otherwise it returns the requested file contents. (Note 
that the model does not cover partial reads; these reads raise no additional 

nondisclosure issues.) 

("reqresponse mstate rp (read rf) = 
(Send (Statport rp ("stat_rep rp (read rf))));; 
(If  ("(a_read ("oldatb rp rf))) 
Skip 
(Send (Outport rp (readreply ("oldftb rf)))));; 

(Call (Hinix mstate))) A 

Specification for setgid For the setgid request, the kernel first sends 
a status reply to the requesting process. If the requesting process is not 
a superuser process or if the group ID in the request is not the requesting 
process' real or effective group ID, the kernel makes no further response. 
Otherwise, the kernel resets the requesting process' group ID accordingly. 

("reqresponse mstate rp  (setgid n)  = 
(Send (Statport rp ("stat_rep rp  (setgid n))));; 
(If  ("(super rp)  A 

"(n =  (p_realgid ("oldptb rp)))  A 
"(n =  (p.effgid ("oldptb rp)))) 

(Call  (Minix mstate))     (* then cannot carry out request *) 
(Call (* else can carry out request *) 

(Minix 
(let newptb p = 

((p = rp) => 
(update_p_realgid n 
(update_p_effgid n 

("oldptb rp))) 
I 
("oldptb p))  in 

(update_s_ptb newptb mstate)))))) A 

Specification for setuid For the setuid request, the kernel first sends 
a status reply to the requesting process. If the requesting process is not a 
superuser process or if the user ID in the request is not the requesting process' 
real or effective user ID, the kernel makes no further response. Otherwise, 
the kernel resets the requesting process' group ID accordingly. 

("reqresponse mstate rp  (setuid n)  = 
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(Send (Statport rp ("stat_rep rp (setuid n))));; 
(If  ("(super rp)  A 

"(n =  (p_realuid ("oldptb rp)))  A 
"(n = (p.effuid ("oldptb rp)))) 

(Call  (Minix mstate))     (* then cannot carry out request *) 
(Call (* else can carry out request *) 

(Minix 
(let newptb p = 

((p = rp)  => 
(update_p_realuid n 
(update_p_effuid n 

("oldptb rp))) 
I 
("oldptb p))  in 

(update_s_ptb newptb mstate)))))) A 

Specification for signal For the signal request, the kernel first sends a 
status reply to the requesting process, then resets the catch or ignore flags 
for the requesting process in response to the corresponding signals. 

("reqresponse mstate rp (signal n)  = 
(Send (Statport rp  ("stat_rep rp  (signal n))));; 
(Call 

(Minix 
(let newptb p = 

((p = rp)  => 
((n = sig_catch)  => 

(update_p_catch T  ("oldptb rp)) 
I 
(n = sig_ignore) => 
(update_p_ignore T  ("oldptb rp)) 

I 
("oldptb rp)) 

I 
("oldptb p))   in 

(update_s_ptb newptb mstate)))))  A 

Specification for stat For the stat request, which requests the status of 
a file, the kernel first sends a status reply to the requesting process. If the 
requesting process does not have the requested file open, or if the level of 
the requesting process does not dominate the level of the requested file, the 
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kernel makes no further response. Otherwise, it replies with the requested 
status information. 

("reqresponse mstate rp  (stat rf)  = 
(Send (Statport rp ("stat_rep rp (stat rf))));; 
(If  (-(*rp_using_rf) \/ 

~(~rp_dominates_rf)) 
Skip (* then request impossible to carry out *) 

(* else request possible to carry out *) 
(Send (Outport rp (statreply (file_status ("olditb rf))))));; 

(Call (Minix mstate))) A 

Specification for stime For the stime request, which sets the system 
time, the kernel first sends a status reply to the requesting process. If the 
requesting process is not a superuser process, the kernel makes no further 
response. Otherwise, it resets the system time as requested. 

("reqresponse mstate rp  (stime newtime)  = 
(Send (Statport rp ("stat_rep rp (stime newtime))));; 
(If  ("(super rp)  V "((pJLevel  (~oldptb rp))  = systemlow)) 

(Call (Minix mstate))    (* then cannot carry out request *) 
(Call (* else can carry out request *) 

(Minix 
(update_s_systemtime newtime mstate))))) A 

Specification for time For the time request, the kernel sends a status 
reply to the requesting process and then sends the requested system time. 

("reqresponse mstate rp (time) = 
(Send (Statport rp ("stat_rep rp (time))));; 
(Send (Outport rp (timereply (s_systemtime mstate))));; 
(Call (Minix mstate))) A 

Specification for times For the times request, the kernel sends a sta- 
tus reply to the requesting process, then sends the requesting process the 
requested information about the times involved in its own execution. 

("reqresponse mstate rp  (times)  = 
(Send (Statport rp  (~stat_rep rp  (times))));; 
(Send  (Outport rp  (timesreply (used_times rp mstate))));; 
(Call  (Minix mstate)))  A 
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Specification for umask For the umask request, the kernel sends a sta- 
tus reply to the requesting process, then sends the requesting process the 
requested information about its own file-creation mask. 

(~reqrespon.se instate rp  (umask pmask) = 
(Send (Statport rp  (~stat_rep rp  (umask pmask))));; 
(Send (Outport rp  (umaskreply (p_mask ("oldptb rp)))));; 
(Call 

(Minix 
(let newptb p = 

((p = rp)  => 
(update_p_mask pmask ("oldptb rp)) 

I 
("oldptb p))  in 

(update_s_ptb newptb mstate)))))  /\ 

Specification for utime For the utime request, which modifies the last- 
modification time for a file, the kernel first sends a status reply to the re- 
questing process. If the requesting process' level does not dominate the level 
of the requested file, or if the requesting process is not a superuser process 
and the requesting process is not the owner of the requested file, the ker- 
nel makes no further response. Otherwise, it sets the "dirty" flag for the 
requested file to "true" and changes the file's last-modification time. 

("reqresponse mstate rp (utime rf newtime) = 
(Send (Statport rp (~stat_rep rp (utime rf newtime))));; 
(If  ("("rp_dominates_rf) \/ 

("(super rp)  A 
"((i_uid ("olditb rf))  =  (p_realuid ("oldptb rp))))) 

(Call  (Minix mstate))     (* then cannot carry out request *) 
(Call (* else can carry out request *) 

(Minix 
(let newitb f = 

((f = rf)  => 
(update_i_dirt T 
(update_i_modtime newtime 
("olditb rf))) 

I 
("olditb f)) in 

(update_s_itb newitb mstate)))))) A 
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Specification for wait For the wait request, the kernel first sends a status 
reply to the requesting process. It then terminates all the hanging child 
processes of the requesting process by resetting their in_use values to "false", 
then sets the waiting flag for the requesting process to "true". 

("reqresponse mstate rp (wait) = 
(Send (Statport rp (*stat_rep rp wait)));; 
(Call 

(Minix 
(let newptb p = 

(((rp =  (id_process (p_parentid ("oldptb p))))  A 
(p_hanging ("oldptb p)))  => 
(update_p_in_use F  ("oldptb p)) 

I 
(p = rp)  => 
(update_p_waiting T  ("oldptb rp)) 

I 
("oldptb p))  in 

(update_s_ptb newptb mstate))))) A 

Specification for write For the write request, the kernel first sends a 
status reply to the requesting process. If the requesting process does not 
have write access to the requested file, the kernel makes no further response. 
Otherwise, it replaces the contents of the requested file with the requested 
value. (Note that the model does not cover partial writes; these writes raise 
no additional nondisclosure issues.) 

("reqresponse mstate rp  (write rf contents) = 
(Send (Statport rp (~stat_rep rp (write rf contents))));; 
(If   (~(a_write ("oldatb rp rf))) 
(Call  (Minix mstate))     (* then cannot carry out request *) 
(Call (* else can carry out request *) 

(Minix 
(let newftb f = 

((f = rf)  => 
contents 

I 
("oldftb f))  in 

(update_s_ftb newftb mstate)))))) 

Final Lines The final lines of the reqresponse definition simply terminate 
the definition. 
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end}; 

Function minixResponse 

The function minixResponse gives the response of the kernel process to an 
arbitrary input event. The function "takes apart" the input event, obtaining 
the requesting process and its MinixRequest, then calls reqresponse with 
this information. 

new_recursive_definition { 
name = "minixResponse", 
fixity = Prefix, 
rec_axiom = MinixInEv_Def, 
def = 
let 
val minixResponse = 
—'minixResponse:"MinixState -> "MinixInEv -> "MinixProc'—; 

val reqresponse = 

—'reqresponse: 
~MinixState->'UserProcess->"MinixRequest->*MinixProc'—; 

in 
 < 

("minixResponse instate (Inport rp request) = 

("reqresponse mstate rp request)) 
t  

end}; 

Function minix 

The function minix gives the top-level description of the kernel process. The 
function is simple: the kernel waits for an arbitrary input event, then invokes 
MinixResponse to determine its response as a function of its state param- 
eter and this input event. (The Receive PSL command supplies the input 
event received, implicitly taken off a buffer, as an parameter to the function 
invoked.) 

new_def init ion( 
"minix", 
let 
val minix = —'minix:"MinixState -> "MinixProc'—; 

in 

77 



"minix instate = 
(Receive  (\ev:"MinixInEv. T)   (MinixResponse mstate)) 

end); 

Function MinixInvocVal 

The function MinixInvocVal maps every invocation to the corresponding 
value of a PSL-valued function, mapping the invocation constructor Minix 
to the function minix and the invocation constructor MinixResponse to the 
function minixResponse. 

new_recursive_definition { 
name = "MinixInvocVal", 
fixity = Prefix, 
rec_axiom = MinixInvoc_Def, 
def = 
let 
val MinixInvocVal = 

—'MinixInvocVal:"Minixlnvoc -> "MinixProc'— 

in 
 t 

("MinixInvocVal (Minix mstate) = 

(minix mstate)) A 

("MinixInvocVal (MinixResponse mstate inev) = 

(minixResponse mstate inev)) 
(  

end}; 

3.3    Proofs 

This section contains and describes the HOL90 SML code formally proving 
security properties of the kernel model specified in section 3.2. It proves that 
the kernel model is a server process and that every output produced by the 
kernel model (before it loops back to wait for the next input) in response to 
an input event is at a security level greater than or equal to the security level 
of this input event. 

The remainder of this section gives the proofs themselves, but does not 
give HOL90's actual replies. That information is given in Appendix 3.A. 
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3.3.1    Tactics 

The proof begins by defining a special-purpose tactic request_cases_TAC. 
This tactic expands applications of the minixResponse subroutine reqre- 
sponse to an arbitrary MinixRequest, generating each of the 30 possible 
cases. The variable ml2_MinixRequest is a name that will be introduced 
later by Romulus tactics for the second data entry in the first (and only) 
type of input event. This name is chosen to show the type of this entry, 
which is an arbitrary MinixRequest. 

val request_cases_TAC = 
X_CASES_THEN 

C 
[], 
D, 
[—'rf:'File'—,—'praask:~PermissionsMask'—, 
—'uidbit:bool'--,--'gidbit:bool'—], 
[—'rf: 'File' —, — 'newuid:num'—, — 'newgidrnum'—] , 
C— 'rf :'File'--], 
[—'rf:'File'—,—'cmask:~CreateMask'—], 
[— 'rf: 'File' — ,--'arglist: ('Arg)list'— ], 

□ . 
□ . 
[—'rf :'File'—], 
D. 
D. 
[— 'rf: 'File' —, — 'n:num'— ] , 
[—'victim:'UserProcess'—], 
C—'rf:'File'—,—'position :mun'—], 
[—'rf: 'File' —, — 'cmask:~CreateMask'— ], 
C—'rf:'File'—,—'pmask:"PermissionsMask'—], 

□ , 
[— 'rf :'File'— ], 
C—'n:mim'—] , 
[—'n:mim'—] , 
C—'n:num'—] , 
[—'rf r'File'—] , 
[—'nesrtime:mim'—] , 

D. 
□ , 
[—'pmask:~PermissionsMask'—], 
C—'rf: 'File' —, — 'newtime:nuiti'—] , 
□ . 
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[—'rf:'File <--, — 'contents:'FileContents'~] 

] 
(fn th => 
REWRITE_TAC 

Cth, 

(definition "-" "reqresponse")]) 

(SPEC 
(—'request:"MinixRequest'—) 
(prove_cases_tnm (prove_induction_thm MinixRequest_Def))); 

3.3.2    Proof of BPSPjrightform 

This section proves that the kernel model is a server process by showing 
that the predicate BPSP.rightform holds for the state parameter invari- 
ant Minixlnvariant, the function assigning meanings to invocations Minix- 
InvocVal, and the parameterized process (more accurately, invocation con- 
structor) Minix. The result proved is polymorphic, so it holds for any types 
substituted for the type variables 'UserProcess, 'File, 'FileContents, 
'Arg, and 'Level. 

The proof begins by setting the goal in appropriate generality: 

g('BPSP_rightform 
(Minixlnvariant:"MinixState -> bool) 
(MinixInvocVal:"MinixInvoc -> "HinixProc) 
(Minix:"MinixState -> "Minixlnvoc)'); 

It then uses BPSP.rightform_TAC to expand the definition of BPSP_- 
rightf orm and the invariant, and to confirm automatically that Minix names 
a parameterized process that receives arbitrary input events. 

e(BPSP_rightform_TAC); 

The remaining goal asserts that if Minixlnvariant holds of param, then 
the following Loopsback condition holds, which says that reqresponse for 
the state parameter param (the user process that is the first data object in an 
arbitrary input event) and the MinixRequest (the second data object in an 
arbitrary input event) evaluates to a PSL object that ends with a call back 
to Minix (the invocation naming the kernel process as it waits for another 
input event). 
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Loopsback 
MinixInvocVal 
(INR Minix) 
(reqresponse paxam mll_UserProcess ml2_MinixRequest) 

Since the invariant hypothesis is not needed to prove the Loopsback re- 
sult, the next line in the proof discards it. 

e(DISCH_THEN (in th => ALLJTAC)); 

The tactic request_cases_TAC then expands the goal into 30 subgoals, 
each asserting that the Loopsback condition holds for the response to one 
form of MinixRequest. Each of these goals can be proved by rewriting 
with the standard Romulus theorems that effectively define Loopsback and 
Terminates by structural induction on PSL objects, then rewriting with a 
trivial lemma saying that if both branches of a conditional expression have 
value "true" then the conditional expression has value "true". The HOL 
tactical THEN automatically applies tactics to all remaining subgoals, so 

e(request_cases_TAC THEN 
REWRITE_TAC 

[theorem "romsecure" "Loopsbackjlewrites", 
theorem "romsecure" "Terminates_Rewrites"] THEN 

REWRITEJTAC [theorem "romlemmas" "rom_condlemmal"]); 

completes the proof. 
The lines 

save_top_thm "Minix_rightform"; 
export_theory(); 

save the result for future use and write the minix theory to the disk. 

3.3.3     Proof of BPSPjnowritesdown 

This section proves that the kernel model's responses to any input event are 
at levels greater than or equal to the level of the input event by proving 
that the predicate BPSP_nowritesdown holds for the function dom defining 
the dominance relation on security levels, the functions MinixInLevel and 
MinixOutLevel assigning security levels to input and output events, the 
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state parameter invariant Minixlnvariant, the function assigning meanings 
to invocations MinixInvocVal, and the parameterized process (more accu- 
rately, invocation constructor) Minix. The result proved is polymorphic, so it 
holds for any types substituted for the type variables 'UserProcess, 'File, 
'FileContents,'Arg, and 'Level. 

The proof begins by setting the goal in appropriate generality: 

g( 'BPSP_nowritesdown 
(dom:'Level -> 'Level -> bool) 
(MinixInLevel:"MinixState -> "MinixInEv -> 'Level) 
(MinixOutLevel:"MinixState -> "MinixOutEv -> 'Level) 
(Minixlnvariant:"MinixState -> bool) 
(MinixInvocVal:"Minixlnvoc -> "MinixProc) 
(Minix:"MinixState -> "Minixlnvoc)'); 

It then uses BPSP_nowritesdown_TACto expand the definition of BPSP_- 
nowritesdown and the invariant, and to move the properties given by the 
invariant into the goal's hypothesis list. The tactic makes no further auto- 
matic simplifications. 

e(BPSP_nowritesdown_TAC); 

As before, request_cases_TAC breaks the goal up into 30 subgoals. 
Rewriting with the theorems defining NoWritesDown by structural induction 
on PSL objects and the definitions of the level-assignment functions shows 
that most of these subgoals are trivially true because the level of all output 
events is the same as the level of the input event that caused them. Every se- 
curity level dominates itself by the axiom dom_ref lexive, so rewriting with 
this axiom and a trivial lemma saying that if both clauses of a conditional 
expression have value "true" the whole expression has value "true" proves 
these subgoals. The lines 

e(request_cases_TAC THEN 
REWRITE_TAC  [theorem "romsecure" "NoWritesDown_Rewrites"3 THEN 
REWRITE_TAC 

[definition "-"  "MinixOutLevel", 
definition "-"  "MinixInLevel", 
axiom "-"  "dom_reflexive", 
theorem "romlemmas"  "rom_condlemmal"]); 
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leave only three subgoals. 
Two of those three subgoals are true because there is no disclosure in cre- 

ating, and thus modifying, a previously non-existent user process. Rewriting 
with the axiom saying that a new process-table entry always replaces the 
entry for a previously non-existent process, the definition that a non-existent 
process has level systemhigh, and the axiom that systemhigh dominates all 
levels proves these subgoals: 

e(REWRITE_TAC 
[axiom "-" "new_process_new", 
definition "-" "empty_p", 
definition "-" "p_level", 
axiom "-" "systemhigh_high", 
theorem "romlemmas" "rom_condlemmal"]); 

e(REWRITE_TAC 
[axiom "-" "new_process_new", 
definition "-" "empty_p", 
definition "-"  "p_level", 
axiom "-"  "systemhigh_high", 
theorem "romlemmas" "rom_condlemmal"]); 

(The repetition could have been avoided by using these lines with THEN after 
executing request_cases_TAC,but we use it for expository purposes, causing 
the two subgoals proved to be displayed in the proof-transcript given in 
Appendix 3.A. 

The remaining subgoal is true because the response to a kill request 
is defined so that a user process can only kill another user process if the 
level of that other process dominates the level of the user process killing it. 
The subgoal follows by considering the two cases as to whether the required 
dominance relation holds, then rewriting: 

e(ASM_CASES_TAC 
(--'((dorn:'Level ->  'Level -> bool) 

(p_level  (s_ptb (param:"MinixState)  (victim:'UserProcess))) 
(p.level  (s_ptb param rp)))'~) THEN 

ASM_REWRITE_TAC[theorem "romlemmas" "rom_condlemmal"]); 

The line 

save_top_thm "Minix_nowritesdown"; 

saves the result for future use. 



3.3.4    Remaining Work 

Proofs of the following conditions about the kernel model's state parameters 
would complete the proof that the kernel model is restrictive: 

1. The kernel's initial state parameter MinixInitParam satisfies the in- 
variant Minixlnvariant, and if the parameter mstate satisfies this 
invariant, then for every input event inev the kernel's response minix- 
Response mstate inev ends with a call back to the kernel with a new 
state parameter that also satisfies this invariant. (Informally, the in- 

variant is preserved.) 

2. For any security level lev, any input event inev, and any kernel state 
parameter mstate satisfying the invariant Minixlnvariant, if mstate' 
is any new kernel state parameter after the kernel started with state 
parameter mstate and finished responded to event inev, then Minix- 
Projection lev mstate = MinixProjection lev mstate'. (Infor- 
mally, hidden inputs cause only hidden changes in state parameters.) 

3. For any security level lev, any input event inev, and any kernel state 
parameters mstate and mstate' satisfying the invariant Minixlnvar- 
iant such that MinixProjection lev mstate = MinixProjection 
lev mstate', the following conditions hold of the kernel's responses to 
event inev when starting with state parameters mstate and mstate': 

• The decisions made in simplifying PSL's conditional If expres- 
sions are the same. (Informally, the execution paths followed do 
not distinguish two previously indistinguishable state parameters.) 

• Every output event at a level dominated by lev produced by one 
response could also be produced by the other response. (Infor- 
mally, the output sequences do not distinguish two previously in- 
distinguishable state parameters.) 

• If newmstate is a possible new state parameter after the ker- 
nel started with state parameter mstate, and newmstate' is a 
new state parameter after the kernel started with state parameter 
mstate', then MinixProjection lev newmstate = MinixPro- 
jection lev newmstate'. (Informally, the two next state pa- 

rameters do not distinguish two previously indistinguishable .state 
parameters.) 
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We did not complete these proofs because of lack of time, but expect the first 
of them to be relatively easy and the others to be tedious but straightforward. 

3.A Appendix: Transcripts of Proofs 

This appendix contains transcripts of the HOL90 sessions proving the results 
described in section 3.3. The user inputs are in the lines beginning with - 
and are in italic type. 

Proof: Kernel Model a Server Process 

The following is the transcript of the proof of the BPSP_rightf orm property 
for the kernel process: 

- g('BPSP_rightform 
(MinixInvariant:~MinixState -> bool) 
(MinixInvocVal:~MinixInvoc -> 'MinixProc) 
(Minix:'MinixState ->  'Minixlnvoc)'); 

(—'BPSP_rightform Minixlnvariant MinixInvocVal Minix'—) 

val it =  ()   :  unit 
-   e(BPSP_rightform_TAC); 
OK.. 
1  subgoal: 
(—'(llevel. p_level  (s_ptb param (dummy„process level))  = level)  A 

Of. 
(s_ftb param f = empty_file_contents) ==> 
(i_level (s_itb param f)  = systemlow))  A 

(!p f. 
(a_read (s_atb param p f)  ==> 
dom (p_level (s_ptb param p)) (i_level (s_itb param i))) A 
(a_write (s_atb param p f) ==> 
dom (i_level (s_itb param f)) (p.level (s_ptb param p)))) ==> 

Loopsback MinixInvocVal (INR Minix) (reqresponse param rp request)'—) 

val it  =  ()   :  unit 
-   e(DISCH_THEN (fn th => ALL_TAC)); 
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OK. . 

1 subgoal: 
(—'Loopsback MinixInvocVal (INR Minix) (reqresponse param rp request)'—) 

val it = () : unit 

- e(request_cases_TAC THEN 
REWRITE_TAC 

[theorem "romsecure" "Loopsback_Rewrites", 
theorem "romsecure" "Terminates_Rewrites"J THEN 

REWRITE_TAC [theorem "romlemmas" "rom_condlemmal"]); 
OK.. 

Goal proved. 
I- Loopsback HinixInvocVal (INR Minix)   (reqresponse param rp request) 

Goal proved. 
|- ('.level. p_level (s_ptb param (dummy.process level)) = level) A 

Of. 
(s_ftb param 1 = empty_file_contents) ==> 

(i_level (s_itb parara f) = systemlos)) /\ 

(!p t. 
(a_read (s_atb param p f) ==> 
dom (p_level (s_ptb param p)) (i_level (s_itb param f))) /\ 

(a_write (s_atb param p f) ==> 
dorn (i_level (s_itb param i)) (p_level (s_ptb param p)))) ==> 

Loopsback HinixInvocVal (INR Minix) (reqresponse param rp request) 

Goal proved. 
|- BPSP_rightiorm Minixlnvariant MinixInvocVal Minix 

Top goal proved, 

val it = () : unit 
- save_top_thm "Hinix_rightform"; 
val it = |- BPSP_rightform Minixlnvariant MinixInvocVal Minix : thm 

Proof: Output Levels Dominate Input Levels 

The following is the transcript of the proof that the BPSP_nowritesdown 
property holds for the kernel process: 

- g('BPSP_nowritesdown 
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(dorn:'Level ->  'Level -> bool) 
(MinixInLevel:'MinixState -> "MinixInEv ->  'Level) 
(MinixOutLevel:'MinixState -> 'MinixOutEv ->  'Level) 
(Minixlnvariant: 'MinixState -> bool) 
(MinixInvocVal:~MinixInvoc -> 'MinixProc) 
(Minix:'MinixState ->  'Minixlnvoc)'); 

•'BPSP_nowritesdown dorn MinixInLevel MinixOutLevel Minixlnvariant 

MinixInvocVal 

Minix'--) 

val it = () : unit 
-  e(BPSP_nowritesdown_TAC); 
OK. . 
1 subgoal: 
(—'NoWritesDown dorn (MinixOutLevel param) (p_level (s_ptb param rp)) 

MinixInvocVal 

(INR Minix) 
(reqresponse param rp request)'—) 

(—'üevel. p_level (s_ptb param (dummy_process level)) = level'—) 

(—'!f. 
(s_ftb param f = empty_file_contents) ==> 

(i_level (s_itb param f) = systemlow)'—) 

(-'!p i. 
(a_read (s_atb param p f) ==> 
dorn (p_level (s_ptb param p)) (i_level (s_itb param 1))) /\ 

(a_write (s_atb param p 1) ==> 

dorn (i_level (s_itb param i)) (p_level (s_ptb param p)))'—) 

val it =  ()   :  unit 
-  e(request_cases_TAC THEN 

REWRITE_TAC [theorem "romsecure" "NoWritesDown_Rewrites"] THEN 
REWRITE_TAC 
[definition "-"  "MinixOutLevel", 
definition  "-" "MinixInLevel", 
axiom "-" "dom_reflexive", 
theorem "romlemmas" "rom_condlemmal"]); 

OK. . 

[Major collection...  52*/. used (7425260/14278572), 6520 msec] 
3  subgoals: 
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(—'("(p_realuid (s_ptb param victim) = p_realuid (s_ptb param rp)) \/ 
p_hanging (s_ptb param victim) \/ 
p_ignore (s_ptb param victim) V 
"(dorn (p_level (s_ptb param victim)) (p_level (s_ptb param rp)))) 

=> T 
I ((p_catch (s_ptb param victim)) 

=> (dom (p_level (s_ptb param victim)) (p_level (s_ptb param rp))) 
I T)'-) 

(—'llevel. p_level (s_ptb param (dummy_process level)) = level'—) 
(-'If. 

(s_ftb param f = empty_file_contents) ==> 
(i_level (s_itb param f) = systemlow)'—) 

(~'!pf. 
(a_read (s_atb param p f) ==> 
dom (p_level (s_ptb param p)) (i_level (s_itb param f))) /\ 
(a_write (s_atb param p f) ==> 
dom (i_level (s_itb param f)) (p_level (s_ptb param p)))'—) 

(—'("(roora_in_process_table param) \/ ~(space_for_new_process param)) 
=> T 
I (dom (p_level (s_ptb param (new_process param))) 

(p_level (s_ptb param rp)))'—) 

(—'llevel. p_level (s_ptb param (dummy„process level)) = level'—) 
(—'If. 

(s_ftb param f = empty_file_contents) ==> 
(i_level (s_itb param f) = systemlow)'—) 

(-'Ipf. 
(a_read (s_atb param p f) ==> 
dom (p_level (s_ptb param p)) (i_level (s_itb param f))) /\ 
(a_write (s_atb param p f) ==> 
dom (i_level (s_itb param f)) (p_level (s_ptb param p)))'—) 

(—'("(execute_okay rp rf param) \/ 
"(space_to_load rf param) \/ 
"(args_okay arglist rf)) 

=> T 
I ((dom (p_level (s_ptb param rp)) (i_level (s_itb param rf))) 

=> T 
I (("(room_in_process_table param) \/ "(space_for_new_process param)) 

=> T 
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I (dorn (p_level (s_ptb param (nesr_process param))) 

(p_level (s_ptb param rp)))))'—) 

(—'(level. p_level (s_ptb paxam (dummy„process level)) = level'—) 
(—'!f. 

(s_ftb param f = empty_file_contents) ==> 

(i_level (s_itb param f) = systemlow)'—) 

(—'!p f. 
(a_read (s_atb param p f) ==> 

dom (p_level  (s_ptb param p))   (i_level  (s_itb param f)))  /\ 
(a_write (s_atb param p f)  ==> 
dom (i_level (s_itb param f))   (p_level  (s_ptb param p)))'—) 

val it = ()   : unit 
-  e(REWRITE_TAC 

[axiom "-"  "new_process_new", 
definition "-" "empty_p", 
definition  "-" "p_level", 
axiom "-" "systemhigh_high", 
theorem "romlemmas" "rom_condlemmal"]); 

OK.. 

Goal proved. 

|- (~(execute_okay rp rf param) \/ 

~(space_to_load rf param) \/ 

"(args_okay arglist rf)) 
=> T 

I ((dom (p_level (s_ptb param rp)) (i_level (s_itb param rf))) 
=> T 

I (("(room_in_process_table param) \/ "(space_for_new_process param)) 
=> T 

I (dom (p_level (s_ptb param (new_process param))) 
(p_level (s_ptb param rp))))) 

Remaining subgoals: 

(—'("(p_realuid (s_ptb param victim) = p_realuid (s_ptb param rp)) \/ 

p_hanging (s_ptb param victim) V 

p_ignore (s_ptb param victim) \/ 

"(dom (p_level (s_ptb param victim)) (p_level (s_ptb param rp)))) 
=> T 

I ((p_catch (s_ptb param victim)) 

=> (dom (p_level (s_ptb param victim)) (p_level (s_ptb param rp))) 

I T)'—) 
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(—'üevel. p_level (s_ptb param (dummy_process level)) = level'—) 

(»'■f. 
(s_ftb param f = empty_file_contents) ==> 

(i_level (s_itb param f) = systemlow)'—) 

(—'!p f- 
(a_read (s_atb param p f) ==> 

dorn (p_level (s_ptb param p)) (i_level (s_itb param f))) A 

(a_write (s_atb param p f) ==> 

dorn (i_level (s_itb param f)) (p_level (s_ptb param p)))'—) 

(—'("(roora_in_process_table param) \/ "(space_for_new_process param)) 

=> T 
I (dorn (p_level (s_ptb param (new_process param))) 

(p_level (s_ptb param rp)))'—) 

(—'üevel. p_level (s_ptb param (dummy_process level)) = level'—) 

{—'11. 

(s_ftb param 1  = empty_file_contents) ==> 
(i_level (s_itb param f) = systemlow)'—) 

(—'!p f. 
(a_read (s_atb param p f) ==> 

dorn (p_level (s_ptb param p))   (i_level (s_itb param f)))  /\ 
(a_write (s_atb param p f) ==> 
dorn  (i_level (s_itb param f))   (p_level (s_ptb param p)))'—) 

val it =  ()   :  unit 
-  e(REWRITE_TAC 

[axiom "-" "new_process_new", 
definition  "-" "empty_p", 
definition "-"  "p_level", 
axiom "-" "systemhigh_high", 
theorem "romlemmas" "rom_condlemmal"]); 

OK. . 

Goal proved. 
|- ("(room_in_process_table param) \/ "(space_for_new_process param)) 

=> T 

I (dorn (p_level (s_ptb param (new_process param))) 

(p_level (s_ptb param rp))) 

Remaining subgoals: 
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(~'("(p_realuid (s_ptb param victim) = p_realuid (s_ptb param rp)) \/ 
p_hanging (s_ptb param victim)  \/ 
p_ignore  (s_ptb param victim)  \/ 
"(dom (p_level (s_ptb param victim))   (p.level  (s_ptb param rp)))) 

=> T 
I   ((p_catch (s_ptb param victim)) 

=>  (dom (p_level  (s_ptb param victim))   (p_level (s_ptb param rp))) 
I  T)'-) 

(—'llevel. p_level (s_ptb param (dummy_process level)) = level'—) 
(~<!f. 

(s_ftb param 1 = empty_iile_contents) ==> 
(i_level (s_itb param f) = systemlow)'—) 

(—'!p f. 
(a_read (s_atb param p f) ==> 
dom (p_level  (s_ptb param p))   (i_level  (s_itb param f)))  /\ 

(a_write (s_atb param p f)  ==> 
dom (i_level (s_itb param 1))   (p_level  (s_ptb param p)))'—) 

val it = ()   : unit 
-  e(ASM_CASES_TAC 

(—'((dom:'Level ->  'Level -> bool) 
(p_level   (s_ptb   (param:'MinixState)   (victim:'UserProcess))) 
(p_leve.l   (s_ptb param rp)))'—)  THEN 

ASM_REWRITE_TAC[theorem "romlemmas" "rom_condlemmal"]); 
OK.. 

Goal proved. 
|- ("(p_realuid (s_ptb param victim) = p_realuid (s_ptb param rp)) V 

p_hanging (s_ptb param victim) \/ 
p_ignore (s_ptb param victim) \/ 
"(dom (p_level (s_ptb param victim)) (p_level (s_ptb param rp)))) 

=> T 
I ((p_catch (s_ptb param victim)) 

=> (dom (p_level (s_ptb param victim)) (p_level (s_ptb param rp))) 
I T) 

Goal proved. 
|- NoWritesDown dom (MinixOutLevel param) (p_level (s_ptb param rp)) 

MinixInvocVal 
(INR Minix) 
(reqresponse param rp request) 
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Goal proved. 
I- BPSP_nowritesdown dom MinixInLevel MinixOutLevel Minixlnvariant 

MinixInvocVal 

Minix 

Top goal proved. 

val it = () : unit 

- save_top_thm "Minix_nowritesdown"; 
val it = 

I- BPSP_nowritesdown dom MinixInLevel MinixOutLevel Minixlnvariant 
MinixInvocVal 
Minix  :   thm 
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Chapter 4 

Augmenting the Network 
Driver Model 

4.1    Introduction 

The report "A Secure Network Device Driver" [19] presents a method and 
code to handle the secure delivery of MLS information to and from a network 
at the device driver level. The basic idea is to add label information to packets 
before they go out to the network and to route them to a higher level protocol 
at the appropriate security level when they arrive. 

Here we utilize the design of [19] and do not critique it or change it. In- 
stead, we deal with how to improve modeling methods to more clearly surface 
potential security problems. In particular, we describe how to provide more 
detail about proper handling of memory. This model is aimed at achieving 
a more complete characterization of the MAC nondisclosure problem. How- 
ever, this model could also be considered an integrity model, as the main 
mechanism discussed is how to achieve integrity of the security label field. 

For further discussion of nondisclosure and integrity theories, see Volume 
II of the Romulus Documentation Set. 

4.1.1    The Problem 

In a network device driver, one needs to show that a message has been 
correctly labeled before being sent out to the network or "looped-back" to the 
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same computer. The problem with using traditional Romulus-style modeling 
is that the models are usually too abstract to describe whether a message's 
label could be tampered with before a message is sent out. The traditional 
Romulus-style models are typically of the form: 

Process P(x) = 
— get an input message 
receive(e) then 

begin 
— add the label 
send(label_message(e,x)); 
POO; 

end 

One can prove that such a model is secure by showing that the output 
message is correctly labeled. However, in this style specification, the mem- 
ory is local to the process, so the possibility that the label field could be 
altered before the message is sent is not exhibited. The model presented 
here describes how to characterize this limitation and related problems due 
to having shared memory. 

4.1.2    Trust and Modeling Memory Protection 

The network demonstration example was built on top of a standard insecure 
UNIX, so the assurance level of the supervisor software is too low for the 
overall system to be certified in the Bl class. However, it was assumed that 
the trusted part of the protocol could be given the appropriate protection. 
In this model we want to characterize the obligations that the underlying 
software should meet to provide this protection. With a sufficiently secure 
platform, one could then show the underlying system met these conditions. 

In UNIX, the memory manager does not provide access control for trusted 
processes running in supervisor mode. Such processes have the power to alter 
any part of memory. However, we should check that the memory manager 
properly allocates and deallocates trusted memory. This check simplifies the 
problem of analyzing whether one trusted process may be interfering with 
another trusted process. 

We note that trusted systems may provide finer access controls on memory 
than just supervisor and non-supervisor memory (e.g., LOCK [6]).    This 

94 



finer control would reduce the burden of what trusted software needs to be 

analyzed. 

4.1.3    The Network Driver 

In the network driver model, the trusted labeling procedure operates in priv- 
ileged mode and is invoked by a trusted procedure (i.e., part of the network 
IP protocol). One of the parameters to the labeling procedure is a pointer to 
memory containing information that the trusted process wants to send over 
the network; this block of memory is called an mbuf. If there is sufficient 
room in the mbuf, then the labeler just adds a label to this mbuf. Otherwise, 
the labeler gets a new mbuf, adds the label to it, and then links it to the old 
mbuf. The labeler then calls the device driver. 

We would like to exhibit any security problems caused by other processes 
altering the memory containing the label. We want to be sure that the label 
put on the data by the trusted procedure cannot be altered by an untrusted 
process. We also want to constrain how trusted processes can alter the label. 

In the network driver example, the memory allocated for the information 
and label field is kernel memory, and so a process that is not in supervisor 
mode should be unable to alter the label. However, the higher levels of the 
protocol, as well as other parts of the system that operate in supervisor mode, 
could potentially change the label field. We would like to surface these points 
and more carefully describe the obligations of the trusted software. 

4.1.4     General Description of the Solution 

In order to describe how the solution is handled, we need a way of talking 
about how the memory is protected. However, we want to avoid putting in 
lower level details that might overly constrain a design. 

We will construct models to handle potential memory problems by de- 
composing the problem into the principal procedure (in this case the labeler), 
the memory handler, other trusted processes, and other untrusted processes. 

We need to describe the method by which memory protection is shared 
between the trusted processes. We will call the kind of method a protocol even 
though it is considerably simpler than a network communications protocol. 
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Methodology 

We would like to know that all of the trusted components of the system 
follow their part of the protocol. However, for the purposes of modeling just 
the specific, principal procedure, we suggest the following steps: 

• Define the memory-sharing protocol. 

• Show that if each of the parties of the memory-sharing protocol abide 
by their part of the protocol, then the memory is properly protected. 

• Add the memory sharing constraints to the requirements of the memory 
manager if it has not yet been built, or check that the memory-sharing 
protocol can be supported with the given memory manager. 

• 

• 

Specify the principal procedure (or process). 

Check the trusted procedure: 

— Check that the trusted procedure satisfies the desired security the- 
ory (e.g., restrictiveness) provided that memory protocol is being 
followed by other processes. 

— Check that the trusted process abides by its part of the memory 
protocol. 

— Check that the trusted process does not interfere with other trusted 
processes' memory (including unallocated memory). 

Make sure the appropriate design/code level constraints are added to 
other parts of the trusted software. 

4.2    Informal Description 

4.2.1    Informal Statement of the Protocol 

The memory manager will not provide access controls for trusted 
processes. We would like to be able to protect memory from most trusted 
processes, as well as from untrusted processes. However, protection of one 
trusted process from another trusted process will not be centrally enforced 
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on the given platform. Thus the protocol will extend to all trusted parts of 

the system. 
The memory handler will not allow protected memory to be altered by an 

untrusted process until that memory has been explicitly released. Protected 
memory will be allocated and deallocated, so that if trusted processes do not 
write to memory that was allocated to another process, then that memory 
will be protected. This requirement amounts to making sure that the allo- 
cation and deallocation routines do not allow some memory location to be 
allocated at the same time. Provisions for more complex memory sharing 
among trusted processes are not needed in this model and are not discussed. 

Trusted processes that use protected memory are responsible for properly 
labeling any data. In this model, the network labeler will properly label the 
data before invoking the device driver. In particular, the label must be 
set after the memory is protected and before the pointer to this memory is 
passed to the device driver. The network labeler will not change that label 
after it has been set, and it will not pass the pointer to another procedure 
or process. The time-dependent nature of these constraints is shown in the 
function decomposition diagrams of Figure 4.1 and Figure 4.2. The first 
picture describes the case where a new mbuf needs to be allocated, and the 
second picture describes the case where the label is added to an existing 

mbuf. 
The device driver will not change the label field and the memory manager 

will not change the label except when the memory is released. The device 
driver will release the memory before returning to the labeler. 

When the memory is released it will be zeroed. Exception and resource 
exhaustion responses will be sent on any failure to any "allocate protected 
memory" request. However, failures to release protected memory will not be 
analyzed in this model. (One could add extra requirements for availability.) 

4.2.2    Informal Correctness Argument 

The desired property is that the message goes to the network with the correct 
label. 

By the definition of the labeler, all packets get labeled with the level of 
the process that is sending the packet. As shown in Figure 4.1, when the 
label is added, the memory is protected. The memory is not unprotected 
or released until after the message is sent to the network. Also, neither the 
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secure labeler nor the device driver reset the label once it has been set and 

before it has been released. 
So, hypothetically, the label will be correct when it is sent to the net- 

work. Unfortunately, in the real case, the memory manager will not really 
provide any reference mediation for trusted processes, only allocation and 

deallocation. Hence the other trusted processes must respect the allocation 

scheme. 

4.2.3 Informal Description of Trusted Labeler 

In this model, the trusted labeler is essentially just the labeler part of the 
protocol. Hence the description of the protocol for the labeler and the de- 
scription of the labeler are essentially the same. In more complicated models, 
a separate description of the labeler would be useful. 

In summary, the labeler gets protected memory (if needed), adds the 
correct label (using the level of the process), and sends the information to 

the driver. The labeler then returns. 

4.2.4 Why the Trusted Labeler Meets Its Criteria 

The potential information flow problems are that 

• the wrong label is added, or 

• information leaks through some internal variables, or 

• there are failures in expected system support (e.g., mis-identification 

of the process level), or 

• there may be timing channels (depending on process scheduling). 

None of these potential problems are easily identifiable using only a high- 
level model. One should make these checks at the code level (or even at 
the machine level). However, in the model, these problems are partially 
addressed by the specification that the information going to the device driver 
is just the incoming mbuf with proper labeling added. 

As noted above, the labeler functionality is just a part of the memory 
protocol. (For other kinds of models, showing that the procedure abides by 
the protocol may not be so trivial.) 
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No other protected memory is directly accessed by the labeler. Indirect 
accesses due to system procedure calls should not cause a problem by the 
assumption of the correctness of these calls. Note that this condition should 
be checked at the code level. 

4.2.5    Constraints for Other Trusted Processes 

Trusted processes must not write to protected memory that has been allo- 
cated solely for another process and has not yet been released. In particular, 
they should not write to mbufs allocated by the network IP protocol or the 
labeler that may contain the security label. 

In the case that a new mbuf is not needed, we are assuming that IP 
properly allocated the packet (i.e., that it is already "protected" from other 
processes). This extra constraint is on IP. 

4.3    Formal Version 

It is typically beneficial to formalize protocols because the formalization may 
reveal some subtle error. In this particular case, the formalization is of 
more limited value because the example is simple. However, we will provide 
formalizations of the properties that should be satisfied and a specification 
of the top-level model. We will make this presentation in a variant of the 
Romulus SL specification language [18]. A mapping into a particular HOL 
theory should be straightforward. 

For this model, we will need to keep track of the "relevant" events from 
the various processes and procedures, as well as the content of the allocatable 
memory. A trace s is a sequence of the relevant events. The expression s(n) 
means the nth element of the trace s. 

The relevant events are internal events between different trusted pro- 
cesses: 

• Procedure calls (or their equivalent) on the labeler, memory handler 
and the device driver from the process. 

• Other requests to the memory handler from other untrusted and trusted 
processes. 
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• Return values for each of the invocations described above. 

• Outputs of the device driver to the network. 

We will represent the state of the protected memory by the variable 
state. The state together with the parameters of the procedure are the 
objects being protected.   No local variables are explicitly surfaced in this 

model. 
We will describe a number of predicates and functions for the memory 

protection. One of the more common arguments is pid, which means process 
identifier. Note that, in this example, all of the protocol layers (IP, labeler, 

and the device driver) have the same pid. 

4.3.1     Security Properties 

Events: 

• make_request(pid,size,initial)- request for protected memory by 
a process with process id pid of size size with initial value pointed to 

by initial. 

• write_mem(pid,address,value)- request by pid to set the address 

to value. 

• read_mem(pid, address) - request by pid to read the value at address. 

(This operation is not used in this model.) 

• free_mem(user,address) - request to free protected memory. 

• return_result(user,value) - return value from call. 

A return_result can happen only in response to some request. 
We will define corresponding_to(s ,return_result (pid,value) )to be 

the corresponding request to the return_result in trace s. First we intro- 
duce the auxiliary definition corresponding_to_n. 

corresponding_to_n(s,n,return(pid,value))= 

if is_request(s(n)) and theprocess(s(n))=pid 

then s(n) 

else if n>0 
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corresponding_to_n(s,n-l,return(pid,value)) 

else /* not possible */ 

null_event 

corresponding_to(s,return(pid,value))= 
corresponding_to_n(s,length(s),return(pid,value)) 

We want to keep track of the protected memory at stage n. Next we intro- 
duce the "virtual variable" request, it em to describe an item that has been 
allocated in response to a protection request. 

The request, it em (user, size, initial ,memptr) variable represents the 
information consisting of the user that requested the memory, the size of the 
request, the initial value, and a pointer to the memory that is allocated. 

The expression inrange(addr,reqitem) indicates when the address addr 

is in the range of reqitem. 
The function Free removes an item from a list. 

Free(pid,address,1)= 
if l=empty_list then 1 
else if inrange(address,first(l)) and (first(1).pid=pid) 

then tail(l) 
else concat(first(l).Free(pid,address,1)) 

The predicate Protected indicates which memory is currently supposed 

to be protected. 

Protected(s,n)= 
if n=0 then empty_list 
else if s(n)=return(pid,value) then 

let req= corresponding_to(s(n)) in 

if req "= null_event then 
concat(request_item(pid,req.size,req.initial,value), 

Protected(s,n-l)) 

else 
Protected(s,n-l) 

else if s(n)=freemem(pid,address) then 

Free(pid,address,Protected(s,n)) 

else 
Protected(s,n-l) 

We need to be able to tell which trusted processes should have access to 
which memory. In this model, only the process that allocated the memory 
should be able to write it. (The model does not contain any reads.) 
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notpermited(a,b)=    (a"=b) 

We would like to require that protected memory is actually protected by 
the memory manager. Recall that we will use the expression state to refer 

to the protectable memory. 

ProperlyProt ect ed(s) = 

forall n 
if s(n) = set_mem(pid,address) and 

forsome reqitem, (reqitem in Protected(s.n) and 

notpermited(reqitem.pid.pid) and 

inrange(address,reqitem) ) 

then 
state(s,n+l)=state(s,n) 

However, as the memory manager cannot enforce this property, we use 
an alternative: the memory manager should not allocate memory with over- 

lapping address spaces. 

ProperAllocation= 
forall s,n,pid,s ize,init ial,value 

If s(n)=return_result(pid.value) and 

make_request(pid,size,initial )=corresponding_to(s,s(n)) 

then 
inrange (address,request item(pid, size, initial, value) implies 

forall reqitem in Protected(s.n) 

not inrange(address.reqitem); 

Trusted processes do not make improper requests. A process can become 
trusted depending upon what code it is executing. For simplicity we assume 
that a pid is either trusted or untrusted (we logically can append an extra 
attribute to the id to make this distinction). Note that this condition also 
applies to the labeler. 

If  s(n)=write_mem(pid,address,value) and 
iscurrentlytrusted(pid) 

then foarll 
reqitem in Protected(s.n) 
if  inrange(address,reqitem) then 

permitted(pid,reqitem.pid) 

Other properties of the labeler are restrictiveness and proper labeling. 
These properties can be checked by a meta-level analysis of the specification, 

see section 4.3.3. 
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4.3.2    Specification 

The labeler is specified as follows: 

define get_protected(pid,labelsize)= 

make_request(pid,labelsize,nullvalue) 

define setmem(ptr,labelfield,level)= 
write_mem(pid,ataddress(ptr,labelfield).level) 

Kernel Procedure Labeler(membuf_ptr)= 

— System Privileges are granted when this function is invoked 

— Get the level of the process which invoked this process 

let level=levelprocess() in 

— Get protected memory to add the label field 

if needspace(membuf_ptr) then 

let ptr=get_protected(getpid().labelsize) in 
begin 

— Handle the case that the procedure call failed 

if protection_failed(ptr) 

return; 

else 
begin 

— Set the label field of the protected memory 

setmem(ptr,ptrf ield,membuf_ptr); 

setmem(ptr,labelfield,level); 

— Pass the information to the device driver 

— the device_driver should release the memory 

call device_driver(ptr); 

— Previous Privileges are restored when this 

function returns 

return; 

end 
end 

else 
begin 

setmem(mbuf_ptr,labelfield,level); 
call device_driver(mbuf_ptr); 
return; 

end 
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4.3.3 Formal Correctness Arguments for the Trusted 
Labeler 

To check restrictiveness, we could formalize the labeler specification into 

HOL and apply security condition generation methods. However, as noted 

in the informal section, because of the simplicity of this model it would not 
provide much added insight. It might be worthwhile to use some code level 
verification techniques. 

To show that the labeler abides by the protocol, one could convert the 
state machine specification into a trace specification and then check that the 
traces satisfied the correct labeling properties. Another alternative could be 
to construct a mechanism like SCG_TAC to check that labels were set at and 
only at the appropriate places. 

One could also define the level of the output message to be based on the 
label field of the message. The labeling property would then essentially be 
met by restrictiveness. (This method is actually weaker then specified in 
the protocol, in that the label could be set and reset before it was sent out. 
However, in fact this weakening would be sufficient.) 

On the other hand, as mentioned above, the model is sufficiently simple 
that a modeling check is not necessary. One should be careful to check that 
the labeling really is handled correctly at the code level. 

To show that the labeler does not interfere with other trusted processes, 
one could examine the traces of the model to see that no other setmem 
requests to other processes' memory were issued. But this examination is 
probably not worth the effort at the modeling level. Again one should check 
this property at the code level. Note that there is a potential problem if the 
setmem for the label field overwrites part of the pointer to the next mbuf. 
However, the packet size should be sufficiently large that this problem will 
not happen. 

4.3.4 Constraints for Other Trusted Processes 

Any formal mechanisms for handling trusted process constraints are better 
done at the low-level design or coding stages. 
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Chapter 5 

Authentication Protocol 
Models 

5.1     Introduction 

In this chapter we present an analysis of two authentication protocols. Au- 
thentication protocols are important contributors to integrity assurance be- 
cause they are used to establish the correct identity of processes. Further- 
more, authentication protocols are the basis of secure key distribution for 
encryption, and encryption is the method used to protect the integrity of 
data in transmission along a path that is not trusted to be private. Encryp- 
tion is also an extremely powerful means of detecting transmission errors of 
non-malicious origin — random noise, electrical faults, etc. — and is thus 
used to fill one role of a checksum. Thus, the correctness of a protocol is also 

vital to secure data transmission. 

An authentication protocol is an exchange of messages between a number 
of processes, called "principals". A typical aim of a protocol is to establish 
an encryption key shared by two principals. The message exchange often 
involves a third party — a "keyserver"— who is trusted to generate good 
keys and keep secrets. Protocol messages employ a variety of techniques, to 
ensure, for example, the identity of a principal, that the messages have been 
recently generated, and that the keys exchanged are protected. For more 
background on authentication protocols see Volume II and Volume IV of the 
Romulus Documentation Set. 
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We deal here with protocols modeled at the level of the messages between 
the processes, or "principals" involved, as is standard in this area. We use 
the Romulus implementation of authentication logic to state requirements 
on particular protocols and prove that they are correct, or in the case of an 
inadequate protocol, examine what the protocol can establish. 

Full background and exposition of the logic of authentication used here 
can be found in Volume II of the Romulus Documentation Set. In the exam- 
ples that follow, it is assumed that the reader is familiar with that material. 

We will in following sections treat two well-known protocols as examples. 
For each, we present the description of the protocol and its specification, and 
we describe the proof of correctness. As mentioned above, we assume that 
the reader has familiarized himself with the logic, though looking at what 
follows alone should give the casual reader a rough idea of the method. 

5.2     The Denning-Sacco Protocol 

In this section, we specify and prove some aspects of the security of the 
Denning-Sacco authentication protocol [7]. 

5.2.1    Protocol Description and Specification 

First, we load the theory of cryptographic protocols and declare the basic 
objects used in this particular protocol. 

new_constant{Name = "A", 
Ty = ==':principal'==}; '/. Wants new key between A and B '/. 

new_constant{Name = "B", 

Ty = ==':principal'==}; 

new_constant{Name = "Svr", 

Ty = ==':principal'==}; '/. Keyserver '/, 

new_constant{Kame = "Ts", 

Ty = ==':"textlist'==}; '/. Timestamp '/. 

new_constant{Name = "Kas", 

Ty = ==': "textlist'==}; '/, Existing key between A and S '/, 
new_constant{Name = "Kbs", 

Ty = ==' :"textlist'==}; '/, Existing key between B and S '/. 
new_constant{Name = "Kab", 

Ty = ==' :~textlist '==}; '/. New key between A and B '/. 
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Now we describe the actual protocol by defining the messages, together 
with whom they are to and from. 

new_open_axiom("dsml", —'send A Svr ((name A) APP (name B))'—); 
new_open_axiom("dsm2", --'send Svr A (encrypt Kas ((name B) APP Kab APP 

Ts APP (encrypt Kbs ((name A) APP Kab APP Ts))))'—); 
new_open_axiom("dsm3", —'send A B (encrypt Kbs ((name A) APP 

Kab APP Ts))'—); 

It is assumed that A and B each have a key with which they can com- 
municate securely with the server, Svr. A wishes to establish a new key to 
share with B, so that they may have a session using encryption. A sends a 
message, consisting of his and B's names, in the clear, to the server, the in- 
tent of which is understood by the server. The server sends the new key, Kab 
to A in a "certificate", containing a timestamp Ts. The timestamp ensures 
A that this message is fresh. The server signs the certificate by encrypting 
it with Kas, which is shared by it and A. This encryption also ensures that 
no one can read or tamper with the contents. The server avoids having to 
communicate with B by passing this responsibility to A: in his message to A, 
he includes an analogous certificate for B. In the third message, A passes this 
certificate on to B. 

This protocol is efficient and simple, and it is commonly used. The use 
of timestamps is adequate to ensure freshness if process clocks are tightly 
synchronized. The protocol does not have a "handshake" at the end so that 
each of A and B can be sure that the other has successfully received the key. 

We now give the specification. First we give the initial assumptions, or 
preconditions: 

new_open_axiom("dsal", —'theorem(believes A 
(is_shared_secret A Svr Kas))'—); 

new_open_axiom("dsa2", —'theorem(believes A  (is_fresh Ts))'—); 
new_open_axiom("dsa3", —'theorem(believes A  (is_recog (name B)))'—); 
new_open_axiom("dsa4", —'theorem(possesses A Kas)'—); 
new_open_axiom("dsa5", —'theorem(possesses A  (name A))'—); 
new_open_axiom("dsa6", —'theorera(possesses A  (name B))'—); 

new_open_axiom("dsbl", —'theorem(believes B 
(is_shared_secret B Svr Kbs))'—); 

new_open_axiom("dsb2", —'theorem(believes B  (is_fresh Ts))'—); 
new_open_axiom("dsb3", —'theorem(believes B  (is_recog (name A)))'—); 

109 



new_open_axiom("dsb4", —'theorem(possesses B Kbs)'—); 

new_open_axiom("dssl", —'theorem(possesses Svr Kas)'—); 
new_open_axiom("dss2", —'theorem(possesses Svr Kbs)'—); 
new_open_axiom("dss3", —'theorem(possesses Svr Kab)'—); 
new_open_axiom("dss4", —'theorem(possesses Svr Ts)'—); 
new_open_axiom("dss5", —'theorem(possesses Svr (name A))'—); 
new_open_axiom("dss6", —'theorem(possesses Svr (name B))'—); 
new_open_axiom("dss7", —'theorem(believes Svr 

(is_shared_secret Svr B Kbs))'—); 
new_open_axiom("dss8", —'theorem(believes Svr 

(is_shared_secret Svr A Kas))'—); 

The logic we use is richer than the original BAN logic of protocols (see 
Volume II of the Romulus Documentation Set) and contains the machinery of 
extensions to enable us to model the intentions of a principal when it sends a 
message. This feature is used in the next example, but not in this one. Here, 
we show how to ignore this feature and prove simple properties without the 
need to discuss extensions. To this end, we set all extensions to be the most 

uninformative statement nil. 

new_open_axiom("all_extensions_nil", —'!x.  extension x = nil'—); 

We now define some facts about the final state, the postcondition, which 
we wish to hold after execution. 

new_definition ("postcond", —'postcondition = 
theorem(possesses A Kab)  A 
theorem(believes A  (convey Svr ((name B)  APP Kab APP Ts)))  A 
theorem(believes A (is_iresh ((name B) APP Kab APP Ts))) A 
theorera(possesses B Kab)  A 
theorem(believes B  (convey Svr  ((name A) APP Kab APP Ts)))  A 
theorem(believes B  (is_fresh ((name A)  APP Kab APP Ts)))'—); 

To demonstrate the possibilities for specifications, we have chosen to prove 
these facts about the final state: A and B possess the session key; it was the 
server who conveyed the important plaintext of the certificate to each; and 
this plaintext was fresh. 

We note here that this specification is not the full statement of what is 
normally desired from the Denning-Sacco protocol. In addition to ensuring 
that A and B possess the session key as raw data, as stated here, we would 
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also want them to believe that it constituted a good key, probably without 
even caring who conveyed it. For the full typical requirements of a protocol, 
see the Needham-Schroeder model in the next example. 

5.2.2     Proof that the Protocol Meets Its Specification 

The proof is more or less straightforward. We split the conjuncts off the 
postcondition and attack them one by one. Consider the first one, 

theorem(possesses A Kab). 

Looking at the rules governing possession (i.e., axioms of the authentication 

logic), we see that the rules 

new_open_axiom("P3", —'!p x y.  theorem(possesses p(x APP y)) 
==> theorem(possesses p x)'—); 

new_open_axiom("P4", —'!p x y.  theorem(possesses p(x APP y)) 
==> theorera(possesses p y)'—); 

new_open_axiom("P5", —'!p x k.  theorem(possesses p x)  A 
theorem(possesses p k)  ==> 
theorem(possesses p  (encrypt k x))'—); 

apply. This way, with appropriate instantiations of the universally quantified 
variables, we reduce our goal to two subgoals. One is an obligation to show 
that A possesses the whole message sent to it by Svr. The other is to show 
that A possesses the key Kas that A uses to communicate with the keyserver. 
The second of these subgoals is an initial assumption and is proved quickly. 

For the first subgoal, we see that the rules 

new_open_axiom("Pl", —'!p x.   theorem(receive p x)  ==> 
theorem(possesses p x)'—); 

new_open_axiom("Rl", ~'!p q x.   send p q x A theorem (elig p x) 
==> theorem (receive q x)'—); 

apply. The first says that to possess something, it is sufficient to receive 
it. The second says that receipt can come about if someone sent it (which 
occurred, by the protocol message description axioms) and moreover, if they 
were eligible to send it. This last condition of eligibility is our most important 
extension to the authentication logic GNY. It rules out certain impossible 
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protocols that otherwise can be proved correct. This construct is adumbrated 
in Gong's paper [8]. 

Certain facts, which we call "lemmas", that are needed more than once in 
the proofs of the various subgoals, are proved separately and saved as HOL 
theorems, to be used when needed. For example, it was apparent that in 
both of the proofs of the first two conjuncts of the postcondition, we needed 
the fact that Svr was eligible to send its message to A. This lemma is the 
first thing we see in the proof transcript in Appendix 5. A. 

Most of the proof is in the style described above — judiciously matching 
the current goal to the consequent of one of the implicative axioms. Continu- 
ing in this fashion, it is mostly straightforward to reduce our goals to known 
facts. 

For completeness, we include the full proof transcript in Appendix 5.A. 
We remark that no attempt has been made to compress the proof in that 
appendix using the more powerful HOL tactics. Our aim in these first ap- 
plications of the tool has been to understand the way the lower level proof 
works, as we intend to work on the design and automation of the whole 
verification process in a later version. 

5.3    The Needham-Schroeder Protocol 

In this section, we specify and prove the security of the Needham-Schroeder 
authentication protocol. The Needham-Schroeder protocol is a very interest- 
ing case study, as it is an important protocol, which influenced many later 
protocols. It also has a serious flaw and other lesser inadequacies. A logi- 
cal analysis uncovers these flaws and indicates how the protocol needs to be 
fixed. 

5.3.1     Protocol Description and Specification 

First, we load the theory of cryptographic protocols and declare the basic 
objects used in this particular protocol. 

new_constant{Name = "A", 

Xy = ==':principal'==}; '/. Wants new key between A and B '/, 

new_constant{Name = "B", 

Ty = ==': principal'"}; 

112 



new_constant{Name =  "Svr", 
Ty = ==':principal'-=}; */. Keyserver '/. 

new_constant{Name =  "Na", 
Ty = ==':~textlist'==}; '/. Nonce generated by A '/. 

new_constant{Hame = "Nb", 
Ty = ==':~textlist'==}; '/. Nonce generated by B '/. 

new_constant{Name = "Kas", 
Ty = ==':"textlist'—}; '/. Existing key between A and S '/. 

new_constant{Name = "Kbs", 
Ty = ==':"textlist'==}; '/. Existing key between B and S '/. 

new_constant{Name = "Kab", 
Ty = ==':~textlist'==}; '/. New key between A and B '/. 

Now we describe the actual protocol by defining the messages, together 

with whom they are to and from. 

new_open_axiom("nsml", --'send A Svr  ((name A) APP  (name B)  APP Na)'~); 
new_open_axiom("nsm2", —'send Svr A (encrypt Kas (Na APP (name B) 

APP Kab APP  (encrypt Kbs  (Kab APP  (name A)))))'—); 
new_open_axiom("nsm3", —'send A B    (encrypt Kbs (Kab APP (name A)))'—); 
new_open_axiom("nsm4", —'send B A  (encrypt Kab Nb)'—); 
new_open_axiom("nsm5", —'send A B  (encrypt Kab  (feas Nb))'—); 

It is assumed that A and B each have a key with which they can com- 
municate securely with the server, Svr. A wishes to establish a new key to 
share with B, so that they may engage in a session using encryption. A sends 
a message, consisting of his and B's names, and a nonce Na (a fresh random 
number) in the clear, to the server, the intent of which is understood by the 
server. The server sends the new key Kab to A in a "certificate", containing 
A's nonce Na. This nonce ensures A that this message is fresh. The server 
signs the certificate by encrypting it with Kas, which is shared by it and 
A. This encryption also ensures that no one can read or tamper with the 
contents. The server avoids having to communicate with B by passing this 
responsibility to A: in his message to A, he includes a certificate for B. This 
certificate is not fully analogous to that sent for A: there is no nonce in it. 
We will return to this point during the discussion of the proof below. In the 
third message, A passes this certificate on to B. 

By now A and B possess the new key. The final two messages are an 
attempt at a "handshake", whereby each would like to establish for himself 
that the other possesses the key, and B would also like to determine that the 
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key is fresh. The function f eas is typically "subtract one" and is a standard 
way for a principal to prove that he possesses the argument. 

As mentioned, this protocol has a number of flaws. When amended, it is 
a useful protocol that incorporates a handshake so that each of A and B can 
be sure that the other has successfully received the key. 

We now give the specification. First we give the initial assumptions, or 

preconditions: 

new_open_axiom("nsal", —'theorem(believes A 
(is_shared_secret A Svr Kas))'—); 

new_open_axiom("nsa2", —'theorem(believes A (is_fresh Na))'—); 
new_open_axiom("nsa3", —'theorem(believes A  (is_recog (name B)))'—); 
new_open_axiom("nsa4", —'theorem(possesses A Na)'—); 
new_open_axiom("nsa5", —'theorem(possesses A Kas)'—); 
new_open_axiom("nsa6", —'theorem(possesses A (name A))'—); 
new_open_axiom("nsa7", —'theorem(possesses A (name B))'—); 
new_open_axiom("nsa8", —'theorera(believes A  (juris Svr 

(is_shared_secret A B k)))'—); 
new_open_axiom("nsa9", —'theorem(believes A  (juris_star Svr))'—); 
new_open_axiom("nsalO", —'theorem(believes A  (juris_star B))'—); 

new_open_axiom("nsbl", —'theorem(believes B 
(is_shared_secret B Svr Kbs))'—); 

new_open_axiom("nsb2", —'theorem(believes B  (is_fresh Nb))'—); 
new_open_axiom("nsb3", —'theorem(believes B  (is.recog Nb))'—); 
new_open_axiom("nsb4", —'theorem(believes B  (is_recog (name A)))'—); 
new_open_axiom("nsb5", —'theorem(possesses B Nb)'—); 
new_open_axiom("nsb6", —'theorem(possesses B Kbs)'—); 
new_open_axiom("nsb7", —'theorem(believes B  (juris Svr 

(is_shared_secret A B k)))'—); 
new_open_axiom("nsb8", —'theorem(believes B  (juris_star Svr))'—); 
new_open_axiom("nsb9", —'theorem(believes B  (juris_star A))'—); 

y, The following assumption is needed owing to a flaw in the protocol'/, 

new_open_axiom("nsblO_dubious_assumption", 
—'theorem(believes B  (is_fresh Kab))'—); 

new_open_axiom("nssl", —'theorem(possesses Svr Kas)'—) 
new_open_axiom("nss2", —'theorem(possesses Svr Kbs)'—) 
new_open_axiom("nss3", —'theorem(possesses Svr Kab)'—) 
new_open_axiom("nss6", —'theorem(believes Svr 

(is_shared_secret Svr B Kbs))'—); 
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new_open_axiom("nss7", —'theorem(believes Svr 
(is_shared_secret Svr A Kas))'—); 

new_open_axiom("nss8", —'theorem(believes Svr 
(is_shared_secret A B Kab))'—); 

In the treatment of this protocol (unlike in the previous example), we 
use an extension construct of the logic, which is needed to establish the 

postcondition. 

new_open_axiom("nsel", —'extension (encrypt Kbs  (Kab APP  (name A))) = 
believes Svr (is_shared_secret A B Kab)'—); 

new_open_axiom("nse2", —'extension (encrypt Kas  (Na APP (name B)  APP 
Kab APP  (encrypt Kbs  (Kab APP  (name A)))))  = 
believes Svr  (is_shared_secret A B Kab)'—); 

new_open_axiom("nse3", —'extension (feas Hb)  = 
believes Svr  (is_shared_secret A B Kab)'—); 

new_open_axiom("nse4", —'extension 
(Na APP  ((name B) APP  (Kab APP 

(encrypt Kbs (Kab APP  (name A)))))) = nil'—); 

We now define the postcondition that we want to hold after the comple- 

tion of the protocol. 

new_definition ("postcond", —'postcondition = 
theorem(possesses A Kab)  A 
theorem(believes A  (is_shared_secret A B Kab)) A 
theorem(possesses B Kab)  A 
theorem(believes B  (is_shared_secret A B Kab))'—); 

This postcondition states that A and B end up with a session key as 
desired. There are two parts. The principals need to possess the raw data 
— the bits that comprise the key. But before using this data as a key, they 
need also to believe that this data can be trusted as a key. 

Owing to several flaws in the protocol, the handshake at the end of the 
protocol is not adequate, and we do not state and attempt to prove the 
intended further consequences. Our logic does enable us to explain fully 
these shortcomings, though here we confine ourselves to investigating the 
problems that the protocol has in meeting the basic specification given just 

above. 
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5.3.2     Proof that the Protocol Meets Its Specification 

The proof style is more or less straightforward, as in the previous case for 
Denning-Sacco. We proved the four conjuncts separately as lemmas, and at 

the end, we proved the postcondition from the lemmas. One part of the proof 

warrants close examination. In the proof of the fourth conjunct, 

theorem(believes B (is_shared_secret A B Kab))'—); 

we must show that B attains this belief by trusting the server. To show this, 
we use the rules 

new_open_axiora("Jl", —'!p q s. 
theorem(believes p (juris q s))   A 
theorem(believes p (believes q s)) ==> 

theorem(believes p s)'—); 

new_open_axiom("J2", —'!p q x s. 

theorem(believes p (juris_star q)) A 

theorem(believes p (convey q x)) A 

theorem(believes p (is_fresh x)) A 

(extension x = s) ==> 

theorem(believes p (believes q s))'—); 

new_open_axiom("J3", —'!p q s. 
tbeorem(believes p  (juris_star q)) A 
theorem(believes p  (believes q (believes q s)))  ==> 
theorem(believes p  (believes q s))'—); 

The first of these rules says that for p to acquire a belief s from q, he 
must trust q and believe that q himself believes s. To establish that q himself 
believes s, p needs to see a fresh message from q whose extension is that belief. 
The last of these rules is a technicality, to deal with situations like we have 
here — we need to go from the fact that B believes the extension 

believes Svr  (is_shared_secret A B Kab) 

to that B believes 

is  shared_secret A B Kab. 
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We see then that there is a freshness requirement on the information B sees 
passed to him by A, originating from Svr. Indeed in the proof as performed, 

the following subgoal arose: 

theorem(believes B(is_fresh(Kab APP  (name A)))). 

It was impossible to proceed from there, as the text contained no nonce 

known to B to be fresh. 
This problem is now well known; it was discovered some time after the 

protocol was published. Interestingly, we had forgotten about it until we 
came up against it in the attempted proof. Rather than leave the proof in 
this state, we can better understand the protocol by adding the following 
unjustified assumption to the initial assumptions of the protocol. 

new_open_axiom("nsblO_dubious_assumption", 
—'theorem(believes B  (is_fresh Kab))'—); 

Given this assumption, the proof continues, and the postconditions are 
all proved. Thus we can say that provided B makes the extra assumption 
that the new session key it gets sent from the server is fresh, the protocol 
achieves its goal. This assumption is a dangerous one, as the session key 
Kab is for an encryption method (e.g., DES), for which it is assumed feasi- 
ble for an adversary to discover a key, given sufficient time. An adversary 
may have determined the old key, and while unable to construct message 3 
himself, replayed the old message 3, spoofing A and thereby inducing B to 
use the compromised key. Other dangerous consequences of this scenario are 
described in [7, 2]. 

This weakness was corrected in a modified version of the protocol pub- 
lished several years later. The solution is of course for B to send a nonce to 
be included in the message to him. 

The full HOL proof script of this protocol is given in Appendix 5.B. Note 
again that we have not compressed the proof by using the more powerful 
HOL tactics. 
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5.A Appendix: Proof Transcript for the 
Denning-Sacco Protocol 

new_theory("ds_proof_90"); 

new_parent "ds_90"; 

(* Lemma *) 

set_goal(D, —'theorem 
(el ig 
Svr 
(encrypt 
Kas 
(((name B) APP Kab) APP 
(Ts APP (encrypt Kbs((name A) APP (Kab APP Ts)))))))'--); 

e(MATCH_HP_TAC (theorem "crypto_90" Melig_encr") ); 

e(EXISTS_TAC (—'A'—)); 

e(CONJ_TAC); 

e(MATCH_MP_TAC (axiom "crypto_90" "E3")); 

e(CONJ_TAC); 

e(MATCH_MP_TAC (axiom "crypto_90" ME3")); 

e(CONJ_TAC); 

e(MATCH_MP_TAC (axiom "crypto_90M "El")); 

e(ASSUME_TAC (axiom "ds_90" "dss6")); 

e(PURE_ASM_REWRITE_TAC[]); 

(♦Another historic moment*) 

e(MATCH_MP_TAC (axiom "crypto_90" "El")); 

e(ASSUME_TAC (axiom "ds_90" "dss3")); 
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e(PURE_ASM_REWRITE_TAC[]); 

(♦History repeats itself*) 

e(MATCH_MP_TAC (axiom "crypto_90" "E3")); 

e CONJ_TAC; 

e(MATCH_MP_TAC (axiom "crypto_90" "El")); 

e(ASSUME_TAC (axiom "ds_90" "dss4")); 

e(PURE_ASM_REWRITE_TAC[]); 

(♦History repeats itself*) 

e(MATCH_MP_TAC (theorem "crypto_90"  "elig_encr")); 

e(EXISTS_TAC (—'B'—)); 

e(REPEAT CONJJTAC); 

e(MATCH_MP_TAC (axiom "crypto_90" "El")); 

e(MATCH_MP_TAC (axiom "crypto_90" "P2")); 

e CONJJTAC; 

e(ASSUME_TAC (axiom "ds_90" "dssS") THEN PURE_ASM_REWRITE_TAC [] ) ; 

(♦subgoal proved*) 

e(MATCH_MP_TAC (axiom "crypto_90" "P2")); 

e CONJJTAC; 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

(♦subgoal proved; using list of all ds theorems seen as useful^) 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

119 



e(REWRITE_TAC (map snd (axioms "ds_90"))); 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

e(REWRITE_TAC (map snd (axioms "crypto_90"))); 

e CONJJTAC; 

e(REWRITE_TAC (map snd (axioms Mds_90"))); 

e CONJJTAC; 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

(*subgoal proved*) 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

e(REWRITE_TAC (map snd (axioms "crypto_90"))); 

(*end subproof*) 

save_top_thm "Lemma_Svr_elig"; 

(* Lemma *) 

set_goal([], —'theorem 

(possesses 

A 

(((name B) APP Kab) APP 

(Ts APP (encrypt Kbs((name A) APP (Kab APP Ts))))))'—); 

e(ONCE_ASM_REWRITE_TAC[ 

SYM (SPEC.ALL (SPEC (— 'Kas'—) 

(GENLC—'k:~textlist'--,--'x:~textlist'—] 
(SPEC_ALL(axiom "crypto_90" "Yl")))))]); 

e(MATCH_MP_TAC (axiom "crypto_90"  "P7")); 

e(CONJJTAC); 

rotate 1; 
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e(ASM_REWRITE_TAC [axiom "ds_90" "dsa4"]); 

(* Historic moment: successful proof of a subgoal*) 

e(MATCH_MP_TAC (axiom "crypto_90" "PI")); 

e(HATCH_HP_TAC (axiom "crypto_90" "Rl")); 

e(EXISTS_TAC (— 'Svr'—)); 

e(C0NJ_TAC); 

e(PURE_REWRITE_TAC [definition "crypto_90" "APP.def"]); 

e(ASSUHE_TAC (axiom "ds_90" "dsm2")); 

e(RULE_ASSUM_TAC 
(PURE_REWRITE_RULE [definition "crypto_90" "APP_def"])); 

e(PURE_REWRITE_TAC [theorem "list" "APPEND_ASSOC"]); 

e(RULE_ASSUM_TAC (PURE_REWRITE_RULE [theorem "list" "APPEND.ASSOC"])); 

e(PURE_ASM_REWRITE_TAC[]); 

e(REWRITE_TAC (map snd (theorems "ds_proof_90"))); 

(♦Assumes that the lemmas are in theory ds_proof_90*) 

save_top_thm "Lemma_A_poss"; 

(* Finally, the proof of ds postcondition *) 

set_goal([], —'postcondition'—); 

e(PURE_ONCE_REWRITE_TAC [definition "ds_90" "postcond"]); 

e(CONJ_TAC); 

e(HATCH_MP_TAC (axiom "crypto_90" "P4")); 

e(EXISTS_TAC (—'(name B)'--)); 
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e(MATCH_MP_TAC (axiom "crypto_90" "P3")); 

e(EXISTS_TAC (—'Ts APP (encrypt Kbs ((name A) APP Kab APP Ts))'--)); 

e(REWRITE_TAC (map snd (theorems "ds_proof_90"))); 

(*The last dealt with both the poss and elig bits using both the 

lemmas*) 

e C0NJ_TAC; (*Begin proof of second postcond conjunct: bei A conv ...*) 

e(MATCH_MP_TAC (axiom "crypto_90" "M5")); 

e(EXISTS_TAC (—'encrypt Kbs ((name A) APP Kab APP Ts)'—)); 

e(MATCH_MP_TAC (axiom "crypto_90" "Ml")); 

e(EXISTS_TAC (—'Kas'—)); 

e CONJJTAC; (*Begin proof that: A recv encr....*) 

e(MATCH_MP_TAC (axiom "crypto_90" "Rl")); 

e(EXISTS_TAC (—'Svr'—)); 

e CONJJTAC;(*Begin proof that Svr sent it*) 

e(PURE_REWRITE_TAC [definition "crypto_90" "APP_def"]); 

e(ASSUME_TAC (axiom "ds_90" "dsm2")); 

e(RULE_ASSUM_TAC 

(PURE_REWRITE_RULE [definition "crypto_90" "APP_def"])); 

e(PURE_REWRITE_TAC [theorem "list" "APPEND.ASSOC"]); 

e(RULE_ASSUM_TAC (PURE_REWRITE_RULE [theorem "list" "APPEND_ASSOC"])); 

e(PURE_ASM_REWRITE_TAC[]); 

(*The above used again soon so could be a lemma, but it's short*) 

(♦Proved: send Svr A (encrypt Kas... *) 
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(♦New subgoal: elig Svr (encrypt Kas... ♦ ) 

e(PURE_REWRITE_TAC [definition "crypto_90" "APP.def"]); 

e(ASSUME_TAC (theorem "ds_proof_90" "Lemma_Svr_elig")); 

e(RULE_ASSUM_TAC 
(PURE_REWRITE_RULE [definition Mcrypto_90" "APP.def"])); 

e(PURE_REWRITE_TAC [theorem "list" "APPEND_ASSOC"]); 

e(RULE_ASSUH_TAC (PURE_REWRITE_RULE [theorem "list" "APPEND_ASSOC"])); 

e(PURE_ASM_REWRITE_TAC[]); 

(♦Proved: elig Svr (encrypt Kas... ♦ ) 
(♦Thus proved: (receive A (encrypt Kas... ) ♦ ) 

e CONJ_TAC; 

(♦Subgoal: 'theorem (possesses A Kas)'*) 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

(♦Proved it.*) 

e C0NJ_TAC; 

(♦subgoal: believes A (is_shared_ ... *) 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

(♦Proved: believes A (is_shared_ ... *) 

e CONJJTAC; 

(♦Next prove: believes A (is_recog ((name B... *) 

e(MATCH_MP_TAC (axiom "crypto_90" "Gl")); 

e(MATCH_MP_TAC (axiom "crypto_90" "Gl")); 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 
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(♦Proved: believes A (is_recog ((name B... *) 

(*New subgoal: believes A (is_fresh (((name B ... *) 

e(MATCH_MP_TAC (axiom "crypto_90" "Fl")); 

e(MATCH_MP_TAC (axiom "crypto_90" "Fl")); 

e(MATCH_HP_TAC (axiom "crypto_90" "F2")); 

e(MATCH_MP_TAC (axiom "crypto_90" "F2")); 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

(*subgoal proved*) (*Next a bunch of conjuncts*) 

e(CONJ_TAC);(*Next: believes A (is.fresh ... *) 

e(MATCH_MP_TAC (axiom "crypto_90" "F2")); 

e(MATCH_MP_TAC (axiom "crypto_90" "F2")); 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

(♦subgoal proved*) (*Next a bunch of conjuncts*) 

e(CONJ_TAC);(*Next: possesses B Kab *) 

e(MATCH_MP_TAC (axiom "crypto_90" "PI")); 

e(MATCH_MP_TAC (axiom "crypto_90" "R2")); 

e(EXISTS_TAC (— 'Ts'—)); 

e(MATCH_MP_TAC (axiom "crypto_90" "R3")); 

e(EXISTS_TAC (—'name A'—)); 

e(MATCH_MP_TAC (axiom "crypto_90" "R5")); 

e(EXISTS_TAC (—'Kbs'—)); 

e(CONJ_TAC); 

(*Next subgoal: receive B (encrypt Kbs ... *) 
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e(MATCH_MP_TAC (axiom "crypto_90" "Rl")); 

e(EXISTS_TAC (—'A'--)); 

e(CONJ_TAC); 

(♦Next subgoal: send A B (encrypt Kbs ... *) 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

(♦Proved*) 

(♦Next: elig A (encrypt Kbs ... *) 

e(MATCH_MP_TAC (axiom "crypto_90" "El")); 

e(MATCH_MP_TAC (axiom "crypto_90" "P4")); 

e(EXISTS_TAC (—'Ts'—)); 

e(MATCH_MP_TAC (axiom "crypto_90" "P4")); 

e(EXISTS_TAC (—'(name B) APP Kab'—)); 

e(REWRITE_TAC (map snd (theorems "ds_prooi_90"))); 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

e CONJJTAC; 

(♦subgoal: believes B (convey Svr (name A ... *) 

e(MATCH_MP_TAC (axiom "crypto_90" "Ml")); 

e(EXISTS_TAC (—'Kbs'—)); 

e CONJ_TAC; 

e(MATCH_MP_TAC (axiom "crypto_90" "Rl")); 

e(EXISTS_TAC  (—'A'—)); 

e  CONJJTAC; 
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e(REWRITE_TAC (map snd (axioms "ds_90"))); 

(♦Proved: send A B (encrypt Kbs ... *) 
(*Hew subgoal: elig A (encrypt Kbs ...*) 

e(MATCH_MP_TAC (axiom "crypto_90" "El")); 

e(MATCH_MP_TAC (axiom "crypto_90" "P4")); 

e(EXISTS_TAC (— 'Ts'—)); 

e(MATCH_MP_TAC (axiom "crypto_90" "P4")); 

e(EXISTS_TAC (--'(name B) APP Kab'--)); 

e(REWRITE_TAC (map snd (theorems "ds_proof_90"))); 

e C0NJ_TAC; 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

e CONJ.TAC; 

(♦subgoal: believes B (is_shared_secret ... *) 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

e C0NJ_TAC; 

e(MATCH_MP_TAC (axiom "crypto_90" "Gl")); 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

e(HATCH_MP_TAC (axiom "crypto_90" "Fl")); 

e(MATCH_MP_TAC (axiom "crypto_90" "F2")); 

e(MATCH_MP_TAC (axiom "crypto_90" "F2")); 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

e(MATCH_MP_TAC (axiom "crypto_90" "F2")); 
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e(HATCH_MP_TAC (axiom "crypto_90" "F2")); 

e(REWRITE_TAC (map snd (axioms "ds_90"))); 

(* End of proof of postcondition *) 

export_theory(); 

close_theory(); 
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5.B Appendix: Proof Transcript for the 
Needham-Schroeder Protocol 

new_theory("ns_proof_90"); 

new_parent "ns_90"; 

(* Lemma *) 

set_goal(D , 

—'theorem(possesses Svr((name A) APP ((name B) APP Na)))'—); 

e(MATCH_MP_TAC (axiom "crypto_90" "PI")); 

e(MATCH_MP_TAC (axiom "crypto_90" "Rl")); 

e(EXISTS_TAC (—'A'—)); 

e CONJ.TAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e(MATCH_MP_TAC (axiom "crypto_90" "El")); 

e(MATCH_MP_TAC (axiom "crypto_90" "P2")); 

e CONJ.TAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e(MATCH_MP_TAC (axiom "crypto_90" "P2")); 

e CONJ_TAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

save_top_thm "Lemma_Svr_poss"; 

(♦End proof*) 
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(* Lemma *) 

set_goal([], —'theorem 
(elig Svr (encrypt Kas (Na APP (name B) APP Kab APP 

(encrypt Kbs (Kab APP (name A))))))'--); 

(* For some parts of this proof, we have two choices — 1) to prove 
possession of the names of A and B by virtue of an initial 
assumption of possession, or 2) to prove possession of A and B by 
virtue of receiving them from A. The logic exposes this aspect. 

*) 

e(MATCH_MP_TAC (theorem "crypto_90" "elig_encr") ); 

e(EXISTS_TAC (—'A'—)); 

e CQNJ_TAC; 

e(MATCH_MP_TAC (axiom "crypto_90" "E3")); 

e C0NJ_TAC; 

e(MATCH_MP_TAC (axiom "crypto_90" "El")); 

(♦Now proving that —'theorem(possesses Svr Na)". 
We will APP to get the whole message sent by P. 
Then use Lemma_Svr_poss. 

*) 

e(MATCH_MP_TAC (axiom "crypto_90" "P4")); 

e(EXISTS_TAC (—'name B'—)); 

e(MATCH_MP_TAC (axiom "crypto_90" "P4")); 

e(EXISTS_TAC (—'name A'—)); 

e(HATCH_ACCEPT_TAC (theorem (current.theory()) "Lemma_Svr_poss")); 

(♦Using current_th above may not be as good as ns-proof*) 

(♦Now proceed to proof of 
(elig Svr((name B) APP (Kab APP (encrypt Kbs(Kab APP (name A)))))) 
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where we will immediately resort to possession before splitting into 

components, as it works and there are less steps (no extensions). 

It is more powerful in general to keep to elig though we don't here. 

*) 

e(MATCH_MP_TAC (axiom "crypto_90" "El")); 

e(MATCH_MP_TAC (axiom "crypto_90" "P2")); 

e CONJJTAC; 

e(MATCH_MP_TAC (axiom "crypto_90" "P3")); 

e(EXISTS_TAC (—'Na'—)); 

e(MATCH_MP_TAC (axiom "crypto_90" "P4")); 

e(EXISTS_TAC (—'name A'—)); 

e(MATCH_ACCEPT_TAC (theorem (current_theory()) "Lemma_Svr_poss")); 

(*Now to prove possession of Kab, the next component.*) 

e(MATCH_MP_TAC (axiom "crypto_90" "P2")); 

e CONJ_TAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

(*Now prove Svr poss of the encrypted final part of the message to B.*) 

e(MATCH_MP_TAC (axiom "crypto_90" "PS")); 

e CONJJTAC; 

e(MATCH_HP_TAC (axiom "crypto_90" "P2")); 

e CONJ_TAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e(MATCH_MP_TAC (axiom "crypto_90" "P3")); 

e(EXISTS_TAC (—'(name B) APP Na'--)); 
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e(MATCH_ACCEPT_TAC (theorem (current_theory()) "Lemma_Svr_poss")); 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

(*End of the possession proofs, probably.*) 

e CONJJTAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e CONJJTAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e(PURE_REWRITE_TAC [axiom "ns_90M "nse4"]); 

e(REWRITE_TAC (map snd (axioms "crypto_90"))); 

(*End of proof*) 

save_top_thm "Lemma_Svr_elig"; 

(*End proof*) 

(* Lemma *) 

set_goal([], —'theorem(possesses A (Na APP ((name B) APP 

(Kab APP (encrypt Kbs(Kab APP (name A)))))))'—); 

e(MATCH_MP_TAC (axiom "crypto_90" MP6")); 

e(EXISTS_TAC (—'Kas'—)); 

e CONJ.TAC; 

e(MATCH_MP_TAC (axiom "crypto_90" "PI")); 

e(MATCH_MP_TAC (axiom "crypto_90" "Rl")); 

e(EXISTS_TAC (—'Svr'--)); 
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e CONJJTAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e(MATCH_ACCEPT_TAC (theorem (current_theory()) "Lemma_Svr_elig")); 

(♦Proved elig of Svr using lemma*) 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

save_top_thm "Lemma_A_poss"; 

(♦End of proof*) 

(* Proof of the parts of the Postcondition *) 

(* Lemma: conjunct 1 of postcondition *) 

set_goal([], —'theorem(possesses A Kab)'—); 

e(MATCH_MP_TAC(axiom "crypto_90" "P3")); 

e(EXISTS_TAC (—'(encrypt Kbs(Kab APP (name A)))'--)); 

e(MATCH_MP_TAC(axiom "crypto_90" "P4")); 

e(EXISTS_TAC (—'name B'—)); 

e(MATCH_MP_TAC(axiom "crypto_90" "P4")); 

e(EXISTS_TAC (— 'Na'—)); 

e(MATCH_ACCEPT_TAC (theorem (current.theory()) "Lemma_A_poss")); 

save_top_thm "Lemma_A_poss_Kab"; 

(♦End of proof*) 

(* Lemma: Conjunct 2 of postcondition *) 

set_goal([], —'theorem(believes A 
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(is_shared_secret A B Kab))'—); 

e(MATCH_MP_TAC(axiom "crypto_90" "Jl")); 

e(EXISTS_TAC (—'Svr'—)); 

e C0NJ_TAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

(*right here we have to prove 
—'theorera(believes A(believes Svr(is_shared_secret A B Kab)))" 

see file ns.ml for desired alteration to GNY logic. 

We have to go through J3 as follows. 

*) 

e(MATCH_MP_TAC(axiom "crypto_90" "J3")); 

e CONJJTAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

(*Now we're back to the same proof rules as with the alternative 

description, with different extensions as suggested. 

*) 

e(MATCH_MP_TAC(axiom "crypto_90" "J2")); 

e(EXISTS_TAC (--'(encrypt Kas (Na APP (name B) APP Kab APP 

(encrypt Kbs (Kab APP (name A)))))'--)); 

e C0NJ_TAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e CONJJTAC; 

(*Now rotate and separate conjuncts in order to get at the extension 

part.*) 

rotate(1); 

e C0NJ_TAC; 
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rotate(l); 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

(♦This has proved the extension part.*) 

e(MATCH_MP_TAC (axiom "crypto_90" "F3")); 

e C0NJ_TAC; 

e(HATCH_MP_TAC (axiom "crypto_90" "Fl")); 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

(♦Now we prove (believes A (convey Svr (encrypt Kas (Na APP ))))♦) 

(♦Now we use M2+) 

e(MATCH_MP_TAC (axiom "crypto_90M "H2")); 

(♦Done. Now for the antecedents of M2*) 

e CONJ_TAC; 

e(MATCH_MP_TAC (axiom "crypto_90" "Rl")); 

e(EXISTS_TAC (—'Svr'—)); 

e CONJ_TAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e(MATCH_ACCEPT_TAC (theorem (current_theory()) "Lemma_Svr_elig")); 

e CONJJTAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e C0NJ_TAC; 

e(RE¥RITE_TAC (map snd (axioms "ns_90"))); 
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e CONJ_TAC; 

(*Next the proof that 
A recog (Na APP ((name B) APP (Kab APP (encrypt Kbs...*) 

e(MATCH_MP_TAC (axiom "crypto_90" "G2")); 

e(MATCH_MP_TAC (axiom "crypto_90" "Gl")); 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

(♦Next the proof that 
A bei fresh (Na APP ((name B) APP (Kab APP (encr...*) 

e(MATCH_MP_TAC (axiom "crypto_90" "Fl")); 

e(MATCH_HP_TAC (axiom "crypto_90" "Fl")); 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

save_top_thm "Lemma_A_secret_Kab"; 

(*End of proof*) 

(* Lemma: Conjunct 3 of postcondition *) 

set_goal([], —'theorem(possesses B Kab)'—); 

e(MATCH_MP_TAC(axiom "crypto_90" "P3")); 

e(EXISTS_TAC (—'name A'--)); 

e(MATCH_MP_TAC(axiom "crypto_90" "P6")); 

e(EXISTS_TAC (—'Kbs'—)); 

e CONJJTAC; 

e(HATCH_MP_TAC(axiom "crypto_90" "PI")); 

e(HATCH_HP_TAC(axiom "crypto_90" "Rl")); 

e(EXISTS_TAC (—'A'—)); 
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e CONJ_TAC; 

e(REWRITE_TAC (map snd (axioms Mns_90"))); 

(♦Now lor the proof that A was elig to send to B*) 

e(MATCH_MP_TAC(axiom "crypto_90" "El")); 

e(MATCH_MP_TAC(axiom "crypto_90" "P4")); 

e(EXISTS_TAC (—'Kab'—)); 

e(MATCH_MP_TAC(axiom "crypto_90" "P4")); 

e(EXISTS_TAC (--'name B'—)); 

e(MATCH_MP_TAC(axiom "crypto_90" "P4")); 

e(EXISTS_TAC (—'Ha'—)); 

e(MATCH_ACCEPT_TAC (theorem (current„theory()) "Lemma_A_poss")) ; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

save_top_thm "Lemma_B_poss_Kab"; 

(*End of proof*) 

(* Lemma: Conjunct 4 of postcondition *) 

set_goal([], —'theorem(believes B 

(is_shared_secret A B Kab))'—); 

e(HATCH_MP_TAC(axiom "crypto_90" "Jl")); 

e(EXISTS_TAC (— 'Svr'—)); 

e CONJJTAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

(*Next prove (believes A(believes Svr(is_shared_secret A B Kab))) 
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We have to go through J3 as follows. 

*) 

e(MATCH_MPJTAC(axiom "crypto_90M "J3")); 

e CONJ_TAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e(MATCH_MP_TAC(axiom "crypto_90" "J2")); 

e(EXISTS_TAC (--'encrypt Kbs (Kab APP (name A))'--)); 

e CONJJTAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e CONJJTAC; 

(*Now rotate and separate conjuncts in order to get at the extension 

part.*) 

rotate(1); 

e CONJJTAC; 

rotate(l); 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

(*This has proved the extension part.*) 

e(MATCH_MP_TAC (axiom "crypto_90" "F3")); 

e CONJJTAC; 

(♦Next proof obligation: 
—'theorem(believes B(is_fresh(Kab APP (name A))))" 

Here's the weakness in the N-S protocol.  It is impossible to prove 

this.  One thing is to add to the assumptions 

—'theorem(believes B(is_fresh(Kab )))", 
as they did in BAN, and point out that it is a dubious assumption: 
B just gets some key and assumes that it is fresh.  See file ns.ml 

*) 
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e(MATCH_MP_TAC (axiom "crypto_90" "Fl")); 

e(MATCH_ACCEPT_TAC (axiom "ns_90" "nsbiO_dubious_assumption")); 

(♦Proved the bit requiring freshness*) 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

(*Now we prove 

(believes B (convey Svr (encrypt Kbs(Kab APP (name A)))))*) 

(*Now we need to use M2 *) 

e(MATCH_MP_TAC (axiom "crypto_90" "M2")); 

(♦Done. Now for the antecedents of M2*) 

e CONJ_TAC; 

e(MATCH_MP_TAC (axiom "crypto_90" "Rl")); 

e(EXISTS_TAC (— 'A'— )); 

e CONJ.TAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e(MATCH_MP_TAC (axiom "crypto_90" "El")); 

e (MATCH_MP_TAC (axiom "crypto_90" "P4")); 

e(EXISTS_TAC (—'Kab'—)); 

e (MATCH_MP_TAC (axiom "crypto_90" "P4")); 

e(EXISTS_TAC (—'name B'—)); 

e (MATCH_MP_TAC (axiom "crypto_90" "P4")); 

e(EXISTS_TAC (—'Na'—)); 

e(MATCH_ACCEPT_TAC (theorem (current_theory()) "Lemma_A_poss")); 

138 



e CONJ.TAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e CONJ_TAC; 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

e C0NJ_TAC; 

(♦Next the proof that 
A recog (Na APP ((name B) APP (Kab APP (encrypt Kbs...*) 

e (MATCH_MP_TAC (axiom "crypto_90" "G2")); 

e(REWRITE_TAC (map snd (axioms "ns_90"))); 

(*Next the proof that B bei fresh ((Kab APP (name A)) APP Kbs)*) 

e(MATCH_MP_TAC (axiom "crypto_90" "Fl")); 

e(MATCH_MP_TAC (axiom "crypto_90" "Fl")); 

e(MATCH_ACCEPT_TAC (axiom "ns_90" "nsblO_dubious_assumption")); 

save_top_thm "Lemma_B_secret_Kab"; 

(*End of proof*) 

(* Proof of postcondition *) 

set_goal([], —'postcondition'—); 

e(PURE_ONCE_REWRITE_TAC [definition "ns_90" "postcond"]); 

e(CONJ_TAC); 

e(MATCH_ACCEPT_TAC (theorem (current„theory()) "Lemma_A_poss_Kab")); 

e(C0NJ_TAC); 

e(MATCH_ACCEPT_TAC (theorem (current.theory()) "Lemma_A_secret_Kab")); 
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e(CONJ_TAC); 

e(MATCH_ACCEPT_TAC (theorem (current_theory()) "Lemma_B_poss_Kab")); 

e(MATCH_ACCEPT_TAC (theorem (current_theory()) "Lemma_B_secret_Kab")); 

(♦Proof of the postcondition successful*) 

export.theory(); 

close_theory(); 
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Chapter 6 

Multilevel Distributed 
Database Integrity Model 

6.1     Introduction 

In this section, we describe a method of building multilevel databases that 
handles both integrity and nondisclosure, and we provide a formal specifica- 
tion of the trusted part of the method. Rather than deriving a new solution 
to this problem, this model is based on the recent unpublished work "Data 
Replication and Multilevel-Secure Transaction Processing" by Boris Kogan 
and Sushil Jajodia [11]. In their paper, they present a method that con- 
structs a database architecture that is restrictive and satisfies the integrity 
property, one-copy serializability. This method appears to be a practical 
way of constructing multilevel replicated databases. 1 For further discus- 
sion of integrity and nondisclosure theories, see Volume II of the Romulus 
Documentation Set. 

The theoretical content of our model is directly derived from [11] and, 
in this regard, it is not an extension of their results. We have added a 
formal specification for the trusted part of their protocol. In the paper, the 
authors present both the centralized and completely distributed form. Here, 
we present a minor generalization that permits any number of individual 
databases to reside at a particular host. 

Called distributed DBMS in [1]. 
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6.2     Serializability 

Serializability is the standard integrity property for concurrency control in 
databases. Serializability ensures that if a number of transactions are in- 
terleaved, then the effect will be equivalent to some scenario in which the 
transactions are not interleaved. 

Here is an intuitive explanation of why this property is desired. Suppose 
each transaction leaves the database in a "good" state. Any possible history 
on a serializable system will be equivalent to some non-interleaved sequence 
of transactions, and hence, by induction, we can conclude that the database 
is left in a "good" state. Note that serializability by itself only handles part 
of the integrity problem. There is still the obligation for each individual 
transaction to be sufficiently correct. 

When dealing with distributed databases, we need a modified form of 
serializability, to handle the fact that there are multiple versions of the same 
information on different hosts. This form of serializability is called one-copy 
serializability. 

In their paper, Kogan and Jajodia show that their protocol is one-copy 
serializable. This model is a formalization of the trusted part of that protocol. 

It is worth noting that in some cases serializability is not the appropriate 
integrity property. It may be that the concept of transaction is simply not 
present. For example, a database may continuously receive the results of 
some sensor, and hence there is no useful notion of transaction. Or, it may 
be that orderings of reads and writes do not impact the desired correctness 
conditions. However, serializability is usually the appropriate property. 

For a good introduction to the field see [5]. 

6.3    The Architecture 

The replicated database consists of a number of different interconnected 
databases called containers in the paper (see Figure 6.1). Each individual 
database contains information at or below some security level. In fact, in this 
model it contains all of the information at or below that level (data at lower 
levels is passed up, i.e., replicated on the machines of higher security levels). 

In Romulus terminology, each container is single-level. It is not trusted to 
keep information segregated by level. 
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Secret[A,B] 

SecrettA] Secret{B] 

Unclassified 

Figure 6.1: Data Flow Diagram of Typical Configuration 
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Information can flow up from a low- to a high- level database, but it is 
not permitted to flow in the opposite direction. The secure network and/or 

the operating TCB prevents the flow from going in the wrong direction. 

If each database is on a different host, then from the point of view restric- 
tiveness, this kind of system is manifestly secure. All of the nondisclosure 

security is handled by the network. If multiple databases are on one ma- 
chine, we can handle the synchronization between databases by single level 
processes (one for each level). In this case, the system is also manifestly 

secure. 
An alternative approach is to group all of the synchronization responsibil- 

ity between databases on a particular host into one process. In this case, the 
synchronization process must be trusted (MLS), but it may be able to more 
efficiently manage shared updates. This model uses this MLS approach. 

6.4    The Integrity and Security Properties 

6.4.1    Integrity 

For integrity, we want some control on propagation of information from low 
to high levels so as to preserve database consistency (i.e., one-copy serializ- 
ability). For security reasons, we do not want communication to databases 
at lower levels, so it is not trivial to synchronize the updates. Here we just 
discuss the trusted part of the protocol. 

First, transactions on a given MLS subsystem must be passed to the 
TCB and then relayed to the appropriate container. Secondly, updates from 
lower level containers must be queued on arrival and then delivered to the 

appropriate container if they are not blocked. 
The queue handling is accomplished as follows. If an update is received 

for the subsystem from a container at level m (i.e., Cm), then that update is 
placed on each queue Qm>j, where j is a security level of the subsystem that 
immediately dominates m. (The level j immediately dominates m, provided 
j is a more sensitive security classification and there is no other level between 

j and m.) 
The subsystem will periodically send the TCB protocol wake-up signals to 

forward any unblocked updates. If an update; is unblocked, it will be removed 
from the queue and forwarded to the destination container (container j if it 
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was on Qitj)- 
We next describe when a queue is unblocked. Suppose a is at the head of 

Qitk. It can be sent, provided that all other queues Qjik that might contain 
a (i.e., for which the level of a is immediately dominated by j) have a at the 

front of their list. 

6.4.2    Nondisclosure 

There are two different parts to the overall nondisclosure security of the 

database. 
First, the message handling and delivery part of system must properly 

screen outgoing messages and be able to identify the level of incoming mes- 
sages. This is part of the underlying TCB of the system, but not part of this 
model. If the system is distributed, the screening of outgoing messages could 

be handled by the network. 
Second, the secure part of the protocol must place and remove updates 

from the queues, and send messages to containers at the right levels. The se- 
curity justification is straightforward, as information is stored and forwarded 
with a possible upgrade of levels in-between. This nondisclosure property, 
and the absence of potential covert storage channels, can be demonstrated 

by showing that the protocol is restrictive. 

6.5    Formal Specification of the TCB Exten- 
sion 

Part of the protocol must be handled by the TCB. (It is called P2 in the paper 
and is informally discussed in section 6.4.1.) Here we describe a Romulus 

style model of the protocol. 
This HOL specification is for the trusted part of the database protocol of 

Kogan and Jajodia 1993. It is for a distributed database and only assumes 
that some of the containers are on any given subsystem. 

It uses the definitions and theorems about recursive-transitive closures. 

load_theory "rtc"; 
new_theory "db_spec"; 
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We use a number of abbreviations for the presentation of the specifica- 
tion that can be automatically expanded before theorem proving. These are 
all, exists, some, false, and true, which respectively stand for the HOL 
symbols !, ?, @, F, and T. We also introduce the ML function def contype as 
an alternative to the HOL def ine_type, due to a bug in the current version 
of HOL. It is similar to romcontype used in other Romulus specifications. 

use "style.sml"; 

This is a specification of the secure part of the protocol for a subsystem 
(collection of databases on a single host). The collection of these subsystems 
forms the distributed database. 

We assume 

• that other parts of the operating system TCB can assure that the 
security level of local transactions can be correctly identified (if the 
subsystem is multilevel), 

• that the network TCB will properly identify the security of messages 
to the protocol TCB, and 

• that the network TCB and/or the OS TCB can screen out container 
messages to subsystems at lower levels. 

We first introduce the basic security functions and the objects to be han- 
dled. The levels level and dom are the MAC security levels and their order- 
ing. The set of levels is unconstrained. 

new_type{Arity= 0,  Name= "level"}; 

The primitive dominates is for adjacent levels in the dominates lattice. 

new_constant{Name="dom_primitive", 
Ty = ==':level#level -> bool'==}; 

We introduce an axiom requiring that it is really primitive. 

expand_axiom("dom_prim", 
—'all i.   all j.   (dom_primitive(i,j) A dom_primitive(j,k) 

==>  ((i=j)  V  (j=k)))<-); 
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We introduce curried versions of functions to facilitate theorem proving. 

new_definition("domcp", 
—'domcp (a:level) (b:level)= dom_primitive(a,b)'—); 

We build the recursive transitive closure. 

new_definition("domc",—'dome (a:level)  (b:level)=(RTC domcp a b)'—); 
new_definition("dom", —'dom ((a:level),(b:level))=domc a b'—); 

Each database at a particular level is called a container. 

define_contype "containertype" 
[ 

("container",   [==':level'==]) 
]; 

new_recursive_definition { 

name = "containerlevel", 

fixity = Prefix, 
rec_axiom = (theorem "-" "containertype_def"), 

def= 
(—'containerlevel (container 1) =1'—) 

}; 

Each container is on some subsystem. There may be one or multiple 

subsystems. 

new_type{Arity= 0,  Name= "subsystem"}; 

leveltosystem identifies the subsystem where the container at level 1 
resides. 

new_constant{Name= "leveltosystem", Ty= ==':level -> subsystem'==}; 

The two kinds of transaction operations are reads and writes; they operate 
on the data of some container. 

new_type{Arity= 0,  Name= "datatype"}; 

We use the meta-language function def ine_contype that is defined in 
style. sml instead of def ine_type, because of a bug in HOL. 

Operations on data are either reads or writes. We also explicitly identify 
the level of request. 
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define_contype "op" 
[("read", [==':level#datatype'==]), 
("write",[==':level#datatype'==])]; 

new_recursive_definition { 
name = "oplevel", 
fixity = Prefix, 
rec_axiom = (theorem '*-" "op_def"), 

def= 
(—'(oplevel (read a) =(FST a)) A 

(oplevel (write a) =(FST a))'—) 

}; 

The Events are 

• Updates are received from a container at some level and sent to a con- 
tainer at some level. Note that all updates should be write operations. 

• Transactions from and to container k. (They are always local.) 

• Timing signals. 

define_contype "events" 
C 

("update", [==':level#op'==]), 
("transaction",[==':level#op'==]), 
("time",D) 

3; 

We introduce projection function names for extracting event information. 

new_definition("levelof_def", 
--'levelof (e:level#op) =FST(e)'—); 

new_definition("transop_def", 
—'opof (e:level#op) =SND(e)'—); 

We need to distinguish the three kinds of events. 

define_contype "eventkinds" 
[ 

("updatekind",[]), 
("transactionkind",[]), 
("timekind", []) 
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3; 

new_recursive_definition { 
name = "kindof", 
fixity = Prefix, 
rec_axiom = (theorem "-" "events_def"), 
def= 

(—'(kindof (update a) = updatekind ) A 
(kindof (transaction b) = transactionkind) A 
(kindof (time)= timekind)'—) 

}; 

We introduce a convenient function for extracting the information from 
update events. In order to make it a definition on the entire type we extend 
it to the other cases. 

new_recursive_definition { 
name = "extractinfo", 
fixity = Prefix, 
rec_axiom =  (theorem "-"  "events_def"), 
def= 

(—'(extractinfo (transaction a)  =a) A 
(extractinfo (update b)  =b)  A 
(extractinfo (time)=(some x:(level#op).true))'—) 

}; 

We introduce some constant levels. The levels of this subsystem are 
between subsystemhigh and subsystemlow. 

new_constant{Name="subsystemlow",Ty = ==':level'==}; 
new_constant{Name="subsystemhigh",Ty = ==':level'==}; 
expand_axiom("subsystemlevels", 

—'all 1.   (dom(l,subsystemlow) A dom(subsystemhigh,l))'—); 

Timing signals are the lowest level event that can occur on the specified 
subsystem of containers. 

The level of an update event will be considered to be the write-up level. 

new_recursive_definition { 
name =  "evlevel", 
fixity = Prefix, 
rec_axiom =  (theorem "-"  "events_def"), 
def= 
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(—'(evlevel (transaction a) =(levelof(a))) A 
(evlevel (update b) = (levelof(b))) A 
(evlevel (time)= subsystemlow)'—) 

}; 

We introduce functions Input and Output to distinguish events coming 
in and going out. We extend the level definitions to these types. 

define_contype "InEv" 

C 
("Input", [==':events'==]) 

]; 

new_recursive_definition { 
name = "inputof", 
fixity = Prefix, 
rec_axiom = (theorem "-" "InEv_def"), 
def= 

(—'inputof (Input e) =e'—) 

}; 

define_contype "OutEv" 

C 
("Output", [==':events'==]) 

]; 

new_recursive_definition { 
name = "outputof", 
fixity = Prefix, 
rec_axiom = (theorem "-" "OutEv_def"), 
def= 

(—'outputof (Output e) =e'—) 

}; 

new_recursive_definition { 
name = "inputlev", 
fixity = Prefix, 
rec_axiom = (theorem "-" "InEv_def"), 
def= 

(—'inputlev (Input e) = evlevel(e)'—) 

}; 

new_recursive_definition { 
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name = "outputlev", 

fixity = Prefix, 
rec_axiom = (theorem "-" "OutEv_def"), 

def= 
(—'outputlev (Output e) = evlevel(e)'—) 

}; 

(* *) 

For composition analysis, we associate ports with these events.   They 
indicate from where and to where the events are passing. 

define_contype "porttype" 
[ 
(* The input port for this part of the TCB *) 

("tcb_inport",D)   , 
(* Ports to containers *) 

("to_container",[==':level'==]), 
(* Incoming internal timing signal *) 

("timeporf'.G), 
(* time_events are actually never sent out, 

but we use a place holder *) 
("dummyporf'.G) 

]; 

new_recursive_definition { 
name = "outportof", 

fixity = Prefix, 

rec_axiom = (theorem "-" "events_def"), 

def= 

(—'(outportof (update a) = to_container(levelof(a))) A 
(outportof (transaction b) = to_container(levelof(b))) A 

(outportof (time)= dummyport)'—) 

}; 

(* *) 

The object being maintained is a collection of queues of update requests 
from container i to container j. It is of type level # level    -> op list. 

new_type{Arity= 0,  Name=  "queue"}; 
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We would like to use type_abbreviations. but they are not currently sup- 
ported. We use an ML abbreviation for queues and later use antiquotation 

when it needs to be used. 

new_type_abbrev("queues",==': level # level -> op list'—); 
val queues= ty_antiq(==':(level # level -> op list)'==); 

There is not a list for every pair of indices. It is determined by the set 
of supported levels. Indeed (i,j) can only be in the domain if dom_primi- 
tive(j ,i); so we introduce the predicate exists_queue. 

new_definition("exists_queue", 
—'exists_queue(i,j) = dom_primitive(j,i)'—); 

The Queues are the persistent data of the processes, so we need to intro- 
duce a security projection function for them. Again we introduce auxiliary 
curried definitions. 

The queue, Q(i,j), contains information destined for level j. It can be 
considered to only be in the view of j or above. That is, when an update 
is added to Q(i, j) it can already be considered written-up. So it suffices to 

project out entire queues. 

new_definition ("projcur", 
—'projc q 1 (a:(level # level)) = 

(dom( 1,(SND a)) => 
(q a) 

I 
D:(op list))'—); 

new_definition("proj", 
—'proj(q.l) = (projc q 1)'—); 

(* *) 

We now introduce auxiliary functions for describing the TCB extension 
for the database. 

Incoming updates must be added to the appropriate queue. 

new_definition("enqueue_c", 
—'enqueue_c (arlevel) (e:op) (q:"queues) (b:level#level) = 

(((exists_queue(b)) A (a=(FST b))) => 
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(CONS e (Q(b))) 

I 
Q(b))'-); 

new_definition("enqueue_def", 
—'enqueue(a,e,Q) = 

enqueue_c a e 0. '—); 

We use the following list operations: inlist, last, and butlast. 

new_list_rec_definition ("inlist_def", 
— '(inlist (NIL) (a:'t) =false) A 

(inlist (CONS (h:('t)) 1) a = ((a=h) V inlist 1 a))'—); 

(* Note that the last item that was put in, is the first item out. 
It is a queue. *) 

new_list_rec_definition("last_def", 
--'(last (NIL:('t list)) = (some x:'t. true)) A 

(last (CONS (h:'t) (l:('t list))) = 
((1=NIL) => h I (last 1)  ))'—); 

(* A queue after the last item is removed *) 
new_list_rec_definit ion("butlast_def", 
— '(butlast (NIL:('t list)) = []) A 

(butlast  (CONS  (h:'t)   (l:('t list))) = 
((1=NIL) =>   []   I   (CONS h  (butlast 1)     )))'—); 

new_list_rec_definitionC'removeduplicates", 
—'(removedup ([]:('t list))=[])  A 

(removedup (CONS (a:'t)   (l:('t list)))    = 
((inlist 1 a)  => 1   I   (CONS a 1)))'—); 

When we get a timing signal, we must check the queues and send out the 
front update transactions that are not blocked. 

Suppose 1 is at the head of Q(i,k). It can be sent, provided that all 
other queues Q(j ,k) that might contain 1, have 1 at the front of their list. 

We introduce the function list_of „indices to describe which items can 
be removed from the front of the queues. (The definition impacts only in- 
tegrity, not nondisclosure.) 

new_constant{Name="list_of„indices", 
Ty= ==':"queues -> ((level # level) list)'==}; 
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expand_axiom("list_of_indices_ax", 
— 'all i.     all k. 

(  (inlist    (list_of_indices(Q)) (i,k)) = 
(   (-(Q(i,k) = D)) A 

(let o=(last  (q(i,k))) in 
(let l=(oplevel(o))  in 

(all j. 
(dom(j,l) ==> (o=last (Q(j,k)))))))))'~); 

We describe the list of outputs that should be sent for the specified list 
of queues. It is slightly over specified in that the update transactions to 
container i need not come before the update transactions to container j, 
when dom(j ,i). We define the list with duplications and then remove the 

duplicates. 

new_list_rec_definition(',formdupmsglist", 
—'(formdupmsglist ([]:((level # level)  list))   (q:*queues)  =[])  A 

(formdupmsglist (CONS a 1)  Q= 
((CONS  (Output  (update((SND(a)),(last(q(a)))))) 

(formdupmsglist 1 Q))))'—) 
handle e => Raise e; 

new_list_rec_definition("formmsglist", 
— '((formmsglist  ([]:((level # level) list))   (Q:"queues) =[])  A 

(formmsglist  (CONS a 1)  Q= 
(removedup (formdupmsglist 1 q))))'—); 

We also describe the queues after the items have been removed. 

new_definition("dequeue_cur", 
—'dequeue_cur (1:((level#level) list))     (Q:'queues) 

(a:(level#level)) = 
((inlist 1 a)  =>  (butlast(q a))   I   (Q a))'—) 

handle e => Raise e; 

new_definition("dequeue_def", 
— 'dequeued,q)=dequeue_cur 1 Q'—); 

(* *) 

We will use the the PSL theory of states to describe the database. 
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(* This definition is taken from romproc.sml *) 
(define_type { 

name =  "PSL_Def", 
type_spec = 

'process = Skip  I 
;;  of process#process  I 
Orselect of process#process  I 
If of bool#process#process  I 
Send of   'outev  I 
Receive of  ('inev -> bool)#('inev ->  'invoc)   I 
Call of   'invoc   I 
Buffered of  ('inev -> bool)#('inev)list#process', 

fixities = 
[Prefix,Infix 1000,Prefix,Prefix,Prefix,Prefix,Prefix,Prefix]}); 

We specialize the polymorphic process definition to the actual Input 

events, Output events, and process_calls. 
We need names for the processes/procedures that will be invoked. 
In the current theory of PSL we must separate input and output handling, 

so that the process is split into two parts: getting and sending items from the 
buffer (db), and the event processing (db_action). We must also distinguish 
between the name of the action to be applied and the actual function. We 
first describe the names and the types that the function of that name uses. 
They are called invocations. 

define_contype "Invoc" 
[ 
(* get next db events *) 

("apply_db",   [==':"queues'==])   , 
(* handle db events *) 

("apply_db_action",[==':"queues'==, ==':InEv'==]) 

]; 

We now remove the polymorphism. Alternatively, we could have built a 
process theory specifically for the input events, output events, and invoca- 

tions. 

val db_process = ty_antiq(==':(OutEv,InEv,Invoc)process'==); 

We introduce then and else to clarify the specification. 
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new_definition("then", 
—'then(P:~db_process)=P'—); 

new_definition("else", 
—<else(P:"db_process)=P'—); 

(* *) 

We augment the language with the multisend construct, which sends out 

all of the items on a list. 

new_list_rec_definition("multisend", 
--'(multisend D=Skip)  A 

(multisend (CONS  (a:0utEv) 1)= 
((Send a  ;;  multisend 1):(~db_process)))'—) 

handle e => Raise e; 

(* *) 

The definition of the database protocol gets the next db event and calls 

the handler. 

new_definition("db_def", 
—'db(Q:"queues) = 

((Receive (\x:InEv.true)   (apply_db_action Q)):(~db_process))'—); 

We next actually process the db event, describing the response for each 

of the three kinds of events. 

new_def init ion("db_act ion_def", 
—'db_action (Q:"queues)   (ine:InEv)= 

((let e=(inputof(ine)) in 
(If   (kindof(e)=transactionkind) 

(then 
(Send(Output e)   ;;     (* Pass transaction on to the database *) 
Call(apply_db Q))) 

(else 
(If   (kindof(e)=updatekind)  (* add updates to the queues*) 

(then 
((let el=(extractinfo(e))  in 

(let Ql=(enqueue(levelof(el).opof(el),Q)) in 
(Call(apply_db Ql)))))) 

(else 
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(If (kindof(e)=timekind)  (* timing signal to cause 
handling of updates *) 

(then 
(let l=(list_of_indices(Q)) in 
(let msgs=((fonnmsglist 1 Q)) in 

(let Q2=(dequeue(1,Q)) in 
( 

(multisend(msgs));; 
(Call (apply.db Q2))))))) 

(else (* impossible case *) 
(Call (apply_db(Q)))))))))):(-db_process))'—); 
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6.A Appendix:  style, sml 

This is the file style.sml used in this chapter. 

(* some definitions for specification clarity *) 

(* all x,exists x.some x, false,true *) 
new_binder_definition("all_defH,(—'$all = \P:('a->bool).($! P)' —)); 

new_binder_def init ion ( "exist s_def '*, 
—'$exists = \P:('a->bool).($? P)'—); 

new_binder_definition("some_def\ —'$some = \P: ( 'a->bool) . ($<8 P)'—); 

new_definition("falsedef", —'false=F'—) ; 

new_definition("truedef", —'true=T'—); 

(* defcontype is a simple form of Steve Brackin's romcontype. 

It could eventually be replaced by the HOL define_type, 

when the error in HOL is corrected *) 

fun define_contype typename [] = raise Bind 

I define_contype typename constructorlist = 

let 

fun makeclauses [] = [] 

I makeclauses ((name.argtypes)::restlist) = 

{constructor = name, 

fixity = Prefix, 
arg = map Parse_support.Hty argtypes}::(makeclauses restlist); 

in 
dtype 
{ty_name = typename, 
save_name = typename~"_def", 
clauses = makeclauses constructorlist} 

end; 

(* expand_axiom — forms new_open_axiom and 
replaces the style abbreviations with their primitive forms *) 

fun expand_axiom (name,arg) - 

BETA_RULE ( 
REWRITE_RULE [(definition * 

(definition ' 

(definition ' 

(definition ' 

(definition ' 

-" "all_def"), 
-" "exists_def"), 

-" "some_def"), 

-" "falsedef"), 

-" "truedef")] 

(new_open_axiom(name,arg))) : 
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Chapter 7 

The Fault Tolerant Reference 
Monitor Model 

7.1    Introduction 

The Fault Tolerant Reference Monitor (FTRM) is designed to support multi- 
ple clients with arbitrary security classifications accessing data in a hierarchi- 
cal file system with files and directories at arbitrary security classifications. 
It is intended to implement an access control policy that allows clients to 
obtain information only at an equal or lower security level, or output infor- 
mation only at an equal or greater security level. Further, the FTRM design 
is intended to block so-called "covert storage channels". Such channels are 
ways of signaling classified information to a client who is not cleared for it by 
using aspects of the system not normally considered communication media, 
such as locks on shared resources. The FTRM blocks such channels by a 
combination of special provisions in the access control policy (described in 
section 7.2.3) and use of asynchronous communication protocols (described 

in section 7.2.6). 
The FTRM is designed to withstand various kinds of faults in the nodes 

on the network, including nodes crashing, disks and other devices for main- 
taining the file system crashing, and corruption of data (either in ordinary 
files or in files containing records of client and file security levels) on disks. 

The FTRM accomplishes fault tolerant multilevel security by replicating 
files and tables of security levels on multiple network nodes. The distributed 

159 



data is managed consistently using the ISIS system for fault tolerant com- 
munication (described in section 7.2.6). The ISIS protocols mask the various 

kinds of failures that the system is meant to withstand. The replicated data 
is used to mask data corruption faults by implementing a collection of voting 
algorithms on top of ISIS. The FTRM is designed so that any number of 
faults can be withstood if there are sufficiently many nodes and sufficient 
replication of file system data and security level tables. In particular, secure 

mediation of access to data will be unaffected by faults if there is a sufficient 
degree of replication. 

To increase assurance that the FTRM design blocks covert storage chan- 
nels in the presence of faults, we develop a formal model of the FTRM design 
and specify its security using an information-theoretically based mathemati- 
cal property called restrictiveness (see section 7.3). By making the design of 
the FTRM and the security property it is intended to satisfy mathematically 
precise, we have greater confidence that the system is correct and secure. 

For further discussion of the availability theory, see Volume II of the 
Romulus Documentation Set. 

Much of the text in this section and the succeeding sections on the Fault 
Tolerant Reference Monitor, its design, and its security model was drawn 
from an earlier ORA report on the FTRM [20]. The results presented here 
primarily differ from the earlier work in the following ways: 

• The FTRM's formal model is implemented for HOL90 in Standard ML 
rather than for HOL88 in pre-standard ML. 

• The formal model is complete, including formal specifications of pro- 
jection, invariant, and initial-state functions that were described only 
informally in the earlier work. 

The formal model corrects errors in the earlier work, particularly an 
error that caused later client-process requests to overwrite earlier ones. 

The formal model uses newly developed Romulus techniques and utili- 
ties that impose strong type checking on state parameters and message 
contents; this strong type checking protects against errors in the model, 

reduces clutter, and provides the basis for easier proofs of security prop- 
erties. 
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7.2    FTRM Design 

A Fault Tolerant Reference Monitor mediates accesses to a file system in a 
way that is both secure and fault tolerant. The model of file system data 
assumed by the FTRM is well known. The file system contains files that 

are classified and labeled at different sensitivity levels. Users are assigned 
different security clearance levels. The file system is accessed by processes 
called clients. Clients access the file system on behalf of users. A client 
inherits the security level of the user it is acting for. The FTRM permits 
or refuses client requested file accesses according to a multilevel mandatory 
access control policy (and possibly a discretionary policy as well). The access 
control policy is enforced even in the face of certain failures. 

This section describes the overall architecture of the FTRM in informal 
terms. This description includes the kinds of failure the FTRM will toler- 
ate (usually referred to as the system's failure semantics), the data model, 
the access control policy, the general method for tolerating faults, and the 

rationale for the design. 

7.2.1     Architecture 

The FTRM design achieves fault tolerance by replication. The novelty of 
this design is that it combines fault tolerance and security in a single system. 

A system built on the FTRM would consist of a number of sites run- 
ning the FTRM server monitor software and a number of sites that have 
installed the FTRM user monitor software. A site would typically consist of 
one machine, for example a Sun workstation, but the possibility of further 
replication at each site is not ruled out. In addition, each server site has a 

storage device, for example a hard disk, which stores all or part of the file 
system, including normal data such as files and security data such as file 
level labels and user level labels. The simplest instance of this configuration 
would have a complete copy of the file system residing at every server site, 
but the FTRM design allows a server site to have only part of a file system 
in residence. The sites are connected by a network, either local or longhaul, 
which we will refer to as the intersite network. The sites are assumed to be 
fully connected, that is, there is a communication path between any two sites 
(which may, in general, pass through other sites) when there is no fault. 
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7.2.2     Failure Semantics 

A system can only be meaningfully described as "fault tolerant'" with respect 
to certain types of failure. The failures a system is intended to withstand 
are referred to as the system's failure semantics. It is important to specify 
the failure semantics of a fault tolerant system so as not to give the users of 
the system false confidence in the system's reliability. It is also important 
because the more general the kinds of fault a system is meant to withstand, 

the more expensive it is to build and run. 

In some fault tolerant systems, if there is sufficient replication, it is pos- 
sible to construct the system so that it can withstand a certain number of 
arbitrary, or (in the jargon of fault tolerance) Byzantine, faults and still 
function normally. In a system where "normal functioning" implies "secure 
functioning", it is much more difficult to withstand even one Byzantine fault 
in a processor that is running the software intended to enforce security. If a 
site handling classified data has any direct link to its environment, such as a 
terminal or phone link, a Byzantine fault in the security function could allow 
classified data to be released to people with insufficient classification to see 
it. This compromise can also happen if a site has an indirect connection to 

its environment, such as a connection to a phone link or other "dumb" device 
through the intersite network. Even if a site's only connection to its envi- 
ronment is through the intersite network, and the only devices connected to 
the intersite network are other sites running secure, fault tolerant software, a 
Byzantine fault in the security function of a single site could still compromise 
security if the intersite network was not secure. For example, if the intersite 
network was subject to eavesdropping, a Byzantine fault in a site's security 
function could allow classified data to be released to an eavesdropper. 

The main failure the FTRM is designed to tolerate is arbitrary data 
corruption caused by disk failures. For example, the classification label of 
a file (a special kind of data) can be corrupted on some servers, and the 
FTRM will not grant access to the file in violation of the access control policy. 

The other failures tolerated are machine crashes. By "machine crashes" we 
mean that a machine can fail, but is assumed to stop when a failure occurs. 
This failure semantics is commonly assumed, and it is adequate for many 
applications. 

In addition to the types of failure, the maximum number of failures that 
can be tolerated is also vital.    If all disks can be corrupted at one time 
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(if for example a file's label is changed on all servers) there is no way to 
know, within the system, what the actual label should be. If / disks can be 

arbitrarily corrupted at any time, there must be at least / + 1 uncorrupted 
disks available at any time to make it possible, using majority voting, for the 
FTRM system to provide the file service and also enforce the access control 
policy. More specifically, suppose out of a total of t servers, there can be u 
unavailable servers (due to server machine crash, disk crash, or the crash of 
the link between a disk and its server machine or between a server site and 
a user site), / available servers with corrupted disks, and w available servers 
with uncorrupted disks. For the system to correctly enforce security in the 
presence of these faults, it must be the case that t = u + f + w and that 

w > f holds at all times. 
The total number of available servers is / + w. If / is a fixed maximum 

number of corruption failures that the system is expected to be able to tol- 
erate, the FTRM will grant access (i.e., operate) only when f + w > 2/, or 
w > /, so that the voting algorithm can always yield correct answers. It is 
important to note that more crash failures (i.e., when w < f + 1) will only 
render the file service unavailable, but the access control policy will not be 
violated. 

7.2.3    Data Model and Access Control Policy 

The objects the FTRM is concerned with are clients and files. Each copy 
of a file F is assigned a security level level(F) from some collection of levels 
specified by the application. We assume that a user may log in and use the 
system at various levels in the same collection, reflecting the fact that users 
can act in different capacities at different times. Such a user must specify, 
during the login procedure, at which level he will act. The levels a particular 
user can log in at is decided by a policy external to the FTRM. A client (a 
process running on behalf of a user) inherits the security level at which the 
user is logged in. Thus each client C is assigned a clearance level level(C). 

There is a dominates relation between security levels, denoted by >, which 
is transitive and reflexive: a > a, a > b and b > c implies a > c. Equality 
is denoted by a = b. The access control policy of the FTRM is based on the 
widely applied Bell-LaPadula style multilevel access control policy [4, 3]: 

• A client C may read from a file F only if level(C) > level(F). 
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• A client C may write to a file F only if level(F) > level(C). 

To illustrate, suppose the security levels are the standard four classifica- 
tions: unclassified, confidential, secret, and top-secret. The > relation could 
be defined as 

(1) confidential > unclassified 

(2) secret > confidential 
(3) top-secret    > secret 
(4) a > a 

(5) a > b and b > c implies a > c 

7.2.4    File System and Access Control Policy 

The file system has a typical UNIX hierarchical organization. The starting 
reference point of the file system is a root directory called /. Within a 
directory, there can be subdirectories and files. A directory is treated as a 
file with a certain kind of structure. A directory contains a set of entries, 
each representing a subdirectory or a file, and is of the form 

(name, owner, access mode, size, date-of-last-modification) 

There are three types of access, read, write, and execute. An access mode 
describes some combination of the three. Writing to a directory amounts to 
the crea.tion or deletion of subdirectories or files. 

To instantiate the multilevel access control policy described earlier, the 
following access rules are enforced. Let C denote a client, D a directory, and 
F a subdirectory or a file in directory D. 

1. level(/) = system low (e.g., unclassified). 

2. level(F) > level(D). 

3. C can create F if and only if level(F) > level(C) = level{D). 

4. C has read access to F if and only if lcvel(C) > level(F). 

5. C has write access to F if and only if level(F) > level(C) - level{D). 
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It is straightforward to check that the rules enforce the access control 
policy because they are the access control policy. Note that from rules 2 and 
4, C has read access to a directory (whose level is dominated by level(C)) 
that can contain a file or directory F whose level dominates level(C). Thus 
C will know the existence of F even if level(F) > level(C). This knowledge 
is not a security violation since the existence of a file is information that 
resides in the directory rather than in the file itself, and by rule 3, directories 
can only be written by clients of lower or equal level. This access control 
policy blocks covert channels through creating and deleting high-level files. 

In addition, by using this access control policy, the FTRM is not forced to use 
the complicated polyinstantiation strategies widely used in multilevel secure 

database systems [10, 13]. 

7.2.5    Synchronizing Replicated FTRM Server Moni- 
tors 

The file system primitives can tolerate failures (host crashes, data corruption) 
up to a certain threshold number by broadcasting each request, to a group of 
server monitors so that as long as a sufficient number of servers are available, 
the service is available. Majority voting is used on the returned result to 
mask failures, particularly data corruption. 

To achieve this, it is insufficient just to hook up a number of the repli- 
cated FTRM server monitors and let them operate concurrently. They must 
coordinate among themselves to maintain data consistency and to behave 
like a single unreplicated file system. 

To illustrate the necessity of coordination, consider the following scenario. 
Suppose the file system contains a file X, whose contents are initially the 
string "a". Suppose three different users issue three calls: the first writes the 
string "b" into the file, the second writes the string "c" into the file, and the 
third reads the first byte of the file. Now a server monitor that receives the 
calls in the order 1-2-3, will return value "c" upon read. A server monitor 
that gets the calls in the order of 1-3-2 will return value "b". Another server 
monitor that receives in the order of 3-1-2 will return value "a". If there are 
a total of three server monitors, then no majority value can be decided and 
the service is treated as unavailable. If the second server monitor receives in 
the same order as the third server monitor, then the majority value is the 
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wrong value, V. Therefore, it is possible for the FTRM to be in a situation 
where the file service is unavailable, or worse, the return value is wrong, even 

when no failure at the servers has occurred. 

Such things can happen because in a typical network (such as the Inter- 
net) messages are not guaranteed to be delivered at all, or if delivered, are 
not guaranteed to be delivered in the order in which they were sent. There- 
fore, the FTRM system can behave correctly only if the following additional 
requirement is met: messages sent to the group of replicated server monitors 
will be delivered and processed at all operational servers in the same order. 
(Note that it is not necessary that this order be the same order in which they 
were sent; it is only necessary that it be the same order at each server). 

Meeting this requirement is a nontrivial task, and this task and related 
issues are ongoing research topics in the fields of distributed systems and 
databases. Fortunately, there is a toolkit for distributed computing, called 
ISIS, developed at Cornell University, that makes this effort much easier. 
Details of ISIS are introduced in section 7.2.6. For the discussion here, it is 
sufficient to know that if the broadcast call in the FTRM uses the primitive 
ISIS call beast (), then ISIS will take care of the message ordering in a fault 

tolerant and transparent manner. 

7.2.6     ISIS 

ISIS is a group-oriented distributed computing system that provides several 
forms of support for fault-tolerant computing. The development of ISIS is 
led by Professor Kenneth Birman at Cornell University. The latest version of 
ISIS (V3.0) is a commercial product release. It currently runs on a number 
of platforms including Sun OS (UNIX). Major efforts are underway to port 
ISIS to other platforms, including the Mach operating system developed at 
Carnegie-Mellon University. Commercial versions of ISIS are marketed by 
ISIS Distributed Systems, Inc., while academic versions are free of charge. 

ISIS can be used in a network of computers linked by either local area or 
wide area networks. Initial performance measurements on prototypes show 
that ISIS is an efficient mechanism to support fault tolerant computing. 
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ISIS Abstractions and Guarantees 

At the abstract level, ISIS transforms nondistributed abstract type specifica- 
tions into fault tolerant, distributed implementations, called resilient objects. 
Such objects achieve fault tolerance by replicating the code and data man- 
aged by the object at more than one site. The resulting components synchro- 
nize their actions to provide the effect of a single site object. In the event 
of a failure, any ongoing operation at a failed component is continued by an 
operational one. A resilient object continues to accept and process new op- 
erations as long as at least one component, is operational. Failed components 
recover automatically when the site at which they reside is restarted. 

At the system level, ISIS supports an abstraction mechanism called fault 
tolerant process groups. ISIS guarantees that all processes belonging to the 
same group will observe consistent orderings of events affecting the group as a 
whole, including process failures, recoveries, migration, and dynamic changes 
to group properties such as group membership and member rankings. These 
orderings are achieved through site managers running a set of protocols such 
as agreement and failure detection. 

At the communication layer, ISIS has a number of primitives to support 
reliable communication even in the presence of failures. They include group 
broadcast, atomic broadcast, causal broadcast, and minimal broadcast. Each 
of these primitives supports a slightly different broadcast semantics. For 
example, atomic broadcast guarantees that, if a message to a process group 
is delivered at one member site, it is delivered to all member sites. Also, 
messages are processed in the same order at all sites. 

ISIS supports many other features, such as causality across the boundary 
of groups. 

7.3     Formal Security Theory 

The access control policy stated above seems to capture the basic security 
requirements of the FTRM and even addresses some subtleties. The most 
obvious security threat is the threat of a user or process with a low security 
level being able to read a file of high security level. This threat is addressed in 
a straightforward way by the mediation logic in the FTRM open call, which 
does not allow a client to open a file unless the security level of the client 
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dominates that of the file. 
A more subtle (albeit long-recognized) security threat is that of a so- 

called "Trojan horse" client that has a high security level inherited from a 

trusted user, but that contains untrustworthy code.1 One of the ways such 
a cheat can compromise security is by reading high-level data (which it is 
permitted to do by virtue of its high security level), and then, unbeknownst 
to the user it belongs to, writing that data into a file with a low security 
level, where it may later be read by a low-level user who is not trusted. This 
threat is addressed by the access control policy using the standard technique 
described in [4] and [3]. The mediation logic in the ft_open call does not 
allow a client to open a file for writing unless the security level of the client 
is dominated by the security level of the file. This means that a high-level 
client, even if it is a Trojan horse, can only write to high-level files, and so 
cannot compromise security by a "write down" to a low-level file. 

An even more subtle security threat is that of a Trojan horse client sig- 
naling information to a low-level client by creating files. For example, a 
high-level Trojan horse client might signal high-level information to a low- 
level client by creating a low-level file that the low-level client could then see. 
The information might be encoded in the name of the file. The access control 
policy blocks this threat by giving newly created files the level of the creating 
client, so high-level clients can only create high-level files. Another version of 
the same threat, which is not blocked by this provision, is a high-level Trojan 
horse client creating a high level file whose existence could be detected by a 
low-level client by the low level client attempting to open the file for "write". 
This threat is blocked by the way the access control policy treats the level 
of directories. Since a directory is a file like any other, and file creation is a 
write to the directory in which the file is created, a high-level Trojan horse 
client can only write to high-level directories. Thus, a high-level client can 
only create a file in a high-level directory. Checking whether a file exists in 
a directory is a read from the directory, so a low-level client cannot check 
whether a file exists in a high-level directory. Any attempt to do so results in 
an error return, regardless of whether the file exists or not. Thus, a low-level 

lrThe untrustworthy code may be deliberately, maliciously introduced, or it may just 
be a bug, or even a feature of the application. For example, the emacs editor creates 
"checkpoint" files containing the latest state of its internal text buffers in case the editor 
is crashed without saving the buffers. In certain cases, the checkpoint files can have more 

liberal permissions than the file being edited. 
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client cannot see anything about files that any high-level client creates. 
As the previous paragraph demonstrates, making sure that a system 

blocks all the ways that a Trojan horse client can compromise security in- 
volves considering very subtle ways to transmit information. Security can 
be compromised by so-called covert channels as well as by explicit access to 
data. The threats described above having to do with transmitting informa- 
tion by creating files are examples of covert channels that are blocked by the 

access control policy. 
How do we know that there are not other covert channels that are not 

blocked by the access control policy? For example, the FTRM will contain 
replicated, distributed data. As mentioned in section 7.2.5, we must take 
certain measures to ensure that this distributed data is managed consistently. 
Our approach is to use the ISIS network primitives. Suppose, however, that 
we had instead used some form of a simple locking scheme. In other words, 
suppose that when a client makes an FTRM call, the user monitor sent out 
messages throughout the network telling the server monitors to "lock" all 
the data that the FTRM call needs to access, performed the operations, and 
then "unlocked" all of the data it had been using. Suppose further that if 
another FTRM call attempted to lock the same data, it received an error 
return, and then issued an error (e.g., "Cannot access due to data lockr) to 
the client. This approach could be used to solve the problem of maintaining 
data consistency, but it would introduce a covert channel because high-level 
clients could signal low-level clients by issuing calls that lock low-level files. 
low-level clients could detect these locks by attempting to access the same 
files and receiving the error message. If we had chosen this design instead of 
using ISIS, the FTRM would contain a covert channel. This covert channel 
would be part of the FTRM, but would not be blocked by the access control 
policy because it uses information transmission mechanisms that are not 
taken into account by the access control policy (namely the error messages 
returned by FTRM calls). 

Of course, we can never be completely sure that we have not overlooked 
some way of transmitting information. We can. however, gain increased 
confidence that we have not overlooked subtle channels by using a form.al 
security theory. A formal security theory is a mathematical definition of 
security in terms of some form of information theory. In order to apply such 
a theory, we must first describe the system as a mathematical model, that 
is, we must represent the system as some kind of mathematical object that 
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can be analyzed using mathematical tools and techniques. A formal security 
theory is a formal definition in terms of such mathematical models that says 
which models represent secure systems and which do not. Once we have 
written down a mathematical model of the system whose security we are 

interested in (in our case, the FTRM), we can analyze it using mathematics 
to determine whether it meets the formal definition of security. 

The reason this sort of analysis gives more confidence that the system 

in question is secure is that the definition of which models represent secure 
systems is based on general information theory. As we will see below, our 
definition of security is based on representing the system as an automaton 
that interacts with its environment through accepting inputs and generating 
outputs. Information theory is used to define when some class of inputs can 
be used to transmit information through some other class of outputs. This 
definition is not specific to a system, but applies to any system represented as 
such an automaton. The definition of security does not assume that informa- 
tion is transferred only through file accesses, but considers any information 
transfer from any class of inputs to any class of outputs. 

For these reasons, we use the formal theory of restrictiveness, and the 
specialization of restrictiveness to buffered server processes, as the basis for 
formally analyzing the FTRM model's security. A server process is one that 
waits for input with set values of its state parameters, processes each input 
possibly producing output, and then returns to wait for the next input with 
possibly changed values of its state parameters. A buffered process saves its 

inputs, if necessary until it is ready to receive them, so that it never reveals 
any information by its ability or inability to accept input. Informally, a 
buffered server process is restrictive if its outputs in response to any input 
are at levels that dominate the level of the input, if the part of its state- 
parameter information needed to give its future behavior visible at a security 
level does not change in response to inputs not visible at this level, and if two 
partial state parameter descriptions giving the same future behavior visible 
at a security level are not distinguished by any output visible at that level. 
Complete descriptions of restrictiveness can be found in the literature on 
information security, in particular in [14] and [15]. 

In the remainder of this section, we discuss how we used restrictiveness 

to specify the fault tolerance of the FTRM as well as its security. Our initial 

plans were to formally define the security property that the FTRM is required 
to obey and to represent the fault tolerance mechanisms of the FTRM in the 

170 



model, but not to formally define what it meant for the FTRM to be fault 
tolerant. It later became clear that we could define security for the FTRM 

in such a way that it would imply fault tolerance. 

As will be explained in detail in section 7.4 below, we modeled data 
corruption faults in the FTRM as if they were inputs from the external 
environment. In this way, we made sure that data corruption faults could 
occur in a completely arbitrary pattern that the FTRM could not control. A 
side effect of this way of representing faults is that we had to assign a security 
level to the inputs that represent faults. The usual level to assign to such 
"artificial" inputs is unclassified, since they carry no classified information. 

We need not assign such inputs the level unclassified however. Since they 
are merely artifacts of the modeling process, we are free to assign them ?.ny 
security level that will allow the model to satisfy the restrictiveness proper''/?. 
The only inputs and outputs whose levels we must make sure are correct 
are those that come from or go to real external entities with real security 
classifications. 

In considering what security level to assign to the "fault inputs", we 
realized that if we assigned them the security level systemhigh (that is, 
the security level that dominates all other security levels), then in order for 
the FTRM model to satisfy restrictiveness, it would have to be impossible 
to infer anything about the occurrence of fault inputs from observing the 
system behavior at any level lower than systemhigh. In fact, the FTRM 
model does not make any assumptions on what levels the clients have, so 
as far as the constraints placed on the system by the FTRM model, it is 
possible that none of the clients have level systemhigh. Since this situation 
is permitted by the model, in order for the model to satisfy restrictiveness, it 
must be the case that the clients cannot infer anything about the occurrence 
of fault inputs. In particular, they cannot be able to infer that any faults 
have occurred. In other words, if we assign the fault inputs level systemhigh, 
then restrictiveness implies that the system must be fault tolerant, because 
it implies that the clients cannot tell from observing their inputs and outputs 
whether any faults have occurred. 
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7.4    Formal Model 

This section contains and describes the SML code formally specifying the 

FTRM model for HOL90. 

7.4.1    Front Matter 

The specification begins with lines removing any older versions of the FTRM 
theory, setting the theory path to include the library of Romulus process 
and security theories, and creating the FTRM theory, a child of the Romulus 
security theory. These lines also load the HOL library dealing with character 
strings and the SML code for Romulus convenience functions romcontype 
and romrecord creating concrete-recursive and record types. 

The Romulus utility romcontype is very similar to the standard HOL 
function def ine_typefor defining concrete-recursive types, but has a slightly 
simpler interface in the case where all type constructors for the type being 
defined are prefix operators, avoids a bug in the current implementation of 

HOL90 that makes it impossible to define type constructors that take tuples 
as arguments, and returns both an SML variable whose value is the type just 
defined and a theorem giving an abstract characterization of this type. The 
SML variable giving the type is useful in the case where the type defined is 
actually a polymorphic type constructor. 

The Romulus utility romrecord is superficially similar to romcontype, 
and indeed does define a record as a concrete-recursive type. However, it also 
defines a constructor function for creating records of the type being defined 
and defines accessor and update functions for each entry in the record. The 
constructor function defined by romrecord for a record type is named by 
prepending Make_ to the name of the record type. The accessor and update 
functions defined by romrecord for a record entry are named after the name 
of the entry or by prepending update_ to the name of the entry, respectively. 

System.system "rm -f Itrm.holsig ftrm.thms"; 

new_theory "itrm"; 
load_library{lib = get_library_from_disk "romulus", 

theory = "-"}; 

load_library{lib = Sys_lib.string_lib, theory = "-"}; 
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7.4.2    Type Declarations 

The specification next declares all the types used in the specification of the 
FTRM process, culminating in the definition of the type of PSL object appro- 
priate as a model of the FTRM process. The types defined include the state 
parameters, the input events, and the output events. For maximum gener- 
ality, the specification uses type variables instead of explicit types wherever 
possible, so the types it declares are actually polymorphic type constructors. 
The type variables 'Server, 'Client, and 'Level denote the arbitrary types 
of server identifiers, client processes, and security levels. 

State Parameters 

The specification first declares the type of the parameter giving the state 
of the FTRM process as it waits to receive the next request from a client. 
This type will later be used in the declarations of functions not defined in 
the FTRM model, in the definitions of FTRM invocations, and in defining 
several FTRM-specific functions. It makes several preliminary definitions in 
working up to the definition of state parameters. 

The model assumes that a file contains a list of bytes, that reading a, file 
returns the full list of bytes in this file, and that writing a file replaces the 
full list of bytes in this file with a new list of bytes. 

A status is a return value, typically implemented as an integer, telling 
whether or not a command succeeded. The model needs to know only that 
"success" and "failure" are both status values and that they are distinct. 

val  (Status_Def,  Status) = 
romcontype 
"Status" 
[("success",   []),   ("failure",   [])]; 

Similarly, an access is a form of access for a client process to a file. 

val  (Access_Def,  Access)  = 
romcontype 

"Access" 
[("none",   []),   ("read",   []),   ("write",   []),   ("read_write",   [])]; 

The model takes a file name to be a character string. A file address is an 
abstract address of a disk data structure giving a file's name, whether the 
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file is currently open, and its current contents. In the model, it is taken to 
be an integer. A file descriptor is a pair consisting of a file address and a file- 
access type. In an actual implementation, it could be an index into a system 
table containing this information, but we do not model this detail because 
we do not model the possibility that the information in tables indexed by file 

descriptors can be faulty for a functioning server. 

val filejname = ty_antiq(==':string'==); 

val file_address = ty_antiq(==':nura'==); 

val  (file_descriptor_Del, file_descriptor)  = 
romrecord 
"file_descriptor" 
[ 
("descriptor_address", ==':*file.address'==), 
("descriptor_access",    ==':"Access'==) 

]; 

The definition of addressed.data models the possibility that a server's 
disk might not contain a plausible data structure at a file address, either 
because the address does not correspond to a disk location or because the 
data there is not in the expected form. The entry corrupted is true if the 
data does not really exist or is not of the expected form. In this case, the 
other entries in the record are defined, but meaningless, and are never used. 

val  (addressed_data_Def, addressed_data) = 
romrecord 
"addressed_data" 
[ 
("corrupted", ==':bool'==), 
("hasname", ==':"file_name'==), 
("isopen", ==':bool'==), 
("contents", ==':(num)list'==) 

]; 

The model defines a concrete recursive type corresponding to all the possi- 
ble FTRM requests and the pieces of information sent with them, information 
such as which file to open and which access to obtain for it when it is open. 

val files_data = ty_antiq(==':*file_address -> *addressed_data'==); 
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val (FTRM_request_Def, FTRM_request) 
romcontype 
"FTRM_request" 
[ 
("request_close",  [== 
("request_open",   [== 
("request_read",   [== 
("request_write",  [== 

]; 

=]). 
file_descriptor'==]), 
iile_name'==,==':"Access': 
file_descriptor'==]), 
file_descriptor'==, ==':(num)list'==]) 

Similarly, the model defines a concrete recursive type for the sorts of in- 
formation received in response to a FTRM request. This information always 
includes a status value telling whether the request succeeded, but it can also 
include additional information such as the file descriptor of the file opened 
or the contents of the file read. 

val  (FTRM_reply_Def, FTRM_reply) = 
romcontype 

"FTRM_reply" 
[ 
("reply_close", 
("reply_open", 
("reply_read", 
("reply_write", 

]; 

[==':"Status'==]), 
[==':"Status'==,==':"file_descriptor'==]), 
[==':"Status'==,==':(num)list'==]), 
[==': "Status'—]) 

The model also defines a concrete recursive type for the possible ISIS 
requests generated by the FTRM in response to the FTRM requests from 
the client processes. 

val  (ISIS_request_Def,  ISIS_request) 
romcontype 
"ISIS_request" 
c 
("isis_check", [==' 
("isis_close", [==' 
("isis_open", [==' 
("isis_read", [==' 
("isis_write", [==' 

]; 

~file_name'==]), 
'file_descriptor'==]), 
*file_name'==,==':*Access'==]), 
"file_descriptor'==] ), 
"file_descriptor'==, ==':(num)list'==]) 
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With the preliminary definitions made, the model then defines the type 
of the state parameter for the FTRM as a record containing the following 
information: the number of faulty servers; a function telling whether or not 
each server is faulty; a function giving the list of pending FTRM requests 
made by each client process; a function giving the list of pending ISIS requests 
made by the FTRM process in response to the pending FTRM requests for 
each client process; a function telling for each client process and file descriptor 

whether that client process currently has that file open; a function giving the 

contents of each file on each server; a function giving the security level of 
each client process as it is recorded on each server; and a function giving 
the security level of each file as it is recorded on each server. Some of the 
state-parameter information is abstract and impossible to implement, while 
other information is implemented but assumed not to be faulty in the model, 
and still other information is implemented and modeled as possibly being 

faulty. 

val c_security_data = ty_antiq(==':'Client ->  'Level'==); 

val f_security_data = ty_antiq(==':~file_name ->   'Level'==); 

val  (FTRM_State_Def, FTRM_State)  = 
romrecord 

"FTRM_State" 
C 
(* unimplementable system data *) 

("fault.number", ==':num'==), 
("server.fault", ==':'Server -> bool'==), 

(* implemented, assumed fault-proof, system data *) 

("ftrm_info", ==' 
("isis_request_info", ==' 

("open_info",       ==' 

'Client -> (~FTRM_request)list'==), 
'Client-> (~ISIS_request)list'==), 
'Client -> ~file_descriptor -> bool'==), 

(* implemented, modeled as possibly faulty, system data *) 

("server_files",     ==':'Server -> "files_data'==), 
("server_c_security", ==':'Server -> *c_security_data'==), 

("server_f_security", ==':'Server -> ~f_security_data'==) 

]; 
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Input Events 

The specification next defines the input events to the FTRM model. These 
input events are themselves defined in terms of the concrete recursive type 
FTRM_request, which names the various requests to the FTRM from the 
client processes. An input event is defined as one of three type constructors, 
corresponding to abstract input ports conveying messages to the model. The 
constructors and the interpretations of their arguments follow: 

• Clientlnput conveys a request from a client process to the FTRM. Its 
arguments give the client process and that client's request. 

• Fault describes a failure in a server. Its arguments identify the server 
that fails and give the new values of the files data, the client-process 
security-level data, and the file security-level data for the failed server. 

• Tick describes a modeling artifact for showing the multiprocessing in 
the FTRM. Its argument identifies the client process whose pending 

requests will next be acted on by the FTRM. 

val  (FTRM_InEv_Def, FTRM.InEv) = 
roracontype 

"FTRM_InEv" 
[ 
("Clientlnput", [== :'Client'==, 

== :"FTRM_request'==]), 
("Fault", [== :'Server'==, 

== :~iiles_data'==, 
== :~c_security_data'==, 
== :~f_security_data'==]), 

("Tick", [== :'Client'==]) 

Output Events 

The specification then defines the output events produced by the FTRM. 
These output events are themselves defined in terms of the concrete recursive 
type FTRM_reply, which gives the types of the information appropriate to the 
various client-process requests. An output event is defined as the type con- 
structor ClientOutput, corresponding to a single abstract output port con- 
veying information to the client processes. The arguments to ClientOutput 

177 



identify the client to receive the information and the information this client 
is to receive. 

val  (FTRM_OutEv_Def, FTRM_OutEv) = 
romcontype 

"FTRM_OutEv" 
[("ClientOutput",   [==':'Client'==,==':-FTRM_reply'==])] ; 

Invocations 

The specification next defines the invocations to be used later in defining the 
model of the FTRM process. Invocations are essentially names for calls to 
PSL-valued functions; they are mapped to the PSL processes resulting from 
these calls. Invocations provide a means for overcoming the limitation in 
HOL's def ine_type function that concrete recursive types cannot be defined 
in terms of functions whose values are of the type being defined. 

The invocations name calls to the FTRM model process itself and to the 
function computing the model process' response to input events. All these 
calls include the FTRM state parameter as an argument. 

val (FTRM_Invoc_Def, FTRM.Invoc) = 
romcontype 
"FTRH_Invoc" 
[ 
("FTRM", [==':~FTRM_State'==]), 
("FTRM_Response", [==':"FTRM_State'==, ==':-FTRM InEv'==]) 

]; 

PSL Processes 

The invocations complete the definition of the type of PSL processes appro- 
priate as models for the FTRM. The specification defines the SML variable 
FTRM_Proc as an abbreviation for this type. 

val FTRM_Proc = 
ty_antiq(==': (-FTRM_OutEv,~FTRM_InEv,-FTRM_Invoc) process'==) ; 

7.4.3    Functions Taken as Primitive 

The specification then declares HOL constants for the constants or functions 
taken as primitive in the FTRM model. These functions involve details of the 
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implementation that the model excludes. For convenience in future reference, 
the specification also defines SML variables giving each polymorphic function 
a (possibly variable) type. 

Function client_ext_level assigns each client its true security level, 
independent of any system faults. 

new_constant{Name= "client_ext_level", Ty= ==':'Client ->  'Level'==}; 

val client_ext_level = —'client_ext_level:'Client ->  'Level'—; 

Function dom is the dominance relation on security levels. 

new_constant{Name = "dorn", Ty = ==':'Level ->   'Level -> bool'==}; 

val dom = —'dom:'Level ->  'Level -> bool'—; 

Function f ile_ext_level assigns each file its true security level, inde- 
pendent of any system faults. 

new_constant{Name="file_ext_level",Ty= ==' :~tile_name ->  'Level'==}; 

val file_ext_level = —'iile_ext_level:"file_name ->  'Level'—; 

Constant initial_file_systemgives the initial state of the file system 
for all servers; they all start out the same. 

new_constant{Name =  "initial_file_system",Ty= ==':"files_data'==}; 

val initial_file_system = —'initial_file_system:"files_data'—; 

Constant maxfaults is the maximum number of faults the FTRM is 
assumed capable of handling in the model; the model ignores any additional 
faults. 

new_constant{Name="maxfaiilts" ,Ty= ==' :nunt'==}; 

Function return_close returns a status value for closing a file given a 
file descriptor and files data. 
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new_constant{ 

Name = "return_close", 
Ty= ==':"file_descriptor -> "files_data -> ~Status'==}; 

val return_close = 

— 'return_close: 
"file_descriptor -> *iiles_data ->  "Status'--; 

Function retura_open returns a status value and a file descriptor for 

opening a file given a file name, access type, and files data. 

new_constant{ 
Name = "return.open", 
Ty= ==':~file_name -> 

"Access -> 
~files_data -> 
("Status # *file_descriptor)'==}; 

val return_open = 
—'return_open: 

"file_name -> 
"Access -> 
"files_data -> 
("Status # "file_descriptor)'—; 

Function return_read returns a status value and a list of bytes taken as 
the current contents of the file given a file descriptor and files data. 

new_constant{ 
Name = "return_read", 
Ty= ==':"file_descriptor -> 

"files_data -> 
("Status #  (num)list)'==}; 

val return_read = 
—'return_read: 

"file_descriptor -> 
"files_data -> 
("Status #  (num)list)'—; 

Function return_write returns a status value for writing a file given a file 
descriptor, list of bytes taken as the new contents of the file, and before-write 

files data. 

180 



new_constant{ 
Name = "return_write", 
Ty= ==':~file_descriptor ->  (nura)list -> ~files_data -> "Status'==}; 

val return.write = 
—'return_write: 

*file_descriptor ->  (num)list -> ~files_data -> 'Status' —; 

Constant systemhigh is the highest security level. 

new_constant{Name = "systemhigh", Ty = ==':>Level'==}; 

val systemhigh = —'systemhigh:'Level'—; 

Constant systemlow is the lowest security level. 

new_constant{Name =  "systemlow", Ty = ==':'Level'==}; 

val systemlow = —'systemlow:'Level'—; 

Function vote_f ile_descriptortakes a function mapping servers to file 
descriptor values and returns the value this function assigns to most of the 
servers. 

new_constant{ 
Name = "vote_iile_descriptor", 
Ty = ==':('Server ->  ~file_descriptor) ->  ~file_descriptor'==}; 

val vote_file_descriptor = 
—'vote_file_descriptor: 

('Server ->  "file_descriptor) -> "file_descriptor'—; 

Function vote.level takes a function mapping servers to levels and re- 
turns the level this function assigns to most of the servers. 

new_constant{ 
Name = "vote_level", 

Ty = ==':('Server -> 'Level) -> 'Level'==}; 

val vote_level = —'vote_level: ('Server -> 'Level) -> 'Level'—; 

Function vote_num_list takes a function mapping servers to lists of bytes 
and returns ihe list this function assigns to most of the servers. 
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new_constan.t{ 
Name = "vote_num_list", 
Ty = ==':('Server ->  (num)list)  ->  (num)list'==}; 

val vote_num_list = 
—<vote_num_list:  ('Server -> (num)list) ->  (num)list' —; 

Function vote.status takes a function mapping servers to Status values 
and returns the value this function assigns to most of the servers. 

new_constant{ 
Name = "vote_status", 
Ty = ==':('Server -> "Status) ->  "Status'==}; 

val vote.status = --'vote.status:('Server ->  "Status) -> "Status'—; 

7.4.4    Assumptions for Primitive Functions 

The specification next states assumed properties of the constants and func- 
tions taken as primitive in the FTRM model. 

The first several assumptions simply assert obvious defining properties of 
the lowest and highest security levels and the dominance relation on security 

levels. 

new_open_axiom( 
"systemlow_low", 
—'«1:'Level, dom 1 systemlow'—); 

new_open_axiom( 
"systemhigh_high", 
—'!1:'Level, dorn systemhigh 1'—); 

new_open_axiom( 
"dom_reilexive", 
~'!1: 'Level,  dom 1 l'~); 

new_open_axiom( 
"dom_transitive", 
--'!(11:'Level) 12 13. 

((dom 11 12)  A  (dom 12 13))  ==>  (dom 11 13)'—); 

The next assumption asserts of the initial file system that for all file 
addresses, every address is either not the address of a valid file (modeled by 
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saying that the file at that address is "corrupted") or that the file is not 

open. 

new_open_axiom( 
"initially_all_files_closed", 
—*!fa. 

(corrupted (initial_file_system fa)) V 
"(isopen (initial_file_system fa))'—); 

The next assumptions say the return_close, return.open, return_read, 

and return.write functions work as expected: 

• If return.close returns success for attempting to close a file given by 
a file descriptor, then the access in that descriptor is not none, the file 
address in the descriptor is a valid file address, and the file addressed 

was open when return_close was called. 

• If return_open returns success and a file descriptor, the access in the 
file descriptor is the access requested, the address in the file descriptor 
is a valid file address, the address is the address of the file requested, 
and the file requested was not already open when return_open was 

called. 

• If return_read returns success and a file contents for a file descriptor, 
the access in that descriptor was for reading or reading and writing, 
the address in the descriptor is a valid address of an open file, and the 
file contents returned are the contents of this file. 

• If return_write returns success for a file descriptor and new file con- 
tents, the access in that descriptor was for writing or reading and writ- 
ing, and the address in the descriptor is a valid address of an open file. 
(The actual contents of the file are changed later, after return.write 

completes.) 

new_open_axiom( 
"return_close_valid", 
~'!fd files. 

(~return_close fd files = success) ==> 
("(descriptor_access fd = none) A 
"(corrupted (files (descriptor_address fd))) A 
(isopen (files (descriptor_address fd))))'—); 
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new_open_axiom( 
"return_open_valid", 
—'Ifname access files fd. 

("return_open fname access files =  (success,fd)) ==> 
((descriptor_access fd = access) A 
"(corrupted (files (descriptor_address fd))) A 
((hasname (files (descriptor_address fd))) = fname) A 
"(isopen (files (descriptor_address fd))))'—); 

new_open_axiom( 
"return_read_valid", 
--'!fd files nlist. 

(~return_read fd files =  (success,nlist)) ==> 
(((descriptor_access fd = read)  V 

(descriptor_access fd = read_write)) A 
"(corrupted (files  (descriptor_address fd))) A 
(isopen (files  (descriptor_address fd)))  A 
(nlist = contents  (files  (descriptor_address fd))))'—); 

new_open_ax iom( 
"return_write_valid", 
—'!fd nlist files. 

("return_write fd nlist files = success) ==> 
(((descriptor_access fd = write)  \/ 

(descriptor_access fd = read_write))  A 
"(corrupted (files  (descriptor_address fd))) A 
(isopen (files  (descriptor_address fd))))'—); 

The final assumption says that all the voting functions work correctly, 
and if a status, file descriptor, file contents, or security level are voted on 
after querying all servers — when the total number of failed servers is less 
than maxfaults — then the voted value will be the value returned by an 

unfailed server. 

new_open_axiom( 
"vote_results_valid", 
—'!(state:~FTRM_State) f c fd ac nlist. 

let goodserver =  (Qgs.   "(server_fault state gs))  in 

(fault_number state <= maxfaults) ==> 
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( 
(vote_status 

(\server. ~return_close fd (server_files state server)) = 

(~return_close fd (server_files state goodserver))) /\ 

(vote_status 

(\server. 
FST (~return_open f ac (server_files state server))) = 

FST (~return_open f ac (server_files state goodserver))) A 

(vote_status 

(\server. 
FST (~return_read fd (server_files state server))) = 

FST (~return_read fd (server_files state goodserver))) A 

(vote_status 

(\server. 
~return_write fd nlist (server_files state server)) = 

(~retura_write fd nlist (server_files state goodserver))) A 

(vote_file_descriptor 

(\server. 

SND (*return_open f ac (server_files state server))) = 

SND ("return.open f ac (server_files state goodserver))) A 

(vote_num_list 

(\server. 

SND (~return_read fd (server_files state server))) = 

SND ("return_read fd (server_files state goodserver))) A 

(vote_level (\server. server_c_security state server c) = 

server_c_security state goodserver c) A 

(vote_level (\server. server_f.security state server f) = 

server_f„security state goodserver f) 

7.4.5     Security-Level Assignments 

The specification then defines the functions assigning security levels to input 
and output events. Intuitively, the level of an input event from, or an output 
event to, a client process is the level of the client process sending or receiving 
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the event. A fault event is given level systemhigh, for reasons previously 
explained. A Tick event advancing the state of a client process' requests is 
given the level of that client process. 

The specification uses new_recursive_def inition, which defines func- 
tions on concrete recursive types. One of its arguments, rec_axiom, is the 
theorem giving an abstract characterization of the concrete recursive type 
over which the function is being defined. 

new_recursive_definition { 
name = "FTRH_InLevel", 
fixity = Prefix, 
rec_axiom = FTRH_InEv_Def, 
def = 
let 
val FTRM_InLevel = 

—'FTRM_InLevel:"FTRM_State -> *FTRH_InEv ->   'Level'--; 
in 
 X 

("FTRM_InLevel state (Clientlnput c request) = 

("client_ext_level c)) A 

("FTRH_InLevel state (Fault serv fdata csdata fsdata) = 

'systemhigh) A 

("FTRH.InLevel state (Tick c) = 
(*client_ext_level c)) 

f  

end}; 

new_recursive_definition { 

name = "FTRH_OutLevel", 

fixity = Prefix, 

rec_axiom = FTRM_OutEv_Def, 

def = 

let 
val FTRM_OutLevel = 
—'FTRM_OutLevel:~FTRM_State -> "FTRM_OutEv -> 'Level'--; 

in 
 t 

("FTRH_OutLevel state (ClientOutput c reply) = 

(~client_ext_level c)) 
t  

end}; 
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7.4.6     Projection Function 

The specification then defines the projection function, a function of a secu- 
rity level and an FTRM state parameter. The projection's value at a level 
and a state parameter is the state parameter containing all, but only, the in- 
formation necessary to produce the FTRM's future behavior visible at that 
level. Intuitively, for every level except systemhigh, the projection removes 
any evidence of failures and any client process or file whose level is not dom- 
inated by that level; for any level except systemhigh, the number of faults 
is 0, no server is faulty, no FTRM or ISIS requests are pending from any 
client whose level is not dominated by that level, every existing file has a 
level dominated by that level and has the same contents on all servers that 
it has on a non-faulty server, and level information for all existing files and 
client processes is correct on all servers. 

The specification uses several of the record-entry access functions defined 
by earlier calls to romrecord. 

new_def init ion ( 
"FTRM.Proj ection", 
let 
val FTRM_Projection = 
—'FTRM_Projection:'Level -> ~FTRM_State -> ~FTRM_State' —; 

val server = —'server:'Server'—; 
in 
 ( 

"FTRM_Projection level state = 

((level = systemhigh) => 

state 

I 
(let proj_fault_number = 0 in 

let proj_server_fault "server = F in 

let proj_ftrm_info c = 

(dom level (client_ext_level c)) => 

(itrm_inio state c) 

I 
□ in 

let proj_isis_request_inio c = 

(dom level (client_ext_level c)) => 
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(isis_request_info state c) 
I 
[]  in 

let proj_open_info c fd = 
(dom level (client_ext_level c))  => 
(open_info state c fd) 

I 
F in 

let proj_server_files "server fa = 

("(corrupted (server_files state server fa)) A 

(dom 

level 

(file_ext_level 
(hasname (server_files state server fa))))) => 

(server_files 

state 
(Qgoodserver. "(server_fault state goodserver)) 

fa) 

I 
(update_corrupted T (server_files state server fa)) in 

let proj_server_c_security "server c = 

(dom level (~client_ext_level c)) => 

(client_ext_level c) 

I 
"systemlow in 

let proj_server_f„security "server f = 

(dom level (file_ext_level f)) => 
(file_ext_level f) 

I 
"systemhigh in 

Make_FTRM_State 
proj_fault_number 

proj_server_fault 

proj_ftrm_info 

proj_isis_request_info 

proj _open_ inf o 

proj_server_files 
proj_server_c_security 

proj_server_f.security)) 
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end); 

7.4.7    Invariant 

The specification next defines the invariant, a predicate to be shown by 
induction to be true of every state parameter attained by the FTRM model 
process. The invariant serves as an optional, useful induction hypothesis 

about the FTRM state parameter. 
Intuitively, the invariant says the following: the total number of faulty 

servers is no more than maxf aults; the file-contents, client-security, and file- 
security information on all non-faulty servers is the same; and that for all 
servers, if a client process has a file open and that file has not been corrupted 
by a fault then 1) if the file is open for read access, the level of the server 
process dominates the level of the file, 2) if the file is open for write access, 
the level of the file dominates the level of the server process, and 3) if the 
file is open for read and write access, the levels of the server process and file 
are equal. Note that maintaining this invariant requires guaranteeing that 
faults cannot rename files or shift files so that a file descriptor for one file 
becomes the file descriptor for a different file. This condition is enforced by 
the specification later in its handling of fault events. 

ne¥_definition( 
"FTRM_Invariant", 
let 
val FTRM_Invariant = —'FTRM_Invariant:~FTRM_State -> bool'—; 

in 
 t 

~FTRM_Invariant state = 

((fault_number state) <= maxfaults) A 

(!sl s2 fa f c. 
C(server_fault state si) A 
"(server_fault state s2)) ==> 
((server_files state si fa = 
server_files state s2 fa) A 
(server_c_security state si c = 
server_c_security state s2 c) A 
(server_f_security state si f = 
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server_f_security state s2 f))) A 

(!s c f fd. 

((open_info state c fd) A 

"(corrupted 

((server_files state s) (descriptor_address id))) A 

(f = (hasname 
((server_files state s) (descriptor_address fd))))) ==> 

("(descriptor_access fd = none) A 

((descriptor_access fd = read) => 
("dom (client_ext_level c) (file_ext_level f)) 

I 
(descriptor_access fd = write) => 

("dom (file_ext_level f) (client_ext_level c)) 

(("client_ext_level c) = (*file_ext_level f))))) 

end) ; 

7.4.8    Initial State Parameter 

The specification next defines the initial value of the FTRM state parameter: 
no faults, no pending FTRM requests, no pending ISIS requests, no files open 
for any client, files on all servers as in initial_f ile_system, and all security 
data on all servers correct. 

new_def init ion( 
"FTRM_InitPara^l*,, 
let 
val FTRM_InitParam = ~'FTRM_InitParam: ~FTRM_State'~; 

in 
 t 

~FTRM_InitParam = 

Make_FTRM_State 
0 
(\s.   F) 
(\c   []) 
(\c.   D) 
(\c fd.   F) 
(\s. initial_file_system) 
(\s c. client_ext_level c) 
(\s f. file_ext_level f) 

190 



end); 

7.4.9    Invocation Interpretations 

The specification then gives the core of the model, the interpretations of the 
invocations of the FTRM server process and the function giving the model's 
response to input events. The function FTRM_InvocVal, defined last, asserts 
that functions f trm and f trmResponse are called from PSL processes via the 
invocations FTRM and FTRM.Response, respectively. The specification works 
up to the definition of FTRM_InvocVal, first defining the f trmResponse sub- 
routines dof trmrequest and doisisrequest, which define the processing of 
client FTRM requests and pending ISIS requests, respectively. The specifica- 
tion then defines f trmResponse and f trm, and finally defines FTRM_InvocVal. 
The functions doftrmrequest and doisisrequest contain most of the de- 
tails of the model of the FTRM process. 

Function doftrmrequest 

The function doftrmrequest gives the FTRM response to each possible re- 
quest from a client process. It is defined using new_recursive_def inition, 
over the concrete-recursive type FTRM_request. 

The initial lines of the doftrmrequest definition name the function, pro- 
vide the appropriate theorem giving an abstract characterization of the func- 
tion's domain, and define a local SML variable that gives type information 
for the polymorphic function being defined. 

new_recursive_definition { 
name = "doftrmrequest", 
fixity = Prefix, 
rec_axiom = FTRM_request_Def, 
def = 
let 
val doftrmrequest = 
—'doftrmrequest: 

"FTRM_State ->   'Client 
in 

-> ~FTRM_request ->  *FTRH_Proc'- 
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For an FTRM close request, the FTRM sends an appropriate failure 
notification and has no further effect if the request attempts to close a file 
that the requesting client does not have open. Otherwise, the FTRM puts the 
request on the end of the queue of the client process' pending FTRM requests 
and puts an ISIS close request on the end of the queue of its pending ISIS 
requests. 

("doftrmrequest state client  (request_close fd)  = 

(If 
("(open_info state client fd)) 
((Send (ClientOutput client  (reply_close failure)))   ;; 
(Call  (FTRM state))) 

(Call 
(FTRM 

(let new_ftrm_info c = 
(c = client) => 

(SNOC  (request_close fd)   (ftrm_info state c)) 
I 
(ftrnt_info state c)  in 

let new_isis_request_info c = 
(c = client) => 

(SNOC  (isis_close fd)   (isis_request_info state c)) 
I 
(isis_request_info state c)   in 

(update_ftrm_info new_ftrm_info 
(update_isis_request_info new_isis_request_info 

state))))))) A 

For an FTRM open request, the FTRM puts the request on the end of 
the queue of the client process' pending FTRM requests and puts an ISIS 
check request on the end of the queue of its pending ISIS requests. The ISIS 
check request is made first, to query all servers about the security levels of 
the client and the requested file before allowing the open request to proceed. 

('doftrmrequest state client  (request_open fname ac)  = 
(Call 

(FTRM 
(let new_ftrm_info c = 

(c = client)  => 
(SNOC  (request_open fname ac)   (ftrm_info state c)) 
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(ftrm_info state c)  in 

let new_isis_request_info c = 
(c = client) => 

(SNOC 
(isis_ch.eck fname) 
(isis_request_info state c)) 

I 
(isis_request_info state c)  in 

(update_ftrm_info new_ftrm_info 
(update_isis_request_info new_isis_reqnest_info 

state)))))) A 

For an FTRM read request, the FTRM sends an appropriate failure 
notification and has no further effect if the request attempts to read a file 
that the requesting client does not have open. Otherwise, the FTRM puts the 
request on the end of the queue of the client process' pending FTRM requests 
and puts an ISIS read request on the end of the queue of its pending ISIS 
requests. 

("doftrmrequest state client (request_read fd) = 
(If 

(~(open_info state client I'd)) 
((Send (ClientOutput client  (reply_read failure  [])))   ;; 
(Call  (FTRM state))) 

(Call 
(FTRM 

(let new_ftrm_info c = 
(c = client) => 

(SNOC  (request_read fd)   (ftrm_info state c)) 
I 
(ftrm_info state c)   in 

let new_isis_request_info c = 
(c = client)  => 

(SNOC  (isis_read fd)   (isis_request_info state c)) 
I 
(isis_request_info state c)  in 

(update_ftrm_info new_ftrm_info 
(update_isis_request_info new_isis_request_info 

state))))))) A 
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For an FTRM write request, the FTRM sends an appropriate failure 
notification and has no further effect if the request attempts to write to a file 
that the requesting client does not have open. Otherwise, the FTRM puts the 
request on the end of the queue of the client process' pending FTRM requests 
and puts an ISIS write request on the end of the queue of its pending ISIS 

requests. 

("doftrmrequest state client  (request_write fd nlist)  = 

(If 
("(open_info state client fd)) 
((Send (ClientOutput client  (reply_write failure)))   ;; 
(Call  (FTRM state))) 

(Call 
(FTRM 

(let new_ftrm_info c = 
(c = client) => 

(SNOC 
(request_write fd nlist) 
(ftrm_info state c)) 

I 
(ftrm_info state c)  in 

let new_isis_request_info c = 
(c = client)  => 

(SNOC 
(isis_write fd nlist) 
(isis_request_info state c)) 

I 
(isis_request_info state c)   in 

(update_ftrm_info new_ftrm_info 
(update_isis_request_info new_isis_request_info 

state))))))) 

The final lines of the dof trmrequest definition simply end the definition. 

c  

end}; 

Function doisisrequest 

The function doisisrequest gives the processing of each ISIS request and 
how the result of that processing is used to update the queue of pending 
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FTRM requests, in response to a Tick input event. It is denned using 
new_recursive_def init ion,over the concrete-recursive type ISIS_request. 

Before getting into the definition of doisisrequest proper, the specifica- 
tion defines two SML abbreviations and a convenience function used in this 
definition. The SML variables faildescriptor and f ailcontents have as 
values the file descriptor or file contents returned to requests for a file de- 
scriptor or file contents when these requests fail. The convenience function 
requestedaccess extracts the access requested by an FTRM open request, 
and otherwise has request value none. 

val faildescriptor = —'Make_file_descriptor 0 none'—; 

val failcontents = —'[]:(mim)list'—; 

new_recursive_definition { 
name = "requestedaccess", 
fixity = Prefix, 
rec_axiom = FTRM_request_Def, 
def = 
let 
val requestedaccess = 

—'requestedaccess:"FTRM_request -> "Access'—; 

in 
 t 

("requestedaccess (request_close fd) = none) A 
("requestedaccess (request_open fname access) = access) A 

("requestedaccess (request_read fd) = none) A 

("requestedaccess (request_write fd nlist) = none) 
(  

end}; 

In understanding the definition of doisisrequest, it is necessary to an- 
ticipate the definition of ftrmResponse and the Tick processing in it be- 
fore doisisrequest is called. This processing produces an intermediate 
value of the FTRM state parameter by removing the ISIS request at the 
head of the Tick client's queue of pending ISIS requests. After this process- 
ing, ftrmResponse calls doisisrequest with this intermediate value of the 
FTRM state parameter, the Tick client, and the ISIS request removed from 
the head of this client's ISIS queue. 

The initial lines of the doisisrequest definition name the function, pro- 
vide the appropriate theorem giving an abstract characterization of the func- 
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tion's domain, and define a local SML variable that gives type information 

for the polymorphic function being defined. 

new_recursive_definition { 
name = "doisisrequest", 
fixity = Prefix, 
rec_axiom = ISIS_request_Def, 
def = 
let 
val doisisrequest = 
—'doisisrequest: 

~FTRM_State ->  'Client -> *ISIS_request -> ~FTRM_Proc'—; 
in 

For an ISIS check request, the FTRM sends an appropriate failure no- 
tification and has no further effect if the requesting client has no pending 
FTRM requests or if its top-of-queue request is not an open request asking 
for some access. Otherwise, the check request is carried out, and informa- 
tion on the security levels of the requesting client and the requested file is 
returned by all servers. The FTRM then votes on the values returned by the 

servers, obtaining the majority responses for these levels. 
If the majority-value levels indicate that the request is invalid — the 

client level does not dominate the file level for read access, the file level does 
not dominate the client level for write access, or the levels are not equal for 
read and write access — the FTRM removes the top-of-queue open request 
from the queue and sends an appropriate failure message. 

If the request is valid, the FTRM puts a new ISIS request, an open 
request for the requested access, on the head of the requesting client's queue 
of pending ISIS requests. This placement guarantees that the correspondence 
between this ISIS open request and the top-of-queue FTRM open request is 
always maintained; if the ISIS request was placed at the end of the queue, it 
could be incorrectly associated with new FTRM requests that come in from 
the requesting client before the next Tick event for this client. 

("doisisrequest istate client  (isis_check fname)  = 
(If 

((ftrm_info istate client = []) V 

(requestedaccess (HD (ftrm_info istate client)) = none)) 

(Call (FTRM istate)) 
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(If 
(let ac = 

requestedaccess (HD (ftrm_info istate client)) in 

let clev = 
vote_level (\s. server_c_security istate s client) in 

let flev = 
vote_level (\s. server_f_security istate s fname) in 

((ac = read) A "(dom clev flev)) \/ 

((ac = write) /\ "(dom flev clev)) V 
((ac = read_write) /\ "(flev = clev))) 

(* case when open request is invalid *) 

(let new_ftrm_info c = 
(c = client) => 

(TL (ftrm_info istate c)) 

i 
(ftrm_info istate c) in 

(Send 

(ClientOutput 

client 

(reply_open failure "faildescriptor)));; 

(Call (FTRM (update_ftrra_info new_ftrm_info istate)))) 

(* case when open request is valid *) 

(let ac = 

requestedaccess (ED (ftrm_info istate client)) in 

let new_isis_request_info c = 

(c = client) => 

(CONS 

(isis_open fname ac) 

(isis_request_info istate c)) 

I 
(isis_request_info istate c) in 

(Call 

(FTRM 

(update_isis_request_info 
new_isis_request_info istate))))))) A 

For an ISIS close request, the ISIS request is carried out, and the in- 
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dividual servers' responses as to whether the close succeeded are gathered. 
(A close attempt might fail on a server, for instance, if the server crashed.) 

Whether or not the voted status value is success, the FTRM removes the 
top-of-queue FTRM close request and reports the voted status to the client. 
If the voted value is success, the FTRM resets the client's open_inf o value 

to indicate that it no longer has the closed file open. 

("doisisrequest istate client (isis_close fd) = 
let st = 
vote_status 
(\s.  return_close fd  (server_files istate s))  in 

let new_ftrm_info c = 
(c = client) => 

(TL (ftrm_info istate c)) 
I 
(ftrm_info istate c) in 

let new_open_info c arbfd = 
((c = client) A (arbfd = fd)) => 
F 

I 
(open_info istate c arbfd) in 

(Send (ClientOutput client (reply_close st))) ;; 

(Call 
(FTRM 

((st = failure) => 
(update_ftrm_info new_ftrm_info istate) 

I 
(update_ftrm_info new_ftrm_info 
(update_open_info new_open_info istate)))))) A 

For an ISIS open request, the ISIS request is carried out, and the indi- 
vidual servers' responses as to whether the open succeeded and if so what 
file descriptor was returned are gathered. The FTRM evaluates the major- 
ity values of the status and the file descriptor. If the voted status value is 
failure, the FTRM sends an appropriate failure message with a dummy 
"failed" file descriptor and removes the top-of-queue FTRM open request. If 
the voted status value is success, the FTRM sends an appropriate success 
message with the voted file descriptor and resets the client's open_inf o value 
to indicate that it now has the opened file open, resets the server_f iles 
value to show that the opened file is open, and removes the top-of-queue 

FTRM open request. 

198 



("doisisrequest istate client (isis_open fname ac) = 

let st = 
vote_status 

(\s. 
FST (return_open fname ac (server_files istate s))) in 

let fd = 

vote_file_descriptor 

(\s. 
SND (retum_open fname ac (server_files istate s))) in 

let new_ftrm_info c = 

(c = client) => 

(TL (ftrm_info istate c)) 

I 
(ftrm_info istate c) in 

let new_open_info c arbfd = 
((c = client) A (arbfd = fd)) => 

T 

I 
(open_info istate c arbfd) in 

let new_server_files s fa = 
(fa = descriptor_address fd) => 

(update_isopen T (server_files istate s fa)) 

I 
(server_files istate s fa) in 

(If 
(st = failure) 

(Send 

(ClientOutput 

client 
(reply_open failure ~faildescriptor))) 

(Send (ClientOutput client (reply_open success fd)))) ;; 

(Call 

(FTRM 

((st = failure) => 
(update_ftrm_info new_ftrm_info istate) 

I 
(update_ftrm_info new_ftrm_info 
(update_open_info new_open_info 
(update_server_files new_server_files istate))))))) /\ 

For an ISIS read request, the ISIS request is carried out, and the indi- 
vidual servers' responses as to whether the read succeeded and if so what file 
contents were returned are gathered. The FTRM evaluates the majority val- 
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ues of the status and the file contents. If the voted status value is failure, 
the FTRM sends an appropriate failure message with a dummy "failed" file 
contents, but otherwise sends an appropriate success message with the voted 
file contents. In either case, it then removes the top-of-queue FTRM read 

request. 

("doisisrequest istate client  (isis_read fd)  = 
let st = 
vote_status 
(\s.  FST (return_read fd (server_files istate s)))  in 

let nlist = 
vote_num_list 
(\s.  SND  (return.read fd  (server_files istate s)))   in 

let new_ftrm_info c = 
(c = client)  => 

(TL (ftrm_info istate c)) 
I 

(ftrm_info istate c)   in 

(If 
(st = failure) 
(Send 

(ClientOutput 
client 
(reply_read failure "failcontents))) 

(Send (ClientOutput client  (reply_read success nlist))))   ;; 
(Call  (FTRM (update_ftrm_info new_ftrm_info istate))))  A 

For an ISIS write request, the ISIS request is carried out, and the in- 
dividual servers' responses as to whether the write succeeded are gathered. 
The FTRM evaluates the majority value of the status. If the voted status 
value is success, the FTRM changes the file contents of the file written on 
all servers, and otherwise leaves it unchanged on all servers. In either case, 
it returns the voted status value and removes the top-of-queue FTRM write 
request. 

Note that this specification ignores the effect of a write request on failed 
servers, and assumes that files on failed servers are updated when then are 
updated on non-failed servers. This is unrealistic, but acceptable for the 
model because it treats the information on failed servers as meaningless. 

("doisisrequest istate client  (isis_write fd nlist)  = 
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let st = 

vote_status 

(\s. return.write fd nlist (server_files istate s)) in 

let new_ftrm_info c = 

(c = client) => 

(TL (ftrm_info istate c)) 

I 
(ftrm_info istate c) in 

let new_server_files s fa = 
(fa = descriptor_address fd) => 

(update_contents nlist (server_files istate s fa)) 

I 
(server_files istate s fa) in 

(Send (ClientOutput client (reply_close st))) ;; 

(Call 

(FTRM 

((st = failure) => 

(update_ftrm_info new_ftrm_info istate) 

I 
(update_ftrm_info new_ftrm_info 
(update_server_files new_server_files istate)))))) 

t  

end}; 

Function ftrmResponse 

The function ftrmResponse gives the response of the FTRM model process 
to an arbitrary input event. 

The initial lines of the ftrmResponse definition name the function, pro- 
vide the appropriate theorem giving an abstract characterization of the func- 
tion's domain, and define a local SML variable that gives type information 
for the polymorphic function being defined. 

new_recursive_definition { 
name = "ftrmResponse", 
fixity = Prefix, 
rec_axiom = FTRM_InEv_Def, 
def =• 
let 
val ftrmResponse = 
—'ftrmResponse:~FTRM_State ->  "FTRM_InEv ->  "FTRM_Proc'~; 

in 
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For a Clientlnput input, ftrmResponsejust calls doftrmrequest with 
the current state parameter, the requesting client, and the request. 

("ftrmResponse state (Clientlnput client request) = 
(doftrmrequest state client request)) A 

For a Fault input, ftrmResponse ignores the input if the current fault 
number is already maxf aults — the model does not consider the possibility 
of a greater number of faults. Otherwise, ftrmResponse updates the state 
parameter to increment the number of faults, notes that the faulted server is 
now faulty, and updates the values stored on that server to the values given in 
the fault event. There are the following exceptions, though: ftrmResponse 
makes no changes to the information on a server for files that would uncorrupt 
a corrupted file or rename an existing file. 

("ftrmResponse state  (Fault serv fdata csdata fsdata)  = 
(Call 

(FTRM 
((fault_number state = maxfaults) => 

state 
I 
(let new_fault_number =  (fault_number state)  +  1  in 

let new_server_fault s = 
(s = serv)  => 

T 
I 
(server_fault state s) in 

let new_server_files s fa = 

(s = serv) => 

((corrupted (fdata fa)) => 
(fdata fa) 

I 
(corrupted (server_files state s fa)) => 

(server_files state s fa) 

I 
((hasname (fdata fa)) = 

(hasname (server_files state s fa))) => 

(fdata fa) 
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(server_files state s fa)) 

I 
(server_files state s fa) in 

let new_server_c_security s = 

(s = serv) => 

csdata 

I 
(server_c_security state s) in 

let new_server_f.security s = 

(s = serv) => 

fsdata 

I 
(server_f_security state s)  in 

let newserverfiles s = 
(s = serv)  => 

fdata 
I 

(server_files state s)  in 

Make_FTRH_State 
new_fault„number 
new_server_fault 
(ftrm_info state) 
(isis_request_info state) 
(open_info state) 
new_server_files 
new_server_c_security 
new_server_f_security))))) /\ 

For a Tick input, f trmResponse ignores the input if the client named 
by the event has no pending ISIS requests. Otherwise, it computes an inter- 
mediate value of the FTRM state parameter in which the top-of-queue ISIS 
request for this client has been removed and calls doisisrequest with this 
intermediate state parameter, the Tick client, and the ISIS request removed 
from the top is its ISIS-request queue. 

("ftrmResponse state  (Tick client)  = 
(If 

(isis_request_info state client =  []) 
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(Call  (FTRM state)) 
(let new_isis_request_info c = 

(c = client)  => 
(TL  (isis_request_info state c)) 

I 
(isis_request_info state c)  in 

let istate = 
update_isis_request_info new_isis_request_info state in 

doisisrequest 
istate 
client 
(HD  (isis_request_info state client))))) 

The final lines of the f trmResponse definition simply end the definition. 

end}; 

Function ftrm 

The function ftrm gives the top-level description of the FTRM model pro- 
cess. It is simple: the process waits for an arbitrary input event, then invokes 
FTRM_Response to determine its response as a function of its state param- 
eter and this input event. (The Receive PSL command supplies the input 
event received, implicitly taken off a buffer, as an parameter to the function 

invoked.) 

new_def init ion( 
"ftrm", 
let 
val ftrm = —'ftrm:~FTRM_State -> ~FTRM_Proc' —; 

in 

"ftrm state = 
(Receive (\ev:~FTRM_InEv. T) (FTRM.Response state)) 

end); 

Function FTRM-InvocVal 

The function FTRM_InvocVal maps every invocation to the corresponding 
value of a PSL-valued function, mapping the invocation constructor FTRM 
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to the function f trm and the invocation constructor FTRM_Response to the 

function f trmResponse. 

new_recursive_definition { 
name = "FTRM_InvocVal", 
fixity = Prefix, 
rec_axiom = FTRM_Invoc_Def, 
def = 
let 
val FTRM_InvocVal = 
~'FTRM_InvocVal:"FTRM_Invoc -> ~FTRM_Proc' — 

in 
 < 

("FTRM_InvocVal (FTRH state) = 

(ftrm state)) /\ 

(~FTRM_InvocVal (FTRM_Response state inev) = 

(ftrmResponse state inev)) 
t  

end}; 

7.4.10    Saving the Theory 

The following lines write the theory of the FTRM model just constructed to 
disk and cause HOL90 to exit. 

export_theory(); 
exitQ; 

7.5    Proofs 

Because of a lack of time, we did not complete any proofs that the FTRM 
model is restrictive or has security properties that will help to establish that 
it is restrictive. We do believe, however, that it would be reasonably easy to 
show that the FTRM model is a server process and that its output events 
in response to arbitrary input events are at security levels that dominate the 
levels of these input events. 
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Chapter 8 

The Real-Time Scheduling 
Model 

8.1     Introduction 
The purpose of this model is to explore some aspects of service assurance 
requirements for hard real-time systems. It is an illustrative example of how 
Romulus can be used to specify state machines with timing information, and 
how such timed state machines can be used to model real-time systems. In 
this example, the real-time system is required to schedule two representative 
tasks similar to those handled by the Operational Flight Program (OFP) of 

the A-7E Navy aircraft: 

• a periodic task, which repeatedly performs some task, for example, up- 
dating a navigational database with the current position of the aircraft, 

and 

• a sporadic task, which is initiated at the request of the pilot to perform 

some task, for example, firing a missile. 

These tasks must be executed (on a single processor, in this example) in such 
a way that the service assurance requirements of both are met. 

A hard real-time system is one designed to meet requirements not only 
on what actions it performs, but also when it performs them. Such a system 
must schedule processes to perform tasks that are time-critical (i.e., they 

must be performed in a "timely" fashion). 
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In the context of a hard real-time system, service assurance properties 
relate to the timeliness of time-critical tasks and are expressed as constraints 
on the timing of processes. Timing constraints can of course be arbitrarily 
complex. However, in this notoriously difficult (and hazardous) field, there 
have evolved certain useful models of processing and their hard real-time 
requirements. These models are both general and powerful enough to deal 
with a wide variety of real-time processing needs, in particular for avionics 
processing. They are also simple enough to admit full analysis and safe 
implementation. 

Two real-time scheduling algorithms were considered for this example. 
Liu and Layland [12] examine the earliest deadline scheduling algorithm: at 
every time unit, the process with the earliest deadline is executed. Later 
work on the Romulus project [16] developed an extension of these results to 
allow a finer analysis of scheduling problems. We also mention that on a 
related topic, earlier Romulus work [9] outlined a temporal logic approach 
to analyzing real-time concurrent systems and scheduling problems, though 
this did not involve PSL process specifications in the traditional Romulus 
style. However, the earliest deadline algorithm requires that all processes 
be periodic, and that their deadlines must be the same as their periods. 
The first limitation can be overcome by using a transformation technique 
described in [17], which maps a scheduling problem involving periodic and 
sporadic processes into another problem involving periodic processes only. 
Then, if the latter problem has a solution, the original one does, and the 
solution to the original problem can be derived. 

The second limitation is more serious. Because of it, we have decided 
to use the scheduling algorithm Teixeira presents in [23]. This is the static 
priority interrupt scheduling algorithm, in which each process is assigned a 
priority, and, at every time unit, the process with the highest priority is 
run. This algorithm works for both periodic and sporadic processes, and 
does not have the restriction that process deadlines are the same as their 
periods. While this flexibility has a price — lower processor utilization — 
Teixeira observes that this is outweighed, in many applications, by the ease 
of implementation and efficiency of the algorithm. 

For further discussion of the service assurance theory, see Volume II of 
the Romulus Documentation Set. 
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8.2    Description of the Model 

In the type of model used in this example, there is one processor, and a set 
of processes M. A task TeM may be either periodic or sporadic. Processor 
time is divided into integral time units, and all processes are independent, 
i.e., there are no inter-process synchronization requirements. Processes are 
also interruptible; a process need not be run to completion before another is 

begun. 
Each task T; = (c,-,dt-,p;) eM has three parameters: c,-, the computation 

time, di, the deadline by which the task must be completed, and pt-, the 
period. If the task is periodic, then it is requested at time kpi for every 
non-negative integer k. If the task is sporadic, then it can be requested at 
any time, but two consecutive requests must be at least pi time units apart. 
Each task also has an associated priority, and the tasks are numbered so that 
if i < j, the priority of Tt- is greater than that of Tj. No two processes have 

the same priority. 
All time parameters are non-negative integers, and for all tasks, 0 < c, < 

di < Pi- The utilization factor of a task is c,/p;, and we consider only those 
sets of tasks in which the sum of utilization factors is less than or equal to 
1 (i.e., the number of processors). Thus, the period of each task must be at 

least 2 if there is more than one task in M. 
A service assurance requirement for a task T{ = (c,-,c?.-,pt), is, then, that 

after each request at time t, the task is finished at or before time t-\- d{. 
In this example, there are two processes: 

• 

• 

The trigger is a sporadic task Ta = (ci,^i,Pi), which fires a missile 
when requested. 

The updater is a periodic task T2  =  (c2,d2,p2), which updates the 
navigational database every p2 time units. 

As the task numbers indicate, the trigger task has a higher priority than 

the updater task. 
At each time unit, the process with the higher priority is selected to run. 

The updater task is requested to run by the scheduler, every p2 time units. 
The trigger task is requested to run when a "trigger" input event is received. 

With the static priority interrupt algorithm, an additional restriction (the 
latency restriction) is placed on the task parameters to ensure that both 
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processes meet their deadlines. The function CPU is defined as: 

CPU (i, i) = {t DIV pi) * a + MIN (ct, t MOD Pi) 

This function gives the maximum amount of CPU time that task i will use 
in the interval [0... i\. The maximum amount of time is used when the task 
is requested as often as possible; in each period p; the amount of CPU time 
used will be c,-, and in the remaining partial period, the amount of CPU 
time used will be the minimum of a and the remainder of t DIVp;. For 
the updater process, the latency restriction is that the amount of latency 
(d2 - c2) is greater than or equal to the maximum amount of CPU time that 
the trigger process might require before the deadline of the updater process 

is reached: 
d2>c2 + CPV(d2,l) 

It should be noted that only scheduling is modeled in this example. The 
updater and trigger processes are treated as "black boxes;" the only infor- 
mation that is known about them is their task parameters, and that they 
are independent. It is certainly possible to add more details about these 
processes, for example, specifications fo what the processes actually do, but 
this information is not relevant to the proof that the scheduling meets all 

deadlines. 

8.3    The HOL Model 

This section contains and describes the Standard ML code for a formal de- 
scription of the scheduler model in PSL. The scheduler is a PSL server process 
which receives an input event at the beginning of each time unit, updates its 
state parameter so as to simulate the running of one of the trigger or updater 
processes during that time unit if at least one is ready to run, and returns 
to wait for the next input event. The scheduler state is a record with fields 
for the time left to run for each process, the total run time for each process, 
the time left until the next valid trigger request, and the time left until the 

end of the current updater process period. 
Note that the word "process" in this document describes two different 

kinds of entities: 

1. PSL processes (the scheduler), and 
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2. simulated processes "run" by the scheduler (the trigger and updater). 

Since only scheduling is modeled in this example, the simulated processes 

have no state and exist only in the state of the scheduler. The service as- 
surance requirements (see section 8.3.13) may be expressed in terms of the 
sequence of values that the scheduler state will assume as input events are 
received. For example, the run time of a process in an interval is the differ- 
ence between the process' total run time at the end of the interval and at 

the beginning of the interval. 
The Romulus PSL is general enough to serve as a description language for 

this model. The Romulus type definition utilities are useful for constructing 
HOL types. Some of the Romulus security theory is also useful in proving 
properties about the model, even though the focus here is on service assurance 

rather than nondisclosure. 

8.3.1    Prologue 

Older versions of the OFP theory are removed and the OFP theory is created. 
The Romulus library is loaded and then the arithmetic and tautology checker 

libraries are loaded. 

System.system "rm -f ofp.holsig ofp.thms"; 
new_theory "ofp"; 
load_library{lib = get_library_from_disk "romulus", 

theory = "-"}; 

load_library{lib=arith_lib, theory="-"}; 
load_library{lib=taut_lib, theory="-"}; 

The internal state of a process is a record containing various scheduling- 
related facts. The following functions are used for defining these records. 

The function prove_record_f ield_thms proves access theorems for a 
record type defined by the Romulus romrecord function. The induction 
theorem for the record type must be proved before this function can be used. 
Given a record type name rec and a list of field names [fx.. .fn], for each 
pair of field names f,- and f j one of the following theorems is proved: 

• If i = j, !rec.  fi   (update_fi x rec)  = x. 

If a record field is updated, extracting the field will result in the updated 
value. 
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• Hi^j, !rec.  fi  (update_fj  x rec) = fi rec. 

If a record field is updated, extracting a different field will result in the 
field of the original record. 

The function shov_concrete_props,copied from romutils.sml, proves 
that a concrete recursive type's constructors are distinct and one-to-one, and 
proves theorems allowing proof by induction or by cases for the type. 

fun prove_record_field_thms recname fids = 
let 

fun field_update_thm afld ufld = 
let 
val thm = 
if afld = ufld then 
"!rec:" * recname " ". 

("  " afld "  "  (update." *  afld ~  " x rec))  = x" 
else 
"!rec:" " recname "  ". 

("  * afld ~  "  (update_"  * ufld "  " x rec)) =  ("  " 
afld ~  " rec)"; 

val uname = "update."  * ufld; 
in 

prove  (string_to_term thm, 
INDUCTJTHEN (theorem "-"  (recname~"_Induct")) ASSUME_TAC THEN 
REWRITE_TAC  [(definition "-" uname), 

(definition "-" afld)]) 
end; 

in 

flatten (map  (fn x => map  (fn y =>  (field_update_thm x y))  fids)  fids) 
end; 

fun show_concrete_props defth stem = 
let 
fun show_distinct th = 
let 

val dist = prove_constructors_distinct th 
in 
save_thm( 

(stem~"_Distinct"), 
CONJ 
dist 

(LIST_CONJ(map 
(GEN_ALL o  NOT_Eq_SYM o  SPEC_ALL) 
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(CONJUNCTS dist)))) 

end; 

fun show_one_one th = 
save_thm((stem""_One_One"),(prove_constructors_one_one th)); 

val induct = save_thm((stem~"_Induct"),(prove_induction_thm defth)) 

in 
save_thm((stem~"_Cases"), (prove_cases_thm induct)); 

if(can show_distinct defth) then true else false; 

if(can show_one_one defth) then true else false; 

defth 

end; 

8.3.2    Task Parameters 

The functions Ctime, Deadline, and Period give the computation time, 
deadline, and period (or minimum separation) for the updater and trigger 
processes. The function CPU gives the maximum CPU time for a process. The 
axiom ok_processes_assum gives the assumed constraints on the process 
parameters. 

new_constant { 
Name = "Ctime", 
Ty = ==':num->num'==}; 

new_constant { 
Name = "Deadline", 
Ty = ==':num->num'==}; 

new_constant { 
Name = "Period", 
Ty = ==':num->num'==}; 

val MIN = 
new_definition ( 

"MIN", 
— '(MIN x y) =  ((x <= y) => x  I  y)'—); 

val CPU = 

new_definition ( 

"CPU", 

— '(CPU (t:num) (p:num)) = 

((t DIV (Period p)) * (Ctime p)) + 

(MIN (Ctime p) (t MOD (Period p)))'—); 
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val ok_processes_assum = 
new_open_axiom ( 
"ok_processes_assum", 
--'((Ctime 1) > 0) A 

((Deadline 1) >= (Ctime 1)) A 
((Period 1) >= (Deadline 1)) A 
((Ctime 2) > 0) A 
((Deadline 2) >= (Ctime 2)) A 
((Period 2) >= (Deadline 2)) A 
((Deadline 2)  >=  ((Ctime 2)  +  (CPU (Deadline 2)   1)))  A 
((Period 1)  > 1)  A 
((Period 2)  >  1)'--); 

8.3.3     State 

The model's state contains the time left to execute and the total run time 
for each process. Also in the state are the time left in the updater's period, 
and the time left until the next valid trigger request. A process is ready (can 
be executed) if its time left to run is nonzero, or if, at the beginning of the 
time period, it is made ready to run. 

Note the use of the Romulus record definition function romrecord to 
define the state as a record. The accessor function x and the update function 
update_x for each field x, and the constructor function Make_0FP_State are 
automatically defined. The concrete type properties and field access theorems 
are then proved. 

val  (0FP_State_Def,  0FP_State)  = 
romrecord 
"0FP_State" 
[ 
("left_t",==':num'==), 
("left_u",==':num'==), 
("run_t",==':num'==), 
("run_u",==':num'==), 
("next_t",==':num'==), 

("period_u",==':num'==) 

(* time left for trigger *) 
(* time left for updater *) 
(* total trigger runtime *) 
(* total updater runtime *) 
(* time to next valid 

trigger req *) 
(* period for updater *) 

]; 

show_concrete_props (theorem "-" "OFP_State_Def") "0FP_State"; 
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val state_field_defs 

[(definition "- 

(definition "- 

(definition "- 

(definition "- 

(definition "- 

(definition "- 

]; 

"left_t"), 
"left_u"), 

"run_t"), 
"run_u"), 
"next_t"), 

"period_u") 

val state_field_thms = 
prove_record_field_thms "0FP_State" 

["left_t", 

"left_u", 
"run_t", 

"run_u", 
"next_t", 

"period_u"]; 

8.3.4    Input Events 

Input events to the scheduler occur at regular intervals, and an input event 
may be either Tick or Trigger. The Tick event just indicates that the next 
time unit is to begin. The Trigger event is received (instead of a Tick event) 
when the pilot requests that a missile be fired. The concrete type properties 
are proved. 

val  (OFP_InEv_Def,  0FP_InEv) = 
romcontype 

"DFP_InEv" 
[("Tick",   []), 
("Trigger",   []) 

]; 

show_concrete_props (theorem "-"  "OFP_InEv_Def")  "0FP_InEv"; 

8.3.5     Output Events 

There are no output events in this model, since, as noted above, only schedul- 
ing is modeled in this example. 
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8.3.6 Invocations 

The names for calls to process-valued functions are defined, and the concrete 
type properties are proved. 

val  (OFP_Invoc_Def,  0FP_Invoc)  = 
romcontype 

"0FP_Invoc" 
[("Ofp",   C==':"OFP_State'==]), 
("Ofp.Response",   [==':-0FP_State'==, ==':~0FP_InEv'==])]; 

show_concrete_props (theorem "-"  "OFP_Invoc_Def")  "0FP_Invoc"; 

8.3.7 PSL Processes 

The SML variable 0FP_Proc is defined as an abbreviation for the type of the 
OFP scheduler process. There are no output events, so the HOL type one is 
used as the output event type. 

val OFP_Proc = 
ty_antiq(==':(one,~OFP_InEv,~OFP_Invoc)process'==); 

8.3.8 Initial State Parameter 

Before the scheduler starts, there are no ready processes and no process has 
been run, so the left and run fields for both processes are zero. The period 
of the updater process is about to begin, so period_u is set to zero, which 
will cause an update to be requested. A trigger request is acceptable, so the 

next_t field is zero. 

val OFP_InitParam = 

new_definition ( 

"OFP_InitParam", 
—'OFP_InitParam:~OFP_State = (Make_OFP_State 0 0 0 0 0 0)'—); 

8.3.9 Top-level Function 

The function ofp is defined, which is the top-level description of the scheduler 
process. The scheduler waits for an arbitrary input event, and then invokes 
Ofp.Response to determine its response as a function of the state parameter 
and the received input event. 
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new_definition ( 

"ofp", 
let 
val ofp = —'ofp:~OFP_State -> ~0FPJProc' — 

in 
—'("ofp ofps) = 
(Receive (\ev:~OFP_InEv. T) (Ofp_Response ofps))'- 

end); 

8.3.10    Running a Process 

The function run_proc simulates the running of a process for one time unit 
by updating fields in its argument state. If there is only one ready process, 
it is run. Otherwise, the process with the highest priority is run. The run 
time of the running process is incremented, and the time to the next trigger 
request and the updater process period are decremented. Note that when 
this function is finished, the time unit is over, so the updater period is set to 
one less than the relevant process parameter if the current value is zero. 

val run_proc = 
new_definition ( 
"run_proc", 
—'run_proc ofps = 
(Make_0FP_State 

(* if trigger is ready, run it *) 

(((left_t ofps) > 0) => 
((left_t ofps) - 1) I (left_t ofps)) 

(* if updater is ready and trigger is not, run it *) 

((((left_u ofps) > 0) A ((left.t ofps) = 0)) => 
((left_u ofps) - 1) I (left_u ofps)) 

(* increment the trigger or the updater runtimes if required *) 

(((left_t ofps) > 0) => 
(SUC (run_t ofps)) I (run_t ofps)) 

((((left_u ofps) > 0) A ((left_t ofps) = 0)) => 
(SUC (run_u ofps)) I (run_u ofps)) 
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(* decrement the minimum time to the next trigger if it is nonzero *) 

(((next_t ofps) > 0) => (next_t ofps) - 1 I 0) 

(* decrement the updater period or reset it if it is zero *) 

(((period_u ofps) = 0) => ((Period 2) - 1) I (period_u ofps) - 1))'~); 

8.3.11     Response Function 

The of p_Responsefunction is defined using two auxiliary functions, do_tick 
and do .trigger. Function do_tick, called if the current input event is 
Tick, starts a new updater process if the updater period is zero. Function 
do_trigger, called if the current input event is Trigger, starts a trigger 
process if the time to the next valid trigger request is zero. It also updates 
the state with do_tick, since a Trigger input event, if received, takes the 
place of a Tick event and actions resulting from the input of a Tick event 
must also take place if a Trigger event is received. 

The ofp_Response function updates the state with do_tick or 
do_trigger, depending on the input event, and updates the resulting state 
with run_proc. 

val do_tick = 
new_definition ( 

"do_tick", 

—'do_tick ofps = 

(((period_u ofps) = 0) => 

(update_left_u ((Ctime 2) + (left_n ofps)) ofps) I 

ofps)'--); 

val do_trigger = 

new_definition ( 

"do_trigger", 
—'do_trigger ofps = 

(((next_t ofps) = 0) => 

(update_left_t (Ctime 1) 

(update_next_t (Period 1) (do_tick ofps))) I 

(do_tick ofps))'—); 

val ofp_Response = 

new_recursive_definition { 
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name = "ofp_Response", 

fixity = Prefix, 
rec.axiom = OFP_InEv_Def, 

def = 
let 
val ofp_Response = 
—'ofp_Response:~OFP_State -> ~OFP_InEv -> ~0FP_Proc' — 

in 
—'((*ofp_Response ofps Tick) = 

(Call (Ofp (run_proc (do_tick ofps))))) /\ 

((~ofp_Response ofps Trigger) = 

(Call (Ofp (run.proc (do_trigger ofps)))))' — 

end}; 

8.3.12 Invocation Values 

The function OFP_InvocVal maps an invocation to the value of a process- 

valued function. 

new_recursive_definition { 
name = "OFP_InvocVal", 
fixity = Prefix, 
rec_axiom = OFP_Invoc_Def, 
def = 
let 
val OFP_InvocVal = 

—'OFP_InvocVal:~OFP_Invoc -> *0FP_Proc'— 
in 
—'COFP.InvocVal (Ofp ofps)  = 

(ofp ofps))  A 
(~OFP_InvocVal (Ofpjtesponse ofps inev) = 
(ofp_Response ofps inev))'— 

end}; 

8.3.13 Requirements 

The function OFP_Reaction maps times to model states, and the require- 
ments are stated in terms of conditions on these states. PossibleNextPa- 
rameter is defined in the Romulus security theory, and is used to derive the 
next state parameter to the scheduler process. The SML variable inevseq 
is used to abbreviate the HOL term inevseq:num->OFP_InEv. 
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val OFP_Reaction = 

new_recursive_definition { 

name = "OFP_Reaction", 

fixity = Prefix, 
rec_axiom = (theorem "prim_rec" "num_Axiom"), 

def = 

let 
val OFP_Reaction = 
—'OFP_Reaction:(num -> 0FP_InEv) -> num -> 0FP_State'—; 

in 
 ( 

(~0FP„Reaction inevseq 0 = OFP.InitParam) A 

(*OFP_Reaction inevseq (SUC n) = 

Cnextstate. 
PossibleNextParameter 

OFP_InvocVal 

Ofp 

nextstate 
(ofp_Response (OFP_Reaction inevseq n) (inevseq n))) 

t  

end}; 

val inevseq = —'inevseq:num->OFP_InEv'—; 

For a sequence of input events inevseq and a time n, the model state 
immediately after time n is (OFP_Reaction inevseq n). Note also that the 
first input event is numbered one, not zero. 

The requirements are: 

1. If a trigger process is requested at time n, and the request is valid (it 
is not too soon after the previous trigger request, if there was one), the 
run time of the process between n and n + Deadline (1) is Ctime (1). 

!inevseq n. 
(((inevseq n)  = Trigger)  A 
(next_t  (OFP„Reaction inevseq n)  = 0))  ==> 

((run_t  (OFP„Reaction inevseq (n + Deadline 1)))  - 
(run_t  (0FP_Reaction inevseq n))  =  (Ctime 1)) 

2. An updater process runs every n • Period (2) time units. It is requested 
at the beginning of each interval, and the run time of the process be- 
tween n ■ Period (2) and n • Period (2) + Deadline (2) is Ctime (2). 

219 



ünevseq n. 
(nin_u (OFP.Reaction inevseq (n * Period 2 + Deadline 2))) 
(run_u (OFP.Reaction inevseq (n * Period 2))) = 

Ctime 2 

8.3.14    Epilogue 

Finally, the theory is exported and the HOL session terminated. 

export.theoryO; 
exitO; 

8.4     Proofs 

This chapter contains and describes the SML code which proves the require- 
ments stated above. Only the SML input is given; the proof transcript is 
about 17000 lines, too large for this document. 

For brevity, the following abbreviations are used in the proof descriptions: 

left_t(n) (left.t  (0FP_React ion inevseq n)) 
left_u(n) (left_u (0FP_Reaction inevseq n)) 
run_t(n) (run_t  (OFPJReaction inevseq n)) 
run_u(n) (run_u (OFP.Reaction inevseq n)) 
next_t(ra) (next_t  (OFP_Reaction inevseq n)) 
period_u(ra) (period_u (OFP_Reaction inevseq n)) 

8.4.1    Tactics and Elementary Lemmas 

This section describes the tactics and elementary lemmas (mostly about 
arithmetic) that are used in the requirement proofs. 

Rewriting and Miscellaneous Tactics 

The tactic ARITH_RES_TAC proves an assertion of linear natural number arith- 
metic using ARITH.CONV from the HOL arith library, resolves the resulting 
theorem with the assumptions of the goal, and adds any new results to the 
assumptions. The EQT_ELIM step is required because (ARITH_C0NV x) pro- 

duces the result x = T. 
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fun ARITH_RES_TAC x = 
IMP_RES_TAC (EqT_ELIM (ARITH_CONV x)); 

The tactic ARITH_REWRITE_TAC uses ARITH_CONV to prove a list of asser- 
tions and then rewrites the goal with the resulting list of theorems. 

fun ARITH_REWRITE_TAC x = 
REWRITE_TAC (map (EQT_ELIM o ARITH_CONV) x); 

The tactic PTAUT_REWRITE_TAC is like ARITH.REWRITE.TAC, except that 
the tautology checker PTAUT.CONV from the HOL library taut is used instead 
of ARITH.CONV. 

fun PTAUT_REWRITE_TAC x = 
REWRITE.TAC (map (EQT_ELIM o Taut.PTAUT.COHV) x); 

The tactic COND_REWRITE_TAC provides a limited conditional rewrite rule 
capability. Given a theorem of the form: 

u\ =>- u2 =$■ ■ ■ ■ =4> un =$■ x = y 

this tactic works like the tactic 

IMP_RES_THEN (REWRITEJTAC o (fn x => [x])) 

except that a resolvent may be formed by more than one application of 
Modus Ponens. That is, an attempt is made to resolve each antecedent ut- of 
the given theorem with the assumptions of the goal, and, if successful, the 
antecedent is removed from the theorem by an application of Modus Ponens. 
If all antecedents are successfully removed, the result is used to rewrite the 
goal. The theorem may also have antecedents that are conjunctions; the 
theorem will be converted into the above (canonical) form by RES.CANON. 

The tactic ARITH_COND_REWRITE_TACis similar, except that the argument 
is an assertion that is first proved with ARITH.CONV. 

fun is_implication x = 
if is_forall x then 
is_implication (#Body  (dest_forall x)) 

else is_imp x andalso (not  (is_neg x)); 

fun COND_REWRITE_TAC x = 
IMP_RES_THEN (fn y =>  if  is_implication (concl y)  then 

221 



(COND_REWRITE_TAC y) 

else 
(REWRITEJTAC  [y]))  x; 

fun ARITH_COND_REWRITE_TAC x = 
COND_REWRITE_TAC (EQT_ELIM (ARITH_CONV x)); 

The tactic rom_condcases_TAC, copied from romtactics.sml, splits a 
goal involving conditional expressions into separate cases. 

fun rom_condcases_TAC (A,gl)  = 
((COND_CASES_TAC THEN 

ASM_REWRITE_TAC  []  THEN 
rom_condcases_TAC) 

ORELSE 
ALL_TAC)   (A.gl); 

The tactic UNDISCH_N_TAC "undischarges" an assumption of the goal 
specified by its position in the assumption list. This eliminates the need 
to quote an assumption in order to undischarge it. 

fun UNDISCH_N_TAC n = 
ASSUM.LIST (fn thl => 

(UNDISCHJTAC (concl  (el n thl)))); 

Model-specific tactics 

The tactic reaction_cases_TACsplits an expression involving OFP_Reaction 
into two cases, one for each possible input event. The argument term rep- 
resents the input event on which case analysis is required. Because of the 
way that OFP_Reaction is defined, the goal must have terms of the form 
(OFP_Reaction inevseq (SUC n)), and, in the resulting cases, each occur- 
rence of this term is rewritten to a term of the form 

Qnextstate. 

PossibleNextParameter 

OFP_InvocVal 

Ofp 
nextstate 
(ofp_Response (OFP_Reaction inevseq n) Tick)) 

or 
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Qnextstate. 
PossibleNextParameter 

OFP_InvocVal 
Ofp 
nextstate 
(ofp_Response  (OFP_Reaction inevseq n) Trigger)) 

which can be simplified with simplify_response_TAC, described below. 

fun reaction_cases_TAC inev = 
REWRITE_TAC  [OFP_Reaction]  THEN 
SPEC.TAC (inev, —'inev: OFP.InEv'—) THEN 
INDUCT_THEN (theorem "-"  "OFP_InEv_Indvict") ASSUME.TAC; 

If it is known by hypothesis which input event will occur, ASM_REWRITE_TAC- 
[OFPJleaction] can be used instead of this tactic, and no input case analysis 
is required. 

The tactic simplify_response_TAC simplifies a goal involving terms re- 
sulting from rewriting applications of OFP_Reaction; it is usually applied 
after reaction_cases_TAC. The tactic first rewrites the goal with the def- 
inition of ofp.Response, which results in a PSL process. For this model, 
the only possible operator is Call, so the second rewrite will result in the 
invocation's parameter, using the fact that 0FP_Invoc is a one-to-one func- 
tion and the select_eq theorem to simplify the choice (@) expression. The 
resulting parameter is in terms of the run_proc, do_trigger, and do_tick 
functions, so the goal can be further simplified by rewriting with the defini- 
tions of these functions and the state field definitions and theorems. All three 
of these functions have conditional expressions, and it turns out to be best 
to do a case split on the conditions in do_trigger and do_tick, so there 
is an application of rom_condcases_TAC after rewriting with these functions 
but before rewriting with run_proc. The end result is six cases, two for a 
Tick input and four for a Trigger input. 

store_thm ( 
"select_eq", 
— '(<Bx:'a . x = y) = y' —, 
CONV.TAC SELECT_CONV THEN 
EXISTSJTAC (— 'y:'a' —) THEN 
REFL_TAC); 

val PossibleNextParameter_Call_Self = 
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GEN.ALL 
(el 
4 
(CONJUNCTS 
(SPECLALL 
(theorem "romsecure" "PossibleNextParameter_Rewrites")))); 

val simplify_response_TAC = 
REWRITE_TAC [ofp.Response] THEN 
REWRITE_TAC [PossibleNextPararaeter_Call_Self, 

(theorem "-" "0FP_Invoc_0ne_0ne"), 
(theorem "-'*  "select_eq")] THEN 

REWRITE_TAC [do.trigger, do_tick]  THEN 
rom_condcases_TAC THEN 
REWRITE_TAC ([mn_proc]  <8 state_field_defs <B state_field_thms); 

In many proofs, application of 

reaction_cases_TAC (—"inevseq n'—) THEN simplify_response_TAC 

to a goal will result in six cases, and then each case can be proved by 
rewriting with the assumptions of the case, or by arithmetic simplification 
with C0NV_TAC ARITH_CONV (possibly using ok_processes_assum and the 
assumptions of the case), or by showing that the assumptions of the case are 
contradictory. 

Arithmetic Theorems 

The following theorems state some of the properties of the MIN (minimum) 
function. They are useful for simplifying expressions involving MIN, and for 
subgoaling with MATCH_MP_TAC. 

val MIN_GE = 
store_thm ( 
"MIN_GE", 
—'!a b. (a >= b) ==> ((MIN a b) = b)'—, 
REWRITE_TAC [MIN] THEN 
C0NV_TAC ARITH_CONV); 

val MIN_GT = 
store_thm ( 
"MIN_GT", 
—'!a b. (a > b) ==> ((MIN a b) = b)' —, 
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REWRITE_TAC [MIN] THEN 
CONV_TAC ARITH_CONV); 

val MIN.LE = 
store_thm ( 
"MIN_LE", 
—'!a b.   (a <= b)  ==>  ((MIN a b)  = a)' — , 
REWRITE_TAC  [MIN]  THEN 
CONVJTAC ARITH_CONV); 

val LT_MIN = 
store_thm ( 

"LT_MIN", 
--'!ab c.   ((a < b)  A  (a =  (MIN b c)))  ==>  (b > c)' —, 
REWRITE_TAC[MIN] THEN 
CONVJTAC ARITH_CONV); 

val GE_MIN = 
store_thm ( 
"GE_MIN", 
—'!a b c.   ((a >= b)  A  (a =  (MIN b c)))  ==> (b <= c)'—, 
REWRITE_TAC [MIN]  THEN 
CONVJTAC ARITH.CONV); 

The following theorems describe some of the properties of the DIV and 
MOD functions. M0D_SUC and DIV_SUC are useful in inductive proofs. 

g('(0 < b) ==> 
(((SUC a) MOD b)  =  (((a MOD b)  =  (b - 1))  => 0   |   SUC  (a MOD b)))'); 

e  (STRIP JTAC); 
e  (MATCH_MP_TAC (theorem "arithmetic" "MOD_UNiqUE")); 
e  (EXISTS JTAC (—'(((a MOD b)  =  (b - 1))  => 

(SUC  (a DIV b))   I   (a DIV b))'—)); 
e  (IMP_RES_TAC (definition "arithmetic"  "DIVISION")); 
e  (ASSUM_LIST (fn thl =>  (MP_TAC  (SPEC  (—'a:num'--)   (el 2 thl))))); 
e  (COND_CASES_TAC); 

e  (REWRITE_TAC  [theorem "arithmetic" "MULT_CLAUSES"]); 
e  (UNDISCH_TAC (—'a MOD b = b - 1'--)); 
e   (UNDISCH_TAC  (--'0 < b'—)); 
e  (CONVJTAC ARITH_CONV); 

e  (ASSUM_LIST (fn thl =>  (MPJTAC  (SPEC  (—'a:num'—)  (el 2 thl))))); 
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e (UNDISCHJTAC (—'"(a MOD b = b - 1)'--)); 
e (CONVJTAC ARITH_CONV); 
val H0D_SUC = save_top_thm "M0D_SUC"; 

g('(0 < b) ==> 
(((SUC a) DIV b) = 
(((a MOD b) = (b - 1)) => (SUC (a DIV b)) I (a DIV b)))'); 

e (STRIP JTAC); 
e (MATCH_MP_TAC (theorem "arithmetic" "DIV.UNIQUE")); 
e (EXISTS_TAC (—'((a MOD b) = (b - 1)) => 0 I (SUC (a MOD b))'—)); 
e (IMP_RES_TAC (definition "arithmetic" "DIVISION")); 
e (ASSUM.LIST (in thl => (MP_TAC (SPEC (—'a:num'—) (el 2 thl))))); 
e (COND_CASES_TAC); 

e  (REWRITEJTAC  [theorem "arithmetic" "MULT_CLAUSES"]); 
e  (UNDISCH_TAC  (—'a MOD b = b -  1'—)); 
e  (UNDISCHJTAC (—'0 < b' —)); 
e  (CONVJTAC ARITH_CONV); 

e  (ASSUMJLIST (fn thl =>  (MPJTAC (SPEC  (—'a:num'—)  (el 2 thl))))); 

e  (UNDISCHJTAC (—"(a MOD b = b - 1)'—)); 
e  (CONVJTAC ARITH_CONV); 
val DIVJSUC = save_top_thm "DIV_SUC"; 

val MOD_NONZERO = 
store_thm ( 
"MOD.NONZERO", 
--'((k > 0) A (k < p)) ==> _(((n * p) + k) MOD p = 0)'--, 
STRIPJTAC THEN 
IMPJRESJTAC (theorem "arithmetic" "MOD.MULT") THEN 
ASM_REWRITE_TAC[] THEN 
UNDISCH_N_TAC 3 THEN CONVJTAC ARITH_CONV); 

Process Parameter Theorems 

The following theorems state facts derivable from the assumed process pa- 
rameter assumptions; Period_l_gt_0 is required when doing proofs involv- 
ing natural number arithmetic for the trigger process requirement, and 
PeriodJ2_gt_0 is required when doing proofs involving DIV and MOD for 
the updater process requirement. 

val Period_l_gt_0 = 
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store_tlun ( 

"Period.l_gt_0", 

— '0 < Period 1' —, 
MP_TAC (ok_processes_assum) THEH C0NV_TAC ARITH.CONV); 

val Period_2_gt_0 = 

store_thra ( 
"Period_2_gt_0", 

--'0 < Period 2' — , 
MP_TAC (ok_processes_assum) THEN CONVJTAC ARITH_CONV); 

8.4.2    Trigger Requirement Proof 

The proof that the trigger process requirement is met is fairly simple, since 
the trigger process has the higher priority, and if it is ready to run, it will be 

run. 

left_t_le_next_t 

We first show that left_t (n) < next_t(n). The proof is by induction on n, 
and case analysis of the possible inputs. This lemma is used in the proof of 
left_t_run_t_step. 

g('!~inevseq n. 

(left_t (0FP_Reaction inevseq n)) <= 

(next_t (0FP_Reaction inevseq n))'); 

e (GENJTAC THEN INDUCT JTAC); 
e (REWRITEJTAC ([0FP_Reaction, 0FP_InitParam] <8 state.field_defs)); 

e (C0NV_TAC ARITH.CONV); 

e (UNDISCH_N_TAC 1); 
e (reaction_cases_TAC (—"inevseq n' —) THEN simpliiy_responseJTAC); 

e (CONVJTAC ARITH_C0NV); 

e (CONVJTAC ARITH.CONV); 

e (MP_TAC ok_processes_assum THEN C0NV_TAC ARITH_C0NV); 

e (MPJTAC ok_processes_assum THEN C0NV_TAC ARITH_CONV); 

e (UNDISCH_N_TAC 2 THEN CONV.TAC ARITH_C0NV); 

e (UNDISCH_N_TAC 2 THEN CONVJTAC ARITH_CONV); 

val left_tjle_next_t = save_top_thm "left_t_le_next_t"; 
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left_t_run_t_step 

Show that if left_t (re) > 0, then left_t(n + l) = left_t (re) - 1 
and run_t (re + 1) = run_t (re) + 1. The proof is by case analysis of the pos- 
sible inputs, and lef t_t_le_next_t is used to show that in some of the 
cases, the hypotheses are contradictory. This lemma is used in the proof of 
1eft_t_run_t_1inear. 

g(' !inevseq n. 

((left_t (OFP_Reaction inevseq n)) > 0) ==> 

(((left_t (OFP_Reaction inevseq (SUC n))) = 

((left_t (OFP_Reaction inevseq n)) - 1)) A 

((run_t (OFP_Reaction inevseq (SUC n))) = 

(SUC (run_t (OFP_Reaction inevseq n)))))'); 

e (REPEAT GEN_TAC); 

e (reaction_cases_TAC (—'"inevseq n'—) THEN simplify_response_TAC); 

e (CONVJTAC ARITH.CONV); 

e (CONVJTAC ARITH_CONV); 

e (UNDISCH_N_TAC 2 THEN 

MP_TAC (SPEC.ALL left_t_le_next_t) THEN 

C0NV_TAC ARITH_CONV); 

e (UNDISCH_N_TAC 2 THEN 
HP_TAC (SPEC_ALL left_t_le_next_t) THEN 
C0NV_TAC ARITH_CONV); 

e (C0NV_TAC ARITH_CONV); 

e (CONVJTAC ARITH_CONV); 

val left_t_run_t_step = save_top_thm "left_t_run_t_step"; 

left_t_run_t_linear 

Show that if left_t (n) = k, left_t (n + k) = 0 and run_t (re + k) = run_t (re) + 
k. The proof is by induction on k; the induction is arranged so that the vari- 
able n in the induction hypothesis will still be universally quantified. When 
proving the induction step, the induction hypothesis is instantiated with 
SUC n and next_t_stepis used to show that the instantiated hypothesis im- 
plies the goal. This lemma is used in the proof of trigger_meets_deadline. 

g('!inevseq k n. 
((left_t (OFP_Reaction inevseq n)) = k) ==> 

((left_t (0FP_Reaction inevseq (n + k)) =0) A 

((run_t (0FP_Reaction inevseq (n + k))) = 
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(run_t  (OFP_Reaction inevseq n))  + k))'); 

e  (GENJTAC); 
e  (INDUCT_TAC); 
e  (ARITH.REWRITEJTAC [--'n + 0 = n'—]); 

e (GENJTAC); 
e (DlSCHJTAC); 
e (ARITH_RES_TAC (--'(n = (SÜC k)) ==> (n > 0)'--)); 
e (IMP_RES_TAC (SPEC_ALL (theorem "-" "left_t_run_t_step"))); 

e (ASSUM_LIST (In thl => 
ASSUME_TAC (REWRITE.RULE [el 2 thl] 

(SPEC (—'(SUC n)'--)   (el 5 thl))))); 
e  (ARITH_RES_TAC (— * (a = SUC b)  ==>  (a - 1 = b)<—)); 

e  (RESJTAC); 
e  (ARITH_REWRITE_TAC [—'n + SUC k = SUC n + k'—] ); 
e  (ASM_REWRITE_TAC[]); 
val left_t_run_t_linear = save_top_thm "left_t_run_t.linear"; 

next _t _step 

Show that if next_t(n) > 0, next_t (n + 1) = next_t (n) - 1. The proof is 
by case analysis on the possible inputs. This lemma is used in the proofs of 
next_t_linear and run_t.finished. 

g('!inevseq n. 
((next_t (OFP_Reaction inevseq n)) > 0) ==> 
((next_t (0FP_Reaction inevseq (SUC n))) = 
((next_t (OFP_Reaction inevseq n)) - 1))'); 

e (REPEAT STRIPJTAC); 
e (reaction_cases_TAC (--'"inevseq n'—) THEN simplify_response_TAC); 

e (ASH_REWRITE_TACD); 
e (ASM_REWRITE_TACD); 
e (ARITH_RES_TAC (— 'a > 0 ==> "(a = 0)*—)); 
e (ARITH_RES_TAC (—'a > 0 ==> '(a = 0)'--)); 
e (ASM_REWRITE_TACG); 
e (ASM_REWRITE_TACG); 
val next_t_step = save_top_thm "next_t_step"; 
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next_t-linear 

Show that for k < next.t (n), next.t (n + k) = next_t (n) - k. The proof 
is by induction on k; the induction is arranged so that the variable n in 
the induction hypothesis will still be universally quantified. When proving 
the induction step, the induction hypothesis is instantiated with SUC n and 
next_t_step is used to show that the instantiated hypothesis implies the 
goal. This lemma is used in the proof of trigger_meets_deadline. 

g('!inevseq k n. 
(k <= (next_t (OFP_Reaction inevseq n))) ==> 
((next_t (OFP_Reaction inevseq (n + k))) = 
(next_t (OFP_Reaction inevseq n)) - k)'); 

e (GEN_TAC); 
e (INDUCT_TAC); 
e (ARITH_REWRITE_TAC [—'n + 0 = n' —, —'n - 0 = n'~]); 

e (GEN_TAC); 
e (DISCH_TAC); 
e (ARITH_RES_TAC (—'(SUC k <= a) ==> (k <= a)'—)); 
e (ARITH_RES_TAC (—'(SUC k <= a) ==> (a > 0)'—)); 
e (IMP_RES_TAC (SPEC.ALL (theorem "-" "next_t_step"))); 
e (ASSUM_LIST (fn thl => 

ASSUMEJTAC (REWRITE_RULE [el 1 thl] 
(SPEC (—'(SUC n)'—) (el 5 thl))))); 

e (ARITH_RES_TAC (—'(SUC a <= b) —> (a <= b - 1)'—)); 
e (RESJTAC); 
e  (ARITH_REWRITE_TAC [— 'n + SUC k = SUC n + k'—]); 
e  (ASM_REWRITE_TAC[]); 
e  (C0NV_TAC ARITH_C0NV); 
val next_t_linear = save_top_thm "next_t_linear"; 

trigger_init 

Show that if a valid trigger request is received at time n, then next_t (n + 1) = 
Period (1)-1, left.t (n + 1) = Ctime(l)-1, and run_t (n + 1) = run_t(n) + l. 
The proof is by analysis of the (single) input case. This lemma is used in the 
proof of trigger_meets_deadline. 

g('!"inevseq n. 
(((inevseq n) = Trigger) A 
((next_t (0FP_Reaction inevseq n)) = 0)) ==> 
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(((next_t (OFP_Reaction inevseq (SUC n))) = (Period 1 - 1)) A 
((left_t (OFP_Reaction inevseq (SUC n))) = (Ctime 1 - 1)) A 
((run_t (OFP_Reaction inevseq (SUC n))) = 
(SUC (run_t (OFP_Reaction inevseq n)))))'); 

e (REPEAT GEN_TAC THEN STRIP.TAC); 
e (ASM_REWRITE_TAC [OFP_Reaction] THEN simplify_response_TAC); 

e (MP_TAC Period_l_gt_0 THEN 
MP_TAC ok_processes_assum THEN 
CONVJTAC ARITH.CONV); 

e (MP_TAC Period_l_gt_0 THEN 
MP_TAC ok_processes_assum THEN 
C0NV_TAC ARITH.CONV); 

e (RESJTAC); 
e (RES_TAC); 
val trigger_init = save_top_thm "trigger_init"; 

left_t_run_t_stepl 

Show that if left_t (n) = 0 and next_t (n) > 0, then left_t(n + 1) = 0 and 
run_t (n + 1) = run_t (n). The proof is by case analysis of the possible inputs. 
This lemma is used in the proof of run_t .finished. 

g('!'inevseq n. 
(((left_t (OFP_Reaction inevseq n)) =0) A 
((next_t (OFP_Reaction inevseq n)) > 0)) ==> 
(((left_t (OFP_Reaction inevseq (SUC n))) =0) /\ 
((run_t (0FP_Reaction inevseq (SUC n))) = 
(run_t (0FP_Reaction inevseq n))))') ; 

e (GENJTAC THEN GEN_TAC THEN STRIPJTAC); 
e (reaction_cases_TAC (--'"inevseq n'—) THEN simplify_response_TAC); 

e (UNDISCH_N_TAC 3 THEN C0NV_TAC ARITH_CONV); 
e (UNDISCHJJJTAC 3 THEN CONVJTAC ARITH_C0NV); 
e (ARITH_RES_TAC (—'(a > 0) ==> "(a = 0)'—)); 
e (ARITH_RES_TAC (—'(a > 0) ==> "(a = 0)'—)); 
e (ARITH_RES_TAC  (—'(a = 0)  ==> '(a > 0)'—)  THEN ASM_REWRITE_TAC D); 
e (ARITH_RES_TAC  (—'(a = 0)  ==>  "(a > 0)'—)  THEN ASH_REWRITE_TAC []) ; 
val left_t_run_t_stepl =  save_top_thm "left_t_run_t_stepl"; 
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run_t _f ini shed 

Show that if left_t (n) = 0 and k < next_t (n), then run_t (n + k) = run_t (n), 
i.e., the amount of run time does not change after the trigger process is fin- 
ished and before a new one can be started. The proof is by induction on 

k; the induction is arranged so that the variable n in the induction hypoth- 

esis will still be universally quantified. When proving the induction step, 
the induction hypothesis is instantiated with SUC n, and next_t_step and 
lef t_t_run_t_stepl are used to show that the instantiated hypothesis im- 
plies the goal. The lemma is used in the proof of trigger_meets_deadline. 

g(*!"inevseq k n. 
(((left_t (OFP_Reaction inevseq n)) =0) A 
(k <= (next_t (0FP_Reaction inevseq n)))) ==> 

((run_t (OFP„Reaction inevseq (n + k))) = 
(run_t (0FP_Reaction inevseq n)))'); 

e (GENJTAC THEN INDUCTJTAC); 
e (ARITH_REWRITE_TAC [~'n + 0 = n' —-]); 

e (REPEAT STRIPJTAC); 
e (ARITH_RES_TAC (—'(SUC a <= b) ==> (a <= b - 1)'—)); 
e (ARITH_RES_TAC (—'(SUC a <= b) ==> (b > 0)'—)); 
e (IMP_RES_TAC next_t_step); 
e (IMP_RES_TAC left_t_run_t_stepl); 
e  (ASSUM_LIST (fn thl => 

IMP_RES_TAC (REWRITE_RULE [el  1 thl,  el 2 thl,   el 3 thl] 
(SPEC  (—'SUC n'—)   (el 8 thl))))); 

e  (ARITH_REWRITE_TAC  [—'n + SUC k = SUC n + k'—]); 
e  (ASM_REWRITE_TACD); 
val run_t.finished = save_top_thm "run_t.finished"; 

trigger_meets_deadline 

We now have the lemmas we need to prove the trigger process requirement. 
The lemma trigger_init is used to establish the initial conditions, the 
lemma left_t_run_t_linear is used to show left_t (n + Ctime(l)) = 0 
and run_t (n + Ctime(l)) = Ctime(l), the lemma next_t_linear is used 
to show that next.t (n + Ctime(l)) = Period (1) - Ctime(l), The lemma 
run_t_f inished is then instantiated with Deadline (1) — Ctime(l) and n + 
Ctime(l) to show that run_t (n + Deadline (1)) = run_t (n) -f Ctime(l), 
which can then be used to show that the goal is true. 
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g('!"inevseq n. 
(((inevseq n) = Trigger) A 
(next_t (OFP_Reaction inevseq n) =0)) ==> 

((run_t (OFP„Reaction inevseq (n + Deadline 1))) - 
(run_t (OFP_Reaction inevseq n)) = (Ctime 1))'); 

e (REPEAT STRIP.TAC); 
e (STRIP_ASSUME_TAC ok_processes_assum); 
e (IMP_RES_TAC trigger_init); 
e (IMP_RES_TAC leit_t_run_t_linear); 
e (ARITH_RES_TAC (—'((Ctime 1) > 0) ==> 

((SUC n + ((Ctime 1) - D) = (n + (Ctime 1)))'--)); 
e (UNDISCH_N_TAC 2 THEN UNDISCH_N_TAC 2 THEN ASH_REWRITE_TACD THEN 

REPEAT STRIP_TAC); 
e (ARITH_RES_TAC 

(~'(((next_t (OFP.Reaction inevseq (SUC n))) = (Period 1) - 1) A 

((Period 1) > 1) A 
((Period 1) >= (Deadline 1)) A 
((Deadline 1) >= (Ctime 1))) ==> 
((Ctime 1) - 1 <= (next_t (OFP_Reaction inevseq (SUC n))))'—)); 

e (IMP_RES_TAC next_t.linear); 
e (ARITH_RES_TAC (--'((Period 1 >= Deadline 1) A 

(Deadline 1 >= Ctime 1)) 
==> (Period 1 >= Ctime 1)'--)); 

e (ASSUMEJTAC Period_l_gt_0); 
e (ARITH_RES_TAC (—'((0 < (Period 1)) A 

((Ctime 1) > 0) A 
((Period 1) >= (Ctime 1))) ==> 
((((Period 1) - 1) - ((Ctime 1) - D) = 
(Period 1) - (Ctime 1))'—)); 

e (UNDISCH_N_TAC 4 THEN ASM_REWRITE_TAC[] THEN DISCHJTAC); 
e (ARITH_RES_TAC (--'(((Deadline 1) >= (Ctime 1)) A 

((Period 1) >= (Ctime 1)) A 
((Period 1) >= (Deadline 1))) ==> 
(((Deadline 1) - (Ctime 1)) <= 
((Period 1) - (Ctime 1)))'--)); 

e (ARITH_RES_TAC (--'((Deadline 1) >= (Ctime 1)) ==> 
((n + (Ctime 1)) + ((Deadline 1) - (Ctime 1)) = 
n + (Deadline 1))'--)); 

e (MP_TAC (SPECL [--'"inevseq' — , 
— 'Deadline 1 - Ctime 1' —, — 'n + Ctime 1'—] 
run_t_finished)); 

e (ASM_REWRITE_TACG); 
e (DISCHJTAC THEN ASM_REWRITE JTAC[]); 
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e (CONVJTAC ARITH_CONV); 
val trigger_meets_deadline = save_top_thm "trigger_meets_deadline"; 

8.4.3    Updater Requirement Proof 

The proof that the updater process requirement is met is much more com- 

plicated than that for the trigger process, for the following reasons: 

• The updater process has a lower priority than the trigger process, so it 
is necessary to show that even if the trigger process uses as much CPU 
time as it can, the updater process will still meet its deadline. 

• The updater process is periodic, and so the requirement must be proved 
for all periods: 

[n • Period (2)... n • Period (2) + fc],    k< Period (2) 

It turns out that the proof must be done by double induction on n and 
k, where k is shown to be Deadline (2). 

• The behavior of most of the relevant state variables as a function of 
time is quite irregular. When the behavior of a state variable or some 
function of state variables is regular, it frequently turns out to be 
periodic, which means that the DIV and MOD functions must be used 
to describe it. DIV and MOD are nonlinear functions and are not well- 
supported in HOL — there are few available theorems about them and 
the arith library can't handle them. 

• The only approach we were able to develop is very messy, with a lot of 
algebraic manipulation. 

The proof of the updater requirement is based on the observation that 
the run time of the updater process in an interval [a ... b] is 

run_u (6) — run.u (a) (8.1) 

In this same interval, the amount of time the trigger process will run is: 

run_t (b) — run_t (a) 

234 



and the amount of time available for the updater process to run is 

(b - a) - (run_t (6) - run_t (a)) (8.2) 

In the remainder of this discussion, we will abbreviate Period (2) by P, 
Deadline (2) by £>, and Ctime (2) by C. 

For the interval [nP ...nP + k], where k < P, the maximum amount of 
time the updater process will run is C, as long as the process in the previous 
interval finished at or before the end of the previous interval. The time 
available for the updater process to run is: 

k - (run_t (nP + k) - run_t (nP)) 

and the amount of time the updater process will actually run is: 

min (C, k - (run_t (nP + k) - run_t (nP))) 

Thus, it should be true that: 
1. 

left_u(nP) = 0 (8.3) 

and 
2. 

run_u (nP + k) - run_u (nP) = min (C, k - (run_t (nP + k) - run_t {nP))) 
(8-4) 

for all n, &, where k < P. 
When we have shown this, we can then substitute D for k in equation 8.4, 

and get 

run_u {nP + D) - run_u (nP) = min (C, D - (run_t (nP + D) - run_t (nP))) 
(8.5) 

In the worst case where all input events are trigger requests, run_t (n) — 
CPU(n,l). Thus, 

run_t (nP + k) - run_t (nP) = CPU (nP + fc, 1) - CPU (nP, 1)        (8.6) 

And, from [23], 

CPU (nP + Jb, 1) - CPU (nP, 1) < CPU (fc, 1) (8.7) 
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Thus, 
run_t (nP + k) - run_t {nP) < CPU (k, 1) (8.8) 

Now, one of the process parameter restrictions is: 

JD>C + CPU(D,1) 

which can be rearranged to be 

D - CPU (£, 1) > C (8.9) 

If we substitute D for k in inequality 8.8 we get: 

run_t(nP + £)-run_t(nP)<CPU(£,l) (8.10) 

From inequalities 8.9 and 8.10 we get 

D - (run_t (nP + D) - run_t (nP)) > C (8.11) 

and therefore, the right side of equation 8.5 is just C and we get: 

run_u (nP + D) - run_u (nP) = C 

which is the updater process requirement. 
If not all input events are trigger requests, then the trigger process run 

time in an interval is less than or equal to that in the worst case, so inequal- 

ity 8.10 still holds. 

Case Analysis Predicates 

The following three predicates are used for case analysis of runnable processes 
in some of the proofs that follow, (trigger.ready inevseq n) states the 
conditions under which the trigger process will be run at time n: the trigger 
process will be run if left.t (n) > 0 (the trigger process is ready to run) 
or if next_t (n) = 0 (a trigger request is acceptable) and the input event 
at time n is Trigger. (updater_ready inevseq n) states the conditions 
under which the updater process will be run at time n, if trigger_ready is 
false: the updater process will be run if left_u (») > 0 (the updater process 
is ready to run) or if period_u(n) = 0 (a new updater process is starting). 
Thus a case analysis can be done on the following three conditions: 
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1. (trigger_ready inevseq n) 

2. ~(trigger.ready inevseq n)  /\bs  (updater.ready inevseq n) 

3. ~(trigger.ready inevseq n)  Abs ~(updater_ready inevseq n) 

The lemma not .Trigger shows that if an input event is not Trigger, it 
must be Tick (the only other possibility). 

val trigger_ready = 
new_definition ( 
"trigger_ready", 
—'trigger_ready inevseq n = 

(((left_t  (OFPJteaction inevseq n))  > 0)  V 
(((next_t  (0FP_Reaction inevseq n))  =0)  A 

((inevseq n)  = Trigger)))'—); 

val updater„ready = 
new_definition ( 

"updater_ready", 
—'updater_ready inevseq n = 

((left_u (0FP_Reaction inevseq n))  > 0)  V 
((period_u (OFPJteaction inevseq n)) = 0)'~); 

val not_Trigger = 
store_thm ( 
"notJTrigger", 
--'!x:0FP_InEv.   "(x = Trigger) =  (x = Tick)' — , 
INDUCTJTHEN (theorem "-"  "OFP_InEv_Induct") ASSUME_TAC THEN 
REWRITE_TAC  [theorem "-"  "OFP_InEv_Distinct"]); 

t rigger jreadyjre suit 

Show that if the trigger process is ready to run at time n, then the run time 
of the trigger process at time n + 1 is incremented and the run time of the 
updater process at time n + 1 is unchanged. The proof is by case analysis 
of the antecedent and the possible inputs. This lemma is used in runnable 

' process case analysis in the lemmas run_u_mono, run_t_mono, run_t_diff, 
n_ge_run_t, and updater_meets_deadline_0. 

g('!"inevseq n. 
(trigger_ready inevseq n) ==> 
(((run_t (0FP_Reaction inevseq (SUC n))) = 
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(SUC (run_t (OFP_Reaction inevseq n)))) A 

((run_u (OFP.Reaction inevseq (SUC n))) = 

(run_u (OFP_Reaction inevseq n))))'); 

e (REWRITE_TAC [trigger_ready]); 

e (REPEAT GEN_TAC THEN STRIP_TAC); 

e (reaction_cases_TAC (—"inevseq n'—) THEN simplify_response_TAC); 

e (MP_TAC ok_processes_assum THEN 

UNDISCH_N_TAC 2 THEN CONV_TAC ARITH_CONV); 
e (UNDISCH_N_TAC 2 THEN CONVJTAC ARITH.CONV); 
e (MP_TAC ok_processes_assum THEN CONV_TAC ARITH_CONV); 

e (HP_TAC ok_processes_assum THEN CONV_TAC ARITH_CONV); 

e (MP_TAC ok_processes_assum THEN 

UNDISCH_N_TAC 3 THEN CONV_TAC ARITH_CONV); 
e (UNDISCH_N_TAC 3 THEN CONVJTAC ARITH.CONV); 

e (ASM_REWRITE_TAC [OFP.Reaction] THEN simplify_response_TAC); 

e (MP_TAC ok_processes_assum THEN C0NV_TAC ARITH_CONV); 

e (HP_TAC ok_processes_assum THEN CONVJTAC ARITH_CONV); 
e (RESJTAC); 

e (RES_TAC); 

val trigger_ready_result = save_top_thm "trigger_ready_result"; 

trigger jnot_ready_result 

Show that if the trigger process is not ready to run at time n, then the run 
time of the trigger process at time n + 1 is unchanged. The proof is by 
case analysis of the antecedent and the possible inputs. This lemma is used 
in runnable process case analysis in the lemmas run_u_mono, run_t_mono, 
mn_t_dif f, n_ge_run_t, and updater_meets_deadline_0. 

g('!"inevseq n. 

"(trigger_ready inevseq n) ==> 

((run_t (OFP_Reaction inevseq (SUC n))) = 

(run_t (OFP_Reaction inevseq n)))'); 

e (REWRITE_TAC [trigger_ready]); 
e (PTAUT_REWRITE_TAC [—'"(a \/ (b A c)) = ("a A ("b V "<:))'--]); 
e (REWRITE_TAC [not.Trigger]); 
e (REPEAT STRIP JTAC); 

e (reaction_cases_TAC (—"inevseq n'—) THEN simplify_response_TAC); 
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e  (ASM_REWRITE_TACÜ); 
e  (ASH_REWRITE_TAC[3); 
e  (RES.TAC); 
e  (RESJTAC); 
e  (ASM_REWRITE_TAC[3); 
e  (ASM_REWRITE_TACD); 

e  (ASM_REWRITE_TAC [OFP_Reaction]  THEN simpliiy_response_TAC THEN 
ASM_REWRITE_TACD); 

val trigger_not_ready_result = save_top_thm "trigger_not_ready_resultM; 

updater_ready_result 

Show that if the trigger process is not ready to run at time n and the up- 
dater process is, then the run time of the updater process at time n + 1 is 
incremented. The proof is by case analysis of the antecedent and the possible 
inputs. This lemma is used in runnable process case analysis in the lemmas 
run_u_mono and updater_meets_deadline_0. 

g('!"inevseq n. 
((updater_ready inevseq n) A "(trigger_ready inevseq n)) ==> 

((run_u (OFP_Reaction inevseq (SUC n))) = 

(SUC (run_u (OFP_Reaction inevseq n))))'); 

e (REWRITE_TAC [updater_ready, trigger_ready]); 
e (PTAUT_REWRITE_TAC [--"(a V (b A c)) = ("a A ("b V 'c))'—]); 
e (REWRITEJTAC [not_Trigger]); 
e (REPEAT STRIP_TAC); 

e (reaction_cases_TAC (—"inevseq n'—) THEN simplify_response_TAC); 

e (MP_TAC ok_processes_assum THEN 

UNDISCH_N_TAC 3 THEN CONV_TAC ARITH_CONV); 

e (UNDISCH_N_TAC 4 THEN UNDISCH_N_TAC 3 THEN C0NV_TAC ARITH_CONV); 

e (RESJTAC); 
e (RES_TAC); 
e (MP_TAC ok_processes_assum THEN UNDISCH_N_TAC 4 THEN UNDISCH_N_TAC 4 

THEN CONV_TAC ARITH_CONV); 
e (MP_TAC ok_processes_assum THEN UNDISCH_N_TAC 4 THEN UNDISCH_N_TAC 4 

THEN CONV.TAC ARITH_CONV); 

e (ASM_REWRITE_TAC [OFP_Reaction] THEN simplify_response_TAC); 

e (MP_TAC ok_processes_assum THEN UNDISCH_N_TAC 3 THEN UNDISCH_N_TAC 3 
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THEN CONV.TAC ARITH_CONV); 
e  (MP_TAC ok.processes.assum THEN UNDISCH_N_TAC 3 THEN UNDISCH_N_TAC 3 

THEN CONV_TAC ARITH_CONV); 

e  (reaction_cases_TAC (--"inevseq n'—) THEN simplify.response.TAC); 
e  (MP_TAC ok.processes.assum THEN UNDISCH.N.TAC 3 THEN 

CONV_TAC ARITH.CONV); 
e  (RESJTAC); 
e (RESJTAC); 
e  (MP_TAC ok.processes.assum THEN UNDISCH_N_TAC 3 THEN 

CONV_TAC ARITH.CONV); 

e  (ASM_REWRITE_TAC  [OFP_Reaction] THEN simplify.response.TAC); 
e (MP.TAC ok.processes.assum THEN UNDISCH_N_TAC 3 THEN 

CONV_TAC ARITH_CONV); 
e  (RES_TAC); 
val updater.ready.result = save_top_thm "updater.ready.result"; 

updater_not_ready_result 

Show that if the updater process is not ready to run at time n, then the 
run time of the updater process at time n + 1 is unchanged. The proof 
is by case analysis of the antecedent and the possible inputs. This lemma 
is used in runnable process case analysis in the lemmas ran.u.mono and 
updat er.meet s.deadline.O. 

g(' !"inevseq n. 
"(updater.ready inevseq n) ==> 

((run.u (OFP.Reaction inevseq (SUC n))) = 
(run.u (OFP.Reaction inevseq n)))'); 

e (REWRITE.TAC [updater_ready]); 
e (PTAUT.REWRITE.TAC [--'"(a \/ b) = ("a A "b)'—]); 
e (REPEAT STRIP.TAC); 
e (reaction_cases_TAC (—'"inevseq n'—) THEN simplify.response.TAC); 
e (RESJTAC); 
e (ASM.REWRITE.TACG): 
e (ASM_REWRITE_TAC[]): 
e (ASM.REWRITE.TACÜ) 
val updater.not.ready.result = save.top.thm "updater.not.ready.result" ; 
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period_u_desc 

Describe the behavior of the period_u state variable. Show that periocLu (0) 
= 0, and that if periocLu (n) = 0 then periocLu (n + 1) = Period (2) - 1, and 
period_u (n) - 1 otherwise. The first case follows from the value of the initial 
state, and the proof of the second case is by case analysis of the possible 
inputs. This lemma is used in the proof of period_u_f ormula. 

g('((period_u (OFP_Reaction inevseq 0))  =0)  A 
((period_u (0FP_Reaction inevseq (SUC n)))  = 
((period_u (OFP_Reaction inevseq n))  = 0 => 
(Period 2)  - 1   I 
(period_u (0FP_Reaction inevseq n))  - 1))'); 

e  (REPEAT STRIPJTAC); 
e  (REWRITEJTAC ([0FP_Reaction, OFP.InitParam] fi state_field_defs)); 
e  (reaction_cases_TAC (--'"inevseq n'—) THE! simplify_response_TAC THEN 

ASM_REWRITE_TACD); 
val period_u_desc = save_top_thm "period_u_desc"; 

period_u_f ormula 

Show that the value of the period_u state variable as a function of n is 0 
if n is a multiple of Period (2), and Period (2) - n MOD Period (2) otherwise. 
The proof is by induction on n, using lemma period_u_desc to characterize 
the value of the state variable. The arith library cannot handle MOD, so 
there is much low-level work to do. This lemma is used in the proof of 
period_u_desc. 

g('!n. 
(period_u (0FP_Reaction inevseq n)) = 

(((n MOD (Period 2)) = 0) => 0 I 

((Period 2) - (n MOD (Period 2))))'); 

e (ASSUME.TAC Period_2_gt_0); 

e (INDUCTJTAC); 
e (C0ND_REWRITE_TAC (theorem "arithmetic" "ZERO.MOD")); 
e (REWRITEJTAC ([OFP_Reaction, 0FP_InitParam] <8 state_field.defs)); 

e (ASM_REWRITE_TAC [period_u_desc]); 

e (C0ND_REWRITE_TAC M0D_SUC); 

e (IMP_RES_TAC (definition "arithmetic" "DIVISION")); 

e (ASSUM_LIST (fn thl => (MPJTAC (SPEC (—'n:num'—) (el 1 thl))))); 
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e (ASM_CASES_TAC (—'n MOD (Period 2) = 0'--)); 

e (POP.ASSUM SUBSTl.TAC THEN REWRITEJTAC [] ); 
e (STRIP_ASSUHE_TAC ok_processes_assum); 
e (ARITH_COND_REWRITE_TAC (--'Period 2 > 1 ==> '(0 = Period 2-1)  )); 

e (C0NV_TAC ARITH_CONV); 

e  (POP.ASSUM (SUBST1_TAC o EQF.INTRO) THEN REWRITE_TAC[]); 

e (STRIP.TAC); 
e (ARITH_COND_REWRITE_TAC (—'(a MOD b < b) ==> "(b - a MOD b - 0) -)); 

e (ASM_CASES_TAC (~'n MOD (Period 2) = (Period 2) - 1'—)); 

e (P0P_ASSUM SUBSTl.TAC THEN REWRITEJTACD); 
e (CONVJTAC ARITH_C0NV); 

e (P0P_ASSUM (SUBST1JTAC o EQF_INTR0) THEN REWRITE.TAC[]); 
e (REWRITE.TAC [(theorem "num" "NOT.SUC")]); 

e (C0NV_TAC ARITH_CONV); 
val period_u_formula = save_top_thm "period_u_formula"; 

period_u_0 

Show that period_u (n) = 0 if and only if n is a multiple of Period (2). The 
proof uses period.u.f ormula and properties of MOD. This lemma is used 
in the proofs of new_run_u_left_u_sum, run_u_left_u_sum, left_u_f in- 
ished, updater_ready_resultl,and updater_not_ready_resultl. 

g('I'inevseq n. 
((n MOD  (Period 2))  = 0)  = 

((period.u (0FP_Reaction inevseq n))  = 0)'); 

e  (REPEAT GEN.TAC); 
e  (ASSUME.TAC Period_2_gt_0); 
e  (SUBSTl.TAC  (SPEC.ALL (theorem "-"  "period_u_iormula"))); 
e  (ASM_CASES_TAC (—'n MOD  (Period 2)  = 0'--)); 
e  (ASM_REWRITE_TAC[]); 

e  (ASM_REWRITE_TAC[]); 
e  (IMP RES.TAC  (SPEC  (—'(Period 2)'--) 

(definition "arithmetic" "DIVISION"))); 

e  (P0P_ASSUM (MPJTAC o  (SPEC  (—'n:num*--)))); 
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e (CONVJTAC ARITH.CONV); 
val period_u_0 = save_top_thm "period_u_0"; 

new_run_u_l ef t _u_sum 

Show that when n is a multiple of Period(2), the sum run_u(n + l) + 
left_u (ra + 1) is Ctime (2) more than the sum in the previous period. Lemma 
period_u_0 is used to show that a new period starts at time n, and the proof 
then follows from case analysis of the possible inputs. This lemma is used in 
the proof of run_u_lef t_u_sum. 

gCrinevseq n.   ((n MOD  (Period 2))  = 0)  ==> 
(((run_u (0FP_Reaction inevseq (SUC n)))  + 

(left_u (0FP_Reaction inevseq (SUC n))))  = 
((run_u (0FP_Reaction inevseq n))  + 
(left_u (0FP_Reaction inevseq n))  +  (Ctime 2)))'); 

e  (REPEAT STRIP_TAC); 
e  (ASSUME_TAC (SPEC_ALL period_u_0)); 
e  (RES_TAC); 

e (reaction_cases_TAC (--'"inevseq n'~) THEN simplify_response_TAC); 
e (MP_TAC ok_processes_assum THEN C0NV_TAC ARITH_C0NV); 
e (RES_TAC); 
e (HP_TAC ok_processes_assum THEN C0NV_TAC ARITH_C0NV); 
e (MP_TAC ok_processes_assum THEN C0NV_TAC ARITH_C0NV); 
val new_run_u_left_u_sum = save_top_thm "new_run_u_left_u_sum"; 

run_u_left_u_sum 

Show that the sum run_u (n + l)+left_u (n + 1) is (nDIVPeriod (2))-Ctime (2) 
at the beginning of a period, and ((nDIVPeriod (2)) +1) ■ Ctime (2) elsewhere. 
The proof is by induction on n. The proof of the induction step is done by 
analysis of the following three possibilities: 

1. Time n is at the end of a period: n MOD Period (2) = Period (2) — 1. 

2. Time n is at the beginning of a period: n MOD Period (2) = 0. 

3. Time n is in the middle of a period (neither of the above conditions is 
true). 
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The proof of each case is by case analysis of the possible inputs.   Lemma 
period_u_0 is used to show contradictory hypotheses where appropriate, and 

lemma 
new_run_u_left_u_sum is used in the second case.   This result is used in 
the proof of run_u_left_u_suml. 

g(' ! "inevseq n. 
((run_u (OFP_Reaction inevseq n))  + 

(left_u (OFP_Reaction inevseq n)))  = 

((n MOD  (Period 2)  = 0)  => 
(n DIV  (Period 2))  *  (Ctime 2)   I 
(SUC  (n DIV (Period 2)))  *  (Ctime 2))'); 

e (GENJTAC); 
e (INDUCTJTAC); 
e (REWRITEJTAC  ([OFP.Reaction, OFP_InitParam] <D state_field_defs)); 

e (ASSUME_TAC Period_2_gt_0); 
e (COND_REWRITE_TAC (theorem "arithmetic" "ZEROJDIV")); 
e (COKD_REWRITE_TAC (theorem "arithmetic" "ZERCLMOD")); 
e (CONVJTAC ARITH_C0NV); 

e (ASM_CASES_TAC (--'(n MOD Period 2) = ((Period 2) - 1)'--)); 

e (UNDISCH_N_TAC 2); 
e (STRIP_ASSUME_TAC ok_processes_assum); 
e (ARITH_RES_TAC (—'(a = b - 1) ==> (b > 1) ==> "(a = 0)'—)); 
e (ASSUME_TAC Period_2_gt_0) 
e (COND_REWRITE_TAC DIVJSUC) 
e (COND_REWRITE_TAC M0D_SUC) 
e (ASM_REWRITE_TACG); 

e (reaction_cases_TAC (--'"inevseq n'~) THEN simplify_response_TAC); 

e (IMP_RES_TAC period_u_0 THEN RES_TAC); 

e (C0NV_TAC ARITH_CONV); 
e (IMP_RES_TAC period_u_0 THEN RES_TAC); 

e (CONVJTAC ARITH_C0NV); 
e (IMP_RES_TAC period_u_0 THEN RES_TAC); 

e (C0NV_TAC ARITH_C0NV); 

e (ASM_CASES_TAC (--'n MOD Period 2 = 0'--)); 

e (UNDISCH_N_TAC 3); 
e (ASSUMEJTAC Period_2_gt_0); 

e (COND_REWRITE_TAC DIV_SUC): 

e  (COND_REWRITE_TAC MODJSUC) 
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e (ASM_REWRITE_TACD); 
e (ARITH_REWRITE_TAC [—'((SUC 0) = 0) = F'—]); 
e (COND_REWRITE_TAC new_run_u_left_u_sum); 
e (REWRITEJTAC [definition "arithmetic" "MULT"]); 
e (CONVJTAC ARITH_CONV); 

e (UNDISCH_N_TAC 3); 
e (ASSUME.TAC Period_2_gt_0); 
e (COND_REWRITE_TAC DIV.SUC); 
e (COND_REWRITE_TAC MOD.SUC); 
e (ASM_REWRITE_TACD); 
e (ARITH_REWRITE_TAC [—'((SUC a) = 0) = F'—]); 
e (reaction_cases_TAC (— '"inevseq n'—) THEN simplif y_response_TAC) ; 

e (IMP_RES_TAC period_u_0 THEN RESJTAC); 
e (C0NV_TAC ARITH_CONV); 
e (IMP_RES_TAC period_u_0 THEN RESJTAC); 
e (C0NV_TAC ARITH.CONV); 
e (IMP_RES_TAC period_u_0 THEN RESJTAC); 
e (CONV_TAC ARITH_CONV); 
val run_u_leit_u_sum = save_top_thm "run_u_left_u_sum"; 

run_u_left_u_suml 

Show that at the middle or end of the nth period, the sum of run_u and 
left.u is (n + 1) • Ctime(2). The proof is by analysis of the two cases of 
whether k = Period (2) (the end of the period) or not (the middle of the pe- 
riod), and follows from lemma ran_u_lef t_u_sum. This result is used in the 
proofs of run_u_f inished, updater_ready_resultl,updater_iiot_ready_- 

resultl, and suc_period_u_ctime_u. 

g('l'inevseq n k. 
((k > 0) A (k <= Period 2)) ==> 
((run_u (0FP_Reaction inevseq (n * Period 2 + k))) + 
(left_u (0FP_Reaction inevseq (n * Period 2 + k))) = 

(SUC n) * (Ctime 2))'); 

e (REPEAT STRIP_TAC); 
e (MP_TAC (SPECL [—"inevseq'--,--'(n * Period 2 + k)'—] 

run_u_left_n_sum)); 
e (ASM_CASES_TAC (—'k = Period 2'—)); 

e (ASM_REWRITE_TACD); 
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e (REWRITE_TAC [(SYM (SPECL C—'n:num'--, — 'Period 2'—] 
(C0NJUNCT2 (definition "arithmetic" "MULT"))))]); 

e (ASSUME_TAC Period_2_gt_0); 
e (COND_REWRITE_TAC (theorem "arithmetic" "H0D_Eq_0")); 
e (IHP_RES_TAC (theorem "arithmetic" "DIV_MULT")); 
e (POP_ASSUM (MP.TAC o (SPEC (--'SUC n'—)))); 
e (ARITH_REWRITE_TAC [—'a + 0 = a'—] THEN DISCH_TAC THEN 

ASM_REWRITE_TAC[]); 

e (ARITH_RES_TAC (—'((a <= b) A "(a = b)) ==> (a < b)'—)); 
e (COND_REWRITE_TAC M0D_N0NZER0); 
e (COND_REWRITE_TAC (theorem "arithmetic" "DIV.MULT")); 
val run_u_left_u_sumi = save_top_thm "run_u_lelt_u_suml"; 

left_u_f inished 

Show that if left_u is 0 in a period, it will remain 0 until the end of the 
period. The proof is by induction on the remaining time in the period and 
case analysis of the possible inputs, and uses period_u_0 to show that the 
hypotheses of some of the cases are contradictory. This result is used in the 
proof of run_u_f inished. 

g('!"inevseq n k k'. 
(((left_u (OFP_Reaction inevseq ((n * (Period 2)) + k))) = 0) A 
(k > 0) A 
(k + k' <= (Period 2))) ==> 

((left_u (0FP_Reaction inevseq ((n * (Period 2)) + k + k'))) = 0)'); 

e (GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN STRIPJTAC); 

e (ARITH_REWRITE_TAC [~'k + 0 = k'—] THEN ASM_REWRITE_TAC[] ) ; 

e (ARITH_REWRITE_TAC [—' (n * Period 2 + k + SUC k') = 
(SUC (n * Period 2 + k + k'))'—]); 

e (ARITH_RES_TAC (—'(k + SUC k' <= Period 2) ==> 
(k + k' <= Period 2)' — )); 

e (ARITH_RES_TAC (—'(k + SUC k' <= Period 2) ==> 
(k + k' < Period 2)'—)); 

e (ARITH_RES_TAC (—'k > 0 ==> k + k' > 0'—)); 
e (P0P_ASSUM (ASSUHE_TAC o SPEC_ALL)); 
e (RES_TAC); 
e (reaction_cases_TAC (—'"inevseq (n * Period 2 + k + k')'—) THEN 

simplify_response_TAC); 
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e (IMP_RES_TAC MOD_NONZERO THEN IMP_RES_TAC period_u_0 THEN RES.TAC); 
e (UNDISCH_N_TAC 2 THEN CONV_TAC ARITH_CONV); 
e (IMP_RES_TAC MOD_NONZERO THEN IMP_RES_TAC period_u_0 THEN RES_TAC); 
e (UNDISCH_N_TAC 3 THEN CONV.TAC ARITH_CONV); 
e (IMP_RES_TAC MOD.NONZERO THEN IMP_RES_TAC period_u_0 THEN RES.TAC); 
e (UNDISCH_N_TAC 3 THEN CONV_TAC ARITH_CONV); 
val leit_u_finished = save_top_thm "left_u_xinished"; 

run_u_f inished 

Show that if lef t_u is 0 in a period, run_u will be unchanged until the end 
of the period. The proof uses lef t_u_f inished to show that the value of 
left.u is zero at the end of the period, and run_u_left_u_suml to show 
that the value of run_u is therefore the same at the end of the period. This 
result is used in the proof of suc_period_u_ctime_u. 

g('!"inevseq n k k'. 
(((left_u (OFP_Reaction inevseq ((n * (Period 2)) + k))) = 0) A 
(k > 0) A 
(k + k> <= (Period 2))) ==> 
((run_u (0FP_Reaction inevseq ((n * (Period 2)) + k + k'))) = 
(run_u (OFP.Reaction inevseq ((n * (Period 2)) + k))))'); 

e (REPEAT STRIP_TAC); 
e (ARITH_RES_TAC (~'(k + k' <= Period 2) ==> (k <= Period 2)*—)); 
e (ARITH_RES_TAC (—'(k > 0) ==> (k + k' > 0)'--)); 
e (P0P_ASSUH (ASSUME_TAC o SPEC.ALL)); 
e (IMP_RES_TAC run_u_left_u_suml); 
e (P0P_ASSUM (MP_TAC o SPEC.ALL)); 
e (P0P_ASSUM (MP_TAC o SPEC_ALL)); 
e (IMP_RES_TAC leit_u_finished); 
e (ASM_REWRITE_TACD); 
e (CONVJTAC ARITH_C0NV); 
val run_u_finished = save_top_thm "run_u_linished"; 

run_t_le_CPU 

Show that the amount of time the trigger process runs in an interval n... n+k 
is less than or equal to CPU (k, 1). There was not enough time to prove this 
lemma, so it is presented as an axiom. An informal argument that this 
assertion is true is the following. 
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There are three possible cases: 

1. fc< Ctime (1). 

Then, CPU(&, 1) = k and run_t(fc) < k, since a process cannot run 

longer than the available time. 

2. Ctime(l)< k < Period(1). 

Then, CPU(&, 1) = Ctime(l). In this interval, the run time cannot 
be greater than Ctime(l), because in the worst case, where all input 
events are Trigger, the runs of the trigger process are still spaced 
Period (1) time units apart. If not all input events are Trigger, the 
spacing between runs may be even wider, resulting in even less run 
time in the interval. 

3. k> Period (1). 

Then, k will contain k DIV Period (1) periods, and in each period, the 

run time will be less than or equal to Ctime(l). Also, 

CPU ((k DIV Period (1)) • Period (1), 1) = (k DIV Period (1)) • Ctime (1) 

In the remaining partial period, one of the above conditions will be 
true, so the run time in that partial period will be less than or equal 
to the value of CPU, and thus the run time in the entire interval will 
be less than or equal to CPU (&, 1). 

This result is used in the proof of min_deadline. 

val run_t_le_CPU = 
new_open_axiom ( 

"run_t_le_CPU", 
—'!n k.   ((run_t  (OFP_Reaction inevseq (n + k)))  - 

(run_t  (OFP_Reaction inevseq n)))  <=  (CPU k 1)'—); 

min_deadline 

Show that the amount of time available for the updater process to run in the 
interval [n ... n + Deadline (2)] is greater than or equal to Ctime (2), and so 
the minimum of the two values is Ctime (2). The proof follows from lemma 
run_t_le_CPU, by subgoaling on MIN_LE. This result is used in the proofs of 
suc_period_u_ctime_uand updater_meets_deadline. 
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g('!n. 
(MIN (Ctime 2) 

((Deadline 2) - 
((run_t (OFP_Reaction inevseq (n + (Deadline 2)))) - 

(run_t (OFP.Reaction inevseq n))))) = 

(Ctime 2)'); 

e  (GENJTAC); 
e  (MATCH_MP_TAC MIN_LE); 
e  (MP_TAC (SPECL  [--'n:num'—.--'Deadline 2'—]  run_t_le_CPU)); 
e  (MP_TAC ok_processes_assum); 
e  (CONVJTAC ARITH_CONV); 
val min_deadline = save_top_thm "min_deadline"; 

run_u_mono 

Show that run_u(n + fc) > run_u(n). The proof is by induction on k, 
and the induction step is proved by runnable process case analysis. This 
result is used by updater_ready_resultl, suc_period_u_ctime_u, and 
updater_meets_deadline_0. 

g('!"inevseq n k. 
(run_u (OFP_Reaction inevseq (n + k))) >= 
(run_u (OFP_Reaction inevseq n))'); 

e (GENJTAC THEN GEN_TAC THEN INDUCT_TAC); 

e (ARITH_REWRITE_TAC [~'n + 0 = n'—] THEN CONV.TAC ARITH_CONV); 

e (ARITH_REWRITE_TAC [—'n + SUC k = SUC (n + k)'--]); 

e (ASM_CASES_TAC (--'trigger_ready inevseq (n + k)'~) THENL 

[ALLJTAC, 
ASM_CASES_TAC (—'updater_ready inevseq (n + k)'—)]); 

e (COND_REWRITE_TAC trigger_ready.result THEN ASH_REWRITE_TAC[]); 

e (COND_REWRITE_TAC trigger_not_ready_result THEN 

COND_REWRITE_TAC updater_ready_result THEN 

ASM_REWRITE_TAC[]); 

e (UNDISCH_N_TAC 3 THEN C0NV_TAC ARITH_CONV); 

e (COND_REWRITE_TAC trigger_not_ready_result THEN 

COND_REWRITE_TAC updater_not_ready_result THEN 
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ASM_REWRITE_TACG); 
val run_u_mono = save_top_thm "run_u_mono"; 

run_t_mono 

Show that run_t(n + k) > run_t(n). The proof is by induction on k, and 
the induction step is proved by runnable process case analysis. This result 
is used by updater_meets_deadline_0. 

g('!"inevseq n k. 
(run_t (OFP_Reaction inevseq (n + k))) >= 
(run_t (OFP_Reaction inevseq n))'); 

e (GEN_TAC THEH GEN_TAC THEN INDUCTJTAC); 

e (ARITH_REWRITE_TAC [—'n + 0 = n'—] THEN C0NV_TAC ARITH_CONV); 

e (ARITH_REWRITE_TAC [—'n + SUC k = SUC (n + k)'—]); 
e (ASM_CASES_TAC (—'trigger_ready inevseq (n + k)' —)); 

e (COND_REWRITE_TAC trigger_ready.result THEN ASH_REWRITE_TAC[]); 
e (UNDISCH_N_TAC 2 THEN CONVJTAC ARITH_CONV); 

e (COND_REWRITE_TAC trigger_not_ready_result THEN ASM_REWRITE_TAC[]); 
val run_t_mono = save_top_thm "run_t_mono"; 

run_t_diff 

Show that run_t (n + k) — run_t (n) < k. The proof is by induction on k, and 
the induction step is proved by runnable process case analysis. This result 
is used by updater_meets_deadline_0. 

g('!"inevseq n k. 
(run_t (OFP_Reaction inevseq (n + k))) - 
(run_t (OFP_Reaction inevseq n)) <= 

k'); 

e (GEN_TAC THEN GEN_TAC THEN INDUCT_TAC); 

e (ARITH_REWRITE_TAC [—'n + 0 = n'—] THEN CONVJTAC ARITH_CONV); 

e (ARITH_REWRITE_TAC [—'n + SUC k = SUC (n + k)'—] THEN 
UNDISCH_N_TAC 1); 
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e  (ASM_CASES_TAC (—'trigger_ready inevseq (n + k)'--)); 

e  (COND_REWRITE_TAC trigger_ready_result THEN CONV_TAC ARITH_CONV); 
e  (COND_REWRITE_TAC trigger_not.ready.result THEN CONV.TAC ARITH_CONV); 
val run_t_diff = save_top_thm "run_t_diff"; 

updater_ready_resultl 

This lemma is used in two of the cases in the proof of updater_meets_dead- 
line_0; the antecedent is the induction hypothesis in the proof of that lemma, 
with the additional assumption that the updater process is ready to run. 
With these assumptions, it is shown that the amount of time available in the 
interval for the updater process to run is less than Ctime(2). 

There are two main cases in this proof, which follow from the 
definition of updater_ready: left_u (n * Period (2) + k) > 0, and 
period_u (n * Period (2) + k) = 0. In the first case, subgoaling on LT_MIN 
produces a new goal in which it must be shown that the updater run time in 
the interval is less than Ctime (2), and this follows from run_u_lef t_u_suml 
and run_u_mono. In the second case, period_u_0 is used to show that k 
must be zero, and so the goal is trivially true. 

g('!"inevseq n k. 
((((run_u (OFP_Reaction inevseq ((n * (Period 2)) + k))) - 

(run_u (OFP_Reaction inevseq (n * (Period 2))))) = 
(MIN (Ctime 2) 
(k - ((run_t (OFP_Reaction inevseq ((n * (Period 2)) + k))) - 

(run_t (OFP_Reaction inevseq (n * (Period 2)))))))) A 
(updater_ready inevseq ((n * (Period 2)) + k)) A 
(k < (Period 2)) A 
((run_u (OFP_Reaction inevseq (n * (Period 2)))) = (n * (Ctime 2)))) 
==> 
((Ctime 2) > 

(k - ((run_t (OFP_Reaction inevseq ((n * (Period 2)) + k))) - 
(run_t (OFP_Reaction inevseq (n * (Period 2)))))))'); 

e (REWRITEJTAC [updater„ready]); 
e (REPEAT STRIPJTAC); 
e (MATCH_MP_TAC 

(SPEC (—'(run_u (OFP_Reaction inevseq (n * Period 2 + k))) - 
(run_u (OFP_Reaction inevseq (n * Period 2)))'—) LT_MIN)); 

e (CQNJ_TAC); 
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e (ASM_CASES_TAC (—'k = 0'--)); 

e (P0P_ASSUM SUBST1_TAC THEN ARITH_REHRITE_TAC [—'a + 0 = a'--]); 
e (MPJTAC ok_processes_assum THEN C0NV_TAC ARITH_C0NV); 

e (ARITH_RES_TAC (--'"(k = 0) ==> (k > 0)'--)); 
e (ARITH_RES_TAC (~'(k < Period 2) ==> (k <= Period 2)'—)); 
e (MP_TAC (SPECLALL run_u_left_u_suml)); 
e (ASSUM.LIST (In thl => REWRITE.TAC [el 1 thl, el 2 thl, el 4 thl]) 

THEN REWRITE_TAC [definition "arithmetic" "MULT"]); 
e (UNDISCH_N_TAC 4); 
e (UNDISCH_N_TAC 5); 
e (MP.TAC (SPECL [— "inevseq'--, — 'n * (Period 2) ' —, —'k:num'—] 

run_u_mono)); 
e (C0NV_TAC ARITH_CONV); 

e (ASM_REWRITE_TACG); 

e (ASM_CASES_TAC (—'k = 0'—)); 

e (P0P_ASSUM SUBSTi_TAC); 
e (ARITH_REWRITE_TAC [—'a + 0 = a'—] THEN 

MP_TAC ok_processes_assum THEN 
C0NV_TAC ARITH_CONV); 

e (ARITH_RES_TAC (—'"(k = 0) ==> (k > 0)'—)); 
e (IHP_RES_TAC MODJJONZERO); 
e (IMP_RES_TAC period_u_0); 
e (RESJTAC); 
val updater_ready_resultl = save_top_thm "updater_ready_resultl"; 

updater_not_ready_resultl 

This lemma is used in two of the cases in the proof of updater_meets_dead- 
line_0; the antecedent is the induction hypothesis in the proof of that lemma, 
with the additional assumption that the updater process is not ready to run. 
With these assumptions, it is shown that the amount of time available in the 
interval for the updater process to run is greater than or equal to Ctime(2). 

The proof of this lemma begins by massaging the ~ (updater_ready . . .) 

hypothesis into a more convenient form ( left_u (n * Period (2) + k) = 0 and 
period.u (n * Period (2) + k) > 0). Subgoaling on GE_MIN produces a new 
goal in which it must be shown that the updater run time in the interval 
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is greater than or equal to Ctime(2), and, after showing that k must be 
greater than 0 using period_u_0, run_u_left_u_suml and the assumption 
that left_u (n * Period (2) + k) — 0 is used to show that the new goal is true. 

g('!"inevseq n k. 
((((run_u (OFP_Reaction inevseq ((n * (Period 2)) + k))) - 

(run_u (OFP_Reaction inevseq (n * (Period 2))))) = 
(MIN (Ctime 2) 
(k - ((run_t (OFP_Reaction inevseq ((n * (Period 2)) + k))) - 

(run_t (OFP_Reaction inevseq (n * (Period 2)))))))) A 
~(updater_ready inevseq ((n * (Period 2)) + k)) A 
(k < (Period 2)) A 
((run_u (OFP.Reaction inevseq (n * (Period 2)))) = (n * (Ctime 2)))) 
==> ((Ctime 2) <= 
(k - ((run_t (OFP_Reaction inevseq ((n * (Period 2)) + k))) - 

(run_t (OFP_Reaction inevseq (n * (Period 2)))))))'); 

e (REWRITEJTAC [updater_ready]); 
e (PTAUT_REWRITE_TAC [—'"(a V b) = ('a A "b)'—3); 
e (ARITH_REWRITE_TAC [—"(a > 0) = (a = 0)'--]); 
e (REPEAT STRIP_TAC); 
e (MATCH_MP_TAC 

(SPEC (—'(run_u (0FP_Reaction inevseq (n * Period 2 + k))) - 
(nm_u (0FP_Reaction inevseq (n * Period 2)))'—) GE_MIN)); 

e (C0NJ_TAC); 

e (ASM_CASES_TAC (—'k = 0'—)); 

e (UNDISCH_N_TAC 4); 
e (REWRITE_TAC 

[(SYM (SPECL [—'"inevseq' —, — '(n * Period 2 + k)'--] period_u_0))]); 
e (P0P_ASSUM SUBST1_TAC); 
e (REWRITE_TAC 

C(MP (SPECL [—'Period 2' —, —'0'—] 
(theorem "arithmetic" "M0D_MULT")) 

Period_2_gt_0)]); 

e (ARITH_RES_TAC (—"(k = 0) ==> (k > 0)'—)); 
e (ARITH_RES_TAC (—' (k < Period 2) ==> (k <= Period 2)'—)); 
e (IMP_RES_TAC run_u_left_u_suml); 
e (P0P_ASSUM (HP_TAC o 

REWRITE_RULE  [definition "arithmetic"  "MULT"]   o 
SPEC_ALL)); 

e   (UNDISCH_N_TAC 6); 

253 



e (UNDISCH_N_TAC 8); 
e (CONV_TAC ARITH_CONV); 

e (ASM_REWRITE_TAC[]); 
val updater_not_ready_resultl = 

save_top_thm "updater_not_ready_resultl"; 

n_ge_run_t 

Show that n > run_t(n). The proof is by induction on n and runnable 
process case analysis. This result is used by updater_meets_deadline_0. 

g('I'inevseq n.  n >= run_t  (OFP_Reaction inevseq n)'); 
e  (GENJTAC); 
e  (INDUCT_TAC); 
e  (REWRITE_TAC  ([OFP_Reaction, OFP_InitParam]  C state_field_deis)); 
e  (CONV_TAC ARITH_CONV); 

e  (UNDISCH_N_TAC 1 THEN ASM_CASES_TAC (~'trigger_ready inevseq n'—)); 
e  (COND_REWRITE_TAC trigger_ready.result THEN CONV_TAC ARITH_CONV); 
e  (COND_REWRITE_TAC trigger_not_ready_result THEN C0NV_TAC ARITH_CONV); 

val n_ge_run_t = save_top_thm "n_ge_run_t"; 

suc_period_u_ctime_u 

This lemma is used in one of the cases in the proof of updater_meets_dead- 
line_0; the antecedent is the induction hypothesis in the proof of that lemma, 
where k is instantiated with Deadline (2). With these assumptions, it is 
shown that the updater run time at the end of period n+1 is (n+1 )-Ctime (2). 

g('((((run_u (OFP_Reaction inevseq (n * Period 2 + Deadline 2)))  - 
(run_u (OFP_Reaction inevseq (n * Period 2))))  = 

(MIN (Ctime 2) 
(Deadline 2 - 
((run_t  (OFP_Reaction inevseq (n * Period 2 + Deadline 2)))  - 
(run_t  (OFP_Reaction inevseq (n * Period 2)))))))  A 

((run_u (OFP_Reaction inevseq (n * Period 2)))  = n * Ctime 2))  ==> 
(run_u  (OFP_Reaction inevseq (SUC n * Period 2))  = SUC n * Ctime 2)'); 

e  (REWRITEJTAC  [min_deadline, definition "arithmetic"  "MULT"]); 

e  (REPEAT STRIP_TAC); 
e  (ASSUME_TAC 
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(SPECL  [—'"inevseq' — ,— 'n * Period 2'—, — 'Deadline 2'—] 
run_u_mono)); 

e  (ARITH_RES_TAC (—'((a >= b)  A  (a - b = c))  ==>  (a = b + c)'--)); 
e  (ASSUM_LIST (fn thl =>  (ASSUME_TAC (REWRITE.RULE  [el 3 thl] 

(el 1 thl))))); 
e  (STRIP_ASSUME_TAC ok_processes_assum); 
e  (ARITH_RES_TAC (—'((Deadline 2 >= Ctime 2)  A  (Ctime 2 > 0))  ==> 

(Deadline 2 > 0)'—)); 
e  (ARITH_RES_TAC (--'(Period 2 >= Deadline 2)  ==> 

(Deadline 2 <= Period 2)'—)); 
e   (IHP_RES_TAC 

(SPECL  [—'"inevseq' —, — 'n:num' —, — 'Deadline 2'—] 
run_u_left_u_sural)); 

e   (P0P_ASSUM (ASSUME_TAC o 
REWRITE_RULE [definition "arithmetic" "MULT"]  o 
SPEC_ALL)); 

e  (ARITH_RES_TAC (—'((a = b)  A  (a + c = b))  ==>  (c = 0)'—)); 
e  (MPJTAC 

(SPECL  [—'"inevseq' —, — 'n:num' —, — 'Deadline 2' —, 
—'Period 2 - Deadline 2'—3  run_u_finished)); 

e  (ARITH_RES_TAC (--'(Period 2 >= Deadline 2)  ==> 
(Deadline 2 +  (Period 2 - Deadline 2)  = 
Period 2)'--)); 

e  (ASSUM_LIST (fn thl => REWRITE.TAC  [el  1 thl,  el 5 thl,  el 9 thl])); 
e  (ARITH_REWRITE_TAC [—'a <= a'--]); 
e  (ASH_REWRITE_TACD); 
val suc_period_u_ctime_u = save_top_thm "suc_period_u_ctime_u"; 

updater_meets_deadline_0 

Show that equation 8.4 is true for all r> and k. Instead of also showing 
equation 8.3, we show that 

run_u (n • Period (2)) = n • Ctime (2) (8.12) 

It turns out that equation 8.12 is more useful to have in the induction hy- 
pothesis, and, since lemma run_u_left_u_suml shows that the equations 
are equivalent, this one is used. 

The proof is by induction on n and k. In the base case for n, when n — 0, 
we must show that for all k < Period (2): 

run_u (k) = MIN (Ctime (2), k - run_t (k)) 
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(Equation 8.12 follows from the definition of OFP_InitParam.) Inducting on 
Jb, the base case for k follows from the definition of OFP_InitParam. In the 

induction step, the induction hypothesis is: 

run_u (Jb) = MIN (Ctime (2), k - run_t (fc)) 

and the goal is: 

run_u (Jb + 1) = MIN (Ctime (2), k + 1 - run_t (k + 1)) 

The induction step is proved by using runnable process case analysis. If the 
trigger process is ready to run, then the goal reduces to: 

run_u (Jb) = MIN (Ctime (2), k + 1 - (run_t (k) + 1)) 

which is the same as the induction hypothesis. If the trigger process is not 
ready but the updater process is, then the goal reduces to: 

run_u (Jfe) + 1 = MIN (Ctime (2), k + 1 - run_t (*)) 

But, by lemma updater_ready_resultl, Ctime (2) > k - run_t(fc), so 
Ctime (2) > k + 1 - run_t (Jb). Thus, the goal can be further reduced to: 

run_u (k) + l=k + l- run_t (k) 

Also, the hypothesis can be reduced to: 

run_u (k) = k — run_t (k) 

The proof of the third case, where neither process is ready, is similar. The 

goal reduces to: 

run_u (Jfc) = MIN (Ctime (2), k + 1- run_t (*)) 

and by lemma updater_not_ready_resultl, Ctime (2) < k - run_t(Ä;), so 
Ctime (2) < k + 1 - run_t (*;). Thus, the goal can be further reduced to: 

run_u(fc) = Ctime (2) 

and so can the hypothesis. 
The induction step for n is similar, except that equation 8.12 in the goal is 

no longer trivial and is shown to be true using lemma suc_period_u_ctime_u. 
Also, there is much more algebraic manipulation required. This result is used 
in the proof of the updater process requirement, updater_meets_deadline. 
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g('! "inevseq n k. 
((k <= (Period 2)) ==> 
(((run_u (OFP_Reaction inevseq ((n * (Period 2)) + k))) - 

(run_u (OFP_Reaction inevseq (n * (Period 2))))) = 
(MIN (Ctime 2) 
(k - ((run_t (OFPJteaction inevseq ((n * (Period 2)) + k))) - 

(run_t (OFP_Reaction inevseq (n * (Period 2))))))))) A 
((run_u (OFP_Reaction inevseq (n * (Period 2)))) = (n * (Ctime 2)))'); 

e (GEN_TAC); 
e (INDUCT_TAC); 

e (REWRITE_TAC [definition "arithmetic" "MULT"]); 
e (ARITH_REWRITE_TAC [—'0 + a = a'—]); 
e (REWRITE_TAC ([0FP_Reaction, 0FP_InitParam] Q state_field_defs)); 
e (ARITH_REWRITE_TAC [—'a - 0 = a'--]); 

e (INDUCTJTAC); 
e (REWRITE_TAC ([0FP_Reaction, 0FP_InitParam, MIN] <0 state_field_defs)); 
e (MP_TAC ok_processes_assum THEN C0NV_TAC ARITH_CONV); 

e (DISCHJTAC); 
e (ARITH_RES_TAC (—' (SUC a <= b) ==> (a <= b)'—)).; 
e (ARITH_RES_TAC (--'(SUC a <= b) ==> (a < b)'—)); 
e (RESJTAC); 
e (ASM_CASES_TAC (--'trigger.ready inevseq k'—) THENL 

[ALLJTAC, 
ASM_CASES_TAC (~'updater_ready inevseq k'—)]); 

e (COND_REWRITE_TAC trigger_ready.result); 
e (ASM_REWRITE_TAC[MIN]); 
e (CONVJTAC ARITH_CONV); 

e (COND_REWRITE_TAC trigger_not_ready_result THEN 
COND_REWRITE_TAC npdater_ready.result); 

e (MP.TAC 
(REWRITE_RULE [definition "arithmetic" "MULT", 

definition "arithmetic" "ADD"] 
(SPECL [—'"inevseq' —, — '0'--, — 'k:num'—] 

updater_ready_resultl))); 
e (REWRITE_TAC ([OFP_Reaction, OFP_InitParam] fl state_field_defs)); 
e (ARITH_REWRITE_TAC [—'a - 0 = a'--]); 
e (DISCHJTAC); 
e (RES_TAC); 
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e (ARITH_RES_TAC (--'(a > b - c) ==> (a >= SÜC b - c)'--)); 

e (UNDISCH_N_TAC 6); 
e (COND_REWRITE_TAC MIN_GT); 
e (COND_REWRITE_TAC HIN_GE); 
e (MP_TAC (SPECL [—'"inevseq' — , —'k:num'—] n_ge_run_t)) ; 

e (CONV_TAC ARITH_CONV); 

e (COND_REWRITE_TAC trigger_not_ready_result THEN 
COND_REWRITE_TAC updater_not_ready_result); 

e (MP.TAC 
(REWRITE_RULE [definition "arithmetic" "MULT", 

definition "arithmetic" "ADD"] 

(SPECL [--'"inevseq'--, — '0' —,~'k:num'~] 
updater_not_ready_resultl))); 

e (REWRITE_TAC ([OFP_Reaction, 0FP_InitParam] (D state_field_defs)); 
e (ARITH_REWRITE_TAC [—'a - 0 = a'—]); 
e (DISCHJTAC); 
e (RESJTAC); 
e (ARITH_RES_TAC (--'(a <= b - c) ==> (a <= SUC b - c)'—)); 
e (UNDISCH_N_TAC 6); 
e (COND_REWRITE_TAC MIN_LE); 

e (INDUCT_TAC); 

e (CONJJTAC); 
e (ARITH.REWRITEJTAC [--'a + 0 = a' — , —'a - a = 0'—]); 
e (REWRITEJTAC [MIN]); 
e (CONVJTAC ARITH_CONV); 

e (POP_ASSUM (MPJTAC o (SPEC (—'Deadline 2'—))) THEN STRIP_TAC) ; 
e (STRIP_ASSUME_TAC ok_processes_assum); 
e (ARITH_RES_TAC (—'(Period 2 >= Deadline 2) ==> 

(Deadline 2 <= Period 2)'—)); 

e (RESJTAC); 
e (IMP_RES_TAC suc_period_u_ctrme_u); 

e (REPEAT STRIP_TAC); 
e (ARITH_RES_TAC (—'(SUC a <= b) ==> (a <= b)' —)); 
e (ARITH_RES_TAC (—'(SUC a <= b) ==> (a < b)'—)); 
e (UNDISCH_N_TAC 4 THEN STRIP_TAC); 
e (RES_TAC); 
e (ARITH_REWRITE_TAC [—'a + SUC b = SUC (a + b)'—]); 

e (ASM_CASES_TAC (—'trigger_ready inevseq (SUC n * Period 2 + k)'—) 
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THENL [ALL_TAC, 
ASM_CASES_TAC (—'updater_ready inevseq (SUC n * Period 2 + k)'—)]); 

e (COND_REWRITE_TAC trigger_ready_result); 
e (ASSUME.TAC (SPECL [--"inevseq' —,~'SUC n * Period 2' — , — 'k:num' — ] 

run_t_mono)); 
e (ARITH_RES_TAC (~'(b >= c) ==> ((SUC a - (SUC b - c)) = 

(a - (b - c)))'—)); 
e (P0P_ASSUM (SUBST1JTAC o (SPEC (—'k:num' —)))); 
e (ASM_REWRITE_TAC[] ) ; 

e (COND_REWRITE_TAC trigger_not_ready_result THEN 
COND_REWRITE_TAC updater_ready.result); 

e (IMP_RES_TAC updater_ready_resultl); 
e (ARITH_RES_TAC (—'(a > b - (c - d)) ==> (a >= SUC b - (c - d))'—)); 
e (UNDISCH_N_TAC 15); 
e (COND_REWRITE_TAC MIN_GT THEN COND_REWRITE_TAC MIN_GE); 
e (REWRITE_TAC C 

(MATCH_MP 
(EQT_ELIM (ARITH_CONV (--'(k <= c) ==> ((SUC c) - k = 

SUC (c - k))'—))) 
(SPECL [--'"inevseq'--, —'SUC n * Period 2' —, —'k:num'—] 

run_t_difi))]); 
e (REWRITE_TAC [ 

(MATCH_MP 
(EQT_ELIM (ARITH.CONV (—'(a >= b) ==> (SUC a - b = SUC (a - b))'—))) 
(SPECL [—"inevseq' — , —'SUC n * Period 2' — , —'k:num'—] 

run_u_mono))]); 
e (ARITH_REWRITE_TAC [—'(a = b) ==> (SUC a = SUC b)'—]); 

e (COND_REWRITE_TAC trigger_not_ready_result THEN 
COND_REWRITE_TAC updater_not_ready„result); 

e (IMP_RES_TAC 
(SPECL [—'"inevseq' — , —'SUC n' —, —'k:num'—] 

updater_not_ready_resultl)); 
e (ARITH_RES_TAC (—'(a <= (b - (c - d))) ==> (a <= SUC b - (c - d))'—)); 
e (UNDISCH_N_TAC 7); 
e (COND_REWRITE_TAC MIN_LE); 

e (ASM_REWRITE_TAC[]); 
val updater_meets_deadline_0 = save_top_thm "updater_meets_deadline_0"; 
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updater_meets_deadline 

The proof of the updater process requirement follows trivially from lemmas 
min_deadline and updater_meets_deadline_0, when the latter is instan- 

tiated with Deadline (2). 

g('! "inevseq n. 
(run_u (OFP_Reaction inevseq (n * Period 2 + Deadline 2))) - 
(run_u (OFP.Reaction inevseq (n * Period 2))) = 

Ctime 2'); 

e (REPEAT STRIPJTAC); 
e (STRIP_ASSUME_TAC ok_processes_assum); 
e (ARITH_RES_TAC (--'Period 2 >= Deadline 2 ==> 

Deadline 2 <= Period 2'--)); 
e  (ASSUMEJTAC (SPECL  [—'"inevseq'--, — 'n:num' —,—'Deadline 2'--] 

updater_meets_deadline_0) ); 
e  (RES_TAC); 
e  (UNDISCH_N_TAC 1 THEN REWRITEJTAC  [min_deadline]); 
val updater_meets_deadline = save_top_thm "updater_meets_deadline"; 

8.5    Remaining and Future Work 

Unfortunately, there was not enough time to work out the proof of lemma 
run_t_le_CPU. It is not difficult to see that it is true, but difficult to state 
and prove formally. With the proof of this lemma, the proof that the updater 
process always meets its deadline will be complete. 

8.5.1    Arbitrary Number of Processes 

The proof presented in this paper is for a particular scheduler with one 
periodic and one sporadic process. It would be desirable to generalize the 
proof to an arbitrary number of periodic and sporadic processes, as described 
in [23]. This, however, would add more detail and complexity to an already 
detailed and complex proof. For example, the deadline for process i must 
allow for the maximum CPU use of all higher-priority processes, and the 

latency restriction becomes: 

i-J 
Deadline (i) > Ctime (t) + £ CPU (Deadline (i),j) 
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The scheduler state would have to be a collection of functions which map 
process numbers to time left for processes to run, total run times, etc., many 
simple terms in the presented proof would become summations, and many 
properties about summation would have to be stated and proved. 

8.5.2 More Abstract Schedulers 

The proof presented in this paper deals with a specific instance of a static 
priority interrupt scheduler. It would be desirable to prove the process re- 
quirements for a more abstract scheduler that is described in terms of prop- 
erties expresses as HOL predicates rather than an actual PSL specification. 
(The lemmas updater_ready_result and trigger_ready_result, among 
others, are a step in this direction.) Then, to prove a particular priority- 
based scheduler meets its requirements, it would only be necessary to prove 
that the scheduler has the properties assumed in the proof. However, from 
some very preliminary work, it is not clear that proving that a scheduler has 
these properties is much easier than proving that the scheduler meets the 
requirements. More work is needed to decide the question. 

8.5.3 More Complex Models 

Teixeira [23] describes a number of ways in which his model can be general- 

ized. 

Accounting for Scheduling Overhead 

In a more refined model of the scheduler, the actions of the scheduler itself 
(deciding which task to run, switching between tasks) also require time. This 
overhead could be allocated to the computation time of the tasks in various 

ways. 

Non-preemptive Scheduling 

It is assumed that a process can always be interrupted so that a higher- 
priority process may be run.   If the currently running process must finish 
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before a new one can be started, the latency requirement for process i be- 
comes: 

t'-i 

Deadline (i) > Ctime (i) + £ CPU (Deadline (i),;') + max Ctime (j) 

to allow for the possibility that a process must wait for a lower-priority 
process to complete. 

Non-distinct Priorities 

If more than one process may have the same priority, the latency restriction 
becomes: 

Deadline (i) > Ctime (i) +  £  CPU (Deadline (i),j) 
p3>p, 

where P,- is the priority of process i. The net result is that processes in this 
model must have greater latencies than processes in a model with distinct 
priorities, to allow for other processes with the same or greater priority. 
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