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ABSTRACT 

It is appealing to imagine software packages that provide personally tailored product 

recommendations to a consumer. One way to predict the rating of a particular product 

by a particular consumer is through inference from a database of previous ratings by 

many consumers of many products. Such a database consists of triplets of the form: 

(product-identifier, consumer-identifier, rating) 

Generally such databases will be sparse, but nevertheless we may hope to derive consid- 

erable predictive information from them. A number of groups have begun developing 

distributed systems to collect and predict consumer preferences. Some have put sig- 

nificant effort into implementation issues to do with user interfaces, and the gathering 

and communicating of data via Internet and Usenet. Rather than launching into the 

development of a distributed systhem to address a particular consumer preference do- 

main, our goal is to first understand the computational and statistical nature of the 

general problem. In this paper we develop two new algorithms for this purpose and also 

relate them to a nearest-neighbor based algorithm of [Resnick et al., 1994]. We then 

examine their predictive perfomance and quality of recommendations on a number of 

synthetic and real-world databases. The real-world results suggest that a significant 

improvement can be obtained over simply recommending the most popular product in 

some but not all domains. At the end of the paper we discuss computational expense 

on large databases, the use of explicit features, and our ideas for improved inference 

algorithms. 



1    Introduction 

The ability to predict consumer preferences would be of great benefit in a wide 

variety of domains. Such a tool could be used to help consumers select which 

video to rent, which book to read, which restaurant to eat at, or which Usenet 

articles to sample. Recommendations could be tailored to the individual con- 

cerned, based on their own past preferences and the wider database of other 

consumers' preferences. In this paper we describe and compare three memory- 

based learning algorithms to make such predictions. We present results both 

for synthetic data and real data sets, including a database with a total of over 

eighty thousand movie ratings. 

Our algorithms are based on the hypothesis that there are a set of hidden 

features that determine people's ratings of various products. Given a database 

of known consumer ratings, we can try to infer the underlying features directly 

or indirectly. Assume there are Np products, each identified by an integer 

i G {l,...,Np}; Nc consumers, each identified by an integer j € {l,...,Ne}; 

and a partial set of known ratings, Rjj, where R,j is the rating of product i by 

consumer j. Such a database has an unconventional form from the perspective 

of traditional regression and machine learning approaches, which usually map a 

set of features onto outputs. 

The paper discusses three algorithms for learning in such domains. The 

first algorithm, linfeat, uses the direct approach to prediction. It makes the 

assumption that consumer preferences are determined by a linear relationship:- 

n 

Rij = ^2 Pi,qCjiq + i.i.d. noise (1) 
9=1 

where n is the number of hidden features, Pi<q is the gth feature of the ith prod- 

uct, and Cjrq is the gth feature of the jih consumer. Thus a consumer's rating of 

a product is a weighted sum of that product's features, with the weights being 

the model of that consumer's underlying preferences. As a matrix equation, 

R = PCT + noise. The linfeat algorithm finds the best fit for the two feature 

matrices, C and P. These can then be used to predict any unknown ratings. 



Our second and third algorithms use an indirect approach and do not assume 

a linear model. The second algorithm is very similar to the methods described 

in [Resnick et al., 1994, Shardanand and Maes, 1995]. These indirect approaches 

look for individuals whose past ratings have been in close agreement, and then 

assume that these individuals will agree on future ratings. Given a large enough 

pool of people, it seems reasonable to expect that for any individual you will be 

able to find other people whose opinions are similar. One theoretical drawback 

is that once a group of like-minded individuals have all sampled every product 

that any of them liked, it is unclear which products to try next. One theoretical 

advantage of these methods is that they make very few assumptions about the 

underlying model. 

Next we describe our general approach, followed by descriptions of the al- 

gorithms we have currently tested, before progressing to empirical results. We 

then suggest how this initial work could be extended, and discuss related work. 

2    Our Approach 

A number of groups have begun developing distributed systems to collect and 

predict consumer preferences, including [Shardanand and Maes, 1995] for the 

music domain, [Resnick et al., 1994] and [Lang, 1994] for the Usenet domain, 

and [Hill, 1994] for the video domain. Some of these groups have put significant 

effort into implementation issues to do with user interfaces, and the gathering 

and communicating of data via Internet and Usenet. 

The ability to analyze and predict consumer preferences will be increasingly 

valuable in coming years. Potential applications include video-on-demand, TV 

remote controllers with a trainable "channel-I'll-want-to-watch" button, market- 

ing, book recommendations, and restaurant selection. Rather than launching 

into the development of a distributed system to address a particular consumer 

preference domain, our goal is to first understand the computational and statis- 

tical nature of the general problem. We are working to answer questions such 

as: 



• How accurate can we hope to be for general predictions on real world data? 

Our initial results-and those reported in [Shardanand and Maes, 1995]— 

offer perhaps a twenty percent improvement over the naive algorithm that 

merely looks at the average popularity of products. We hope and expect 

that further improvement is possible. If not, it is important to be fully 

aware of the limitations of the data. 

• Can we give more reliable predictions for some products? Even if learning 

algorithms are unable to produce accurate general predictions, they may 

be able to give highly reliable predictions for a subset of products. It 

would be especially advantageous if the algorithms could automatically 

provide statistical bounds on the accuracy of individual predictions. 

• To what extent does the use of explicit features change performance? 

Incorporating a small number of explicit features, such as the genre of 

a movie, might be sufficient to increase performance notably. 

• How many ratings do we need from consumers? Which ratings help most? 

It should be harder to predict the preferences of a consumer who has only 

rated a few products. We would like to know how performance changes 

with the number of ratings from a user. We would also like to know 

which products' ratings would most improve our model, so that we can 

recommend the best experiments. 

To begin answering these and other questions, we decided to test the statis- 

tical performance of a variety of algorithms on pre-existing databases. 

3    The Algorithms 

3.1    Common assumptions 

In each of the algorithms we begin with the hypothesis that consumers' prefer- 

ences depend on the values of certain product features. These features can be 

10 



such things as whether a music album is jazz or country, or whether the main 

conflict in a movie is resolved by violence. 

The underlying features are never given to us explicitly (see Section 5 for 

possible extensions to this work where some features are given explicitly). In- 

stead the algorithms use a database that contains simple numerical ratings: 

consumer j tried product i and gave it a rating of Rij. The database is incom- 

plete: not every consumer has already rated every product. Our goal is to learn 

a model of people's preferences. If we achieve this, we can predict the miss- 

ing ratings. These predictions could then be used to give individually tailored 

advice to people—recommending products they are predicted to like, warning 

them of products they are predicted to hate. 

3.2    The linfeat algorithm 

The linfeat algorithm makes the assumption that consumers' preferences are 

determined by a linear model, where a consumer's rating of a product is a 

weighted linear sum ofthat product's features. As given above:- 

n 

Rij = ^2 Pi,qCj<q + i.i.d. noise (2) 

where i?,j is the rating of product i by consumer j, P is the product feature 

matrix, C is the consumer feature matrix, and n is the number of features. 

Given the number of features to use, n, and a partial set of known ratings, 

Rij, the linfeat algorithm finds the best fit for the feature matrices, C and P. 

This involves finding a minimum of the sum-squared-error on the training set 

u^e'Training set \ i=1 ' 

and as such gives a maximum likelihood estimator of the hidden features subject 

to the i.i.d. gaussian noise assumption. 

The algorithm proceeds by iteratively refining its estimates of C and P using 

singular value decomposition. We now explain one step in this procedure. Sup- 

pose we are trying to find a new estimate for P given our current estimate of C. 

11 



Consider product k. Assume it has been rated by a subset consisting of m con- 

sumers. Denote the identifiers of those consumers who have rated product k as 

V1J2 ■ ■ Jm}- The ratings they gave are, respectively, {Rkjk,RkJk,. ..Rkj^}. 

We wish to solve for the product features Pk,i,Pk,2- ■ -Pk,n, where n is the 

number of features, using the equations 

Rk,j*     ~     Pk<lCJl ,1 + ^.2Cj*,2 + • • • + Pk,nCjkn 

R*,Ji     ~     Pfc.lCj2M + Pl>aCi*,2 + ■■■ + Pk,nCj*,n 

-^fc..7m      =     -^.i^im.1 "*" ^V2^'*,.2 + • • • + Pk,nCjk^n 

This is a system of m linear equations in n unknowns. Typically, we expect 

the number of consumers m who have rated a product to be far greater than 

the number of features n. In general there will be no exact solutions to these 

equations, but we can use singular value decomposition to yield the least squares 

solution for Ft,!, Pfc,2 • • • Pk,n- 

We do this for each product k € {1,2,..., Np} in the database in turn, and 

amalgamate the results to yield the product feature matrix, P. 

A similar procedure is used to derive a new estimate of C given the current 

estimate of P. The algorithm as a whole is summarized next. For further details 

see appendix A. 

1 Initialize the feature matrix, C. The algorithm should not be sensitive to 

the initial values (we set them pseudo-randomly in the range [0,1] with 

the first column values explicitly set to 1). 

2 Set quit   := FALSE. 

3 Loop until quit = TRUE: 

3.1 Given the known ratings, R, and the current value for C, use sin- 

gular value decomposition to find the best fit for the matrix F. 

12 



3.2 Given the known ratings, R, and the current value for P, use sin- 

gular value decomposition to find the best fit for the matrix C. 

3.3 If and only if C and P have converged, set quit := TRUE. Con- 

vergence could be determined in several ways. Currently we stop 

when the RMS discrepancy between the known ratings and the val- 

ues predicted for those ratings by C and P changes by less than a 

small value, epsilon, between one iteration and the next. 

4 Return the final estimates of C and P, and use them to make any requested 

predictions. 

The algorithm converges very quickly because of the huge jumps provided 

in feature-space by the alternate steps of maximizing the likelihood of P then 

C. 

3.3    The nearest neighbor based algorithm 

In the nearest neighbor based algorithm we assume that there are groups of 

individuals with similar tastes. These tastes may be complex functions of many 

product features, but we do not attempt to solve for the features directly. In- 

stead when we wish to predict an individual's rating of a product, we look for 

other people whose past ratings are in good agreement with this individual's 

ratings. We call these people the individual's nearest neighbors. Our prediction 

is then just a weighted sum of the means-adjusted nearest neighbor ratings for 

the product concerned. This algorithm is very similar to the methods described 

in [Resnick et al., 1994, Shardanand and Maes, 1995]. 

We would expect prediction accuracy to improve significantly as the number 

of consumers in the database increases (and thus the probability of finding 

people with similar tastes likewise increases). 

We now summarize the algorithm to predict consumer j's rating of product 

k. 

1 Let {Ji,J2 ■ ■ -Jm) be the set of other consumers who have (a) rated prod- 

uct Ar and (b) rated at least MIN-COMMON products that consumer j 
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has rated. 

2 For each j'ettf,#....;*}: 

2.1 Let common(j,j') be the set of products that have been rated both 

by j and by /. 

2.2 Compute fij and cr| respectively as the sample mean and variance 

of the ratings of consumer j over all the products in common(j,j'). 

Define \iy and <r?, similarly. 

2.3 Compute the Pearson correlation coefficient between the common 

ratings of consumers j and f: 

«'ecommon(jj') y^i^j' 

4 Provided {j*, j* ... J™} has at least one member (i.e. m > 0) , return the 

prediction: 

]T]        (weight^-) (/zi?i- + (Rkj'-fij'j))) 

prediction = —        (o) 
2^ weight(pJJ/) 

where 

weight(x)={eXp(K2l°SW)    if*>0 (6) 
[0.0 ifa;<0 

and K2 is a positive number, and ßjji is the mean value of j's ratings 

over those products that both j and f have rated. 

5 If {j'i, j-2 . ■ • jm } has no members at all, return the average of all j's ratings. 

See appendix B for further details. 

Note that while the nearest neighbor algorithm may perform adequately on 

many real datasets, it contains a theoretical weakness. We judge the closeness of 

two people by the correlation between their ratings, and then make predictions 

biased toward the ratings of a consumer's nearest neighbors. Yet in theory two 
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consumers' ratings may be perfectly correlated even if their ratings are wildly 

different. For instance, one consumer might always give a rating precisely fifty 

times greater than another individual, yielding a correlation coefficient of 1.0 

but producing a very unhelpful contribution toward the prediction. Our next 

algorithm addresses this problem. 

3.4    The regression-based algorithm 

This algorithm is closely related to the nearest neighbor based method. It 

arises from the observation that the nearest neighbor method can sometimes 

make poor predictions even when individuals' ratings are highly correlated. 

Given two individuals, the regression-based algorithm solves for the best-fit 

linear relationship between the two consumers' ratings. We can then directly 

predict the value of one consumer's ratings from the other consumer's ratings, 

and use this direct estimate in our weighted sum. 

As before, define common(i,j') as the set of products rated by both j and 

/. We will model the relation between the ratings of j and / by a line passing 

through the centroid of their common ratings at angle OJJI to the horizontal, as 

in Figure 1. 

'2J - 

Figure 1: A simple exam- 

ple in which users j and 

j' share four ratings. The 

diagram shows the rat- 

ings on a 2-d plane. A 

line through the centroid 

(the square) is placed at 

an angle OJJI to minimize 

the sum of squared per- 

pendicular errors. 

The least squares fit (in a perpendicular errors sense) of the line has, as its 
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direction, the principal component of the ratings data. It can be verified that 

z2          (Ri,j - ft,i') (Ri,j' - N'j) 

tan(2öW/) = 2 — j- —— -r-       (7) 

i6Common(jj') 

where ßjj' is the sample mean of j's ratings of the products in common(j,j'), 

and fijij is the sample mean of j"s ratings of the products in common(j, j'). 

To predict Rkj, the rating of product k by consumer j, interpolation from 

our linear model gives: 

. . .. Rk j' ~ Hj'J /0\ 
prediction using consumer j  = fijji H —  (o) 

tclll V j jl 

Thus, to predict j's rating of product k, the regression-based algorithm is 

identical to the nearest neighbor algorithm, except for step 4 which now has1: 

E    ■«WO(»+T!^') 
prediction =  =  l»J 

2^ weight(| pjj, |) 

To prevent ridiculous predictions, we clip our predictions to lie within the mini- 

mum and maximum marks in the known ratings. In the pathological case where 

ta,n(0jji) = 0.0 we return the average of all j's ratings as our prediction. 

Note that the regression-based algorithm can make equally good use of strong 

negative correlations as it can of strong positive correlations. 

4    The Experiments 

4.1    Test methodology and baseline comparisons 

We tested the three algorithms on a variety of datasets, ranging from synthetic 

datasets to a movie database with over eighty thousand movie ratings. To assess 

'Instead of weighting according to correlation, we could now weight according to sum- 

squared errors, or the width of the confidence interval on the estimate of 0. Future work will 

investigate this. 
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performance on a given dataset, we randomly split the data into a training set 

and a test set2. Each algorithm in turn is presented with the ratings in the 

training set (consumer j gave mark m to product i). Having seen the training 

data, the algorithm then predicts the values of each of the ratings that has been 

withheld in the test set. 

Each algorithm was run for a few values of its main parameter, and the re- 

sults shown here are for the best setting found. For linfeat we varied the number 

of features that it attempted to find. For the nearest neighbor and regression- 

based methods we varied the value of K2, the parameter that determines how 

much the weights should be biased toward highly correlated individuals. See 

Section 5 for a discussion of how cross-validation could be used to tune these 

parameters autonomously. 

In order to provide a baseline for comparison, we also ran the experiments 

using two very crude prediction methods. The first, globalav, predicts the same 

value for every single rating, that value being the mean of all the ratings in 

the training set. The second method, prodav, predicts the same value for every 

rating of a particular product, that value being the mean of all the ratings in 

the training set for that particular product. 

Clearly we would hope that our learning algorithms would outperform glob- 

alav and prodav. In addition, the difference between the errors for globalav 

and prodav gives us a rough feel for how much improvement we can hope to 

make. We would expect real world data for such things as movies to contain 

some products that are widely regarded as better than others. If this is so, then 

prodav should have lower errors than globalav. If not, or if prodav's errors are 

only slightly lower than globalav's, then our intuition about real world data may 

be incorrect—perhaps consumers' ratings are too inconsistent to be helpful in 

predicting their future likes and dislikes. 
2When doing the random split, we first ensure that each consumer and product has a few 

ratings in the training set (randomly selected from all their ratings). This prevents us having 

to predict ratings for a product that no one in the training set has sampled, or having to 

predict the opinions of a consumer who has no ratings in the training set. 
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Method Mean absolute 

error 

Method - Prodav 

(95% confidence interval) 

Method - Regression 

(95% confidence interval) 

Linfeat 0.26 [-0.191, -0.185]                J [-0.029, -0.026]             y 

Nearest Neigh. 0.29 [-0.164, -0.159]               y [-0.0017,0.0005]          NS 

Regression 0.29 [-0.164, -0.158]               ^/ (same) 

Prodav 0.45 (same) [0.158,0.164]             X 

Globalav 0.62 [0.166,0.174]               X [0.327,0.335]             X 

Table 1: Synthetic 1: 3213 ratings; training set density = 75%; 50 splits 

4.2    Linear model synthetic datasets. 

First we present the results for synthetic data generated in accordance with a 

linear model: n 

RiJ = 2J Pi,qCj,q + Eij (10) 
9=1 

where Rij is the rating of product i by consumer j, n is the true number of 

features, Eij is a gaussian error term. 

This is the same model that the linfeat algorithm assumes, and so we expect 

linfeat to perform well. Table 1 shows the results for a dataset of 51 products 

and 63 consumers, generated using three features and gaussian noise with a = 

0.3; the true ratings range from -2.0 to +2.0. As expected linfeat performs 

best, with a mean absolute prediction error of 0.26 (this is the mean averaged 

over the predictions for every withheld rating in each of fifty random splittings 

of the source data into a test set and a training set). The nearest neighbor 

and regression methods perform nearly as well, both giving a mean absolute 

prediction error of 0.29. Prodav performs markedly worse, and globalav lags 

behind all the others. 

Note that the results also list 95% confidence intervals on the difference 

in performance between each method and prodav, and between each method 

and the regression algorithm. For clarity, we have added a tick if the method 

is better at the 95% confidence level, a cross if it is inferior, and NS if the 

performance difference is insignificant. Thus on this dataset we were unable 

to reliably distinguish which of nearest neighbor and regression performs best. 
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Method Mean absolute 

error 

Method - Prodav 

(95% confidence interval) 

Method - Regression 

(95% confidence interval) 

Linfeat 0.17 [-0.309, -0.304]               y [-0.036, -0.034]              y 

Nearest Neigh. 0.20 [-0.271,-0.267]               y [0.0027,0.0034]              X 

Regression 0.20 [-0.274, -0.270]               y (same) 

Prodav 0.47 (same) [0.270,0.274]              X 

Globalav 0.66 [0.185, 0.190]                X [0.457,0.461]              X 

Table 2: Synthetic 2: 15000 ratings; training set density = 75%; 25 splits 

But we can see that linfeat, nearest neighbor, and regression are all significantly 

better than prodav. 

Table 2 shows the results for a dataset of 150 products and 100 consumers, 

generated using four features and with gaussian noise of a — 0.2; the true ratings 

range from -3.2 to +2.7. As before linfeat performs best, closely followed by 

nearest neighbor and regression. 

So far we have assessed performance by the mean absolute errors over the test 

sets. Other measures might be more appropriate in some domains. For instance 

in a commercial application we might only need to reliably recommend a few 

products that someone will enjoy. This may be easier than making arbitrary 

predictions. Suppose that for each consumer we want to predict the test-set 

product they will most enjoy. We can compare the products that our methods 

predict with the true preferred product. We define the regret to be the difference 

between the ratings of the recommended product and the true optimal test-set 

product. 

For each algorithm, we predicted the products that each consumer would 

most enjoy. Table 3 shows the resulting mean regrets, together with confidence 

intervals on the differing regrets between methods. The results are averaged 

over all the consumers in each of twenty-five test-sets for the same synthetic 

data as in Table 2. Once again linfeat does best, with a mean regret of just 

0.07, and again nearest neighbor and regression perform nearly as well. But 

this time the disparity between these three methods and prodav and globalav 

has been magnified. Prodav's mean regret is 0.72, over ten times that of linfeat, 
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Method Mean regret Reg/Method - Reg/Prodav 

(95% confidence interval) 

Reg/Method - Reg/Regression 

(95% confidence interval) 

Linfeat 0.07 [-0.67, -0.62]                       J [-0.03, -0.02]                          y 

Nearest Neigh. 0.09 [-0.65, -0.60]                       y [-0.003,0.002]                        NS 

Regression 0.09 [-0.65, -0.60]                       y (same) 

Prodav 0.72 (same) [0.60,0.65]                          X 

Globalav 1.60 [0.84,0.94]                       X [1.47, 1.55]                          X 

Table 3: Synthetic 2: 15000 ratings; training set density = 75%; 25 splits 

and globalav's mean regret is 1.60. (Globalav's predictions are the same for 

every product, so when asked to make a recommendation it just picks a random 

product.) The results for linfeat, nearest neighbor, and regression demonstrate 

that a good model of the data can lead to excellent recommendations. 

The experiments on synthetic data show how the algorithms can perform in 

theory. If real data followed this type of linear model, linfeat would be ideal. 

In addition to producing the most accurate predictions, it was also the fastest 

algorithm. In the following two sections we show how the algorithms performed 

on real data, firstly on sets of up to four thousand Star Trek episode ratings, 

and then on databases of up to eighty thousand movie ratings. 

4.3    Star Trek Episode Poll Data 

We now present results based on people's ratings of Star Trek: The Next Gen- 

eration and Star Trek: Deep Space Nine television episodes. The source data is 

collected by Joe Reiss, who solicits votes from readers of the Star Trek Usenet 

groups. We looked at the performance on two subsets of the raw data, the first 

a relatively small subset selected to have a high density of ratings. This sub- 

set contains 1055 votes from thirty-six people on thirty-three episodes, which 

is 88.8% of the maximum possible number of ratings for this size group. The 

ratings were normalized to lie in the range [0,10]. Table 4 shows the results. 

On this subset of the data, the regression algorithm has the lowest mean 

error of 0.95, followed by nearest neighbor and linfeat. Prodav has a mean error 

of 1.10 (about 15% higher than regression). As expected, globalav does worst 
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Method Mean absolute 

error 

Method - Prodav 

(95% confidence interval) 

Method - Regression 

(95% confidence interval) 

Linfeat 1.03 [-0.07, -0.05]                   y [0.07,0.10]                      X 

Nearest Neigh. 1.00 [-0.11,-0.09]                   J [0.04,0.06]                      X 

Regression 0.95 [-0.16, -0.14]                   ^ (same) 

Prodav 1.10 (same) [0.14, 0.16]                        X 

Globalav 1.38 [0.27,0.29]                    X [0.41,0.44]                       X 

Table 4: Star Trek 1: 1055 ratings; training set density = 67%; 50 splits 

Method Mean absolute 

error 

Method - Prodav 

(95% confidence interval) 

Method - Regression 

(95% confidence interval) 

Linfeat 1.10 [-0.12, -0.10]                   y [0.01,0.03]                  X 

Nearest Neigh. 1.09 [-0.13, -0.11]                   ^ [0.002,0.016]                  X 

Regression 1.09 [-0.14, -0.12]                   ^ (same) 

Prodav 1.21 (same) [0.12,0.14]                  X 

Globalav 1.47 [0.25,0.27]                    X [0.37,0.40]                  X 

Table 5: Star Trek 2: 4109 ratings; training set density = 23%; 25 splits 

with a mean error of 1.38. 

Table 5 shows the results for a larger group: 4109 ratings from 141 people 

on 94 episodes (31% of the maximum possible number of ratings). This time 

the mean errors for linfeat, nearest neighbor, and regression are all very similar 

at 1.09 to 1.10. Prodav's error is about 10% greater at 1.21, and globalav has 

a mean error of 1.47. 

These results show that linfeat, nearest neighbor, and regression all out- 

perform the simple prodav method on at least some types of real world data. 

Nonetheless the improvement over prodav is lower than we might have initially 

expected. Moreover the performance difference between prodav and globalav 

is also lower than we might have anticipated. Globalav predicts a constant 

value for every single rating, and yet its mean error is only 21% to 25% higher 

than prodav's, which predicts the average of the known ratings for the episode 

concerned. 

Each week people send in their votes on the latest Star Trek episode to add 
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Method Mean regret Reg/Method - Reg/Prodav 

(95% confidence interval) 

Reg/Method - Reg/Regression 

(95% confidence interval) 

Linfeat 0.59 [-0.02,0.04]                   NS [-0.07,0.02]                       NS 

Nearest Neigh. 0.58 [-0.03,0.02]                   NS [-0.07, -0.02]                         y 

Regression 0.62 [0.005,0.071]                      X (same) 

Prodav 0.58 (same) [-0.071,-0.005]                         y 

Globalav 1.67 [1.02, 1.17]                      X [0.97, 1.14]                         X 

Table 6: Star Trek 2: 4109 ratings; training set density = 23%; 25 splits 

to the database. Perhaps consumers' votes are inherently noisy, reflecting their 

own mood as much as an episode's quality (though note that the algorithms 

performed well on synthetic datasets in the presence of appreciable noise). Or 

perhaps some consumers' average marks drift over time as they become more 

or less generous, without this trend matching any underlying change in the 

episodes. Or perhaps there is information in the data that these algorithms fail 

to exploit. 

As with the synthetic datasets, we also looked at the regrets for the Star Trek 

data (the regret is the difference between the rating of the test-set episode that 

a method predicts a consumer will most enjoy and the true optimum). Table 6 

shows the regrets for the larger Star Trek subset. While globalav now does 

much worse than the other methods, the other four algorithms all perform very 

similarly. The mean regret for these four algorithms is substantially lower than 

their average prediction error: they are better at recommending a single episode 

that an individual will like than they are at predicting that individual's general 

tastes. It is interesting that prodav's regret is as low as any other method's. 

This implies that there is a strong popular consensus on the best episodes. In 

order to recommend which episode someone will most enjoy, we only need to 

recommend the episode with the highest average rating. 

In another experiment, not described here, we preprocessed the Star Trek 

ratings, replacing each consumer's raw ratings by their normalized ranked val- 

ues. The results were similar to those shown here. 

There are many potential application domains for consumer preference pre- 
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Method Mean absolute 

error 

Method - Prodav 

(95% confidence interval) 

Method - Regression 

(95% confidence interval) 

Linfeat 1.08 [-0.199,-0.191]               y [0.017,0.023]                 X 

Nearest Neigh. 1.06 [-0.218, -0.213]                y [-0.002, 0.002]               NS 

Regression 1.06 [-0.218, -0.213]               y (same) 

Prodav 1.27 (same) [0.213,0.218]                 X 

Globalav 1.50 [0.231, 0.234]                X [0.446, 0.451]                 X 

Table 7: Movies 1: 56743 ratings; training set density = 42%; 25 splits 

diction, ranging from a computer that suggests which video to rent, to an intel- 

ligent newsreader that recommends which Usenet articles to browse. In many 

of these domains we would expect a larger pool of ratings. In the next section 

we look at results based on sets of up to eighty thousand movie ratings. 

4.4    Movie Ratings Data 

In this section we show the results of applying our algorithms on a database 

of movie ratings compiled by Col Needham from an ongoing poll of Usenet 

readers. Almost ten thousand people have sent in their votes, and the full 

database contains more than fourteen thousand movies and over three hundred 

thousand ratings. Each rating is an integer between one and ten. 

We first tested our algorithms on a relatively dense subset of this source data: 

a group of 262 people and 390 movies selected so that no consumer had rated 

fewer than a hundred of the movies, and no movie had fewer than a hundred 

votes. Table 7 shows the results for the mean absolute prediction errors over the 

whole test set. Table 8 shows the results for the mean regret when recommending 

the movie someone will most enjoy. We see that linfeat, nearest neighbor and 

regression all perform very similarly, except that linfeat's regrets are about eight 

percent higher than the other two methods'. All three methods do significantly 

better than prodav, whose predictive errors and regrets are both about twenty 

percent higher than for either nearest neighbor or regression. Globalav, as 

expected, comes a poor fifth. 

As with the Star Trek data, it is perhaps surprising that globalav's predic- 
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Method Mean regret Reg/Method - Reg/Prodav 

(95% confidence interval) 

Reg/Method - Reg/Regression 

(95% confidence interval) 

Linfeat 1.23 [-0.19,     -0.10]                                                                                            y/ [0.05,0.13]                              X 

Nearest Neigh. 1.15 [-0.26, -0.20]                      y [-0.01,0.03]                            NS 

Regression 1.14 [-0.26, -0.21]                       y (same) 

Prodav 1.38 (same) [0.21,0.26]                              X 

Globalav 3.06 [1.63, 1.73]                       X [1.86, 1.97]                              X 

Table 8: Movies 1: 56743 ratings; training set density = 42%; 25 splits 

tion error isn't still greater. Despite predicting the same mark every single time, 

globalav's mean prediction error is only 18% higher than prodav's. Either the 

data is noisier than we might have hoped, or there is comparatively little con- 

sensus on the quality of films. Given that prodav only improves over globalav 

by eighteen percent, it is encouraging that the other three algorithms achieve a 

further twenty percent improvement on prodav. 

Figures 2 and 3 give the distribution of the absolute prediction errors for 

regression and prodav on this dataset. The histograms clearly show that prodav 

has a higher percentage of significant errors. 

Figures 4 to 5 give the distributions of the regrets on this dataset. Prodav 

has slightly fewer low regrets of value 0 and 1, and slightly more large regrets 

of value 6 or more. 

Tables 9 and 10 show the results on a second subset of the movie database. 

This time the subset was selected so that every consumer in the group had rated 

at least two hundred of the movies, but movies could have as few as thirty-four 

ratings. The total number of ratings in the set was 83305. The results are 

similar to those just discussed, except that this time linfeat's regret is further 

behind that of nearest neighbor and regression. 

We have now seen that our methods behave reasonably well on real world 

datasets selected to have a generous number of ratings for each product and 

each consumer. Tables 11 and 12 show some results of what happens when 

we relax these constraints. They are based on a subset of the movie database 

where some movies have just nine ratings, and where some people have only 

24 



Explaining the statistics for: REGRESSION 

•Abs. errors of the REGRESSI0N_PREDICTIONS data (column number 5) 

REGRESSION mean is 1.05606 

REGRESSION sdev is 0.929244 

REGRESSION 95% eonf. int. [ 1.05301 , 1.05912 ] 

REGRESSION min 0 , max 8.74593 , number points 354650 

Explaining the statistics for: PRODAV 

■Abs. errors of the PRODAV_RATINGS data (column number 7J* 

PRODAV mean is 1.27142 

PRODAV sdev is 1.05112 

PRODAV 95% conf. int. [ 1.2679G , 1.27488 ] 

PRODAV min 0 , max 7.68 , number points 354650 

Histogram Frequency 
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Figure 2: Absolute errors using regression Figure 3: Absolute errors using prodav 

Explaining the statistics for:  REGRESSION 
Regrets advising using REGRESSION_PREDICTIONS   (col.  number 5)■ 

REGRESSION mean  is  1.14155 
REGRESSION sdev  is  1.33259 
REGRESSION 95% conf.   int.   [   1.10927   ,   1.17382   ) 
REGRESSION mln 0  ,  max 9   ,   number points 6549 

Histogram Frequency 
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Explaining the statistics for: PRODAV 

•Regrets advising using PRODAV_RATINGS (col. number 7)" 

PRODAV mean is 1.37838 

PRODAV sdev is 1.5939 

PRODAV 95% conf. int. [ 1.33977 , 1.41698 ] 

PRODAV min 0 , max 9 , number points 6549 

Histogram Frequency 
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Figure 4: Regrets using regression Figure 5: Regrets using prodav 
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Method Mean absolute 

error 

Method - Prodav 

(95% confidence interval) 

Method - Regression 

(95% confidence interval) 

Linfeat 1.09 [-0.188, -0.179] V [0.025, 0.033]                  X 

Nearest Neigh. 1.07 [-0.211,-0.207] V [0.002,0.004]                  X 

Regression 1.07 [-0.214, -0.210] V (same) 

Prodav 1.28 (same) [0.210,0.214]                  X 

Globalav 1.52 [0.243, 0.248] X [0.454,0.460]                  X 

Table 9: Movies 2: 83305 ratings; training set density = 32%; 20 splits 

Method Mean regret Reg/Method - Reg/Prodav 

(95% confidence interval) 

Reg/Method - Reg/Regression 

(95% confidence interval) 

Linfeat 1.35 [-0.10, -0.01]                     y [0.12,0.21]                                X 

Nearest Neigh. 1.22 [-0.22, -0.14]                        y [0.01,0.07]                                X 

Regression 1.18 [-0.26, -0.18]                       y (same) 

Prodav 1.40 (same) [0.18,0.26]                                X 

Globalav 3.21 [1.74, 1.86]                       X [1.96, 2.09]                                X 

Table 10: Movies 2: 83305 ratings; training set density = 32%; 20 splits 

given eleven ratings. Linfeat, nearest neighbor, and regression still have lower 

mean prediction errors than prodav, but the margin has narrowed. 

Moreover these results show that prodav now has the lowest regrets of the 

five methods. This last result, however, is somewhat misleading. All the results 

on regrets were derived from the same runs used to find the mean prediction 

errors; hence they used the same parameter settings. In practice this is usually 

a close approximation to the minimal regrets. But with this particular dataset, 

Method Mean absolute 

error 

Method - Prodav 

(95% confidence interval) 

Method - Regression 

(95% confidence interval) 

Linfeat 1.31 [-0.05, -0.04]               y [0.05,0.06]                X 

Nearest Neigh. 1.23 [-0.123,-0.116]               y [-0.020, -0.016]               J 

Regression 1.25 [-0.11,-0.10]               y (same) 

Prodav 1.35 (same) [0.10,0.11]                X 

Globalav 1.53 [0.18,0.19]                 X [0.286, 0.294]                X 

Table 11: Movies 3: 20290 ratings; training set density = 9%; 30 splits 
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Method Mean regret Reg/Method - Reg/Prodav 

(95% confidence interval) 

Reg/Method - Reg/Regression 

(95% confidence interval) 

Linfeat 1.47 [0.14,0.20]                          X [-0.04,0.06]                           NS 

Nearest Neigh. 1.36 [0.02,0.10]                          X [-0.14, -0.06]                             y/ 

Regression 1.46 [0.11,0.20]                          X (same) 

Prodav 1.30 (same) [-0.20,-0.11]                             y 

Globalav 2.47 [1.12, 1.22]                          X [0.95, 1.07]                             X 

Table 12: Movies 3: 20290 ratings; training set density = 9%; 30 splits 

linfeat's regrets are substantially lower when it uses one feature than when it 

uses two (the number that minimized prediction error). Using one feature, 

linfeat's behavior mimics prodav and it obtains the same regret. 

So far we we have compared the accuracy of the various methods. In the 

next section we consider their computational expense. 

4.5    Computational Expense 

In this section we briefly compare the computational expense of the different 

methods. 

We ran our algorithms on a Sparc 5. Runtimes varied from under a second 

up to about twenty minutes for the slower algorithms on large datasets. For 

instance on the movie data used in Table 7 , which contained some fifty-seven 

thousand ratings, linfeat took 42 seconds to process the training set and generate 

predictions for every element in the test set. By comparison, nearest neighbor 

took seventeen minutes, and regression took twenty-one minutes. 

Linfeat is much faster than the nearest neighbor and regression methods. 

In a practical application it might well be worth trading off its slightly poorer 

predictions for its greatly increased speed. 

5    Possible Extensions 

There are various ways to extend this preliminary work. The following are a 

few of the more interesting possibilities. 
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5.1    Explicit features 

In some domains, it would be relatively simple to give certain explicit features 

in advance. For instance a video store may already have the genre of the videos 

stored on computer. The algorithms could then use both the known features 

and the known ratings to build a model of consumer preferences. 

In the case of the linfeat algorithm it is straightforward to see how explicit 

numerical features would be used: we simply add the appropriate number of 

columns to the product feature matrix, containing the explicit values of the 

known features for each product. Non-numerical features, such as the genre of 

a movie, could probably also be incorporated with a little work. 

In the case of the other two algorithms, it is less clear how to proceed. If 

we have a single explicit feature and it has a small number of possible values 

(such as the genre of a movie), then we could partition the database so that 

each genre is considered separately. To predict a consumer's rating of a comedy 

film, we search for other people who have had similar opinions of comedies, 

and use their ratings to make our prediction. This may well produce more 

accurate predictions, as people could have very similar tastes in comedies yet 

wildly differing opinions on westerns. 

Now suppose that we are given n explicit features each of which can take 

m values. There are nm sets of possible values for these features. If n and m 

are of any significant size, partitioning the database into each possible category 

will produce tiny subsets. Perhaps a sophisticated algorithm could be devised 

that would search for a small number of optimal partitions of the data based 

on the explicit features. Alternatively, we could adjust the correlation measure 

according to the explicit features. Thus when we are trying to make a prediction 

for a given product, k, we pay most attention to the ratings of those products 

whose explicit features are closest to fc's. It is more significant that consumers' 

opinions are closely correlated over products similar to k than over very different 

products. 

28 



5.2    Discussion 

Here we briefly discuss other ways to extend this work. 

• Other weight functions and improved regression. 

The nearest neighbor and regression methods both use a weighting func- 

tion to determine how much to bias ratings toward highly correlated in- 

dividuals. In our experiments we used the weight function given in sec- 

tion 3.3. 

The performance of the regression method is currently very similar to that 

of nearest neighbor. In the case of regression, however, we have a statistical 

tool readily available that may improve performance. A byproduct of a 

least squares prediction is a measure of the confidence in that prediction. 

We could use this measure as a statistically sound basis for weighting other 

people's ratings. 

We would also like to test other weight functions for both regression and 

nearest neighbor, such as using the fc-nearest neighbors. 

• Cross-validation as a higher level control. 

With our current implementation, for each new dataset one first has to 

tune the parameters for each algorithm. Using cross-validation ([Stone, 

1974], [Wahba and Wold, 1975], [Moore and Lee, 1994]) this process could 

be automated, and also extended to select such things as the best type 

of weight function. Ideally cross-validation would be presented with a 

dataset, and would go away and autonomously test the various algo- 

rithms, weight functions, parameter settings, and then return with the 

optimal tuned algorithm for that dataset. By using its own test set, cross- 

validation can optimize either for general prediction accuracy or for the 

expected regret. 

• Faster implementations. 

Both the nearest neighbor and regression methods are much slower than 

linfeat, with runtimes of twenty minutes or more to generate complete 
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test-set predictions on large datasets. We would like to speed up our im- 

plementations of these algorithms as much as possible. Possible directions 

here are branch and bound strategies, and the use of non-euclidean kd-tree 

structures, [Bentley, 1980]. 

• Non-numerical data. 

So far we have only applied our algorithms to numerical ratings and nu- 

merical features. It would be a simple extension to allow letter grades 

(A, B, C) or boolean ratings (liked/disliked). Similarly when extending 

our algorithms to allow explicit features as discussed in section 5.1, we 

would like to be able to handle features with a fixed number of categories 

(western, thriller, science fiction) as well as numerical features. 

• Proposing experiments. 

In a practical application of these algorithms, people may be willing to 

risk an occasional experiment in order to improve the average quality of 

the recommendations. We would like to be able to select the experiment 

that will best improve our model of the consumer's preferences. This links 

into the disciplines of experimental design, [Box and Draper, 1987], and 

active learning, [Cohn et al, 1995]. 

6    Related Work 

In [Shardanand and Maes, 1995] they describe a system called Ringo for mak- 

ing personalized recommendations of music albums and artists. The system 

has been running on Internet since July 1994, gathering ratings from users via 

email, and returning recommendations and predictions. They have tested four 

variants of nearest neighbor techniques. Although their results are drawn from 

a different domain, they appear to be very similar to those reported here, with 

mean prediction errors about twenty percent lower than the naive algorithm 

that uses the average popularity of products. 
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In the Usenet domain, [Resnick et ai, 1994] discuss the use of collaborative 

filters and describe a prototype system called GroupLens. They have given con- 

siderable thought to the architectural issues involved in integrating such filters 

into Usenet readers and communicating the article ratings from one Usenet site 

to another. They describe one nearest-neighbor prediction scheme, but to our 

knowledge have not yet published results on appreciable test sets. 

Lang is also investigating collaborative filtering of Usenet articles, and is 

developing a system called NewsWeeder, [Lang, 1994]. Unlike the above two 

projects, NewsWeeder looks at the content of the products concerned, processing 

the text in the Usenet articles. Lang began by trying to predict which newsgroup 

an article came from, and achieved up to 73% accuracy with a training set of 

articles drawn from twenty newsgroups. Lang is currently working to extend 

these results to predicting people's ratings of Usenet articles. 

Will Hill at Bellcore is working on a video recommendation service, [Hill, 

1994], and has an Internet site that receives ratings from people. But to our 

knowledge he has yet to publish results. 

7    Conclusions 

Practical tools to model consumer preferences would be of great benefit in a 

wide range of domains. With more and more electronic data available on which 

videos people rent, which Usenet articles they read, even which groceries they 

buy, it is appealing to use the information to aid people in future choices. 

Our goal is to gain a sound understanding of the computational and sta- 

tistical nature of this general problem. We wish to answer questions such as: 

"How accurate can we hope to be for predictions on real world data?" "Can 

we provide statistical confidence intervals on the reliability of our predictions?" 

"To what extent does the use of explicit features aid performance?" 

Note that it is entirely possible that user response would be enthusiastic 

even for simple schemes that only consider the average ratings of products. 

Such schemes already offer considerable improvement over random selection, 
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especially when recommending a few products that a user will enjoy. Unless 

a complex method can perform significantly better still, there may be little 

demand for it. 

In this report we gave some preliminary results on algorithms to analyze 

past ratings and predict future ratings. We showed that these algorithms can 

produce predictions that are about 20% more accurate than naive methods 

on large, real world databases. In future work we hope to devise increasingly 

accurate, increasingly autonomous tools to model consumer preferences. 

8    Appendix A: Linfeat Implementation Details 

We briefly mention three refinements to the basic algorithm presented in sec- 

tion 3.2. Firstly, from looking at Equation 2 we see that C and P are under- 

determined: if we were to multiply every element of C by gamma and divide 

every element of P by gamma, their product would have the same value. In 

an effort to keep the numerical values of a reasonable magnitude, we arbitrarily 

set the values in the first column of C to be 1.0. Secondly, we keep a record 

of any products or consumers that led to singularities during the most recent 

singular value decomposition. If there are any, then they are withheld from the 

next iterative step. This is intended to prevent deductions based on the most 

dubious values in the feature matrices. Thirdly, we clip our predictions to lie 

within the minimum and maximum marks in the known ratings; this is intended 

to prevent ridiculous predictions. 

On the large movie subsets, linfeat used five features to minimize the mean 

prediction errors. On the Star Trek data and the small movie subset, linfeat 

used two features to minimize the mean prediction errors. These values were 

optimized by means of cross-validation. 
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9    Appendix B: Nearest Neighbor Implementa- 

tion Details 

The weighting function determines how much the ratings are biased toward the 

consumers whose ratings are best correlated with j's. Many other weighting 

functions could be used. The particular weighting function given in section 3.3 

allows us to smoothly vary the precedence given to j's nearest neighbors. For 

K2 » 1, the weighting is only significant for very close neighbors. In the 

limit as K2 tends to zero, the prediction for product k is the average of all 

the ratings for k by positively correlated neighbors who have rated at least 

MIN-COMMON of the same products as j. On the Star Trek and movie 

ratings databases, the nearest neighbor mean prediction errors were minimized 

for values of K2 between 0.5 and 4.0. 

If we had used the identity function as the weighting function, weight(a;) = 

x, then this method would be essentially equivalent to the method mentioned 

in [Resnick et al., 1994] (see section 6). 

The restriction to consumers who have rated at least MIN-COMMON of 

the same products as j is a crude measure. It is intended to prevent us from 

basing predictions on individuals who have only seen a very few products in 

common with j, yet happen to have given them marks close to j's. In order to be 

confident that two individuals have similar tastes, we need a reasonable number 

of pairs of ratings to compare. In our experiments we set MIN-COMMON to 

seven. 

Ideally we would dispense with the MIN-COMMON ratings restriction. 

Instead of using pjj' as the parameter to the weighting function in Equation 5, 

we would use the probability that j and j"s tastes are closely correlated. 

Since we usually need to make many predictions, we precompute quantities 

such as the correlation coefficients and store them. 
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