
RL-TR-96-57
Final Technical Report
April 1996

SOFTWARE DESIGN FOR REAL-TIME
SYSTEMS ON PARALLEL COMPUTERS:
FORMAL SPECIFICATIONS

Syracuse University

Alok Choudary, Vijay Geholt, and Bhagirath Narahari

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNL/M/TED.

19960724 065
DHC QUALITY IMSFZlmm g

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will be releasable
to the general public, including foreign nations.

RL-TR- 96-57 has been reviewed and is approved for publication.

APPROVED: WäxodOL TO. ßMiA/nc^a,

MILISSA M. BENINCASA
Project Engineer

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list,
or if the addressee is no longer employed by your organization, please notify Rome Laboratory/
(C3CB), Rome NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved
OMB No. 0704-0188 REPORT DOCUMENTATION PAGE

Public reporting burden for this cctection of HormaBon Is estimated to average 1 hour per response, Inducing the time for reviewing instructions, searching existing data sources,
gathering and martattng the data needed, and completing and reviewing thecofectJon of HormaBon Send comments regardhg this burden estimate or any other aspect of this
colectlon of Information, Inducing suggestions for reducing this burden, to Washington Headquarters Services, Directorate for hformatJon Operations and Reports, 1215 Jefferson
Davis Highway, Sute 1204, Artngton, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01B8), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE

April 1996
a REPORT TYPE AND DATES COVERED

Final Apr 94 - Sep 95

4. TITLE AND SUBTITLE

SOFTWARE DESIGN FOR REAL-TIME SYSTEMS ON PARALLEL
COMPUTERS: FORMAL SPECIFICATIONS

6. AUTHOR(S)

Alok Choudhary, Vijay Geholt, and Bhagirath Narahari

5. FUNDING NUMBERS

C - F30602-94-C-0073
PE - 62702F
PR - 5581
TA - 18
WU - PG

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

Syracuse University
Department of ECE
Syracuse NY 13244

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)
Rome Laboratory/C3CB
525 Brooks Rd
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-96-57

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Milissa M. Benincasa/C3CB/(315) 330-7650

12a DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maxtnum 200 words)

This research investigated the important issues related to the analysis and design of
real-time systems targeted to parallel architectures. In particular, the software
specification models for real-time systems on parallel architectures were
evaluated. A survey of current formal methods for uniprocessor real-time systems
specifications was conducted to determine their extensibility in specifying
real-time systems on parallel architectures. In this research, a specification
model called Parallel REal Time SpEcification Language (PRETSEL) was defined. It
leverages off of existing models while adding the necessary syntax and semantics
lacking in existing models in supporting specification of real-time systems for
parallel architectures. Examples of utilizing the PRETSEL language are presented.

14. SUBJECT TERMS

Formal methods, Real-time systems, Parallel processing

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

15 NUMBER OF PAGES
80

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 >;p.

Prescribed by ANSI S,'.:: .'
298-102

Abstract

Parallel high-performance computing is gaining momentum as a computing plat-

form for many applications including those in science, engineering and command and

control. They offer an attractive method to place higher processing requirements, due

to more sensors or additional information, on real-time systems. Real-time systems

must respond to external events and inputs and exert stimulus on their environment

in the form of actuator control, displays, and data and control interaction with other

subsystems. Some of the tasks in various C3 (Command, Control, Communications)

applications require processing large number of targets and manipulating extremely

large data sets. Future requirements are likely to increase the processing demands clue

to more sensors and more information, thus suggesting the use of parallel computers

to implement real-time systems. In recent years, the research in software support for

parallel computers has mainly addressed scientific and information processing appli-

cations. Very little attention, if at all, has been paid to real-time embedded system

requirements.

This research investigates important issues related to design and analysis of real-

time system software for parallel computers. In particular, this paper considers soft-

ware specification models for real-time systems on parallel computers. A formal

specification model will not only allow the designer to specify the system, but will

also serve as the basis for automated verification tools that can be used to validate

the design. Such tools will allow the design, verification, and validation of complex

systems of realistic size. While a number of formal specification languages have been

designed for real-time systems, these cannot be expected to adequately model the

additional issues introduced by parallelism. This report will conduct a survey of cur-

rent formal methods for uniprocessor real-time systems, and determine the additional

issues introduced by parallelism. The properties and requirements that must be met

by a specification model for parallel real-time systems will be defined. The PRETSEL

specification model—Parallel REal Time SpEcification Language—is proposed, and

its syntax and semantics are developed. PRETSEL extends existing algebraic models

by providing structured timing constructs, and explicit parallelism constructs. The

1

feasibility of building automated verification tools using the PRETSEL language is

addressed through the provision of formal operational rules. The PRETSEL approach

is then compared with the UNITY approach. Various similarities and differences be-

tween the two approaches are identified. On the one hand, the PRETSEL approach

is less abstract than the UNITY approach because of the real-time application do-

main, while on the other hand PRETSEL seems to conservatively extend UNITY. The

application of PRETSEL in specification of parallel real-time systems is illustrated

through various examples.

Contents

1 Introduction 4

1.1 Outline: Goals and Objectives 6

2 Formal Specification Models for Real-Time Systems 8

2.1 Specification of Real-Time Systems: Requirements 8

2.2 Survey of Formal Specification Models 10

2.2.1 Some Limitations of Existing Models/Methods 16

3 Specification of Parallel Real-Time Systems 17

3.1 Issues Introduced by Parallel Processing 17

3.2 Properties of Specification Model for Parallel Real-Time Systems ... 21

3.3 Specification Requirements 23

3.4 Extending Current Formal Models 24

4 A Computation Model for Parallel Real-Time Systems 26

5 Syntax of PRETSEL 30

6 Semantics of PRETSEL 36

7 PRETSEL and UNITY 48

8 Examples 51

8.1 Vector Operations 51

8.2 Bursty 10: Dynamic Changes in the System 53

8.3 Specification of a Sonar System 55

9 Summary and Future Work 65

9.1 Future Work 66

References 68

1 Introduction

Parallel and distributed computing offers a high speed computing platform for many

applications, including those in science, engineering, and command and control. They

offer an attractive method to place higher processing requirements, due to more sen-

sors or additional information, on real-time systems.

Real-time systems must respond to external events/inputs and exert stimulus on

their environment in form of actuator control, displays, and data/control interaction

with other subsystems. Some of the common tasks in various Air force and Navy

systems (e.g., E-2C, AWACS, Joint STARS) require processing large number of tar-

gets and manipulating extremely large data sets. Future requirements are likely to

increase the processing demands due to more sensors and more information, thus

suggesting the use of parallel computers to implement real-time systems.

The lack of software support both in the design as well as in the implementa-

tion phases has resulted in a slower acceptance of parallel computing than originally

expected. Real-time (reactive) systems put even greater requirements on parallel

computing software because design criteria must also include "performance", "guar-

antees of deadlines", "adaptability to external events", and "fault-tolerance". In

recent years, the research in software support for parallel computers has mainly ad-

dressed scientific and information processing applications. Very little attention, if

at all, has been paid to real-time embedded system requirements. The objective of

this research project is to investigate important issues related to designing real-time

system software for parallel computers.

Complex software systems can be made truly robust and reliable if powerful anal-

ysis techniques are made available to software developers and maintainers. Such

techniques should be applicable throughout the software life-cycle phases - during

development of the system from initial specification, design and coding and the

maintenance and modification phases. These techniques should be applicable to a

wide range of software system descriptions, program structures and applications, and

should be able to analyze systems of realistic size in reasonable time. This requires

that the techniques be automated, and based on sound theoretical models.

The problem of specification, design, and analysis of real-time systems and soft-

ware is made more difficult by the concurrency in real-time applications and further

complicated by the presence of time. Real-time software must satisfy not only func-

tional correctness requirements but also temporal correctness. The imposition of

timing constraints reintroduces the dependencies between the software and the hard-

ware capabilities. The fundamental problem in real-time applications is not on the

ability to implement them but rather in the costly and often ad hoc manner in which

they are designed, validated, and maintained. Using testing for system validation is

a labor-intensive and error-prone approach and does not lend itself to modifications

in the software and to scaling the system to the more complex parallel computer

architectures. Consequently, there is a need for automated techniques which will per-

mit a designer to specify, verify and validate the real-time system. Mechanization of

this process requires a formal theoretical model under which the automation tools

can be developed. A formal specification language will allow the system designer to

specify the structure of the real-time system and make timing assertions about the

system, while leaving the complex problems of resource allocation and verification to

automation. Recent projects have produced considerable research on formal specifi-

cation models and techniques for design and analysis of real-time systems [66], but

there has been minimal work on specification of real-time systems implemented on

parallel machines. The problem of real-time system specification, and verification,

is made more complex when the system is to be implemented on parallel computer

architectures.

A real-time reactive system implemented on a parallel computer would consist of

many tasks (each of which can be a parallel task) communicating with each other,

some handling input data, others processing data and events, some producing output,

and each task using the appropriate number of processors for required computation

and performance requirements. These tasks will communicate with each other to

exchange information and communicate with the external environment for input of

data/signal, and to output data/signal. All these tasks must respond appropriately to

any changes in the environment in such a way that the response time and throughput

requirements are met according to the specification. However, when parallelism is

considered, extrapolation of resources in a straightforward manner to handle the in-

creased parallelism will not work because the scalability of parallel programs depends

on many factors, including available parallelism, associated overhead for executing a

program on a larger number of processors, and scalability of algorithm itself. These

parameters must be adequately specified in the real-time system specification. There-

fore, in order to define a real-time system running on a parallel computer, a require-

ments specification model that supports parallel computing with real-time features is

required. Such a high-level specification language must have reliability and verifiability

as one of its basic design criteria, and must provide a sound theoretical model upon

which semi-automated verification tools can be developed.

1.1 Outline: Goals and Objectives

The objective of this research is to investigate important issues related to designing

real-time system software for parallel computers. The specific goal of this research

is the investigation of formal methods for specification and semi-automated verifi-

cation of real-time systems on parallel architectures. To verify real-time processes,

the temporal and structural properties of real-time processes must be identified. To

describe the behavior of computations on parallel architectures, the identification and

specification of the behavior of parallel algorithms based on properties, such as the

scalability, communication, efficiency, and the degree of parallelism must be defined.

A formal language with rigorous semantics for specifying these properties (of real-time

parallel processes), and a formalism for verification of the properties must be defined.

These two formalisms provide the basis of automated/mechanized verification tools.

Such tools are important since manual verification of a moderate sized program is a

time consuming task. This research shall take the approach of investigating current

methods for formal specification, and extending and integrating some of the current

methods to develop a formal specification model for real-time systems on parallel

computers.

This report is organized as follows. First, in Section 2, a survey of the existing

formal methods for specification of real-time systems is presented, with particular em-

phasis on methods that incorporate temporal and concurrency issues. These methods

include Temporal Logic, Petri-Nets, Process Algebra, Communicating Sequential Pro-

cesses (CSP), and PSETL (Parallel SET Language). The survey evaluates the suit-

ability, and drawbacks, of the methods in terms of their applicability to the project.

Second, in Section 3, a discussion of the issues introduced by parallelism into the

specification problem is presented. The properties and requirements (features) which

must be satisfied by a specification model for parallel real-time systems are defined.

Thirdly, in Section 4, a computation model for parallel real-time systems upon which

a specification model is built, is presented. In Section 5, the syntax of a formal

software specification language for real-time systems on parallel computers is pre-

sented. This model, called PRETSEL (Parallel REal Time SpEcification Language),

extends, and integrates, concepts used in the current models. The PRETSEL spec-

ification model must meet the properties, and requirements, demanded by real-time

system software on parallel computers. In Section 6, the semantics of PRETSEL and

its formal semantic operational rules which thereby provide the basis for automated

verification tools that may be developed using the PRETSEL specification model, is

presented. In Section 7, the PRETSEL and the UNITY models are compared and

contrasted. In Section 8, the effectiveness of the PRETSEL model through examples

is illustrated. Finally, Section 9 provides concluding remarks and discusses current

and future directions for this project.

2 Formal Specification Models for Real-Time
Systems

A formal specification of a software system is a prerequisite for verifying that the pro-

gram is correct. A formal specification is a precise definition of the logical, and, in the

case of real-time systems, temporal properties of the software. A system specification

model differs from conventional design specifications in that it is concerned primarily

only with the function of the system and makes no commitments to its structure.

Writing a formal specification allows software developers to discover errors, clarify

and validate requirements, and make decisions about the functionality. It also allows

specification while leaving implementation decisions to a later stage. A provision of

a formal specification model allows the system designers to make assertions about

the specification itself and, more importantly, make assertions about the correctness

(functional and temporal) of the programs. Design of such automated tools for verify-

ing and validating the system correctness will allow the development of large realistic

real-time systems.

2.1 Specification of Real-Time Systems: Requirements

A specification language for real-time processes must express hard timing constraints

and the possible structures of real-time processes. In addition, it should be abstract

enough to represent top-level (prescriptive) as well as implementation-level (descrip-

tive) specifications. It should have rigorously defined semantics that reflect the ex-

ecution of real-time processes. Furthermore, it must address a number of different

types of timing constraints that are placed on real-time systems. Some of these types

of timing constraints [35, 5, 40, 11, 46, 30] are summarized as follows:

• Event b must not occur later than r seconds after event a

• The process must wait at least r seconds after event a occurs before engaging

in event b.

• Events a and b are separated by exactly r seconds

• Action a requires r seconds to complete

• If event a does not occur within r seconds of the start of process P, P will time

out.

• Process P begins executing every r seconds

• Process P may be activated at any time, but consecutive activations must be

separated by at least T seconds.

The term event is used to mean an action that marks an instant in time, and

the term action refers to some computation in which a real-time process engages.

Thus an action may have a duration while an event may not. In terms of parallel

architectures, both events and actions may be parallel algorithms and therefore both

may have a duration.

The first five cases express timing constraints in terms of events and actions that

occur during the execution of a process. The last two cases express the constraints

in terms of process execution rather than specific events. The first two cases specify

upper and lower bounds on the intervals between events. The third case gives an

exact time by which an event must occur. The fourth case specifies the duration of

an action. These are also known as the minimum, maximum, and durational timing

constraints. The fifth example is a timeout - a process is subject to a timeout if

it must execute some event by time n. If the event is not executed by this time,

then either the process fails or another process is invoked to handle the timeout. The

sixth case is an example of a periodic process. That is, a process that begins executing

every r time units, starting at time 0. The final constraint is an example of a sporadic

process - these may begin executing at any time. The requirement that consecutive

executions be separated by r time units prevents potentially infinite executions within

finite time.

2.2 Survey of Formal Specification Models

A number of promising paradigms for formal specification and verification of real-time

systems, in which each computation is executed on a sequential computer, have been

proposed and studied. These include CSP, CCS, temporal logic, process algebra,

Petri-nets, and very high level languages (such as PSETL, and Z). Some of these

formalisms were originally designed for specification and verification of concurrent

processes, but since have been augmented to include timing specification which allow

them to be used for real-time processes.

Depending on the formalism, one can use it either descriptively or prescriptively

or both. The former means to give the details of an actual system such as the num-

ber of subprocesses involved, their respective behaviors and the ways in which the

subprocesses interact. The latter means specifying the desired behavior of a system

without specifying how that behavior is to be obtained. Temporal logic has been

use prescriptively, CSP, process algebra, Petri nets, and PSETL (and like) can be

used both descriptively and prescriptively. In this regard, PSETL (and like) has the

advantage in that it is a real programming language from which an actual implemen-

tation can be easily derived. This is usually done by compiling such a language to an

application language.

The next gives a brief description of some of the existing methods for specification

and verification of real-time systems.

Temporal Logic

Temporal logic is a modal logic that allows one to reason about the truth of statements

over time. Temporal logic has been used for specification and verification of program

properties. Special temporal operators, such as □ (every) and O (within), are intro-

duced for analysis of temporal connectives in languages. These temporal operators

have been found to be useful for specifying program behavior. The structure of states

(such as a sequence or tree of states) is the key concept that makes temporal logic

suitable for program specification [56, 58]. In a programming language, the structures

10

represent the computations executed by a program, and such a computation may be

used to interpret a temporal formula.

To use temporal logic for verification, axiomatic semantics for a programming

language are defined using the logic. Programs are then verified using the axioms

of temporal logic. Extensions to temporal logic have been proposed for specification

and verification or real-time properties [53, 1]. Two such extensions are Real Time

Temporal Logic (RTTL) and Metric Temporal Logic (MTL).

RTTL (Real Time Temporal Logic): This extension assumes existence of a global

clock and has been studied extensively with respect to its application to a number of

different real-time applications[53, 54, 55, 56]. A distinguished variable t, called the

clock variable, is used to refer to clock ticks. Predicates involving this variable then

constitute timing specification. For example,

t = 2

is true in a state when the clock has ticked twice, and

tfliA(t = r)-> 0{w2 A (t < T + 5))

states that "once Wi is true, iw2 must become true no more than 5 ticks later."

The TTM/RTTL (Timed transition models/Real time temporal logic) framework

was first introduced in [56]. It has a semantic model of time, a generic computational

model (timed transition model) for modelling plants and controllers, an abstract spec-

ification language (RTTL), and verification methodologies including model-checking

for finite state systems and a deductive proof system for infinite state systems. It

also provides heuristics for constructing proofs and controller synthesis.

MTL (Metric Temporal Logic) [1]: This extension includes a time bounded version

of the usual temporal operators. Thus,

°(p -» 0<3?)

means "every event p is followed by q within 3 time units." References to an explicit

clock are not allowed, and hence MTL is a hidden clock (or bounded) temporal op-

erator logic. An important extension to MTL is a compositional proof system for

11

OCCAM style programs [28] in which the proof system uses the maximal parallelism

mode of program execution. The proof system is compositional, thus allowing prop-

erties of a compound system to be deduced from its constituent parts. This property

is important since it allows scaling up the application of the proof system to deal with

a large system in a structured fashion [52].

Communicating Sequential Processes (CSP)

Communicating Sequential Processes (CSP) [27] provides a structured method for

analysis of discrete event concurrent systems. The provision of a few constructs in

CSP lead to a language capable of expressing parallel and distributed computations.

The constructs include sequential and parallel composition, nondeterministic choice,

and recursion. Based on this several computational models have been developed, and

some of these also lead to methods for compositional verification. Algebraic laws

relating the constructs allow for transformation of one system into another. In CSP,

if P is a process and a an event then a —> P denotes a process that first engages

in event a and then behaves exactly as the process P [27]. Shared events require

participation of both processes involved. An example of which is communication over

a channel in which a message is sent by one process and received by another. Most

methods for proof methods in CSP are based on bottom-up approaches and utilize

a proof system, wherein the verification task is reduced to a tautology checking of

statements written in the language [52]..

Timed CSP is an extension of Communicating Sequential Processes (CSP) [27,

12, 13]. In the timed extension of CSP, the prefix operator of CSP is decorated with

a time value. Thus,

a^P

represents a process that is willing to do action a. If a occurs, it will behave as P

once a delay of time t has elapsed. Timed CSP assumes the existence of a global

clock and that the occurrence of an event has zero duration!

12

Calculi of Communicating systems (CCS)

Calculi of Communicating systems (CCS) is an algebraic formalism closely resembling

CSP [44, 45]. In CCS a system is verified by using the notion of a bisimulation, where

a system has a specification and an implementation. The axioms of the algebra can

be applied to prove equality between specification and implementation[52].

Some models, such as timed CSP based models, assume synchrony which results in

some interesting temporal properties of processes being inexpressible, or they assume

a global clock and require actions to occur at precise moments of that global clock

which subsequently has its drawbacks. In [67] the authors introduce the notion of

timing into the CCS model. However, in their model processes could only evolve

simultaneously via communication while time and actions were interleaved. The

Temporal Calculus of Communicating Systems, proposed in [47], extends the model

in [67] by allowing time to pass independent of the functional aspects of a process. The

process state transition system is split into two orthogonal parts, one describes the

functional aspects of the process and the other describes its temporal aspects. This

allows for the separation of functional and temporal concerns in analysing process

behaviour. However, this model assume that actions have no duration though they

could model within their language actions with duration by requiring a process to

take some amount of time in stabilising into a new state.

In [24] the authors propose the Calculus of Communicating Shared Resources

which has an underlying resource based computational model and a syntax that

closely resembles the CCS syntax [43]. This model allows for explicit modelling of

resources and priorities of actions. It provides operators for timeout and interruption.

Other timed extensions to CCS include [68] and [69].

Process Algebra

A process algebra consists of an algebraic language that is a collection of function

symbols or combinators, and a semantic interpretation of this language [26, 25]. The

semantics gives rise to a set of equations that can be used as a proof system for

13

the algebra. The algebraic language can be used as a specification language, and

the verification can be performed by using an equational proof system [32]. The

algebraic paradigm provides a single paradigm for specifying and verifying real-time

processes. It can be used descriptively to give the details of an actual system such

as the number of subprocesses involved, their respective behaviors and the ways in

which the subprocesses interact.

Timed Process Algebra extends the standard process algebra model by including

a distinguished action a among its set of action [46, 30]. This action represents a

"clock tick." Thus, in this approach, a clock itself is assumed a process generating

ticks. Thus,

m.(ä.A + cr.m.ä.A)

represents a process that sends a message m and if it does not receive an acknowl-

edgment a (receiving is indicated by a bar over the corresponding action) within next

clock tick (i.e., one time unit), it resends the message and waits for an acknowledg-

ment.

A number of formal models based on timed process algebra have been developed.

These include Real Time ACP [2], Algebra of Timed Processes[48, 49, 50, 51], Urgent

LOTOS [7], and Process Algebra for resource bound systems [36]. Although these

extensions account for time, they are not designed explicitly to handle timing con-

straints. Furthermore, they do not provide constructs for specifying the additional

parameters introduced by parallel architectures.

Petri Nets

Extensive work has been done in using Petri-Nets to model concurrent and real-time

systems. Timed Petri Nets are again extensions of standard Petri Nets which have

been used in the modelling of control flow in asynchronous parallel systems [10, 22].

In the timed version of Petri Nets, a time duration is associated with a place and/or

transition. The former can be viewed as processes, and the latter as events. Thus,

given the timing constraint that 7\ > T2, the following timed Petri Net

14

Ti T2

o=
Pi h Vi

represents a periodic process with period 1 (assuming T\ = 2, T2 = 1). Petri

Nets lack structural constructs and operators. This renders them not amenable to

modular/decompositional approach to specification and verification. Hence they are

less suited to specification and verification of large and complex systems.

PSETL and SETL

The language SETL belongs to the class of "very high level languages." It is based on

general finite sets and maps [62]. Most programming and specification languages have

been modeled around an existing mathematical theory, e.g., algebra, mathematical

logic, lambda calculus, or relational calculus. Set theory is yet another system that

includes most of scientific reasoning, i.e., most scientific facts can be expressed in the

language of set theory and shown to be true or false using its methods. In this sense,

the language SETL is based on sets just as the language LISP is based on lambda

calculus.

SETL is well suited for specification and rapid prototyping because it is built on

data structures that are powerful aggregates, and thus allows one to say much using

very few statements. Being a very high level language, SETL also meets, to a good

extent, the Department of Defense's (DOD) requirements for a Common Prototyp-

ing System (CPS) and Common Prototyping Language (CPL) [20]. The prototyping

capabilities of SETL were demostrated by the validated Ada compiler written in

SETL[15]. PSETL [29] extends the SETL language to handle parallelism. How-

ever, it only considers data parallel programs thereby limiting its scope in specifying

asynchronous parallel and distributed systems.

15

A number of other specification languages have been designed, such as Z [17,

19] and UNITY[9], which do not currently deal with real-time issues. A detailed

evaluation of UNITY against the proposed language (PRETSEL) is discussed in a

later section.

2.2.1 Some Limitations of Existing Models/Methods

The formal methods surveyed closely model conventional real-time systems consisting

of interacting sequential tasks. However, these methods lack in several respects with

regard to the application domain defined for this effort.

• Most do not permit specification of different timing constraints (such as peri-

odic, sporadic, within, etc.)

• Most are geared towards specifying only one aspect of system requirements,

namely, the timing requirements. They do not integrate, say, functional re-

quirements with the timing requirements.

• All assume a single global clock with no error, which is an idealization. In a

real application, there may be more than one clock, each being imperfect.

• None allows for the specification of performance/scheduling requirement.

• None of the methods address implementation on parallel computers which in-

troduces additional complexities, which are discussed in greater detail in the

next section.

The formal methods proposed and developed in the real-time literature surveyed

are seen to closely model many real-time systems. However, since they were not de-

signed for the explicit purpose of implementing real-time systems on parallel comput-

ers, they do not adequately address issues raised by parallelism into the specification

problem. Clearly, a specification model for real-time systems on parallel computers

must overcome all of the above shortcomings in addition to tackling the issues intro-

duced by parallelism. Some of these issues are briefly discussed in the next section.

16

3 Specification of Parallel Real-Time Systems

The problem of specifying real-time systems is further complicated when these sys-

tems are considered for implementation on parallel computer architectures. These

architectures introduce a number of additional issues, and new parameters, which

must be considered by a specification model. In the next subsection, these issues are

presented. Also a discussion of the desirable properties for a specification model and

the specification requirements (and features) placed on such a model for parallel real-

time system is described. Finally, the last subsection discusses which of the current

formal methods are best suited for extending in order to specify parallel real-time

systems.

3.1 Issues Introduced by Parallel Processing

In real-time systems, performance correctness (i.e., meeting deadlines etc.) is as im-

portant as functional correctness. However, performance on parallel computers, now

also depends on a number of architectural and algorithmic properties such as the num-

ber of processors, communication, scalability of algorithms, overhead of scheduling

parallelism, and synchronization. These additional characteristics and issues which

are introduced by parallel computing must be adequately specifiable in the formal

specification model. Some of the issues introduced by using parallel computing, which

are normally absent from uniprocessor systems, include:

• Non-deterministic behavior, non-rep eat able execution and pure parallelism:

This occurs due to variations in interleaving of concurrent activities, non-

deterministic language constructs, and asynchrony of external events. The

important issue here is the analysis of non-determinism. For example, can

perturbation be used to force different orderings of executions to validate de-

signs?

• In real-time systems, performance correctness (i.e., meeting deadlines etc.) is as

important as functional correctness. Performance, however, now also depends

17

on architectural and algorithmic features such as communication, scalability

of algorithms, overhead of scheduling parallelism and synchronization. These

characteristics must be verified and validated as the part of the design.

• Most reactive systems have to meet real-time requirements that cover a fairly

broad spectrum. On one end of the spectrum are hard-real-time control appli-

cations where several periodic processes must each meet their deadlines. On

the other end are some C3 applications, where fast or soft-real-time process-

ing is required. Therefore, scheduling and mapping policies must incorporate

peculiarities of parallel systems. For example, in traditional software for par-

allel computers, overheads of scheduling such as time to execute scheduling

algorithms, synchronization costs, time to load and switch tasks are normally

ignored. These cannot be ignored when designing real-time systems. Further-

more, adapting and re-mapping for utilizing greater parallelism in a set of tasks

in order to respond to external events and bursty I/O must be specifiable and

verifiable.

• One of the major advantages of a parallel computer system is the additional

available processing power for specific critical tasks, when necessary. This is

especially the case in the presence of bursty 10. This occurs when a system

may suddenly encounter a large amount of data to be processed. In such cases,

re-mapping strategies can be used to allocate more processors to the critical

tasks to meet the performance requirements. However, decisions must be made

on how to re-map and reschedule, and the performance must be verifiable at

design time. Constructs and directives are needed, which can be used to spec-

ify scheduling and re-mapping policies parameterized by bursty 10 and time

dependent inputs.

• Polyperformance metrics allow performance to be defined using a number of

metrics and require specification of multiple versions for a computation.

18

Why Performance Polymorphism

The performance of a parallel algorithm depends on a number of factors such as degree

of parallelism, the data characteristics and data size, and the system characteristics

(such as the number and type of processors and the communication channels). Typ-

ically the speedup per processor, also called the efficiency, of a parallel algorithm de-

creases with the increasing number of processors (due to more communication). This

scalability parameter must be included in the program specification. Different paral-

lel algorithms for the same computation can have different efficiency functions, where

the efficiency depends on factors such as the data size and the number of processors.

Consider two different algorithms for the same problem with different performance

characteristics: Algorithm 1 and Algorithm 2. For example, in the problem of sorting,

insertion sort and heap sort could be the two different algorithms. The performance

demanded by the system, to meet the real-time constraints, can be defined by a user-

defined metric called equiperf. Figure 1, shows the number of processors required,

for each data size, by each algorithm to meet the equiperf requirements. As the size

of the data varies, the type of algorithm to use, to meet the equiperf requirements,

may vary. For example, in Figure 1, when the data size is larger than n Algorithm

1 needs more processors to meet the equiperf requirements while Algorithm 2 needs

more processors when the data size is smaller than n. Thus, if the data size is larger

than n, Algorithm 2 is a better choice, than Algorithm 1.

The above discussion presents the need for multiple functions/algorithms to carry

out a given computation. The specification model to be defined must specify these

multiple versions. This concept is called a performance polymorphism [31]. The

specification must model the performance metrics as a function of the data size,

system size, degree of parallelism and other factors. Depending on the state of the

system, the properties of the data, and the performance requirement, the appropriate

algorithm is selected. The process of selection of the algorithm and the subsequent

resource allocation process are part of the resource allocation system and form a

critical component of research in developing scheduling and other system support for

19

4

number of processors

for equiperformance

algorithm 1

algorithm2

data size (problem size)

Figure 1: Performance Polymorphism

20

parallel real-time systems.

3.2 Properties of Specification Model for Parallel Real-
Time Systems

In order to define a parallel real-time application a requirements specification nota-

tion that supports both parallel and distributed computing with real-time features is

required. Also, since most real-time applications tend to be critical, such a high-level

notation must have reliability and verifiability as one of its basic design criteria. This

formalism must lead to semi-automated verification tools.

It is widely believed (in linguistics theory) that the structure of a specification

notation defines boundaries of thoughts. This hypothesis also holds for programming

languages where we talk of computational processes instead of thoughts. Over the

past decade or so, it has been realized that the good old approach of writing real-time

programs in conventional languages (including assembly language) is inadequate in

terms of expressivity, portability, reliability, and verifiability. This has led to

research effort in two directions. The first research direction is design and development

of languages that support real-time features. These include PEARL[40], Esterel[5],

Real-time Euclid[65], Flex[31], etc. However, none of these language meet the criteria

for a real-time language for distributed and parallel computing. Furthermore, with

the exception of Esterel, all other real-time languages have largely ignored the issue of

verification/validation of programs written in such a language. The second direction

is development of various formal models for real-time computing. These include

Timed CSP[27], CSP-R[33], Timed Process Algebra[26], etc.. These formal models

provide a framework for an automated verification tool. However, although these

models give a formal basis for real-time computing, none of these can be construed

as a real-time language to write programs in. Therefore, an ideal specification model

must operate under a formal basis while providing features that allow the user to

write their real-time programs in this specification language.

In light of the discussion above, and the importance of parallel and distributed

real-time computing, an investigation into a requirements specification model suitable

21

for defining real-time applications is required. This model must operate under a

formal model while providing sufficient features to write the real-time programs using

this notation. Such a model should strive to satisfy the following desirable properties:

• Provide constructs for defining a variety of time constraints. Constructs for

timed communication, constructs for specifying scalability parameters.

A preliminary effort in this direction has been the real-time extension of the

Distributed Programming System (DPS) [35].

• The specification language should be capable of defining a real-time system at

the requirements and design phases of the software life-cycle.

• Must be sufficiently high-level so as to facilitate readability and writability.

• Should be based on the principles of orthogonality and simplicity.

• Should be useful for describing synchronous/asynchronous and paral-

lel/distributed computation.

• The model must be given a well-defined formal semantics so as to facilitate

verification/validation and correct implementation.

• Must have facilities for ensuring reliability.

• Must allow applicability of existing meta-linguistic real-time formalisms for

specification and verification of programs written in the model. These include

RTL[30], Temporal logic[59], and Hoare logic with time[64].

In this report, the PRETSEL language—A Parallel REal Time SpEcification

Language—for specification of real-time systems on parallel machines is proposed

to satisfy the above properties.

22

3.3 Specification Requirements

The specific requirements that must be satisfied by the specification model for parallel

real-time systems, and outline a list of features and constructs that must be provided

by the model is now presented. There are three types of constructs that must be pro-

vided by a specification requirements model for real-time parallel processes: (1) con-

structs for timing requirements, (2) constructs for parallelism requirements, and (3)

constructs for functional requirements. Current models, for specification of sequential

or distributed real-time systems, provide constructs for functional requirements and

provide primitive low-level timing specification. Therefore an effective specification

model for parallel real-time systems must:

• Have the ability to define structured timing requirements.

• Define the performance requirements and system specification. This should be

capable of recognizing changes in system or input parameters (such as change

in I/O rate).

• Specify the scalability of the parallel algorithm. This must include performance

as a function of the number of processors.

• Provide explicit synchronization constructs - for example, ability to specify

timed barrier synchronization, which may itself require specification of partial

orders.

• Specify structured communication primitives. These may include point-to-

point, permutations, one-to-many, and many-to-one communication patterns.

• Pure Parallelism constructs for process creation and for composition of primi-

tives.

• Provide a capability to specify multiple versions for a computation - each with

different characteristics. This is required by the concept of performance poly-

morphism.

23

• Address resource allocation such as the mapping of processes to processors

• Predictability of performance - where performance can be approximately derived

(lower/upper bounds) from the timing specification.

3.4 Extending Current Formal Models

The potential advantages and disadvantages of some of the current formal models,

if they are to serve as the underlying formal basis upon which a new specification

language is to be built, is presented below. The aim of the literature survey was

to critically evaluate these formalisms with the objective of selecting the formalism

best suited for specifying real-time parallel processes. The different formalisms have

been grouped under two classes: the algebraic approaches (which include CSP, CCS,

and Process Algebra models), and the other models (such as Petri-nets and temporal

logic). As a result of the survey, the view taken is that Petri-nets and temporal logic

are not suitable candidates upon which to build a specification model, while CSP,

CCS and Process Algebra share some common advantages. In particular:

• Disadvantages of using the Petri-Net model:

— It is non-compositional. The property of composition is important if the

specification of a large complex process (such as a parallel program) is to

be defined as a composition of simpler processes.

— It has a low-level syntax.

— It lacks modifiabilit}', in the sense that an incremental modification of the

specified process requires redefining the entire petri-net.

— It lacks an abstraction mechanism.

• Disadvantage of using the Temporal Logic model: It is a prescriptive model

and not a descriptive model. In other words, it does not lend itself to easy

implementation from the specification since, low-level details are not specified.

• Advantages common to CSP/CCS/Process Algebra:

24

— Algebraic specification.

— They are compositional.

— Clear abstraction mechanisms.

— Provide extendibility.

— They are descriptive models.

— There is the possibility of deriving executable specifications.

— LOTOS - international standard based on CCS and CSP.

— Semi-automated verifiers are available (eg. concurrency workbench), which

provide the potential of exploring verification methods.

These conclusions have motivated the consideration of using an algebraic model

such as CCS as the underlying formalism upon which the specification language is

to be built. The CCS model has a number of advantages with respect to meeting

the defined requirements. These include algebraic framework, compositional, it pro-

vides clear abstraction mechanisms, and semi-automated verifiers are available which

provide the potential of exploring verification methods.

25

4 A Computation Model for Parallel Real-Time
Systems

A computation model for real-time systems implemented on parallel machines, which

underlies the PRETSEL language, is now defined.

A parallel computation is, in general, a collection of interacting tasks, each of

which is a parallel algorithm. At this stage, each task is defined to be a data parallel

algorithm, i.e., a real-time parallel computation is a set of interacting data parallel

algorithms. (Note that a sequential algorithm can be defined as a data parallel

algorithm on a single processor.) Modelling parallel computations in this manner

naturally leads to a two-level specification model. At level 1, constructs are provided

for specifying data parallel algorithms, and at level 2, constructs are provided to

combine such tasks in a variety of ways. Thus, parallelism occurs at two levels—

within a task (data parallelism) and among tasks (functional or task parallelism).

A data parallel algorithm consists of three activity phases: (1) input and distri-

bution of data, including a external synchronization step, (2) compute-communicate

cycles, and (3) output of data and external synchronization. The distribution of data

across the processors, and the time taken by the algorithm is a function of the num-

ber of processors and the size of the data. These (number of processors and data

size) factors themselves can be specified as part of the algorithm. It is noted that

the compiite-communicate cycle is a synchronous activity. The down-loading of the

code, and data, forms one phase of the algorithm. This process, the load phase, is

performed by the system and entails a system call. In general this time is not taken

into account when the programs have been loaded statically. However, if an algorithm

is dynamically invoked then this load time must be accounted for. These issues will

be addressed later in the report.

In terms of a system implementation, for a data parallel process described above,

the assumption is made that there is a table stored in the system. This table has a

number of entries, where each entry will have a number of fields/parameters which

include: number of processors, data size, input rate, executable code (or pointers to

26

initiate process

and sehd data

Level 1 Task

(each task can be parallel task)

Data Parallel Program: A

Load Program -

(num-proc, mapping, data size)

main()

int A[size/min_proc]

nop = sys_proc

while (i <= size/nop)

compute: local_sum= local_sum + A[i]

communicate: eg. to neighbor

endwhile

global_sum(local_sum,num_proc, total)

barrier

end.

Level 2 Task

Figure 2: Computation Model

27

number of

processors

data size

and distribution

data/input

rate

execution

time

exec, code

Figure 3: Table of Algorithms

it) and its load time, and the time taken to execute the code. Under this model, it is

possible to have different algorithms stored for the same problem, i.e., the executable

code stored in one of the fields can vary depending on the values of the other fields.

The data parallel tasks can be combined, to get a level 2 process, using a number of

operators which reflect different conditions and dependencies among such data parallel

tasks. For example, two data parallel tasks may be executed concurrently (pure

parallel composition) or may be executed sequentially (a sequential composition) due

to some data dependence.

In a number of applications, the results (data) computed by one parallel task must

be sent to another parallel task. This communication of data between two parallel

tasks at level 2 is done using a parallel-send. After data is computed by task 1, it does

a parallel-send to task 2, i.e., task 2 gets its next data set. This scheme is needed, and

useful, for periodic tasks. The global period, for this parallel-send operation, may be

28

computed as the least time to communicate among all parallel tasks at level 2, which

can be defined to be the least common divisor of all the periods.

There are two types of communications incurred by tasks at level 1: internal

and external. The internal communications are those required by the data parallel

algorithm and could include send-receive instructions, permutations, many-to-one,

one-to-many, many-to-many, and global reduction operations. Each of these would

incur different overheads. This implies that the specification must include the type

of internal communication in order to correctly derive the temporal properties of the

system. The external communication is that required between tasks at level 2 (be-

tween a level 1 task and another level 1 task); for example the parallel-send construct

discussed previously would constitute an external communication. These communi-

cation primitives will be required for process initiation, when a level 2 process may

require initiation, and for synchronization.

Tasks at level 2 represent a parallel (data-parallel) algorithm at level 1, and can

be combined to form a real-time process. Thus, a parallel real-time process is defined

as interacting tasks at level 2. Since each of the constituent subtasks at level 2 could

be different, the modelling of functional parallelism is allowed. There can be any form

of precedence between tasks at level 2, and the entire precedence is defined by the

level 2 process. The time taken by each subtask at level 2 depends on the time taken

by the data parallel algorithm; thus, derivation (or verification) of the time at level 2

requires derivation (or verification) of time taken at level 1.

To be able to model time, the assumption that all actions are recorded with refer-

ence to a global clock is made. This obviates the need to model clock synchronization

at the specification level.

29

5 Syntax of PRETSEL

The PRETSEL specification language is based on the computation model described in

the previous section. Thus PRETSEL syntax is divided into level 1 syntax and level 2

syntax. The latter provides various constructs to describe a data-parallel algorithm

whereas the former contains operator to combine such tasks in a variety of ways. A

PRETSEL specification therefore consists of a level 1 process which is a combination

of level 2 tasks.

It is worthwhile to point out that one of the design goals of PRETSEL has been

that it be usable by even a non-expert. To this end, PRETSEL provides familiar

programming language like constructs to define a data-parallel task at level 2. Fur-

thermore, at the present stage of design, PRETSEL does not support recursion as it

makes it hard to obtain reasonable time bounds.

To define PRETSEL, a set of action symbols Act is stipulated. The time do-

main T is the set of natural numbers plus infinity, that is, T = Af U {oo}. Since

all actions consume time, it would be convenient to think of an action as a tuple

((label), (timejspec)) where the first component denotes the name of the action and

the second component describes its timing specification (described below). Further-

more, assume two mappings A : Act —> String and 8 : Act -> T to extract the

name and the timing constraint of an action. For example, if an action a = (a,Qt)

then X(a) = a and 8(a) = t. Also assume that Act is partitioned into Actc for pure

computation actions, Act{ for internal (i.e. level 2) communication actions, Acte for

external communication actions, and Acts for special actions. Also assume that Act{

and Acte can be partitioned into two equinumerous sets with a complementation bi-

jection, denoted 7, between them satisfying a = a. Note that a and a must have the

same timing constraint. The set of PRETSEL level 1 processes Proc is given by the

grammar in Figure 4 where minJtime and maxJime range over the time domain T.

The syntax of level 2 tasks is shown in Figure 5.

Let P, T, and t, possibly subscripted, range over the process expressions at level 1,

task expressions at level 2, and time domain, respectively. The informal meaning of

30

(process) ::= (task)

| (process) \\ (process)

| (process) + (process)

| (process)^ (process)

| (time^spec) : (process)

| n^'"16-6^ (process)

(time^spec) ::= Vtmaxdime

| $ minJtime

I A [minJime , max dime 1

Figure 4: Level 1 Syntax

various operators at level 1 is as follows. The parallel composition P1HP2 denotes

a process where two components P\ and P2 proceed in time independently of each

other except for synchronization. Only the external communication actions may

participate in these synchronizations. The sequential composition Pi=>P2 denotes

a process where the initiation of the second component P2 takes place only after

the successful termination of the first component Pj. The choice operator + in the

expression P1+P2 allows the computation to proceed according to either Pj or P2,

however if P\ can finish before P2 then Pi is selected and vice versa. In this way the

choice operator allows for specifying different versions of an algorithm to perform the

same computation, such that the algorithm that meets the deadlines will be selected.

Currently, there are three types of timing constraints (or specifications): (1)

QminJime, (2) tlmaxJime, and (3) A [^1,^2]- The first specifies the minimum

time, i.e., lower bound requirement, for the computation. The second specifies the

maximum time, i.e., upper bound, for the computation. The third specifies a dura-

31

tion interval, between t\ and £2, for the computation. Note that exact timing can be

defined using the duration operator as in A[£, £]. This specifies that the computation

time be exactly t. A process may optionally be explicitly timed using the timing con-

straint operators as in Clt : P. This expression is only meaningful, if P is time correct

(this will become clear with the presentation of temporal rules in the next section).

The periodic operator II can be used to define a periodic process at level 1.

Now consider level 2 syntax which specifies data parallel algorithms. At this

level a task may be abstracted (or parameterized) by the system specification. This

will allow, for example, scalability parameters to be captured by the model. The

system specification can include system specific information such as the architecture

characteristics (number, type and speed of processors), input characteristics (size and

type of data), the mapping function to illustrate how data is distributed across the

processors, and the execution time characteristics which can be the execution time as

a function of the scalability parameters. At level 2 the basic unit of computation is

an action. Actions may be combined in several ways to form a composite action or a

task. To model real-time behavior a timing constraint is associated with each action.

For example, (add, 02) describes a basic action that takes a maximum of two units

of time to complete. As mentioned above, basic actions can be categorized as pure

computations, pure internal communication (communication within the algorithm),

external communication (for synchronization) and, in addition, some special actions

such as termination and r action. The first three form the three phases of data

parallel algorithms defined by the model of computation. The computations can be

arithmetic operations. The internal communications includes: 1) blocking send (send)

and blocking receive (receive) which are used for synchronous communication, since

the parallel composition at level 2 is essentially synchronous and 2) barrier which is

essentially a join operation and allows for pure synchronization, that is, no value is

exchanged. The various versions of the send and receive operations above, can be used

to define the external communications. This includes: 1) parallel send (parsend)

and parallel receive (parjreceive) which are used for asynchronous communication at

level 1, and 2) pure synchronization operation (globalsync). A synchornous send-

32

receive operation has not been provided at this level because the parallel composition

at level 1 is essentially asynchronous and also because the data that is transmitted

between level 1 processes would usually be large and thus best suited for aynchronous

transfer. One can, however, simulate the effect of synchronous transfer using the

asynchronous primitives and global^sync operation. The various versions of send

and receive operations above can be used to define many-to-one, one-to-many and

multicast operations in both blocking and nonblocking mode. An example of this is

given in Figure 6.

The basic actions can be combined in parallel using the synchronous parallel

operator & or in sequence using the ; operator. The if operator allows a deterministic

choice to be made based on the boolean expression. The while operator allows iterative

computations. The time taken by a while operator is derived from the length of the

iterations. The within operator defines a temporal scope which is meaningful if its

body is time correct. The every operator is used to define a periodic task at level 2.

These operators have been adopted from [35]. It should be noted that the operator

& is similar to the binary case of forall of [8]. Since such foralls are so pervasive in

parallel programming, the following derived operator is defined:

fc(n)rd^r&rfc &r
n

where n is intended to range over the number of processors.

PRETSEL also supports a variety of communication and synchronization mecha-

nisms.

33

(task) ::= (basicJask) | [(sysspecs)}(basicJask)

(sysspecs) ::= (sysspec), (sysspecs)

(sysspec) ::= nurruproc \ input spec | execJimespec

| mapspec \ archspec

[basicJask) ::= (action)
(basicJask) ^(basicJask)

(basicJask) ;(basicJask)

if (booLexpr)(basicJask)(basicJask)

while (booLexpr)(basicJask)

every (time.expr)(basicJask)

within (timejexpr)(basicJask)

(action) ::=

(icomm-event)

(comp-event)

(icomm.event)

(ext-comm-event)

(special .event)

send((expr))

receive((var))

barrier

(ext-comm-event) ::= par send((expr))

parjreceive((var))

globalsynch

Figure 5: Level 2 Syntax

34

blocking jmulti send :— while i <— n (send(vi); incri)

blockingjmultijreceive := while i <= n (receive(xi); incri)

Figure 6: Simulating blocking multi-send and multi-recive

35

6 Semantics of PRETSEL

The above discussion provided an informal view of the semantics of PRETSEL, and

now a discussion of the operational semantic rules for PRETSEL is presented. The

operational meaning of PRETSEL operators may depend on temporal correctness

of processes and tasks. To capture temporal correctness, a set of temporal rules is

defined. For sake of brevity and simplicity, the restriction to Q constraints are made

here. Figure 7 and Figure 8 give the temporal rules for level 1 and level 2, respectively.

Both the operational rules and the temporal rules are presented in a natural deduction

style. These rules are to be read as follows: if the transition(s) above the line can be

inferred, then the transition below the line can be inferred. A special case is when

there is nothing above the line. In this case, the transition below the line can be

inferred unconditionally. Such rules are also called axioms.

Pi-.h Pi-.U

PA P2: max(ti,t2)

Pi :h P2--t2

P1+P2 : min(ti,t2)

Pi ■ h P2--h

Pl^P2 :{ti+t2)

P :t t <t'
(Sit' :P):t'

P :t t <t'
if'P : 00

(1)

(2)

(3)

(4)

(5)

Figure 7: Level 1 Temporal Rules

The temporal rules define a relation between the processes and time domain, that

is, :C Proc x T. The temporal semantics are then defined by the least such relation.

Just as typing rules in a typed language assign meaningful types to objects in the

36

a : 6(a)

Ti : *i T2: t2

T1;T2:t1 + t2

Ti : t T2:t

Tx-.tx T2:t2 b: t3

if b Ti T2 : max(t\ + t3, t2 + t3)

T : U U<t
every t T : oo

T :<tx h<t
within t T : t

w- /- T/ / r[u/s] : t

(6)

(7)

(3)

(9)

-i »/-..r-i 1 '. t b'. t\ , .
3neAfö{oo} . , ' 10

while b 1 : (n x (t + iijj + <i v '

(11)

(12)

(13)

Figure 8: Level 2 Temporal Rules

37

language, the temporal rules may be thought of as assigning temporal information to

expressions. In the case where the restriction to 0 is made, the semantics associates

the maximum execution time to each process expression. In addition, these rules

also provide the temporal meaning to the various operators as follows. According to

rule (1), a parallel composite of two processes Pi ||P2 completes when both its compo-

nents have completed and hence the time taken is the maximum of the time taken by

either component. Rule (2) states that the choice composite of two processes P1+P2

finishes as soon as one of them is done. Rule (3) states that for sequential composition

P1=^P2 the maximum time requirement to complete is the sum of the times required

by its components. According to rule (4), a process may be constrained by a time

operator only if the corresponding value is time compatible with the execution time

of the component process. Rule (5) states that the execution of a periodic task may

not be bounded and that the period must be compatible with the execution time re-

quirement of the body process. Rule (6) is an axiom. Rule (7) is analogous to rule (3)

for processes. Rule (8) captures the synchronous nature of the components of & oper-

ator. Thus, it requires that both 7\ and T2 in Tx & T2 have the same timing behavior.

Rule (9) states that the time to complete an «/operation is the maximum of the time

taken to complete the consequent and the alternative. According to rule (10), the

maximum time taken by a while construct depends on number of iterations. Rule (11)

is analogous to rule (5) for processes. Rule (12) states that the temporal scope of a

task must be compatible with the timing requirement of its body. Rule (13) requires

some explanation. Assume the existence of a value space Valsys for all the system

related parameters. In practice this space would be finite and could be maintained as

a lookup table. The rule states that the timing requirement of a parameterized task

is nothing but the timing requirements inferred after substituting values for each of

the system parameters in the task abstraction. Thus, an abstracted task represents

a collection of timing requirements. This allows multiple versions of an algorithm to

be defined each possibly having a different performance characteristic.

The aforementioned temporal rules can be used to either verify or infer useful

temporal information. As a small example, consider a simple process that does the

38

add operation and then sends a signal. Thus P = add; send. Further suppose that

on a given machine it is known how long the add operation is going to take, say,

£(add) = 2, but it is not known how long the send operation takes. Furthermore,

suppose that P is to finish in 10 time units, that is, fllO : P is what is needed. Using

rules(4), (6), and (7) it can be deduced that the send operation must be completed

within 8 units of time. This is depicted in the proof tree below:

rule 6 —7-,—ö rule 6 add : 2 send : x
rule7 (add; send):y y < 10

rule4 ((HO : add; send) : 10

The desired deduction follows in trying to build (backwards) a proof-tree of the

goal (£)10 : add; send) : 10. From the application of rule 4, it can be deduced that

the desired goal is provable if we can establish that (add; send) : y and y < 10 for

some y. From rule 7, it can be deduced that this y must be 2 + x, where x is the

unknown timing requirement for the send operation. From the constraint y < 10, it

is immediately deduced that x < 8. Thus, this kind of information can be statically

deduced and can be used at compile time for scheduling etc.

Next, the focus is on operational rules. The operational rules for level 1 and

level 2 are contained in Figure 9 and Figure 10, respectively. The operational rules

are transition based. In defining these rules, a is allowed to range over Act, i range

over Acti, and e range over Acte. Also, the special action done is only present in the

semantic domain, that is, it cannot be used to construct process expressions. It is used

to flag the termination of a process activity. The operational rules define a relation

—>C Proc x Act x Proc. The operational semantics are then defined by the least such

relation. The notation P -% P' means that the process P behaves like process P'

after doing action a and in doing so, it consumes 8(a) time. Thus operational rules

allow us to record what actions a process can perform and how much time it takes.

It should be noted that since there is no separation between time and action, it is not

necessary to define two separate transition relations as has been done in [47]; rather

the approach presented is similar to that of [36], though differs from it in that the

39

timing requirements of an action are explicit instead of being implicit.

The operational rules give meaning to the various operators as follows. According

to rules (14) and (15), a sequential composition Pi=>P2 can only engage in the actions

of Pi as long as it is not finished. It can only start to engage in actions of P2 after

Pi has terminated. Rules (16) and (17) define the meaning of the choice operator.

Thus in Pi+P2 if Pi can finish first then according to rule (16) Pi will get selected.

If, however, P2 can beat Pi then rule (17) applies and P2 gets selected. In case both

have exactly the same requirements, the choice becomes nondeterministic. Rules (18)-

(20) assign meaning to the parallel operator ||. According to rule (18), if in the

composite Pi||P2, the process Pi is ready to engage in an action and P2 is not ready

to engage in the complementary action, then the only action possible for the composite

is that of Pi. Similarly, according to rule (19), if P2 is ready to engage in an action

and Pi is not ready to engage in the complementary action, then the only action

possible for the composite is that of P2. However, if Pi and P2 are ready to engage

in complementary actions, they must synchronize. This is the essence of rule (20)

and this is what is called the must synchronize semantics of || which differs from

what may be called the may synchronize semantics of CCS. Because of this, CCS

provides another operator called restriction to force synchronization. The choice of

must semantics then obviates the need for a restriction-like operator—at least for

synchronization purposes. This is the basic communication in the pure calculus.

However, PRETSEL provides a variety of communication primitives. These have

their own semantic rules that differentiate, for example, blocking send operation from

nonblocking send operation. These operational rules are discussed later in this section.

Also, it should be noted that in PRETSEL there is not just one r action, in fact there

are a family of them—one for each possible time constraint. These r-actions capture

the time required to perform the communication.

Next consider rule (21). According to it, a temporally constrained process is

capable of doing the same action as its component process as long as it is constrained

meaningfully. Furthermore, in this case the temporal constraint of the resulting

process is reduced by the execution time of the action involved. Rule (22) is similar,

40

Px^P[
(14) p^p2^p[^p2

P\ —> done

Pl^P2-Up2
(15)

Pl-.h P2--t2 Pl-^P[(h <h)
(16) P1+P2^P{

Pi-.h P2 : t2 P2 —► P2 (h <h)
(17) P1+P2-UPi

Pi -^ Pi P2 A (18)
P1||P2^P1'||P2

PlA P2-^P2' (19)
Pi\\P2^Pim

Pi -^ p{ p2 -% p'2

PX\\P2^P[\\P'2
(20)

p^p> p. t t<t>

Üt':P-^ü(t'-S(e)):P' (21)

P^P' P:t t<t'
Y[t'p _^ p'^lV'p (22)

Figure 9: Level 1 Operational Rules

41

that is, a periodic process does the actions of its body process as long as the period

is meaningful and it repeats forever. Rule (23) is an action axiom. According to

it the computation terminates once the only action has occured. Rule (24) states

that the operator & is a synchronous parallel combinator and thus both components

must be willing to engage in the same action (which need not be a communication).

Rules (25) and (26) are similar to rules (14) and (15). They describe the meaning of

sequential composition at the task level. Rule (27) is similar to rule (22) at the process

level. Rules (28)-(31) give the familiar operational meaning to the if and the while

operator. Rule (32) is similar to rule (21) at the process level. Rule (33) is similar to

the usual operational semantics of value-passing. Although, unlike value-passing, the

value space Valsys of system dependent parameters will normally be finite in practice.

The above discussion described temporal rules to capture the timing requirements

of a given process or a task and also gave a transition relation that describes how a

process executes and how much time it takes in its execution. The following propo-

sition relates the temporal rules to the transition rules.

Proposition 1 Let P be a process and let P -^-> Px -%■ a-^done. Then P :

Also the transition relation combines both the 'functional' behavior and the 'tem-

poral' behavior. For non-real-time applications one may just be interested in only

the functional behavior. It is clear that there are extra overheads involved in the

combined behavior as one must ascertain, for example, that the processes are time

correct. So, the question is whether to 'turn-off' the temporal behavior and use the

operational rules for just the functional behavior without the overhead. It turns out

that the answer to this question is affirmative and is summed up in the proposition

below. The answer relies on an erasure mapping that erases all the timing information

and what is left remaining is only the functional part. Formal details of this erasure

mapping S are left for future work; however, just to give an idea of S, define a erasure

on actions that strips off the timing information. This is then extended to terms and

the rules.

42

Proposition 2 Let P be a process and £ be the erasure mapping described above. If

P terminates so does S(P).

It is worth noting that the converse of the above statement may not hold in

general. This is because, in the presence of time, the operator + behaves 'more

deterministically' than in the absence of it.

Operational Rules for Communication Primitives

PRETSEL provides both blocking as well as non-blocking [41, 42] communication

primitives. The former being synchronous in nature is used for message passing at

level 2, whereas the latter being asynchronous in nature is used at level 1. In addition,

primitives for pure sunchronization at both levels are provided. Figure 11 contains the

operational rules for blocking send/receive primitives. Figure 12 contains operational

rules for non-blocking send/receive primitives. Figure 13 contains operational rules for

pure synchronization primitives. According to rule (34), if T\ in the composite T\ & T2

is ready to send but its counterpart T2 is not ready to receive, then T\ is essentially

blocked—the only possible action is that of T2. Similarly, rule (34) captures the case

where T\ is ready to receive but T2 is not ready to send and hence 7\ must block.

Rules (36) and (37) are symmetric to rules (34) and (35). Finally, when either T\

is ready to send and T2 is ready to receive or vice versa, the communication takes

place. This is captured in rules (38) and (39). In the non-blocking case, if P\ in the

composite Pi||P2 is ready to send a message, it sends it whether P2 is ready to receive

or not. Note that, from implementation point of view, this message is buffered if

there is no matching receive at the time of sending. Rule (41) states the same for

the case where P2 is ready to send. According to rule (42), if Pi is ready to receive,

it does so without waiting for a matching send. In the case where P2 is ready to

receive, rule (43) applies. Note that if the receive occurs before a matching send, the

received value may be undefined. Finally, in the rare instance where both parties are

ready at the same time, a genuine communication takes place, this is captured by

rules (44) and (45). Rule (46) for pure synchronization states that the component

43

task (process) that is ready to synchronize must wait till others are ready to do so

and when all of them are ready, the synchronization takes pake. This is captured in

rule (47). Similarly, rules (48) and (49) capture the synchronization at level 1.

44

a -% done (23)

(24) TxkT2^T[kV2

Tx -?-> T[

T^T2-^T[;T2

T\ —► done

T-^T' T:t t<t'

every t'T-^T'; every t' T

b == true T^T>

while bT-^T'; while b T

b = true Tj. -^ T[
if b 7\ T2 -% T[

b = false T2 -^ V2

if b 7\ T2 ^ T2'

T-^T' T:t t<t'
within t'T-^4 within (f - 8(a)) V

yyeVaisys
T^rr

sys
 [Z\T-±+T

Figure 10: Level 2 Operational Rules

(25)

(26)

(27)

b = false
while bT—>nil (28)

(29)

(30)

(31)

(32)

(33)

45

send(v 2\ se^> T{ T2^Tj a^receive(x)
Ti&^-^rx&TJ

Ti —>■ Tj T2 —► T2 a 7t send(v)

Ta&^-^ri&r^

Tj-
_a^T, ^ w(j,) ^ a j: receive(x)

TikTi-^TlkT*

Ti
_a^T, T^recei^X)T, fl ^^

Ti&Ta-^Tj'&ra

rr end(w) „, _ T-eceiue(x) rjl/

 > iX -12 ► -*2

Tx&^^^'&^Ka;]

Zi'
ecet'ue(x) _, „ send(v) ,
 > ia 12 >■ J-2

Ji&ra-^T/Kxi&r^

(34)

(35)

(36)

(37)

(38)

(39)

Figure 11: Operational Rules for Blocking Communication

46

parsend(v) „,
^1 * r\

PUD Parsend(v) p,., p

"l|| "2 ► "llM2

_. par_send(u) „,
"2 > "2

-Mill "2 *■ -Mill "2

D II D par_receit/e(v) p/|| _
-M.II-T2 *• -MH-M!

pi|)p2par_^e(,)pi||p,

_ par_serad(t>) D/ „ par-receive(x) _,
"l » "l "2 » "2

_ par-receive(x) D/ _ parsend(v) _,
"l >• "1 "2 > -Mi

(40)

(41)

(42)

(43)

(44)

(45)

Figure 12: Operational Rules for Non-Blocking Communication

Ti 6a-^lr ?y Tj -1+Tj a^ barrier \<j<nt\j±i

T1kT2---kTr--kTn-^TlkT2---k,T'r--kTn

 T.haIlHTT\ l<i<n
rx & r2 • • • & r,- • ■ • & rn -^ ra & r2 • • • & r; • • • & r„

(46)

(47)

p^obaUpnc p, p._Upi g^globaUync l<j<nAj?i

Pl\\Pl---\\Pr--\\Pn^Pl\\P2---\\P!---\\Pn { }

p global sync p, - , . .

AHP2 • • • \\Pj- ■ ■ \\Pn -^ P1HP2 • • • \\P'i ■ ■ ■ \\P

Figure 13: Operational Rules for Pure Synchronization

47

7 PRETSEL and UNITY

In this section the PRETSEL approach is compared with the UNITY approach.

UNITY is an abstract specification language for parallel programs together with logic

to reason about them [9]. It is preferred to call this logic the semantics of UNITY

notation. Since PRETSEL is designed for real-time applications, in addition to being

a language for parallel computation, it is only appropriate to compare the functional

fragment of PRETSEL with UNITY. It is possible to define erasures of PRETSEL

specifications that would suitably eliminate all temporal and performance constructs

and then define mapping between these erasures and UNITY specifications to relate

them in a formal way. However, the discussion will be kept informal here and leave all

formal details of this relationship as part of the future work. An informal comparision

of the PRETSEL approach with the UNITY approach is given on the basis of three

criteria: the basic design philosophy, the syntax, and the semantics.

The basic philosophy of the UNITY approach is to decouple a program from its

implementation. Thus the emphasis is on separating concern between what on the

one hand, and how, when, and where on the other. This separation results in a very

simple and powerful programming notation. The basic philosophy of the PRETSEL

approach too is the separation of what from how. However, the domain of the ap-

plication is real-time computation and, therefore, abstraction of when and where in

PRETSEL is allowed. This is because in real-time computation a distinction must

be made between two programs that are functionally equivalent, but consume differ-

ent resources and exhibit differing performances. Thus, for example, in the real-time

domain a distinction is made between bubble-sort and quick-sort, although both are

sorting procedures. Hence a real-time specification language must be based on a more

intensional view of computation. As a result, performance, timing, resources, etc.,

which are of no importance (at the specification level) in the UNITY approach become

central and essential in the PRETSEL approach. This is achieved via quantification

and abstraction of various real-time features in the language. Thus, although PRET-

SEL has explicit timing and performance constructs, the approach has not deviated

48

from the basic philosophy of separation of concern of UNITY. All the real-time re-

lated constructs in PRETSEL are presented at a suitable level of abstraction that

decouples a PRETSEL specification from its implementation. As with the UNITY

approach, the PRETSEL approach too neither assumes nor adheres to a particular

architecture.

A comparison of the syntax of UNITY programming notation with that of erasures

of PRETSEL notation is presented. Although UNITY makes no explicit mention of

a two level approach, the UNITY approach can be viewed as being two level—the

program level and the program structuring level. These would correspond to level 2

and level 1 of PRETSEL, respectively. The basic unit of computation in UNITY is

an assignment statement. The basic unit of computation in PRETSEL is an action.

This is because PRETSEL is event-based and UNITY is state-based. However, events

and states are related by a cause and effect relationship. The act of assignment in

UNITY would correspond to an action in PRETSEL. PRETSEL allows for different

actions since different actions may take different time or consume different resources.

If the timing and performance considerations are ignored, then PRETSEL too will

have ony one basic entity of computation. With regard to operators and control

structures, UNITY has || and | (although these are called separators, these can be

thought of as operators) and no explicit control structure. It does, however, have an

implicit looping (operationally speaking) since all assignments are assumed to execute

infinitely often. The || construct of UNITY is both synchronous and asynchronous.

However, in PRETSEL this operator is split into two—a synchronous operator (&

at level 2) and an asynchronous operator (|| at level 1). It has been shown in [38]

how to map the || of UNITY to par of UC [3]. The semantics of the latter are close

to that of the operator & of PRETSEL. Thus, the || operator of UNITY together

with a suitable mapping would correspond to the operator & of PRETSEL. The

| construct of UNITY represents a non-deterministic choice (under certain fairness

assumptions). In PRETSEL, choices have been separated into two—a deterministic

choice (i/at level 2) and a non-deterministic choice (+ at level 1). It should be noted

that the semantics of the latter are slightly more complex in the presence of time

49

and performance considerations, for it may behave as a deterministic choice operator

under certain conditions. At level 2 an explicit looping construct is allowed, whereas

UNITY implicitly does so. A sequencing operator =$> at level 1 also has been provided.

UNITY has an operator Q (but the overloading of this symbol at the two levels is a

bit confusing) to compose two programs. It has been shown in [38] how to define a

sequencing operation on UNITY programs based on | under certain conditions. This

would correspond to the sequencing operator => of PRETSEL.

With regard to semantics, the UNITY approach is based on Hoare-style axiomatic

semantics to reason about programs whereas for PRETSEL an operational semantics

have been developed. This is because of the need to distinguish between computations

that are deemed equivalent from a pure parallel processing point of view. Operational

semantics being quite intensional allows for such distinctions to be made. In fact, it

is a more general approach whereby distinctions can be made from the finest to the

coarsest by defining suitable notions of equivalences.

50

8 Examples

In this section the applicability of PRETSEL is illustrated through three examples.

The first is a simple example of vector (matrix) operations. The second is an example

where the system must respond to dynamic changes in the input environment. The

third example is Martin Marietta designed AN/SQS-53C Sonar System.

8.1 Vector Operations

As an example consider the following vector computations which must be completed

to meet some maximum time deadline d. Let X, Y and Z be input vectors of length

ra, and the system must compute the two output vectors (X+Y+Z) and (X+Y) * Z.

Further, assume that the process Q = X+Y is computed first and then the result

vector is passed on to two concurrent processes S = Q+Z and T = Q * Z which

compute the two desired equations. Upon completion of Q, a parallel-send is required

to send data to the successor subtasks S and T. Let p be the total number of

processors in the system. Suppose that two different algorithms T\ and T2 are available

for computing Q * Z, with different execution times, and suppose T had to complete

within time d\.

Figure 14 shows the Level 2 process graph and the sample code of the process Q (as

a data parallel shared memory algorithm). Figure 15 shows the formal specification

for the example.

The time to complete task R, which is simply the parallel composition of processes

S and T, is the maximum time to complete S and T. If Q takes more than d time

then the process fails to meet the time constraints. If Q takes d2 < d time, then R

must complete within dx = d-d2 time. The task Q (and also S and T) are the data

parallel algorithms, and ■K is the mapping function and kn/p is the execution time

given as a function of n and p (thus modelling the scalability of Q). The process

h(p)Q' specifies that process Q' must be executed in synchronous parallel mode on

p processors; degree of parallelism in the parallel task Q is denned by the variable

p (the number of processors). The process Q" performs the arithmetic operations of

51

Program Q:

(processors p, data size n, mapping)
load node programs
main ()
int Q[n/p]
n=sys-proc
while (i <= n/p)
Q[i] = x[i] + Y[i]

barrier
par-send(Q to S)
par-send(Q to T)
end

Figure 14: Example: Description of processes at each Level

Level 1 Specification :

P :: = Sid : Q^R

R ::= S\\T

T ::= Üdi : Ti+T2

Level2 :

Q ::= [n,p,Tr,kn/p]k(p)Q'

Q' ::= while(i < n/p)Q ;(barrier) ;(par„send)

Q" (comp-add)

Figure 15: The Formal Specification using PRETSEL

52

adding the vector elements, the barrier is the internal communication that signals the

end of the while loop, and the parsend is the external synchronization required to

initiate process R and send data to the process S and T. The task T is specified using

the timed choice operator which specifies that two different choices of algorithms are

available, and that the choice is made dependent on the time taken by each algorithm

based on the values of data size n and processors p available for the algorithm. The

algorithm that meets the deadline, if at all, will be selected by the system as per

the meaning of this operator. This illustrates how the effect of scalability of parallel

algorithms is accounted for in the PRETSEL model.

8.2 Bursty IO: Dynamic Changes in the System

Next, it is illustrated how PRETSEL models a situation where dynamic changes in

the input environment invoke new resource allocation processes.

Consider an example scenario, shown in Figure 16, where a sensor task S must

continually receive data and then send this data to a processing task P for processing

of the data. These are examples of periodic tasks since the process is repeated for

each input data set that is received by the sensors. Applications where such tasks can

occur include avionics where the sensor task represents data collected from radars;

the change in rate of data could correspond to the use of more radars or increase

in resolution. Suppose the timing constraint demands that each of these tasks must

complete in t seconds to meet the real-time constraints. If a 9-processor parallel

architecture is available, the processing task may be executing as a parallel algorithm

using four processors in order to meet the timing requirement. At some instant in

time suppose the Sensor receives a large amount of data, i.e., there is a bursty I/O,

which subsequently increases the time taken by the processing task since more data

will have to be processed. Thus, the presence of bursty I/O must be specified, and

the actions to be taken in its presence. To meet the timing deadline of t, the system

may allocate more processors to task P to decrease its execution time. Specifically,

the system must perform a re-mapping and must select a "new" algorithm (from the

choices available in the table provided to the system) and this may require allocating

53

Processing

Task

receive data from sensors

every T time units

receive real-time data from sensors
send to processing task after preprocessing

Sensor Task

send data to processing task

Process data received
using multiple proc other tasks

allocate two additional
processors to meet time deadlines

Figure 16: Example: Bursty 10 handled by Architecture

54

two more processors to task P (by taking processors away from non-critical tasks

- i.e., tasks that do not have timing deadlines). The time taken to find this new

re-mapping constitutes an overhead and therefore the re-mapping process itself must

be highly efficient and must meet the time constraints. Figure 17 shows the system

components, behavior and the details of each of the tasks. A formal specification

must capture the behavior of this process.

For this example, assume the following. There are three different algorithms

that may be used to process the data; i.e. there is a choice of three algorithms for

processing task P. The sensor task S computes the rate of arrival of data, and there

is a tolerance specified for the change in data rate between two successive periods.

The re-mapping task R selects and loads the code for the algorithm that must be

used by P to satisfy the performance requirements.

Now consider the modelling of the above example using the PRETSEL model.

The formal specification of the system is shown in Figure 18. The choice operator

P+P' signifies that process P or P' will be initiated; in the system implementation

this will be based on the change in the I/O rate and will be initiated by the Sensor

task S. When the system is first started P' is invoked to make the selection and load

the code. The choice operator for the processing task P signifies that the choice of

algorithms (code) for the task P will be based on which algorithm meets the time

requirements. Once again, this selection is made by the re-mapping process and the

selection does not change until the re-mapping process is invoked again. When the

re-mapping task R is invoked it will determine which algorithm must be selected,

and the time information is conveyed through the timed sequential operator. The

maximum time deadline "fH" specifies that the process P must take no more than

time t to meet its periodic time constraint.

8.3 Specification of a Sonar System

In this section the effectiveness of PRETSEL in modelling a real application is demon-

strated, by showing how PRETSEL can be used to specify the Martin Marietta

designed AN/SQS-53C Sonar System with an emphasis on the Active Receive Beam-

55

Sensor Task S:

every T:

collect data
preprocess data
compute new data rate

if change <> tolerance
then
initiate Remap Process R
par-send (data rate.data) to R

else
initiate processing task P
par-send(data) to P

end

if change in
data rate

if no
change in

rate

Processing Task P:

every T:
par-receive data(sensor)

process data
{compute communicate
cycles}
using algorithm loaded
into memory

barrier
end

load new code X
initiate processing task P

Re-Map Task R: (new-rate,old-rate,info)
{info includes deadlines, proc. count,
data size, performance requirements)

determine algorithm X for Processing task P

where X meets new requirements
{look up table to find code X to process
at new rate within time T)

Load code of X into processor memories
Initiate processing task P
end

Figure 17: System Components for Handling Bursty 10

56

System : := S^Q

Q : := P+P'
P' : := üt:R=>P

P : := P1+P2+P3

Figure 18: Formal Specification (for Level 1) of System

former component of the system. Towards this end, the following is addressed:

• decompose the beamformer into major functional units

• consider the implementation of the Sonar on a parallel computer

• address the parallelism inherent in the different functional units

• model functionality using PRETSEL

• demonstrate the effectiveness of PRETSEL

The AN/SQS-53C sonar system was designed, developed and manufactured by

Martin Marietta. It is an active and passive, hull array sonar system designed specif-

ically to meet the requirements of modern naval vessels. A passive sonar listens for

radiated noise from the environment and uses processing techniques to determine the

bearing and characteristics of that radiated noise. An active sonar transmits sound

at a certain frequency into the environment and processes the noise for echos from

the transmitted energy.

The sonar provides three active modes of operation and one passive mode. The

Surface duct (SD) mode provides a full 360 degrees of active surveillance capabil-

ity. It may be operated concurrently with either the Variable depression (VD) mode

and/or the track (TK) mode in addition to the passive (PA) mode. SD is used to

track close-in targets and to maintain a highly competent, panaromic anti-submarine

57

warfare active surveillance. The Variable depression mode provides a detection ca-

pability over and up to 240 degree search sector. In VD mode both transmit and

receive beams can be steered vertically as well as horizontally. The VD mode pro-

vides waveforms, processing techniques, and displays formats specifically designed to

detect, track and classify submarines. The VD mode may be operated concurrently

with either the SD or TK modes. The Track mode provides a narrow bearing and

range window surrounding a suspected contact for highly accurate range, bearing and

Doppler estimation. The track mode is initialized via operator selection from a search

mode (VD or SD) once a track has been established on a given contact. Track beams

are steered directly at the contact and lock onto the target as it maneuvers. The TK

mode may be operated concurrently with either the SD and/or the TK mode.

The AN/SQS-53C system can be depicted simplistically by the major functions

that it performs. The acoustic data arrives at the transducers, is signal conditioned

and then forwarded to the active and passive receivers. The active receive processing

can itself be decomposed into: Signal Conditioning, Beamforming, Signal Processing,

Data Processing, and Display and Operator machine interface. The focus of the

example is the Beamforming component within the active receive processing which

is described in more detail in the following paragraphs. The goal is to provide a

PRETSEL specification of the functionality, and the timing, of the Active Receive

Beamformer component of the sonar system.

Beamforming is a technique for performing spatial filtering, i.e., signals and noise

arriving at the array from angles other than the array look direction are attenuated

relative to coherent signals and interferences arriving at the array from the look direc-

tion. The beamformer receives the digital element data from the signal conditioner.

The control data from the Controller defines the modes (SD,VD, TK), the beam

bearings, sampling rates, and frequency bands to be processed. The beamforming is

performed in two stages: first, vertical beamforming is performed, followed by hori-

zontal beamforming. The beams are stabilized for own ship heading, roll and pitch.

Sub-band filtering is performed following the beamforming. These sub-band filters

remove the effects of the own ship doppler (called own ship doppler nullification)

58

and generate independent mode/waveform processing bands. Figure 19 shows the

outline of the processing required within the beamformer. The resulting data (of the

beamformer) is output to the Active Analyzer program.

The precise processing required for active sonar data in the Beamformer has many

permutations depending on the digital input data and the control data. Factors

that influence the choice of operating mode, coverage, and waveform include the

ships mission, the threat, and the environmental conditions. All of these factors

can vary at any time causing an impact on the amount of processing performed by

the beamformer. Since the sonar is a real-time system, the system must adapt to

meet the loading on the beamformer caused by the operators choice of operating

mode, coverage, and waveform. This also suggests that the timing requirements

need to be specified in terms of the maximum delay allowed. The time and ownship

data is supplied once every 100 milliseconds; in other words the beamformer must

finish processing one "data set" within 100 milliseconds. The data set itself will

vary depending on the modes selected, and will consist of data collected over 512

time samples (within the 100 milliseconds). The output data to be computed varies

with the task and the input data; for example the VBF forms 72 stave beams for

each of the modes (SD, VD, or TK), thus generating up to 216 total beams. The

Configuration Evaluation (CE) component in Figure 19 defines the step at which the

parameters, such as modes and sampling rates, are set. This configuration evaluation

process occurs at every "ping" of the sonar, where the "ping" cycle itself may be set

by the operator. Between each ping the sonar periodically receives data that must

be processed by the beamformer. Since the processing requirements may be changed

by the CE task, at every "ping", a remapping of the computing resources must be

performed to assure that the beamformer meets the real-time requirements. Based on

the parameters provided by the CE the remapping task must determine the number

of processors to be used for each of the beamformer components.

The outline of the Vertical Beamformer process is shown in Figure 20. Based

on the coefficients supplied by the CAL process, the eight elements in a stave are

summed together to form three sets of beams. It provides the necessary data buffering

59

CE:

REMAP

CAL:

VBF:

HBF:

EVERY "PING" DO

START/RESTART

Configuration Evaluation
determine modes, rate

REMAP resources:
determine num. proc.

EVERY 100ms do

Calculate Beamformer
Coefficients

Vertical Beamforming

Horizontal
Beamforming

ASB:

Figure 19: Flowchart of Active Receive Beamformer Process

60

—3s»

. Start

1
Sig Condit Interface
Ready:
s=0; e=0; t =0

v
Multi element
by coefficient

v
Add result to accumulator

BF Coefficients

Control
Modes determined by
Config. Evaluation

/" ~"\ = can be done
^~~----—^ in parallel

t=511 ?

Yes

Finish

Figure 20: Flowchart of Vertical Beamformer Process

61

to accomodate the time delays necessary for vertical beamforming. The Horizona-

tal beamformer (HBF) receives its input data from the VBF. Due to the similarity

between the processes, and for brevity, the details of the HBF and ASB tasks are

omitted. The VBF process exhibits a large degree of data parallelism. Specifically,

each of the 72 staves can be computed in parallel and also each of the 512 different

samples can be computed in parallel. The dependencies exist only in the sense that

two different staves will need to read the same input data; in other words there is no

read-after-write dependencies and the entire loop in Figure 20 may be parallelized.

Using the functional decompositions shown in Figures 19 and 20, a formal specifi-

cation of the Active receive beamformer process can be provided in PRETSEL. Fig-

ure 21 shows the complete Level 1 specification of the Beamformer (BEAMFORM)

process depcited in Figure 19. The figure shows the complete level 2 specification of

the Vertical Beamformer (VBF) process only. The other level 2 tasks can be specified

in a similar manner. The following observations must be noted:

« modes to be used DsdJt-DvciJt-Dtk are determined by the Configuration evaluation

(CE) task, which is invoked at every "ping" and determines the choices based

on the type of objects being tracked by the sonar. The operator may also choose

to operate some of the modes concurrently, and select the input sampling rate.

® the number of processors, and the specific algorithm to be used, is determined

by the Remap task based on the sampling rate and the modes selected by the

Configuration Evaluation task.

e Dsd denotes processing of Surface Duct (SD) mode using data Nsci for SD mode.

Similarly, DV(i and Dtk are defined for the data used in the Vertical depression

and the Track modes.

• The input data to the Vertical Beamformer(VBF) is generated by the previous

task which calculates the coefficients (CAL).

» The data computed by the VBF task is sent to the Horizontal Beamformer task

(HBF) using the par^send command.

62

READY ::= Upin9 PROCESS

PROCESS ::= CE^REMAP^BEAMFORM

BEAMFORM

LOOP

n100ms LOOP

CAL^VBF^HBF^ASB

VBF ::= Dsd+Dvd+Dtk

Dsd ::= [7Vsd,p, map7r,exec_ü'me] !k(p)Qsd

Qsd ::= while(i <= Nsd/p) Q'; barrier ; par send

Q' ::= while (sumstave) Q"

Q" ::= (comp-multi) ; (comp-add)

Figure 21: Formal Specification of Active Receive Beamformer

63

READY Wing pROCESS

PROCESS := CE^REMAP^BEAMFORM

BEAMFORM := ÜX : LOOP

LOOP := CAL^VBF^HBF^ASB

VBF := Dsd\\Dsd\\Dtk

Dsd := [Nsd,p,mapw, execJime] &z{p)Qsd

Qsd := every 100ms P

P := while (i <= Nsd/p) Q' ; barrier ; par.send

Q' := while (sum^stave) Q"

Q" (comp_multi) ; (comp-add)

Figure 22: Specification of Pipelined Execution

The specification defined in Figure 21 did not provide a pipelined implementation.

A pipelined implementation of the beamformer process can be specified using PRET-

SEL. By specifying the Level 2 tasks as periodic processes, with a period of 100ms,

the level 1 tasks we can specify a pipelined execution. In the beamformer, there is

also a constraint on the maximum time taken to process each data set by all the tasks.

In other words, a response time (latency) constraint X ms, time to process each data

set, is imposed. The pipelined specification is shown below in Figure 22. Note that

each level 2 task is specified as a periodic task. One of the system issues introduced

by this scenario is that of resource allocation schemes, to assign processors/memory,

which can balance throughput and the response time constraints.

64

9 Summary and Future Work

This report discussed the problem of formal specification of real-time systems imple-

mented on a parallel machine.

For many real-time applications parallel computers offer a natural computing plat-

form and offer an attractive method to place higher processing requirements, due to

more sensors or additional information, on real-time systems. However, the lack of

software support both in the design as well as in the implementation phases has

resulted in a slower acceptance of parallel computing than originally expected. Fur-

thermore, very little attention, if at all, has been paid to real-time embedded system

requirements. The general goal of this research project was to investigate important

issues related to the design, development and validation of real-time system software

for parallel computers. In particular, the objectives were to consider formal models

for specification of real-time systems implemented on parallel computer systems. A

formal specification language will allow the system designer to specify the structure

of the real-time system and make timing assertions about the system, while leaving

the complex problems of resource allocation and verification to automation. The pro-

vision of such a formal specification model with a well-defined syntax and semantics

will allow the development of automated verification tools.

A number of researchers have provided formal specification models, and verifi-

cation methodologies, for real-time systems on conventional machines but there lias

been minimal work on real-time systems implemented on parallel machines. The

problem of specification, design, and analysis of real-time systems and software (in-

cluding issues such as specification, language design, compiler support, and operating

systems) is made more difficult by the concurrency in real-time applications and fur-

ther complicated by the presence of time. This report provided a review of current

formal methods for specification of real-time systems and evaluated their expressive

power, or lack thereof, in specifying parallel real-time systems.

This project proposed a specification language PRETSEL (Parallel REal-Time

SpEcification Language) for parallel real-time systems. The PRETSEL model incor-

65

porates some features of CSP, CCS, and process algebras while providing additional

constructs to express the issues introduced by parallelism such as scalability and

degree of parallelism.

The PRETSEL specification language is based on a traditional two-level com-

puting model for parallel computing whereby a parallel computation is viewed as a

collection of interacting (data) parallel algorithms. This view is naturally reflected

in PRETSEL syntax where at the lower level various constructs are provided for the

specification of a data-parallel real-time algorithm (data-parallelism). At the upper

level another set of constructs is provided to combine such tasks in a variety of ways

(task-parallelism). Furthermore, the PRETSEL language allows for the specification

of performance requirements. This is achieved by allowing parameterization of tasks

by system related performance specifications. This includes, for example, number of

processors, execution time information, mapping specification, etc. PRETSEL clearly

maintains a separation between functional requirements, temporal requirements, and

performance requirements. It provides temporal scope constructs to be able to spec-

ify periodic tasks and also tasks with hard and soft deadlines. It also supports a

variety of communication mechanisms. A formal operational semantics of PRETSEL

has been defined and some relevant results have been established. The relationship of

PRETSEL's syntax and semantics to other existing models has also been discussed.

The PRETSEL model has been used to specify the behaviour of a Sonar Beamformer,

which is part of the Martin-Marrietta sonar system, using off the shelf components.

This example clearly demonstrated the effectiveness of PRETSEL in the specification

of an actual real-time system.

9.1 Future Work

A number of issues can be explored to bring to fruition our endeavor of developing a

robust parallel real-time system.

• Extend the PRETSEL specification language and model to incorporate hetero-

geneuty, fault-tolerance and exception handling.

66

• The table driven approach should be further developed to provide a complete

set of system requirements for the PRETSEL model.

• Proof system for Verification: To develop the verification tool, establish a tran-

sition model and provide a proof system. Efforts shall be directed towards

establishing the soundness and completeness of the proof system.

• Investigate automatic synthesis and rapid prototyping of real-time programs in

parallel and distributed environments.

• Design of a PRETSEL based Validation, Verification and Synthesis Toolkit.

• System software issues such as provision of a run-time support for communi-

cation, scheduling and resource allocation algorithms, and operating system

support.

67

References

[1] R. Alur and T. A. Henzinger, Real-time logics: complexity and expressiveness.

Proc. Fifth Annual Symposium on Logic in Computer Science, 390-401, IEEE

Computer Society Press, 1990.

[2] J.C.M. Baeten and J.A. Bergstra, Real Time Process Algebras, Technical Report

CS-R9053, Centre for Mathematics and Computer Science, Amsterdam, The

Netherlands, 1990.

[3] R. Bagrodia, K.M. Chandy, and E. Kwan, UC: A Language for the connection

machine, Proc. Supercomputing 1990, 525-534, 1990.

[4] A. Bernstein and P. K. Harter, Proving real-time properties of programs with

temporal logic, Proc. ACM SIGOPS 8th Annual ACM Symposium Operating

System Principles, Dec. 1981, 1-11.

[5] G. Berry and L. Cosserat, The Esterel synchronous programming language and

its mathematical semantics, Lecture notes in computer science, Vol. 197, 389-

448, Springer-Verlag, 1985.

[6] J. Blazewicz, Deadline scheduling of tasks with ready times and resource con-

straints, Information Proc. Letters, Vol. 8, No. 2, Feb. 1979.

[7] T. Bolognesi and F. Lucidi, LOTOS-like process algebra with urgent or timed

interactions. K. Parker and G. Rose, editors, Proceedings of the Fourth Inter-

national Conference on Formal Description Techniques (FORTE'91), North-

Holland, November, 1991.

[8] P. Brinch Hansen, Parallel Programming Paradigms, Prentice-Hall, 1995.

[9] K. M. Chandy and J. Mishra, Parallel Program Design: A Foundation, Addison-

Wesley, 1988.

68

[10] J. E. Coolahan, Timing requirements for time-driven systems using augmented

Petri nets, IEEE Trans. Software Eng., SE-9(5):603-616, (September 1983).

[11] B. Dasarathy, Timing constraints of real-time systems, IEEE Trans. Software

Eng., SE-ll(l):80-86, (January 1985).

[12] J. Davies and S. Schneider, An Introduction to Timed CSP, Technical Report,

PRG, Oxford, 1989.

[13] J. Davies, Specification and Proof in Real-Time CSP, Cambridge University

Press, 1993.

[14] N. Dershowitz, Orderings for term-rewriting systems, Theoretical Computer Sci-

ence, Vol. 17, 279-301, 1979.

[15] R.B.K. Dewar, G. A. Fisher, E. Schonberg, R. Froehlich, S. Bryant, C. F. Goss,

and M. G. Burke, The NYU Ada translator and interpreter, Proc. IEEE COMP-

SAC'80, October 1980.

[16] R.B.K. Dewar, E. Dubinsky, E. Schonberg, and J.T. Schwartz, Programming

with Sets: An Introduction to the SETL Programming Language, Springer-

Verlag, 1986.

[17] A. Diller, Z: An Introduction to Formal Methods, John Wiley and Sons, 1990.

[18] R. Duke and G. Smith, Temporal logic and Z specifications, The Australian

Computer Journal, 21(2):62-66, 1989.

[19] C. J. Fidge, Specification and verification of real-time behaviour using Z and

RTL, Proc. Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS

Vol 571, 393-408, Springer-Verlag 1991.

[20] R. P. Gabriel (ed.), Draft report on requirements for a common prototyping

system, ACM SIGPLAN Notices 24(3):93-165, 1989.

Springer-Verlag, New York, 1986.

69

[21] A. Galton, Editor, Temporal Logics and their Applications, New York: Academic

Press, 1987.

[22] V. Gehlot, Performance specification and livelock detection/correction of a pro-

tocol using timed Petri nets, Proc. International Conference on Communications,

1286-1290, 1988.

[23] V. Gehlot and I. Lee, 'Formal specification and analysis of DMI—an x.25 based

protocol, Proc. IEEE INFOCOM'88, 641-650, 1988.

[24] R. Gerber and I. Lee, A Proof System for Communicating Shared Resources,

Proc. of IEEE Real-Time Systems Symposium, 288-299, 1990.

[25] M. Hennessy and T. Regan, A Temporal Process Algebra, Technical report 2/90,

University of Sussex, UK, April 1990.

[26] M. Hennessy and T. Regan, A Process Algebra for Timed Systems, Technical

Report 5/91, Computer Science, University of Sussex, Brighton, April 1991.

[27] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[28] J. Hooman and J. Widom, A temporal logic based compositional proof system

for real-time message passing, Dept. of Comp. Science technical report 88-919,

Cornell University, Ithaca, NY, 1988.

[29] S.F. Hummel and R. Kelly, A Rationale for Massively Parallel Programming

with Sets, Journal of Programming Languages, 1 (3).

[30] F. Jahanian and A. K.-L. Mok, Safety analysis of timing properties in real-time

systems, IEEE Trans. Software Eng., SE-12(9):890-904, (September 1986).

[31] K. B. Kenny and K.-J. Lin, Building flexible real-time systems using the Flex

language, IEEE Computer, Vol. 24, No. 5, 70-78 (May 1991).

70

[32] A. S. Klusener, Completeness in Real Time Process Algebras, Technical report

CS-R9106, Centre for Mathematics and Computer Science, Amsterdam, The

Netherlands, January 1991.

[33] R. Koymans et al., Compositional semantics for real-time distributed computing,

Lecture notes in computer science, Vol. 193, 167-189, Springer-Verlag, 1985.

[34] R. Koymans, J. Bytopil, and W. P. de Roever, Real-time programming and

asynchronous message passing, Proc. 2nd Symposium Principles of Distributed

Computing, Montreal, Aug, 187-197.

[35] I. Lee and V. Gehlot, Language constructs for distributed real-time program-

ming, Proc. Real-Time Systems Symposium, 57-66, San Diego, California, De-

cember 1985.

[36] I. Lee, P. Bremond-Gregoire, and R. Gerber, A process algebraic approach to

the specification and analysis of resource-bound real-time systems, Proc. of the

IEEE, pp. 158-171, vol.82, No.l, Jan. 1994.

[37] J. W.S. Liu, K-J. Lin, W-K. Shih, and A. C. Yu, Algorithms for scheduling

imprecise computations, IEEE Computer, Vol. 24, No. 5, 58-68 (May 1991).

[38] Y. Liu, A. K. Singh, and R. L. Bagrodia, A decompositional approach to de-

sign of parallel programs, IEEE Trans. Soft. Engineering, SE-12(20), 914-932,

December 1994.

[39] Z. Manna and A. Pnueli, How to cook a temporal proof system for your pet

language, Proc. Symposium Principles of Programming Languages, Austin, TX,

Jan. 1983, 141-154.

[40] T. Martin, Real-time programming language PEARL—concepts and character-

istics, Proc. COMPSAC, 301-306, Chicago, Illinois, 1978.

[41] Message Passing Interface Forum, Document for a standard message passing

interface, Technical report, University of Tennessee, Knoxville, Tenn., 1994.

71

[42] Message Passing Interface Forum, MPI: a message passing interface, Proc. Su-

percomputing'93, 878-883, 1993.

[43] R. Millner, Communication and Concurrency, Prentice-Hall, 1989.

[44] R. Milner, A Calculus of communicating systems, Lecture notes in Computer

Science 92, Springer-Verlag, 1980.

[45] R. Milner, Calculi for synchrony and asynchrony, Theoretical Computer Science,

Vol. 25, 267-310, 1983.

[46] A. Mok, SARTOR - A design environment for real-time systems. Proc. of the

9th IEEE COMPSAC, 174-181, 1985.

[47] F. Möller and C. Tofts, A temporal calculus of communicating systems, Proc. of

CONCUR'90, LNCS 458, 401-415, 1990, Springer-Verlag New York.

[48] X. Nicollin and J. Sifakis, An Overview and Synthesis of Timed Process Algebras,

Proceedings of the REX Workshop on Real-Time: Theory in Practice, LNCS 600,

1991.

[49] X. Nicollin, J.L. Richier, J. Sifakis, and J. Voiron, ATP: an Algebra for Timed

Processes, Proceedings of the IFIP TC 2 Working Conference on Programming

Concepts and Methods, Sea of Gallilee, Israel, April 1990.

[50] X. Nicollin and J. Sifakis, The algebra of timed processes ATP: theory and

applications, Information and Computation, Dec. 1990.

[51] X. Nicollin, J. Sifakis, and S. Yovine, From ATP to Timed Graphs and hybrid

systems, in J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, edi-

tors, LNCS 600, Proceedings of REX Workshop "Real-time: Theory in Practice",

The Netherlands, Springer-Verlag, June 1991.

[52] J. S. Ostroff, Formal Methods for the Specification and Design of Real-Time

Safety Critical Systems, Journal, of Systems and Software, 33-60, April 1992.

72

[53] J. S. Ostroff, Temporal Logic of Real-time Systems, Research Studies Press, 1990.

[54] J. S. Ostroff and W. M. Wonham, A framework for real-time discrete event

control, IEEE Transactions on Automatic Control, Vol 35, No. 4, April 1990,

386-397.

[55] J.S. Ostroff, Temporal logic and extended state machines in discrete control, in

M. J. Denhaum and A. J. Lamb, editors, Advanced Computing Concepts and

Techniques in Control Engineering, Vol. ^7 of NATO ASI Series F: Computer

and Systems Sciences, New York Springer-Verlag, 1988, 213-236.

[56] J.S. Ostroff, A temporal logic approach to real-time control, Proc. 24th IEEE

Conference Decision Control, Florida, Dec. 1985, 656-657.

[57] J. S. Ostroff and W.M. Wonham, Modelling, specifying and verifying real-time

embedded computer systems, Proc. 8th IEEE Real-time Systems Symposium,

San Jose, CA, Dec. 1987, 124-132.

[58] A. Pnueli, The temporal logic of programs, Proc. 18th IEEE Annual Symposium

Foundations of Computer Science, Providence, RI, Nov. 1977, 46-57.

[59] A. Pnueli, Application of temporal logic to the specification and verification of

reactive systems: a survey f current trends, Lecture notes in computer science,

Vol. 224, 510-583, Springer-Verlag, 1986.

[60] K. Ramamritham, J.A. Stankovic, and P-F. Shiah, Efficient Scheduling Algo-

rithms for Real-time Multiprocessor Systems, IEEE Trans. Parallel and Dis-

tributed Systems, Vol. 1(2): 184-194 (April 1990).

[61] G.M. Reed and A. W. Roscoe, A timed model for communicating sequential

processes, Theoretical Computer Science, 58, 249-261, 1988.

[62] J. T. Schwartz et al., Programming with Sets: An Introduction to SETL,

Springer-Verlag, 1986.

73

[63] R. L. Schwartz and P.M. Melliar-Smith, From state machines to temporal logic:

specification methods for protocol standards, IEEE Transactions on Communi-

cations, Vol. COM-30, Dec. 1982.

[64] A. Shaw, Reasoning About Time in Higher-Level Language Software, Technical

Report 87-08-05, Department of Computer Science, University of Washington,

Seattle, August 1987.

[65] A. D. Stoyenko, A schedulability analyzer for real-time Euclid, Proc. Real-Time

Systems Symposium, 218-227, 1987.

[66] Andre M. van Tilborg and Gary M. Koob, editors, Foundations of Real-Time

Computing: Formal Specifications and Methods, Kluwer Academic Publishers,

1991.

[67] C. Tofts, Temporal Ordering for Concurrency, University of Edinburgh Report

No. LFCS-88-49, 1988.

[68] W. Yi, Real-time behaviour of asynchronous agents, in J.C.M. Baeten and J.W.

Klop, editors, LNCS 458, Proceedings of CONCUR '90, The Netherlands, 502-

520, Springer-Verlag, August 1990.

[69] W. Yi, CCS+Time = an interleaving model for real-time systems, Proceedings

ofICALP'91, Madrid, Spain, July 1991.

[70] W. Zhao, K. Ramamritham, and J.A. Stankovic, Scheduling tasks with resource

requirements in hard real-time systems, IEEE Trans. Soßware Engineering, Vol.

SE-12, May 1987.

74
<HJ.S. GOVERNMENT PRINTING OFFICE: 1996-710-126-20220

MISSION

OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

