
A Bond graph based approach to Case-based

synthesis

T. N. Madhusudari

July 1995
CMU-RI-TR-95-29

^M ^r ^^^^A

I &

THE!
ROBOTICS
INSTITUTE

Carnegie Mellon University
The Robotics Institute

Technical Report

DISCLAIMEl NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

„ .. .)^,-.„.-,,. ■.„-.IKI to a<eraoe i "our per -esoorse, including the time for reviewing instructions, searching existing aata von'«.
PuOtK reporting öuroen for'"■» «liecion of •n£™™» *™'??™£J££\\Ut™onoi information Serw comments regarding this burden estimate or any other aspect of this
gathering and "-""■"'^^Ü.^o TJc^S.'or^fo?T^tonlIhf»Xra^n ?0 W«h.n",on Headfluarter, Services. Direcior.telor nform.t.on Ooerafons and «wm,«« Je«*~"
ff^h«.",.ISS 1&: *;g^t^M^o7!Sl & ^ &■« o« ^"^>- a™ Budget. Paperwork neouct.on Pro,e<t (0704-0,88), Washington, DC 20S03.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
July 1995

3. REPORT TYPE AND DATES COVERED
technical

4. TITLE AND SUBTITLE

A Bond graph based approach to Case-based synthesis

6. AUTHOR(S)

T.N. Madhusudan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

S. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU-RI-TR-95-29

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION. AVAILABILITY STATEMENT

Approved for public release;
Distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT [Maximum 200 woras)

The paper presents an algorithm for case-based synthesis of single-input single-output power-drive systems based on
dynamic behavior design specifications. The case-base consists of electro-mechanical components modelled using the
bond-graph formalism. An hierarchical classification scheme for devices that distinguishes between the functional and
structural aspects of a device is described. The synthesis algorithm also combines conceptual and parametric design in a
coherent computational scheme. Examples illustrating the device representation and synthesis algorithm are described.

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT ,. .. .

unlimited

18. SECURITY CLASSIFICATION
OF THIS PAGE

unlimited

19. SECURITY CLASSIFICATION
OF ABSTRACT

unlimited

15. NUMBER OF PAGES

402p_
16. PRICE CODE

20. LIMITATION OF ABSTRACT

unlimited

\IC,N 7;£n..v./ ~n. ".'.aroarc -~'m 193 3-v :-39'

A Bond graph based approach to Case-based
synthesis

T.N.Madhusudan

July 1995
CMU-RI-TR-95-29

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The paper presents an algorithm for case-based synthesis of single-input single-output power-
drive systems based on dynamic behavior design specifications. The case-base consists of
electro-mechanical components modelled using the bond-graph formalism. An hierarchical
classification scheme for devices that distinguishes between the functional and structural
aspects of a device is described. The synthesis algorithm also combines conceptual and
parametric design in a coherent computational scheme. Examples illustrating the device
representation and synthesis algorithm are described.

This research is sponsored by the Office of Naval Research under contract no. ONR N00014-92-J-1298.

The views and conclusions contained in this document are those of the author and should not be in-
terpreted as representing official policies, either expressed or implied, of the funding agency or the U.S.
Government,

19960724 091

Keywords: Case-based design, Bond graphs, conceptual design

Contents

1. Introduction 7

1.1. An example problem 7

2. Device representation 13

2.1. Energy interaction models for devices 14

2.2. Representation of dynamic behavior of efforts and flows 17

2.3. Design specifications 21

2.4. Cases and case-base organization 24

3. The case-based design procedure 27

3.1. Elaboration 28

3.2. Case verification 30

3.3. Synthesis algorithm 32

3.4. Synthesis of the gate drive system 33

3.5. Complexity of the synthesis procedure 35

4. Domain heuristics for elaboration and matching 36

4.1. Elaboration and retrieval heuristics 36

4.2. Heuristics for symbolic solving and matching parameter relations 36

5. Discussion and concluding remarks 38

List of Figures

1 A driveway gate 7

2 Possible designs for gate drive system 8

3 Design process for the gate drive system 9

4 The case-based design process 12

5 Displacement trajectory for parabolic cam follower 18

6 Possible parameter trajectories 19

7 Design specifications for gate drive system 21

8 Device relationship for an assembly of components 23

9 Representation of parabolic parameter relation 25

10 Typology of two-port power devices 26

11 Power-flow path representation in devices 28

12 Elaboration tree 29

13 Junction structures in elaboration 39

List of Tables

1 Energy and Power parameters 15

2 Two port device relations 15

3 Common structural relations 16

4 Parameter functions of time 18

5 Velocity trajectory for parabolic cam follower 20

6 Design specification representation for gate drive system 22

7 Schema for a device 25

8 Schema for a particular DC-motor 25

9 Indexing keys for a device 26

10 An example specification 31

11 Cases retrieved for index PEM —► PMR —* PMT 34

12 Device relations for cases in Table 11 34

™ WHTOfl
Motion of
the gate

GATE

OPEN m
Figure 1: A driveway gate

1. Introduction

1 The engineering design process has been classified into four stages, namely, (1) Conceptual
design wherein physical concepts and engineering principles are used to generate prototypes
that are expected to meet given design specifications, (2) Parametric design wherein geometry,
form and material parameter values are chosen for each feasible conceptual prototype, (3)
Configuration design involving spatial arrangements and sizing of the components of the
synthesized prototype and finally (4) Embodiment design wherein detailed specifications for
the product are generated aided by thorough engineering analysis. Successful computer-
design aids have been built to support parametric and configuration design such as structural
optimization and layout tools. Research in developing models for design computation has
primarily focused on providing tools for analysis of designed artifacts and their computerized
representation as solid models. Only limited work has been performed to provide support
for design synthesis at the early stages of design. Tools to support conceptual design have
been limited in their expertise because of the variety of physical concepts that need to be
represented. It is also unclear how the conceptual design phase interacts with the parametric
and configuration design stages. An example design problem that illustrates the different
design stages and highlights the need for tools that aid conceptual design is described in the
following section.

1.1. An example problem

Consider the synthesis of an electro-mechanical drive system that opens and closes a gate
to the driveway of a house as shown in Figure 1. Given a signal to open the gate, the
drive system moves the gate horizontally on guide-ways in a particular direction; the drive
system moves the gate in the opposite direction when given the signal to close the gate.
Design specifications for the drive system are the frictional force that resists the motion of
the gate, the speed variation of the gate, the input power supply to the drive system i.e. the
input electrical voltage and current availability and variation with time. A drive system for
the gate can be assembled from numerous off-the-shelf components such as motors, gears,
linear slides and other mechanisms to meet these specifications,. Four possible designs of
increasing complexity are shown in Figure 2. In each design, the thick arrows denote the
direction of power flow. Energy from the electrical source flows through each component

Electrical
Source

SüdetCranl >■

rical^T
e ^[K

2.
Electrical
Source ^ Motor

3.
Electrical
Source —

4.
Electrical
Source

■^ Rack-pinioi

Position

Motor
Hydraulic

PumD

Piston

Valve

Position

S«nsor

Gate

Figure 2: Possible designs for gate drive system

and is finally converted into work moving the gate. The schematic diagram for each design
denotes the power connectivity structure between different components (notated as boxes)
and is called the device topology of the design. The choice of AC or DC motors in the device
topologies is dictated by the nature of the electrical source. Designs 1 and 2 are simple
designs wherein the gate opens, stays in the open position for a brief period of time and then
closes. Designs 3 and 4 involve feedback about the position of the gate denoted by the thin
arrow. A position sensor detects the limiting positions of the gate and triggers a directional
switch to change current direction in design 3 and the bi-directional valve position in design
4. Each component in the device topologies in Figure 2 has a well-defined dynamic behavior
and role to play in the over-all functioning of the design. For example, the electrical motor
converts electrical power into rotary mechanical power and a cam converts rotary motion
into reciprocatory motion. The choice of a design from Figure 2 also depends on metrics
such as the cost, the weight, the spatial volume and reliability of each component in the
design and the overall assembly. A device topology is generated as a result of a sequence of
design decisions. We illustrate the design choices for generating the gate-drive system device
topologies in Figure 3. The process of choosing the correct type of off-the-shelf components
i.e. a four-bar mechanism vs. a rack and pinion mechanism and combining these components
in a feasible manner that provides the required functionality is conceptual design[l, 2]. The
different motor and mechanism combinations shown in the figure provide conversion of rotary
motion to translatory motion. Once a particular combination of components is chosen, the
next issue is sizing these components i.e. choosing a large or small motor with large or
small rack-pinion mechanism. This process is called parametric design. This is illustrated
in the figure by the different motor and rack-pinion combinations. An associated step is
the process of choosing spatial orientations for each component and forming the overall
shape and size of the drive system for the gate. This is called configuration design. As
shown in the figure, the motor and rack-pinion can have a number of relative orientations
depending on spatial constraints in the design specification. The foregoing example describes
the synthesis of new devices in contrast to the task of routine design wherein one is primarily
involved in parametric design involving resizing of components given a particular device
topology. Choices of components and device topologies in the conceptual design stage may
not satisfy parametric or configuration requirements and the process of design has to be

CONCEPTUAL DESIGN

Four-bar Rack-pinion Slider-crank
Motor mechanism / mechanism

^=>*rA C3—fl- C3-*/4
 -'I \
PARAMETRIC DESIGN Jf f ^V
Different sizes

h*-0- LZh-Q- CD—2-

CONFIGURATION DESIGN
Different relative orientations

Figure 3: Design process for the gate drive system

repeated with a different initial choice of concepts thus leading to increased product design
cycle times and cost. Computational design aids that provide the human designer the ability
to generate different initial concepts i.e. components and valid component topologies given a
set of design specifications and also explore the interaction effects of conceptual, parametric
and configuration choices will be invaluable. Such aids would help in the choice of off-
the-shelf components and their consequent assembly without recourse to synthesizing new
devices from scratch. In this paper, we present a computational scheme to generate valid
assemblies of components given design specifications and also perform parametric design on
the synthesized assemblies.

Computational aids for supporting design must exhibit certain essential characteristics.
Since the space of feasible designs is vast, the synthesis algorithms must generate all designs
on request or some valid designs depending on the nature of the design specifications. The
design algorithms must also consider measures such as cost, reliability, robustness etc. to
trade-off various design alternatives and propose only those solutions that satisfy required
design criteria. For more detailed design specifications, the synthesis routines must provide
design solutions that contain the same or more amount of design detail. The design algo-
rithms must reflect a domain-independent approach such that an algorithm for designing
combinations of mechanical devices can be adapted to synthesize hydraulic devices.

Finally, in the case of electro-mechanical devices, the devices are described at multi-
ple levels of detail and abstraction. An example of two abstract representations for an
electro-mechanical component are the solid model representation and the dynamic differ-
ential equation representation of the device. The representations support different kinds
of physical information relevant for design; the solid model provides information on shape,
volume, weight etc. while the differential equation provides information on the dynamics of
the device. Therefore the synthesis procedure must be able to process design information at
and across different levels of abstraction. Design is a generative task wherein a variety of
feasible designs are created and evaluated. Design is computationally more expensive than

9

analysis of a given design alternative based on a given physical model of the device. Also
the information available during the generative process is rather incomplete at times and
the variety of alternatives for each design decision is rather large leading to combinatorial
explosion of choices. Therefore the algorithms must make efficient use of partial knowledge
to reduce search.

Conceptual design systems such as IBIS [3] uses a graph-based representation for modeling
device topology but fails to capture time-dependent behavior of physical parameters. Quali-
tative representations of device behaviors are incomplete with respect to device structure[4]
and also the dynamic description do not enable combination of components. The substance-
behavior-function model [5] model does not capture physical processes but is more a descrip-
tive model of devices. Kota [6] has proposed the qualitative motion synthesis approach which
focuses on kinematic design of mechanisms. A qualitative model and a matrix-method to
combine different qualitative motion descriptions is used to build devices. A rule-based ap-
proach is provided in [7] for synthesis of mechanisms. A predicate-logic representation is used
to model devices and a complex search procedure to compute new designs. Other conceptual
design schemes are described in [2]. In summary, the design methods proposed so far have
not utilized both topological information about devices and their constituent physical process
relationships. From the viewpoint of the staged design process, no computational scheme
with a well-defined device model has been proposed to integrate conceptual, parametric and
configuration design stages in a feasible manner.

A computational methodology for design that combines generative aspects of design and
also combats the computational inefficiency in a feasible manner is Case-based design[8].
Case-based reasoning is a paradigm that aims to use experiential knowledge gained in solv-
ing previous problems to formulate solutions for new problems[9]. Primary elements of
a CBR system are the case-base, wherein previous problems, their solutions, models etc.
are stored, and an inference mechanism that uses the information stored in the case-base.
The inference mechanism converts the given problem specifications into relevant indices for
retrieving cases from the case-base, retrieves relevant cases, validates the retrieved cases
as plausible solutions and if necessary modifies some of the cases to meet the new problem
specification and proposes a new solution. Case-based design provides for use of previous de-
signs and fragments of complete designs as partial solutions in the synthesis process. Having
access to previous designs reduces the complexity of the search in the ill-structured domain
of electro-mechanical design. Cases provide coherent models of devices across multiple ab-
stractions enabling consistent design reasoning across different representations of a device.
Since a case captures all relevant design information, it provides for performing conceptual,
parametric and configuration design in an integrated manner. Cases also provide a means
to operationalize design knowledge either as rules or as descriptive data structures. Cases
also provide a sort of feasibility check on new designs by providing information regarding
success and failure on previous designs, with respect to different design alternatives. An-
other interesting aspect is that previous cases provide designers information with regard to
the physical realizability of various designs i.e. guarantee that devices can be manufactured
with reasonable investments of capital and time. The CADET [10, 8] system is based on
the qualitative reasoning framework and uses Influence graph diagrams(ISD) for modeling

10

devices. A graph-based indexing scheme is used to retrieve cases. IDEAL[11] and Kritik[5]
are other CBR-base systems of note for synthesis of mechanical devices based on the SBF

device models.

A CBR based design methodology raises the issue of the definition of a design case and
how a design case is to be represented. A design case representation must correspond to the
various models of the physical world phenomena. We cannot simply structure a case in terms
of axiomatic logic-theoretic representations. The models of the physical world in engineering
and physics are non-linear and stochastic. The device models also involve quantitative and
temporal variations. A rule-based approach is not flexible enough to handle these different
aspects of the physical world in a consistent manner and is primarily incomplete. Design rea-
soning to a certain extent involves interpretation of these complex physical models, studying
the behavior of these models when various aspects of these models are tweaked and choos-
ing the right combination of these physical models to create feasible designs that can meet
the design specifications. Therefore a case-representation requires a feasible combination
of axiomatic and analog models of physical phenomena. Further, since synthesis involves
combinations of components, procedures for aggregating and combining cases need to be
defined. Combinations of cases must satisfy all physical conservation and thermodynamic
laws. A principled way of combining cases and ensuring feasibility of the combined design
is required. It is also imperative that the combination of cases be feasible at all levels of
abstraction.

We have developed a case-based design methodology that addresses the different issues
raised in the foregoing paragraphs. Our methodology combines bond-graph based device
models to meet design specifications in a systematic manner. In our CBR-model of design,
the case-base consists of device models of components and assemblies of components. The
steps in the inference procedure are shown in Figure 4. Design specifications from the user
are transformed into indices for retrieval of cases (devices) from the case-base. Cases are
retrieved and composed into an assembly. Each synthesized assembly is then validated.
Designs can be validated via simulation or through the use of validation rules. Successful
designs as well as failures are archived in the case-base. The case-base consists of cases that
store design information related to both conceptual and parametric design. The conceptual
and parametric design tasks are interleaved in the inference mechanism. An interesting
feature to note is that the CBR mechanism provides an explicit inference step for assembly
of retrieved components i.e. to perform synthesis. The cognitive model of the CBR process
has the notion of retrieving different relevant cases from memory and adapting those cases
to propose a new solution. Composition of cases is one of the many available adaptation
schemes and plays a critical role in synthesis of assemblies from components.

Bond-graph based representations have been used for design in [12, 13, 14, 15, 16]. In
[12],the synthesis procedure generates a network of bondgraph elements with bond-graph
primitives such as TF,GY,R,I, C elements and 0-1 junctions to span the input and output
bond-graph chunks, based on rules that aim to generate differential equations of a prespec-
ified order. An exponential search procedure is used to generate bond-graphs for electro-
mechanical single-input single-output systems. In [13], bond graphs are viewed as a defining

11

Failure

Design Specifications from
User

Generation of Indices

Index-matching and
Case retrieval

Composition of Cases

Verification of synthesised
Design

Successful

New Design

Figure 4: The case-based design process

a a grammar and synthesis rules that transform the bond graphs are defined. We extend
the usability of bond-graphs as a device representation by addressing device behavior over
time in the design specifications. We follow a systems-theoretic approach and do not aim to
synthesize embodiments of the devices but identify the components and their connectivities
[17, 1]. Bond graph based design schemes are reviewed in detail in [18]. A typology of devices
has been developed based on device input-output relations that capture dynamic behavior.
Further, these input-output relations are related to the structural aspects of the device such
as geometry and other material properties. We have enhanced the role of bond graphs by
observing that lumped parameter coefficients in bond-graph relations provide a convenient
link to study the effects of device structure on the device behavior. For example, the bond
graph model of a pair of spur gears is a mechanical power transformer with the tooth ratio
of the gears in mesh as a modulating parameter. The ratio of the teeth is the only structural
parameter that affects the ideal dynamic behavior of the device with respect to its intended
role of transforming power. This tooth-ratio provides the link to the structural aspects of the
gear. In the foregoing example, the gear-ratio required can be obtained by a variety of teeth
ratios. Other attributes of the gear such as size, teeth geometries and material properties do
not affect "ideal gear behavior". This modeling abstraction facilitates reasoning across device
dynamic behavior and device structure. We hasten to note that though bond-graph analysis
recognizes the existence of these lumped parameters, they have been considered as given i.e.
fixed for purposes of analysis and not as variable entities i.e. entities which are a design
choice. The case-representation consists of a bond-graph based device model that captures
relevant physical effects and an axiomatic model that aids interpretation of the device model
and captures parametric and geometric attributes of the device. This case representation

12

allows consistent reasoning across device behavior and structure. Also the representation
provides for monotonic behavior of the synthesis procedure i.e. more detailed specifications
generate detailed but a smaller number of solutions. The device representation allows for
combining components or cases. Each component is modelled as a physical system with a
set of input and output ports. A port is a conduit for transfer of energy (power) into and out
of the component. When components are assembled, they are connected at their ports. The
output port of one component becomes the input port of the adjacent component. When two
devices are connected at their ports, the power and energy variables, such as force, velocity
and momentum, at each port are constrained to be equal. Power flows from one device to
another at any instant of time. Power flows via the first component into the adjacent one as
shown in Figure 2. An assembly of components can be modelled as a single physical system
with its own input and output ports. The input-output relations of the components can
be combined to determine the overall input-output relation for an assembly. Thus given a
input-output design specification, one can verify whether a proposed assembly of components
can meet the given design specifications. The verification procedure thus provides a stopping
criteria for the generative search process by ensuring that non-feasible design alternatives
are not further explored. The bond-graph model captures the physical effects in a device and
cannot be put into a one-to-one correspondence with physical components of a device. The
port models of devices are idealized mathematical versions of real physical embodiments such
as masses, springs, and gears. Complex two-port systems can be modelled by assembling
these two-port models serially. Multiple input-output systems can be assembled from one,
two, three and other multi-port components. The design methodology enables the synthesis
of assemblies of multiple input-output power and signal devices.

In this paper, we focus on the synthesis of assemblies consisting of components with one-
input and one output port to illustrate the synthesis procedure. We describe a computational
scheme that combines both the conceptual design and parametric design tasks using the
above representation. Configuration design tasks are not addressed. In section 2, we present
the models of devices and their representation. We also describe the possible types of design
specifications that are entailed by this device model. In Section 3, we present the synthesis
algorithm, in Section 4, we present domain heuristics with respect to the algorithm and the
device representation and conclude in Section 5.

2. Device representation

Our proposed device representation captures physical phenomena as energy interactions and
device structure (topology) as a directed graph. Device functionality is dependent upon the
ability of the device to transform either power or signal flows through the device. Each such
power or signal transformation is provided by some physical effect that is encapsulated by
the device. The dynamic behavior of an assembly of components is dependent on the device
topology and the transformation behavior of each component. In the following sections, we
describe the possible power transforming behaviors of components and present a schema
representation of power devices.

13

2.1. Energy interaction models for devices

The mathematical model of energy interactions encapsulated by devices is based on the bond
graph formalism [19, 20, 21]. The bond graph formalism identifies three types of energy
interactions among devices. The energy behaviors of devices are energy storage, energy
dissipation and energy transmission. Complex device behavior arises when components with
storage, dissipation and transmission behavior are assembled together. The dynamics of
physical devices are derived by the application of instant-by-instant energy conservation. In
the bond-graph formalism, devices are modelled by components connected at places where
power can flow between the components. Such places are called ports and devices with one
or more ports are called multiports. Energy storage and dissipation behavior is exhibited
by devices with one power port. Devices such as springs, resistors, masses etc. can be
modelled as one-port devices. Energy transmission behavior is exhibited by devices with
multiple input and output ports. A tee-pipe can be modelled as a multi-port device. In this
paper, we focus on synthesis of single input, single output devices called two-port devices.
Devices such as motors, slider-crank mechanisms, cams etc. in Figure 2 are two-port devices.
The overall gate-drive system in the earlier example can be envisioned as a two-port device
wherein electrical power flows in at the input port and is used to mechanically translate the
gate at the output port. We summarize energy transmission behavior of a two-port device
in the following paragraph.

Each power port of a device has four variables, namely, effort (e(t)), flow (f(t)), effort
integral (/e(t)dt) denoted as £{t) and flow integral (/ f(i)dt) denoted as F(t) . The power
(P(t)) is equal to e(t).f(t). e(t) and f(t) are called power variables. The energy flow-
ing through a port over a period of time E(t) is given by / e(t).f(t)dt or / f(t).d£(t) or
/ e(t).df(t). £(t) and T(t) are called energy variables. A power port in a device belongs to
an energy domain. Power and energy variables can be identified for electro-magnetic (EM),
mechanical translation (MT), mechanical rotation (MR), thermal (TH) and hydraulic (HY)
energy domains and are listed in Table 2.1. The first column lists the energy domain and the
ensuing columns the effort, flow, power, effort integral, flow integral and energy variables of
that energy domain. Energy domains that involve radiative transfer of energy (solar, light,
acoustics and radiated heat energy) are not modelled though successful attempts have been
made to extend the bond graph methodology to radiative phenomena.

For a two-port device, at every instant of time ei(i)./i(£) = e2(t).f2(t), where the subscript
1 denotes input port and 2 denotes output port. The above equation implies that in a two-
port system whatever power is flowing into one side of the 2-port is simultaneously flowing
out of the other side. To satisfy the power conservation relation in a physical two-port
system, ex may be related to e2 and /i may be related to /2. Another possibility is e\ may
be related to f2 and /i may be related to e2. Each set of two relations is called a device
relation. Table 2 shows commonly occuring device relations in a variety of two-port power
components. Each relation in Table 2 is denoted D{ where i indicates the serial number of
the relation in the table. The term k denotes an algebraic coefficient in the device relations.
J7 and £ denote time integrals of effort and flow parameters. There are numerous other

14

Domain Effort Flow Power Effort
Integral

Flow
Integral

Energy

Mech.
trans.

Force
(F)

Velocity

(v)

F.v Momentum Displacement
(x)

Mech.
Work (W)

Mech.
Rotation

Torque
(T)

Angular
Velocity (u)

T.w Angular
Momentum

Angle
(0)

Mech.
Work

Hydraulic Pressure

(P)

Flowrate

(Q)

P.Q Pressure
Momentum

Volume

(V)

Hydraulic
Energy

Electro-
Magnetic

Voltage

(e)

Current

(i)

e.i Flux

(A)

Charge

(q)

Electrical
energy

Thermal Temperature Entropy-flow * * * *

Symbols in parenthesis denote conventional symbolic names for physical parameters.

Table 1: Energy and Power parameters

No. Relations

1 e2 = fc.ei,/2 = fi/k
2 e2 = e1/k,f2 = fi.k
3 £■2 = k.fi,f2 - ei/fc
4 e2 = k.ei.Sin(T\),f2 — fi/k.Sin^i)
5 e2 = ei/(k.Sin(Fi)),f2 = fi.k.Sin^)
6 e2 = k.ei.Sin(F2),f2 = fi/k.Sin^)
7 e2 = e1/(k.Sin(J7

2)),f2 = fi.k.Sin(F2)
8 e2 = k.f\.Sin{Fi),fv = ei/k.Sin^i)
9 e2 = k.fi.Sin(Jr

2),f2 = ei/fc.Sm^)
10 e2 = hl{k.Sin{T1)),f2 = ex.k.Sin{T^)
11 e2 = hi(k.Sin{T2)),fa = ei.k.Sin(jF2)
12 e2 = k.ei.Sin(£i),f2 = fi/k.Sin(Ei)
13 e2 = k.e!.Sin(£2),f2 = /i/A:.,Sm(£2)
14 e2 = e1/(k.Sin(£i)),f2 = fi.k.Sinfa)
15 e2 = ei/(k.Sin(£2)),f2 = fi.k.Sin(£2)
16 e2 = k.fi.Sin(£i), f2 = ei/k.Sin(£i)
17 e2 = k.fi.Sin(£2),f2 = ei/k.Sin(£i)
18 e-2 = fi/(k.Sin(£i)),f2 = ei.k.Sin(£i)
19 e2 = fi/(k.Sin(£2)),f2 = ei.k.Sin(Ei)
20 e2 = k.e1.g{F1)J2 = f1/k.g(F1)
21 e2 = H(e1)J2 = fl.e1/H{e1)

Table 2: Two port device relations

15

No. Algebraic coefficients Lumped parameters Relation
in device relations of device

1 *i Pi kx = pi
2 h Pi h =p\
3 h Pl,P2 h = Pi/P2
4 k1:k2 Pl,P2 h = pi,k2 = p2

5 h,k2 Pl,P2 h = Pi +P2,h = Pl/P2

Table 3: Common structural relations

types of device relations possible as long as they satisfy the law of conservation of energy
such as relations 2}2o and D21, where Q and H denote functions such as exponential, log
etc. Each two-port power device encapsulates a device-relation and the generalized effort
and flow variables at each port are instantiated based on the energy domain of the ports
of the device. A pair of gears is modelled by (e2 = k.ei,f2 = fi/k), where the input
and output energy domain is mechanical rotation. An induction motor is modelled by

^2 = k.fi.Sin{J72)if2 — ei/k.Sin(F2) and a DC motor by e2 = k.fi,f2 = ei/k wherein the
input energy domain is electrical and output energy domain is rotary mechanical.

The device relations between the port variables (efforts and flows) have algebraic coeffi-
cients, such as k, as shown in Table 2. These algebraic coefficients are functions of lumped
physical parameters that depend on the geometry and material characteristics of the de-
vice. Lumped physical parameters do not have a spatial extent. For example, the concept
of a mass of a component concentrated at a point in physical space is a lumped parame-
ter approximation though the mass obviously depends on the spatial volume occupied by
the component. Relations such as those in Table 2 may have multiple algebraic coefficients
which are denoted as k{. The lumped geometric and material parameters are denoted by pi.
The set of relations that map each ki of a device as mathematical functions of pi is called a
structural relation. The lumped parameters, pi are called structural parameters. A variety of
structural relations exist depending on the number of coefficients in a given device relation
and the structural parameters of the device. Table 3 shows common structural relations.
Each structural relation is denoted as S{ where i indicates the serial number of the relation
in table 3. For a pair of gears, the algebraic coefficient k (denoted as k\), is defined by
k\ = P1/P2, wherein each lumped parameter (pi,i = 1,2), is the number of teeth in each
gear. For a DC-motor, the structural relation is &i = pi and the "lumped" parameter is the
field current that excites the magnetic coils and the algebraic term in the device relation is
the motor constant. Therefore by not simplifying the structural relations, more information
about the devices' actual structure can be imported into the bond graph.

Devices exhibit dynamic output behavior when they are driven by power inputs. Devices
can exhibit dynamic output behavior in two ways, (1) when the input power flow at the input
port varies and (2) when the lumped parameters vary with time. Either of these two changes
will manifest itself as variations in the behavior of parameters at the output port. When

16

both kinds of input effects can take place simultaneously, the output dynamic behavior is a
superposition of the two input effects. In this paper, we synthesize two-port devices wherein
the structural parameters are not allowed to vary with time. Every component has constant
values for its structural parameters. This assumption precludes signal-dependent modulation
of dynamic behavior of devices.

2.2. Representation of dynamic behavior of efforts and flows

Design specifications for a required device are primarily specified in terms of corresponding
effort or flow time histories at the input and output ports since one does not know the
device relation before synthesis. Thus a representation is required for capturing the time-
histories of effort and flow parameters at the ports of a device. In this section, we describe
the representation of time histories for parameters and also describe its significance in the
modeling of devices and also the synthesis process.

Dynamic output behavior is obtained by dynamic variations at the input port of a device.
For example, an increase in input power can be obtained by increasing the effort value, flow
value or both, thus causing a variation in the output port variables. Each parameter at the
input and output port describes a trajectory over time that describes the overall dynamic
behavior of the device. Theoretically, an infinite number of such continuous trajectories are
possible for a given effort or flow parameter. We model a single time trajectory of a parameter
as piece-wise continuous functions of time. Consider the trajectory of displacement of the
follower (with the cam axis as reference) during rise of a parabolic cam as shown in Figure
5. The follower has a constant acceleration, linearly increasing velocity and a parabolic
displacement over the follower rise time-period t„se and the same behavior in the opposite
direction during the follower fall time-period, tjau as shown in figure.

The time trajectory of a parameter is discretised into a sequence of regions, (Ti, T2, T3...),
Ti denotes the ith time interval and T\ is the interval containing the time origin. For the
displacement, velocity and acceleration trajectories for the cam in the foregoing example,
there are two distinct regions £„-se and tfau which constitute T\ and T2. In each region T;, the
parameter trajectory with time is approximated as a closed-form function of time, t. The
possible parameter functions of time that we have implemented are shown in Table 4. y can
be efforts or flows at the ports of devices and t denotes time, m,- and c,- denote constants.
Each parameter-time relation is called a P-relation and is denoted P, where i denotes the
serial number in the table. The time trajectory of a parameter over a given period of time
can be approximated by a set of P-relations. We restrict our representation only to the above
relations, since any complex time-history of a parameter can be approximated by the above
relations in a piece-wise manner. A parameter trajectory can lie only in the first and fourth
quadrants of the parameter-time coordinate system since time is always positive. All physical
parameters are scalars. A positive or negative magnitude for a physical parameter denotes
the direction of action along a given direction in coordinate system chosen by convention. A
positive magnitude indicates that the physical parameter acts in the same direction as the
given vector and a negative magnitude denotes that it acts in the opposite direction to the

17

Cam

Follower

Follower
Displacement

Follower

Velocity

Time

Time

Follower

Acceleration

rise

fall

Time

Figure 5: Displacement trajectory for parabolic cam follower

No. Relation

1 y = mi.t + ci
2 y = mi.Sin(t) + c2

3 y = mt.Logit) + c4

4 y = m\.Exp{t) + c5

5 y = m-i.t + m2.t
2 + ce

Table 4: Parameter functions of time

18

Value

Figure 6: Possible parameter trajectories

given vector. Thus each relation listed in the Table 4 can be used to describe time trajectories
as shown in Figure 6. y = m\.t + c\ can represent trajectory 3 while y = mi.t + ra2.tf2 + c6

can represent trajectory 2. Each such relation does not have any information regarding the
direction of action of a physical parameter. For example, y = m\.Sin(t) + c2 can be used
to represent trajectories 1 and 4 in Figure 6 since both are sinusoidal with respect to time.
Physically the two trajectories denote two different physical events, trajectory 1 describes
a sinusoidal variation in magnitude such as an oscillating pressure pulse while trajectory 4
describes a change in magnitude and direction such as the reciprocating motion of the slider
in a slider-crank mechanism. Reciprocation is indicated by the sinusoidal curve in trajectory
4 switching between the first and fourth quadrants. Thus it is essential that we distinguish
between the two trajectories, 1 and 4. Knowledge of m and c,- in the parameter relations is
not enough as shown by trajectories 5 and 6 in Figure 6. Though the two trajectories lie
on the same line and are represented similarly, they denote different physical events. The
only information that is needed to discriminate is the direction. Each parameter trajectory
is represented by a Pi which is also annotated with directional information. The literal +
denotes that the parameter relation describes a trajectory that lies only in the first quadrant,
literal - denotes that the parameter relation describes a trajectory that lies only in the fourth
quadrant and literal +- denotes that the parameter relation describes a trajectory both in the
first and fourth quadrant. Hence trajectory 1 will be annotated with a + while trajectory
4 will be annotated by a +-. Thus a parameter trajectory in a discretised time region is
denoted by a list (parameter relation, quadrant, time duration) wherein parameter relation
is a triplet (snum,c,m) where snum is the serial number from Table 4, m and c are lists
of coefficient values for the relation; a quadrant is one of the literals +, - or +- and time
duration is a pair (s<, /<) where st and /(denote start time and end times for trajectories. The
follower acceleration trajectory in Figure 5 over the rise and fall periods will be represented
as shown in Table 5. trise and tf all denote rise and fall times. The first column lists the
time-region and the second column the parameter relation, quadrant and time durations. In
each region, the linear constant velocity is represented by y = mi .t + cx (denoted by the first

19

Time-region Trajectory representation

Ti (l,(cl),(ml)), +, (0 trise)
T2 (I,(c2),(m2)), -, (trise trise+tfall)

Table 5: Velocity trajectory for parabolic cam follower

element l). Specific trajectories are defined when the constants m; and ct- are defined. Thus
in Table 5, m\ = 0, m2 = 0, c\ — 1 and c2 = 1 describes a constant velocity of 1 m/s over the
follower rise and fall periods. The different quadrants for the velocity trajectory during rise
and fall are denoted by the literals + and -. The trajectory of follower displacement during
trise and tfaii can be represented by y = m\.t + m2.t

2 + c6 i.e. parabolic with appropriate

coefficients.

Thus to describe the dynamic behavior of a device over a given time-period, one would
discretise the time-period into discrete regions and in each region, describe the behavior of
input and output port parameters as functions of time. Thus for a two-port device with one
discretised time region, four parameter trajectories, one each for the input and output port
efforts and flows are required to completely describe the device behavior. Usually a physical
device that encapsulates a device relation does not produce outputs for all kinds of input
effort and flow. Only certain kinds of parameter relations are allowed for the input effort
and flow. For example a DC-motor will not produce a rotary torque if given a sinusoidal
input voltage. A device relation for modeling a device is also annotated with all the possible
inputs it can handle. From the fifteen possible trajectories for input port effort and flow i.e
five types of Pt and three directional quadrants, the valid trajectories are listed in the device
representation.

Why is such a complex representation of time-history behavior required ? First, the
design specifications for a device are given in terms of nominal corresponding time-histories
for the efforts and flows at the ports of device. For example, design specification for a
motion generating mechanism is in terms of requisite time-profiles for the output linkages.
Secondly, the constitutive device relations described in the previous section can produce a
variety of output effort and flow time histories depending on the input effort and flow time
histories. In theory, therefore a single device can be driven by an infinite number of different
types of inputs. Representing a device by cataloging all its input-output parameter time-
histories is cumbersome. Therefore though the device relation is a succinct representation
of the device input-output relation, a representation for describing time-histories is required
to enable choices of devices that may provide by requisite behavior. This choice can only
be made by driving the device with the given input time-history and observing the output
behavior. We note therefore, that for a given time-history specification, an infinite number
of devices or their combinations can be proposed as feasible solutions. Synthesis therefore
involves generating combinations of devices and testing them for different inputs as specified
in the design specifications. If requisite output behavior is obtained, the new design is
accepted. From an algorithmic viewpoint, one needs to match the different input-output

20

Electrical
domain

Mechanical
">* domain

Output
Force

Output
Velocity

Input
voltage

well

Close
500N

0.1 m/s

50volts

8 10 18

Time in seconds

Figure 7: Design specifications for gate drive system

time-history specification to all possible device relations that can provide the requisite input-
output transformation. In the following section we describe the use of the above-described
parameter trajectory representation for providing design specifications regarding dynamic
behavior of a two-port device.

2.3. Design specifications

Design specifications outline the input and output port energy domains and trajectories for
effort and flow at either port over a given time duration. We illustrate representation of
design specifications with the gate-drive system example. In Figure 7 the gate-drive system
is shown as a black-box whose input and output energy domains are electrical and mechanical
translatory domain. The trajectories for the input voltage, output force required to move
the gate and the velocity of the gate are also shown. The output force is a constant (500N)
and changes direction from each half-cycle of opening and closing the gate. The velocity
of the gate starts from zero and reaches a steady value (0.1 m/s) and then reduces to zero
over each half-cycle. There is a well-defined dwell period (2 seconds) between each half cycle
(8 seconds) when the gate remains open or closed as the case may be. Actually this dwell
period could be large (open gates) but for illustrative purposes we have chosen 2 seconds.
The velocity behavior can be approximated as a constant velocity neglecting the quick rise
to steady value. The parametric values for force and the velocity are known and specified
as shown in the figure. The input voltage is a DC-voltage which is held at a constant value
of 50 volts. The input current profile is not fixed as it depends on the load that is driven
and is allowed to be any trajectory that meets the load requirements. The trajectories have
been discretised into three distinct regions as shown in the figure. The first time region (gate

21

Attribute Value
Input port energy domain EM

Output port energy domain MT
Time-region I Time region II Time-region III

Input effort trajectory ((1 50 0) + (0 8)) ((1 50 0) + (8 10)) ((1 50 0) + (10 18

Input flow trajectory ((* * (0 8)) (* * (8 10)) (* * (10 18)))

Output effort trajectory ((1 500 0) + (0 8)) (- - (8 10)) ((1 500 0) - (10 1

Output flow trajectory ((1 0.1 0) + (0 8)) (- - (8 10)) ((1 0.1 0) - (10 1

* denotes value is unspecified, - denotes that value is null.

Table 6: Design specification representation for gate drive system

opening) lasts from 0 to 8 seconds, the dwell period lasts from 8 to 10 seconds and the third
time region lasts from 10 to 18 seconds. The design specification representation for the gate-
drive system is shown in Table 6. Each parameter trajectory in a region is approximated by
the the relation y = m-^.t + cx with mi = 0 (a constant linear trajectory) and C\ equal to
their parametric value. Thus cx = 50 volts for the input effort, cx = 500 Newtons for the
output effort,Ci = 0.1 m/s for the output flow and cx is unconstrained for the input flow.
Since there are three discretised regions over a complete cycle of the gate operation, there are
three trajectory specifications for effort and flow parameters at each port. Based on these
design specifications, the synthesis procedure must identify a case or a combination of cases
that converts the input port parameter variations into parameter variations at the output
port. If multiple cases are composed, the procedure must also identify the topology in which
the cases are connected i.e. the connectivity between the different ports of the components

based on the design specifications.

Thus far our discussion has addressed the representation of components. A component
device is defined by a single device relation. An assembly of components is defined by each
component device relation and the topology of the assembly. Based on the topology of the
assembly and the component device relations, it is possible to obtained a closed-form device
relation for an assembly. Consider design 1 in Figure 2. The motor is represented by device
relation e2 = &-/i,/2 = ei/& and the slider-crank mechanism by e2 = ei/(k.Sin(fi)),f2 =
fx.k.Sin^i). The overall device relationship obtained by eliminating the common port
variables is e3 = faM/h-Sin^) and /3 = ei^.Sin^/h) where the port parameters are
as shown in Figure 8. This is equivalent to device relation Dn- An assembly of component
devices may or may not have a unique closed-form device relation as listed in Table 2.
The device relation for such assemblies can be inferred from the device relations of the
components. The structural relation for an assembly of components is the combined set
of all structural relations of its components. The dynamic behavior of an assembly can be
changed by changing the structural parameters of any of its components. Also, it is fairly
obvious, that the input and output effort and flows for an assembly can be described by
the parameter trajectory representation developed in the earlier sections. The connectivity

22

el.fl!
DC motor

'em
 =►

e2 = kjfl

Slider-Crank

Environment (E)

e3,f3

e3 = e2/k2.Sin(f2)

f2=el/kj f3 = f2.1^. Sin(O)

el,fl e3,D
w

e3 = kjfl7 k.Sin(f2)

f3 =el.k,.Sin(f2yk

Figure 8: Device relationship for an assembly of components

between components in an assembly is represented by a directed acyclic graph where the
directed arcs denote power flow path and the nodes denote components. Thus the device
topology of assembly 1 in Figure 2 will be E —> Motor —> Slidercrank —> E where E
denotes the environment which is external to the assembly. Complex devices can be built
by combining both components and sub-assemblies. This representation provides a uniform
representation for both components and sub-assemblies.

This concludes our discussion on modeling device behavior and its representation. Essen-
tial features of the device representation are as follows:

• Devices (components and their assemblies) are modelled as entities that allow trans-
mission of power through conduits called ports.

• Device input-output behavior is modelled by device relations.

• Device dynamic behavior is linked to the structure of the device through structural
relations.

• The time histories of the efforts and flows at the ports is modelled by parameter
relations.

The representation thus provides a convenient way of describing device behavior in terms
of its input-output relation or the nature of the trajectories of its port parameters. Further
since the device physics is modelled based on the bond graph formalism, it ensures that
combinations of components will be physically feasible without violating any physical laws.
Further the port-models of devices provide a convenient means to composing assemblies
by connecting components at their ports. In the following subsection, we use the above-
described device model to represent components and assemblies as cases in a case-base.

23

2.4. Cases and case-base organization

The content and organization of the case-base determines the validity of the solutions and
efficiency of the retrieval algorithm in CBR-based design systems. In our implementation,
the case-base stores a variety of devices encapsulating different device relations and structural
relations. A device relation defines a class of devices that exhibit similar dynamic behavior
i.e. the input-output relationship. A particular physical realization (instance) of a device,
belonging to the class defined by a given device relation, is defined when the structural
relation is defined and values for the structural parameters are' chosen. A spur-gear pair
with gear-ratio two is defined when a gear with forty teeth is meshed with a gear with
twenty teeth. It is of interest to note that a device relation can be obtained by a variety of
physical realizations each with different structural relations or with different values for the
lumped structural parameters. For example, a gear-ratio of two can a be obtained either by
choosing helical gears that provide a gear-ratio of two or by meshing a spur gear with twenty
teeth with a ten teeth spur gear. Each case in the case-base is a well-defined instance of a
device relation and structural relation. Thus if a case exists in the case-base it is physically
realizable.

Each case is represented as a schema with the attributes and possible values as shown in
Table 7. The device relations are chosen from those in Table 2. The valid possible input
parameter trajectories are denoted by a list of consisting of pair (snum, quadrant) where
snum is the serial number from Table 4 and quadrant is as specified earlier. The list of
lumped parameters is a list of symbols where each symbol is a literal that denotes a lumped
parameter such as Area, Gear-ratio etc. Our representation has a well-defined vocabulary
of commonly used lumped parameters that capture device geometry and material properties.
Since each case is a physically realizable instance of a device, the lumped structural param-
eters have fixed values. Many devices that are available allow a range of values for their
structural parameters. For example a gear transmission (an assembly of gears) provides a
range of gear ratios. For such devices with variable structural parameters, a range of nomi-
nal values for the structural parameters are listed. The directed-graph representation of the
device topology is an incidence matrix representation wherein each node corresponds to a
component denoted by a symbol. The right-hand side of each equation in device, structural
and parameter relations in Tables 2,3 and 4 are represented as trees where each node of the
tree is the function name (a literal) and the leaves are arguments (literals) of that function.
Such trees can be represented as recursive lists in prefix notation. Shown in Figure 9 is
the tree representation of the relation y = mi.t + m2.t

2 + c6 from Table 4 and its recursive
form as a list is (+ (* ml t) (* m2 t) c5). A complete equation is represented as a pair
(left-hand-side right-hand-side) wherein left-hand-side is a literal naming the parameter and
right-hand-side is the recursive definition of the function. A device, structural or parameter
relation is represented as a list of such equations. Table 8 shows the schema for a DC motor
with field current strength variable between two and five amperes.

An organized case-base provides for efficient retrieval during the synthesis process. The
cases in the case-base can be classified into a typology as shown in Figure 10. Each level

24

ml t m2 *

Figure 9: Representation of parabolic parameter relation

Attribute Value

Device name Symbolic name of device
Input port A symbol naming port
Output port A symbol naming port
Input port energy domain One of MT, MR, TH, EM, HY
Output port energy domain One of MT, MR, TH, EM, HY
Device relation Di from Table 2
Feasible inputs List of valid input parameter trajectories
Structural relation Si from Table 3
Structural parameters List of lumped parameters of device
Structural parameter values Range of values for structural parameters
Components List of components of device
Device topology A directed graph representation of topology

Table 7: Schema for a device

Attribute Value

Device name DC-motor-1
Input port PI
Output port P2
Input port energy domain EM
Output port energy domain MR
Device relation e2 = k.fi,f2 = ei/k
Feasible inputs ((l,+)(2,+)(3,+)(4,+)(5,+)(l,-)(2,-)(3,-)(4,-)(5,-)
Structural relation h = pi
Structural parameters (Field-current)
Structural parameter values (C2 5))
Components () (A null list denotes no components)
Device topology 0

Table 8: Schema for a particular DC-motor

25

Device

EM/MT MT/MR EM/MR

 <i=k<2 *rk<2 el=k^ e.= ke.e.= k£.X

Assembly/Component Assembly/Component

•J5 Jl'ü kf pl WS kf Pl •-

r,. .. , Tooth ratio Field current,poles & ^ -—

(40,20) (50,25)

(5,4) (5,6)

X

DC-Motors Gears

Figure 10: Typology of two-port power devices

Key Description Value for DC-motor

h Input and output port energy domains EM-MR

k2 Device relation D3

k3 Assembly or component Component

&4 Structural relation SI

k5 Structural parameters of device Field-current

k6 Values of structural parameters 2

Table 9: Indexing keys for a device

of the hierarchy refers to a particular attribute of a case. The first-level denotes the energy
domains for input and output ports. The second level denotes the device relation. The third
level denotes if a case is a component or an assembly. The fourth level identifies the type of
structural relation, the fifth level names the lumped parameters and the sixth level specifies
the nominal ranges for the lumped parameters of a device. DC-motors and gears are shown

indexed by the typology.

The hierarchical classification scheme provides a unique index for every case. A composite
key, Ki of the type (&i, k2, k3, k4, k5, k6) can be generated and assigned for every case based
on the above defined hierarchy. Each ki that constitutes the composite key is described in
Table 9. The first column names the key, the second column describes the key and the third
column gives the value of the key for the DC-motor case of the previous example. Thus
given that the value of kx is EM-MR where EM denotes that the input port of the case is
electro-mechanical and MR denotes that the output port of the device is rotary mechanical,
we can retrieve the DC-motor case. One can also retrieve DC-motors if it is given that
we require all devices that have device relation D3. It is obvious that the slot values of
the case-schema can be used to generate the composite key for a given case. Retrieval of

26

cases from the case-base is performed by specifying the composite key K. The composite
key (EM-MR,D3,Component,SI,Field-current,2) will retrieve only the specific case in Ta-
ble 8. A composite key (EM-MR,D3,Component,Si,Field-current,*) where * denotes a
don't-care will retrieve all DC-motors with field-current as the structural parameter. The
key (EM-MR,*,*,*,*,*) will retrieve all motors (including AC-motors) and further other
assemblies such as motor and gear combinations. The key (EM-MR, D3, *, *, *, *) will retrieve
all DC-motors only. The attributes that constitute the composite key K are ordered from
the most general to the most specific key based on the typology. Since every case in the
case-base is indexed by the composite key, the retrieval algorithm uses a given composite
key and retrieves all cases that match the key. An exact match is required between the
corresponding elements of the key to a case and the given specifications in the query. Details
of index organization and implementation are beyond the scope of this paper.

Consider the design specification for the gate-drive system in Table 6. The initial design
specification only provides element ki of the composite key, (&i = EM-MT). The other elements
of the composite key are not specified. The synthesis task involves generating possible values
for those other elements of the composite key that are unspecified. The parameter trajectories
provided in the design specification provide the requisite information to generate the values
for other elements of the composite key. Thus design can be viewed as the process of
generating all the elements of the composite key and once all the elements are known, a
feasible design is obtained. Each design alternative can be viewed as a choice of values for
each unknown element of the composite key. Conceptual design is essentially the task of
generating values for the elements &,-, i — 1,2,3,4,5 and parametric design involves choosing
the value for element k6. As the design process proceeds from conceptual design to parametric
design, values for specific keys are identified and the number of feasible cases is further
reduced. In the following section, we describe the synthesis algorithm that proposes a variety
of possible values for each element of the composite key in a principled manner, retrieves cases
based on the proposed composite keys, eliminates infeasible combinations of by evaluating
combinations of cases using the parameter trajectory information provided in the design
specifications and thus further refines the values of the elements of the composite key to
generate valid designs.

3. The case-based design procedure

As described in the previous section, conceptual and parametric design tasks are equivalent to
generation of the right combination of values for the elements of a composite key. The design
task is complicated since there are a number of alternatives for each element of the composite
key. Therefore there a number of alternative combinations of these composite key element
values that can meet the design specification and thus there are a number of design solutions.
We note that we have not provided any subjective criteria such as cost, weight, volume etc.
as part of the design specifications. If such information were provided with the design
specifications, the additional specifications would be used to choose amongst the variety
of physically realizable alternatives.The synthesis process can be organized into two stages,

27

Device

\J (;omponent 1 component 2 :

 !_».

P- p. m inter - Pout

Figure 11: Power-flow path representation in devices

namely, (1) Given a design specification as in Table 6, retrieve cases from the case-base that
can satisfy the specification, i.e. transform the input parameter trajectories into the required
output parameter trajectories, and (2) If no single case can be found to satisfy the design
specifications, then compost cases from the case-base to generate a new design. We describe
a synthesis algorithm wherein both these tasks are interleaved. The algorithm consists of
three essential procedures, namely, elaboration, retrieval and verification. Elaboration can
be viewed as the task of generating all possible alternatives for elements h and k2 of the
composite key. Retrieval is the task of retrieving cases based on values of k, and k2 to obtain
possible values for• fe i = 3,4,5,6. If values for more keys are given, then more specific cases
would be retrieved. Verification is the task of eliminating all the infeasible cases retrieved
by the composite key using the parameter trajectory information provided in the design
specification. We describe each of these procedures and present a synthesis algorithm using
these basic steps.

3.1. Elaboration

Power flow path from the input port to output port in a two-port device, whose device
topo ogy is not known, can be described by the graph pin -> pouU where pin and pout denote
input and output power ports. Power flow in a device with two components is given by the
graph pin -+ Pinter -+ Pout where pinter is the common port shared by the two components
as shown m Figure 11. The directed graph denotes that the input port of the first compo-
nent is connected to the environment and the output port of the first component feeds into
to the input port of the second component. The output port of the second component is
connected to the environment. The port pinter is the output port for one component and
an input port for the adjacent component. Each arc in the directed graph is equivalent to
a component and thus two nodes (ports) in the directed graph are spanned by a compo-
nent. Elaboration is the process of generating a directed graph pin -> Pl Pn _* Pout from
Pin ~*.Pl P*1-1 ~* P°"*- Thus elaboration is the process of introducing a new common port
in a given power flow path thereby introducing another additional component in the device
topology. The elaboration process is equivalent to the process of generating an internal struc-
ture or device topology for a two-port device to transform the input parameter trajectories to
output parameter trajectories. Each component that spans two ports provides a particular
kind of power transformation depending on the device relation, D{ that relates the the input
and output ports of the component. The design specification does not explicitly provide
information on the kind of transformation required by specifying the overall A required

28

PMR^PEM ~~ PMT PNflr~" PHY~~ PMT "MR-" PTfT~" PMT

W %M PMT PMT

Figure 12: Elaboration tree

between the input and output ports of the required device. This information is implicit in
the parameter trajectory specifications provided as part of the design specifications. The
elaboration procedure proposes possible combinations of component device relations that
can meet the specifications.

Elaboration is a heuristic procedure and has been used for case index generation in [10] .
Given a directed graph for elaboration, the elaboration procedure splices the arcs between
two nodes of the graph and introduces a new node. Elaboration of p4n —> pout generates
Pin —* Pinter —► Pout- The energy domains of the input and output ports of a device are
given by the design specification. The intermediate ports that are introduced can belong to
one of five energy domains listed earlier. A new port is introduced between the output port
and the penultimate port in the directed graph to ensure that only unique directed graphs
are generated. Thus if energy-domains of the power ports were considered, introduction of
a single intermediate port in a directed graph generates five new elaborated graphs. Thus
the elaboration procedure creates a tree of "elaborations" where each node of the tree is
a directed graph denoting a particular topology of power flow as shown in Figure 12. In
the figure, the input energy domain is mechanical rotation and the output energy domain
is mechanical translation. Each node of the tree has an additional port with respect to its
parents. Each parent node has five children nodes though all five have not been shown due
to space limitations. The directed-graph data structure at each node of the elaboration tree
is called an Elaboration index. Each elaboration index at every node of the elaboration tree
is equivalent to the elaboration index at the root of the tree. For example, a device that
provides a power flow path from the electro-mechanical domain (EM) to rotary mechanical
(MR) domain is physically equivalent to an assembly of two components that are connected
in series, wherein the first one provides a power flow path from electro-mechanical domain
(EM) to rotary mechanical (MR) domain and feeds into a component that provides a power
flow path from rotary mechanical (MR) domain to rotary mechanical (MR) domain. Hence
each elaboration index is a possible alternative for the element ki of the composite key to
the case that meets the design specifications.

Synthesis of two port devices involves connecting components in a certain topology to
meet the input-output trajectory specifications. Elaboration generates all possible device
topologies for a two-port device, that are comprised of only two-port devices, given the
energy domains of its input and output ports. To identify the components that span two

29

nodes in the device topology, we also need to know the device relation between the two
ports. Each arc in the device topology can be described by a device relation from Table
2. Thus if there are m arcs in an elaboration index and N device relations, there are Nm

combinations of devices that have the same elaboration index. Each such combination of
component device relations is a viable alternative value for element k2 of the composite case
that satisfies design specifications. Since the overall device relation is not explicitly provided
with the design specifications, we propose all possible combinations of component device
relations as viable solutions. Thus each arc of a given elaboration index is instantiated with
a device relation to generate a retrieval index. A retrieval index with n arcs is denoted by the
n-tuple,(ci,....cn) where each c, is a 5-tuple (pin,Poutiein,eout,devi). pin and pout are literals
that denote input port and output ports. ein and eout are one of the literals EM,MT,MR,HY,TH
denoting the energy domains of pin and pout. devi denotes the serial number of the device
relation from Table 2 that spans the ports pin and pout.

A composite key of the type (kl,k2,*,*,*,*) can be generated for every arc of the
retrieval index wherein kl denotes the energy domains of the two ports that are at either
nodes of the arc and k2 denotes the device relation. Let arc i of the retrieval index retrieve m%

cases from the case-base. Thus a retrieval index with n arcs will retrieve flLi mi combination
of cases. Consider one combination of cases retrieved using a key-index of n-elements i.e.
retrieving one case each for an elaboration index with specified device relations for its arcs.
The combination is denoted as a list, {caseu,casen) wherein casti is the case schema. Each
such combination of cases is called an assembly, A. The assembly, A, will be a singleton set
when cases are retrieved for the elaboration index at the root of the elaboration tree. Each
assembly that is composed has to be validated to ensure that meets the design requirements.
In the following section, we provide a scheme to eliminate all invalid combinations of cases.

3.2. Case verification

Once an assembly is obtained, we need to verify that the assembly can produce the requisite
output parameter trajectories for given inputs. An assembly can fail if (1) the device relation
of the overall assembly is invalid and (2) if the structural parameters of its component cases
are invalid. The overall device relation of an assembly may be invalid when the device-relation
for one of its components is invalid i.e. a wrong combination of component devices has been
generated. Even if the combination of components can provide the requisite transformation
between input and output, they might be invalid because of scaling errors due to erroneous
combination of structural parameter values. We present a verification procedure to check
whether a given combination of cases can transform the input parameter trajectories to the
output parameter trajectories for a single time region. We motivate the procedure with
a simple example of validating a single device (case). Assume that a device with device
relation, Dx ,which is (e2 = &.ei,/2 = fi/k), has been retrieved. For the sake of clarity, we
also assume that the retrieved case has the same input-output energy domains as required
by the design specifications. The design specifications for the input and output parameter
trajectories for the time region are as shown in Table 10. The first column specifies the

30

Parameter Specification Relation

Pspecf ((l,0,kl),+,(0 t-end)) y = m\.t + c\

Pspecf ((1,0, g),+,(0 t-end)) y = miJ + Ci

Pspec°e
ut ((2,0,m),+,(0 t-end)) y = mi.Sin(t) + c2

Pspecf1 ((l,c,0),+,(0 t-end)) y = raii + ci

Table 10: An example specification

effort and flow parameter at the input and output ports and the second column specifies
the required the time history of the efforts and flows. The effort and flow trajectories in
the specification at input and output ports are denoted as Pspecf,Pspecf,Pspecf* and
Pspecf1. The third column lists the parameter relation required in the specification for
illustration. Pspecf1 has a sinusoidal trajectory whereas Pspecf,Pspecf and Pspecft are
linear in nature. kl,g,m and c denote numeric constants. (0,t-end) denotes the duration

of each trajectory.

Device relations are validated by symbolically solving a system of equations involving the
parameter relations specifying the input and output parameter trajectories and the device
relation equations. Given a device relation and the output parameter trajectories, the input
parameter trajectories can be obtained by symbolically solving for the inputs. For example
consider the relation y = kx wherein k is constant. Given that x = ft2 wherein / is constant
and t is the independent variable, one can obtain y = kft2 by eliminating x. Alternatively
given y = kft2 and y = kx, one can obtain i as a function of the independent variable t.
Similarly, given the output parameter trajectory as a function of time, we can obtain the
input parameter trajectory as a function of time from the device relation by symbolically
eliminating the output parameter. Now if the device relation is to be valid, the input
parameter trajectory obtained by elimination must match the input parameter trajectory of
the design specification else the device relation is invalid.

The output parameter relations Pspecf1 and Pspecf* and the device relation D1 are
symbolically solved to obtain the input parameter relations Psolvf and Psolvf as functions
of time. If the solved relations Psolvf and Psolvf match Pspecf and Pspecf , then the
device relation is considered valid. Symbolically solving the output specification in Table
10 and Di gives Psolvf = m*Sin(t)/k where k is the algebraic coefficient in the device
relation and Psolvf = c*k. The specification Pspecf does not match the solved relation
Psolvf since it is not a constant but a linear function of time. Pspecf does not match
Psolvf since it is not a sinusoidal function. Hence Psolv and Pspec do not match and we
can conclude that the the case retrieved is not a valid solution.

For an assembly of n cases, where castx is connected to the input port and casen is
connected to the output port, , we repeat the solve-match procedure starting from the output
port and casen to obtain the output specifications for casen-X and proceed to obtain Psolv
for the input port. We match Psolv with Pspec for the input port parameters. If they match

31

the combination of cases is considered a valid design that meets the design specifications.

The above described validation scheme can be improved if we note the following: Pspec
and Psolv might not match for two reasons, namely, (1) The two relations might be com-
pletely different i.e. they are two different equations and (2) The two equations may have
the same morphology but have different coefficients a and m,-. Thus matching of Psolv
and Pspec can be done at two levels, (1) where one matches only on the morphology of the
relations neglecting the values of the coefficients and (2) where one considers the values of
the coefficients too. Matching at level 1 is concerned only with the classes of device relations
while at level 2 we are concerned with the structural parameter values. If matching at level
1 fails then it means that combination of cases retrieved by the retrieval index will not result
in a valid assembly that can would have the desired behavior. Further details of matching
parameter relations are presented in Section 4. The elaborate-retrieve-solve cycle is repeated
for each time region of the parameter trajectories. Assemblies (combination of cases) that
can handle the complete trajectory are finally returned as viable solutions to the design
specification. In the following section we present the complete algorithm and illustrate it
with solutions generated for the gate-drive system.

3.3. Synthesis algorithm

The main steps of the synthesis procedure are as follows:

1. The design specifications for the first time interval, Tu are chosen and an elaboration
tree is created. The root index of the tree has the energy-domains as in the design
specifications.

2. Device relations are introduced in the elaboration index and retrieval is performed with
the retrieval indices thus generated. Case retrieval returns all cases that match the
given energy domains and device relation.

3. For each case thus retrieved, case verification is performed by symbolically solving the
device relation and output time histories for the input time-histories. Cases that are
successfully verified are further checked for the values of their structural parameter
values.

4. Successful cases are returned as solutions for the first time interval and checked with
the design specifications for the remaining time intervals.

5. If no cases are obtained, the root index is further elaborated by adding a new port and
thus a new component. Device relations are introduced for each arc of the elaboration
index and cases are retrieved for the retrieval indices thus obtained. Cases are verified
again by symbolic elimination for each of the time intervals. The procedure iterates
until a successful solution is obtained or a predetermined level in the elaboration tree
is reached.

32

We illustrate each of the above steps of the procedure with the synthesis of a device topology
for the gate-drive system.

3.4. Synthesis of the gate drive system

1. The design specifications for the gate-drive system are shown in Table 6. The effort and
flow trajectories have been discretised into three regions and the synthesis procedure
begins with the initial time region set to the opening half-cycle of the gate which is
the first time-region. An elaboration tree has the root elaboration index PEM —► PMT

is instantiated.

2. Retrieval is performed with retrieval indices PEM —» PMT where each D; is a device

relation from Table 2. A key, K, generated from the retrieval index PEM -^ PMT will
be (EM-MT,D1,*,*,*,*). Case retrieval is performed with these indices.

3. In the case-base implemented, there are no power devices that directly span this energy
domain. Hence no cases are retrieved for any retrieval index for the elaboration index
PEM —+ PMT- Hence further elaboration is required.

4. Elaboration of the index PEM —* PMT generates five new indices. Elaboration in-

dices PEM —* PEM —► PMT and PEM —*■ PMT —* PMT are not considered since a
sub-index (PEM —* PMT) of that index has failed. Retrieval indices are generated
for the elaboration index PEM —* PMR —* PMT- The combination of cases for the
elaboration index PEM -» PMR —► PMT are listed in Table 11. The first column gives
the device relations for each arc (from input to output) and the second column lists
the corresponding devices. Table 12 lists the device relations in terms of the effort

and flow relationships for convenience. The retrieval index PEM -$ PMR —^ PMT re-
trieves the combination of cases (Induction-motor, Rack-pinion-mechanism). The

retrieval index PEM -^ PMR —^ PMT retrieves the combination of cases (DC-motor,

Rack-pinion-mechanism). The sub-index PMR —^ PMT retrieves a slider-crank mech-

anism, scotch-yoke and sinusoidal cam mechanism. The sub-index PMR —^ PMT also
retrieves a straight-line cam mechanism.

5. Case verification is performed for each possible combination of cases shown in Table
11. Consider the assembly consisting of the AC-motor and Rack-pinion mechanism.
Solving t<i = k.ei,f2 = fi/k and the output specifications eout = 500 and fout = 0.1
we obtain that the torque (effort) output of the AC-motor must be 500/& and the
angular velocity (flow) output must be 0.1 * k. k is the tooth-ratio of the rack-pinion
mechanism. Since cases are instantiated for structural parameters in the case-base, k
will have a value and we assume a case with k= 20 has been retrieved. Hence the torque
required is 25 Nm and the angular velocity 2 rad/sec. We solve e2 = k.fi.Sin(J:2),f2 =
ei/k.S'in(J-2) for a motor with k = 5, to obtain that the input voltage to the motor
must be 10Sin(16) and input current must be 5Cosec(16). We compare this with

33

Device relations Cases

£>3,£>i (DC-motor Rack-pinion),(DC-motor Straight-line-cam)
(DC-motor Linear-screw-mechanism)

D3iDs (DC-motor Slider-crank-mechanism),(DC-motor scotch-yoke)
(DC-motor sinusoidal-cam)

D9,Dt (AC-motor Rack-pinion),(AC-motor Straight-line-cam)
(AC-motor Linear-screw-mechanism)

D9,D5 (AC-motor Slider-crank-mechanism),(AC-motor scotch-yoke)
(AC-motor sinusoidal-cam)

Table 11: Cases retrieved for index PEM —► PMR —* PMT

No Relations

Dx e2 = k.euf2 = fi/k
D3 C2 = k.fi,f2 = ei/fc
D5 e2 = e1/(k.Sin(Jr

1)),f2 = h.k.Sin{T\)
D9 e2 = k.fi.Sin(Jr

2)if2 = ei/LSinfä)

Table 12: Device relations for cases in Table 11

the design specifications and find that a constant, non-sinusoidal voltage is the input
specification. Thus all combination of cases with an AC-motor will be rendered invalid.

Consider the design DC-motor and Rack-pinion-mechanism. Considering the same
rack-pinion mechanism as retrieved above, the torque output requirements for the
motor is 25 Nm and the angular velocity is 2 rad/sec. We solve e2 = k.fi, /2 = ei/k for
the DC-motor with k — 10, to obtain input voltage required is 20 volts and an input
current of 2.5 amperes. The voltage and current parameter relations, obtained by
solving, match the specifications since both are constant values. Voltages are constant
and since the relation of electrical current as function of time is not specified, any
relation is considered valid. Thus a DC-motor and Rack-pinion combination is a viable
solution. Though the voltage relations match morphologically, their values are not
equal. The synthesis algorithm considers the above combination as a failure and checks
all different combinations of DC-motors and rack-pinion mechanisms that exist in the
case-base till the correct combination is located. If no such combination exists in the
case-base it fails and proceeds to try another retrieval index. We have not implemented
procedures that hypothesize structural parameter values once a morphological match
is obtained.

A feasible solution is a DC-motor with motor constant k = 25 and a rack-pinion
mechanism with a gear-ratio of 20. We note that an infinite number of combinations
are possible parametrically. The algorithm retrieves only those that are available in
the case-base. The case base serves as a source of devices that have been physically

34

realized and work. Hence, retrieving devices from the case-base eliminates possible
downstream failures due to manufacturing and eliminates searches for other parameter
combinations. Other possible solutions for the opening half cycle are DC-motor and
Straight-line-cam and the combination of DC-motor and Linear-screw-mechanism.
Composition of device relations (D3,D5) fails to produce any solution because of the
sinusoidal term in the device relation D5 and case verification results in failure.

7. The feasible solutions are verified for each of the remaining two time regions. The
search procedure terminates once solutions are found and case retrieval is not per-

formed for the elaboration indices, PEM -* PTH —► PMT and PEM —► PHY -> PMT-

Valid combination of devices as solutions for the gate drive system are the combi-
nations: (DC-motor Rack-pinion),(DC-motor Straight-line-cam) and (DC-motor
Linear-screw-mechanism).

In the following sections, we analyze the complexity of the search and discuss heuristics that
have been implemented to guide the search.

3.5. Complexity of the synthesis procedure

Computational efficiencies for retrieval algorithms are primarily determined by the orga-
nization of the case-base. The hierarchical classification and generation of indexing keys
provides a near linear performance. The exploration of the design space is determined by
the branching factor of the elaboration tree and the number of device relations that are
defined. At a given level n of the elaboration tree,(level 0 is root,) there are n + 1 arcs. Let
there be totally m possible device relations. Also if the case-base has N instances for each
device relation, then the total number of designs that need to be explored at level n is at
most (Nm)n+1 . The branching factor of the elaboration tree is five since we consider only
five energy domains. Thus the total number of combinations of cases searched to a depth
n is at most £"=o5'(-N'm)t"+1- Thus the search performed is affected both by the number of
cases in the case-base and the number of device relations in Table 2. The domain heuris-
tics described in the following guide the exploration of this very large space. The search
efficiency can be improved as the system acquires more cases. The acquired assemblies can
be directly retrieved, thus reducing the number of combinations of individual components
explored. For example, if assemblies of motors and gears were represented as cases in the
system, the elaboration index PEM —*■ PMR will retrieve not only motors but also motor-gear
assemblies that were generated by the elaboration index PEM —► PMR —* PMR thus reducing
search. The synthesis procedure can also be improved by caching often used components
and assemblies and thus speeding up the retrieval process.

35

4. Domain heuristics for elaboration and matching

The algorithm presented in the previous section uses a variety of heuristics to focus the search
for cases. Domain heuristics that capture knowledge regarding device relations, nature of
inputs and outputs and device topologies are used to guide the search to find solutions
efficiently. In the worst case, the elaboration tree search is exponential in nature. In the
following subsections, we present heuristics that guide elaboration, retrieval and matching
in the synthesis algorithm.

4.1. Elaboration and retrieval heuristics

Elaboration indices in the elaboration tree are searched breadth-first to obtain the smallest

number of combination of components in a design. An elaboration-index can fail to retrieve
cases either when there are no devices that span the requisite energy domains or the combi-

nation of devices that spans the required energy domains fails the case-verification procedure.
With the exception of the root index, if no cases are retrieved for a particular elaboration in-
dex (called Efaii) in the elaboration tree due to the first possible reason, further exploration
of elaboration indices of which Efau is a sub-index is pruned. If no cases were retrieved for
the elaboration index PMT ~* PMR —*■ PMR-, search will be aborted for the elaboration index

PMT —»■ PMT —> PMR -> PMR -* PMR-

An important stage in the search process is the choice of an elaboration index, a node in
the elaboration tree for performing case retrieval. Elaboration indices whose intermediate
ports have the same energy domains as the input or output ports are prefered to indices
that have a variety of mixed energy domains. The reasoning behind this heuristic is that
devices built from components belonging to same energy domains are easier to build, test
and control. Thus an elaboration index PMT —* PMR —> PMR will be prefered to the index

PMT -» PHY —>■ PMR-

Case retrieval is based on the retrieval indices generated from an elaboration index. Re-
trieval indices that have linear device relations between ports are prefered to retrieval indices
with sinusoidal and other non-linear relations. Key indices with linear device relations are
used to access the cases before other combinations of device relations. This is to ensure that
simpler combinations of devices that are easier to control are generated before more complex
combinations.

4.2. Heuristics for symbolic solving and matching parameter relations

Symbolic solving of equations is a critical step in this synthesis procedure and is used as
a mechanism for verifying the combination of cases. Solving and matching input-output
effort and flow relations with time provides a robust mechanism for case verification. This
verification scheme is robust in the sense that there are no ad hoc validation rules. It is

36

considerably general to handle a large variety of functions of time as inputs and outputs
to devices. The procedure also enables verification of parameter trajectories at both the
morphological and parametric levels.

Symbolic equation solving critically depends on the nature of the (1) device relations
and (2) input-output parameter relations. In this section, we present the symbolic solving
schemes for different types of device relations and parameter relations. Discussion of symbolic
solving algorithms per se are beyond the scope of this paper *. The solving procedure also
uses the following rules for verification of input and output parameter relations:

• It is not possible for a device to have null input parameter relations and non-null output
parameter relations. This captures the fact that without any input no outputs can be

produced.

• At either input or output port, if the effort parameter relation is null, then the flow
parameter has to be null and vice versa. This is the constraint that to supply power
to a system you need to have both effort and flow parameter as non-null entities.

• By convention, both effort and flow parameter relations must belong to the same
quadrant. This is to enforce the constraint that power is a scalar and is always positive.

Symbolically solving for a parameter relation only gives information about the form of the
parameter relation as a function of time. No information is provided regarding the quadrant
of the parameter relation. The rule is that the quadrant of the input parameter relations is
the same as the output parameter relations unless the device relation has a sinusoidal term
involving an integral variable in it or the structural relation imposes a negative algebraic
coefficient of the device relation. A sinusoidal term in the device relation can change the
quadrant of the output only if the value of the integral variable is greater than an odd
multiple of 7i\ For device relations involving non-sinusoidals, there is no effect of the integral
variables in terms of relating input-output parameter relation quadrants. The length of
the interval of discretisation obtained after solving is equal to the length of the interval of
the input parameter relations. The symbolic solving scheme also performs the necessary
integration required for device relations involving effort and flow integral terms. During
symbolic solving, for each case, the procedure also checks if the input parameter relations to
the device are valid since the valid relations are defined in the case schema.

Matching solved relation, Psolv, and the design specification relation, Pspec is performed
in two stages. Two parameter relations match if both their patterns are same i.e. they
match morphologically. Since parameter relations are represented as trees, two patterns
are considered to match if the nodes and leaves of the tree match each other. A match is
obtained at the device relation level, if the numerical values at the leaves of the trees are
considered as unconstrained constants and the literals at the leaves are of the same type
i.e. effort or flow parameters. The literals at the nodes of the tree must exactly match each

*We use Mathematica[22] as a back-end to the search mechanism to solve equations.

37

other since they are names of mathematical functions. Two relations match parametrically
if the numerical values at the leaves of their tree representations are equal.

5. Discussion and concluding remarks

The synthesis procedure has been implemented as part of the CADET system [10, 8]. This
approach enhances the influence graph based synthesis scheme by providing a convenient
scheme to link device structure and behavior. In this section, we discuss the advantages and
limitations of this synthesis methdology.

The features of the proposed device model and case representation are:

t The bond graph based device model captures energy interactions between devices. The
notion of entities such as components and assemblies are well-defined as also the notion
of assembling two components i.e. connecting devices at their ports. This scheme is
well-suited for reasoning about device dynamic behavior.

• The device model provides for integrating both conceptual and parametric design in
a coherent manner. Also the notion of device relations, structural relations and para-
metric relations aid in modeling a wide variety of device behaviors both in terms of
their input-output relation and effort-flow variations with time at the input and output
ports.

• From a case-based reasoning point of view, each case is a unique device which is
an instantiation of a prototypical device defined by the device relation. The device
representation provides the device and structural relations as a set of discriminatory
indices for retrieving cases. The representation also provides for a convenient scheme
for classifying design cases from the dynamic behavior perspective.

The synthesis algorithm has some limitations. At present, transient behavior of devices
is not addressed. The device models capture ideal energy behaviors. Also only steady-state
dynamic behavior of devices has been considered. In the proposed model, spatial orientation
of components has not been represented and hence configuration design tasks are not sup-
ported. Also the device models do not enable reasoning about geometry and form. Device
topologies are considered to be open-loop wherein there are no energy or signal feedback loops
from components downstream of the power-flow path to components upstream. Closed-loop
systems involve signal feedback from components downstream to components upstream. The
synthesis algorithm generates only open-loop systems. Though the synthesis procedure can
identify the open-loop components in a closed-loop system, it cannot identify and retrieve
signal components that are used to sense and transmit signals. Thus in solutions to the
gate-drive system, the algorithm cannot completely generate designs 3 and 4 in Figure 2.
Future work aims to extend the capability of the algorithm to identify closed-loop compo-
nents. Extension to multiple-input multiple output power systems is possible by allowing

38

Power distribution Power confluence
junction junction

Figure 13: Junction structures in elaboration

for introduction of junctions by the elaboration procedure. Junction structures as those
shown in Figure 13 can be introduced to allow for multiple power flow paths. A distribution
junction provides for power distribution and a confluent junction for power accumulation.

We have described a CBR-based algorithm for synthesis of single-input single output
power drive devices based on bond graph device models. The algorithm combines both
conceptual and parametric design tasks. The synthesis algorithm uses design information
regarding both device topology and device behavior. Future research aims to extend the
synthesis procedure for multiple input and output power drive systems and also consider
components that exhibit energy storage and dissipation behaviors.

References

[1] G. Pahl and W. Beitz. Engineering Design. Springer-Verlag, London, 1988 edition,

1988.

[2] S.Finger and J.R. Dixon. A review of research in mechanical engineering design. Re-
search in Engineering Design, 1(1), 1989.

[3] B. Williams. Invention from First Principles via Topologies of Interaction. PhD thesis,
Massachusetts Institute of Technology, 1989.

[4] K.P. Sycara, Navin Chandra D., S. Narasimhan. Qualitative reasoning methods in
design. In A. Kusiak, editor, Intelligent Design and Manufacturing. Wiley Inter-science,
1992.

[5] A. Goel. Integration of case-based reasoning and model-based reasoning for adaptive
design problem solving. PhD thesis, Dept. of Computer and Information Science, Ohio
State University, 1989.

[6] S. Kota. A qualitative matrix representation scheme for the conceptual design of mech-
anisms. In Proc. of the ASME Design Automation Conference (21st Biannual ASME

Mechanisms Conference), 1990.

[7] Srikanth M. Kannapan and Kurt M. Marshek. Design synthetic reasoning: A method-
ology for mechanical design. Research in Engineering Design. To be published.Locate
journal issue and volume.

39

[8] D. Navin Chandra, R. Guttal, J. Koning, S. Narasimhan, Sycara, K. Cadet: A case-
based synthesis tool for engineering design. International Journal of Expert Systems,

4(2):157-188, 1992.

[9] J Kolodner. Case-based Reasoning. Morgan Kaufmann Publishers Inc., San Ma-

teo,CA,USA, 1993.

[10] K. Sycara S. Narasimhan Navin Chandra, D. A transformational approach to case

based synthesis. AI EDAM, 5(1), 1991.

[11] A. Goel and B. Chandrasekaran. Integrating model-based reasoning and case based
reasoning for design problem solving. In AAAI-88 Design Workshop, St. Paul, MN.,

Expected in 1989.

[12] K. T. Ulrich and W. P. Seering. Synthesis of schematic descriptions in mechanical

design. Research in Engineering Design, 1(1), 1989.

[13] J. R. Rinderle Finger, S. A transformational approach to mechanical design using a
bond graph grammer. In Proceedings of the First ASME International Design Theory

and Methodology Conference, September 1989.

[14] S. Hoover and J.R. Rinderle. A synthesis strategy for mechanical devices. Research in

Engineering Design, 1:88-103, 1987.

[15] J.R. Rinderle and L. Balasubramaniam. Automated modeling to support design. In
Second ASME Design Theory and Methodlogy Conference. ASME, 1990.

[16] R. Welch and J.R. Dixon. Conceptual design of mechanical systems. In Design Theory

and Methodology, volume 31, pages 61-68, 1991.

[17] W. Gosling. The design of engineering systems. Wiley, 1962.

[18] T.N.Madhusudan. A review of bond graph based design methodologies. Technical
Report CMU-RI-TR-95-28, The Robotics Institute, Carnegie-Mellon University, Pitts-

burgh, PA 15213, July 1995.

[19] D. Karnopp and R. Rosenberg. Analysis and Simulation of Multiport Systems. The

M.I.T. Press, 1968.

[20] D. Karnopp and R. Rosenberg. System Dynamics: A Unified Approach. John Wiley

Sons, New York, 1975.

[21] R. Rosenberg and Karnopp. D. Introduction to Physical System Dynamics. McGraw-

Hill Book Co., 1983.

[22] S Wolfram. Mathematica, a System for Doing Mathematics by Computer. Addison

Wesley, second edition, 1991.

40

