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Abstract 

Parallel high-performance computing is gaining momentum as a computing plat- 

form for many applications including those in science, engineering and command and 

control. They offer an attractive method to place higher processing requirements, due 

to more sensors or additional information, on real-time systems. Real-time systems 

must respond to external events and inputs and exert stimulus on their environment 

in the form of actuator control, displays, and data and control interaction with other 

subsystems. Some of the tasks in various C3 (Command, Control, Communications) 

applications require processing large number of targets and manipulating extremely 

large data sets. Future requirements are likely to increase the processing demands clue 

to more sensors and more information, thus suggesting the use of parallel computers 

to implement real-time systems. In recent years, the research in software support for 

parallel computers has mainly addressed scientific and information processing appli- 

cations. Very little attention, if at all, has been paid to real-time embedded system 

requirements. 

This research investigates important issues related to design and analysis of real- 

time system software for parallel computers. In particular, this paper considers soft- 

ware specification models for real-time systems on parallel computers. A formal 

specification model will not only allow the designer to specify the system, but will 

also serve as the basis for automated verification tools that can be used to validate 

the design. Such tools will allow the design, verification, and validation of complex 

systems of realistic size. While a number of formal specification languages have been 

designed for real-time systems, these cannot be expected to adequately model the 

additional issues introduced by parallelism. This report will conduct a survey of cur- 

rent formal methods for uniprocessor real-time systems, and determine the additional 

issues introduced by parallelism. The properties and requirements that must be met 

by a specification model for parallel real-time systems will be defined. The PRETSEL 

specification model—Parallel REal Time SpEcification Language—is proposed, and 

its syntax and semantics are developed. PRETSEL extends existing algebraic models 

by providing structured timing constructs, and explicit parallelism constructs.   The 
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feasibility of building automated verification tools using the PRETSEL language is 

addressed through the provision of formal operational rules. The PRETSEL approach 

is then compared with the UNITY approach. Various similarities and differences be- 

tween the two approaches are identified. On the one hand, the PRETSEL approach 

is less abstract than the UNITY approach because of the real-time application do- 

main, while on the other hand PRETSEL seems to conservatively extend UNITY. The 

application of PRETSEL in specification of parallel real-time systems is illustrated 

through various examples. 
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1    Introduction 

Parallel and distributed computing offers a high speed computing platform for many 

applications, including those in science, engineering, and command and control. They 

offer an attractive method to place higher processing requirements, due to more sen- 

sors or additional information, on real-time systems. 

Real-time systems must respond to external events/inputs and exert stimulus on 

their environment in form of actuator control, displays, and data/control interaction 

with other subsystems. Some of the common tasks in various Air force and Navy 

systems (e.g., E-2C, AWACS, Joint STARS) require processing large number of tar- 

gets and manipulating extremely large data sets. Future requirements are likely to 

increase the processing demands due to more sensors and more information, thus 

suggesting the use of parallel computers to implement real-time systems. 

The lack of software support both in the design as well as in the implementa- 

tion phases has resulted in a slower acceptance of parallel computing than originally 

expected. Real-time (reactive) systems put even greater requirements on parallel 

computing software because design criteria must also include "performance", "guar- 

antees of deadlines", "adaptability to external events", and "fault-tolerance". In 

recent years, the research in software support for parallel computers has mainly ad- 

dressed scientific and information processing applications. Very little attention, if 

at all, has been paid to real-time embedded system requirements. The objective of 

this research project is to investigate important issues related to designing real-time 

system software for parallel computers. 

Complex software systems can be made truly robust and reliable if powerful anal- 

ysis techniques are made available to software developers and maintainers. Such 

techniques should be applicable throughout the software life-cycle phases - during 

development of the system from initial specification, design and coding and the 

maintenance and modification phases. These techniques should be applicable to a 

wide range of software system descriptions, program structures and applications, and 

should be able to analyze systems of realistic size in reasonable time. This requires 



that the techniques be automated, and based on sound theoretical models. 

The problem of specification, design, and analysis of real-time systems and soft- 

ware is made more difficult by the concurrency in real-time applications and further 

complicated by the presence of time. Real-time software must satisfy not only func- 

tional correctness requirements but also temporal correctness. The imposition of 

timing constraints reintroduces the dependencies between the software and the hard- 

ware capabilities. The fundamental problem in real-time applications is not on the 

ability to implement them but rather in the costly and often ad hoc manner in which 

they are designed, validated, and maintained. Using testing for system validation is 

a labor-intensive and error-prone approach and does not lend itself to modifications 

in the software and to scaling the system to the more complex parallel computer 

architectures. Consequently, there is a need for automated techniques which will per- 

mit a designer to specify, verify and validate the real-time system. Mechanization of 

this process requires a formal theoretical model under which the automation tools 

can be developed. A formal specification language will allow the system designer to 

specify the structure of the real-time system and make timing assertions about the 

system, while leaving the complex problems of resource allocation and verification to 

automation. Recent projects have produced considerable research on formal specifi- 

cation models and techniques for design and analysis of real-time systems [66], but 

there has been minimal work on specification of real-time systems implemented on 

parallel machines. The problem of real-time system specification, and verification, 

is made more complex when the system is to be implemented on parallel computer 

architectures. 

A real-time reactive system implemented on a parallel computer would consist of 

many tasks (each of which can be a parallel task) communicating with each other, 

some handling input data, others processing data and events, some producing output, 

and each task using the appropriate number of processors for required computation 

and performance requirements. These tasks will communicate with each other to 

exchange information and communicate with the external environment for input of 

data/signal, and to output data/signal. All these tasks must respond appropriately to 



any changes in the environment in such a way that the response time and throughput 

requirements are met according to the specification. However, when parallelism is 

considered, extrapolation of resources in a straightforward manner to handle the in- 

creased parallelism will not work because the scalability of parallel programs depends 

on many factors, including available parallelism, associated overhead for executing a 

program on a larger number of processors, and scalability of algorithm itself. These 

parameters must be adequately specified in the real-time system specification. There- 

fore, in order to define a real-time system running on a parallel computer, a require- 

ments specification model that supports parallel computing with real-time features is 

required. Such a high-level specification language must have reliability and verifiability 

as one of its basic design criteria, and must provide a sound theoretical model upon 

which semi-automated verification tools can be developed. 

1.1     Outline: Goals and Objectives 

The objective of this research is to investigate important issues related to designing 

real-time system software for parallel computers. The specific goal of this research 

is the investigation of formal methods for specification and semi-automated verifi- 

cation of real-time systems on parallel architectures. To verify real-time processes, 

the temporal and structural properties of real-time processes must be identified. To 

describe the behavior of computations on parallel architectures, the identification and 

specification of the behavior of parallel algorithms based on properties, such as the 

scalability, communication, efficiency, and the degree of parallelism must be defined. 

A formal language with rigorous semantics for specifying these properties (of real-time 

parallel processes), and a formalism for verification of the properties must be defined. 

These two formalisms provide the basis of automated/mechanized verification tools. 

Such tools are important since manual verification of a moderate sized program is a 

time consuming task. This research shall take the approach of investigating current 

methods for formal specification, and extending and integrating some of the current 

methods to develop a formal specification model for real-time systems on parallel 

computers. 



This report is organized as follows. First, in Section 2, a survey of the existing 

formal methods for specification of real-time systems is presented, with particular em- 

phasis on methods that incorporate temporal and concurrency issues. These methods 

include Temporal Logic, Petri-Nets, Process Algebra, Communicating Sequential Pro- 

cesses (CSP), and PSETL (Parallel SET Language). The survey evaluates the suit- 

ability, and drawbacks, of the methods in terms of their applicability to the project. 

Second, in Section 3, a discussion of the issues introduced by parallelism into the 

specification problem is presented. The properties and requirements (features) which 

must be satisfied by a specification model for parallel real-time systems are defined. 

Thirdly, in Section 4, a computation model for parallel real-time systems upon which 

a specification model is built, is presented. In Section 5, the syntax of a formal 

software specification language for real-time systems on parallel computers is pre- 

sented. This model, called PRETSEL (Parallel REal Time SpEcification Language), 

extends, and integrates, concepts used in the current models. The PRETSEL spec- 

ification model must meet the properties, and requirements, demanded by real-time 

system software on parallel computers. In Section 6, the semantics of PRETSEL and 

its formal semantic operational rules which thereby provide the basis for automated 

verification tools that may be developed using the PRETSEL specification model, is 

presented. In Section 7, the PRETSEL and the UNITY models are compared and 

contrasted. In Section 8, the effectiveness of the PRETSEL model through examples 

is illustrated. Finally, Section 9 provides concluding remarks and discusses current 

and future directions for this project. 



2    Formal   Specification   Models   for   Real-Time 
Systems 

A formal specification of a software system is a prerequisite for verifying that the pro- 

gram is correct. A formal specification is a precise definition of the logical, and, in the 

case of real-time systems, temporal properties of the software. A system specification 

model differs from conventional design specifications in that it is concerned primarily 

only with the function of the system and makes no commitments to its structure. 

Writing a formal specification allows software developers to discover errors, clarify 

and validate requirements, and make decisions about the functionality. It also allows 

specification while leaving implementation decisions to a later stage. A provision of 

a formal specification model allows the system designers to make assertions about 

the specification itself and, more importantly, make assertions about the correctness 

(functional and temporal) of the programs. Design of such automated tools for verify- 

ing and validating the system correctness will allow the development of large realistic 

real-time systems. 

2.1     Specification of Real-Time Systems: Requirements 

A specification language for real-time processes must express hard timing constraints 

and the possible structures of real-time processes. In addition, it should be abstract 

enough to represent top-level (prescriptive) as well as implementation-level (descrip- 

tive) specifications. It should have rigorously defined semantics that reflect the ex- 

ecution of real-time processes. Furthermore, it must address a number of different 

types of timing constraints that are placed on real-time systems. Some of these types 

of timing constraints [35, 5, 40, 11, 46, 30] are summarized as follows: 

• Event b must not occur later than r seconds after event a 

• The process must wait at least r seconds after event a occurs before engaging 

in event b. 

• Events a and b are separated by exactly r seconds 



• Action a requires r seconds to complete 

• If event a does not occur within r seconds of the start of process P, P will time 

out. 

• Process P begins executing every r seconds 

• Process P may be activated at any time, but consecutive activations must be 

separated by at least T seconds. 

The term event is used to mean an action that marks an instant in time, and 

the term action refers to some computation in which a real-time process engages. 

Thus an action may have a duration while an event may not. In terms of parallel 

architectures, both events and actions may be parallel algorithms and therefore both 

may have a duration. 

The first five cases express timing constraints in terms of events and actions that 

occur during the execution of a process. The last two cases express the constraints 

in terms of process execution rather than specific events. The first two cases specify 

upper and lower bounds on the intervals between events. The third case gives an 

exact time by which an event must occur. The fourth case specifies the duration of 

an action. These are also known as the minimum, maximum, and durational timing 

constraints. The fifth example is a timeout - a process is subject to a timeout if 

it must execute some event by time n. If the event is not executed by this time, 

then either the process fails or another process is invoked to handle the timeout. The 

sixth case is an example of a periodic process. That is, a process that begins executing 

every r time units, starting at time 0. The final constraint is an example of a sporadic 

process - these may begin executing at any time. The requirement that consecutive 

executions be separated by r time units prevents potentially infinite executions within 

finite time. 



2.2     Survey of Formal Specification Models 

A number of promising paradigms for formal specification and verification of real-time 

systems, in which each computation is executed on a sequential computer, have been 

proposed and studied. These include CSP, CCS, temporal logic, process algebra, 

Petri-nets, and very high level languages (such as PSETL, and Z). Some of these 

formalisms were originally designed for specification and verification of concurrent 

processes, but since have been augmented to include timing specification which allow 

them to be used for real-time processes. 

Depending on the formalism, one can use it either descriptively or prescriptively 

or both. The former means to give the details of an actual system such as the num- 

ber of subprocesses involved, their respective behaviors and the ways in which the 

subprocesses interact. The latter means specifying the desired behavior of a system 

without specifying how that behavior is to be obtained. Temporal logic has been 

use prescriptively, CSP, process algebra, Petri nets, and PSETL (and like) can be 

used both descriptively and prescriptively. In this regard, PSETL (and like) has the 

advantage in that it is a real programming language from which an actual implemen- 

tation can be easily derived. This is usually done by compiling such a language to an 

application language. 

The next gives a brief description of some of the existing methods for specification 

and verification of real-time systems. 

Temporal Logic 

Temporal logic is a modal logic that allows one to reason about the truth of statements 

over time. Temporal logic has been used for specification and verification of program 

properties. Special temporal operators, such as □ (every) and O (within), are intro- 

duced for analysis of temporal connectives in languages. These temporal operators 

have been found to be useful for specifying program behavior. The structure of states 

(such as a sequence or tree of states) is the key concept that makes temporal logic 

suitable for program specification [56, 58]. In a programming language, the structures 
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represent the computations executed by a program, and such a computation may be 

used to interpret a temporal formula. 

To use temporal logic for verification, axiomatic semantics for a programming 

language are defined using the logic. Programs are then verified using the axioms 

of temporal logic. Extensions to temporal logic have been proposed for specification 

and verification or real-time properties [53, 1]. Two such extensions are Real Time 

Temporal Logic (RTTL) and Metric Temporal Logic (MTL). 

RTTL (Real Time Temporal Logic): This extension assumes existence of a global 

clock and has been studied extensively with respect to its application to a number of 

different real-time applications[53, 54, 55, 56]. A distinguished variable t, called the 

clock variable, is used to refer to clock ticks. Predicates involving this variable then 

constitute timing specification. For example, 

t = 2 

is true in a state when the clock has ticked twice, and 

tfliA(t = r)-> 0{w2 A (t < T + 5)) 

states that "once Wi is true, iw2 must become true no more than 5 ticks later." 

The TTM/RTTL (Timed transition models/Real time temporal logic) framework 

was first introduced in [56]. It has a semantic model of time, a generic computational 

model (timed transition model) for modelling plants and controllers, an abstract spec- 

ification language (RTTL), and verification methodologies including model-checking 

for finite state systems and a deductive proof system for infinite state systems. It 

also provides heuristics for constructing proofs and controller synthesis. 

MTL (Metric Temporal Logic) [1]: This extension includes a time bounded version 

of the usual temporal operators. Thus, 

°(p -» 0<3?) 

means "every event p is followed by q within 3 time units." References to an explicit 

clock are not allowed, and hence MTL is a hidden clock (or bounded) temporal op- 

erator logic.   An important extension to MTL is a compositional proof system for 
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OCCAM style programs [28] in which the proof system uses the maximal parallelism 

mode of program execution. The proof system is compositional, thus allowing prop- 

erties of a compound system to be deduced from its constituent parts. This property 

is important since it allows scaling up the application of the proof system to deal with 

a large system in a structured fashion [52]. 

Communicating Sequential Processes (CSP) 

Communicating Sequential Processes (CSP) [27] provides a structured method for 

analysis of discrete event concurrent systems. The provision of a few constructs in 

CSP lead to a language capable of expressing parallel and distributed computations. 

The constructs include sequential and parallel composition, nondeterministic choice, 

and recursion. Based on this several computational models have been developed, and 

some of these also lead to methods for compositional verification. Algebraic laws 

relating the constructs allow for transformation of one system into another. In CSP, 

if P is a process and a an event then a —> P denotes a process that first engages 

in event a and then behaves exactly as the process P [27]. Shared events require 

participation of both processes involved. An example of which is communication over 

a channel in which a message is sent by one process and received by another. Most 

methods for proof methods in CSP are based on bottom-up approaches and utilize 

a proof system, wherein the verification task is reduced to a tautology checking of 

statements written in the language [52].. 

Timed CSP is an extension of Communicating Sequential Processes (CSP) [27, 

12, 13]. In the timed extension of CSP, the prefix operator of CSP is decorated with 

a time value. Thus, 

a^P 

represents a process that is willing to do action a. If a occurs, it will behave as P 

once a delay of time t has elapsed. Timed CSP assumes the existence of a global 

clock and that the occurrence of an event has zero duration! 

12 



Calculi of Communicating systems (CCS) 

Calculi of Communicating systems (CCS) is an algebraic formalism closely resembling 

CSP [44, 45]. In CCS a system is verified by using the notion of a bisimulation, where 

a system has a specification and an implementation. The axioms of the algebra can 

be applied to prove equality between specification and implementation[52]. 

Some models, such as timed CSP based models, assume synchrony which results in 

some interesting temporal properties of processes being inexpressible, or they assume 

a global clock and require actions to occur at precise moments of that global clock 

which subsequently has its drawbacks. In [67] the authors introduce the notion of 

timing into the CCS model. However, in their model processes could only evolve 

simultaneously via communication while time and actions were interleaved. The 

Temporal Calculus of Communicating Systems, proposed in [47], extends the model 

in [67] by allowing time to pass independent of the functional aspects of a process. The 

process state transition system is split into two orthogonal parts, one describes the 

functional aspects of the process and the other describes its temporal aspects. This 

allows for the separation of functional and temporal concerns in analysing process 

behaviour. However, this model assume that actions have no duration though they 

could model within their language actions with duration by requiring a process to 

take some amount of time in stabilising into a new state. 

In [24] the authors propose the Calculus of Communicating Shared Resources 

which has an underlying resource based computational model and a syntax that 

closely resembles the CCS syntax [43]. This model allows for explicit modelling of 

resources and priorities of actions. It provides operators for timeout and interruption. 

Other timed extensions to CCS include [68] and [69]. 

Process Algebra 

A process algebra consists of an algebraic language that is a collection of function 

symbols or combinators, and a semantic interpretation of this language [26, 25]. The 

semantics gives rise to a set of equations that can be used as a proof system for 
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the algebra. The algebraic language can be used as a specification language, and 

the verification can be performed by using an equational proof system [32]. The 

algebraic paradigm provides a single paradigm for specifying and verifying real-time 

processes. It can be used descriptively to give the details of an actual system such 

as the number of subprocesses involved, their respective behaviors and the ways in 

which the subprocesses interact. 

Timed Process Algebra extends the standard process algebra model by including 

a distinguished action a among its set of action [46, 30]. This action represents a 

"clock tick." Thus, in this approach, a clock itself is assumed a process generating 

ticks. Thus, 

m.(ä.A + cr.m.ä.A) 

represents a process that sends a message m and if it does not receive an acknowl- 

edgment a (receiving is indicated by a bar over the corresponding action) within next 

clock tick (i.e., one time unit), it resends the message and waits for an acknowledg- 

ment. 

A number of formal models based on timed process algebra have been developed. 

These include Real Time ACP [2], Algebra of Timed Processes[48, 49, 50, 51], Urgent 

LOTOS [7], and Process Algebra for resource bound systems [36]. Although these 

extensions account for time, they are not designed explicitly to handle timing con- 

straints. Furthermore, they do not provide constructs for specifying the additional 

parameters introduced by parallel architectures. 

Petri Nets 

Extensive work has been done in using Petri-Nets to model concurrent and real-time 

systems. Timed Petri Nets are again extensions of standard Petri Nets which have 

been used in the modelling of control flow in asynchronous parallel systems [10, 22]. 

In the timed version of Petri Nets, a time duration is associated with a place and/or 

transition. The former can be viewed as processes, and the latter as events. Thus, 

given the timing constraint that 7\ > T2, the following timed Petri Net 

14 



Ti T2 

o= 
Pi h Vi 

represents a periodic process with period 1 (assuming T\ = 2, T2 = 1). Petri 

Nets lack structural constructs and operators. This renders them not amenable to 

modular/decompositional approach to specification and verification. Hence they are 

less suited to specification and verification of large and complex systems. 

PSETL and SETL 

The language SETL belongs to the class of "very high level languages." It is based on 

general finite sets and maps [62]. Most programming and specification languages have 

been modeled around an existing mathematical theory, e.g., algebra, mathematical 

logic, lambda calculus, or relational calculus. Set theory is yet another system that 

includes most of scientific reasoning, i.e., most scientific facts can be expressed in the 

language of set theory and shown to be true or false using its methods. In this sense, 

the language SETL is based on sets just as the language LISP is based on lambda 

calculus. 

SETL is well suited for specification and rapid prototyping because it is built on 

data structures that are powerful aggregates, and thus allows one to say much using 

very few statements. Being a very high level language, SETL also meets, to a good 

extent, the Department of Defense's (DOD) requirements for a Common Prototyp- 

ing System (CPS) and Common Prototyping Language (CPL) [20]. The prototyping 

capabilities of SETL were demostrated by the validated Ada compiler written in 

SETL[15]. PSETL [29] extends the SETL language to handle parallelism. How- 

ever, it only considers data parallel programs thereby limiting its scope in specifying 

asynchronous parallel and distributed systems. 
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A number of other specification languages have been designed, such as Z [17, 

19] and UNITY[9], which do not currently deal with real-time issues. A detailed 

evaluation of UNITY against the proposed language (PRETSEL) is discussed in a 

later section. 

2.2.1    Some Limitations of Existing Models/Methods 

The formal methods surveyed closely model conventional real-time systems consisting 

of interacting sequential tasks. However, these methods lack in several respects with 

regard to the application domain defined for this effort. 

• Most do not permit specification of different timing constraints (such as peri- 

odic, sporadic, within, etc.) 

• Most are geared towards specifying only one aspect of system requirements, 

namely, the timing requirements. They do not integrate, say, functional re- 

quirements with the timing requirements. 

• All assume a single global clock with no error, which is an idealization. In a 

real application, there may be more than one clock, each being imperfect. 

• None allows for the specification of performance/scheduling requirement. 

• None of the methods address implementation on parallel computers which in- 

troduces additional complexities, which are discussed in greater detail in the 

next section. 

The formal methods proposed and developed in the real-time literature surveyed 

are seen to closely model many real-time systems. However, since they were not de- 

signed for the explicit purpose of implementing real-time systems on parallel comput- 

ers, they do not adequately address issues raised by parallelism into the specification 

problem. Clearly, a specification model for real-time systems on parallel computers 

must overcome all of the above shortcomings in addition to tackling the issues intro- 

duced by parallelism. Some of these issues are briefly discussed in the next section. 
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3     Specification of Parallel Real-Time Systems 

The problem of specifying real-time systems is further complicated when these sys- 

tems are considered for implementation on parallel computer architectures. These 

architectures introduce a number of additional issues, and new parameters, which 

must be considered by a specification model. In the next subsection, these issues are 

presented. Also a discussion of the desirable properties for a specification model and 

the specification requirements (and features) placed on such a model for parallel real- 

time system is described. Finally, the last subsection discusses which of the current 

formal methods are best suited for extending in order to specify parallel real-time 

systems. 

3.1     Issues Introduced by Parallel Processing 

In real-time systems, performance correctness (i.e., meeting deadlines etc.) is as im- 

portant as functional correctness. However, performance on parallel computers, now 

also depends on a number of architectural and algorithmic properties such as the num- 

ber of processors, communication, scalability of algorithms, overhead of scheduling 

parallelism, and synchronization. These additional characteristics and issues which 

are introduced by parallel computing must be adequately specifiable in the formal 

specification model. Some of the issues introduced by using parallel computing, which 

are normally absent from uniprocessor systems, include: 

• Non-deterministic behavior, non-rep eat able execution and pure parallelism: 

This occurs due to variations in interleaving of concurrent activities, non- 

deterministic language constructs, and asynchrony of external events. The 

important issue here is the analysis of non-determinism. For example, can 

perturbation be used to force different orderings of executions to validate de- 

signs? 

• In real-time systems, performance correctness (i.e., meeting deadlines etc.) is as 

important as functional correctness. Performance, however, now also depends 
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on architectural and algorithmic features such as communication, scalability 

of algorithms, overhead of scheduling parallelism and synchronization. These 

characteristics must be verified and validated as the part of the design. 

• Most reactive systems have to meet real-time requirements that cover a fairly 

broad spectrum. On one end of the spectrum are hard-real-time control appli- 

cations where several periodic processes must each meet their deadlines. On 

the other end are some C3 applications, where fast or soft-real-time process- 

ing is required. Therefore, scheduling and mapping policies must incorporate 

peculiarities of parallel systems. For example, in traditional software for par- 

allel computers, overheads of scheduling such as time to execute scheduling 

algorithms, synchronization costs, time to load and switch tasks are normally 

ignored. These cannot be ignored when designing real-time systems. Further- 

more, adapting and re-mapping for utilizing greater parallelism in a set of tasks 

in order to respond to external events and bursty I/O must be specifiable and 

verifiable. 

• One of the major advantages of a parallel computer system is the additional 

available processing power for specific critical tasks, when necessary. This is 

especially the case in the presence of bursty 10. This occurs when a system 

may suddenly encounter a large amount of data to be processed. In such cases, 

re-mapping strategies can be used to allocate more processors to the critical 

tasks to meet the performance requirements. However, decisions must be made 

on how to re-map and reschedule, and the performance must be verifiable at 

design time. Constructs and directives are needed, which can be used to spec- 

ify scheduling and re-mapping policies parameterized by bursty 10 and time 

dependent inputs. 

• Polyperformance metrics allow performance to be defined using a number of 

metrics and require specification of multiple versions for a computation. 
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Why Performance Polymorphism 

The performance of a parallel algorithm depends on a number of factors such as degree 

of parallelism, the data characteristics and data size, and the system characteristics 

(such as the number and type of processors and the communication channels). Typ- 

ically the speedup per processor, also called the efficiency, of a parallel algorithm de- 

creases with the increasing number of processors (due to more communication). This 

scalability parameter must be included in the program specification. Different paral- 

lel algorithms for the same computation can have different efficiency functions, where 

the efficiency depends on factors such as the data size and the number of processors. 

Consider two different algorithms for the same problem with different performance 

characteristics: Algorithm 1 and Algorithm 2. For example, in the problem of sorting, 

insertion sort and heap sort could be the two different algorithms. The performance 

demanded by the system, to meet the real-time constraints, can be defined by a user- 

defined metric called equiperf. Figure 1, shows the number of processors required, 

for each data size, by each algorithm to meet the equiperf requirements. As the size 

of the data varies, the type of algorithm to use, to meet the equiperf requirements, 

may vary. For example, in Figure 1, when the data size is larger than n Algorithm 

1 needs more processors to meet the equiperf requirements while Algorithm 2 needs 

more processors when the data size is smaller than n. Thus, if the data size is larger 

than n, Algorithm 2 is a better choice, than Algorithm 1. 

The above discussion presents the need for multiple functions/algorithms to carry 

out a given computation. The specification model to be defined must specify these 

multiple versions. This concept is called a performance polymorphism [31]. The 

specification must model the performance metrics as a function of the data size, 

system size, degree of parallelism and other factors. Depending on the state of the 

system, the properties of the data, and the performance requirement, the appropriate 

algorithm is selected. The process of selection of the algorithm and the subsequent 

resource allocation process are part of the resource allocation system and form a 

critical component of research in developing scheduling and other system support for 

19 



4 

number of processors 

for equiperformance 

algorithm 1 

algorithm2 

data size (problem size)  

Figure 1: Performance Polymorphism 
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parallel real-time systems. 

3.2     Properties  of Specification  Model  for  Parallel  Real- 
Time Systems 

In order to define a parallel real-time application a requirements specification nota- 

tion that supports both parallel and distributed computing with real-time features is 

required. Also, since most real-time applications tend to be critical, such a high-level 

notation must have reliability and verifiability as one of its basic design criteria. This 

formalism must lead to semi-automated verification tools. 

It is widely believed (in linguistics theory) that the structure of a specification 

notation defines boundaries of thoughts. This hypothesis also holds for programming 

languages where we talk of computational processes instead of thoughts. Over the 

past decade or so, it has been realized that the good old approach of writing real-time 

programs in conventional languages (including assembly language) is inadequate in 

terms of expressivity, portability, reliability, and verifiability. This has led to 

research effort in two directions. The first research direction is design and development 

of languages that support real-time features. These include PEARL[40], Esterel[5], 

Real-time Euclid[65], Flex[31], etc. However, none of these language meet the criteria 

for a real-time language for distributed and parallel computing. Furthermore, with 

the exception of Esterel, all other real-time languages have largely ignored the issue of 

verification/validation of programs written in such a language. The second direction 

is development of various formal models for real-time computing. These include 

Timed CSP[27], CSP-R[33], Timed Process Algebra[26], etc.. These formal models 

provide a framework for an automated verification tool. However, although these 

models give a formal basis for real-time computing, none of these can be construed 

as a real-time language to write programs in. Therefore, an ideal specification model 

must operate under a formal basis while providing features that allow the user to 

write their real-time programs in this specification language. 

In light of the discussion above, and the importance of parallel and distributed 

real-time computing, an investigation into a requirements specification model suitable 
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for defining real-time applications is required. This model must operate under a 

formal model while providing sufficient features to write the real-time programs using 

this notation. Such a model should strive to satisfy the following desirable properties: 

• Provide constructs for defining a variety of time constraints. Constructs for 

timed communication, constructs for specifying scalability parameters. 

A preliminary effort in this direction has been the real-time extension of the 

Distributed Programming System (DPS) [35]. 

• The specification language should be capable of defining a real-time system at 

the requirements and design phases of the software life-cycle. 

• Must be sufficiently high-level so as to facilitate readability and writability. 

• Should be based on the principles of orthogonality and simplicity. 

• Should be useful for describing synchronous/asynchronous and paral- 

lel/distributed computation. 

• The model must be given a well-defined formal semantics so as to facilitate 

verification/validation and correct implementation. 

• Must have facilities for ensuring reliability. 

• Must allow applicability of existing meta-linguistic real-time formalisms for 

specification and verification of programs written in the model. These include 

RTL[30], Temporal logic[59], and Hoare logic with time[64]. 

In this report, the PRETSEL language—A Parallel REal Time SpEcification 

Language—for specification of real-time systems on parallel machines is proposed 

to satisfy the above properties. 
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3.3     Specification Requirements 

The specific requirements that must be satisfied by the specification model for parallel 

real-time systems, and outline a list of features and constructs that must be provided 

by the model is now presented. There are three types of constructs that must be pro- 

vided by a specification requirements model for real-time parallel processes: (1) con- 

structs for timing requirements, (2) constructs for parallelism requirements, and (3) 

constructs for functional requirements. Current models, for specification of sequential 

or distributed real-time systems, provide constructs for functional requirements and 

provide primitive low-level timing specification. Therefore an effective specification 

model for parallel real-time systems must: 

• Have the ability to define structured timing requirements. 

• Define the performance requirements and system specification. This should be 

capable of recognizing changes in system or input parameters (such as change 

in I/O rate). 

• Specify the scalability of the parallel algorithm. This must include performance 

as a function of the number of processors. 

• Provide explicit synchronization constructs - for example, ability to specify 

timed barrier synchronization, which may itself require specification of partial 

orders. 

• Specify structured communication primitives. These may include point-to- 

point, permutations, one-to-many, and many-to-one communication patterns. 

• Pure Parallelism constructs for process creation and for composition of primi- 

tives. 

• Provide a capability to specify multiple versions for a computation - each with 

different characteristics. This is required by the concept of performance poly- 

morphism. 
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• Address resource allocation such as the mapping of processes to processors 

• Predictability of performance - where performance can be approximately derived 

(lower/upper bounds) from the timing specification. 

3.4    Extending Current Formal Models 

The potential advantages and disadvantages of some of the current formal models, 

if they are to serve as the underlying formal basis upon which a new specification 

language is to be built, is presented below. The aim of the literature survey was 

to critically evaluate these formalisms with the objective of selecting the formalism 

best suited for specifying real-time parallel processes. The different formalisms have 

been grouped under two classes: the algebraic approaches (which include CSP, CCS, 

and Process Algebra models), and the other models (such as Petri-nets and temporal 

logic). As a result of the survey, the view taken is that Petri-nets and temporal logic 

are not suitable candidates upon which to build a specification model, while CSP, 

CCS and Process Algebra share some common advantages. In particular: 

• Disadvantages of using the Petri-Net model: 

— It is non-compositional. The property of composition is important if the 

specification of a large complex process (such as a parallel program) is to 

be defined as a composition of simpler processes. 

— It has a low-level syntax. 

— It lacks modifiabilit}', in the sense that an incremental modification of the 

specified process requires redefining the entire petri-net. 

— It lacks an abstraction mechanism. 

• Disadvantage of using the Temporal Logic model: It is a prescriptive model 

and not a descriptive model. In other words, it does not lend itself to easy 

implementation from the specification since, low-level details are not specified. 

• Advantages common to CSP/CCS/Process Algebra: 
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— Algebraic specification. 

— They are compositional. 

— Clear abstraction mechanisms. 

— Provide extendibility. 

— They are descriptive models. 

— There is the possibility of deriving executable specifications. 

— LOTOS - international standard based on CCS and CSP. 

— Semi-automated verifiers are available (eg. concurrency workbench), which 

provide the potential of exploring verification methods. 

These conclusions have motivated the consideration of using an algebraic model 

such as CCS as the underlying formalism upon which the specification language is 

to be built. The CCS model has a number of advantages with respect to meeting 

the defined requirements. These include algebraic framework, compositional, it pro- 

vides clear abstraction mechanisms, and semi-automated verifiers are available which 

provide the potential of exploring verification methods. 
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4    A Computation Model for Parallel Real-Time 
Systems 

A computation model for real-time systems implemented on parallel machines, which 

underlies the PRETSEL language, is now defined. 

A parallel computation is, in general, a collection of interacting tasks, each of 

which is a parallel algorithm. At this stage, each task is defined to be a data parallel 

algorithm, i.e., a real-time parallel computation is a set of interacting data parallel 

algorithms. (Note that a sequential algorithm can be defined as a data parallel 

algorithm on a single processor.) Modelling parallel computations in this manner 

naturally leads to a two-level specification model. At level 1, constructs are provided 

for specifying data parallel algorithms, and at level 2, constructs are provided to 

combine such tasks in a variety of ways. Thus, parallelism occurs at two levels— 

within a task (data parallelism) and among tasks (functional or task parallelism). 

A data parallel algorithm consists of three activity phases: (1) input and distri- 

bution of data, including a external synchronization step, (2) compute-communicate 

cycles, and (3) output of data and external synchronization. The distribution of data 

across the processors, and the time taken by the algorithm is a function of the num- 

ber of processors and the size of the data. These (number of processors and data 

size) factors themselves can be specified as part of the algorithm. It is noted that 

the compiite-communicate cycle is a synchronous activity. The down-loading of the 

code, and data, forms one phase of the algorithm. This process, the load phase, is 

performed by the system and entails a system call. In general this time is not taken 

into account when the programs have been loaded statically. However, if an algorithm 

is dynamically invoked then this load time must be accounted for. These issues will 

be addressed later in the report. 

In terms of a system implementation, for a data parallel process described above, 

the assumption is made that there is a table stored in the system. This table has a 

number of entries, where each entry will have a number of fields/parameters which 

include: number of processors, data size, input rate, executable code (or pointers to 
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initiate process 

and sehd data 

Level 1 Task 

(each task can be parallel task) 

Data Parallel Program: A 

Load Program - 

(num-proc, mapping, data size) 

main() 

int A[size/min_proc] 

nop = sys_proc 

while (i <= size/nop) 

compute: local_sum= local_sum + A[i] 

communicate: eg. to neighbor 

endwhile 

global_sum(local_sum,num_proc, total) 

barrier 

end. 

Level 2 Task 

Figure 2: Computation Model 
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processors 

data size 

and distribution 

data/input 

rate 

execution 

time 

exec, code 

Figure 3: Table of Algorithms 

it) and its load time, and the time taken to execute the code. Under this model, it is 

possible to have different algorithms stored for the same problem, i.e., the executable 

code stored in one of the fields can vary depending on the values of the other fields. 

The data parallel tasks can be combined, to get a level 2 process, using a number of 

operators which reflect different conditions and dependencies among such data parallel 

tasks. For example, two data parallel tasks may be executed concurrently (pure 

parallel composition) or may be executed sequentially (a sequential composition) due 

to some data dependence. 

In a number of applications, the results (data) computed by one parallel task must 

be sent to another parallel task. This communication of data between two parallel 

tasks at level 2 is done using a parallel-send. After data is computed by task 1, it does 

a parallel-send to task 2, i.e., task 2 gets its next data set. This scheme is needed, and 

useful, for periodic tasks. The global period, for this parallel-send operation, may be 
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computed as the least time to communicate among all parallel tasks at level 2, which 

can be defined to be the least common divisor of all the periods. 

There are two types of communications incurred by tasks at level 1: internal 

and external. The internal communications are those required by the data parallel 

algorithm and could include send-receive instructions, permutations, many-to-one, 

one-to-many, many-to-many, and global reduction operations. Each of these would 

incur different overheads. This implies that the specification must include the type 

of internal communication in order to correctly derive the temporal properties of the 

system. The external communication is that required between tasks at level 2 (be- 

tween a level 1 task and another level 1 task); for example the parallel-send construct 

discussed previously would constitute an external communication. These communi- 

cation primitives will be required for process initiation, when a level 2 process may 

require initiation, and for synchronization. 

Tasks at level 2 represent a parallel (data-parallel) algorithm at level 1, and can 

be combined to form a real-time process. Thus, a parallel real-time process is defined 

as interacting tasks at level 2. Since each of the constituent subtasks at level 2 could 

be different, the modelling of functional parallelism is allowed. There can be any form 

of precedence between tasks at level 2, and the entire precedence is defined by the 

level 2 process. The time taken by each subtask at level 2 depends on the time taken 

by the data parallel algorithm; thus, derivation (or verification) of the time at level 2 

requires derivation (or verification) of time taken at level 1. 

To be able to model time, the assumption that all actions are recorded with refer- 

ence to a global clock is made. This obviates the need to model clock synchronization 

at the specification level. 
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5     Syntax of PRETSEL 

The PRETSEL specification language is based on the computation model described in 

the previous section. Thus PRETSEL syntax is divided into level 1 syntax and level 2 

syntax. The latter provides various constructs to describe a data-parallel algorithm 

whereas the former contains operator to combine such tasks in a variety of ways. A 

PRETSEL specification therefore consists of a level 1 process which is a combination 

of level 2 tasks. 

It is worthwhile to point out that one of the design goals of PRETSEL has been 

that it be usable by even a non-expert. To this end, PRETSEL provides familiar 

programming language like constructs to define a data-parallel task at level 2. Fur- 

thermore, at the present stage of design, PRETSEL does not support recursion as it 

makes it hard to obtain reasonable time bounds. 

To define PRETSEL, a set of action symbols Act is stipulated. The time do- 

main T is the set of natural numbers plus infinity, that is, T = Af U {oo}. Since 

all actions consume time, it would be convenient to think of an action as a tuple 

((label), (timejspec)) where the first component denotes the name of the action and 

the second component describes its timing specification (described below). Further- 

more, assume two mappings A : Act —> String and 8 : Act -> T to extract the 

name and the timing constraint of an action. For example, if an action a = (a,Qt) 

then X(a) = a and 8(a) = t. Also assume that Act is partitioned into Actc for pure 

computation actions, Act{ for internal (i.e. level 2) communication actions, Acte for 

external communication actions, and Acts for special actions. Also assume that Act{ 

and Acte can be partitioned into two equinumerous sets with a complementation bi- 

jection, denoted 7, between them satisfying a = a. Note that a and a must have the 

same timing constraint. The set of PRETSEL level 1 processes Proc is given by the 

grammar in Figure 4 where minJtime and maxJime range over the time domain T. 

The syntax of level 2 tasks is shown in Figure 5. 

Let P, T, and t, possibly subscripted, range over the process expressions at level 1, 

task expressions at level 2, and time domain, respectively. The informal meaning of 
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(process)    ::= (task) 

| (process) \\ (process) 

| (process) + (process) 

| (process)^ (process) 

| (time^spec) : (process) 

| n^'"16-6^ (process) 

(time^spec)    ::= Vtmaxdime 

| $ minJtime 

I A [ minJime , max dime 1 

Figure 4: Level 1 Syntax 

various operators at level 1 is as follows. The parallel composition P1HP2 denotes 

a process where two components P\ and P2 proceed in time independently of each 

other except for synchronization. Only the external communication actions may 

participate in these synchronizations. The sequential composition Pi=>P2 denotes 

a process where the initiation of the second component P2 takes place only after 

the successful termination of the first component Pj. The choice operator + in the 

expression P1+P2 allows the computation to proceed according to either Pj or P2, 

however if P\ can finish before P2 then Pi is selected and vice versa. In this way the 

choice operator allows for specifying different versions of an algorithm to perform the 

same computation, such that the algorithm that meets the deadlines will be selected. 

Currently, there are three types of timing constraints (or specifications): (1) 

QminJime, (2) tlmaxJime, and (3) A [^1,^2]- The first specifies the minimum 

time, i.e., lower bound requirement, for the computation. The second specifies the 

maximum time, i.e., upper bound, for the computation. The third specifies a dura- 
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tion interval, between t\ and £2, for the computation. Note that exact timing can be 

defined using the duration operator as in A[£, £]. This specifies that the computation 

time be exactly t. A process may optionally be explicitly timed using the timing con- 

straint operators as in Clt : P. This expression is only meaningful, if P is time correct 

(this will become clear with the presentation of temporal rules in the next section). 

The periodic operator II can be used to define a periodic process at level 1. 

Now consider level 2 syntax which specifies data parallel algorithms. At this 

level a task may be abstracted (or parameterized) by the system specification. This 

will allow, for example, scalability parameters to be captured by the model. The 

system specification can include system specific information such as the architecture 

characteristics (number, type and speed of processors), input characteristics (size and 

type of data), the mapping function to illustrate how data is distributed across the 

processors, and the execution time characteristics which can be the execution time as 

a function of the scalability parameters. At level 2 the basic unit of computation is 

an action. Actions may be combined in several ways to form a composite action or a 

task. To model real-time behavior a timing constraint is associated with each action. 

For example, (add, 02) describes a basic action that takes a maximum of two units 

of time to complete. As mentioned above, basic actions can be categorized as pure 

computations, pure internal communication (communication within the algorithm), 

external communication (for synchronization) and, in addition, some special actions 

such as termination and r action. The first three form the three phases of data 

parallel algorithms defined by the model of computation. The computations can be 

arithmetic operations. The internal communications includes: 1) blocking send (send) 

and blocking receive (receive) which are used for synchronous communication, since 

the parallel composition at level 2 is essentially synchronous and 2) barrier which is 

essentially a join operation and allows for pure synchronization, that is, no value is 

exchanged. The various versions of the send and receive operations above, can be used 

to define the external communications. This includes: 1) parallel send (parsend) 

and parallel receive (parjreceive) which are used for asynchronous communication at 

level 1, and 2) pure synchronization operation (globalsync).  A synchornous send- 
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receive operation has not been provided at this level because the parallel composition 

at level 1 is essentially asynchronous and also because the data that is transmitted 

between level 1 processes would usually be large and thus best suited for aynchronous 

transfer. One can, however, simulate the effect of synchronous transfer using the 

asynchronous primitives and global^sync operation. The various versions of send 

and receive operations above can be used to define many-to-one, one-to-many and 

multicast operations in both blocking and nonblocking mode. An example of this is 

given in Figure 6. 

The basic actions can be combined in parallel using the synchronous parallel 

operator & or in sequence using the ; operator. The if operator allows a deterministic 

choice to be made based on the boolean expression. The while operator allows iterative 

computations. The time taken by a while operator is derived from the length of the 

iterations. The within operator defines a temporal scope which is meaningful if its 

body is time correct. The every operator is used to define a periodic task at level 2. 

These operators have been adopted from [35]. It should be noted that the operator 

& is similar to the binary case of forall of [8]. Since such foralls are so pervasive in 

parallel programming, the following derived operator is defined: 

fc(n)rd^r&rfc   &r 
n 

where n is intended to range over the number of processors. 

PRETSEL also supports a variety of communication and synchronization mecha- 

nisms. 
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(task)    ::= (basicJask) | [(sysspecs)}(basicJask) 

(sysspecs)    ::= (sysspec), (sysspecs) 

(sysspec)    ::= nurruproc \ input spec | execJimespec 

| mapspec \ archspec 

[basicJask)   ::=   (action) 
(basicJask) ^(basicJask) 

(basicJask) ;(basicJask) 

if (booLexpr)(basicJask)(basicJask) 

while (booLexpr)(basicJask) 

every (time.expr)(basicJask) 

within (timejexpr)(basicJask) 

(action)    ::= 

(icomm-event) 

(comp-event) 

(icomm.event) 

(ext-comm-event) 

(special .event) 

send((expr)) 

receive((var)) 

barrier 

(ext-comm-event)    ::= par send((expr)) 

parjreceive((var)) 

globalsynch 

Figure 5: Level 2 Syntax 
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blocking jmulti send   :—   while i <— n (send(vi); incri) 

blockingjmultijreceive   :=   while i <= n (receive(xi); incri) 

Figure 6: Simulating blocking multi-send and multi-recive 
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6    Semantics of PRETSEL 

The above discussion provided an informal view of the semantics of PRETSEL, and 

now a discussion of the operational semantic rules for PRETSEL is presented. The 

operational meaning of PRETSEL operators may depend on temporal correctness 

of processes and tasks. To capture temporal correctness, a set of temporal rules is 

defined. For sake of brevity and simplicity, the restriction to Q constraints are made 

here. Figure 7 and Figure 8 give the temporal rules for level 1 and level 2, respectively. 

Both the operational rules and the temporal rules are presented in a natural deduction 

style. These rules are to be read as follows: if the transition(s) above the line can be 

inferred, then the transition below the line can be inferred. A special case is when 

there is nothing above the line. In this case, the transition below the line can be 

inferred unconditionally. Such rules are also called axioms. 

Pi-.h Pi-.U 

PA P2: max(ti,t2) 

Pi :h P2--t2 

P1+P2 : min(ti,t2) 

Pi ■ h P2--h 

Pl^P2 :{ti+t2) 

P :t t <t' 
(Sit' :P):t' 

P :t t <t' 
if'P : 00 

(1) 

(2) 

(3) 

(4) 

(5) 

Figure 7: Level 1 Temporal Rules 

The temporal rules define a relation between the processes and time domain, that 

is, :C Proc x T. The temporal semantics are then defined by the least such relation. 

Just as typing rules in a typed language assign meaningful types to objects in the 
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a : 6(a) 

Ti : *i T2: t2 

T1;T2:t1 + t2 

Ti : t T2:t 

Tx-.tx        T2:t2        b: t3 

if b Ti T2 : max(t\ + t3, t2 + t3) 

T : U U<t 
every t T : oo 

T :<tx h<t 
within t T : t 

w- /- T/  /     r[u/s] : t 

(6) 

(7) 

(3) 

(9) 

-i        »/-..r-i 1 '. t b'. t\ ,    . 
3neAfö{oo} .       ,       ' 10 

while b 1 : (n x (t + iijj + <i v    ' 

(11) 

(12) 

(13) 

Figure 8: Level 2 Temporal Rules 
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language, the temporal rules may be thought of as assigning temporal information to 

expressions. In the case where the restriction to 0 is made, the semantics associates 

the maximum execution time to each process expression. In addition, these rules 

also provide the temporal meaning to the various operators as follows. According to 

rule (1), a parallel composite of two processes Pi ||P2 completes when both its compo- 

nents have completed and hence the time taken is the maximum of the time taken by 

either component. Rule (2) states that the choice composite of two processes P1+P2 

finishes as soon as one of them is done. Rule (3) states that for sequential composition 

P1=^P2 the maximum time requirement to complete is the sum of the times required 

by its components. According to rule (4), a process may be constrained by a time 

operator only if the corresponding value is time compatible with the execution time 

of the component process. Rule (5) states that the execution of a periodic task may 

not be bounded and that the period must be compatible with the execution time re- 

quirement of the body process. Rule (6) is an axiom. Rule (7) is analogous to rule (3) 

for processes. Rule (8) captures the synchronous nature of the components of & oper- 

ator. Thus, it requires that both 7\ and T2 in Tx & T2 have the same timing behavior. 

Rule (9) states that the time to complete an «/operation is the maximum of the time 

taken to complete the consequent and the alternative. According to rule (10), the 

maximum time taken by a while construct depends on number of iterations. Rule (11) 

is analogous to rule (5) for processes. Rule (12) states that the temporal scope of a 

task must be compatible with the timing requirement of its body. Rule (13) requires 

some explanation. Assume the existence of a value space Valsys for all the system 

related parameters. In practice this space would be finite and could be maintained as 

a lookup table. The rule states that the timing requirement of a parameterized task 

is nothing but the timing requirements inferred after substituting values for each of 

the system parameters in the task abstraction. Thus, an abstracted task represents 

a collection of timing requirements. This allows multiple versions of an algorithm to 

be defined each possibly having a different performance characteristic. 

The aforementioned temporal rules can be used to either verify or infer useful 

temporal information.  As a small example, consider a simple process that does the 
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add operation and then sends a signal. Thus P = add; send. Further suppose that 

on a given machine it is known how long the add operation is going to take, say, 

£(add) = 2, but it is not known how long the send operation takes. Furthermore, 

suppose that P is to finish in 10 time units, that is, fllO : P is what is needed. Using 

rules(4), (6), and (7) it can be deduced that the send operation must be completed 

within 8 units of time. This is depicted in the proof tree below: 

rule 6 —7-,—ö        rule 6 add : 2 send : x 
rule7 (add;   send):y y < 10 

rule4 ((HO : add; send) : 10 

The desired deduction follows in trying to build (backwards) a proof-tree of the 

goal (£)10 : add; send) : 10. From the application of rule 4, it can be deduced that 

the desired goal is provable if we can establish that (add; send) : y and y < 10 for 

some y. From rule 7, it can be deduced that this y must be 2 + x, where x is the 

unknown timing requirement for the send operation. From the constraint y < 10, it 

is immediately deduced that x < 8. Thus, this kind of information can be statically 

deduced and can be used at compile time for scheduling etc. 

Next, the focus is on operational rules. The operational rules for level 1 and 

level 2 are contained in Figure 9 and Figure 10, respectively. The operational rules 

are transition based. In defining these rules, a is allowed to range over Act, i range 

over Acti, and e range over Acte. Also, the special action done is only present in the 

semantic domain, that is, it cannot be used to construct process expressions. It is used 

to flag the termination of a process activity. The operational rules define a relation 

—>C Proc x Act x Proc. The operational semantics are then defined by the least such 

relation. The notation P -% P' means that the process P behaves like process P' 

after doing action a and in doing so, it consumes 8(a) time. Thus operational rules 

allow us to record what actions a process can perform and how much time it takes. 

It should be noted that since there is no separation between time and action, it is not 

necessary to define two separate transition relations as has been done in [47]; rather 

the approach presented is similar to that of [36], though differs from it in that the 
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timing requirements of an action are explicit instead of being implicit. 

The operational rules give meaning to the various operators as follows. According 

to rules (14) and (15), a sequential composition Pi=>P2 can only engage in the actions 

of Pi as long as it is not finished. It can only start to engage in actions of P2 after 

Pi has terminated. Rules (16) and (17) define the meaning of the choice operator. 

Thus in Pi+P2 if Pi can finish first then according to rule (16) Pi will get selected. 

If, however, P2 can beat Pi then rule (17) applies and P2 gets selected. In case both 

have exactly the same requirements, the choice becomes nondeterministic. Rules (18)- 

(20) assign meaning to the parallel operator ||. According to rule (18), if in the 

composite Pi||P2, the process Pi is ready to engage in an action and P2 is not ready 

to engage in the complementary action, then the only action possible for the composite 

is that of Pi. Similarly, according to rule (19), if P2 is ready to engage in an action 

and Pi is not ready to engage in the complementary action, then the only action 

possible for the composite is that of P2. However, if Pi and P2 are ready to engage 

in complementary actions, they must synchronize. This is the essence of rule (20) 

and this is what is called the must synchronize semantics of || which differs from 

what may be called the may synchronize semantics of CCS. Because of this, CCS 

provides another operator called restriction to force synchronization. The choice of 

must semantics then obviates the need for a restriction-like operator—at least for 

synchronization purposes. This is the basic communication in the pure calculus. 

However, PRETSEL provides a variety of communication primitives. These have 

their own semantic rules that differentiate, for example, blocking send operation from 

nonblocking send operation. These operational rules are discussed later in this section. 

Also, it should be noted that in PRETSEL there is not just one r action, in fact there 

are a family of them—one for each possible time constraint. These r-actions capture 

the time required to perform the communication. 

Next consider rule (21). According to it, a temporally constrained process is 

capable of doing the same action as its component process as long as it is constrained 

meaningfully. Furthermore, in this case the temporal constraint of the resulting 

process is reduced by the execution time of the action involved. Rule (22) is similar, 
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Px^P[ 
(14) p^p2^p[^p2 

P\ —> done 

Pl^P2-Up2 
(15) 

Pl-.h P2--t2            Pl-^P[            (h <h) 
(16) P1+P2^P{ 

Pi-.h P2 : t2        P2 —► P2        (h <h) 
(17) P1+P2-UPi 

Pi -^ Pi           P2 A (18) 
P1||P2^P1'||P2 

PlA                 P2-^P2' (19) 
Pi\\P2^Pim 

Pi -^ p{     p2 -% p'2 

PX\\P2^P[\\P'2 
(20) 

p^p>   p. t   t<t> 

Üt':P-^ü(t'-S(e)):P' (21) 

P^P'        P:t        t<t' 
Y[t'p _^ p'^lV'p (22) 

Figure 9: Level 1 Operational Rules 
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that is, a periodic process does the actions of its body process as long as the period 

is meaningful and it repeats forever. Rule (23) is an action axiom. According to 

it the computation terminates once the only action has occured. Rule (24) states 

that the operator & is a synchronous parallel combinator and thus both components 

must be willing to engage in the same action (which need not be a communication). 

Rules (25) and (26) are similar to rules (14) and (15). They describe the meaning of 

sequential composition at the task level. Rule (27) is similar to rule (22) at the process 

level. Rules (28)-(31) give the familiar operational meaning to the if and the while 

operator. Rule (32) is similar to rule (21) at the process level. Rule (33) is similar to 

the usual operational semantics of value-passing. Although, unlike value-passing, the 

value space Valsys of system dependent parameters will normally be finite in practice. 

The above discussion described temporal rules to capture the timing requirements 

of a given process or a task and also gave a transition relation that describes how a 

process executes and how much time it takes in its execution. The following propo- 

sition relates the temporal rules to the transition rules. 

Proposition 1 Let P be a process and let P -^-> Px -%■ a-^done.    Then P  : 

Also the transition relation combines both the 'functional' behavior and the 'tem- 

poral' behavior. For non-real-time applications one may just be interested in only 

the functional behavior. It is clear that there are extra overheads involved in the 

combined behavior as one must ascertain, for example, that the processes are time 

correct. So, the question is whether to 'turn-off' the temporal behavior and use the 

operational rules for just the functional behavior without the overhead. It turns out 

that the answer to this question is affirmative and is summed up in the proposition 

below. The answer relies on an erasure mapping that erases all the timing information 

and what is left remaining is only the functional part. Formal details of this erasure 

mapping S are left for future work; however, just to give an idea of S, define a erasure 

on actions that strips off the timing information. This is then extended to terms and 

the rules. 
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Proposition 2 Let P be a process and £ be the erasure mapping described above. If 

P terminates so does S(P). 

It is worth noting that the converse of the above statement may not hold in 

general. This is because, in the presence of time, the operator + behaves 'more 

deterministically' than in the absence of it. 

Operational Rules for Communication Primitives 

PRETSEL provides both blocking as well as non-blocking [41, 42] communication 

primitives. The former being synchronous in nature is used for message passing at 

level 2, whereas the latter being asynchronous in nature is used at level 1. In addition, 

primitives for pure sunchronization at both levels are provided. Figure 11 contains the 

operational rules for blocking send/receive primitives. Figure 12 contains operational 

rules for non-blocking send/receive primitives. Figure 13 contains operational rules for 

pure synchronization primitives. According to rule (34), if T\ in the composite T\ & T2 

is ready to send but its counterpart T2 is not ready to receive, then T\ is essentially 

blocked—the only possible action is that of T2. Similarly, rule (34) captures the case 

where T\ is ready to receive but T2 is not ready to send and hence 7\ must block. 

Rules (36) and (37) are symmetric to rules (34) and (35). Finally, when either T\ 

is ready to send and T2 is ready to receive or vice versa, the communication takes 

place. This is captured in rules (38) and (39). In the non-blocking case, if P\ in the 

composite Pi||P2 is ready to send a message, it sends it whether P2 is ready to receive 

or not. Note that, from implementation point of view, this message is buffered if 

there is no matching receive at the time of sending. Rule (41) states the same for 

the case where P2 is ready to send. According to rule (42), if Pi is ready to receive, 

it does so without waiting for a matching send. In the case where P2 is ready to 

receive, rule (43) applies. Note that if the receive occurs before a matching send, the 

received value may be undefined. Finally, in the rare instance where both parties are 

ready at the same time, a genuine communication takes place, this is captured by 

rules (44) and (45).   Rule (46) for pure synchronization states that the component 
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task (process) that is ready to synchronize must wait till others are ready to do so 

and when all of them are ready, the synchronization takes pake. This is captured in 

rule (47). Similarly, rules (48) and (49) capture the synchronization at level 1. 
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a -% done (23) 

(24) TxkT2^T[kV2 

Tx -?-> T[ 

T^T2-^T[;T2 

T\ —► done 

T-^T'       T:t        t<t' 

every t'T-^T'; every t' T 

b == true T^T> 

while bT-^T'; while b T 

b = true Tj. -^ T[ 
if b 7\ T2 -% T[ 

b = false T2 -^ V2 

if b 7\ T2 ^ T2' 

T-^T'       T:t        t<t' 
within t'T-^4 within (f - 8(a)) V 

yyeVaisys
T^rr 

sys
   [Z\T-±+T 

Figure 10: Level 2 Operational Rules 

(25) 

(26) 

(27) 

b = false 
while bT—>nil (28) 

(29) 

(30) 

(31) 

(32) 

(33) 
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send(v 2\ se^> T{        T2^Tj        a^receive(x) 
Ti&^-^rx&TJ 

Ti —>■    Tj        T2 —► T2        a 7t send(v) 

Ta&^-^ri&r^ 

Tj- 
_a^T, ^ w(j,) ^        a j: receive(x) 

TikTi-^TlkT* 

Ti 
_a^T, T^recei^X)T,            fl ^^ 

Ti&Ta-^Tj'&ra 

rr end(w) „,                  _  T-eceiue(x) rjl/ 

 >   iX                 -12       ►      -*2 

Tx&^^^'&^Ka;] 

Zi' 
ecet'ue(x) _,                 „  send(v)     , 
 >      ia                   12     >■    J-2 

Ji&ra-^T/Kxi&r^ 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

Figure 11: Operational Rules for Blocking Communication 
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parsend(v) „, 
^1         *       r\ 

PUD  Parsend(v) p,., p 

"l|| "2         ► "llM2 

_.   par_send(u)  „, 
"2         > "2 

-Mill "2         *■        -Mill "2 

D II D   par_receit/e(v)  p/|| _ 
-M.II-T2  *• -MH-M! 

pi|)p2par_^e(,)pi||p, 

_  par_serad(t>)  D/                   „  par-receive(x)   _, 
"l         » "l "2  » "2 

_  par-receive(x)  D/                   _  parsend(v)   _, 
"l  >• "1 "2         >        -Mi 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

Figure 12: Operational Rules for Non-Blocking Communication 

Ti 6a-^lr ?y        Tj -1+Tj       a^ barrier        \<j<nt\j±i 

T1kT2---kTr--kTn-^TlkT2---k,T'r--kTn 

 T.haIlHTT\        l<i<n  
rx & r2 • • • & r,- • ■ • & rn -^ ra & r2 • • • & r; • • • & r„ 

(46) 

(47) 

p^obaUpnc p,        p._Upi        g^globaUync        l<j<nAj?i 

Pl\\Pl---\\Pr--\\Pn^Pl\\P2---\\P!---\\Pn {      } 

p global sync p, -     ,   .    . 

AHP2 • • • \\Pj- ■ ■ \\Pn -^ P1HP2 • • • \\P'i ■ ■ ■ \\P 

Figure 13: Operational Rules for Pure Synchronization 
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7    PRETSEL and UNITY 

In this section the PRETSEL approach is compared with the UNITY approach. 

UNITY is an abstract specification language for parallel programs together with logic 

to reason about them [9]. It is preferred to call this logic the semantics of UNITY 

notation. Since PRETSEL is designed for real-time applications, in addition to being 

a language for parallel computation, it is only appropriate to compare the functional 

fragment of PRETSEL with UNITY. It is possible to define erasures of PRETSEL 

specifications that would suitably eliminate all temporal and performance constructs 

and then define mapping between these erasures and UNITY specifications to relate 

them in a formal way. However, the discussion will be kept informal here and leave all 

formal details of this relationship as part of the future work. An informal comparision 

of the PRETSEL approach with the UNITY approach is given on the basis of three 

criteria: the basic design philosophy, the syntax, and the semantics. 

The basic philosophy of the UNITY approach is to decouple a program from its 

implementation. Thus the emphasis is on separating concern between what on the 

one hand, and how, when, and where on the other. This separation results in a very 

simple and powerful programming notation. The basic philosophy of the PRETSEL 

approach too is the separation of what from how. However, the domain of the ap- 

plication is real-time computation and, therefore, abstraction of when and where in 

PRETSEL is allowed. This is because in real-time computation a distinction must 

be made between two programs that are functionally equivalent, but consume differ- 

ent resources and exhibit differing performances. Thus, for example, in the real-time 

domain a distinction is made between bubble-sort and quick-sort, although both are 

sorting procedures. Hence a real-time specification language must be based on a more 

intensional view of computation. As a result, performance, timing, resources, etc., 

which are of no importance (at the specification level) in the UNITY approach become 

central and essential in the PRETSEL approach. This is achieved via quantification 

and abstraction of various real-time features in the language. Thus, although PRET- 

SEL has explicit timing and performance constructs, the approach has not deviated 
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from the basic philosophy of separation of concern of UNITY. All the real-time re- 

lated constructs in PRETSEL are presented at a suitable level of abstraction that 

decouples a PRETSEL specification from its implementation. As with the UNITY 

approach, the PRETSEL approach too neither assumes nor adheres to a particular 

architecture. 

A comparison of the syntax of UNITY programming notation with that of erasures 

of PRETSEL notation is presented. Although UNITY makes no explicit mention of 

a two level approach, the UNITY approach can be viewed as being two level—the 

program level and the program structuring level. These would correspond to level 2 

and level 1 of PRETSEL, respectively. The basic unit of computation in UNITY is 

an assignment statement. The basic unit of computation in PRETSEL is an action. 

This is because PRETSEL is event-based and UNITY is state-based. However, events 

and states are related by a cause and effect relationship. The act of assignment in 

UNITY would correspond to an action in PRETSEL. PRETSEL allows for different 

actions since different actions may take different time or consume different resources. 

If the timing and performance considerations are ignored, then PRETSEL too will 

have ony one basic entity of computation. With regard to operators and control 

structures, UNITY has || and | (although these are called separators, these can be 

thought of as operators) and no explicit control structure. It does, however, have an 

implicit looping (operationally speaking) since all assignments are assumed to execute 

infinitely often. The || construct of UNITY is both synchronous and asynchronous. 

However, in PRETSEL this operator is split into two—a synchronous operator (& 

at level 2) and an asynchronous operator (|| at level 1). It has been shown in [38] 

how to map the || of UNITY to par of UC [3]. The semantics of the latter are close 

to that of the operator & of PRETSEL. Thus, the || operator of UNITY together 

with a suitable mapping would correspond to the operator & of PRETSEL. The 

| construct of UNITY represents a non-deterministic choice (under certain fairness 

assumptions). In PRETSEL, choices have been separated into two—a deterministic 

choice (i/at level 2) and a non-deterministic choice (+ at level 1). It should be noted 

that the semantics of the latter are slightly more complex in the presence of time 
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and performance considerations, for it may behave as a deterministic choice operator 

under certain conditions. At level 2 an explicit looping construct is allowed, whereas 

UNITY implicitly does so. A sequencing operator =$> at level 1 also has been provided. 

UNITY has an operator Q (but the overloading of this symbol at the two levels is a 

bit confusing) to compose two programs. It has been shown in [38] how to define a 

sequencing operation on UNITY programs based on | under certain conditions. This 

would correspond to the sequencing operator => of PRETSEL. 

With regard to semantics, the UNITY approach is based on Hoare-style axiomatic 

semantics to reason about programs whereas for PRETSEL an operational semantics 

have been developed. This is because of the need to distinguish between computations 

that are deemed equivalent from a pure parallel processing point of view. Operational 

semantics being quite intensional allows for such distinctions to be made. In fact, it 

is a more general approach whereby distinctions can be made from the finest to the 

coarsest by defining suitable notions of equivalences. 
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8    Examples 

In this section the applicability of PRETSEL is illustrated through three examples. 

The first is a simple example of vector (matrix) operations. The second is an example 

where the system must respond to dynamic changes in the input environment. The 

third example is Martin Marietta designed AN/SQS-53C Sonar System. 

8.1     Vector Operations 

As an example consider the following vector computations which must be completed 

to meet some maximum time deadline d. Let X, Y and Z be input vectors of length 

ra, and the system must compute the two output vectors (X+Y+Z) and (X+Y) * Z. 

Further, assume that the process Q = X+Y is computed first and then the result 

vector is passed on to two concurrent processes S = Q+Z and T = Q * Z which 

compute the two desired equations. Upon completion of Q, a parallel-send is required 

to send data to the successor subtasks S and T. Let p be the total number of 

processors in the system. Suppose that two different algorithms T\ and T2 are available 

for computing Q * Z, with different execution times, and suppose T had to complete 

within time d\. 

Figure 14 shows the Level 2 process graph and the sample code of the process Q (as 

a data parallel shared memory algorithm). Figure 15 shows the formal specification 

for the example. 

The time to complete task R, which is simply the parallel composition of processes 

S and T, is the maximum time to complete S and T. If Q takes more than d time 

then the process fails to meet the time constraints. If Q takes d2 < d time, then R 

must complete within dx = d-d2 time. The task Q (and also S and T) are the data 

parallel algorithms, and ■K is the mapping function and kn/p is the execution time 

given as a function of n and p (thus modelling the scalability of Q). The process 

h(p)Q' specifies that process Q' must be executed in synchronous parallel mode on 

p processors; degree of parallelism in the parallel task Q is denned by the variable 

p (the number of processors). The process Q" performs the arithmetic operations of 
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Program Q: 

(processors p,   data  size n,   mapping) 
load node programs 
main () 
int Q[n/p] 
n=sys-proc 
while   (i  <= n/p) 
Q[i]   = x[i]   + Y[i] 

barrier 
par-send(Q to S) 
par-send(Q to T) 
end 

Figure 14: Example: Description of processes at each Level 

Level 1 Specification : 

P :: = Sid : Q^R 

R ::= S\\T 

T ::= Üdi : Ti+T2 

Level2 : 

Q ::= [n,p,Tr,kn/p]k(p)Q' 

Q' ::= while(i < n/p)Q   ;(barrier) ;(par„send) 

Q" (comp-add) 

Figure 15: The Formal Specification using PRETSEL 
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adding the vector elements, the barrier is the internal communication that signals the 

end of the while loop, and the parsend is the external synchronization required to 

initiate process R and send data to the process S and T. The task T is specified using 

the timed choice operator which specifies that two different choices of algorithms are 

available, and that the choice is made dependent on the time taken by each algorithm 

based on the values of data size n and processors p available for the algorithm. The 

algorithm that meets the deadline, if at all, will be selected by the system as per 

the meaning of this operator. This illustrates how the effect of scalability of parallel 

algorithms is accounted for in the PRETSEL model. 

8.2     Bursty IO: Dynamic Changes in the System 

Next, it is illustrated how PRETSEL models a situation where dynamic changes in 

the input environment invoke new resource allocation processes. 

Consider an example scenario, shown in Figure 16, where a sensor task S must 

continually receive data and then send this data to a processing task P for processing 

of the data. These are examples of periodic tasks since the process is repeated for 

each input data set that is received by the sensors. Applications where such tasks can 

occur include avionics where the sensor task represents data collected from radars; 

the change in rate of data could correspond to the use of more radars or increase 

in resolution. Suppose the timing constraint demands that each of these tasks must 

complete in t seconds to meet the real-time constraints. If a 9-processor parallel 

architecture is available, the processing task may be executing as a parallel algorithm 

using four processors in order to meet the timing requirement. At some instant in 

time suppose the Sensor receives a large amount of data, i.e., there is a bursty I/O, 

which subsequently increases the time taken by the processing task since more data 

will have to be processed. Thus, the presence of bursty I/O must be specified, and 

the actions to be taken in its presence. To meet the timing deadline of t, the system 

may allocate more processors to task P to decrease its execution time. Specifically, 

the system must perform a re-mapping and must select a "new" algorithm (from the 

choices available in the table provided to the system) and this may require allocating 
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Processing 

Task 

receive data from sensors 

every T time units 

receive real-time data from sensors 
send to processing task after preprocessing 

Sensor Task 

send data to processing task 

Process data received 
using multiple proc other tasks 

allocate two additional 
processors to meet time deadlines 

Figure 16: Example: Bursty 10 handled by Architecture 
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two more processors to task P (by taking processors away from non-critical tasks 

- i.e., tasks that do not have timing deadlines). The time taken to find this new 

re-mapping constitutes an overhead and therefore the re-mapping process itself must 

be highly efficient and must meet the time constraints. Figure 17 shows the system 

components, behavior and the details of each of the tasks. A formal specification 

must capture the behavior of this process. 

For this example, assume the following. There are three different algorithms 

that may be used to process the data; i.e. there is a choice of three algorithms for 

processing task P. The sensor task S computes the rate of arrival of data, and there 

is a tolerance specified for the change in data rate between two successive periods. 

The re-mapping task R selects and loads the code for the algorithm that must be 

used by P to satisfy the performance requirements. 

Now consider the modelling of the above example using the PRETSEL model. 

The formal specification of the system is shown in Figure 18. The choice operator 

P+P' signifies that process P or P' will be initiated; in the system implementation 

this will be based on the change in the I/O rate and will be initiated by the Sensor 

task S. When the system is first started P' is invoked to make the selection and load 

the code. The choice operator for the processing task P signifies that the choice of 

algorithms (code) for the task P will be based on which algorithm meets the time 

requirements. Once again, this selection is made by the re-mapping process and the 

selection does not change until the re-mapping process is invoked again. When the 

re-mapping task R is invoked it will determine which algorithm must be selected, 

and the time information is conveyed through the timed sequential operator. The 

maximum time deadline "fH" specifies that the process P must take no more than 

time t to meet its periodic time constraint. 

8.3     Specification of a Sonar System 

In this section the effectiveness of PRETSEL in modelling a real application is demon- 

strated, by showing how PRETSEL can be used to specify the Martin Marietta 

designed AN/SQS-53C Sonar System with an emphasis on the Active Receive Beam- 
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Sensor Task S: 

every T: 

collect data 
preprocess data 
compute new data rate 

if change <> tolerance 
then 
initiate Remap Process R 
par-send (data rate.data) to R 

else 
initiate processing task P 
par-send(data) to P 

end 

if change in 
data rate 

if no 
change in 

rate 

Processing Task P: 

every T: 
par-receive data(sensor) 

process data 
{compute communicate 
cycles} 
using algorithm loaded 
into memory 

barrier 
end 

load new code X 
initiate processing task P 

Re-Map Task R: (new-rate,old-rate,info) 
{info includes deadlines, proc. count, 
data size, performance requirements) 

determine algorithm X for Processing task P 

where X meets new requirements 
{look up table to find code X to process 
at new rate within time T) 

Load code of X into processor memories 
Initiate processing task P 
end 

Figure 17: System Components for Handling Bursty 10 
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System   : :=   S^Q 

Q   : :=   P+P' 
P'   : :=   üt:R=>P 

P   : :=   P1+P2+P3 

Figure 18: Formal Specification (for Level 1) of System 

former component of the system. Towards this end, the following is addressed: 

• decompose the beamformer into major functional units 

• consider the implementation of the Sonar on a parallel computer 

• address the parallelism inherent in the different functional units 

• model functionality using PRETSEL 

• demonstrate the effectiveness of PRETSEL 

The AN/SQS-53C sonar system was designed, developed and manufactured by 

Martin Marietta. It is an active and passive, hull array sonar system designed specif- 

ically to meet the requirements of modern naval vessels. A passive sonar listens for 

radiated noise from the environment and uses processing techniques to determine the 

bearing and characteristics of that radiated noise. An active sonar transmits sound 

at a certain frequency into the environment and processes the noise for echos from 

the transmitted energy. 

The sonar provides three active modes of operation and one passive mode. The 

Surface duct (SD) mode provides a full 360 degrees of active surveillance capabil- 

ity. It may be operated concurrently with either the Variable depression (VD) mode 

and/or the track (TK) mode in addition to the passive (PA) mode. SD is used to 

track close-in targets and to maintain a highly competent, panaromic anti-submarine 
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warfare active surveillance. The Variable depression mode provides a detection ca- 

pability over and up to 240 degree search sector. In VD mode both transmit and 

receive beams can be steered vertically as well as horizontally. The VD mode pro- 

vides waveforms, processing techniques, and displays formats specifically designed to 

detect, track and classify submarines. The VD mode may be operated concurrently 

with either the SD or TK modes. The Track mode provides a narrow bearing and 

range window surrounding a suspected contact for highly accurate range, bearing and 

Doppler estimation. The track mode is initialized via operator selection from a search 

mode (VD or SD) once a track has been established on a given contact. Track beams 

are steered directly at the contact and lock onto the target as it maneuvers. The TK 

mode may be operated concurrently with either the SD and/or the TK mode. 

The AN/SQS-53C system can be depicted simplistically by the major functions 

that it performs. The acoustic data arrives at the transducers, is signal conditioned 

and then forwarded to the active and passive receivers. The active receive processing 

can itself be decomposed into: Signal Conditioning, Beamforming, Signal Processing, 

Data Processing, and Display and Operator machine interface. The focus of the 

example is the Beamforming component within the active receive processing which 

is described in more detail in the following paragraphs. The goal is to provide a 

PRETSEL specification of the functionality, and the timing, of the Active Receive 

Beamformer component of the sonar system. 

Beamforming is a technique for performing spatial filtering, i.e., signals and noise 

arriving at the array from angles other than the array look direction are attenuated 

relative to coherent signals and interferences arriving at the array from the look direc- 

tion. The beamformer receives the digital element data from the signal conditioner. 

The control data from the Controller defines the modes (SD,VD, TK), the beam 

bearings, sampling rates, and frequency bands to be processed. The beamforming is 

performed in two stages: first, vertical beamforming is performed, followed by hori- 

zontal beamforming. The beams are stabilized for own ship heading, roll and pitch. 

Sub-band filtering is performed following the beamforming. These sub-band filters 

remove the effects of the own ship doppler (called own ship doppler nullification) 
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and generate independent mode/waveform processing bands. Figure 19 shows the 

outline of the processing required within the beamformer. The resulting data (of the 

beamformer) is output to the Active Analyzer program. 

The precise processing required for active sonar data in the Beamformer has many 

permutations depending on the digital input data and the control data. Factors 

that influence the choice of operating mode, coverage, and waveform include the 

ships mission, the threat, and the environmental conditions. All of these factors 

can vary at any time causing an impact on the amount of processing performed by 

the beamformer. Since the sonar is a real-time system, the system must adapt to 

meet the loading on the beamformer caused by the operators choice of operating 

mode, coverage, and waveform. This also suggests that the timing requirements 

need to be specified in terms of the maximum delay allowed. The time and ownship 

data is supplied once every 100 milliseconds; in other words the beamformer must 

finish processing one "data set" within 100 milliseconds. The data set itself will 

vary depending on the modes selected, and will consist of data collected over 512 

time samples (within the 100 milliseconds). The output data to be computed varies 

with the task and the input data; for example the VBF forms 72 stave beams for 

each of the modes (SD, VD, or TK), thus generating up to 216 total beams. The 

Configuration Evaluation (CE) component in Figure 19 defines the step at which the 

parameters, such as modes and sampling rates, are set. This configuration evaluation 

process occurs at every "ping" of the sonar, where the "ping" cycle itself may be set 

by the operator. Between each ping the sonar periodically receives data that must 

be processed by the beamformer. Since the processing requirements may be changed 

by the CE task, at every "ping", a remapping of the computing resources must be 

performed to assure that the beamformer meets the real-time requirements. Based on 

the parameters provided by the CE the remapping task must determine the number 

of processors to be used for each of the beamformer components. 

The outline of the Vertical Beamformer process is shown in Figure 20. Based 

on the coefficients supplied by the CAL process, the eight elements in a stave are 

summed together to form three sets of beams. It provides the necessary data buffering 
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REMAP 

CAL: 

VBF: 
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EVERY "PING" DO 
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REMAP resources: 
determine num. proc. 

EVERY 100ms do 
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Coefficients 

Vertical Beamforming 

Horizontal 
Beamforming 

ASB: 

Figure 19: Flowchart of Active Receive Beamformer Process 
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Figure 20: Flowchart of Vertical Beamformer Process 
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to accomodate the time delays necessary for vertical beamforming. The Horizona- 

tal beamformer (HBF) receives its input data from the VBF. Due to the similarity 

between the processes, and for brevity, the details of the HBF and ASB tasks are 

omitted. The VBF process exhibits a large degree of data parallelism. Specifically, 

each of the 72 staves can be computed in parallel and also each of the 512 different 

samples can be computed in parallel. The dependencies exist only in the sense that 

two different staves will need to read the same input data; in other words there is no 

read-after-write dependencies and the entire loop in Figure 20 may be parallelized. 

Using the functional decompositions shown in Figures 19 and 20, a formal specifi- 

cation of the Active receive beamformer process can be provided in PRETSEL. Fig- 

ure 21 shows the complete Level 1 specification of the Beamformer (BEAMFORM) 

process depcited in Figure 19. The figure shows the complete level 2 specification of 

the Vertical Beamformer (VBF) process only. The other level 2 tasks can be specified 

in a similar manner. The following observations must be noted: 

« modes to be used DsdJt-DvciJt-Dtk are determined by the Configuration evaluation 

(CE) task, which is invoked at every "ping" and determines the choices based 

on the type of objects being tracked by the sonar. The operator may also choose 

to operate some of the modes concurrently, and select the input sampling rate. 

® the number of processors, and the specific algorithm to be used, is determined 

by the Remap task based on the sampling rate and the modes selected by the 

Configuration Evaluation task. 

e Dsd denotes processing of Surface Duct (SD) mode using data Nsci for SD mode. 

Similarly, DV(i and Dtk are defined for the data used in the Vertical depression 

and the Track modes. 

• The input data to the Vertical Beamformer(VBF) is generated by the previous 

task which calculates the coefficients (CAL). 

» The data computed by the VBF task is sent to the Horizontal Beamformer task 

(HBF) using the par^send command. 
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READY   ::=   Upin9 PROCESS 

PROCESS   ::=   CE^REMAP^BEAMFORM 

BEAMFORM 

LOOP 

n100ms LOOP 

CAL^VBF^HBF^ASB 

VBF ::= Dsd+Dvd+Dtk 

Dsd ::= [7Vsd,p, map7r,exec_ü'me] !k(p)Qsd 

Qsd ::= while(i <= Nsd/p) Q'; barrier ; par send 

Q' ::= while (sumstave) Q" 

Q" ::= (comp-multi) ; (comp-add) 

Figure 21: Formal Specification of Active Receive Beamformer 
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READY Wing pROCESS 

PROCESS := CE^REMAP^BEAMFORM 

BEAMFORM := ÜX : LOOP 

LOOP := CAL^VBF^HBF^ASB 

VBF := Dsd\\Dsd\\Dtk 

Dsd := [Nsd,p,mapw, execJime] &z{p)Qsd 

Qsd := every 100ms P 

P := while (i <= Nsd/p) Q' ; barrier ; par.send 

Q' := while (sum^stave) Q" 

Q" (comp_multi) ; (comp-add) 

Figure 22: Specification of Pipelined Execution 

The specification defined in Figure 21 did not provide a pipelined implementation. 

A pipelined implementation of the beamformer process can be specified using PRET- 

SEL. By specifying the Level 2 tasks as periodic processes, with a period of 100ms, 

the level 1 tasks we can specify a pipelined execution. In the beamformer, there is 

also a constraint on the maximum time taken to process each data set by all the tasks. 

In other words, a response time (latency) constraint X ms, time to process each data 

set, is imposed. The pipelined specification is shown below in Figure 22. Note that 

each level 2 task is specified as a periodic task. One of the system issues introduced 

by this scenario is that of resource allocation schemes, to assign processors/memory, 

which can balance throughput and the response time constraints. 
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9     Summary and Future Work 

This report discussed the problem of formal specification of real-time systems imple- 

mented on a parallel machine. 

For many real-time applications parallel computers offer a natural computing plat- 

form and offer an attractive method to place higher processing requirements, due to 

more sensors or additional information, on real-time systems. However, the lack of 

software support both in the design as well as in the implementation phases has 

resulted in a slower acceptance of parallel computing than originally expected. Fur- 

thermore, very little attention, if at all, has been paid to real-time embedded system 

requirements. The general goal of this research project was to investigate important 

issues related to the design, development and validation of real-time system software 

for parallel computers. In particular, the objectives were to consider formal models 

for specification of real-time systems implemented on parallel computer systems. A 

formal specification language will allow the system designer to specify the structure 

of the real-time system and make timing assertions about the system, while leaving 

the complex problems of resource allocation and verification to automation. The pro- 

vision of such a formal specification model with a well-defined syntax and semantics 

will allow the development of automated verification tools. 

A number of researchers have provided formal specification models, and verifi- 

cation methodologies, for real-time systems on conventional machines but there lias 

been minimal work on real-time systems implemented on parallel machines. The 

problem of specification, design, and analysis of real-time systems and software (in- 

cluding issues such as specification, language design, compiler support, and operating 

systems) is made more difficult by the concurrency in real-time applications and fur- 

ther complicated by the presence of time. This report provided a review of current 

formal methods for specification of real-time systems and evaluated their expressive 

power, or lack thereof, in specifying parallel real-time systems. 

This project proposed a specification language PRETSEL (Parallel REal-Time 

SpEcification Language) for parallel real-time systems. The PRETSEL model incor- 
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porates some features of CSP, CCS, and process algebras while providing additional 

constructs to express the issues introduced by parallelism such as scalability and 

degree of parallelism. 

The PRETSEL specification language is based on a traditional two-level com- 

puting model for parallel computing whereby a parallel computation is viewed as a 

collection of interacting (data) parallel algorithms. This view is naturally reflected 

in PRETSEL syntax where at the lower level various constructs are provided for the 

specification of a data-parallel real-time algorithm (data-parallelism). At the upper 

level another set of constructs is provided to combine such tasks in a variety of ways 

(task-parallelism). Furthermore, the PRETSEL language allows for the specification 

of performance requirements. This is achieved by allowing parameterization of tasks 

by system related performance specifications. This includes, for example, number of 

processors, execution time information, mapping specification, etc. PRETSEL clearly 

maintains a separation between functional requirements, temporal requirements, and 

performance requirements. It provides temporal scope constructs to be able to spec- 

ify periodic tasks and also tasks with hard and soft deadlines. It also supports a 

variety of communication mechanisms. A formal operational semantics of PRETSEL 

has been defined and some relevant results have been established. The relationship of 

PRETSEL's syntax and semantics to other existing models has also been discussed. 

The PRETSEL model has been used to specify the behaviour of a Sonar Beamformer, 

which is part of the Martin-Marrietta sonar system, using off the shelf components. 

This example clearly demonstrated the effectiveness of PRETSEL in the specification 

of an actual real-time system. 

9.1     Future Work 

A number of issues can be explored to bring to fruition our endeavor of developing a 

robust parallel real-time system. 

• Extend the PRETSEL specification language and model to incorporate hetero- 

geneuty, fault-tolerance and exception handling. 
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• The table driven approach should be further developed to provide a complete 

set of system requirements for the PRETSEL model. 

• Proof system for Verification: To develop the verification tool, establish a tran- 

sition model and provide a proof system. Efforts shall be directed towards 

establishing the soundness and completeness of the proof system. 

• Investigate automatic synthesis and rapid prototyping of real-time programs in 

parallel and distributed environments. 

• Design of a PRETSEL based Validation, Verification and Synthesis Toolkit. 

• System software issues such as provision of a run-time support for communi- 

cation, scheduling and resource allocation algorithms, and operating system 

support. 
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