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1.    Introduction 

1 The engineering design process has been classified into four stages, namely, (1) Conceptual 
design wherein physical concepts and engineering principles are used to generate prototypes 
that are expected to meet given design specifications, (2) Parametric design wherein geometry, 
form and material parameter values are chosen for each feasible conceptual prototype, (3) 
Configuration design involving spatial arrangements and sizing of the components of the 
synthesized prototype and finally (4) Embodiment design wherein detailed specifications for 
the product are generated aided by thorough engineering analysis. Successful computer- 
design aids have been built to support parametric and configuration design such as structural 
optimization and layout tools. Research in developing models for design computation has 
primarily focused on providing tools for analysis of designed artifacts and their computerized 
representation as solid models. Only limited work has been performed to provide support 
for design synthesis at the early stages of design. Tools to support conceptual design have 
been limited in their expertise because of the variety of physical concepts that need to be 
represented. It is also unclear how the conceptual design phase interacts with the parametric 
and configuration design stages. An example design problem that illustrates the different 
design stages and highlights the need for tools that aid conceptual design is described in the 
following section. 

1.1.    An example problem 

Consider the synthesis of an electro-mechanical drive system that opens and closes a gate 
to the driveway of a house as shown in Figure 1. Given a signal to open the gate, the 
drive system moves the gate horizontally on guide-ways in a particular direction; the drive 
system moves the gate in the opposite direction when given the signal to close the gate. 
Design specifications for the drive system are the frictional force that resists the motion of 
the gate, the speed variation of the gate, the input power supply to the drive system i.e. the 
input electrical voltage and current availability and variation with time. A drive system for 
the gate can be assembled from numerous off-the-shelf components such as motors, gears, 
linear slides and other mechanisms to meet these specifications,. Four possible designs of 
increasing complexity are shown in Figure 2. In each design, the thick arrows denote the 
direction of power flow.   Energy from the electrical source flows through each component 
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Figure 2: Possible designs for gate drive system 

and is finally converted into work moving the gate. The schematic diagram for each design 
denotes the power connectivity structure between different components (notated as boxes) 
and is called the device topology of the design. The choice of AC or DC motors in the device 
topologies is dictated by the nature of the electrical source. Designs 1 and 2 are simple 
designs wherein the gate opens, stays in the open position for a brief period of time and then 
closes. Designs 3 and 4 involve feedback about the position of the gate denoted by the thin 
arrow. A position sensor detects the limiting positions of the gate and triggers a directional 
switch to change current direction in design 3 and the bi-directional valve position in design 
4. Each component in the device topologies in Figure 2 has a well-defined dynamic behavior 
and role to play in the over-all functioning of the design. For example, the electrical motor 
converts electrical power into rotary mechanical power and a cam converts rotary motion 
into reciprocatory motion. The choice of a design from Figure 2 also depends on metrics 
such as the cost, the weight, the spatial volume and reliability of each component in the 
design and the overall assembly. A device topology is generated as a result of a sequence of 
design decisions. We illustrate the design choices for generating the gate-drive system device 
topologies in Figure 3. The process of choosing the correct type of off-the-shelf components 
i.e. a four-bar mechanism vs. a rack and pinion mechanism and combining these components 
in a feasible manner that provides the required functionality is conceptual design[l, 2]. The 
different motor and mechanism combinations shown in the figure provide conversion of rotary 
motion to translatory motion. Once a particular combination of components is chosen, the 
next issue is sizing these components i.e. choosing a large or small motor with large or 
small rack-pinion mechanism. This process is called parametric design. This is illustrated 
in the figure by the different motor and rack-pinion combinations. An associated step is 
the process of choosing spatial orientations for each component and forming the overall 
shape and size of the drive system for the gate. This is called configuration design. As 
shown in the figure, the motor and rack-pinion can have a number of relative orientations 
depending on spatial constraints in the design specification. The foregoing example describes 
the synthesis of new devices in contrast to the task of routine design wherein one is primarily 
involved in parametric design involving resizing of components given a particular device 
topology. Choices of components and device topologies in the conceptual design stage may 
not satisfy parametric or configuration requirements and the process of design has to be 
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Figure 3: Design process for the gate drive system 

repeated with a different initial choice of concepts thus leading to increased product design 
cycle times and cost. Computational design aids that provide the human designer the ability 
to generate different initial concepts i.e. components and valid component topologies given a 
set of design specifications and also explore the interaction effects of conceptual, parametric 
and configuration choices will be invaluable. Such aids would help in the choice of off- 
the-shelf components and their consequent assembly without recourse to synthesizing new 
devices from scratch. In this paper, we present a computational scheme to generate valid 
assemblies of components given design specifications and also perform parametric design on 
the synthesized assemblies. 

Computational aids for supporting design must exhibit certain essential characteristics. 
Since the space of feasible designs is vast, the synthesis algorithms must generate all designs 
on request or some valid designs depending on the nature of the design specifications. The 
design algorithms must also consider measures such as cost, reliability, robustness etc. to 
trade-off various design alternatives and propose only those solutions that satisfy required 
design criteria. For more detailed design specifications, the synthesis routines must provide 
design solutions that contain the same or more amount of design detail. The design algo- 
rithms must reflect a domain-independent approach such that an algorithm for designing 
combinations of mechanical devices can be adapted to synthesize hydraulic devices. 

Finally, in the case of electro-mechanical devices, the devices are described at multi- 
ple levels of detail and abstraction. An example of two abstract representations for an 
electro-mechanical component are the solid model representation and the dynamic differ- 
ential equation representation of the device. The representations support different kinds 
of physical information relevant for design; the solid model provides information on shape, 
volume, weight etc. while the differential equation provides information on the dynamics of 
the device. Therefore the synthesis procedure must be able to process design information at 
and across different levels of abstraction. Design is a generative task wherein a variety of 
feasible designs are created and evaluated. Design is computationally more expensive than 
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analysis of a given design alternative based on a given physical model of the device. Also 
the information available during the generative process is rather incomplete at times and 
the variety of alternatives for each design decision is rather large leading to combinatorial 
explosion of choices. Therefore the algorithms must make efficient use of partial knowledge 
to reduce search. 

Conceptual design systems such as IBIS [3] uses a graph-based representation for modeling 
device topology but fails to capture time-dependent behavior of physical parameters. Quali- 
tative representations of device behaviors are incomplete with respect to device structure[4] 
and also the dynamic description do not enable combination of components. The substance- 
behavior-function model [5] model does not capture physical processes but is more a descrip- 
tive model of devices. Kota [6] has proposed the qualitative motion synthesis approach which 
focuses on kinematic design of mechanisms. A qualitative model and a matrix-method to 
combine different qualitative motion descriptions is used to build devices. A rule-based ap- 
proach is provided in [7] for synthesis of mechanisms. A predicate-logic representation is used 
to model devices and a complex search procedure to compute new designs. Other conceptual 
design schemes are described in [2]. In summary, the design methods proposed so far have 
not utilized both topological information about devices and their constituent physical process 
relationships. From the viewpoint of the staged design process, no computational scheme 
with a well-defined device model has been proposed to integrate conceptual, parametric and 
configuration design stages in a feasible manner. 

A computational methodology for design that combines generative aspects of design and 
also combats the computational inefficiency in a feasible manner is Case-based design[8]. 
Case-based reasoning is a paradigm that aims to use experiential knowledge gained in solv- 
ing previous problems to formulate solutions for new problems[9]. Primary elements of 
a CBR system are the case-base, wherein previous problems, their solutions, models etc. 
are stored, and an inference mechanism that uses the information stored in the case-base. 
The inference mechanism converts the given problem specifications into relevant indices for 
retrieving cases from the case-base, retrieves relevant cases, validates the retrieved cases 
as plausible solutions and if necessary modifies some of the cases to meet the new problem 
specification and proposes a new solution. Case-based design provides for use of previous de- 
signs and fragments of complete designs as partial solutions in the synthesis process. Having 
access to previous designs reduces the complexity of the search in the ill-structured domain 
of electro-mechanical design. Cases provide coherent models of devices across multiple ab- 
stractions enabling consistent design reasoning across different representations of a device. 
Since a case captures all relevant design information, it provides for performing conceptual, 
parametric and configuration design in an integrated manner. Cases also provide a means 
to operationalize design knowledge either as rules or as descriptive data structures. Cases 
also provide a sort of feasibility check on new designs by providing information regarding 
success and failure on previous designs, with respect to different design alternatives. An- 
other interesting aspect is that previous cases provide designers information with regard to 
the physical realizability of various designs i.e. guarantee that devices can be manufactured 
with reasonable investments of capital and time. The CADET [10, 8] system is based on 
the qualitative reasoning framework and uses Influence graph diagrams(ISD) for modeling 
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devices. A graph-based indexing scheme is used to retrieve cases. IDEAL[11] and Kritik[5] 
are other CBR-base systems of note for synthesis of mechanical devices based on the SBF 

device models. 

A CBR based design methodology raises the issue of the definition of a design case and 
how a design case is to be represented. A design case representation must correspond to the 
various models of the physical world phenomena. We cannot simply structure a case in terms 
of axiomatic logic-theoretic representations. The models of the physical world in engineering 
and physics are non-linear and stochastic. The device models also involve quantitative and 
temporal variations. A rule-based approach is not flexible enough to handle these different 
aspects of the physical world in a consistent manner and is primarily incomplete. Design rea- 
soning to a certain extent involves interpretation of these complex physical models, studying 
the behavior of these models when various aspects of these models are tweaked and choos- 
ing the right combination of these physical models to create feasible designs that can meet 
the design specifications. Therefore a case-representation requires a feasible combination 
of axiomatic and analog models of physical phenomena. Further, since synthesis involves 
combinations of components, procedures for aggregating and combining cases need to be 
defined. Combinations of cases must satisfy all physical conservation and thermodynamic 
laws. A principled way of combining cases and ensuring feasibility of the combined design 
is required. It is also imperative that the combination of cases be feasible at all levels of 
abstraction. 

We have developed a case-based design methodology that addresses the different issues 
raised in the foregoing paragraphs. Our methodology combines bond-graph based device 
models to meet design specifications in a systematic manner. In our CBR-model of design, 
the case-base consists of device models of components and assemblies of components. The 
steps in the inference procedure are shown in Figure 4. Design specifications from the user 
are transformed into indices for retrieval of cases (devices) from the case-base. Cases are 
retrieved and composed into an assembly. Each synthesized assembly is then validated. 
Designs can be validated via simulation or through the use of validation rules. Successful 
designs as well as failures are archived in the case-base. The case-base consists of cases that 
store design information related to both conceptual and parametric design. The conceptual 
and parametric design tasks are interleaved in the inference mechanism. An interesting 
feature to note is that the CBR mechanism provides an explicit inference step for assembly 
of retrieved components i.e. to perform synthesis. The cognitive model of the CBR process 
has the notion of retrieving different relevant cases from memory and adapting those cases 
to propose a new solution. Composition of cases is one of the many available adaptation 
schemes and plays a critical role in synthesis of assemblies from components. 

Bond-graph based representations have been used for design in [12, 13, 14, 15, 16]. In 
[12],the synthesis procedure generates a network of bondgraph elements with bond-graph 
primitives such as TF,GY,R,I, C elements and 0-1 junctions to span the input and output 
bond-graph chunks, based on rules that aim to generate differential equations of a prespec- 
ified order. An exponential search procedure is used to generate bond-graphs for electro- 
mechanical single-input single-output systems. In [13], bond graphs are viewed as a defining 
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a a grammar and synthesis rules that transform the bond graphs are defined.  We extend 
the usability of bond-graphs as a device representation by addressing device behavior over 
time in the design specifications. We follow a systems-theoretic approach and do not aim to 
synthesize embodiments of the devices but identify the components and their connectivities 
[17, 1]. Bond graph based design schemes are reviewed in detail in [18]. A typology of devices 
has been developed based on device input-output relations that capture dynamic behavior. 
Further, these input-output relations are related to the structural aspects of the device such 
as geometry and other material properties. We have enhanced the role of bond graphs by 
observing that lumped parameter coefficients in bond-graph relations provide a convenient 
link to study the effects of device structure on the device behavior. For example, the bond 
graph model of a pair of spur gears is a mechanical power transformer with the tooth ratio 
of the gears in mesh as a modulating parameter. The ratio of the teeth is the only structural 
parameter that affects the ideal dynamic behavior of the device with respect to its intended 
role of transforming power. This tooth-ratio provides the link to the structural aspects of the 
gear. In the foregoing example, the gear-ratio required can be obtained by a variety of teeth 
ratios. Other attributes of the gear such as size, teeth geometries and material properties do 
not affect "ideal gear behavior". This modeling abstraction facilitates reasoning across device 
dynamic behavior and device structure. We hasten to note that though bond-graph analysis 
recognizes the existence of these lumped parameters, they have been considered as given i.e. 
fixed for purposes of analysis and not as variable entities i.e.   entities which are a design 
choice. The case-representation consists of a bond-graph based device model that captures 
relevant physical effects and an axiomatic model that aids interpretation of the device model 
and captures parametric and geometric attributes of the device.  This case representation 
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allows consistent reasoning across device behavior and structure. Also the representation 
provides for monotonic behavior of the synthesis procedure i.e. more detailed specifications 
generate detailed but a smaller number of solutions. The device representation allows for 
combining components or cases. Each component is modelled as a physical system with a 
set of input and output ports. A port is a conduit for transfer of energy (power) into and out 
of the component. When components are assembled, they are connected at their ports. The 
output port of one component becomes the input port of the adjacent component. When two 
devices are connected at their ports, the power and energy variables, such as force, velocity 
and momentum, at each port are constrained to be equal. Power flows from one device to 
another at any instant of time. Power flows via the first component into the adjacent one as 
shown in Figure 2. An assembly of components can be modelled as a single physical system 
with its own input and output ports. The input-output relations of the components can 
be combined to determine the overall input-output relation for an assembly. Thus given a 
input-output design specification, one can verify whether a proposed assembly of components 
can meet the given design specifications. The verification procedure thus provides a stopping 
criteria for the generative search process by ensuring that non-feasible design alternatives 
are not further explored. The bond-graph model captures the physical effects in a device and 
cannot be put into a one-to-one correspondence with physical components of a device. The 
port models of devices are idealized mathematical versions of real physical embodiments such 
as masses, springs, and gears. Complex two-port systems can be modelled by assembling 
these two-port models serially. Multiple input-output systems can be assembled from one, 
two, three and other multi-port components. The design methodology enables the synthesis 
of assemblies of multiple input-output power and signal devices. 

In this paper, we focus on the synthesis of assemblies consisting of components with one- 
input and one output port to illustrate the synthesis procedure. We describe a computational 
scheme that combines both the conceptual design and parametric design tasks using the 
above representation. Configuration design tasks are not addressed. In section 2, we present 
the models of devices and their representation. We also describe the possible types of design 
specifications that are entailed by this device model. In Section 3, we present the synthesis 
algorithm, in Section 4, we present domain heuristics with respect to the algorithm and the 
device representation and conclude in Section 5. 

2.    Device representation 

Our proposed device representation captures physical phenomena as energy interactions and 
device structure (topology) as a directed graph. Device functionality is dependent upon the 
ability of the device to transform either power or signal flows through the device. Each such 
power or signal transformation is provided by some physical effect that is encapsulated by 
the device. The dynamic behavior of an assembly of components is dependent on the device 
topology and the transformation behavior of each component. In the following sections, we 
describe the possible power transforming behaviors of components and present a schema 
representation of power devices. 
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2.1.    Energy interaction models for devices 

The mathematical model of energy interactions encapsulated by devices is based on the bond 
graph formalism [19, 20, 21]. The bond graph formalism identifies three types of energy 
interactions among devices. The energy behaviors of devices are energy storage, energy 
dissipation and energy transmission. Complex device behavior arises when components with 
storage, dissipation and transmission behavior are assembled together. The dynamics of 
physical devices are derived by the application of instant-by-instant energy conservation. In 
the bond-graph formalism, devices are modelled by components connected at places where 
power can flow between the components. Such places are called ports and devices with one 
or more ports are called multiports. Energy storage and dissipation behavior is exhibited 
by devices with one power port. Devices such as springs, resistors, masses etc. can be 
modelled as one-port devices. Energy transmission behavior is exhibited by devices with 
multiple input and output ports. A tee-pipe can be modelled as a multi-port device. In this 
paper, we focus on synthesis of single input, single output devices called two-port devices. 
Devices such as motors, slider-crank mechanisms, cams etc. in Figure 2 are two-port devices. 
The overall gate-drive system in the earlier example can be envisioned as a two-port device 
wherein electrical power flows in at the input port and is used to mechanically translate the 
gate at the output port. We summarize energy transmission behavior of a two-port device 
in the following paragraph. 

Each power port of a device has four variables, namely, effort (e(t)), flow (f(t)), effort 
integral (/e(t)dt) denoted as £{t) and flow integral (/ f(i)dt) denoted as F(t) . The power 
(P(t)) is equal to e(t).f(t). e(t) and f(t) are called power variables. The energy flow- 
ing through a port over a period of time E(t) is given by / e(t).f(t)dt or / f(t).d£(t) or 
/ e(t).df(t). £(t) and T(t) are called energy variables. A power port in a device belongs to 
an energy domain. Power and energy variables can be identified for electro-magnetic (EM), 
mechanical translation (MT), mechanical rotation (MR), thermal (TH) and hydraulic (HY) 
energy domains and are listed in Table 2.1. The first column lists the energy domain and the 
ensuing columns the effort, flow, power, effort integral, flow integral and energy variables of 
that energy domain. Energy domains that involve radiative transfer of energy (solar, light, 
acoustics and radiated heat energy) are not modelled though successful attempts have been 
made to extend the bond graph methodology to radiative phenomena. 

For a two-port device, at every instant of time ei(i)./i(£) = e2(t).f2(t), where the subscript 
1 denotes input port and 2 denotes output port. The above equation implies that in a two- 
port system whatever power is flowing into one side of the 2-port is simultaneously flowing 
out of the other side. To satisfy the power conservation relation in a physical two-port 
system, ex may be related to e2 and /i may be related to /2. Another possibility is e\ may 
be related to f2 and /i may be related to e2. Each set of two relations is called a device 
relation. Table 2 shows commonly occuring device relations in a variety of two-port power 
components. Each relation in Table 2 is denoted D{ where i indicates the serial number of 
the relation in the table. The term k denotes an algebraic coefficient in the device relations. 
J7 and £ denote time integrals of effort and flow parameters.   There are numerous other 
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Domain Effort Flow Power Effort 
Integral 

Flow 
Integral 

Energy 

Mech. 
trans. 

Force 
(F) 

Velocity 

(v) 

F.v Momentum Displacement 
(x) 

Mech. 
Work (W) 

Mech. 
Rotation 

Torque 
(T) 

Angular 
Velocity (u) 

T.w Angular 
Momentum 

Angle 
(0) 

Mech. 
Work 

Hydraulic Pressure 

(P) 

Flowrate 

(Q) 

P.Q Pressure 
Momentum 

Volume 

(V) 

Hydraulic 
Energy 

Electro- 
Magnetic 

Voltage 

(e) 

Current 

(i) 

e.i Flux 

(A) 

Charge 

(q) 

Electrical 
energy 

Thermal Temperature Entropy-flow * * * * 

Symbols in parenthesis denote conventional symbolic names for physical parameters. 

Table 1: Energy and Power parameters 

No. Relations 

1 e2 = fc.ei,/2 = fi/k 
2 e2 = e1/k,f2 = fi.k 
3 £■2 = k.fi,f2 - ei/fc 
4 e2 = k.ei.Sin(T\),f2 — fi/k.Sin^i) 
5 e2 = ei/(k.Sin(Fi)),f2 = fi.k.Sin^) 
6 e2 = k.ei.Sin(F2),f2 = fi/k.Sin^) 
7 e2 = e1/(k.Sin(J7

2)),f2 = fi.k.Sin(F2) 
8 e2 = k.f\.Sin{Fi),fv = ei/k.Sin^i) 
9 e2 = k.fi.Sin(Jr

2),f2 = ei/fc.Sm^) 
10 e2 = hl{k.Sin{T1)),f2 = ex.k.Sin{T^) 
11 e2 = hi(k.Sin{T2)),fa = ei.k.Sin(jF2) 
12 e2 = k.ei.Sin(£i),f2 = fi/k.Sin(Ei) 
13 e2 = k.e!.Sin(£2),f2 = /i/A:.,Sm(£2) 
14 e2 = e1/(k.Sin(£i)),f2 = fi.k.Sinfa) 
15 e2 = ei/(k.Sin(£2)),f2 = fi.k.Sin(£2) 
16 e2 = k.fi.Sin(£i), f2 = ei/k.Sin(£i) 
17 e2 = k.fi.Sin(£2),f2 = ei/k.Sin(£i) 
18 e-2 = fi/(k.Sin(£i)),f2 = ei.k.Sin(£i) 
19 e2 = fi/(k.Sin(£2)),f2 = ei.k.Sin(Ei) 
20 e2 = k.e1.g{F1)J2 = f1/k.g(F1) 
21 e2 = H(e1)J2 = fl.e1/H{e1) 

Table 2: Two port device relations 
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No. Algebraic coefficients Lumped parameters Relation 
in device relations of device 

1 *i Pi kx = pi 
2 h Pi h =p\ 
3 h Pl,P2 h = Pi/P2 
4 k1:k2 Pl,P2 h = pi,k2 = p2 

5 h,k2 Pl,P2 h = Pi +P2,h = Pl/P2 

Table 3: Common structural relations 

types of device relations possible as long as they satisfy the law of conservation of energy 
such as relations 2}2o and D21, where Q and H denote functions such as exponential, log 
etc. Each two-port power device encapsulates a device-relation and the generalized effort 
and flow variables at each port are instantiated based on the energy domain of the ports 
of the device. A pair of gears is modelled by (e2 = k.ei,f2 = fi/k), where the input 
and output energy domain is mechanical rotation. An induction motor is modelled by 

^2 = k.fi.Sin{J72)if2 — ei/k.Sin(F2) and a DC motor by e2 = k.fi,f2 = ei/k wherein the 
input energy domain is electrical and output energy domain is rotary mechanical. 

The device relations between the port variables (efforts and flows) have algebraic coeffi- 
cients, such as k, as shown in Table 2. These algebraic coefficients are functions of lumped 
physical parameters that depend on the geometry and material characteristics of the de- 
vice. Lumped physical parameters do not have a spatial extent. For example, the concept 
of a mass of a component concentrated at a point in physical space is a lumped parame- 
ter approximation though the mass obviously depends on the spatial volume occupied by 
the component. Relations such as those in Table 2 may have multiple algebraic coefficients 
which are denoted as k{. The lumped geometric and material parameters are denoted by pi. 
The set of relations that map each ki of a device as mathematical functions of pi is called a 
structural relation. The lumped parameters, pi are called structural parameters. A variety of 
structural relations exist depending on the number of coefficients in a given device relation 
and the structural parameters of the device. Table 3 shows common structural relations. 
Each structural relation is denoted as S{ where i indicates the serial number of the relation 
in table 3. For a pair of gears, the algebraic coefficient k (denoted as k\), is defined by 
k\ = P1/P2, wherein each lumped parameter (pi,i = 1,2), is the number of teeth in each 
gear. For a DC-motor, the structural relation is &i = pi and the "lumped" parameter is the 
field current that excites the magnetic coils and the algebraic term in the device relation is 
the motor constant. Therefore by not simplifying the structural relations, more information 
about the devices' actual structure can be imported into the bond graph. 

Devices exhibit dynamic output behavior when they are driven by power inputs. Devices 
can exhibit dynamic output behavior in two ways, (1) when the input power flow at the input 
port varies and (2) when the lumped parameters vary with time. Either of these two changes 
will manifest itself as variations in the behavior of parameters at the output port.   When 
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both kinds of input effects can take place simultaneously, the output dynamic behavior is a 
superposition of the two input effects. In this paper, we synthesize two-port devices wherein 
the structural parameters are not allowed to vary with time. Every component has constant 
values for its structural parameters. This assumption precludes signal-dependent modulation 
of dynamic behavior of devices. 

2.2.    Representation of dynamic behavior of efforts and flows 

Design specifications for a required device are primarily specified in terms of corresponding 
effort or flow time histories at the input and output ports since one does not know the 
device relation before synthesis. Thus a representation is required for capturing the time- 
histories of effort and flow parameters at the ports of a device. In this section, we describe 
the representation of time histories for parameters and also describe its significance in the 
modeling of devices and also the synthesis process. 

Dynamic output behavior is obtained by dynamic variations at the input port of a device. 
For example, an increase in input power can be obtained by increasing the effort value, flow 
value or both, thus causing a variation in the output port variables. Each parameter at the 
input and output port describes a trajectory over time that describes the overall dynamic 
behavior of the device. Theoretically, an infinite number of such continuous trajectories are 
possible for a given effort or flow parameter. We model a single time trajectory of a parameter 
as piece-wise continuous functions of time. Consider the trajectory of displacement of the 
follower (with the cam axis as reference) during rise of a parabolic cam as shown in Figure 
5. The follower has a constant acceleration, linearly increasing velocity and a parabolic 
displacement over the follower rise time-period t„se and the same behavior in the opposite 
direction during the follower fall time-period, tjau as shown in figure. 

The time trajectory of a parameter is discretised into a sequence of regions, (Ti, T2, T3...), 
Ti denotes the ith time interval and T\ is the interval containing the time origin. For the 
displacement, velocity and acceleration trajectories for the cam in the foregoing example, 
there are two distinct regions £„-se and tfau which constitute T\ and T2. In each region T;, the 
parameter trajectory with time is approximated as a closed-form function of time, t. The 
possible parameter functions of time that we have implemented are shown in Table 4. y can 
be efforts or flows at the ports of devices and t denotes time, m,- and c,- denote constants. 
Each parameter-time relation is called a P-relation and is denoted P, where i denotes the 
serial number in the table. The time trajectory of a parameter over a given period of time 
can be approximated by a set of P-relations. We restrict our representation only to the above 
relations, since any complex time-history of a parameter can be approximated by the above 
relations in a piece-wise manner. A parameter trajectory can lie only in the first and fourth 
quadrants of the parameter-time coordinate system since time is always positive. All physical 
parameters are scalars. A positive or negative magnitude for a physical parameter denotes 
the direction of action along a given direction in coordinate system chosen by convention. A 
positive magnitude indicates that the physical parameter acts in the same direction as the 
given vector and a negative magnitude denotes that it acts in the opposite direction to the 
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Figure 5: Displacement trajectory for parabolic cam follower 

No. Relation 

1 y = mi.t + ci 
2 y = mi.Sin(t) + c2 

3 y = mt.Logit) + c4 

4 y = m\.Exp{t) + c5 

5 y = m-i.t + m2.t
2 + ce 

Table 4: Parameter functions of time 

18 



Value 

Figure 6: Possible parameter trajectories 

given vector. Thus each relation listed in the Table 4 can be used to describe time trajectories 
as shown in Figure 6. y = m\.t + c\ can represent trajectory 3 while y = mi.t + ra2.tf2 + c6 

can represent trajectory 2. Each such relation does not have any information regarding the 
direction of action of a physical parameter. For example, y = m\.Sin(t) + c2 can be used 
to represent trajectories 1 and 4 in Figure 6 since both are sinusoidal with respect to time. 
Physically the two trajectories denote two different physical events, trajectory 1 describes 
a sinusoidal variation in magnitude such as an oscillating pressure pulse while trajectory 4 
describes a change in magnitude and direction such as the reciprocating motion of the slider 
in a slider-crank mechanism. Reciprocation is indicated by the sinusoidal curve in trajectory 
4 switching between the first and fourth quadrants. Thus it is essential that we distinguish 
between the two trajectories, 1 and 4. Knowledge of m and c,- in the parameter relations is 
not enough as shown by trajectories 5 and 6 in Figure 6. Though the two trajectories lie 
on the same line and are represented similarly, they denote different physical events. The 
only information that is needed to discriminate is the direction. Each parameter trajectory 
is represented by a Pi which is also annotated with directional information. The literal + 
denotes that the parameter relation describes a trajectory that lies only in the first quadrant, 
literal - denotes that the parameter relation describes a trajectory that lies only in the fourth 
quadrant and literal +- denotes that the parameter relation describes a trajectory both in the 
first and fourth quadrant. Hence trajectory 1 will be annotated with a + while trajectory 
4 will be annotated by a +-. Thus a parameter trajectory in a discretised time region is 
denoted by a list (parameter relation, quadrant, time duration) wherein parameter relation 
is a triplet (snum,c,m) where snum is the serial number from Table 4, m and c are lists 
of coefficient values for the relation; a quadrant is one of the literals +, - or +- and time 
duration is a pair (s<, /<) where st and /( denote start time and end times for trajectories. The 
follower acceleration trajectory in Figure 5 over the rise and fall periods will be represented 
as shown in Table 5. trise and tf all denote rise and fall times. The first column lists the 
time-region and the second column the parameter relation, quadrant and time durations. In 
each region, the linear constant velocity is represented by y = mi .t + cx (denoted by the first 
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Time-region Trajectory representation 

Ti (l,(cl),(ml)), +,   (0 trise) 
T2 (I,(c2),(m2)), -,   (trise trise+tfall) 

Table 5: Velocity trajectory for parabolic cam follower 

element l). Specific trajectories are defined when the constants m; and ct- are defined. Thus 
in Table 5, m\ = 0, m2 = 0, c\ — 1 and c2 = 1 describes a constant velocity of 1 m/s over the 
follower rise and fall periods. The different quadrants for the velocity trajectory during rise 
and fall are denoted by the literals + and -. The trajectory of follower displacement during 
trise and tfaii can be represented by y = m\.t + m2.t

2 + c6 i.e. parabolic with appropriate 

coefficients. 

Thus to describe the dynamic behavior of a device over a given time-period, one would 
discretise the time-period into discrete regions and in each region, describe the behavior of 
input and output port parameters as functions of time. Thus for a two-port device with one 
discretised time region, four parameter trajectories, one each for the input and output port 
efforts and flows are required to completely describe the device behavior. Usually a physical 
device that encapsulates a device relation does not produce outputs for all kinds of input 
effort and flow. Only certain kinds of parameter relations are allowed for the input effort 
and flow. For example a DC-motor will not produce a rotary torque if given a sinusoidal 
input voltage. A device relation for modeling a device is also annotated with all the possible 
inputs it can handle. From the fifteen possible trajectories for input port effort and flow i.e 
five types of Pt and three directional quadrants, the valid trajectories are listed in the device 
representation. 

Why is such a complex representation of time-history behavior required ? First, the 
design specifications for a device are given in terms of nominal corresponding time-histories 
for the efforts and flows at the ports of device. For example, design specification for a 
motion generating mechanism is in terms of requisite time-profiles for the output linkages. 
Secondly, the constitutive device relations described in the previous section can produce a 
variety of output effort and flow time histories depending on the input effort and flow time 
histories. In theory, therefore a single device can be driven by an infinite number of different 
types of inputs. Representing a device by cataloging all its input-output parameter time- 
histories is cumbersome. Therefore though the device relation is a succinct representation 
of the device input-output relation, a representation for describing time-histories is required 
to enable choices of devices that may provide by requisite behavior. This choice can only 
be made by driving the device with the given input time-history and observing the output 
behavior. We note therefore, that for a given time-history specification, an infinite number 
of devices or their combinations can be proposed as feasible solutions. Synthesis therefore 
involves generating combinations of devices and testing them for different inputs as specified 
in the design specifications. If requisite output behavior is obtained, the new design is 
accepted.   From an algorithmic viewpoint, one needs to match the different input-output 
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Figure 7: Design specifications for gate drive system 

time-history specification to all possible device relations that can provide the requisite input- 
output transformation. In the following section we describe the use of the above-described 
parameter trajectory representation for providing design specifications regarding dynamic 
behavior of a two-port device. 

2.3.    Design specifications 

Design specifications outline the input and output port energy domains and trajectories for 
effort and flow at either port over a given time duration. We illustrate representation of 
design specifications with the gate-drive system example. In Figure 7 the gate-drive system 
is shown as a black-box whose input and output energy domains are electrical and mechanical 
translatory domain. The trajectories for the input voltage, output force required to move 
the gate and the velocity of the gate are also shown. The output force is a constant (500N) 
and changes direction from each half-cycle of opening and closing the gate. The velocity 
of the gate starts from zero and reaches a steady value (0.1 m/s) and then reduces to zero 
over each half-cycle. There is a well-defined dwell period (2 seconds) between each half cycle 
(8 seconds) when the gate remains open or closed as the case may be. Actually this dwell 
period could be large (open gates) but for illustrative purposes we have chosen 2 seconds. 
The velocity behavior can be approximated as a constant velocity neglecting the quick rise 
to steady value. The parametric values for force and the velocity are known and specified 
as shown in the figure. The input voltage is a DC-voltage which is held at a constant value 
of 50 volts. The input current profile is not fixed as it depends on the load that is driven 
and is allowed to be any trajectory that meets the load requirements. The trajectories have 
been discretised into three distinct regions as shown in the figure. The first time region (gate 
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Attribute Value 
Input port energy domain EM 

Output port energy domain MT 
Time-region I Time region II Time-region III 

Input effort trajectory ((1 50 0)  +  (0 8)) ((1 50 0)  +  (8 10)) ((1 50 0)  +  (10 18 

Input flow trajectory ((* *  (0 8)) (* *  (8 10)) (* *  (10 18))) 

Output effort trajectory ((1 500 0)  +  (0 8)) (- -   (8 10)) ((1 500 0)  -  (10 1 

Output flow trajectory ((1 0.1 0)  +  (0 8)) (- -   (8 10)) ((1 0.1 0)  -  (10 1 

* denotes value is unspecified, - denotes that value is null. 

Table 6: Design specification representation for gate drive system 

opening) lasts from 0 to 8 seconds, the dwell period lasts from 8 to 10 seconds and the third 
time region lasts from 10 to 18 seconds. The design specification representation for the gate- 
drive system is shown in Table 6. Each parameter trajectory in a region is approximated by 
the the relation y = m-^.t + cx with mi = 0 (a constant linear trajectory) and C\ equal to 
their parametric value. Thus cx = 50 volts for the input effort, cx = 500 Newtons for the 
output effort,Ci = 0.1 m/s for the output flow and cx is unconstrained for the input flow. 
Since there are three discretised regions over a complete cycle of the gate operation, there are 
three trajectory specifications for effort and flow parameters at each port. Based on these 
design specifications, the synthesis procedure must identify a case or a combination of cases 
that converts the input port parameter variations into parameter variations at the output 
port. If multiple cases are composed, the procedure must also identify the topology in which 
the cases are connected i.e. the connectivity between the different ports of the components 

based on the design specifications. 

Thus far our discussion has addressed the representation of components. A component 
device is defined by a single device relation. An assembly of components is defined by each 
component device relation and the topology of the assembly. Based on the topology of the 
assembly and the component device relations, it is possible to obtained a closed-form device 
relation for an assembly. Consider design 1 in Figure 2. The motor is represented by device 
relation e2 = &-/i,/2 = ei/& and the slider-crank mechanism by e2 = ei/(k.Sin(fi)),f2 = 
fx.k.Sin^i). The overall device relationship obtained by eliminating the common port 
variables is e3 = faM/h-Sin^) and /3 = ei^.Sin^/h) where the port parameters are 
as shown in Figure 8. This is equivalent to device relation Dn- An assembly of component 
devices may or may not have a unique closed-form device relation as listed in Table 2. 
The device relation for such assemblies can be inferred from the device relations of the 
components. The structural relation for an assembly of components is the combined set 
of all structural relations of its components. The dynamic behavior of an assembly can be 
changed by changing the structural parameters of any of its components. Also, it is fairly 
obvious, that the input and output effort and flows for an assembly can be described by 
the parameter trajectory representation developed in the earlier sections. The connectivity 
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Figure 8: Device relationship for an assembly of components 

between components in an assembly is represented by a directed acyclic graph where the 
directed arcs denote power flow path and the nodes denote components. Thus the device 
topology of assembly 1 in Figure 2 will be E —> Motor —> Slidercrank —> E where E 
denotes the environment which is external to the assembly. Complex devices can be built 
by combining both components and sub-assemblies. This representation provides a uniform 
representation for both components and sub-assemblies. 

This concludes our discussion on modeling device behavior and its representation. Essen- 
tial features of the device representation are as follows: 

• Devices (components and their assemblies) are modelled as entities that allow trans- 
mission of power through conduits called ports. 

• Device input-output behavior is modelled by device relations. 

• Device dynamic behavior is linked to the structure of the device through structural 
relations. 

• The time histories of the efforts and flows at the ports is modelled by parameter 
relations. 

The representation thus provides a convenient way of describing device behavior in terms 
of its input-output relation or the nature of the trajectories of its port parameters. Further 
since the device physics is modelled based on the bond graph formalism, it ensures that 
combinations of components will be physically feasible without violating any physical laws. 
Further the port-models of devices provide a convenient means to composing assemblies 
by connecting components at their ports. In the following subsection, we use the above- 
described device model to represent components and assemblies as cases  in a case-base. 
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2.4.    Cases and case-base organization 

The content and organization of the case-base determines the validity of the solutions and 
efficiency of the retrieval algorithm in CBR-based design systems. In our implementation, 
the case-base stores a variety of devices encapsulating different device relations and structural 
relations. A device relation defines a class of devices that exhibit similar dynamic behavior 
i.e. the input-output relationship. A particular physical realization (instance) of a device, 
belonging to the class defined by a given device relation, is defined when the structural 
relation is defined and values for the structural parameters are' chosen.   A spur-gear pair 
with gear-ratio two is defined when a gear with forty teeth is meshed with a gear with 
twenty teeth. It is of interest to note that a device relation can be obtained by a variety of 
physical realizations each with different structural relations or with different values for the 
lumped structural parameters. For example, a gear-ratio of two can a be obtained either by 
choosing helical gears that provide a gear-ratio of two or by meshing a spur gear with twenty 
teeth with a ten teeth spur gear. Each case in the case-base is a well-defined instance of a 
device relation and structural relation. Thus if a case exists in the case-base it is physically 
realizable. 

Each case is represented as a schema with the attributes and possible values as shown in 
Table 7.  The device relations are chosen from those in Table 2.  The valid possible input 
parameter trajectories are denoted by a list of consisting of pair (snum, quadrant) where 
snum is the serial number from Table 4 and quadrant is as specified earlier.   The list of 
lumped parameters is a list of symbols where each symbol is a literal that denotes a lumped 
parameter such as Area, Gear-ratio etc. Our representation has a well-defined vocabulary 
of commonly used lumped parameters that capture device geometry and material properties. 
Since each case is a physically realizable instance of a device, the lumped structural param- 
eters have fixed values.   Many devices that are available allow a range of values for their 
structural parameters.  For example a gear transmission (an assembly of gears) provides a 
range of gear ratios. For such devices with variable structural parameters, a range of nomi- 
nal values for the structural parameters are listed. The directed-graph representation of the 
device topology is an incidence matrix representation wherein each node corresponds to a 
component denoted by a symbol. The right-hand side of each equation in device, structural 
and parameter relations in Tables 2,3 and 4 are represented as trees where each node of the 
tree is the function name (a literal) and the leaves are arguments (literals) of that function. 
Such trees can be represented as recursive lists in prefix notation.   Shown in Figure 9 is 
the tree representation of the relation y = mi.t + m2.t

2 + c6 from Table 4 and its recursive 
form as a list is (+  (* ml t)   (* m2 t)  c5). A complete equation is represented as a pair 
(left-hand-side right-hand-side) wherein left-hand-side is a literal naming the parameter and 
right-hand-side is the recursive definition of the function. A device, structural or parameter 
relation is represented as a list of such equations. Table 8 shows the schema for a DC motor 
with field current strength variable between two and five amperes. 

An organized case-base provides for efficient retrieval during the synthesis process. The 
cases in the case-base can be classified into a typology as shown in Figure 10.   Each level 
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Attribute Value 

Device name Symbolic name of device 
Input port A symbol naming port 
Output port A symbol naming port 
Input port energy domain One of MT, MR,  TH,  EM,  HY 
Output port energy domain One of MT, MR,  TH,  EM,  HY 
Device relation Di from Table 2 
Feasible inputs List of valid input parameter trajectories 
Structural relation Si from Table 3 
Structural parameters List of lumped parameters of device 
Structural parameter values Range of values for structural parameters 
Components List of components of device 
Device topology A directed graph representation of topology 

Table 7: Schema for a device 

Attribute Value 

Device name DC-motor-1 
Input port PI 
Output port P2 
Input port energy domain EM 
Output port energy domain MR 
Device relation e2 = k.fi,f2 = ei/k 
Feasible inputs ((l,+)(2,+)(3,+)(4,+)(5,+)(l,-)(2,-)(3,-)(4,-)(5,-) 
Structural relation h = pi 
Structural parameters (Field-current) 
Structural parameter values (C2 5)) 
Components () (A null list denotes no components) 
Device topology 0 

Table 8: Schema for a particular DC-motor 
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Figure 10: Typology of two-port power devices 

Key Description Value for DC-motor 

h Input and output port energy domains EM-MR 

k2 Device relation D3 

k3 Assembly or component Component 

&4 Structural relation SI 

k5 Structural parameters of device Field-current 

k6 Values of structural parameters 2 

Table 9: Indexing keys for a device 

of the hierarchy refers to a particular attribute of a case. The first-level denotes the energy 
domains for input and output ports. The second level denotes the device relation. The third 
level denotes if a case is a component or an assembly. The fourth level identifies the type of 
structural relation, the fifth level names the lumped parameters and the sixth level specifies 
the nominal ranges for the lumped parameters of a device. DC-motors and gears are shown 

indexed by the typology. 

The hierarchical classification scheme provides a unique index for every case. A composite 
key, Ki of the type (&i, k2, k3, k4, k5, k6) can be generated and assigned for every case based 
on the above defined hierarchy. Each ki that constitutes the composite key is described in 
Table 9. The first column names the key, the second column describes the key and the third 
column gives the value of the key for the DC-motor case of the previous example. Thus 
given that the value of kx is EM-MR where EM denotes that the input port of the case is 
electro-mechanical and MR denotes that the output port of the device is rotary mechanical, 
we can retrieve the DC-motor case. One can also retrieve DC-motors if it is given that 
we require all devices that have device relation D3. It is obvious that the slot values of 
the case-schema can be used to generate the composite key for a given case.  Retrieval of 
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cases from the case-base is performed by specifying the composite key K. The composite 
key (EM-MR,D3,Component,SI,Field-current,2) will retrieve only the specific case in Ta- 
ble 8. A composite key (EM-MR,D3,Component,Si,Field-current,*) where * denotes a 
don't-care will retrieve all DC-motors with field-current as the structural parameter. The 
key (EM-MR,*,*,*,*,*) will retrieve all motors (including AC-motors) and further other 
assemblies such as motor and gear combinations. The key (EM-MR, D3, *, *, *, *) will retrieve 
all DC-motors only. The attributes that constitute the composite key K are ordered from 
the most general to the most specific key based on the typology. Since every case in the 
case-base is indexed by the composite key, the retrieval algorithm uses a given composite 
key and retrieves all cases that match the key. An exact match is required between the 
corresponding elements of the key to a case and the given specifications in the query. Details 
of index organization and implementation are beyond the scope of this paper. 

Consider the design specification for the gate-drive system in Table 6. The initial design 
specification only provides element ki of the composite key, (&i = EM-MT). The other elements 
of the composite key are not specified. The synthesis task involves generating possible values 
for those other elements of the composite key that are unspecified. The parameter trajectories 
provided in the design specification provide the requisite information to generate the values 
for other elements of the composite key. Thus design can be viewed as the process of 
generating all the elements of the composite key and once all the elements are known, a 
feasible design is obtained. Each design alternative can be viewed as a choice of values for 
each unknown element of the composite key. Conceptual design is essentially the task of 
generating values for the elements &,-, i — 1,2,3,4,5 and parametric design involves choosing 
the value for element k6. As the design process proceeds from conceptual design to parametric 
design, values for specific keys are identified and the number of feasible cases is further 
reduced. In the following section, we describe the synthesis algorithm that proposes a variety 
of possible values for each element of the composite key in a principled manner, retrieves cases 
based on the proposed composite keys, eliminates infeasible combinations of by evaluating 
combinations of cases using the parameter trajectory information provided in the design 
specifications and thus further refines the values of the elements of the composite key to 
generate valid designs. 

3.    The case-based design procedure 

As described in the previous section, conceptual and parametric design tasks are equivalent to 
generation of the right combination of values for the elements of a composite key. The design 
task is complicated since there are a number of alternatives for each element of the composite 
key. Therefore there a number of alternative combinations of these composite key element 
values that can meet the design specification and thus there are a number of design solutions. 
We note that we have not provided any subjective criteria such as cost, weight, volume etc. 
as part of the design specifications. If such information were provided with the design 
specifications, the additional specifications would be used to choose amongst the variety 
of physically realizable alternatives.The synthesis process can be organized into two stages, 
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namely, (1) Given a design specification as in Table 6, retrieve cases from the case-base that 
can satisfy the specification, i.e. transform the input parameter trajectories into the required 
output parameter trajectories, and (2) If no single case can be found to satisfy the design 
specifications, then compost cases from the case-base to generate a new design. We describe 
a synthesis algorithm wherein both these tasks are interleaved.  The algorithm consists of 
three essential procedures, namely, elaboration, retrieval and verification.  Elaboration can 
be viewed as the task of generating all possible alternatives for elements h and k2 of the 
composite key. Retrieval is the task of retrieving cases based on values of k, and k2 to obtain 
possible values for• fe i = 3,4,5,6. If values for more keys are given, then more specific cases 
would be retrieved.  Verification is the task of eliminating all the infeasible cases retrieved 
by the composite key using the parameter trajectory information provided in the design 
specification. We describe each of these procedures and present a synthesis algorithm using 
these basic steps. 

3.1.    Elaboration 

Power flow path from the input port to output port in a two-port device, whose device 
topo ogy is not known, can be described by the graph pin -> pouU where pin and pout denote 
input and output power ports. Power flow in a device with two components is given by the 
graph pin -+ Pinter -+ Pout where pinter is the common port shared by the two components 
as shown m Figure 11. The directed graph denotes that the input port of the first compo- 
nent is connected to the environment and the output port of the first component feeds into 
to the input port of the second component. The output port of the second component is 
connected to the environment. The port pinter is the output port for one component and 
an input port for the adjacent component. Each arc in the directed graph is equivalent to 
a component and thus two nodes (ports) in the directed graph are spanned by a compo- 
nent. Elaboration is the process of generating a directed graph pin -> Pl Pn _* Pout from 
Pin ~*.Pl P*1-1 ~* P°"*- Thus elaboration is the process of introducing a new common port 
in a given power flow path thereby introducing another additional component in the device 
topology. The elaboration process is equivalent to the process of generating an internal struc- 
ture or device topology for a two-port device to transform the input parameter trajectories to 
output parameter trajectories. Each component that spans two ports provides a particular 
kind of power transformation depending on the device relation, D{ that relates the the input 
and output ports of the component. The design specification does not explicitly provide 
information on the kind of transformation required by specifying the overall A required 
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PMR^PEM ~~ PMT PNflr~" PHY~~ PMT        "MR-" PTfT~" PMT 

W        %M PMT PMT 

Figure 12: Elaboration tree 

between the input and output ports of the required device. This information is implicit in 
the parameter trajectory specifications provided as part of the design specifications. The 
elaboration procedure proposes possible combinations of component device relations that 
can meet the specifications. 

Elaboration is a heuristic procedure and has been used for case index generation in [10] . 
Given a directed graph for elaboration, the elaboration procedure splices the arcs between 
two nodes of the graph and introduces a new node. Elaboration of p4n —> pout generates 
Pin —* Pinter —► Pout- The energy domains of the input and output ports of a device are 
given by the design specification. The intermediate ports that are introduced can belong to 
one of five energy domains listed earlier. A new port is introduced between the output port 
and the penultimate port in the directed graph to ensure that only unique directed graphs 
are generated. Thus if energy-domains of the power ports were considered, introduction of 
a single intermediate port in a directed graph generates five new elaborated graphs. Thus 
the elaboration procedure creates a tree of "elaborations" where each node of the tree is 
a directed graph denoting a particular topology of power flow as shown in Figure 12. In 
the figure, the input energy domain is mechanical rotation and the output energy domain 
is mechanical translation. Each node of the tree has an additional port with respect to its 
parents. Each parent node has five children nodes though all five have not been shown due 
to space limitations. The directed-graph data structure at each node of the elaboration tree 
is called an Elaboration index. Each elaboration index at every node of the elaboration tree 
is equivalent to the elaboration index at the root of the tree. For example, a device that 
provides a power flow path from the electro-mechanical domain (EM) to rotary mechanical 
(MR) domain is physically equivalent to an assembly of two components that are connected 
in series, wherein the first one provides a power flow path from electro-mechanical domain 
(EM) to rotary mechanical (MR) domain and feeds into a component that provides a power 
flow path from rotary mechanical (MR) domain to rotary mechanical (MR) domain. Hence 
each elaboration index is a possible alternative for the element ki of the composite key to 
the case that meets the design specifications. 

Synthesis of two port devices involves connecting components in a certain topology to 
meet the input-output trajectory specifications. Elaboration generates all possible device 
topologies for a two-port device, that are comprised of only two-port devices, given the 
energy domains of its input and output ports.   To identify the components that span two 
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nodes in the device topology, we also need to know the device relation between the two 
ports. Each arc in the device topology can be described by a device relation from Table 
2. Thus if there are m arcs in an elaboration index and N device relations, there are Nm 

combinations of devices that have the same elaboration index. Each such combination of 
component device relations is a viable alternative value for element k2 of the composite case 
that satisfies design specifications. Since the overall device relation is not explicitly provided 
with the design specifications, we propose all possible combinations of component device 
relations as viable solutions. Thus each arc of a given elaboration index is instantiated with 
a device relation to generate a retrieval index. A retrieval index with n arcs is denoted by the 
n-tuple,(ci,....cn) where each c, is a 5-tuple (pin,Poutiein,eout,devi). pin and pout are literals 
that denote input port and output ports. ein and eout are one of the literals EM,MT,MR,HY,TH 
denoting the energy domains of pin and pout. devi denotes the serial number of the device 
relation from Table 2 that spans the ports pin and pout. 

A composite key of the type (kl,k2,*,*,*,*) can be generated for every arc of the 
retrieval index wherein kl denotes the energy domains of the two ports that are at either 
nodes of the arc and k2 denotes the device relation. Let arc i of the retrieval index retrieve m% 

cases from the case-base. Thus a retrieval index with n arcs will retrieve flLi mi combination 
of cases. Consider one combination of cases retrieved using a key-index of n-elements i.e. 
retrieving one case each for an elaboration index with specified device relations for its arcs. 
The combination is denoted as a list, {caseu ....,casen) wherein casti is the case schema. Each 
such combination of cases is called an assembly, A. The assembly, A, will be a singleton set 
when cases are retrieved for the elaboration index at the root of the elaboration tree. Each 
assembly that is composed has to be validated to ensure that meets the design requirements. 
In the following section, we provide a scheme to eliminate all invalid combinations of cases. 

3.2.    Case verification 

Once an assembly is obtained, we need to verify that the assembly can produce the requisite 
output parameter trajectories for given inputs. An assembly can fail if (1) the device relation 
of the overall assembly is invalid and (2) if the structural parameters of its component cases 
are invalid. The overall device relation of an assembly may be invalid when the device-relation 
for one of its components is invalid i.e. a wrong combination of component devices has been 
generated. Even if the combination of components can provide the requisite transformation 
between input and output, they might be invalid because of scaling errors due to erroneous 
combination of structural parameter values. We present a verification procedure to check 
whether a given combination of cases can transform the input parameter trajectories to the 
output parameter trajectories for a single time region. We motivate the procedure with 
a simple example of validating a single device (case). Assume that a device with device 
relation, Dx ,which is (e2 = &.ei,/2 = fi/k), has been retrieved. For the sake of clarity, we 
also assume that the retrieved case has the same input-output energy domains as required 
by the design specifications. The design specifications for the input and output parameter 
trajectories for the time region are as shown in Table 10.   The first column specifies the 
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Parameter Specification Relation 

Pspecf ((l,0,kl),+,(0 t-end)) y = m\.t + c\ 

Pspecf ((1,0, g),+,(0 t-end)) y = miJ + Ci 

Pspec°e
ut ((2,0,m),+,(0 t-end)) y = mi.Sin(t) + c2 

Pspecf1 ((l,c,0),+,(0 t-end)) y = raii + ci 

Table 10: An example specification 

effort and flow parameter at the input and output ports and the second column specifies 
the required the time history of the efforts and flows. The effort and flow trajectories in 
the specification at input and output ports are denoted as Pspecf,Pspecf,Pspecf* and 
Pspecf1. The third column lists the parameter relation required in the specification for 
illustration. Pspecf1 has a sinusoidal trajectory whereas Pspecf,Pspecf and Pspecft are 
linear in nature. kl,g,m and c denote numeric constants. (0,t-end) denotes the duration 

of each trajectory. 

Device relations are validated by symbolically solving a system of equations involving the 
parameter relations specifying the input and output parameter trajectories and the device 
relation equations. Given a device relation and the output parameter trajectories, the input 
parameter trajectories can be obtained by symbolically solving for the inputs. For example 
consider the relation y = kx wherein k is constant. Given that x = ft2 wherein / is constant 
and t is the independent variable, one can obtain y = kft2 by eliminating x. Alternatively 
given y = kft2 and y = kx, one can obtain i as a function of the independent variable t. 
Similarly, given the output parameter trajectory as a function of time, we can obtain the 
input parameter trajectory as a function of time from the device relation by symbolically 
eliminating the output parameter. Now if the device relation is to be valid, the input 
parameter trajectory obtained by elimination must match the input parameter trajectory of 
the design specification else the device relation is invalid. 

The output parameter relations Pspecf1 and Pspecf* and the device relation D1 are 
symbolically solved to obtain the input parameter relations Psolvf and Psolvf as functions 
of time. If the solved relations Psolvf and Psolvf match Pspecf and Pspecf , then the 
device relation is considered valid. Symbolically solving the output specification in Table 
10 and Di gives Psolvf = m*Sin(t)/k where k is the algebraic coefficient in the device 
relation and Psolvf = c*k. The specification Pspecf does not match the solved relation 
Psolvf since it is not a constant but a linear function of time. Pspecf does not match 
Psolvf since it is not a sinusoidal function. Hence Psolv and Pspec do not match and we 
can conclude that the the case retrieved is not a valid solution. 

For an assembly of n cases, where castx is connected to the input port and casen is 
connected to the output port, , we repeat the solve-match procedure starting from the output 
port and casen to obtain the output specifications for casen-X and proceed to obtain Psolv 
for the input port. We match Psolv with Pspec for the input port parameters. If they match 
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the combination of cases is considered a valid design that meets the design specifications. 

The above described validation scheme can be improved if we note the following: Pspec 
and Psolv might not match for two reasons, namely, (1) The two relations might be com- 
pletely different i.e. they are two different equations and (2) The two equations may have 
the same morphology but have different coefficients a and m,-.   Thus matching of Psolv 
and Pspec can be done at two levels, (1) where one matches only on the morphology of the 
relations neglecting the values of the coefficients and (2) where one considers the values of 
the coefficients too. Matching at level 1 is concerned only with the classes of device relations 
while at level 2 we are concerned with the structural parameter values. If matching at level 
1 fails then it means that combination of cases retrieved by the retrieval index will not result 
in a valid assembly that can would have the desired behavior. Further details of matching 
parameter relations are presented in Section 4. The elaborate-retrieve-solve cycle is repeated 
for each time region of the parameter trajectories. Assemblies (combination of cases) that 
can handle the complete trajectory are finally returned as viable solutions to the design 
specification.  In the following section we present the complete algorithm and illustrate it 
with solutions generated for the gate-drive system. 

3.3.    Synthesis algorithm 

The main steps of the synthesis procedure are as follows: 

1. The design specifications for the first time interval, Tu are chosen and an elaboration 
tree is created. The root index of the tree has the energy-domains as in the design 
specifications. 

2. Device relations are introduced in the elaboration index and retrieval is performed with 
the retrieval indices thus generated. Case retrieval returns all cases that match the 
given energy domains and device relation. 

3. For each case thus retrieved, case verification is performed by symbolically solving the 
device relation and output time histories for the input time-histories. Cases that are 
successfully verified are further checked for the values of their structural parameter 
values. 

4. Successful cases are returned as solutions for the first time interval and checked with 
the design specifications for the remaining time intervals. 

5. If no cases are obtained, the root index is further elaborated by adding a new port and 
thus a new component. Device relations are introduced for each arc of the elaboration 
index and cases are retrieved for the retrieval indices thus obtained. Cases are verified 
again by symbolic elimination for each of the time intervals. The procedure iterates 
until a successful solution is obtained or a predetermined level in the elaboration tree 
is reached. 
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We illustrate each of the above steps of the procedure with the synthesis of a device topology 
for the gate-drive system. 

3.4.    Synthesis of the gate drive system 

1. The design specifications for the gate-drive system are shown in Table 6. The effort and 
flow trajectories have been discretised into three regions and the synthesis procedure 
begins with the initial time region set to the opening half-cycle of the gate which is 
the first time-region. An elaboration tree has the root elaboration index PEM —► PMT 

is instantiated. 

2. Retrieval is performed with retrieval indices PEM —» PMT where each D; is a device 

relation from Table 2. A key, K, generated from the retrieval index PEM -^ PMT will 
be (EM-MT,D1,*,*,*,*). Case retrieval is performed with these indices. 

3. In the case-base implemented, there are no power devices that directly span this energy 
domain. Hence no cases are retrieved for any retrieval index for the elaboration index 
PEM —+ PMT- Hence further elaboration is required. 

4. Elaboration of the index PEM —* PMT generates five new indices. Elaboration in- 

dices PEM —* PEM —► PMT and PEM —*■ PMT —* PMT are not considered since a 
sub-index (PEM —* PMT) of that index has failed. Retrieval indices are generated 
for the elaboration index PEM —* PMR —* PMT- The combination of cases for the 
elaboration index PEM -» PMR —► PMT are listed in Table 11. The first column gives 
the device relations for each arc (from input to output) and the second column lists 
the corresponding devices. Table 12 lists the device relations in terms of the effort 

and flow relationships for convenience. The retrieval index PEM -$ PMR —^ PMT re- 
trieves the combination of cases (Induction-motor, Rack-pinion-mechanism). The 

retrieval index PEM -^ PMR —^ PMT retrieves the combination of cases (DC-motor, 

Rack-pinion-mechanism). The sub-index PMR —^ PMT retrieves a slider-crank mech- 

anism, scotch-yoke and sinusoidal cam mechanism. The sub-index PMR —^ PMT also 
retrieves a straight-line cam mechanism. 

5. Case verification is performed for each possible combination of cases shown in Table 
11. Consider the assembly consisting of the AC-motor and Rack-pinion mechanism. 
Solving t<i = k.ei,f2 = fi/k and the output specifications eout = 500 and fout = 0.1 
we obtain that the torque (effort) output of the AC-motor must be 500/& and the 
angular velocity (flow) output must be 0.1 * k. k is the tooth-ratio of the rack-pinion 
mechanism. Since cases are instantiated for structural parameters in the case-base, k 
will have a value and we assume a case with k= 20 has been retrieved. Hence the torque 
required is 25 Nm and the angular velocity 2 rad/sec. We solve e2 = k.fi.Sin(J:2),f2 = 
ei/k.S'in(J-2) for a motor with k = 5, to obtain that the input voltage to the motor 
must be 10Sin(16) and input current must be 5Cosec(16).   We compare this with 
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Device relations Cases 

£>3,£>i (DC-motor Rack-pinion),(DC-motor Straight-line-cam) 
(DC-motor Linear-screw-mechanism) 

D3iDs (DC-motor Slider-crank-mechanism),(DC-motor scotch-yoke) 
(DC-motor sinusoidal-cam) 

D9,Dt (AC-motor Rack-pinion),(AC-motor Straight-line-cam) 
(AC-motor Linear-screw-mechanism) 

D9,D5 (AC-motor Slider-crank-mechanism),(AC-motor scotch-yoke) 
(AC-motor sinusoidal-cam) 

Table 11: Cases retrieved for index PEM —► PMR —* PMT 

No Relations 

Dx e2 = k.euf2 = fi/k 
D3 C2 = k.fi,f2 = ei/fc 
D5 e2 = e1/(k.Sin(Jr

1)),f2 = h.k.Sin{T\) 
D9 e2 = k.fi.Sin(Jr

2)if2 = ei/LSinfä) 

Table 12: Device relations for cases in Table 11 

the design specifications and find that a constant, non-sinusoidal voltage is the input 
specification. Thus all combination of cases with an AC-motor will be rendered invalid. 

Consider the design DC-motor and Rack-pinion-mechanism. Considering the same 
rack-pinion mechanism as retrieved above, the torque output requirements for the 
motor is 25 Nm and the angular velocity is 2 rad/sec. We solve e2 = k.fi, /2 = ei/k for 
the DC-motor with k — 10, to obtain input voltage required is 20 volts and an input 
current of 2.5 amperes. The voltage and current parameter relations, obtained by 
solving, match the specifications since both are constant values. Voltages are constant 
and since the relation of electrical current as function of time is not specified, any 
relation is considered valid. Thus a DC-motor and Rack-pinion combination is a viable 
solution. Though the voltage relations match morphologically, their values are not 
equal. The synthesis algorithm considers the above combination as a failure and checks 
all different combinations of DC-motors and rack-pinion mechanisms that exist in the 
case-base till the correct combination is located. If no such combination exists in the 
case-base it fails and proceeds to try another retrieval index. We have not implemented 
procedures that hypothesize structural parameter values once a morphological match 
is obtained. 

A feasible solution is a DC-motor with motor constant k = 25 and a rack-pinion 
mechanism with a gear-ratio of 20. We note that an infinite number of combinations 
are possible parametrically. The algorithm retrieves only those that are available in 
the case-base.  The case base serves as a source of devices that have been physically 
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realized and work. Hence, retrieving devices from the case-base eliminates possible 
downstream failures due to manufacturing and eliminates searches for other parameter 
combinations. Other possible solutions for the opening half cycle are DC-motor and 
Straight-line-cam and the combination of DC-motor and Linear-screw-mechanism. 
Composition of device relations (D3,D5) fails to produce any solution because of the 
sinusoidal term in the device relation D5 and case verification results in failure. 

7. The feasible solutions are verified for each of the remaining two time regions. The 
search procedure terminates once solutions are found and case retrieval is not per- 

formed for the elaboration indices, PEM -* PTH —► PMT and PEM —► PHY -> PMT- 

Valid combination of devices as solutions for the gate drive system are the combi- 
nations: (DC-motor Rack-pinion),(DC-motor Straight-line-cam) and (DC-motor 
Linear-screw-mechanism). 

In the following sections, we analyze the complexity of the search and discuss heuristics that 
have been implemented to guide the search. 

3.5.    Complexity of the synthesis procedure 

Computational efficiencies for retrieval algorithms are primarily determined by the orga- 
nization of the case-base. The hierarchical classification and generation of indexing keys 
provides a near linear performance. The exploration of the design space is determined by 
the branching factor of the elaboration tree and the number of device relations that are 
defined. At a given level n of the elaboration tree,( level 0 is root,) there are n + 1 arcs. Let 
there be totally m possible device relations. Also if the case-base has N instances for each 
device relation, then the total number of designs that need to be explored at level n is at 
most (Nm)n+1 . The branching factor of the elaboration tree is five since we consider only 
five energy domains. Thus the total number of combinations of cases searched to a depth 
n is at most £"=o5'(-N'm)t"+1- Thus the search performed is affected both by the number of 
cases in the case-base and the number of device relations in Table 2. The domain heuris- 
tics described in the following guide the exploration of this very large space. The search 
efficiency can be improved as the system acquires more cases. The acquired assemblies can 
be directly retrieved, thus reducing the number of combinations of individual components 
explored. For example, if assemblies of motors and gears were represented as cases in the 
system, the elaboration index PEM —*■ PMR will retrieve not only motors but also motor-gear 
assemblies that were generated by the elaboration index PEM —► PMR —* PMR thus reducing 
search. The synthesis procedure can also be improved by caching often used components 
and assemblies and thus speeding up the retrieval process. 
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4.    Domain heuristics for elaboration and matching 

The algorithm presented in the previous section uses a variety of heuristics to focus the search 
for cases. Domain heuristics that capture knowledge regarding device relations, nature of 
inputs and outputs and device topologies are used to guide the search to find solutions 
efficiently. In the worst case, the elaboration tree search is exponential in nature. In the 
following subsections, we present heuristics that guide elaboration, retrieval and matching 
in the synthesis algorithm. 

4.1.    Elaboration and retrieval heuristics 

Elaboration indices in the elaboration tree are searched breadth-first to obtain the smallest 

number of combination of components in a design. An elaboration-index can fail to retrieve 
cases either when there are no devices that span the requisite energy domains or the combi- 

nation of devices that spans the required energy domains fails the case-verification procedure. 
With the exception of the root index, if no cases are retrieved for a particular elaboration in- 
dex (called Efaii) in the elaboration tree due to the first possible reason, further exploration 
of elaboration indices of which Efau is a sub-index is pruned. If no cases were retrieved for 
the elaboration index PMT ~* PMR —*■ PMR-, search will be aborted for the elaboration index 

PMT —»■ PMT —> PMR -> PMR -* PMR- 

An important stage in the search process is the choice of an elaboration index, a node in 
the elaboration tree for performing case retrieval. Elaboration indices whose intermediate 
ports have the same energy domains as the input or output ports are prefered to indices 
that have a variety of mixed energy domains. The reasoning behind this heuristic is that 
devices built from components belonging to same energy domains are easier to build, test 
and control. Thus an elaboration index PMT —* PMR —> PMR will be prefered to the index 

PMT -» PHY —>■ PMR- 

Case retrieval is based on the retrieval indices generated from an elaboration index. Re- 
trieval indices that have linear device relations between ports are prefered to retrieval indices 
with sinusoidal and other non-linear relations. Key indices with linear device relations are 
used to access the cases before other combinations of device relations. This is to ensure that 
simpler combinations of devices that are easier to control are generated before more complex 
combinations. 

4.2.    Heuristics for symbolic solving and matching parameter relations 

Symbolic solving of equations is a critical step in this synthesis procedure and is used as 
a mechanism for verifying the combination of cases. Solving and matching input-output 
effort and flow relations with time provides a robust mechanism for case verification. This 
verification scheme is robust in the sense that there are no ad hoc validation rules.   It is 
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considerably general to handle a large variety of functions of time as inputs and outputs 
to devices. The procedure also enables verification of parameter trajectories at both the 
morphological and parametric levels. 

Symbolic equation solving critically depends on the nature of the (1) device relations 
and (2) input-output parameter relations. In this section, we present the symbolic solving 
schemes for different types of device relations and parameter relations. Discussion of symbolic 
solving algorithms per se are beyond the scope of this paper *. The solving procedure also 
uses the following rules for verification of input and output parameter relations: 

• It is not possible for a device to have null input parameter relations and non-null output 
parameter relations. This captures the fact that without any input no outputs can be 

produced. 

• At either input or output port, if the effort parameter relation is null, then the flow 
parameter has to be null and vice versa. This is the constraint that to supply power 
to a system you need to have both effort and flow parameter as non-null entities. 

• By convention, both effort and flow parameter relations must belong to the same 
quadrant. This is to enforce the constraint that power is a scalar and is always positive. 

Symbolically solving for a parameter relation only gives information about the form of the 
parameter relation as a function of time. No information is provided regarding the quadrant 
of the parameter relation. The rule is that the quadrant of the input parameter relations is 
the same as the output parameter relations unless the device relation has a sinusoidal term 
involving an integral variable in it or the structural relation imposes a negative algebraic 
coefficient of the device relation. A sinusoidal term in the device relation can change the 
quadrant of the output only if the value of the integral variable is greater than an odd 
multiple of 7i\ For device relations involving non-sinusoidals, there is no effect of the integral 
variables in terms of relating input-output parameter relation quadrants. The length of 
the interval of discretisation obtained after solving is equal to the length of the interval of 
the input parameter relations. The symbolic solving scheme also performs the necessary 
integration required for device relations involving effort and flow integral terms. During 
symbolic solving, for each case, the procedure also checks if the input parameter relations to 
the device are valid since the valid relations are defined in the case schema. 

Matching solved relation, Psolv, and the design specification relation, Pspec is performed 
in two stages. Two parameter relations match if both their patterns are same i.e. they 
match morphologically. Since parameter relations are represented as trees, two patterns 
are considered to match if the nodes and leaves of the tree match each other. A match is 
obtained at the device relation level, if the numerical values at the leaves of the trees are 
considered as unconstrained constants and the literals at the leaves are of the same type 
i.e. effort or flow parameters. The literals at the nodes of the tree must exactly match each 

*We use Mathematica[22] as a back-end to the search mechanism to solve equations. 
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other since they are names of mathematical functions. Two relations match parametrically 
if the numerical values at the leaves of their tree representations are equal. 

5.    Discussion and concluding remarks 

The synthesis procedure has been implemented as part of the CADET system [10, 8]. This 
approach enhances the influence graph based synthesis scheme by providing a convenient 
scheme to link device structure and behavior. In this section, we discuss the advantages and 
limitations of this synthesis methdology. 

The features of the proposed device model and case representation are: 

t The bond graph based device model captures energy interactions between devices. The 
notion of entities such as components and assemblies are well-defined as also the notion 
of assembling two components i.e. connecting devices at their ports. This scheme is 
well-suited for reasoning about device dynamic behavior. 

• The device model provides for integrating both conceptual and parametric design in 
a coherent manner. Also the notion of device relations, structural relations and para- 
metric relations aid in modeling a wide variety of device behaviors both in terms of 
their input-output relation and effort-flow variations with time at the input and output 
ports. 

• From a case-based reasoning point of view, each case is a unique device which is 
an instantiation of a prototypical device defined by the device relation. The device 
representation provides the device and structural relations as a set of discriminatory 
indices for retrieving cases. The representation also provides for a convenient scheme 
for classifying design cases from the dynamic behavior perspective. 

The synthesis algorithm has some limitations. At present, transient behavior of devices 
is not addressed. The device models capture ideal energy behaviors. Also only steady-state 
dynamic behavior of devices has been considered. In the proposed model, spatial orientation 
of components has not been represented and hence configuration design tasks are not sup- 
ported. Also the device models do not enable reasoning about geometry and form. Device 
topologies are considered to be open-loop wherein there are no energy or signal feedback loops 
from components downstream of the power-flow path to components upstream. Closed-loop 
systems involve signal feedback from components downstream to components upstream. The 
synthesis algorithm generates only open-loop systems. Though the synthesis procedure can 
identify the open-loop components in a closed-loop system, it cannot identify and retrieve 
signal components that are used to sense and transmit signals. Thus in solutions to the 
gate-drive system, the algorithm cannot completely generate designs 3 and 4 in Figure 2. 
Future work aims to extend the capability of the algorithm to identify closed-loop compo- 
nents.  Extension to multiple-input multiple output power systems is possible by allowing 
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Power distribution Power confluence 
junction junction 

Figure 13: Junction structures in elaboration 

for introduction of junctions by the elaboration procedure. Junction structures as those 
shown in Figure 13 can be introduced to allow for multiple power flow paths. A distribution 
junction provides for power distribution and a confluent junction for power accumulation. 

We have described a CBR-based algorithm for synthesis of single-input single output 
power drive devices based on bond graph device models. The algorithm combines both 
conceptual and parametric design tasks. The synthesis algorithm uses design information 
regarding both device topology and device behavior. Future research aims to extend the 
synthesis procedure for multiple input and output power drive systems and also consider 
components that exhibit energy storage and dissipation behaviors. 
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