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ABSTRACT 

The Electronic Warfare Integrated Reprogramming Database (EWIRDB) is the 

primary Department of Defense (DoD) approved source of electronic warfare (EW) data. 

Its utilization in the areas of battle planning and EW research enables our military forces to 

effectively exploit the electromagnetic spectrum and shape the outcome of battle. The 

EWIRDB, however, lacks a viable conceptual data model. EWIRDB data are represented 

in disjoint parametric tree models that are implementation-oriented; to the extent that the 

tree structures are used as conceptual modeling tools, their hierarchical form is too 

restrictive to adequately describe EW data semantics. Moreover, these structures address 

only technical parametric data. Associated administrative, reference, and comment data 

are excluded. In practice, the EWIRDB is described in terms of the coded and record- 

based format of its output media, not its conceptual model. 

The primary goal of this thesis is the development of a semanticahy-improved 

conceptual design of EWIRDB data based on the object-oriented data model (OODM). 

The secondary goal of the thesis is the specification of a logical design, based on the new 

conceptual design, to provide the structure for a subsequent implementation of EWIRDB 

data on the Muhimodel and Multilingual Database System (M2DBS) in the Laboratory for 

Database Systems Research at the Naval Postgraduate School. 

The results of the work contained herein are: (1) an object-oriented conceptual 

design of EWIRDB data that supports the semantics of both the file format and tree 

structures, and (2) the specification of an object-oriented logical design for an M2DBS 

implementation of sample EWIRDB data. 
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I. INTRODUCTION 

In this thesis, I propose an object-oriented design for a representative portion of 

the Electronic Warfare Integrated Reprogramming Database (EWIRDB). In this chapter, 

I highlight the important role of the EWIRDB in the national defense and provide a 

description of the current format of the database. I conclude with specific thesis 

objectives and an outline for the organization of the thesis. 

A. AN OVERVIEW OF THE EWIRDB 

Advances in electronic warfare (EW) technology have had tremendous impact on 

modern military operations. The application of electromagnetic energy to secure friendly 

use of the electromagnetic spectrum, and to detect, reduce, or prevent its hostile use may 

well be the decisive factor in the outcome of battle. A force that effectively utilizes the 

electromagnetic spectrum gains the initiative. A force that exploits the weaknesses in an 

adversary's EW systems renders the adversary blind to the actual tactical situation. 

Success in EW is a prelude to victory. Failure in EW is militarily devastating. 

In the context of today's electronically-dependent warfare, frequent data collection 

and analysis is essential to the development of EW technologies to counter the enemy 

threat. Efficient maintenance of the latest data, obtained directly from measurement, or 

indirectly via electronic intelligence (ELENT), is the basis of successful EW. The National 

Air Intelligence Center (NAIC) maintains the latest data, in-depth and specific, on EW 

systems of the United States, friendly forces, and non-friendly forces. These data are 

stored in the Electronic Warfare Integrated Reprogramming Database (EWIRDB). 

"The EWIRDB is the primary Department of Defense (DoD) approved source for 

technical parametric and performance data on noncommunications emitters and associated 

systems. "[1] Noncommunications emitters include radars, jammers, navigational aids, 

transponders, target-sensing systems, and others. All such emitters generate and receive 

electromagnetic radiation and may be used to gain the advantage in armed conflict. 



EWIRDB emitter data are therefore indispensable in the analysis and execution of EW; 

without them, our ability to effectively manipulate the electromagnetic spectrum would be 

compromised. 

The EWIRDB is the union of data from three constituent sources. The National 

Security Agency (NSA) contributes data from its '"Kilting" database. Obtained through 

ELINT, Kilting data are referred to as observed data in the EWIRDB. Observed data 

result from the direct measurement and analysis of an emitter's electromagnetic signature 

following the signal intercept; they are fundamental in describing an emitter's 

performance. The Scientific and Technical Intelligence (S&TI) community, under the 

jurisdiction of the Defense Intelligence Agency (DIA), contributes parametric data 

assessments to the EWIRDB. S&TI systems analysts consider all available sources of 

information and then estimate or derive the total operational capability of an emitter. 

Derived parametric data in the EWIRDB are referred to as assessed data. The United 

States Noncommunications Systems Database (USNCSDB), supported by the Air Force 

Information Warfare Center (AFIWC), holds data on US owned and operated 

noncommunications emitters. USNCSDB service analysts provide inputs based on 

evaluation of system specifications. EWERDB data of this type take the same format as 

assessed data, and for this reason, are generally referred to as assessed data as well. 

The EWIRDB is thus a data composite. Moreover, this pooling of EW data may 

reflect different data values from different sources. Figure 1 depicts the EWIRDB as a 

composite of its three contributory sources. 

Developed in the seventies to support the reprogramming of EW systems, the 

EWIRDB and its role has since grown in both scope and in significance. While its primary 

focus remains in EW software reprogramming, the EWIRDB has become vital in other 

areas: EW research, development, test, and evaluation (RTD&E); modeling and 

simulation (M&S); training and acquisition. Merits of the EWIRDB are revealed by post- 
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Figure 1. The Merging of Data into the EWIRDB 



Desert-Storm figures: the value of the reprogrammable EW equipment directly supported 

by the EWIRDB has been estimated at $30 billion; the value of the operational systems, 

RTD&E, M&S, and training and acquisition programs that employ the EWIRDB has been 

estimated to be $1 trillion [1]. 

Li short, the EWIRDB is an indispensable tool that helps to bridge the gap 

between data analysis and effective exploitation of the electromagnetic environment by 

EW systems. It is a medium whose use ultimately helps maintain military readiness and 

minimize the loss of life in combat. 

B. THE FORMAT OF THE EWIRDB 

Although effective in its implementation, the data model of the EWIRDB is 

problematic. The EWIRDB is described in terms of a data-implementation model to the 

exclusion of a legitimate semantic data model. Data is presented in a hierarchical tree that 

is inherently arbitrary and reliant on the use of reference codes to link related pieces of 

data throughout the hierarchy. The non-intuitive hierarchical organization and coding 

scheme prevent the user from gaining a meaningful view of an emitter's performance 

parameters. Consequently, the nature and semantics of the EW data are obscured by its 

current representation. 

The administrative information maintained for emitter systems and their associated 

parametric data entries is excluded from the existing data model. The administrative data 

are addressed only in terms of the formatting of the data output file. This is a major 

shortcoming; the adrninistrative data are important to the analysis and tracking of 

parametric data, and represents a significant portion of the database. 

In general, the "intuitiveness" of data representations and the ease with which data 

formats may be interpreted largely determine the usefulness of a database. The current 

EWIRDB oversteps the boundaries of both criteria. So while it remains the foremost 

source of mission-critical EW data, lack of an adequate semantic data model ultimately 

results in a reduction of the EWIRDB's effectiveness as an instrument of EW. 



1. The Parametric Tree Model 

The upper-level hierarchical data model of the EWTRDB is illustrated in Figures 2 

and 3. The Pulsed/Continuous Wave (P/CW) tree in Figure 2 is used principally to 

evaluate and identify the electromagnetic energy radiated by emitters. The Receiver 

Parametric Performance (RPA) tree in Figure 3 contains receiver design and performance 

information on the receiver portion of emitter systems and serves as a vital reference in the 

development of electronic countermeasures (ECM) techniques and systems. The P/CW 

and RPA trees together provide a comprehensive report on an emitter's performance . A 

third hierarchical structure, the Electronic Countermeasures (ECM) tree, exists; it is not 

shown in any figure. ECM tree data describe jamming systems, and are referenced in the 

development of electronic counter-countermeasures (ECCM) to overcome the jammer 

threat. At present, however, the viability of the ECM tree is being reevaluated by the 

agencies that participate in and contribute to the EWIRDB program The ECM tree is 

therefore not addressed in this thesis. 

a. The Parametric Tree Structure and Notation 

As depicted in Figures 2 and 3, the tree structures graphically show how 

emitter data are catalogued. "The tree is a management tool that orders a long list 

logically and hierarchically in a way that proceeds from broad characteristics through 

levels of successively finer characteristics" [1]. Each branch contains a heading or label to 

indicate the type of parameters or attributes associated with the branch. For example, 

"SIGNAL POWER" of the 11 B (B) SIGNAL POWER branch in Figure 2 is a branch 

name or heading. Branches contain zero or more parameters. A branch with zero 

subordinate parameters is referred to as a "superheader". Superheader branches pose a 

unique modeling problem - they contain no data and are not reflected in the data contained 

within the database. However, superheaders are useful, despite their lack of parametric 

data, in identifying a major areas of interest to be decomposed in subordinate branches. 
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Thus, in a parametric tree, branches categorize emitter and signal 

parameters, whereas parameters hold actual data values in the database. A numbering 

system is also provided for describing branching throughout the depth of the parametric 

tree. The branch number is given as the first entry on a branch. Each branch has a single 

predecessor and is assigned a unique number to define a unique path from the root of the 

tree to any given branch. The "11" of the 11 B (B) SIGNAL POWER branch in Figure 2 

is an example of a branch number. 

As specified by branch markers called subfile codes, data are organized 

throughout the tree to effect logical groupings of parameters. Subfile codes appear in 

parentheses in Figures 2 and 3. Data subhierarchies rooted at subfile-coded branches are 

meant to encapsulate major aspects of an emitter's performance or convey the semantics 

of high-level emitter and signal characteristics; Subfiles are therefore equivalent to 

subtrees, and accentuate major groupings of related data. The "(B)" listed on the 11 B 

(B) SIGNAL POWER branch in Figure 2 indicates that subfile B, rooted at branch 11, 

contains data that in the composite is descriptive of the high-level characteristic "SIGNAL 

POWER". 

All branches and parameters in the EWIRDB are not applicable to all 

database users. A branch or subordinate parameter may be useful to an S&TI analyst, for 

instance, and meaningless to Kilting analyst. Likewise, the data in a particular branch may 

be applicable to all users. Parametric trees contain usage codes to distinguish usability of 

branches and parameters among participating agencies. The non-parenthesized "B" on the 

11 B (B) SIGNAL POWER branch, for example, indicates that the SIGNAL POWER 

branch is used for Kilting, S&TI, USNCSDB, and NSRL (National SIGINT Requirements 

List) purposes. In other words, that branch is applicable to all agencies that use the 

EWIRDB. The other codes are K for Kilting and NSRL usage, E for S&TI assessed data 

and USNCSDB, and N for NSRL-only usage. 

The hierarchy depicted in Figure 4 offers perspective on the complexity of 

the parametric tree. Specifically, all branches subordinate to branch 121 B ANTENNA 
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POLARIZATION in the P/CW tree, that is all parameters associated with the branch, are 

revealed. This portion of the parametric tree is neither the most complex nor the most 

populated, but it is a precise and representative sampling of the data that reside in the 

lower levels of the parametric tree. 

The new notation in Figure 4 requires a brief explanation. A parameter is 

listed with a two digit decimal number as a means to differentiate between parameters in a 

given branch. (Branches themselves include the decimal notation, ".00", but the notation is 

implicit and not shown in the tree model.) The combination of the branch number and the 

two-digit decimal number is referred to as the parametric number. Thus, locating a 

parameter within the tree or within an output data file is a straightforward function of 

indexing into the data via the parametric number. For example, parametric number 

121X1.10 indexes to the parameter .10 B 4 TIME TO SWITCH under the 121X1 B 2 

FIXED POLARIZATION branch in Figure 4. (The X in the branch number is a variable 

that specifies the type of antenna being considered, i.e., transmit, receive, or transmit and 

receive. The variable takes on the value 1, 2, or 3, accordingly.) 

Additionally, since each parameter contains data, each includes an entry for 

units of measure. Branches, in contrast, are not data entries but rather indicate that 

parametric data groupings may be identified by a branch name or number, and therefore 

do not specify units of measure. 

b. The Limitations of Hierarchical Data Modeling 

In general, the hierarchical data modeling of the EWIRDB parametric trees 

is misleading in its representation of parametric data. Aside from highhghting the 

complexity of the EWIRDB parametric tree, the sample hierarchy in Figure 4 also exposes 

the arbitrary nature of the trees' hierarchical structure. An inability to precisely represent 

data semantics is common to generic tree structures such as those of the EWIRDB. The 

current EWDIDB tree model is strapped with this inherent arbitrary quality that limits the 



EWIRDB's effectiveness as a database and places the burden of data interpretation on the 

user. 

Specifically, the parallel branches, 121X1 B 2 FIXED POLARIZATION, 

121X2 B 2 VARIABLE POLARIZATION, and 121X3 B 2 CROSS 

POLARIZATION CHAR, seem to indicate that for a given antenna, polarization is 

either fixed or variable or exhibits cross polarization characteristics. This is not actually 

the case. For a given antenna, polarization is either fixed or variable, and all antennas may 

be described by cross polarization characteristics. Whereas the fixed and variable 

polarization branches determine a clear boundary based on fundamental differences in an 

antenna's characteristics, the cross polarization branch is applicable to all antennas, 

regardless of their differences. The hierarchical structure in Figure 4 does not convey this 

idea. It provides only a generic and inadequate treatment of the intended data semantics. 

A similar situation arises in the hierarchy rooted at branch 121X2 B 2 

VARIABLE POLARIZATION in Figure 4. The arbitrary nature of the hierarchical 

modeling structure depicts a variably polarized antenna that appears to be rigged as one of 

four types: adaptive, manually changed, periodic programmed, or modulated. Again, this 

does not accurately reflect the intended meaning of the data. The correct interpretation is 

that a given variably polarized antenna can be described as one of three types: adaptive, 

manually changed, or periodic programmed. And just as the cross polarization branch 

applied to any given entry in the preceding antenna polarization branch, the polarization 

modulation branch describes characteristics common to all variably polarized antennas. 

The polarization modulation is therefore not a criteria by which to categorize types of 

variable polarization. 

Another flaw in the EWIRDB tree model is a collateral effect of the general 

layout of the data. Parametric data is scattered over a large number of separate records 

comprising two distinct and largely independent structures, the P/CW and RPA trees. A 

search of these two distinct structures and their associated parameters is required to 

10 



ascertain the performance of a given emitter. Consequently, the global view of an 

emitter's performance, from a modeling perspective, is obscured. 

Deficiencies in the parametric tree model are further exacerbated by the 

fact that the trees are designed to characterize only parametric data. The EWIRDB also 

contains administrative, reference, and commentary information, all associated with 

parametric data. At best, then, even if the trees were perfect parametric data modeling 

tools, only a portion of EWIR data would have been taken into account. 

The data not included in the parametric tree are loosely modeled in terms 

of a file structure. The file structure is not, however, a data model. It is a description of 

the data as presented in the output form. Parametric data is therefore also described in 

terms of the output format. While the file "model" incorporates all aspects of the 

database, the overall semantic picture is difficult to grasp; the file format is also complex 

and disjoint. 

2. The File Structure of the Output Data 

The EWIRDB output file format is designed to provide a comprehensive view of 

parametric and associated data for emitters. It is cryptic in presentation, however, and 

does not compensate for the lack of a semantically correct data model While the view of 

an emitter's parametric and associated data in the output file is complete, it is non- 

intuitive. The Technical ELINT Reference File format (TERF) is the standard distribution 

format for the EWIRDB and is composed of six different types of records, referred to as 

logical information records. The record types are specified as follows, with the record 

name preceding the record type designator in parentheses: Classification Record (S00), 

Emitter Name Record (SOI), Subfde Header (S02), Parametric Data (S03), 

Reference Data (S04), and Comments (S05) [1]. 

A brief description of the TERF data fields is required to bridge the gap between 

the data as modeled in the parametric trees and the data as presented in the TERF output. 

Because the EWIRDB consists of data merged from different sources (see Figure 1), some 

11 



fields are source-specific. A tabular summary of the parametric data and other types of 

data in the output file is provided in Figure 5. In the figure, "assessed data only" refers to 

both S&TI and USNCSDB contributed data, as stated earlier in Section I.A. A full 

description of the TERF format, including the actual 'look" of an output file, is given in 

[1]- 

Three fields do not appear in Figure 5 but are common to all records in a file. The 

first is Record Type, which specifies the record as S00, SOI, S02, S03, S04, or S05. The 

second field is the Source Designator, which identifies the contributory source of the data 

contained in that record; K for Kilting, E for S&TI assessed data, and U for USNCSDB. 

The third field is Notation, which provides the ELNOT (ELINT Notation) assigned to the 

given emitter. The ELNOT is an administrative label that uniquely identifies an emitter. 

Overall, the TERF format is complex. It represents a merger of data from different 

sources with different needs and provides for nonstandard, source-specific data formats. 

The TERF contains many codes. Some codes differ in symbology but relate to identical 

components, and some apply to only certain types of data. Other codes distinguish 

between multiple versions of the same parameter, and some relate mutually dependent 

parameter values. Mode combinations and the suffix table pose a particularly challenging 

modeling problem. While modal relationships are critical in the identification and 

evaluation of emitters, the relationships as coded in the suffix table are difficult to grasp, 

especially if emitter modes number in the hundreds of thousands. (Suffix codes are given 

more detailed treatment in Chapter IV). 

Many TERF fields exist solely to link information in one portion of the file to 

information in another segment of the file. The coding and linking picture grows more 

complex within the following context. A TERF consists of emitter data partitioned into 

subfiles represented in the S02 records. Each contributory source (Kilting, S&TI 

Assessed, USNCSDB) may supply many different subfiles for a given emitter, each may 

supply multiple versions of the same subfile, and sources may overlap in the subfiles they 
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B       "- BBBflSil 
^^^^B^B^J^Si'SIi'llS^^^^^^HBI 

SOO                  Classification one SOO per emitter 
Classification overall classification of emitter file 

Retrieval Date Kilting only, data of data extraction from NSA database   | 

SOI                 Emitter Name one SOI per contributory source (K,E,U) 
Emitter Name name commonly associated with the ELNOT 

S&TICode assessed data only; 4 character code that identifies the 
agency responsible for the ELNOT 

SAE Code Kilting only; 4 character code that identifies the agency 
responsible for the ELNOT 

Multiple Source 
Review Date 

assessed data only, date of the last full review of the 
assessed data file for a given emitter 

Date of Last 
!  Significant Change 

Kilting only, date of last full review of the Kilting data 
file for a given emitter 

\ Parametric Update 
Date 

date of most recent change to any S03, S04, or S05 
record 

S02                Subfile Header one S02 per parametric data subfile per contributory   \ 
source; multiple S02 records likely 

Subfile Tree 
Number 

subfile-coded branch number 

Subfile Name name (heading) of the subfile-coded branch 
Subfile Code 1 or 2 character code denoting the subfile or subtree 

Technical Date Kilting only, date of last change in any S03 record 

S03             Parametric Data one to many S03 records per parametric data entry 
per contributory source; multiple S03 records likely 

Tree Number also called parametric number; index into parametric tree 1 
Suffix Code 1 or 2 character code assigned to help describe emitter 

modes; helps differentiate between multiple entries for 
the same tree number; links related (dependent) 
parameters 

I Measurement Name corresponds to branch/parameter name in parametric tree 1 
Units I corresponds to units specified for parameters in 

parametric tree; for textual data, the format may be 
1 specified here 

\ Lower/Upper Value 
or Text 

actual parametric data; for numeric data, lower/upper 
value is filled in (with same values if data is single- 

1 valued) 

Figure 5. A Description of TERF Elements (continued into next page) 
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S03 

cont'd 
Confidence Level assessed data only; specifies the analyst's confidence in 

the parametric data 
S&TICode assessed data only; 3 character code that identifies the 

agency responsible for the ELNOT 
Reference Number links S03 to a reference (S04); 4 character code that 

refers to a line in an S04; 1st character in code denotes 
the data source, R=Kilting, A=S&H Assessed, 
F=USNCSDB (differs from SOlcode) 

Comment Number code that refers to a line in an S05; 1st character in code 
denotes the data source; C=Kilting, K=S&H Assessed, 
N=USNCSDB (differs from SOI and Reference Number 
codes) 

Reserve Mode code to indicate that the value of the parametric data, or 
mode, is a wartime reserve mode (WARM); also 
indicates analyst's confidence in this assessment 

Classification assessed data only; 
U=unclassified,C=confidential,S=secret, or T=top secret 

Releasability assessed data only; 2 character code designating the 
countries to which the data is releasable 

Date of Last 
Update 

date the last significant change was made to the data 

Measurement 
Accuracy 

Kilting only; + or - range if available, used with 
numerical parametric data 

Measurement 
Accuracy Units 

Kilting only; same as the units field unless the accuracy 
is so fine it cannot be expressed the same way 

Intelligence Source Kilting only; 1 character code, denotes type of source 
used to derive parametric data (ex. ELINT, non-ELINT) 

Preferential Rating Kilting only; one digit code to signify the relative 
importance of the data, the importance of obtaining the 
data 

S04 Reference Data zero to many S04 records per source per emitter file; 
required if a reference was specified in an S03 record; 
provides a trace back to original source documents 

Reference Number same as those specified in the S03 records 
Reference Line 

Number 
sequential and contiguous; many lines of text may be 
required to describe a reference for a given reference 
number 

Figure 5 cont'd. A Description of TERF Elements (cont'd into next page) 
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S04 
cont'd 

Reference Text assessed data format: textual description of the 
parametric data reference followed by a formatted 
classification/releasability line (refers to the S04) 
Editing format: reference text or document 
number (document title), report date, producer, 
classification of the report 

S05 Comments zero to many S05 records per parametric data item 
per source; required if a comment was specified in 
an S03; suffix table stored in "comment zero"; 
general emitter comments stored in "comment 
one' 

Comment Number 
Comment Line 

Number 

same as those in S03 records 
sequential and contiguous; many lines of text may be 
required to describe a comment for a given comment 
number 

Comment Text used to explain, describe, elaborate, and qualify 
parametric data entries and modes 
•    assessed data format: includes a formatted 

classification line for every comment; at least one 
classification line is required for each comment 

Figure 5 cont'd. A Description of TERF Elements 
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supply to the EWIRDB. Each subfile in turn may consist of many different parametric 

data entries, and there may be many data entries for the same parameter as represented in 

the S03 records. Finally, where applicable, parametric data links to source-specific 

reference documentation and comments in the S04 and S05 records, respectively. And for 

a given emitter, each source may require many S04 and S05 records. The effect of the 

data merge, codes, and links with this framework is an elaborate and burdensome 

presentation of parametric and associated data. 

3. Summary 

The EWIRDB represents a challenging database modeling problem The problem 

stems from several factors, the foremost of which is the inherent complexity of the data. 

Capturing the nature of EW systems and signals is difficult. 

Additionally, the parametric trees, the semantic basis of the EWIRDB, have been 

designed and used primarily for database management, not as data modeling tools. To the 

extent that the trees have been used to model parametric data, their hierarchical and 

intrinsically arbitrary structure has proven too restrictive to accurately capture the 

semantics of the data. The database user is therefore required to logically determine the 

true nature of the data, if the need for interpretation is recognized at all. 

Further, TERF-formatted EWIRDB output provides a comprehensive view of 

emitter data, but does not fill the semantic gap. While it incorporates the structure of the 

parametric tree model and catalogues associated reference and commentary data, it cannot 

be construed as a data model. Moreover, the TERF format introduces extras into the 

data, such as reference codes, to link related pieces of information. The use of codes 

throughout the file muddles the meaning of the data. 

Finally, without system-supported semantics, the burden of EW1R data 

interpretation is transferred to the user. This is not an easy task for the user; the EWIRDB 

is difficult to comprehend because the nature and relationshrps of EW data are not 

adequately modeled and are subject to coding.   Because the   EWIRDB is generally 
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described in terms of data implementation and not data semantics, there exists a 

requirement for the development of a more meaningful, intuitive, and system-supported 

design. The recent advance in object-oriented data modeling indicates that the object- 

oriented alternative may prove useful in simplifying and clarifying the data semantics, 

relationships, and formats of the EWIRDB. 

C. THESIS OBJECTIVES 

The primary objective of this thesis is to provide a new object-oriented design for a 

sample portion of the EWIRDB. NAIC has identified the EWIRDB for our 

experimentation in object-oriented database design. The object-oriented data model is 

arguably the most semantically rich and flexible of all database design tools. The 

effectiveness of the object-oriented data model, however, remains untested for any military 

or warfare-related design of the scope of the EWIRDB. 

The secondary objective is to use the object-oriented data definition language (O- 

ODDL) as a design tool for the specification of the object-oriented EWIRDB. At present, 

the O-ODDL used in this thesis is the product of a larger thesis effort that produced an 

object-oriented interface to the Multimodel and Multilingual Database System (M2DBS) 

[7] at the Naval Postgraduate School (NPS). The O-ODDL specification of a new 

EWIRDB design is therefore a continuation of the NPS research. It will ultimately provide 

an on-line object-oriented EWIRDB with which to demonstrate both the utility of the new 

M2DBS object-oriented interface, and the useftdness of the new object-oriented EWIRDB 

design. 

D. THE ORGANIZATION OF THE THESIS 

In Chapter H of the thesis, I address basic issues in the object-oriented database 

development, within the context of conceptual design and logical design processes, hi 

Chapter D3, I provide the design mechanisms of the object-oriented data model,    hi 
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Chapter IV, I further describe the tools of the proposed object-oriented design and present 

the conceptual design of the EWIRDB. In Chapter V, I briefly describe the logical design 

structures native to the M2DBS and present the logical design. In Chapter VI, I 

summarize my assessment of the new object-oriented EWIRDB. 
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H. DESIGN CONCEPTS 

Database design is a multiphase process. Each phase addresses a different aspect 

of the design process and yields a separate design result or model. The partitioning of the 

design process in this way guarantees the viability of each design phase as a distinct entity. 

Moreover, it simplifies the entire process, because the complexity of the design problem is 

also partitioned. Only certain aspects of the design need be addressed in each phase, and 

the designer is exposed to the details of a given level only. The correct and thorough 

design of one phase lends itself to the development of a subsequent phase. 

In this chapter I addresses those aspects of database design that are central to this 

thesis: the conceptual design and the logical design. These are the first phases in the 

overall design process and are therefore elemental to the overall design. Together, the 

conceptual and logical design phases take a proposed database from abstraction to 

implementable form. 

The treatment here is generic; design mechanisms specific to object-oriented 

database design are examined in Chapter HI. 

A. THE CONCEPTUAL DESIGN 

Much like an architect's sketch crystallizes the customer's architectural design 

vision, the conceptual design captures the nature of data in a way that closely resembles 

the database users' perception of data and the usage of data. 

The fundamental goal of conceptual database design is thorough understanding of 

the database through development of a conceptual schema. A tool known as the high- 

level data model, also referred to as a semantic or conceptual data model, is used. A 

high-level data model is intuitive, flexible, and comprehensive in its description of data. It 

is the means by which a schema is developed to approximate the users' perception and 

usage of the proposed database.  To this end, the set of abstraction concepts underlying 
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the semantic data model are sufficiently expressive of data, simple in nature, unambiguous, 

minimal in number, and nonoverlapping in meaning [2]. 

Devised within the framework of the high-level data model, the conceptual schema 

thus characterizes the structure of data. The structure of the data is the sum and 

substance of the database, encompassing data types, data relationships, and data 

constraints. Since the conceptual design should be intuitive, its design notation is typically 

associated with a diagrammatic representation of its modeling constructs. A diagram is a 

simple, precise, high-level, and straightforward means of expressing the nature of data. 

An essential quality of a conceptual schema is that it be independent of a specific 

database management system (DBMS). A DBMS-independent semantic data model is 

generic and free of any limitation or peculiarity imposed by a particular DBMS. 

Consequently, the details of data implementation and physical data storage are suppressed 

in the conceptual schema. Such detail is not useful in the development of a high-level 

conceptual design. Accordingly, the conceptual schema cannot be used directly to 

implement the database. This, however, is not disadvantageous. Rather, it highhghts the 

importance of the conceptual design and the value of the conceptual schema as a stable 

description of the database. A stable database description - the conceptual schema - 

remains unaltered by any modification to the underlying DBMS-dependent logical and 

physical designs. 

As the initial phase in the design effort, conceptual design is paramount in database 

development; the entire process depends on the creation of a stable and correct conceptual 

schema. 

B. THE LOGICAL DESIGN 

The architect's initial sketch, like the conceptual schema, is the foundation for all 

subsequent design work. After capturing the essence of the customer's desires in the 

sketch, the architect then addresses the specifics of the design layout. Decisions are made 
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based on the environment and the available materials. The outcome is a blueprint, a 

specification for the construction of the design. 

As the blueprint follows the sketch, the logical design in database development 

follows the conceptual design. The logical design likewise yields a "blueprint" of the 

conceptual schema that accounts for the type of database system in which the database 

will reside. 

The logical design is equivalent to a mapping from conceptual schema to the data 

model of the selected DBMS. The mapping is accomplished by the designer via the 

DBMS's native data definition language (DDL); the output DDL statements are 

equivalent to a DBMS-readable specification of the conceptual schema. The end result of 

logical design is thus a transformation of the database as proposed in the conceptual 

design to a database in the DBMS-compatible form for eventual realization in the DBMS. 
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m. OBJECT-ORIENTED DESIGN CONCEPTS 

Conceptual design and logical design, as described in Chapter n, cast the 

foundation of database development; a high-level data model provides the mechanisms 

required to formulate these designs. Thus, both design processes proceed within the 

framework of the chosen data model. The data model is therefore the starting point. 

The definitive measure of a data model's effectiveness is it abstraction capability, 

or the degree to which its design mechanisms capture "real-world" semantics. Traditional 

data models, including the hierarchical model, are limited with respect to their abstraction 

capabilities. The EWIRDB hierarchical model is a prime example; and as detailed in 

Chapter I, the model is fundamentally deficient in its representation of EWIR data. For 

traditional data models in general, the more complex the nature of the data, the greater the 

semantic mismatch between the real-world data and its representation. 

Object-oriented database design, a departure from traditional methods, seeks to 

eliminate the semantic mismatch between real-world entities and their database 

representations. The object-oriented data model (OODM) is the basis of the design 

effort. The OODM is more semantically rich than the earlier models. Object-orientation 

more closely parallels the way we observe the real-world. We are surrounded by objects: 

computers, cars, roads, buildings, trees, people, animals, the atmosphere - the list of 

objects is infinite. People tend to reason about real-world "objects" in terms of their 

characteristics, both static and dynamic. A car, for instance, might be classified by its 

make, model, and year, as well as by its performance in various driving conditions. We 

also tend to apply different degrees of abstraction to the real-world entities that we 

encounter. Depending on a person's point of view, a real-world "object" may be looked 

upon as a single, indivisible unit, or as the composite of a number of component objects. 

Returning to the car example, the typical car owner probably takes the view that a car is 

an integral unit that provides a means of transportation. A car mechanic, on the other 

hand, probably sees a car as the sum of its parts - parts that require maintenance and 

replacement. The object-oriented approach is a close approximation to these human views 
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of the world. It is for this reason that object-oriented abstraction techniques are generally 

considered to be more powerful than those of the traditional data models. 

The OODM thus provides the design mechanisms with which to model diverse and 

sophisticated applications in a natural way. In a larger sense, within the context of overall 

database development, the object-oriented approach reflects a move toward an 

"intelligent" DBMS that directly supports advanced data modeling. In such a system, 

semantic correctness remains intact from abstraction to implementation. The burden of 

translation is lifted from the user. 

The object-oriented paradigm remains the focus of the active research. While 

researchers and developers agree on the underlying principles, the exact nature and 

direction of the object-oriented approach is at present an issue of debate. Consequently, a 

final and irrefutable definition for the OODM has not yet been forwarded. Despite the 

evolutionary condition of the OODM, the motivation to preserve a direct correspondence 

between real-world entities and their database representations warrants its use. The 

EWIRDB is an ideal candidate for object-oriented modeling. 

In this chapter, I present the basic concepts of the OODM. Because the OODM 

was developed with the ease of implementation in mind, some implementation issues are 

also briefly addressed. These concepts lay the groundwork for an application of the 

OODM, within the context of both conceptual and logical design, to a representative 

portion of EWIRDB data in Chapter IV. 

A. OBJECTS 

The object is the basic element of the OODM, and the component that populates 

the database. An object corresponds to any entity in the real world: ideas, concepts, 

people, events, places, physical structures, and time to name a few. The uniform 

application of objects to model the spectrum of real-world entities simplifies the designer's 

view of the real world [4] and infuses some consistency into the designer's task. 
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la an object-oriented database management system (OODBMS), an object is 

specified with a unique, system-generated marker called the object identifier (OID). The 

OK) is immutable, or permanent and unchangeable [2]. This is an important aspect of the 

OODM from a modeling and implementation point of view. The use of OID's effectively 

decouples the object existence from the object value. An objects can therefore be 

referenced via the OK), independent of an identifying value. Two objects with different 

OID's remain distinct, even if the two objects have the same values. In traditional models, 

on the other hand, the identities of data items are value-based. The cumbersome task of 

creating and managing unique identifiers (called keys traditionally) is therefore imposed on 

the application programmer. Consequently, meaningful keys are likely long and non- 

unique, and the management of key values is carried out external to the DBMS. The 

effect is a degradation in database performance. 

The hierarchical model of the EWIRDB is value-based and therefore subject to 

these shortcomings. Specifically, data items referenced by application programs steer 

through an identification scheme that includes the ELNOT and a burdensome hierarchical 

labeling network. For a given ELNOT, or equfvalentry for a given emitter, a data record 

is uniquely identified by a suffix code/tree number/source combination [1]. In an object- 

oriented EWIRDB, a data object is uniquely identified by a system-maintained OK). 

The OODM also provides for the creation of objects of arbitrary complexity [2]. 

The internal structure of objects is thus sufficiently adaptable to include all significant 

information that describes an entity. This internal structure is referred to as the object's 

state and behavior [3]. These aspects of the OODM are addressed in the following 

sections. 

1. Object State 

An object is characterized by internal properties generally referred to as attributes. 

The values of an object's attributes define the state of the object. Attribute values may 

either be simple or complex. 
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a. Simple Attributes 

Simple attributes are those whose values are literals - character strings, 

integers, floating-point numbers, and other primitive values. Typically, literals are not 

considered as objects. For efficiency reasons, they are usually represented directly or are 

self-identifying, and not associated with OID's [4]. 

b. Complex Attributes and Relationships 

Complex attributes are those whose values are composed of other objects 

or groupings of values. There are three kinds of complex attributes: reference attributes, 

collection attributes, and derived attributes [4]. The first two types provide for an 

arbitrarily deep or recursive nesting of objects, where the state of an object is described by 

attributes whose values are objects whose values may be objects as well, and so on. A 

natural representation, then, for the state of an object is a set of OID's of the objects that 

are the values of the attributes of the object [3]. 

Reference attributes are the means by which relationships between entities 

are represented in the OODM. In taking on object values, reference attributes explicitly 

refer to, or draw a relationship to, other entities. Specifically, in the logical design, 

reference attributes may be used to model binary and non-binary one-to-one, one-to-many, 

and many-to-many relationships. A relationship may be modeled in one direction, such as 

from an object A to an object B, where object A refers to object B but object B contains 

no such reference to object A, or in both directions through the use the of an inverse 

reference or inverse attribute [2]. An inverse reference facilitates traversal of the 

relationship. The relationship is "visible" to each object; object A refers to object B and 

object B refers to object A inversely. All the relationships in which a particular object type 

participates are thus packaged within the object itself in the form of reference attributes, 

hi contrast, a complete inspection of the parametric trees and TERF output may be 

required to ascertain the relationships that exist between particular parametric entities in 

the EWIRDB. 
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la implementation, reference attributes provide an additional benefit. They 

cannot be corrupted, i.e. inadvertently or maliciously changed: the integrity of 

relationships and references is maintained by the OODBMS throughout all database 

operations. Moreover, from a modeling perspective, because a reference attribute refers 

to an OID and not a value, the values encapsulated within the object to which the 

reference attribute points may be changed with no effect on the ODD, and thus no effect to 

the reference attribute. [4] The use of reference attribute has one possible shortcoming, 

however. Beyond meaningful reference attribute names, references in the OODM do not 

imply any special semantics. Basically, references can only convey the idea of an 

association between entities. 

Collection attributes encompass those characteristics of an object that are 

described by more than one value, or present a complex arrangement of values. These 

values are stored in constructors such as lists, sets, or arrays. The value sets, or domains, 

from which the values comprising the collection are taken may contain simple values or 

references. For example, a collection attribute may be a set of integers or a list of entities 

that participate in a relationship with the object. 

Object properties that are subject to frequent or regular modifications, such 

as those that are time-based or date-based, are best modeled with derived attributes. 

Derived attributes, as the name implies, are not stored explicitly. Rather, they are defined 

via the execution of a particular procedure. A given value for a derived attribute, and 

therefore its storage, is temporary in nature. 

Except for the brief introduction to derived attributes, the discussion of 

object state to this point has dealt with the static characteristics, or structure of an object. 

The next section addresses object characteristics that are dynamic in nature. 

2. Object Behavior and Encapsulation 

An important aspect of the OODM is its ability to incorporate the operations to be 

applied to an object of a certain type into the object itself. The procedures that modify or 
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return the state of an object in an OODBMS are called methods. The behavior of an 

object is thus defined by the methods specified to act on it. 

Methods are much like programs. They are written in a typical programming 

language. A method consists of two parts: an external interface (or signature) and the 

actual code to implement the method. The external interlace defines the parameters 

whereby an object interaction is recognized. It is the only legal means by which to invoke 

the method. Typically, the execution of a method is accomplished via the message 

passing [2]. If, for example, an object A sends a properly-parameterized message to an 

object B in order to invoke a method in object B that returns the data stored in object B, 

then the method of object B would return the data to requesting object A. This concept of 

restricting access or providing well-defined access to an object is referred to as 

encapsulation. If strict encapsulation is enforced, then the object itself - its internal 

structure and methods - is accessible only via the specified parameters. The only "user- 

visible" portion of the object is the external interface; the data contained within the object 

and the details of the method's implementation are completely hidden from external users. 

Procedures that are visible outside the object are public methods. An object may also 

encapsulate private methods, or those available only to the object itself. In practice, 

however, strict object encapsulation is too restrictive in any OODBMS [4]. In addition to 

the public methods, attributes may be made visible as well 

Encapsulation is a basic tenet in the OODM. Its benefit is straightforward: 

encapsulation permits a change in the implementation of objects without forcing any 

change in the external programs that use them As long as external interfaces remain the 

same, the means to access and manipulate objects remain the same. Provided the external 

interface remains intact, it follows that objects whose structure has been modified will 

appear unchanged to the external world. Encapsulation is also important in introducing 

the concept of object class. 
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B. OBJECT CLASSES 

A database generally contains clusters of similar objects. Each cluster contains 

objects that encapsulate the same structure and behavior, or attributes and methods. Just 

as an abstract data type is the specification for a number of data structures in a typical 

program, a class in the OODM is the specification for a number of similar objects in a 

database. A database containing multiple clusters of similar objects would therefore be 

comprised of several classes. And just as identically-formatted data structures may 

contain different stored values, objects of similar structure and behavior, or objects in the 

same class, may exhibit different states. 

These ideas are illustrated in Figure 6 which represents a small portion of data 

maintained in a fictitious database at KPS. The THESIS class definition provides the 

blueprint for creation of THESIS objects. This definition specifies three simple attributes 

- title, author, and date of publication - and two methods - author bio and number 

distributed. The method author bio returns the author's branch of service and warfare 

specialty (data stored elsewhere in the fictitious database). The method number 

distributed returns for a given thesis the number of copies distributed, a value that may be 

subject to periodic change. The class THESIS is void of any actual data, but the objects 

of class THESIS contain values for each specified attribute and invoked method. These 

attribute and method values differ from object to object; each object of class THESIS 

therefore exhibits a different state. 

Classes are the basic building blocks of the object-oriented modeling. The concept 

of class is therefore the basis of fundamental modeling mechanisms in the OODM. These 

modeling mechanisms are the focus of this section. Some of these mechanisms are 

considered to be core concepts in the model. The semanticalry-important is-instance-of 

relationship is one. The concept of generalization-and- specialization is another. Less- 

widely-acknowledged object-oriented modeling concepts of aggregation and covering are 

addressed as well. 
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CLASS DEFINITION 

attributes; 
.. jfififfffiffimfffffffffffffffffffm.. 

title 
author 

date of publication 
methods: 
jvmfvtmpffmfi 

author bio 
number distributed 

INSTANTIATION 

attributes; 
A Tank Cloaking Device 

J.J. Lee 
1 MAR 96 

methods: 
Army, Tank Designer 
 33  

attributes; 
AP:3 G-loadjng 

Thomas McKenna 
12 MAR 96 

methods; 
Navy, Aviator 
 47  

.Affffnvnffifffffiffffffffim*fi ■  

Hehcopter Dynamics at 
Machl 

Kevin Coyne 
31MAR96 

methods; 
Navy, Aviator 
 78  

Figure 6. An Object Class and its Objects 
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In addition to its value in the data modeling, the class concept has important and 

favorable consequences in implementation. When viewed as the collections of their 

instances rather than as the specifications of individual objects, classes form the logical 

basis for the formulation of queries [5]. Further, because attribute and method 

specifications common to objects of the same class are stored as a class object, there is no 

need to replicate the common information in each object of the class. The effect has 

considerable savings in storage space. Finally, the class concept provides a degree of 

"type checking" throughout a class composition hierarchy [3]. The class composition 

hierarchy is the direct result of the recursive nesting of objects as attribute values, an idea 

introduced in section HI. A. Lb. These objects are restricted in their values by their 

respective class specifications. In this sense, the class is analogous to the traditional 

notion of attribute domain. Just as the domain defines legal values or types for a given 

attribute, the class defines the legal values for a particular object ofthat class. The class 

thus provides a degree of type checking for an attribute whose value is an object. 

With the OODM concepts of the object and the class as building blocks, the 

following sections detail the design abstractions applied to the proposed object-oriented 

design of EWTRDB data. 

1. Instantiation and Classification 

The class itself is an object, void of actual data. Thus, it is also termed the class 

schema. It functions as the "blueprint" with which to generate objects of the same class. 

Viewed in this light, an object based on the blueprint of a given class can be thought of as 

an instance or an occurrence ofthat class. Since a class contains the definition of a set of 

objects, it is also an abstraction mechanism [5]. The class abstraction is rooted in the 

complementary semantic modeling concepts of instantiation and the classification. 

The instantiation is the process of creating objects within the parameters of a given 

class schema. Classification is the inverse of instantiation. It is a process of systematically 
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assigning objects of similar structure and behavior to their respective object classes. 

Classification permits the modeling of common characteristics that apply to all of the 

objects in the class. 

Because its a single blueprint from which many objects may be created and 

catalogued, the class structure may be reused as required to instantiate many similar 

objects. In Figure 6, the blueprint for the class THESIS is used three times to instantiate 

each of the three THESIS objects shown. For this reason, instantiation and classification 

are collectively considered to be the first reusability mechanism of object-oriented design. 

Inheritance, addressed in the next section, is the second such mechanism 

2. Generalization and Specialization 

Inheritance among classes produces class hierarchies that characterize the OODM 

abstraction concepts of the generalization and the specialization. In an inheritance 

hierarchy, a class referred to as the subclass inherits the structure and behavior of another 

class called the superclass. In addition to its inherited characteristics, the subclass may 

encapsulate attributes and/or methods not contained in the superclass. These distinct 

additions to the subclass differentiate it from the superclass and identify the subclass as 

worthy of a class status all its own. In the hierarchy, a subclass is viewed as a 

specialization of its superclass. Likewise, a superclass can be perceived as the 

generalization of those subclasses (from one to many) participating in the inheritance 

hierarchy. Collectively, the concepts of generalization and specialization are equivalent to 

the is-a-kind-of relationship. If an independent and unique subclass XI inherits the 

attributes and methods of a superclass X, then XI may be considered "a kind of X. 

A data hierarchy based on the inheritance is natural and well-defined, unlike 

hierarchies based on arbitrary and coded tree structures, such as those found in the 

EWIRDB. Inheritance emphasizes both the commonality and the uniqueness among 

classes. Moreover, the implementation of an inheritance (i.e., a generalization and a 

specialization) as a mapping from class to another class eliminates data duplication and 
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localizes the management of common data.   It is for this last reason that inheritance is 

touted the second reusability mechanism of object-oriented design. 

3. Aggregation 

The aggregation abstraction considers a composite object as the sum of its parts. 

It is not restricted to an object as an aggregation of its attributes. The term is primarily 

meant to represent an object as an aggregation of other objects, i.e., a composite object as 

the sum of its component objects. The semantics are comparable to those of the is-a-part- 

q/rektionship, where an entity is the grouping of its components. 

The objects of component classes participating in the aggregation each have their 

own state. Likewise, each object of the composite class exhibits its own state. But the 

state of the composite object in a given aggregation is dependent upon the states of its 

component objects. A composite object thus contains a "global" type of structure and 

behavior that reflects the composite state of its component parts. 

Simply drawing a relationship between an object and its aggregates is not 

semantically sufficient; it does not capture the dependency between the composite object 

and its components. From an implementation point of view, a relationship will not 

maintain the integrity of the aggregation, or the interactions within the aggregation, 

throughout all possible database operations. In particular, an operation on the composite 

object should affect component objects. Conversely, an operation on a component object 

should affect the composite object. The deletion of a composite object, for example, 

should cause deletion of all components of the object. The aggregation and the notion of 

a composite object can also be used as the basis for the clustering of data [4]. 

The aggregation abstraction is an important semantic concept in the OODM. It is 

a design concept not found in other models. 
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4. Covering 

The covering abstraction is accepted as a fundamental concept in the OODM 

within the European community. It adds a dimension of flexibility in the modeling and 

manipulation of data. The covering terminology is as follows: class X covers class Y if 

every object in class X corresponds to a subset of objects in class Y. These subsets of Y 

need not partition Y; they are certain subsets of all the subsets generated for the objects of 

Y. Mathematically, all the subsets of Y form the power set of Y, i.e., P(Y). The 

correspondence is a mapping f which determines for an object, x, from class X all the 

objects, y's, of the subset f(x) from class Y, such that f(x) = y for every one of those y's 

Class X is referred to as the cover class and class Y is called the member class. [6] 

A covering relationship thus corresponds an object of one class to a subset of the 

power set (the set of all subsets) of objects of another object class. It is therefore an 

object-to-object-set mapping. 

A simple and practical example involving a team and its players is useful in 

describing the covering relationship between two classes. In this example, the team class 

covers the player class. The team's existence is entirely dependent on the participation of 

its players, a type of existence dependency. While a team object has its own structure and 

behavior, its real value is derived from its encapsulation of the nature of a particular set of 

players that comprise the team Further, a team object may be operated on as a single 

object or as a set of player objects. And as is generally the case in the real-world, the 

elimination of a team (object) does not necessarily entail the demise of its players. 

The covering is a valuable abstraction mechanism, specific to the OODM, that 

accurately models entities of the real world. 
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IV. A CONCEPTUAL OBJECT-ORIENTED EWIRDB 

In this chapter, I apply the principles of the OODM, as presented in Chapter m, to 

develop a genuine conceptual design for the EWIRDB. My intent is not to redefine the 

kinds of data required to characterize an emitter's performance; the existing EWIRDB 

data items have sound scientific roots. Nor do I attempt to address every existing data 

element in the EWIRDB. My goal is to justify the proposition that the object-oriented 

approach is feasible for the EWIRDB by providing a conceptual design of a representative 

portion of the database - a portion that adequately reflects the nature of electronic warfare 

data. Diagrams are used at every stage to codify the conceptual design. A description of 

the conceptual design symbology must first be addressed. 

The absence of a standardized OODM introduces some variation in its 

diagrammatic representation. However, most of the symbology adopted in this thesis for 

the conceptual design of the EWIRDB is commonly used. Possible exceptions are those 

notations corresponding to abstractions such as covering and aggregation. Variations 

aside, the consistent use of an adequately-expressive symbology is all that matters. 

The symbology used in the conceptual design of the EWIRDB are shown in Figure 

7. The inheritance abstraction as it appears in Figure 7 includes some detail not previously 

addressed. The concept of overlapping inheritance stipulates that an object of the 

superclass (generalization class) may be a member of more than one subclass of the 

specialization. Disjoint inheritance states that an object of the superclass may be a 

member of at most one subclass of the specialization. Regardless of the type, however, 

each inheritance hierarchy in the conceptual design of the EWIRDB is a total 

specialization. This idea states that every object of a superclass must be a member of 

some subclass in the given inheritance hierarchy[2]. 
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The representation of relationships requires amplification as well. Figure 7 

includes a description of the participation constraints in relationships between the objects 

of participating classes. A total participation constraint indicates that for the class of 

objects whose participation in a given relationship is total, the very existence ofthat class 

of objects depends on its participation in the relationship. For example, in a relationship 

between common entities such as transportation vehicles and license plates, the 

participation of license plates would be total; license plates are unnecessary if there are no 

vehicles to license. Ergo, the existence of license plates depends on the relationship 

between cars and license plates. A partial participation constraint, in contrast, states that 

all objects of a particular class need not participate in a given relationship. In a 

relationship between married couples and children, for instance, not all married couples 

have children. The participation of married couples in the relationship is therefore partial. 

Participation constraints are an important aspect of conceptual modeling. They further 

characterize the nature of data relationships. 

A. A GLOBAL SCHEMA 

The EWIRDB was described earlier (Figure 1) as the administrative merging of 

data from three contributory sources. Now, a global and object-oriented view of the 

merged structure of the EWIRDB is provided in Figure 8 with the use of aggregation 

semantics. The "big picture" object-oriented view of the EWIRDB in Figure 8 is largely 

administrative. It may at first seem strange to proceed in this manner, to initially approach 

the modeling task from an administrative rather than technical point of view, especially in 

light of the technical nature of emitter data. But this approach is valid. As explained in 

Chapter 1, the data items that describe an emitter retain the formatting particular to the 

database from which they were contributed. In a global view, source-specific groupings 

of data items are assigned group-specific administrative labels. A design that proceeds 

within an administrative context preserves these important associations. 
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As a result of the merging, the data items contributed by each source to describe a 

particular emitter may overlap. Moreover, each source may contribute multiple value 

entries for a given data item But the identity of each data entry remains intact. Multiple 

entries for a given data item are not "fused" together to form a single EW1RDB entry. 

Each data item remains separate and distinct, in a form that is suggestive of its source. 

Approaching the conceptual design from an administrative bias thus ensures that the 

overall structure of the database as a collection of emitter data from multiple sources will 

be accurately reflected in the object-oriented schema. 

In Figure 8, the aggregates KILTING EMITTER, S&TI EMITTER, and 

USNCSDB EMITTER combine to form the composite EMITTER class of objects. 

This aggregation precisely models the multi-source structure of the database. As the 

composite, an EMITTER object represents the merging of all data for a given emitter. 

Each aggregate, on the other hand, represents a source-specific portion of the data in the 

composite. The aggregate KILTING EMITTER encapsulates Kilting technical data 

contributed to the EWIRDB for a given emitter. The S&TI EMITTER aggregate 

encapsulates the technical data contributed from S&TI centers, and the USNCSDB 

EMITTER aggregate encapsulates USNCSDB data for a given emitter. 

With aggregation semantics, emitter parametric data may be reasoned about on 

two levels of abstraction: in the composite, dealing with all available data, or on the 

aggregate (component) level, where the data from a particular contributory source is 

considered singularly. This adds a degree of flexibility in the manipulation of data that 

may not be achievable in more conventional models. Further, categorizing emitter data by 

source is appropriate because it allows the drawing of relationships between source- 

specific administrative data and the aggregates themselves. In Figure 8, each aggregate 

participates in a 1:1 relationship with an administrative-data class of objects; KILTING 

EMITTER with KILTING ADMINISTRATIVE DATA; S&TT EMITTER with 

S&TI ADMINISTRATIVE DATA; and USNCSDB EMITTER with USNCSDB 

ADMINISTRATIVE DATA.   The participation of each a(hninistrative data class in its 
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respective 1:1 relationship is total because the existence of an administrative data class 

depends solely on the viability of the relationship. If, for instance, the Kilting database 

contributed no data to the EWIRDB for a given emitter, then for that given emitter, the 

KILTING EMITTER class of objects would be undefined. In effect, KILTING 

EMITTER would be non-existent, as would any relationship in which it participated. In 

this example, the existence of the KILTING ADMINISTRATIVE DATA class of 

objects would be meaningless as welL 

As mentioned in Chapter L the formatting for S&TI and USNCSDB data are the 

same. The attributes in the related administrative data classes are also the same. The 

attribute values, however, are likely different between the two classes. This does not rule 

out the possibility that some or all of the values may be identical. But the possibility, 

likely or not, that the attribute values may differ depending on the source necessitates the 

appearance of the same attributes in both classes. For the same reason, the attributes 

classification and releasability are duplicated in all three administrative data classes. 

This seems to contradict object-orientation, wherein commonality is factored out among 

similar classes to form a superclass. However, because the attribute values may possibly 

be different from class to class, the common attributes, by virtue of their values, still 

function to differentiate the classes. In these particular situations, the semantics of 

generalization simply do not apply and the same attribute values may appear in each class. 

The EWDEIDB ADMINISTRATIVE DATA class contains methods to extract 

information from the source-specific classes in the schema. These methods retrieve 

administrative data for a given emitter that in turn define the administrative state of all 

merged emitter data. An object of the class EWIRDB ADMINISTRATIVE DATA may 

reflect data retrieved from more than one class of the schema. The method overall 

classification returns the highest classification from among the source-specific 

administrative data classes; it defines the classification or the composite classification for a 

given emitter. Although not at present an attribute explicitly accounted for in the 

EWIRDB, the method overall releasability was included to satisfy the requirement that 

40 



"...The releasability and handling caveats reflect a merger of the three sources... "[1] This 

method, like the first, returns the most stringent of the releasability instructions and thus 

defines the releasability for the data of a given emitter when the data are considered in the 

composite. The method parametric update searches through all the class attributes in 

the database for a given emitter and returns the latest data update date. The effect is an 

EW1RDB ADMINISTRATIVE DATA class that describes the composite EMITTER 

class of objects. EWIRDB ADMINISTRATIVE DATA therefore participates in a 1:1 

relationship with EWTR EMITTER. And like the source-specific administrative data 

classes, its participation in the relationship is total. 

In Figure 8, the attribute ELNOT in the EMITTER class is a kind of social 

security number for emitters. It uniquely identifies an emitter, or more precisely, the signal 

that is characteristic of an emitter. ELNOT is an important attribute because it is the 

primary means of emitter identification, and may often be the launch point for EWIRDB 

queries. The attribute color is an appropriate addition to EMITTER because it describes, 

in general, an emitter's role in terms of friendly or hostile use. The choice of attribute 

values are "blue" for those emitters aboard US military platforms, "blue/gray" for those 

originally in US production that were legitimately transferred to Rest of World (ROW) 

countries (non-US, non-Corimiunist), "gray" for emitters aboard non-Communist country 

platforms, and "red" for emitters produced by Communist countries [guide]. The attribute 

color thus provides a big picture look at an emitter. Because it is not a source-specific 

characteristic, it is best placed in the composite class. 

The global, object-oriented view of the EWIRBD presented in Figure 8 

incorporates all the data elements contained in the S00 and SOI records in the TERF 

output. The S&TI Code found in SOI records (Figure 5) is included in both the S&TI 

ADMINISTRATIVE DATA and USNCSDB ADMINISTRATIVE DATA classes. It 

therefore applies to all assessed data encapsulated within an instantiation of S&TI 

EMITTER or USNCSDB EMITTER. The duplicate S&TI Code entry found in S03 

records (Figure 5) is removed from any further consideration. 
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Object-orientation eliminates the need for S02 branch information. The S02 data 

element Technical Date (Figure 5), however, specific to Kilting emitter data, is included 

as a method in the KILTING ADMINISTRATIVE DATA class. Similar to the method 

parametric update, this method returns a date that indicates the latest update to emitter 

data, but applies to smaller, more specific groups of data. These groups are collections of 

generally related data elements, referred to in this thesis as logical groupings. Logical 

groupings are introduced in section B and elaborated in section C. 

The benefit of object-orientation is a more coherent and intuitive design. Now, for 

a given emitter, administrative and technical emitter data are encapsulated within the 

EMITTER class via aggregation, relationships, and inheritance. To this point in the 

conceptual design, particularly from the administrative point of view, the presentation of 

data is clearer than that found in the parametric tree-TERF model. 

B. THE EMITTER SCHEMAS 

The next step in the development of the conceptual design focuses on the technical 

aspect of emitter data and addresses the data encapsulated within the classes KILTING 

EMITTER, S&TI EMITTER, and USNCSDB EMITTER. 

To reiterate, the conceptual designs presented in this section are based on portions 

of the EWIRDB. These portions are sufficiently representative of the entire database and 

accurately reflect the nature of EW data. Because the focus of this section is the overall 

organization of emitter parametric data, the detail of object structure and behavior is 

omitted. (Specific class attributes are provided in Chapter V as part of the logical design.) 

This does not, however, take away from the intended semantics, and the schematics reveal 

the utility of the object-oriented approach in providing a unified and intuitive picture of 

emitter parametric data. 
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1. The Kilting Emitter Class 

The overall configuration of the data encapsulated within the aggregate KILTING 

EMITTER class is depicted in Figure 9. An emitter object is not described as the 

composite of its component parts, i.e., an aggregation. Modeled as an aggregation, the 

analysis of complex EW emitters could then be one of a hardware-oriented drvide-and- 

conquer. An overall performance assessment could be made based on the intermediate 

results obtained in the evaluation of the hardware components. But the hardware 

components themselves are not central to the discussion of EW. For the purposes of the 

EWIRDB, hardware components are only important in that they have some effect on, or 

participate in the generation of, a given signal. The signal itself is pivotal in the analysis - 

not the hardware. This is reflected in the design shown in Figure 9. Rather than being 

exposed hardware component by hardware component, the KILTING EMITTER class 

of objects is instead related to several logical groupings of data, all of which are signal- 

based in their description of emitter performance. 

KILTING EMITTER participates in a one to many relationship with 

ANTENNA, a class that encapsulates a logical grouping of antenna-signal data. A single 

emitter may contain one or more antennas, each of which may have a different function or 

produce a different effect on a signal However, antenna hardware is not explicitly 

addressed within the antenna-data grouping. Modeling the relationship between 

KILTING EMITTER and ANTENNA as one-to-many is not intended to treat this 

portion of EWIRDB data as hardware oriented, although this may be a collateral effect. 

More important is the effect of any given antenna on an emitter's signal The one-to-many 

relationship reflects the fact that that there may be multiple antennas, or multiple versions 

of antenna data for a particular emitter, depending on the number of antennas and the 

availability of information on each. The antenna data grouping is given more detailed 

treatment in section C. 1. 
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Figure 9. The Conceptual Schema: Kilting Emitter Data 
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KILTING EMITTER participates in a one-to-many relationship with the class 

SIGNAL, perhaps the most important grouping of data in identifying an emitter and its 

signal signature. The one-to-many relationship indicates that an emitter's identifying 

signal is subject to variation. A change in the configuration of the emitter's controls, for 

example, causes a variation in the signal. Therefore, an emitter's signal may behave 

differently, with respect to fundamental signal characteristics, depending on the 

employment of the emitter. Signal characteristics are described in section C.2. 

KILTING EMITTER also participates in a one-to-many relationship with the 

WARM (Wartime Reserve Mode) class, which encapsulates those signal characteristics 

likely to be encountered only when an emitter is in a wartime reserve mode. A single 

emitter may have from zero to many such special modes. Wartime reserve modes are 

those emitter capabilities, deliberately held in reserve, that differ from or exceed normal- 

use capabilities. WARM'S are used exclusively in emergency or wartime scenarios to 

counter attempts to exploit the perceived weaknesses in an emitter's performance. A 

sound assessment or a foreknowledge of the WARM'S employed by an enemy can be a 

huge advantage in the prosecution of EW. WARM data is therefore an important aspect 

of the EWIRDB. 

To provide for a simplified diagrammatic layout, the WARM class is surrounded 

by a circle to represent the existence of a disjoint inheritance hierarchy. WARM data is 

examined more closely in section C.4. 

Finally, KILTING EMITTER objects have a one-to-one relationship with the 

SUFFIX TABLE class of objects. The suffix table as it currently exists in the EWIRDB 

describes complex emitter mode combinations in concise fashion. Knowledge of these 

combinations allow EWIRDB analysts to establish emitter performance patterns and mode 

usage tendencies. The suffix table is thus an important tool that helps the analyst to 

discriminate between signals and ultimately associate a signal to an emitter. It is examined 

more closely in section C.5. 
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2. The Association of an Emitter to its Signal 

Associating a unique signal to its emitter is a difficult modeling problem, object- 

oriented or otherwise. The association is characterized by an ELNOT that uniquely 

identifies an emitter that is uniquely identified by its signal signature. (ELNOT is an 

attribute encapsulated within the EMITTER class shown in Figure 8.) More precisely, 

the ELNOT is "assigned to each noncommunications emission for collection guidance and 

reporting purposes."[1] Thus, the uniqueness of the ELNOT, assigned to 

noncommunications emissions, implies a one-to-one relationship from signal to emitter, or 

equivalently from emitter to signal This modeling is easy to reason about in theory, but in 

application, hard to achieve. In Figure 9, the general organization of the parametric data 

describes an emitter by its signal attributes within the context of antenna-induced effects 

(ANTENNA DATA), signal characteristics in general (SIGNAL), reserve modes 

(WARM), and combinations of modes (SUFFIX TABLE). While this design provides a 

comprehensive view of signal-based parametric data, the one-to-one nature of the 

relationship between emitter and signal becomes obscured. Although the data are more 

semantically meaningful when described within the logical groupings, the effect is a 

partitioning of the data. Consequently, a relationship must be developed between the 

emitter (KILTING EMITTER) and each partition. Several relationships then exist to 

describe the relationship between emitters and signals. Not all, however, are one-to-one; 

KILTING EMITTER participates in a one-to-many relationship with ANTENNA 

DATA, SIGNAL DATA, and WARM DATA. The end result is an association between 

an emitter and its signal, but the uniqueness of the relationship is directly modeled only 

through the use of the ELNOT. The ability of an emitter to vary its signal characteristics - 

and effectively produce more than one signal - makes it more difficult to visualize the one- 

to-one nature of the relationship between emitter and signal, and therefore between 

ELNOT and emitter. The one-to-one relationship remains intact, but is perhaps more 

identifiable because of the existence of the ELNOT. 
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3. The S&TT and USNCSDB Emitter Classes 

As discussed in Chapter I, the S&TI community produces performance 

assessments based on an exhaustive search of all available information. These assessments 

are particularly useful in developing an understanding of an emitter's receiver capabilities. 

USNCSDB data, derived from equipment specifications, also includes receiver 

performance data. Similar in all other design aspects, the USNCSDB and S&TI 

conceptual designs shown in Figures 10 and 11 are the same. 

In contrast, the KILTING EMITTER schema in Figure 9 does not contain 

receiver data because Kilting data reveals nothing about receiver performance. Kilting 

data are obtained from the direct analysis and measurement of emitter signals following 

signal intercept. An emitter's receiver, however, produces no obvious observable effect. 

The class RECEIVER, which encapsulates the logical grouping of receiver data in both 

Figures 10 and 11, is similar to the ANTENNA class in that the information it presents is 

important in describing the effect of hardware on any given signal. RECEIVER, 

however, encapsulates data that tends to be more hardware-oriented. The receiver's 

function is to accept a signal, process it, and then relay signal information to a display. 

A receiver's manipulation of a signal is strictly internal and does not directly produce an 

effect that is visible in the atmosphere. The internal function of receivers in processing 

signal data is therefore best described within the context of hardware components. 

The one-to-many relationship between the emitter class and RECEIVER in 

Figures 10 and 11 convey the idea that an emitter may consist of one or more receivers. 

The receiver data grouping is given more detailed treatment in section C3. 
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Figure 10. The Conceptual Schema: S&TI Emitter Data 
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Figure 11. The Conceptual Schema: USNCSDB Emitter Data 
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C. THE SCHEMAS WITHIN LOGICAL GROUPS 

In this section I present a more detailed view of the data contained within the 

logical data groupings described in the previous section. Logical groupings, like the 

subfiles that currently exist in the EWIRD, encompass logically-related data elements. But 

the Schemas depicted in this section reinforce the notion that the OODM provides for data 

semantics previously unachievable in the EWIRDB. Emphasis is placed on the schema 

design; complete technical descriptions of each data class are provided in [8] and [9]. 

Supplemental information is provided in [10] and [11]. 

1. Antenna Data 

Figure 12 is an enlargement of antenna-related signal data. It represents a 

substantial improvement over the semantically limited hierarchical tree representation of 

antenna data discussed in section LB.l.b. 

Specifically, an antenna may exhibit a polarization and a particular radiation 

pattern, as described by the one-to-one relationship between ANTENNA and 

POLARIZATION, and by the one-to-one relationship between ANTENNA and 

RADIATION PATTERN. Two disjoint hierarchies branch out from the 

POLARIZATION class. One addresses the orientation of the electromagnetic wave, 

specializing the polarization as either linear or circular/elliptical. The other describes the 

variation of the polarization as either fixed or variable. Thus, using the tools of the 

OODM, the four possible polarization combinations - fixed-linear, fixed-circular/elliptical, 

variable-linear, variable-circular/elhptical - are captured intuitively in the schema. An 

antenna's cross polarization characteristics are now correctly modeled in the one-to-one 

relationship between POLARIZATION and CROSS POLARIZATION. No longer are 

cross polarization characteristics confused with those that determine an antenna's design 

wave   orientation or its polarization variation properties.   Moreover,   access to data 
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Figure 12. The Conceptual Schema: Antenna Data Enlargement 
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concerning an antenna's polarization also guarantees access to data concerning the 

antenna's cross polarization, via the relationship. 

The same is now true for antenna data connected with the VARIABLE 

POLARIZATION class. The classes ADAPTIVE POLARIZATION, MANUAL 

POLARIZATION, and PERIODIC PROGRAMMED POLARIZATION in the 

hierarchies are clearly specializations, or types of variable polarization. The class 

POLARIZATION MODULATION, possibly mistaken for a type of variable 

polarization in the parametric tree model, is instead related to, and therefore descriptive 

of, VARIABLE POLARIZATION via the one-to-many relationsMp. 

The remainder of Figure 12 provides a straightforward representation of other 

aspects of an antenna's functionality. An antenna may radiate directionally or 

omnidirectionally. If the antenna is directional, then it is associated with one or more 

scanning techniques. The antenna scan data is further refined within the specialization's 

subordinate to the mechanical and electronic scan classes. In addition, an electronically 

scanning antenna may be controlled by one or more scan programs, and employs a beam 

formation method to effect its scanning movement. A directional antenna also performs a 

tracking function, which may include simultaneous mechanical and electronic tracking. 

Finally, the features of electronic scanning are largely determined by one or more 

functional scan programs. 

Figure 12 represents some of the salient aspects of antenna data in a way that is 

understandable to both expert and novice. This depiction of antenna data, in the form of 

the OODM, is clearly superior to that of the arbitrary tree model. 

2. Signal Data 

Figure 13 depicts an enlargement of the logical grouping of signal data and 

addresses the complexities of signal transmission in a natural and intuitive way. The 

information contained in this grouping details fundamental signal characteristics. 

52 



*:Rcfcrc&cefrom; 

WARM Data  (HglS) 

Figure 13. The Conceptual Schema: Signal Data Enlargement 

53 



Any given signal is generated with a certain power that is either constant or 

variable in nature. The object-oriented representation exactly matches these semantics. 

SIGNAL participates in a one-to-one relationship with TRANSMISSION POWER, the 

generalization of the specialization classes, CONSTANT POWER and NOT 

CONSTANT POWER. The SIGNAL class is the root of the inheritance hierarchy that 

spawns the PULSED RF (Pulsed Radio Frequency) and CW (Continuous Wave) 

specialization classes. PULSED RF is the basis of the conceptual schema in Figure 13; it 

is the starting point in the modeling of basic signal characteristics such as pulse duration, 

pulse amplitude, pulse repetition interval (PRI) and pulse group repetition interval (PGRI), 

and frequency (RF). (CW signal characteristics are represented within the class CW but 

are not examined any further.) 

For a given occurrence of PULSED RF there exists a one-to-one relationship with 

the classes PULSE DURATION, PULSE AMPLITUDE, PR17PGRL and RF LINE 

STRUCTURE. These classes characterize in detail the nature of a given signal pulse. 

PULSED RF is a generalization class in the inheritance hierarchy that refines the 

description of a pulsed signal's carrier frequency. The basis of specialization is the 

constancy of the carrier frequency. A given pulsed signal therefore belongs to either the 

RF CONSTANT class or RF NOT CONSTANT class. A subordinate hierarchy rooted 

at RF NOT CONSTANT further describes the nature of the variation in the carrier 

frequency. 

Objects in the classes PULSE DURATION and PULSE AMPLITUDE may be 

static or variable, as indicated by the specialization classes PD MODULATED and PA 

MODULATED, respectively. Both are single specializations. If, for instance, an object 

of the class PULSE DURATION is not modulated, then there is no information outside 

of the class PULSE DURATION that is required to describe that object. If the intent is 

to describe a modulated pulse duration, then additional or specialized data is required, and 

an object of class PD MODULATED would be instantiated. 
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Objects of the class PRI/PGRI belong to either the CONSTANT PRI/PGRI 

specialization class or the NOT CONSTANT PRI/PGRI, depending on the pulse-to- 

pulse changes in pulse interval A member of the NOT CONSTANT PRI/PGRI reflects 

interval changes that are either discrete or continuous. The classes DISCRETE and 

CONTINUOUS are themselves generalizations in overlapping inheritance hierarchies. 

Additionally, a pulsed signal whose pulse repetition interval is not constant exhibits the 

characteristics of some type of interval scheduling control. A one-to-one relationship 

therefore exists between NOT CONSTANT PRI/PGRI and the class INTERVAL 

SCHEDULING. An interval scheduling control induces one or more recurrent pulse 

repetition intervals. The schema therefore includes a one-to-many relationship between 

INTERVAL SCHEDULING CONTROL and the class RECURRENT INTERVALS. 

The RECURRENT INTERVALS class is important in its description of recurrent 

interval sequences; it may be thought of as a higher level abstraction for an arrangement of 

interval sequences. Moreover, it becomes meaningless as an abstraction without the 

existence of interval sequences. Viewed in this way, a mapping may be developed 

between recurrent interval an recurrent interval sequences. In Figure 13 this mapping is 

represented as a covering; cover class RECURRENT INTERVALS covers the member 

class RECURRENT INTERVAL SEQUENCES. 

3. Receiver Data 

Aggregation semantics model the hardware-orientation of the receiver data. In 

Figure 14, the class RECEIVER is the "outermost" composite in a nested aggregation 

wherein some of a receiver's aggregates are themselves composites that are composed of 

aggregates. Objects that belong to the classes EF PREAMPLIFIER and D7 

AMPLIFIER, for example, are aggregates of objects of the class INTERMEDIATE 

FREQUENCY SECTION. Objects of the class INTERMEDIATE FREQUENCY 

SECTION are, in turn, aggregates of objects of the class RECEIVER. 
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Reference from: 

iOLTING Emitter (Dg 9) 

S&TI Emitter (Fig 10) 

TJSNCSDB Emitter (Fig 11) 

/ßiEQUENC? 

CONVERSION | 

SECTION 

Figure 14. The Conceptual Schema: Receiver Data Enlargement 
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Thus, RECEIVER represents the sum total of all components that function 

together to perform the receiver task. More precisely, receiver functionahty and 

component functionality, not hardware, is the basis of the aggregation. The specifics of 

the hardware is important only in drawing boundaries between functional sections of 

components that are common to all receivers. And despite hardware differences, all 

receivers may be modeled in this way because of a similar functionahty. This is a logical 

and natural representation of the data. The receiver portion of an emitter may now be 

reasoned about in general terms as a singular unit and, or exposed in more detail as the 

aggregation, or nested aggregation, of distinct functional sections. 

Many of the actions performed by a receiver are described as either single pulse 

processing or multiple pulse processing. These labels can be assigned to receiver 

processes, within the setting of aggregation semantics, as shown in Figure 13. In the 

schema, applicable object classes participate in one-to-one relationships with SINGLE 

PULSE PROCESSING objects or MULTIPLE PULSE PROCESSING objects. 

However, both the SINGLE PULSE PROCESSING and MULTIPLE PULSE 

PROCESSING classes exist solely to provide the capability to access receiver-signal 

information from a single pulse/multiple pulse processing bias. Their primary purpose is 

navigational. These two classes are descriptive of receiver data in name alone. 

Multiple one-to-one relationships originate from the SIGNAL PROCESSOR 

SECTION class. The other participating classes - SPECIAL CAPABILITIES, 

DOPPLER PROCESSING, INTEGRATION, MOVING TGT INDICATION, TGT 

TRACKING, and THRESHOLDTNG/TGT DETECTION - encapsulate data that 

describe the functionahty of a receiver's signal processor section. The choice to use 

reference relationships instead of aggregation relationships is based on the composition of 

the EWIRDB data. In general, as signal processing is addressed with an increasing level 

of detail with respect to functionality, hardware differences among receivers tends to 

become more pronounced. In other words, as the granularity of data increases, receivers 

may still be described in terms of common functionahty, but tend to be less alike in 
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hardware. Functionality is therefore less prone to be cast in the light of hardware as the 

data become more detailed. The other classes are not so much parts of SIGNAL 

PROCESSOR SECTION as they are descriptors of the types of actions performed in 

that section. Aggregation semantics become less applicable; reference relationships better 

model the nature of this interaction. 

4. WARM Data 

The design of Figure 15 echoes previously introduced elements of the conceptual 

schema. For example, the class POWER ECCM participates in a one-to-many 

relationship with TRANSMISSION POWER from Figure 12. As will be found in the 

logical design, this relationship indicates that a WARM mode affecting signal power, or an 

object of the class POWER ECCM, is essentially a new instantiation of the class 

TRANSMISSION POWER. WARM modes that are not variations of existing data 

classes fall within the class OPERATIONAL ECCM. 

The inheritance hierarchy in Figure 15 is disjoint; any given object of the WARM 

class is a member of only one specialization class. However, an emitter may exhibit 

multiple WARM modes, as modeled in the one-to-many relationships between the classes 

KILTING EMITTER and WARM, S&TI EMITTER and WARM, and USNCSDB 

EMITTER and WARM. 

This approach to the modeling of WARM data does away with the need to 

account for the Reserve Mode entry found in S03 records (Figure 5). 

D. THE PARAMETRIC DATA CLASS 

As discussed in section HI.A. Lb, complex attributes support objects as attribute 

values.   Therefore, in the case of complex attributes, the "type" of a given attribute is 
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Reference to: 

IRANSMISSION POWER in Kgure 13 

Reference to: 

POLARIZATION in Hgnre 12 

Figure 15. The Conceptual Schema: WARM Data Enlargement 
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equivalent to the particular object class from which that object value was instantiated. 

Further, complex attributes may reflect an arbitrarily deep or recursive nesting of objects. 

All complex attributes in the object-oriented design of EWIRDB, regardless of the 

depth of nesting, ultimately lead to objects of the class PARAMETRIC DATA, the focus 

of this section. The PARAMETRIC DATA class itself exhibits a nesting of objects that 

incorporates the semantically-usefiil data elements of the S03, S04, and S05 records. 

The PARAMETRIC DATA class and the data encapsulated therein is depicted in 

Figure 16. TEXTUAL DATA and NUMERIC DATA are specializations of 

PARAMETRIC DATA, and intuitively indicate whether the parametric data entry for a 

given attribute is text-based or numerical. Numerical parametric data are either single- 

valued or range-valued as expressed in the specialization classes SPECIFIC VALUE and 

VALUE RANGE. 

In the EWIRDB, comments are used to further characterize parametric data 

values. PARAMETRIC DATA thus participates in one-to-one relationship with the 

class DATA COMMENT. The participation of DATA COMMENT in the relationship 

is total; a parametric data entry must first exist before a corresponding comment can be 

made, but not all parametric data entries must be commented. If a parameter is assessed, 

then a related comment must also include the comment classification. This is depicted in 

the specialization class ASSESSED DATA COMMENT. Comment data and the 

inheritance hierarchy directly subordinate to the PARAMETRIC DATA class are 

enclosed within the dotted line in Figure 16. Together they constitute the core of 

EWIRDB parametric data. 

On the global scale, each emitter is linked to emitter-specific administrative data; 

on a smaller scale, each class attribute is associated with the attribute-specific 

administrative data associated with the S03, S04, and S05 records. The attribute-specific 

administrative data identifies data references and highlights important descriptive 

information. As indicated in Figure 15, the format of this data is source-dependent. 

ORIGINAL SOURCE DOCUMENTATION includes those attributes common to both 
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i attributes: 
date of last update 

attributes: 
measurement accuracy 

measurement accuracy units 
intelligence source 
preferential rating 

releasibility 

Figure 16. The Conceptual Schema: Parametric Data 
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formats, report classification and report releasability. Formatting distinctions are made 

within the specialization classes ASSESSED REFERENCE and OBSERVED 

REFERENCE. Attribute values are further characterized in the DATA DESCRIPTION 

class by date of last update. ( The method parametric update date in the class 

EWTRDB ADMINISTRATIVE DATA (Figure 9) accesses date of last update 

information throughout the database and returns the most recent value for a given 

emitter.) Source-dependent characteristics that generally describe the soundness and 

accuracy of a given attribute value are addressed in the specialization classes ASSESSED 

DATA and OBSERVED DATA. 

Two methods are specified in the PARAMETRIC DATA class: return all data 

and return parametric data. For a given attribute, return all data will reply with all 

available data - the actual parametric data as well as the associated administrative data. 

return parametric data will yield only the data enclosed within the dotted line in Figure 

15 for a given attribute. One attribute is specified as well, suffix code, a label for the 

given attribute as it appears in the suffix table. 

Thus, all useful data items from the S03, S04, and S05 records, with the exception 

of suffix table information, are nested within the PARAMETRIC DATA class of Figure 

15. Object-orientation eliminates the need for many previously maintained data items 

listed in Figure 5. Tree Number, which provides indexing into the parametric tree is no 

longer required. Linking-type entries related to the format of the output file - Reference 

Number (S03), Comment Number (S03), Reference Number (S04), Reference Line 

Number, Comment Number (S05), and Comment Line Number - are eliminated. Finally, 

the entry Measurement Name (S03) is replaced by the attribute name itself. 

At this point, all meaningful data entries of the TERF have been integrated into 

one comprehensive, encapsulated model. 
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E. SUFFIX CODING AP«) THE SUFFIX TABLE 

EWIRDB suffix-coded data and the suffix table representation of data comprise 

the most difficult modeling task in the conceptual design. Suffix coding is incorporated 

within the EWIRDB to describe the vast array of mode combinations an emitter may 

exhibit. In effect, suffix-coding links together the parametric values that characterize 

known or suspected emitter usage. A particular combination of parametric values defines 

a given mode; suffix coding and suffix table thus provide the means for establishing 

relationships between parametric values throughout the database. (A comprehensive 

review of suffix coding and the suffix table is provided in [1].) 

Herein lies the complexity in modeling modal relationships. Parametric values are 

synonymous with attribute values. The attributes whose values describe a given mode are 

likely interspersed throughout the many classes in the schema. The relationships defined 

by suffix coding and the suffix table therefore describe associations between attributes ~ 

not classes. An additional complication is the possibility of multiple values (multiple 

instantiations of the object that contains the attribute) each for a given attribute. Modeling 

modal (attribute) relationships is difficult because neither the OODM, nor any other data 

model, explicitly supports such a capability. From a modeling perspective, the problem of 

representing modal relationships such as those found in the suffix table reduces to problem 

of representing attribute-to-attribute relationships and attribute-to-attribute combinations. 

Upgrading each attribute to a class is an ineffective solution. Related attributes are 

grouped into classes for the purpose of collectively describing the characteristics of a 

particular set of objects. The transformation of attribute to class obscures these semantics; 

each attribute instead becomes a reference within a given class. Moreover, the problem of 

modeling combinations remains unsolved. There exists no "built-in" OODM mechanism 

for the purpose of defining combinations of objects, not to mention attributes, throughout 

a schema. 

The process of defining modal combinations, regardless of the modeling tool used, 

is formidable in the realization that an emitter could likely exhibit hundreds of thousands 
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of modes. Object-orientation does not appear to simplify this task. Despite its 

dependence on an artificial labeling system and a non-intuitive table representation, suffix 

coding has proven to be effective in this combination-oriented modeling. Moreover, it 

helps to link signal signatures to emitters. At present, I am unable to offer an easier or 

more viable modeling alternative. The current methodology is therefore incorporated into 

the object-oriented conceptual design. 

The conceptual schema includes a suffix code entry for every attribute throughout 

the schema; a suffix code entry can be made for every attribute in each instantiation of the 

object to which the attribute belongs. This provides for the same modeling flexibility as 

exists in the current model: the binding together of related parameters, the labeling of 

multiple values for a given attribute, and the inclusion of suffix-coded data within the 

SUFFIX TABLE class of objects (Figures 9, 10, 11) to develop modal combinations. 

SUFFIX TABLE objects would also contain a method, expand table (not shown), to 

return all combinations represented in the suffix-coded data table. 

In the object-oriented design, the use of the special suffix codes is no longer useful. 

The semantics of the special suffix code, ++, used to indicate that a particular parametric 

value is present in all modes, may be addressed via comment in the DATA COMMENT 

class (Figure 15). The special code, //, applies specifically to the parametric tree structure 

and indicates that a given value pertains to all modes described within the subtree rooted 

at the branch containing the special code. Such semantics are implicit in inheritance and 

aggregation hierarchies, and may be explicitly addressed via comment. 

This completes the conceptual design phase. The next stage in the overall design 

process is the logical design, addressed in Chapter V. 
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V. A LOGICAL OBJECT-ORIENTED EWIRDB 

The O-ODDL native to the M2DBS in the NPS Laboratory for Database Systems 

Research provides the structure of the logical design presented in this chapter. The O- 

ODDL, designed and specified in [12], thus provides the means to convert the conceptual 

database as proposed in Chapter IV into an M2DBS-compatible representation. 

Still in its first phase of development, the object-oriented interface to the M2DBS 

is functional but does not yet support all aspects of the object-oriented paradigm. To 

date, methods and the aggregation abstraction are not implementable on the M2DBS. 

Therefore, in the logical design, aggregation will be represented via relationships, and 

methods will not be addressed. 

It is not necessary to address all aspects of the conceptual schema in the logical 

design to demonstrate the operation of the M2DBS object-oriented interface in handling 

EWIRDB data. To this end, I address a representative portion of the conceptual schema 

in developing the logical design. The subsequent implementation of the logical schema on 

the M2DBS is a continuation of the work in this thesis, and is addressed in [13, 

unpublished]. The final result of this combined effort will be an on-line object-oriented 

EWIRDB with which to demonstrate both the utility of the new M2DBS object-oriented 

interface, and the usefulness of the new object-oriented EWIRDB design. 

The O-ODDL logical design constructs are reproduced in Figures 17 through 20. 

Refer to [12] for a comprehensive discussion of the O-ODDL specification. 

In Figure 17, "attribute type" refers to the traditional notion of attribute domain. 

As described earlier in sections HL A La and b, the domain or type of an attribute may be 

simple, characterized by literal attribute values, or the type may be complex, characterized 

by object attribute values. Complex attributes can therefore exhibit an arbitrarily deep 

nesting of objects. Whereas a simple attribute maybe of type "character" or "integer", the 

type of a complex (or reference) attribute is a class. The class defines the legal attribute 

values (object values) for the given attribute. 
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Figures 18 and 19 contain the specifications for the inheritance and covering 

abstractions. In Figure 20, one-to-many and many-to-many relationships are addressed. 

One-to-many (1:N) relationships between object classes are represented via the set_of 

construct. set_of appears within the class on the "1" side of the relationship; an attribute 

that references the class on the "1" side of the relationship appears within the class on the 

'ISP' side of the relationship. Many-to-many (N:M) relationships are represented with the 

set_of (N side) and inverse_of (M side) constructs. One-to-one (1:1) relationships are 

represented directly through use of reference attributes. The classes in the 1:1 relationship 

each contain an attribute whose type is that of the class to which it is associated via the 

1:1 relationship. 

Gass Class_name{ 
attributetypei 
attribute_type2 

attribute_ 
attribute 

namei; 
name2; 

}; 

attributetyper , attribute namen 

Figure 17. The O-ODDL Class Specification 

Class ClassjiameXl: inherit Class_name_X{ 
attributetypei attributenamei; 
attribute_type2 attribute_name2; 

attributetypen attributename,, 

Figure 18. The O-ODDL Inheritance Specification 
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Class Class name XI : cover Class name X{ 
attributetypei attributenamei; 
attribute_type2 attribute_name2; 

attributetype,, attribute name„ 

}; 

Figgie 19. The O-ODDL Cover Specification 

set of Class name attribute name; 

inverse of Class «awe. attribute name attribute name: 

Figure 20. The O-ODDL Set_of and Inverse_of Specifications 

The logical design incorporates the O-ODDL constructs as outlined in Figures 21 

through 29. Because all complex attributes in the object-oriented design of EWIRDB, 

ultimately lead to objects of type PARAMETRIC DATA (section IV.D), the logical 

design begins with the O-ODDL representation of PARAMETRIC DATA in Figure 21. 

The design then proceeds with the classes EMITTER (Figure 22), KILTING 

EMITTER and KILTING ADMINISTRATIVE DATA (Figure 23), ANTENNA 

(Figure 24), SIGNAL (Figure 25), RECEIVER (Figure 26), WARM (Figure 27), 

SUFFIX TABLE (Figure 28) and S&TI EMITTER and S&TI ADMINISTRATIVE 

DATA (Figure 29). 
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class Parametric_Data{ 
char* suffixcode; 
DataComment comments; 
DataDescript description; 
set_of OrigSrcDoc; references; 

>; 

class TextualData: inherit ParametricJData { 
char* text; 

}; 

class Numeric_Data : inherit Parametric Data { 
char* units; 

}; 

class Specific Value : inherit Numeric_Data{ 
char* value; 

}; 

class ValueRange : inherit Numeric_Data{ 
char* uppervahie; 
char* lowervalue; 

}; 

class DataComment { 
char* 
Parametric Data parametricdata; 

}; 

char* commenttext; 

class Assess Comment: inherit DataComment { 
char* comclassif; 

}; 

Figure 21. The Logical Design: DDL Implementation of the 
PARAMETRIC DATA Class (cont'd into next page) 
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class DataJDescrip { 
char* lastupdate; 

}; 

Parametric Data                           paradata; 

class Assessed Data: inherit Data_Descrip{ 
char* confidence level; 
char* classification; 

}; 
char* releasability; 

class Observed Data inherit Data_Descrip{ 
char* measaccuracy; 
char* meas ace units; 
char* intelsource; 

}; 

int preferrating; 

class OrigSrcDoc { 
char* rptclassif; 
char* rpt release; 

}; 
inverse_of Parametric.Data.references       pdata; 

class Assessed_Ref: inherit Orig_Src_Doc { 

}; 
char* referencetext; 

class ObservedRef: inherit OrigSrcDoc { 
char* document number; 
char* document title; 
char* reportdate; 
char* producer; 
char* reportclassification; 

}; 

Figure 21. (cont'd) The Logical Design: DDL Implementation of 
the PARAMETRIC DATA Class 
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class Emitter{ 
char* elnot; 
char* color; 
Kilting Emitter 
S&TI Emitter 

>; 

kfltingdata; 
sandtidata; 

Figure 22. The Logical Design: DDL Implementation of the 
EMITTER Class 

class Kilting Emitter { 
char* technicaldate; 
KiltingAdmin kadmindata; 
set of Antenna antennadata; 
set_of Signal signaldata; 
set of Receiver receiver_data; 
set of WARM warresmodes; 
SuffixJTable modes; 
Parametric Data weaponsystem; 
Parametric Data function; 
Parametric Data platform; 
Emitter 

>; 

generaldata; 

class Kilting_Admin{ 
char* nsadate; 
char* saecode; 
char* datesigchange; 
char* kclassification; 
char* kreleasabihty; 

}; 

Figure 23. The Logical Design: DDL Implementation of the 
KILTING EMITTER and KILTING 
ADMINISTRATIVE DATA Classes 
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class Antenna{ 
Parametric Data 
Parametric Data 
Parametric Data 
ParametricData 
Polarization 
RadiationPattern 
KiltingJEmitter 

}; 

antennatype; 
antennafunction; 
horizontaldimension; 
verticaldimension; 
ant_polarization; 
antradchar; 
kilt emitter; 

class Polarization^ 
Cross^Polarization 
Antenna 

>; 

cross_pol_char; 
antenna; 

class Cross_Polarization{ 
Parametric_Data 
ParametricData 
Polarization 

patt_pk_offset; 
pattjpkresp; 
polarization;    }; 

class LinearJPolarization : inherit Polarization^ 
ParametricData majoraxistiltangle; 

}; 

class Circ or Ellipt Polarization : inherit Polarization{ 
Parametric Data sense; 
Parametric Data axialratio; 

}; 

Figure 24. The Logical Design: DDL Implementation of the 
ANTENNA Class (cont'd into next page) 
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class Radiation_Pattern{ 
Parametric Data 
Antenna 

}; 

antenna_gain; 
ant; 

class Directional_Ant: inherit Radiation_Pattern{ 
Parametric Data                            beamwidthaz; 
Parametric Data                            beamwidthel; 
Parametric Data                           first_sidelobe_M_az; 
Parametric Data                           firstsidelobeMel; 
set_of Scan                                    scanningchar; 
set oi Track                                  tracking char; 

}; 

class Omnidirectional: inherit Radiation_Pattern{ 
Parametric_Data 
elevation coverage angle; 

}; 

class Scan{ 
Parametric Data 
Parametric Data 
Parametric Data 
Directional Ant 

}; 

sampleavgtime; 
SNRJhreshold; 
plane_ofjscan; 
dirantenna; 

class Mechanical'Scan : inherit Scan{ 
Parametric_Data 
Parametric Data 

>; 

typechange; 
scan function; 

class Circular: inherit Mechanical_Scan{ 
Parametric Data 

>; 

cperiodhmits; 

Figure 24. (cont'd) The Logical Design: DDL Implementation of 
the ANTENNA Class (cont'd into next page) 
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class Sector : inherit Mechanical Scan{ 
Parametric Data sectortype; 
Parametric Data speriodlimits; 
Parametric Data sector width az; 
Parametric Data 

}; 
sectorwidthel; 

class Track{ 
Parametric Data planeofscan; 
Directional Ant 

>; 

directant; 

class Mech_Tracking: inherit Track{ 
Parametric Data 
auto track max rate az; 
Parametric Data 
auto track max rate 

}; 
_el; 

Figure 24. (cont'd) The Logical Design: DDL Implementation of 
the ANTENNA Class 
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class Signal{ 
TransJPower 
Kilting Emitter 

>; 

signal_pwr; 
kemitter; 

class Trans_Power{ 
Parametric Data 
Parametric Data 
Parametric Data 
Signal 

>; 

linelossontx; 
pk_p\\r_eff_rad; 
pk_pwr_at_trans; 
signal; 

class Constant Power : inherit Transmission_Power{ 
Parametric Data                           time to switch; 

}; 

class NotConstantPower : inherit TransmissionPower { 
Parametric Data                             max rate of change; 

}; 

class Pulsed_RF: inherit Signal{ 
RF_Line_Structure 
Pulse Duration 
PRI/PGRI 

>; 

coherence; 
pulselength; 
pulse_groups; 

class RFJLine Structure { 
ParametricJData 
Parametric Data 
Pulsed RF 

}; 

3_db_sp ecwidth; 
transtype; 
rfjpulse; 

Figure 25. The Logical Design: DDL Implementation of the 
SIGNAL Class (cont'd into next page) 
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class Pulse_Duration{ 
Parametric Data pulsedurlim; 
Parametric Data pd_most_prob; 
PulsedJRF pulse; 

}; 

class PD_Modulated: inherit Pulse Duration{ 
Parametric Data devlimits; 

}; 
Parametric Data modulation_rate; 

class RF Constant: inherit Pulsed_RF{ 
Parametric Data rfjimits; 
Parametric Data most_prob_rf; 

}; 

class RF Not Constant: inherit Pulsed_RF{ 
>; 

class ModonPulse : inherit RF_Not_constant{ 
Parametric Data rfmodchange; 

}; 

class PMOP: inherit Mod_on_Pulse{ 
Parametric Data rfjimits; 
Parametric Data phase_shift; 

}; 

class FMOP: inherit Mod_on_Pulse{ 
Parametric Data JBmoprfJimits; 
 Parametric Data freq_excursion; 
}; 

Figure 25. (cont'd) The Logical Design: DDL Implementation of 
the SIGNAL Class (cont'd into next page) 
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class Pulsed_Agility: inherit RF_Not_constant{ 
ParametricData agilfunccorr; 
Parametric Data modwaveform; 

}; 

class Cont_Agility : inherit Pulsed_Agility{ 
ParametricData rfjimits; 

}; 

class Disc_Agility : inherit Pulsed_Agility{ 
Parametric Data rfjimits; 
Parametric Data nodiscsteps; 

}; 

class PRI{ 
Parametric Data 
Pulsed_RF 

}; 

measbandwidth; 
rf; 

class Not_Const_PRI: inherit PRI{ 
Parametric Data 
Intvl_Sked 

}; 

modulationtype; 
intervalcntrl; 

class Intvl_Sked{ 
Parametric Data 
set_of Recurrent_Intvl 

}; 

dutycycle; 
intervals; 

Figure 25. (cont'd) The Logical Design: DDL Implementation of 
the SIGNAL Class 
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class Recurrent_Intvl{ 
Parametric Data 
IntvljSked 

}; 

nbrdscreteint; 
sked control: 

class RecurJntvlSeq: cover RecurrentJntvl{ 

}; 
Parametric Data sequencel; 

Figure 25. (cont'd) The Logical Design: DDL Implementation of 
the SIGNAL Class 

class Receiver { 
Parametric Data 
SigProcSect 
ADConvSect 
S&TI_Emitter 

>; 

recervertype; 
sig_processor; 
a_d_section; 
semitter; 

class SigProcSect { 
Doppler^Processing 
Receiver 

>; 

dopproc; 
receiver; 

class Doppler processing { 
ParametricData 
ParametricData 
SigProcSect 

>; 

cohjprocjntrvl; 
pulses incpi; 
processor 

Figure 26. The Logical Design: DDL Implementation of the 
RECEIVER Class (cont'd into next page) 
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class Multiple_PulseProcessing { 
Doppler Processing 

}; 

class A_D_Conv_Sect { 
Parametric_Data 
Parametric_Data 
Receiver 

}; 

class Single Pulse Processing{ 
A_D_Convr_Sect 
Pulse Compression 

>; 

class Pulse Compression{ 
ParametricData 
ParametricData 
Sig_Pulse_Proc 

}; 

mp_dop_proc; 

a_sample_period; 
conv_trig_meth; 
rcvr; 

a_d_converter; 
pulse_compress; 

typeofcoding; 
time_band_prod; 
singlejulse; 

Figure 26. The Logical Design: DDL Implementation of the 
RECEIVER Class 
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class WARM{ 
char* 
Kilting Emitter 

}; 

probcode; 
kfltemit; 

class Power_ECCM: inherit WAEM{ 
set_of Trans Power 

}; 

res_pwr_mode; 

class Polar_ECCM: inherit WARM{ 
set of Polarization 

}; 
res_polar_mode; 

class Ant_Scan_ECCM: inherit WARM{ 
set of Scan 

}; 
resscanmode; 

class Sig_Shape_ECCM: inherit FKiRM{ 
set of Pw/se Duration resjpdmode; 

class RF_ECCM: inherit J^ÄMf 
set of Aifeerf ÄF 

}; 
resrfmode; 

Figure 27. The Logical Design: DDL Implementation of the 
WARM Class 
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class Suffix_Table{ 
char* 

}; 

modematrix; 

Figure 28. The Logical Design: DDL Implementation of the 
SUFFIX TABLE Class 

class S&TI_Emitter{ 

S&TI_Admin 
set_of Antenna 
set_of Signal 
set_of Receiver 
set_of WARM 
Sujfix_Table 
Parametric Data 
Parametric_Data 
Parametric Data 
Emitter 

>; 

class S&TI_Admin { 
char* 
char* 
char* 
char* 

}; 

kadmindata; 
antennadata; 
signaldata; 
receiverdata; 
warresmodes; 
modes; 
weaponsystem; 
function; 
platform; 
generaldata; 

s&ticode; 
multsrcreview; 
sclassification; 
sreleasability; 

Figure 29. The Logical Design: DDL Implementation of the 
S&TI EMITTER and S&TI ADMINISTRATIVE 
DATA Classes 

80 



The effect of the object-oriented logical design is profound. Now, all available 

data for a given emitter, both technical and administrative, is contained within an object of 

the class EMITTER. This effect is achieved via the nesting of objects within the 

framework of relationships, inheritances, and a covering. 

EMITTER contains complex (reference) attributes (object values) of type 

PARAMETRIC DATA, and also contains references to source-specific emitter data 

objects of type KILTING EMITTER and S&TI EMITTER. KILTING EMITTER 

and S&TI EMITTER objects likewise contain attributes of type PARAMETRIC 

DATA, and attributes that reference analogous administrative data objects. These 

administrative data objects contain simple-valued, source-specific attributes corresponding 

to S00, SOI, and S02 record data. The KILTING EMITTER and S&TI EMITTER 

objects additionally encapsulate antenna data, signal data, receiver data, WARM data, and 

suffix table objects. (Suffix table objects correspond to S05 record data). The attributes 

within each of these objects, in turn, are either of type PARAMETRIC DATA, or exhibit 

a nesting of objects that ultimately lead to attributes of type PARAMETRIC DATA. 

Finally, attributes of type PARAMETRIC DATA exhibit a nesting of objects that 

leads to simple parametric values and simple parametric-vahie-related administrative data. 

All such information corresponds to S03 record data. 

The overall result is a cohesive, encapsulated, and comprehensive logical schema 

of EWIRDB data. 
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VI. CONCLUSION 

The EWIRDB is a vitally important instrument of EW and EW research and 

development, containing up-to-date and mission-critical performance data on the EW 

systems of friendly and hostile forces. Its utilization in the areas of battle planning and 

EW research helps to shape the outcome of war. The usefulness of the EWIRDB, 

however, is hampered by its cumbersome data model, the basis of which is an inherently 

arbitrary parametric tree structure. The inconsistencies that exist among the data as 

modeled in the parametric tree and the data as addressed in the record-based output file 

further obscure the intended semantics. The overall data representation is non-intuitive, 

disjoint, and difficult to comprehend. The burden of data interpretation is transferred to 

the user, and the user must deal at length with formatting and coding issues. 

la this thesis, I have proposed an alternative and improved representation of 

EWIRDB data. The design effort was centered on the development of a legitimate 

conceptual design, followed by development of a logical design suitable for 

implementation on the M2DBS in the NPS Laboratory for Database Systems Research. 

The conceptual and logical designs are the first two phases in the overall database design 

and implementation process. 

The conceptual design has yielded a conceptual schema that captured the nature of 

a representative portion of EWIRDB data in a way that closely paralleled the user's 

perception of the data. The basis of the conceptual design was the OODM, a powerful 

modeling tool that enables the designer to reduce the semantic mismatch between real- 

world entities and their database representations. The OODM incorporates the concepts 

of objects, encapsulation, object classes, instantiation and classification, generalization and 

specialization, aggregation, and covering to achieve this end. The object-oriented 

conceptual design has captured both the technical and administrative semantics of EW 

data to a degree not previously achievable. This was the realization of the primary 

objective of the thesis. 
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In the logical design, I have mapped the object-oriented conceptual schema to the 

object-oriented data model of the M2DBS. The mapping is accomplished via the O- 

ODDL native to the M2DBS. The resulting O-ODDL statements constitute the logical 

schema; they are an M2DBS-readable specification of the conceptual schema. The O- 

ODDL provided for an arbitrarily deep nesting of objects within a framework of 

relationships, inheritance, and covering. The semantics of the data have been preserved in 

the mapping; when implemented on the M2DBS, these semantics will be supported by the 

M2DBS. This is a huge benefit - the database user is thereafter relieved of the 

responsibility of data translation and interpretation. Although it does not yet support 

methods or aggregation, the O-ODDL provides for an intuitive, cohesive, and nested 

implementation of technical and administrative data. Therefore, the implementation is 

much improved over the complex record-based format that currently exists. 

The logical design portion of the this work provides input for the subsequent use 

and evaluation of the object-oriented interface to the M2DBS, and in this regard satisfies 

the secondary objective of the thesis. In due course, the logical schema will be 

implemented on the M2DBS to produce an on-line object-oriented EWTRDB with which 

to demonstrate both the utility of the new M2DBS object-oriented interface and the 

usefulness of the new object-oriented EWTRDB design. 

Object-orientation did not appear to simplify the formidable task of modeling 

emitter mode combinations, currently represented through use of suffix codes and suffix 

tables. For this reason, I retained the suffix code-suffix table system in the designs 

presented in this thesis. Consequently, the use of this system complicates the 

implementation of the database. In the object-oriented approach, however, a reliance on 

external software to interface with suffix tables is unnecessary. Such manipulation may be 

achieved internal to the DBMS via methods. A true modeling solution may depend on the 

development of a data model that provides the flexibility to address attribute-to-attribute 

relationships and combinations. 
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Overall, the conceptual and logical designs developed in this thesis support and 

confirm the object-oriented approach as a viable solution to the modeling inadequacies of 

the present EWIRDB. 
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