
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN AND ANALYSIS
OF AN

OBJECT-ORIENTED DATABASE
OF

ELECTRONIC WARFARE DATA

by

Kevin M. Coyne

March 1996
Thesis Advisor:
Co-Advisor:

David K. Hsiao
C. Thomas Wu

Approved for public release; distribution is unlimited.

19960724 044

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 12. REPORT DATE 13. REPORT TYPE AND DATES COVERED
1 March 1996 1 Master's Thesis

4. TITLE AND SUBTITLE
Design and Analysis of an Object-Oriented Database of Electronic
Warfare Data(U)

5. FUNDING NUMBERS

6. AUTHOR(S)

Coyne, Kevin, M.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The Electronic Warfare Integrated Reprogramming Database (EWIRDB) is the primary Department of Defense (DoD)

approved source of electronic warfare (EW) data. Its utilization in the areas of battle planning and EW research enables our
military forces to effectively exploit the electromagnetic spectrum and shape the outcome of battle. The EWIRDB, however, lacks
a viable conceptual data model. EWIRDB data are represented in disjoint parametric tree models that are implementation-oriented;
to the extent that the tree structures are used as conceptual modeling tools, their hierarchical form is too restrictive to adequately
describe EW data semantics. Moreover, these structures address only technical parametric data. Associated administrative,
reference, and comment data are excluded. In practice, the EWIRDB is described in terms of the coded and record-based format
of its output media, not its conceptual model.

The primary goal of this thesis is the development of a semantically-improved conceptual design of EWIRDB data based on
the object-oriented data model (OODM). The secondary goal of the thesis is the specification of a logical design, based on the new
conceptual design, to provide the structure for a subsequent implementation of EWIRDB data on the Multimodel and Multilingual
Database System (M DBS) in the Laboratory for Database Systems Research at the Naval Postgraduate School.

The results of the work contained herein are: (1) an object-oriented conceptual design of EWIRDB data that supports the
semantics of both the file format and tree structures, and (2) the specification of an object-oriented logical design for an M2 DBS
implementation of sample EWIRDB data.

14. SUBJECT TERMS
Object-oriented Database Design
Electronic Warfare
Electronic Warfare Integrated Reprogramming Database

15. NUMBER OF PAGES

106
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

DESIGN AND ANALYSIS
OF AN OBJECT-ORIENTED DATABASE

OF ELECTRONIC WARFARE DATA

Kevin M. Coyne
Lieutenant, United States Navy

B.S., United States Naval Academy, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 1996

Author: /C^i^^A
Kevin M. Coyne

David K Hsiao, Thesis Advisor

C. Tnomasntfu, Co-Advisor

y/q
Ted Lewis, Chairman

Department of Computer Science

in

IV

ABSTRACT

The Electronic Warfare Integrated Reprogramming Database (EWIRDB) is the

primary Department of Defense (DoD) approved source of electronic warfare (EW) data.

Its utilization in the areas of battle planning and EW research enables our military forces to

effectively exploit the electromagnetic spectrum and shape the outcome of battle. The

EWIRDB, however, lacks a viable conceptual data model. EWIRDB data are represented

in disjoint parametric tree models that are implementation-oriented; to the extent that the

tree structures are used as conceptual modeling tools, their hierarchical form is too

restrictive to adequately describe EW data semantics. Moreover, these structures address

only technical parametric data. Associated administrative, reference, and comment data

are excluded. In practice, the EWIRDB is described in terms of the coded and record-

based format of its output media, not its conceptual model.

The primary goal of this thesis is the development of a semanticahy-improved

conceptual design of EWIRDB data based on the object-oriented data model (OODM).

The secondary goal of the thesis is the specification of a logical design, based on the new

conceptual design, to provide the structure for a subsequent implementation of EWIRDB

data on the Muhimodel and Multilingual Database System (M2DBS) in the Laboratory for

Database Systems Research at the Naval Postgraduate School.

The results of the work contained herein are: (1) an object-oriented conceptual

design of EWIRDB data that supports the semantics of both the file format and tree

structures, and (2) the specification of an object-oriented logical design for an M2DBS

implementation of sample EWIRDB data.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. AN OVERVIEW OF THE EWIRDB 1

B. THE FORMAT OF THE EWIRDB 4
1. The Parametric Tree Model 5

a. The Parametric Tree Structure and Notation 5
b. The Limitations Of Hierarchical Data Modeling 9

2. The File Structure of the Output Data 11
3. Summary 16

C. THESIS OBJECTIVES 17

D. THE ORGANIZATION OF THE THESIS 17

H. DESIGN CONCEPTS 19

A THE CONCEPTUAL DESIGN 19

B. THE LOGICAL DESIGN 20

UL OBJECT-ORIENTED DESIGN CONCEPTS 23

A OBJECTS 24
1. Object State 25

a. Simple Attributes 26
b. Complex Attributes and Relationships 26

2. Object Behavior and Encapsulation 27

B. OBJECT CLASSES 29
1. Instantiation and Classification 31
2. Generalization and Specialization 32
3. Aggregation 33
4. Covering 34

IV. A CONCEPTUAL OBJECT-ORIENTED EWD1DB 35

A A GLOBAL SCHEMA 37

vu

B. THE EMITTER SCHEMAS 42
1. The Kilting Emitter Class 43
2. The Association of an Emitter to its Signal 46
3. The S&TI and USNCSDB Emitter Classes 47

C. THE SCHEMAS WITHIN LOGICAL GROUPS 50
1. Antenna Data 50
2. Signal Data 52
3. Receiver Data 55
4. WARMData 58

D. THE PARAMETRIC DATA CLASS 58

E. SUFFIX CODING AND THE SUFFIX TABLE 63

V. A LOGICAL OBJECT-ORIENTED EWIRDB „ 65

VL CONCLUSION 83

LIST OF REFERENCES 87

INITIAL DISTRIBUTION LIST 89

vui

LIST OF FIGURES

1. The Merging of Data into the EWIRDB 3

2. The Pulsed/Continuous Wave (P/CW) Parametric Tree 6

3. The Receiver Performance Assessment (RPA)Tree 6

4. A Detailed Portion of the P/CW Tree 8

5. A Description of TERF Elements 13

6. An Object Class and its Objects 30

7. Conceptual Object-Oriented Design Symbology 36

8. The Conceptual Schema: A Global View 38

9. The Conceptual Schema: Kilting Emitter Data 44

10. The Conceptual Schema: S&TI Emitter Data 48

11. The Conceptual Schema: USNCSDB Emitter Data 49

12. The Conceptual Schema: Antenna Data Enlargement 51

13. The Conceptual Schema: Signal Data Enlargement 53

14. The Conceptual Schema: Receiver Data Enlargement 56

15. The Conceptual Schema: WARM Data Enlargement 59

16. The Conceptual Schema: Parametric Data 61

17. The O-ODDL Class Specification 66

18. The O-ODDL Inheritance Specification 66

19. The O-ODDL Cover Specification 67

20. The O-ODDL Setof and Inverseof Specifications 67

ix

21. The Logical Design: DDL Implementation of the PARAMETRIC DATA Class 68

22. The Logical Design: DDL Implementation of the EMITTER Class 70

23. The Logical Design: DDL Implementation of the KILTING EMITTER and
KILTING ADMINISTRATIVE DATA Classes 70

24. The Logical Design: DDL Implementation of the ANTENNA Class 71

25. The Logical Design: DDL Implementation of the SIGNAL Class 74

26. The Logical Design: DDL Implementation of the RECEIVER Class 77

27. The Logical Design: DDL Implementation of the WARM Class 79

28. The Logical Design: DDL Implementation of the SUFFIX TABLE Class 80

29. The Logical Design: DDL Implementation of the S&TI EMITTER and
S&TI ADMINISTRATIVE DATA Classes 80

ACKNOWLEDGMENTS

I would like to thank Dr. David Hsiao and Dr. C. Thomas Wu for their guidance in

the development of this thesis. And thanks to Tom McKenna and JJ Lee who epitomize

the concept of teamwork.

I would also like to thank Doris Mlezko, Sharon Cain, and Donna Colehour for

their enthusiastic support.

Most importantly, I would like to thank my wife Maureen and my son Matthew for

their endless patience.

XI

XU

I. INTRODUCTION

In this thesis, I propose an object-oriented design for a representative portion of

the Electronic Warfare Integrated Reprogramming Database (EWIRDB). In this chapter,

I highlight the important role of the EWIRDB in the national defense and provide a

description of the current format of the database. I conclude with specific thesis

objectives and an outline for the organization of the thesis.

A. AN OVERVIEW OF THE EWIRDB

Advances in electronic warfare (EW) technology have had tremendous impact on

modern military operations. The application of electromagnetic energy to secure friendly

use of the electromagnetic spectrum, and to detect, reduce, or prevent its hostile use may

well be the decisive factor in the outcome of battle. A force that effectively utilizes the

electromagnetic spectrum gains the initiative. A force that exploits the weaknesses in an

adversary's EW systems renders the adversary blind to the actual tactical situation.

Success in EW is a prelude to victory. Failure in EW is militarily devastating.

In the context of today's electronically-dependent warfare, frequent data collection

and analysis is essential to the development of EW technologies to counter the enemy

threat. Efficient maintenance of the latest data, obtained directly from measurement, or

indirectly via electronic intelligence (ELENT), is the basis of successful EW. The National

Air Intelligence Center (NAIC) maintains the latest data, in-depth and specific, on EW

systems of the United States, friendly forces, and non-friendly forces. These data are

stored in the Electronic Warfare Integrated Reprogramming Database (EWIRDB).

"The EWIRDB is the primary Department of Defense (DoD) approved source for

technical parametric and performance data on noncommunications emitters and associated

systems. "[1] Noncommunications emitters include radars, jammers, navigational aids,

transponders, target-sensing systems, and others. All such emitters generate and receive

electromagnetic radiation and may be used to gain the advantage in armed conflict.

EWIRDB emitter data are therefore indispensable in the analysis and execution of EW;

without them, our ability to effectively manipulate the electromagnetic spectrum would be

compromised.

The EWIRDB is the union of data from three constituent sources. The National

Security Agency (NSA) contributes data from its '"Kilting" database. Obtained through

ELINT, Kilting data are referred to as observed data in the EWIRDB. Observed data

result from the direct measurement and analysis of an emitter's electromagnetic signature

following the signal intercept; they are fundamental in describing an emitter's

performance. The Scientific and Technical Intelligence (S&TI) community, under the

jurisdiction of the Defense Intelligence Agency (DIA), contributes parametric data

assessments to the EWIRDB. S&TI systems analysts consider all available sources of

information and then estimate or derive the total operational capability of an emitter.

Derived parametric data in the EWIRDB are referred to as assessed data. The United

States Noncommunications Systems Database (USNCSDB), supported by the Air Force

Information Warfare Center (AFIWC), holds data on US owned and operated

noncommunications emitters. USNCSDB service analysts provide inputs based on

evaluation of system specifications. EWERDB data of this type take the same format as

assessed data, and for this reason, are generally referred to as assessed data as well.

The EWIRDB is thus a data composite. Moreover, this pooling of EW data may

reflect different data values from different sources. Figure 1 depicts the EWIRDB as a

composite of its three contributory sources.

Developed in the seventies to support the reprogramming of EW systems, the

EWIRDB and its role has since grown in both scope and in significance. While its primary

focus remains in EW software reprogramming, the EWIRDB has become vital in other

areas: EW research, development, test, and evaluation (RTD&E); modeling and

simulation (M&S); training and acquisition. Merits of the EWIRDB are revealed by post-

Kilting
(NSA)

ELINT
ANALYST

Various Producers

J S&TI CENTERS
(DIA)

SYSTEMS
ANALYST

j USNCSDB
(AFIWC)

assessed

observed data
EWIRDB
(NAIC)

SERVICE
ANALYST

specification

Figure 1. The Merging of Data into the EWIRDB

Desert-Storm figures: the value of the reprogrammable EW equipment directly supported

by the EWIRDB has been estimated at $30 billion; the value of the operational systems,

RTD&E, M&S, and training and acquisition programs that employ the EWIRDB has been

estimated to be $1 trillion [1].

Li short, the EWIRDB is an indispensable tool that helps to bridge the gap

between data analysis and effective exploitation of the electromagnetic environment by

EW systems. It is a medium whose use ultimately helps maintain military readiness and

minimize the loss of life in combat.

B. THE FORMAT OF THE EWIRDB

Although effective in its implementation, the data model of the EWIRDB is

problematic. The EWIRDB is described in terms of a data-implementation model to the

exclusion of a legitimate semantic data model. Data is presented in a hierarchical tree that

is inherently arbitrary and reliant on the use of reference codes to link related pieces of

data throughout the hierarchy. The non-intuitive hierarchical organization and coding

scheme prevent the user from gaining a meaningful view of an emitter's performance

parameters. Consequently, the nature and semantics of the EW data are obscured by its

current representation.

The administrative information maintained for emitter systems and their associated

parametric data entries is excluded from the existing data model. The administrative data

are addressed only in terms of the formatting of the data output file. This is a major

shortcoming; the adrninistrative data are important to the analysis and tracking of

parametric data, and represents a significant portion of the database.

In general, the "intuitiveness" of data representations and the ease with which data

formats may be interpreted largely determine the usefulness of a database. The current

EWIRDB oversteps the boundaries of both criteria. So while it remains the foremost

source of mission-critical EW data, lack of an adequate semantic data model ultimately

results in a reduction of the EWIRDB's effectiveness as an instrument of EW.

1. The Parametric Tree Model

The upper-level hierarchical data model of the EWTRDB is illustrated in Figures 2

and 3. The Pulsed/Continuous Wave (P/CW) tree in Figure 2 is used principally to

evaluate and identify the electromagnetic energy radiated by emitters. The Receiver

Parametric Performance (RPA) tree in Figure 3 contains receiver design and performance

information on the receiver portion of emitter systems and serves as a vital reference in the

development of electronic countermeasures (ECM) techniques and systems. The P/CW

and RPA trees together provide a comprehensive report on an emitter's performance . A

third hierarchical structure, the Electronic Countermeasures (ECM) tree, exists; it is not

shown in any figure. ECM tree data describe jamming systems, and are referenced in the

development of electronic counter-countermeasures (ECCM) to overcome the jammer

threat. At present, however, the viability of the ECM tree is being reevaluated by the

agencies that participate in and contribute to the EWIRDB program The ECM tree is

therefore not addressed in this thesis.

a. The Parametric Tree Structure and Notation

As depicted in Figures 2 and 3, the tree structures graphically show how

emitter data are catalogued. "The tree is a management tool that orders a long list

logically and hierarchically in a way that proceeds from broad characteristics through

levels of successively finer characteristics" [1]. Each branch contains a heading or label to

indicate the type of parameters or attributes associated with the branch. For example,

"SIGNAL POWER" of the 11 B (B) SIGNAL POWER branch in Figure 2 is a branch

name or heading. Branches contain zero or more parameters. A branch with zero

subordinate parameters is referred to as a "superheader". Superheader branches pose a

unique modeling problem - they contain no data and are not reflected in the data contained

within the database. However, superheaders are useful, despite their lack of parametric

data, in identifying a major areas of interest to be decomposed in subordinate branches.

10 B (A) GENERAL INFORMATION

121 B ANTENNA POLARIZATION

11 B (B) S1GNALPOWER

1212 B (D) RX ANTENNA POLARIZATION

12 B ANTENNA

122 B ANT CHARACTERISTICS

1213 B (E)TX/RX ANTENNA POLARIZATION

1221 B (F) TRANSMIT ONLY ANTENNA

1 B P/CWTREE

1223 B (H) ANTENNA POLARIZATION

1311 B (I) PULSED SIGNAL SHAPE (AM)

13123 B (K) MULTIPLE PULSE GROUPS 1312 B (J) PRI/PGRI
131 B PULSEDSIGNAL

13 B FREQUENCY AND

132 B CW

1313 B FREQUENCY

13132 B (M) PULSED RF

1321 B (P) CWFREQUENCY
MODULATION CHAR

1322 B (Q) CWMODULATION

14 B (R) ASSOCIATED SIGNALS/SY STEMS

Figure 2. The Pulsed/Continuous Wave (P/CW) Parametric Tree

151 E (AA) RECEIVER PARAMETERS

1511 E(AB) RECEIVER FRONT END

1512 E (AC) FREQUENCY CONVERSION

1513 E(AD) IF SECTION

152 E (AH) ECCM CAPABILTTIES

1514 E (AE) SINGLE PULSE PROCESSING

1515 E (AF) MULTIPLE PULSE PROCESSING

15 E RPATREE

1516 E (AG) DISPLAY/INDICATOR

153 E (AD SYSTEM INFORMATION

Figure 3. The Receiver Performance Assessment (RPA) Parametric Tree

Thus, in a parametric tree, branches categorize emitter and signal

parameters, whereas parameters hold actual data values in the database. A numbering

system is also provided for describing branching throughout the depth of the parametric

tree. The branch number is given as the first entry on a branch. Each branch has a single

predecessor and is assigned a unique number to define a unique path from the root of the

tree to any given branch. The "11" of the 11 B (B) SIGNAL POWER branch in Figure 2

is an example of a branch number.

As specified by branch markers called subfile codes, data are organized

throughout the tree to effect logical groupings of parameters. Subfile codes appear in

parentheses in Figures 2 and 3. Data subhierarchies rooted at subfile-coded branches are

meant to encapsulate major aspects of an emitter's performance or convey the semantics

of high-level emitter and signal characteristics; Subfiles are therefore equivalent to

subtrees, and accentuate major groupings of related data. The "(B)" listed on the 11 B

(B) SIGNAL POWER branch in Figure 2 indicates that subfile B, rooted at branch 11,

contains data that in the composite is descriptive of the high-level characteristic "SIGNAL

POWER".

All branches and parameters in the EWIRDB are not applicable to all

database users. A branch or subordinate parameter may be useful to an S&TI analyst, for

instance, and meaningless to Kilting analyst. Likewise, the data in a particular branch may

be applicable to all users. Parametric trees contain usage codes to distinguish usability of

branches and parameters among participating agencies. The non-parenthesized "B" on the

11 B (B) SIGNAL POWER branch, for example, indicates that the SIGNAL POWER

branch is used for Kilting, S&TI, USNCSDB, and NSRL (National SIGINT Requirements

List) purposes. In other words, that branch is applicable to all agencies that use the

EWIRDB. The other codes are K for Kilting and NSRL usage, E for S&TI assessed data

and USNCSDB, and N for NSRL-only usage.

The hierarchy depicted in Figure 4 offers perspective on the complexity of

the parametric tree. Specifically, all branches subordinate to branch 121 B ANTENNA

121X11 B2 LINEAR POLARIZATION

121X1 B2 FIXED POLARIZATION

1211 B TX ANTENNA POLARIZATION

121 B ANTENNA POLARIZATION 1212 B RX ANTENNA POLARIZATION

1213 B T»RX ANTENNA POLARIZATION

.10B4TMETOSWITCH MHÜSEC

.20 B 4 AUTO OR MANUAL SWITCHING (TEXT)

.IOB 1 MAJOR AXIS TILT ANGLE

.20 B 6 AXIAL RATIO

DEG/HOR

DB

121X12 B 2 CIRCULAR OR ELLIPTICAL

.10B2 SENSE(LH-RH)

.20 B 5 AXIAL RATIO

.30 B 2 MAJOR AXIS TILT ANGLE (ELLIPSE)

121X21 B2 ADAPTIVE POLARIZATION

121X2 B2 VARIABLE POLARIZATION

121X3 B2 CROSS POLARIZATION CHAR

(TEXT)

.01 B 2 CHANGE PATTERN (TEXT)

IOB 2 RATEOF CHANGE HERTZ

.20 B 2 REASON FOR CHANOE (TEXT)

121X22 B 2 MANUAL POLARIZATION CHANGE

.IOB 2 RATEOF CHANGE

.20 B 2 REASON FOR CHANGE

HERTZ

(TEXT)

121X23 B2 PERIODIC PROGRAMMED POLARIZATION

.10B3 RATEOF CHANGE

.20 B 4 CHANGE PATTERN

121X24 B3 POLARIZATION MODULATION

HERTZ

(TEXT)

.10B 5 CONTINUOUS/DISCRETE POLARIZATION(TEXT)

.20 B 4 MODULATING WAVEFORM OR CODE (TEXT)

.30B4 MODULATING RATE MHZ

.40 B 4 NBR OF DISCRETE POLARIZATIONS INTEGER

.50 B 5 BIT LENGTH MJCROSEC

.60B5 NBROFBrrS INTEGER

.10B3PATTERNPEAKOFFSET DEGREES

.20 B 5 PATTERN PEAK RESPONSE DB

Figure 4. A Detailed Portion of the P/CW Tree

POLARIZATION in the P/CW tree, that is all parameters associated with the branch, are

revealed. This portion of the parametric tree is neither the most complex nor the most

populated, but it is a precise and representative sampling of the data that reside in the

lower levels of the parametric tree.

The new notation in Figure 4 requires a brief explanation. A parameter is

listed with a two digit decimal number as a means to differentiate between parameters in a

given branch. (Branches themselves include the decimal notation, ".00", but the notation is

implicit and not shown in the tree model.) The combination of the branch number and the

two-digit decimal number is referred to as the parametric number. Thus, locating a

parameter within the tree or within an output data file is a straightforward function of

indexing into the data via the parametric number. For example, parametric number

121X1.10 indexes to the parameter .10 B 4 TIME TO SWITCH under the 121X1 B 2

FIXED POLARIZATION branch in Figure 4. (The X in the branch number is a variable

that specifies the type of antenna being considered, i.e., transmit, receive, or transmit and

receive. The variable takes on the value 1, 2, or 3, accordingly.)

Additionally, since each parameter contains data, each includes an entry for

units of measure. Branches, in contrast, are not data entries but rather indicate that

parametric data groupings may be identified by a branch name or number, and therefore

do not specify units of measure.

b. The Limitations of Hierarchical Data Modeling

In general, the hierarchical data modeling of the EWIRDB parametric trees

is misleading in its representation of parametric data. Aside from highhghting the

complexity of the EWIRDB parametric tree, the sample hierarchy in Figure 4 also exposes

the arbitrary nature of the trees' hierarchical structure. An inability to precisely represent

data semantics is common to generic tree structures such as those of the EWIRDB. The

current EWDIDB tree model is strapped with this inherent arbitrary quality that limits the

EWIRDB's effectiveness as a database and places the burden of data interpretation on the

user.

Specifically, the parallel branches, 121X1 B 2 FIXED POLARIZATION,

121X2 B 2 VARIABLE POLARIZATION, and 121X3 B 2 CROSS

POLARIZATION CHAR, seem to indicate that for a given antenna, polarization is

either fixed or variable or exhibits cross polarization characteristics. This is not actually

the case. For a given antenna, polarization is either fixed or variable, and all antennas may

be described by cross polarization characteristics. Whereas the fixed and variable

polarization branches determine a clear boundary based on fundamental differences in an

antenna's characteristics, the cross polarization branch is applicable to all antennas,

regardless of their differences. The hierarchical structure in Figure 4 does not convey this

idea. It provides only a generic and inadequate treatment of the intended data semantics.

A similar situation arises in the hierarchy rooted at branch 121X2 B 2

VARIABLE POLARIZATION in Figure 4. The arbitrary nature of the hierarchical

modeling structure depicts a variably polarized antenna that appears to be rigged as one of

four types: adaptive, manually changed, periodic programmed, or modulated. Again, this

does not accurately reflect the intended meaning of the data. The correct interpretation is

that a given variably polarized antenna can be described as one of three types: adaptive,

manually changed, or periodic programmed. And just as the cross polarization branch

applied to any given entry in the preceding antenna polarization branch, the polarization

modulation branch describes characteristics common to all variably polarized antennas.

The polarization modulation is therefore not a criteria by which to categorize types of

variable polarization.

Another flaw in the EWIRDB tree model is a collateral effect of the general

layout of the data. Parametric data is scattered over a large number of separate records

comprising two distinct and largely independent structures, the P/CW and RPA trees. A

search of these two distinct structures and their associated parameters is required to

10

ascertain the performance of a given emitter. Consequently, the global view of an

emitter's performance, from a modeling perspective, is obscured.

Deficiencies in the parametric tree model are further exacerbated by the

fact that the trees are designed to characterize only parametric data. The EWIRDB also

contains administrative, reference, and commentary information, all associated with

parametric data. At best, then, even if the trees were perfect parametric data modeling

tools, only a portion of EWIR data would have been taken into account.

The data not included in the parametric tree are loosely modeled in terms

of a file structure. The file structure is not, however, a data model. It is a description of

the data as presented in the output form. Parametric data is therefore also described in

terms of the output format. While the file "model" incorporates all aspects of the

database, the overall semantic picture is difficult to grasp; the file format is also complex

and disjoint.

2. The File Structure of the Output Data

The EWIRDB output file format is designed to provide a comprehensive view of

parametric and associated data for emitters. It is cryptic in presentation, however, and

does not compensate for the lack of a semantically correct data model While the view of

an emitter's parametric and associated data in the output file is complete, it is non-

intuitive. The Technical ELINT Reference File format (TERF) is the standard distribution

format for the EWIRDB and is composed of six different types of records, referred to as

logical information records. The record types are specified as follows, with the record

name preceding the record type designator in parentheses: Classification Record (S00),

Emitter Name Record (SOI), Subfde Header (S02), Parametric Data (S03),

Reference Data (S04), and Comments (S05) [1].

A brief description of the TERF data fields is required to bridge the gap between

the data as modeled in the parametric trees and the data as presented in the TERF output.

Because the EWIRDB consists of data merged from different sources (see Figure 1), some

11

fields are source-specific. A tabular summary of the parametric data and other types of

data in the output file is provided in Figure 5. In the figure, "assessed data only" refers to

both S&TI and USNCSDB contributed data, as stated earlier in Section I.A. A full

description of the TERF format, including the actual 'look" of an output file, is given in

[1]-

Three fields do not appear in Figure 5 but are common to all records in a file. The

first is Record Type, which specifies the record as S00, SOI, S02, S03, S04, or S05. The

second field is the Source Designator, which identifies the contributory source of the data

contained in that record; K for Kilting, E for S&TI assessed data, and U for USNCSDB.

The third field is Notation, which provides the ELNOT (ELINT Notation) assigned to the

given emitter. The ELNOT is an administrative label that uniquely identifies an emitter.

Overall, the TERF format is complex. It represents a merger of data from different

sources with different needs and provides for nonstandard, source-specific data formats.

The TERF contains many codes. Some codes differ in symbology but relate to identical

components, and some apply to only certain types of data. Other codes distinguish

between multiple versions of the same parameter, and some relate mutually dependent

parameter values. Mode combinations and the suffix table pose a particularly challenging

modeling problem. While modal relationships are critical in the identification and

evaluation of emitters, the relationships as coded in the suffix table are difficult to grasp,

especially if emitter modes number in the hundreds of thousands. (Suffix codes are given

more detailed treatment in Chapter IV).

Many TERF fields exist solely to link information in one portion of the file to

information in another segment of the file. The coding and linking picture grows more

complex within the following context. A TERF consists of emitter data partitioned into

subfiles represented in the S02 records. Each contributory source (Kilting, S&TI

Assessed, USNCSDB) may supply many different subfiles for a given emitter, each may

supply multiple versions of the same subfile, and sources may overlap in the subfiles they

12

:

B "- BBBflSil
^^^^B^B^J^Si'SIi'llS^^^^^^HBI

SOO Classification one SOO per emitter
Classification overall classification of emitter file

Retrieval Date Kilting only, data of data extraction from NSA database |

SOI Emitter Name one SOI per contributory source (K,E,U)
Emitter Name name commonly associated with the ELNOT

S&TICode assessed data only; 4 character code that identifies the
agency responsible for the ELNOT

SAE Code Kilting only; 4 character code that identifies the agency
responsible for the ELNOT

Multiple Source
Review Date

assessed data only, date of the last full review of the
assessed data file for a given emitter

Date of Last
! Significant Change

Kilting only, date of last full review of the Kilting data
file for a given emitter

\ Parametric Update
Date

date of most recent change to any S03, S04, or S05
record

S02 Subfile Header one S02 per parametric data subfile per contributory \
source; multiple S02 records likely

Subfile Tree
Number

subfile-coded branch number

Subfile Name name (heading) of the subfile-coded branch
Subfile Code 1 or 2 character code denoting the subfile or subtree

Technical Date Kilting only, date of last change in any S03 record

S03 Parametric Data one to many S03 records per parametric data entry
per contributory source; multiple S03 records likely

Tree Number also called parametric number; index into parametric tree 1
Suffix Code 1 or 2 character code assigned to help describe emitter

modes; helps differentiate between multiple entries for
the same tree number; links related (dependent)
parameters

I Measurement Name corresponds to branch/parameter name in parametric tree 1
Units I corresponds to units specified for parameters in

parametric tree; for textual data, the format may be
1 specified here

\ Lower/Upper Value
or Text

actual parametric data; for numeric data, lower/upper
value is filled in (with same values if data is single-

1 valued)

Figure 5. A Description of TERF Elements (continued into next page)

13

^iiiliSflS^^ffü ism MSISIIB^^
S03

cont'd
Confidence Level assessed data only; specifies the analyst's confidence in

the parametric data
S&TICode assessed data only; 3 character code that identifies the

agency responsible for the ELNOT
Reference Number links S03 to a reference (S04); 4 character code that

refers to a line in an S04; 1st character in code denotes
the data source, R=Kilting, A=S&H Assessed,
F=USNCSDB (differs from SOlcode)

Comment Number code that refers to a line in an S05; 1st character in code
denotes the data source; C=Kilting, K=S&H Assessed,
N=USNCSDB (differs from SOI and Reference Number
codes)

Reserve Mode code to indicate that the value of the parametric data, or
mode, is a wartime reserve mode (WARM); also
indicates analyst's confidence in this assessment

Classification assessed data only;
U=unclassified,C=confidential,S=secret, or T=top secret

Releasability assessed data only; 2 character code designating the
countries to which the data is releasable

Date of Last
Update

date the last significant change was made to the data

Measurement
Accuracy

Kilting only; + or - range if available, used with
numerical parametric data

Measurement
Accuracy Units

Kilting only; same as the units field unless the accuracy
is so fine it cannot be expressed the same way

Intelligence Source Kilting only; 1 character code, denotes type of source
used to derive parametric data (ex. ELINT, non-ELINT)

Preferential Rating Kilting only; one digit code to signify the relative
importance of the data, the importance of obtaining the
data

S04 Reference Data zero to many S04 records per source per emitter file;
required if a reference was specified in an S03 record;
provides a trace back to original source documents

Reference Number same as those specified in the S03 records
Reference Line

Number
sequential and contiguous; many lines of text may be
required to describe a reference for a given reference
number

Figure 5 cont'd. A Description of TERF Elements (cont'd into next page)

14

S04
cont'd

Reference Text assessed data format: textual description of the
parametric data reference followed by a formatted
classification/releasability line (refers to the S04)
Editing format: reference text or document
number (document title), report date, producer,
classification of the report

S05 Comments zero to many S05 records per parametric data item
per source; required if a comment was specified in
an S03; suffix table stored in "comment zero";
general emitter comments stored in "comment
one'

Comment Number
Comment Line

Number

same as those in S03 records
sequential and contiguous; many lines of text may be
required to describe a comment for a given comment
number

Comment Text used to explain, describe, elaborate, and qualify
parametric data entries and modes
• assessed data format: includes a formatted

classification line for every comment; at least one
classification line is required for each comment

Figure 5 cont'd. A Description of TERF Elements

15

supply to the EWIRDB. Each subfile in turn may consist of many different parametric

data entries, and there may be many data entries for the same parameter as represented in

the S03 records. Finally, where applicable, parametric data links to source-specific

reference documentation and comments in the S04 and S05 records, respectively. And for

a given emitter, each source may require many S04 and S05 records. The effect of the

data merge, codes, and links with this framework is an elaborate and burdensome

presentation of parametric and associated data.

3. Summary

The EWIRDB represents a challenging database modeling problem The problem

stems from several factors, the foremost of which is the inherent complexity of the data.

Capturing the nature of EW systems and signals is difficult.

Additionally, the parametric trees, the semantic basis of the EWIRDB, have been

designed and used primarily for database management, not as data modeling tools. To the

extent that the trees have been used to model parametric data, their hierarchical and

intrinsically arbitrary structure has proven too restrictive to accurately capture the

semantics of the data. The database user is therefore required to logically determine the

true nature of the data, if the need for interpretation is recognized at all.

Further, TERF-formatted EWIRDB output provides a comprehensive view of

emitter data, but does not fill the semantic gap. While it incorporates the structure of the

parametric tree model and catalogues associated reference and commentary data, it cannot

be construed as a data model. Moreover, the TERF format introduces extras into the

data, such as reference codes, to link related pieces of information. The use of codes

throughout the file muddles the meaning of the data.

Finally, without system-supported semantics, the burden of EW1R data

interpretation is transferred to the user. This is not an easy task for the user; the EWIRDB

is difficult to comprehend because the nature and relationshrps of EW data are not

adequately modeled and are subject to coding. Because the EWIRDB is generally

16

described in terms of data implementation and not data semantics, there exists a

requirement for the development of a more meaningful, intuitive, and system-supported

design. The recent advance in object-oriented data modeling indicates that the object-

oriented alternative may prove useful in simplifying and clarifying the data semantics,

relationships, and formats of the EWIRDB.

C. THESIS OBJECTIVES

The primary objective of this thesis is to provide a new object-oriented design for a

sample portion of the EWIRDB. NAIC has identified the EWIRDB for our

experimentation in object-oriented database design. The object-oriented data model is

arguably the most semantically rich and flexible of all database design tools. The

effectiveness of the object-oriented data model, however, remains untested for any military

or warfare-related design of the scope of the EWIRDB.

The secondary objective is to use the object-oriented data definition language (O-

ODDL) as a design tool for the specification of the object-oriented EWIRDB. At present,

the O-ODDL used in this thesis is the product of a larger thesis effort that produced an

object-oriented interface to the Multimodel and Multilingual Database System (M2DBS)

[7] at the Naval Postgraduate School (NPS). The O-ODDL specification of a new

EWIRDB design is therefore a continuation of the NPS research. It will ultimately provide

an on-line object-oriented EWIRDB with which to demonstrate both the utility of the new

M2DBS object-oriented interface, and the useftdness of the new object-oriented EWIRDB

design.

D. THE ORGANIZATION OF THE THESIS

In Chapter H of the thesis, I address basic issues in the object-oriented database

development, within the context of conceptual design and logical design processes, hi

Chapter D3, I provide the design mechanisms of the object-oriented data model, hi

17

Chapter IV, I further describe the tools of the proposed object-oriented design and present

the conceptual design of the EWIRDB. In Chapter V, I briefly describe the logical design

structures native to the M2DBS and present the logical design. In Chapter VI, I

summarize my assessment of the new object-oriented EWIRDB.

18

H. DESIGN CONCEPTS

Database design is a multiphase process. Each phase addresses a different aspect

of the design process and yields a separate design result or model. The partitioning of the

design process in this way guarantees the viability of each design phase as a distinct entity.

Moreover, it simplifies the entire process, because the complexity of the design problem is

also partitioned. Only certain aspects of the design need be addressed in each phase, and

the designer is exposed to the details of a given level only. The correct and thorough

design of one phase lends itself to the development of a subsequent phase.

In this chapter I addresses those aspects of database design that are central to this

thesis: the conceptual design and the logical design. These are the first phases in the

overall design process and are therefore elemental to the overall design. Together, the

conceptual and logical design phases take a proposed database from abstraction to

implementable form.

The treatment here is generic; design mechanisms specific to object-oriented

database design are examined in Chapter HI.

A. THE CONCEPTUAL DESIGN

Much like an architect's sketch crystallizes the customer's architectural design

vision, the conceptual design captures the nature of data in a way that closely resembles

the database users' perception of data and the usage of data.

The fundamental goal of conceptual database design is thorough understanding of

the database through development of a conceptual schema. A tool known as the high-

level data model, also referred to as a semantic or conceptual data model, is used. A

high-level data model is intuitive, flexible, and comprehensive in its description of data. It

is the means by which a schema is developed to approximate the users' perception and

usage of the proposed database. To this end, the set of abstraction concepts underlying

19

the semantic data model are sufficiently expressive of data, simple in nature, unambiguous,

minimal in number, and nonoverlapping in meaning [2].

Devised within the framework of the high-level data model, the conceptual schema

thus characterizes the structure of data. The structure of the data is the sum and

substance of the database, encompassing data types, data relationships, and data

constraints. Since the conceptual design should be intuitive, its design notation is typically

associated with a diagrammatic representation of its modeling constructs. A diagram is a

simple, precise, high-level, and straightforward means of expressing the nature of data.

An essential quality of a conceptual schema is that it be independent of a specific

database management system (DBMS). A DBMS-independent semantic data model is

generic and free of any limitation or peculiarity imposed by a particular DBMS.

Consequently, the details of data implementation and physical data storage are suppressed

in the conceptual schema. Such detail is not useful in the development of a high-level

conceptual design. Accordingly, the conceptual schema cannot be used directly to

implement the database. This, however, is not disadvantageous. Rather, it highhghts the

importance of the conceptual design and the value of the conceptual schema as a stable

description of the database. A stable database description - the conceptual schema -

remains unaltered by any modification to the underlying DBMS-dependent logical and

physical designs.

As the initial phase in the design effort, conceptual design is paramount in database

development; the entire process depends on the creation of a stable and correct conceptual

schema.

B. THE LOGICAL DESIGN

The architect's initial sketch, like the conceptual schema, is the foundation for all

subsequent design work. After capturing the essence of the customer's desires in the

sketch, the architect then addresses the specifics of the design layout. Decisions are made

20

based on the environment and the available materials. The outcome is a blueprint, a

specification for the construction of the design.

As the blueprint follows the sketch, the logical design in database development

follows the conceptual design. The logical design likewise yields a "blueprint" of the

conceptual schema that accounts for the type of database system in which the database

will reside.

The logical design is equivalent to a mapping from conceptual schema to the data

model of the selected DBMS. The mapping is accomplished by the designer via the

DBMS's native data definition language (DDL); the output DDL statements are

equivalent to a DBMS-readable specification of the conceptual schema. The end result of

logical design is thus a transformation of the database as proposed in the conceptual

design to a database in the DBMS-compatible form for eventual realization in the DBMS.

21

22

m. OBJECT-ORIENTED DESIGN CONCEPTS

Conceptual design and logical design, as described in Chapter n, cast the

foundation of database development; a high-level data model provides the mechanisms

required to formulate these designs. Thus, both design processes proceed within the

framework of the chosen data model. The data model is therefore the starting point.

The definitive measure of a data model's effectiveness is it abstraction capability,

or the degree to which its design mechanisms capture "real-world" semantics. Traditional

data models, including the hierarchical model, are limited with respect to their abstraction

capabilities. The EWIRDB hierarchical model is a prime example; and as detailed in

Chapter I, the model is fundamentally deficient in its representation of EWIR data. For

traditional data models in general, the more complex the nature of the data, the greater the

semantic mismatch between the real-world data and its representation.

Object-oriented database design, a departure from traditional methods, seeks to

eliminate the semantic mismatch between real-world entities and their database

representations. The object-oriented data model (OODM) is the basis of the design

effort. The OODM is more semantically rich than the earlier models. Object-orientation

more closely parallels the way we observe the real-world. We are surrounded by objects:

computers, cars, roads, buildings, trees, people, animals, the atmosphere - the list of

objects is infinite. People tend to reason about real-world "objects" in terms of their

characteristics, both static and dynamic. A car, for instance, might be classified by its

make, model, and year, as well as by its performance in various driving conditions. We

also tend to apply different degrees of abstraction to the real-world entities that we

encounter. Depending on a person's point of view, a real-world "object" may be looked

upon as a single, indivisible unit, or as the composite of a number of component objects.

Returning to the car example, the typical car owner probably takes the view that a car is

an integral unit that provides a means of transportation. A car mechanic, on the other

hand, probably sees a car as the sum of its parts - parts that require maintenance and

replacement. The object-oriented approach is a close approximation to these human views

23

of the world. It is for this reason that object-oriented abstraction techniques are generally

considered to be more powerful than those of the traditional data models.

The OODM thus provides the design mechanisms with which to model diverse and

sophisticated applications in a natural way. In a larger sense, within the context of overall

database development, the object-oriented approach reflects a move toward an

"intelligent" DBMS that directly supports advanced data modeling. In such a system,

semantic correctness remains intact from abstraction to implementation. The burden of

translation is lifted from the user.

The object-oriented paradigm remains the focus of the active research. While

researchers and developers agree on the underlying principles, the exact nature and

direction of the object-oriented approach is at present an issue of debate. Consequently, a

final and irrefutable definition for the OODM has not yet been forwarded. Despite the

evolutionary condition of the OODM, the motivation to preserve a direct correspondence

between real-world entities and their database representations warrants its use. The

EWIRDB is an ideal candidate for object-oriented modeling.

In this chapter, I present the basic concepts of the OODM. Because the OODM

was developed with the ease of implementation in mind, some implementation issues are

also briefly addressed. These concepts lay the groundwork for an application of the

OODM, within the context of both conceptual and logical design, to a representative

portion of EWIRDB data in Chapter IV.

A. OBJECTS

The object is the basic element of the OODM, and the component that populates

the database. An object corresponds to any entity in the real world: ideas, concepts,

people, events, places, physical structures, and time to name a few. The uniform

application of objects to model the spectrum of real-world entities simplifies the designer's

view of the real world [4] and infuses some consistency into the designer's task.

24

la an object-oriented database management system (OODBMS), an object is

specified with a unique, system-generated marker called the object identifier (OID). The

OK) is immutable, or permanent and unchangeable [2]. This is an important aspect of the

OODM from a modeling and implementation point of view. The use of OID's effectively

decouples the object existence from the object value. An objects can therefore be

referenced via the OK), independent of an identifying value. Two objects with different

OID's remain distinct, even if the two objects have the same values. In traditional models,

on the other hand, the identities of data items are value-based. The cumbersome task of

creating and managing unique identifiers (called keys traditionally) is therefore imposed on

the application programmer. Consequently, meaningful keys are likely long and non-

unique, and the management of key values is carried out external to the DBMS. The

effect is a degradation in database performance.

The hierarchical model of the EWIRDB is value-based and therefore subject to

these shortcomings. Specifically, data items referenced by application programs steer

through an identification scheme that includes the ELNOT and a burdensome hierarchical

labeling network. For a given ELNOT, or equfvalentry for a given emitter, a data record

is uniquely identified by a suffix code/tree number/source combination [1]. In an object-

oriented EWIRDB, a data object is uniquely identified by a system-maintained OK).

The OODM also provides for the creation of objects of arbitrary complexity [2].

The internal structure of objects is thus sufficiently adaptable to include all significant

information that describes an entity. This internal structure is referred to as the object's

state and behavior [3]. These aspects of the OODM are addressed in the following

sections.

1. Object State

An object is characterized by internal properties generally referred to as attributes.

The values of an object's attributes define the state of the object. Attribute values may

either be simple or complex.

25

a. Simple Attributes

Simple attributes are those whose values are literals - character strings,

integers, floating-point numbers, and other primitive values. Typically, literals are not

considered as objects. For efficiency reasons, they are usually represented directly or are

self-identifying, and not associated with OID's [4].

b. Complex Attributes and Relationships

Complex attributes are those whose values are composed of other objects

or groupings of values. There are three kinds of complex attributes: reference attributes,

collection attributes, and derived attributes [4]. The first two types provide for an

arbitrarily deep or recursive nesting of objects, where the state of an object is described by

attributes whose values are objects whose values may be objects as well, and so on. A

natural representation, then, for the state of an object is a set of OID's of the objects that

are the values of the attributes of the object [3].

Reference attributes are the means by which relationships between entities

are represented in the OODM. In taking on object values, reference attributes explicitly

refer to, or draw a relationship to, other entities. Specifically, in the logical design,

reference attributes may be used to model binary and non-binary one-to-one, one-to-many,

and many-to-many relationships. A relationship may be modeled in one direction, such as

from an object A to an object B, where object A refers to object B but object B contains

no such reference to object A, or in both directions through the use the of an inverse

reference or inverse attribute [2]. An inverse reference facilitates traversal of the

relationship. The relationship is "visible" to each object; object A refers to object B and

object B refers to object A inversely. All the relationships in which a particular object type

participates are thus packaged within the object itself in the form of reference attributes,

hi contrast, a complete inspection of the parametric trees and TERF output may be

required to ascertain the relationships that exist between particular parametric entities in

the EWIRDB.

26

la implementation, reference attributes provide an additional benefit. They

cannot be corrupted, i.e. inadvertently or maliciously changed: the integrity of

relationships and references is maintained by the OODBMS throughout all database

operations. Moreover, from a modeling perspective, because a reference attribute refers

to an OID and not a value, the values encapsulated within the object to which the

reference attribute points may be changed with no effect on the ODD, and thus no effect to

the reference attribute. [4] The use of reference attribute has one possible shortcoming,

however. Beyond meaningful reference attribute names, references in the OODM do not

imply any special semantics. Basically, references can only convey the idea of an

association between entities.

Collection attributes encompass those characteristics of an object that are

described by more than one value, or present a complex arrangement of values. These

values are stored in constructors such as lists, sets, or arrays. The value sets, or domains,

from which the values comprising the collection are taken may contain simple values or

references. For example, a collection attribute may be a set of integers or a list of entities

that participate in a relationship with the object.

Object properties that are subject to frequent or regular modifications, such

as those that are time-based or date-based, are best modeled with derived attributes.

Derived attributes, as the name implies, are not stored explicitly. Rather, they are defined

via the execution of a particular procedure. A given value for a derived attribute, and

therefore its storage, is temporary in nature.

Except for the brief introduction to derived attributes, the discussion of

object state to this point has dealt with the static characteristics, or structure of an object.

The next section addresses object characteristics that are dynamic in nature.

2. Object Behavior and Encapsulation

An important aspect of the OODM is its ability to incorporate the operations to be

applied to an object of a certain type into the object itself. The procedures that modify or

27

return the state of an object in an OODBMS are called methods. The behavior of an

object is thus defined by the methods specified to act on it.

Methods are much like programs. They are written in a typical programming

language. A method consists of two parts: an external interface (or signature) and the

actual code to implement the method. The external interlace defines the parameters

whereby an object interaction is recognized. It is the only legal means by which to invoke

the method. Typically, the execution of a method is accomplished via the message

passing [2]. If, for example, an object A sends a properly-parameterized message to an

object B in order to invoke a method in object B that returns the data stored in object B,

then the method of object B would return the data to requesting object A. This concept of

restricting access or providing well-defined access to an object is referred to as

encapsulation. If strict encapsulation is enforced, then the object itself - its internal

structure and methods - is accessible only via the specified parameters. The only "user-

visible" portion of the object is the external interface; the data contained within the object

and the details of the method's implementation are completely hidden from external users.

Procedures that are visible outside the object are public methods. An object may also

encapsulate private methods, or those available only to the object itself. In practice,

however, strict object encapsulation is too restrictive in any OODBMS [4]. In addition to

the public methods, attributes may be made visible as well

Encapsulation is a basic tenet in the OODM. Its benefit is straightforward:

encapsulation permits a change in the implementation of objects without forcing any

change in the external programs that use them As long as external interfaces remain the

same, the means to access and manipulate objects remain the same. Provided the external

interface remains intact, it follows that objects whose structure has been modified will

appear unchanged to the external world. Encapsulation is also important in introducing

the concept of object class.

28

B. OBJECT CLASSES

A database generally contains clusters of similar objects. Each cluster contains

objects that encapsulate the same structure and behavior, or attributes and methods. Just

as an abstract data type is the specification for a number of data structures in a typical

program, a class in the OODM is the specification for a number of similar objects in a

database. A database containing multiple clusters of similar objects would therefore be

comprised of several classes. And just as identically-formatted data structures may

contain different stored values, objects of similar structure and behavior, or objects in the

same class, may exhibit different states.

These ideas are illustrated in Figure 6 which represents a small portion of data

maintained in a fictitious database at KPS. The THESIS class definition provides the

blueprint for creation of THESIS objects. This definition specifies three simple attributes

- title, author, and date of publication - and two methods - author bio and number

distributed. The method author bio returns the author's branch of service and warfare

specialty (data stored elsewhere in the fictitious database). The method number

distributed returns for a given thesis the number of copies distributed, a value that may be

subject to periodic change. The class THESIS is void of any actual data, but the objects

of class THESIS contain values for each specified attribute and invoked method. These

attribute and method values differ from object to object; each object of class THESIS

therefore exhibits a different state.

Classes are the basic building blocks of the object-oriented modeling. The concept

of class is therefore the basis of fundamental modeling mechanisms in the OODM. These

modeling mechanisms are the focus of this section. Some of these mechanisms are

considered to be core concepts in the model. The semanticalry-important is-instance-of

relationship is one. The concept of generalization-and- specialization is another. Less-

widely-acknowledged object-oriented modeling concepts of aggregation and covering are

addressed as well.

29

CLASS DEFINITION

attributes;
.. jfififfffiffimfffffffffffffffffffm..

title
author

date of publication
methods:
jvmfvtmpffmfi

author bio
number distributed

INSTANTIATION

attributes;
A Tank Cloaking Device

J.J. Lee
1 MAR 96

methods:
Army, Tank Designer
 33

attributes;
AP:3 G-loadjng

Thomas McKenna
12 MAR 96

methods;
Navy, Aviator
 47

.Affffnvnffifffffiffffffffim*fi ■

Hehcopter Dynamics at
Machl

Kevin Coyne
31MAR96

methods;
Navy, Aviator
 78

Figure 6. An Object Class and its Objects

30

In addition to its value in the data modeling, the class concept has important and

favorable consequences in implementation. When viewed as the collections of their

instances rather than as the specifications of individual objects, classes form the logical

basis for the formulation of queries [5]. Further, because attribute and method

specifications common to objects of the same class are stored as a class object, there is no

need to replicate the common information in each object of the class. The effect has

considerable savings in storage space. Finally, the class concept provides a degree of

"type checking" throughout a class composition hierarchy [3]. The class composition

hierarchy is the direct result of the recursive nesting of objects as attribute values, an idea

introduced in section HI. A. Lb. These objects are restricted in their values by their

respective class specifications. In this sense, the class is analogous to the traditional

notion of attribute domain. Just as the domain defines legal values or types for a given

attribute, the class defines the legal values for a particular object ofthat class. The class

thus provides a degree of type checking for an attribute whose value is an object.

With the OODM concepts of the object and the class as building blocks, the

following sections detail the design abstractions applied to the proposed object-oriented

design of EWTRDB data.

1. Instantiation and Classification

The class itself is an object, void of actual data. Thus, it is also termed the class

schema. It functions as the "blueprint" with which to generate objects of the same class.

Viewed in this light, an object based on the blueprint of a given class can be thought of as

an instance or an occurrence ofthat class. Since a class contains the definition of a set of

objects, it is also an abstraction mechanism [5]. The class abstraction is rooted in the

complementary semantic modeling concepts of instantiation and the classification.

The instantiation is the process of creating objects within the parameters of a given

class schema. Classification is the inverse of instantiation. It is a process of systematically

31

assigning objects of similar structure and behavior to their respective object classes.

Classification permits the modeling of common characteristics that apply to all of the

objects in the class.

Because its a single blueprint from which many objects may be created and

catalogued, the class structure may be reused as required to instantiate many similar

objects. In Figure 6, the blueprint for the class THESIS is used three times to instantiate

each of the three THESIS objects shown. For this reason, instantiation and classification

are collectively considered to be the first reusability mechanism of object-oriented design.

Inheritance, addressed in the next section, is the second such mechanism

2. Generalization and Specialization

Inheritance among classes produces class hierarchies that characterize the OODM

abstraction concepts of the generalization and the specialization. In an inheritance

hierarchy, a class referred to as the subclass inherits the structure and behavior of another

class called the superclass. In addition to its inherited characteristics, the subclass may

encapsulate attributes and/or methods not contained in the superclass. These distinct

additions to the subclass differentiate it from the superclass and identify the subclass as

worthy of a class status all its own. In the hierarchy, a subclass is viewed as a

specialization of its superclass. Likewise, a superclass can be perceived as the

generalization of those subclasses (from one to many) participating in the inheritance

hierarchy. Collectively, the concepts of generalization and specialization are equivalent to

the is-a-kind-of relationship. If an independent and unique subclass XI inherits the

attributes and methods of a superclass X, then XI may be considered "a kind of X.

A data hierarchy based on the inheritance is natural and well-defined, unlike

hierarchies based on arbitrary and coded tree structures, such as those found in the

EWIRDB. Inheritance emphasizes both the commonality and the uniqueness among

classes. Moreover, the implementation of an inheritance (i.e., a generalization and a

specialization) as a mapping from class to another class eliminates data duplication and

32

localizes the management of common data. It is for this last reason that inheritance is

touted the second reusability mechanism of object-oriented design.

3. Aggregation

The aggregation abstraction considers a composite object as the sum of its parts.

It is not restricted to an object as an aggregation of its attributes. The term is primarily

meant to represent an object as an aggregation of other objects, i.e., a composite object as

the sum of its component objects. The semantics are comparable to those of the is-a-part-

q/rektionship, where an entity is the grouping of its components.

The objects of component classes participating in the aggregation each have their

own state. Likewise, each object of the composite class exhibits its own state. But the

state of the composite object in a given aggregation is dependent upon the states of its

component objects. A composite object thus contains a "global" type of structure and

behavior that reflects the composite state of its component parts.

Simply drawing a relationship between an object and its aggregates is not

semantically sufficient; it does not capture the dependency between the composite object

and its components. From an implementation point of view, a relationship will not

maintain the integrity of the aggregation, or the interactions within the aggregation,

throughout all possible database operations. In particular, an operation on the composite

object should affect component objects. Conversely, an operation on a component object

should affect the composite object. The deletion of a composite object, for example,

should cause deletion of all components of the object. The aggregation and the notion of

a composite object can also be used as the basis for the clustering of data [4].

The aggregation abstraction is an important semantic concept in the OODM. It is

a design concept not found in other models.

33

4. Covering

The covering abstraction is accepted as a fundamental concept in the OODM

within the European community. It adds a dimension of flexibility in the modeling and

manipulation of data. The covering terminology is as follows: class X covers class Y if

every object in class X corresponds to a subset of objects in class Y. These subsets of Y

need not partition Y; they are certain subsets of all the subsets generated for the objects of

Y. Mathematically, all the subsets of Y form the power set of Y, i.e., P(Y). The

correspondence is a mapping f which determines for an object, x, from class X all the

objects, y's, of the subset f(x) from class Y, such that f(x) = y for every one of those y's

Class X is referred to as the cover class and class Y is called the member class. [6]

A covering relationship thus corresponds an object of one class to a subset of the

power set (the set of all subsets) of objects of another object class. It is therefore an

object-to-object-set mapping.

A simple and practical example involving a team and its players is useful in

describing the covering relationship between two classes. In this example, the team class

covers the player class. The team's existence is entirely dependent on the participation of

its players, a type of existence dependency. While a team object has its own structure and

behavior, its real value is derived from its encapsulation of the nature of a particular set of

players that comprise the team Further, a team object may be operated on as a single

object or as a set of player objects. And as is generally the case in the real-world, the

elimination of a team (object) does not necessarily entail the demise of its players.

The covering is a valuable abstraction mechanism, specific to the OODM, that

accurately models entities of the real world.

34

IV. A CONCEPTUAL OBJECT-ORIENTED EWIRDB

In this chapter, I apply the principles of the OODM, as presented in Chapter m, to

develop a genuine conceptual design for the EWIRDB. My intent is not to redefine the

kinds of data required to characterize an emitter's performance; the existing EWIRDB

data items have sound scientific roots. Nor do I attempt to address every existing data

element in the EWIRDB. My goal is to justify the proposition that the object-oriented

approach is feasible for the EWIRDB by providing a conceptual design of a representative

portion of the database - a portion that adequately reflects the nature of electronic warfare

data. Diagrams are used at every stage to codify the conceptual design. A description of

the conceptual design symbology must first be addressed.

The absence of a standardized OODM introduces some variation in its

diagrammatic representation. However, most of the symbology adopted in this thesis for

the conceptual design of the EWIRDB is commonly used. Possible exceptions are those

notations corresponding to abstractions such as covering and aggregation. Variations

aside, the consistent use of an adequately-expressive symbology is all that matters.

The symbology used in the conceptual design of the EWIRDB are shown in Figure

7. The inheritance abstraction as it appears in Figure 7 includes some detail not previously

addressed. The concept of overlapping inheritance stipulates that an object of the

superclass (generalization class) may be a member of more than one subclass of the

specialization. Disjoint inheritance states that an object of the superclass may be a

member of at most one subclass of the specialization. Regardless of the type, however,

each inheritance hierarchy in the conceptual design of the EWIRDB is a total

specialization. This idea states that every object of a superclass must be a member of

some subclass in the given inheritance hierarchy[2].

35

CLASS

CLASS NAME i

OVERLAPPING
INHERITANCE

GENERALIZATION
CLASS NAME

SPECIALIZATION
CLASS NAME

A
1

)

SPECIALIZATION
CLASS NAME

)

DISJOINT INHERITANCE

c GENERALIZATION
CLASS NAME

6
)

y\
SPECIALIZATION

CLASS NAME
)(SPECIALIZATION "|

I CLASS NAME I

AGGREGATION

COVERING

COVER
CLASS NAME

)/77V MEMBER V:

 \~A CLASS NAME §

RELATIONSHIP

;[CLASS NAME | ^^—(CLASS NAME~^|

.Total
Participation

.Partial
Participation

M N

Figure 7. Conceptual Object-Oriented Design Symbology

36

The representation of relationships requires amplification as well. Figure 7

includes a description of the participation constraints in relationships between the objects

of participating classes. A total participation constraint indicates that for the class of

objects whose participation in a given relationship is total, the very existence ofthat class

of objects depends on its participation in the relationship. For example, in a relationship

between common entities such as transportation vehicles and license plates, the

participation of license plates would be total; license plates are unnecessary if there are no

vehicles to license. Ergo, the existence of license plates depends on the relationship

between cars and license plates. A partial participation constraint, in contrast, states that

all objects of a particular class need not participate in a given relationship. In a

relationship between married couples and children, for instance, not all married couples

have children. The participation of married couples in the relationship is therefore partial.

Participation constraints are an important aspect of conceptual modeling. They further

characterize the nature of data relationships.

A. A GLOBAL SCHEMA

The EWIRDB was described earlier (Figure 1) as the administrative merging of

data from three contributory sources. Now, a global and object-oriented view of the

merged structure of the EWIRDB is provided in Figure 8 with the use of aggregation

semantics. The "big picture" object-oriented view of the EWIRDB in Figure 8 is largely

administrative. It may at first seem strange to proceed in this manner, to initially approach

the modeling task from an administrative rather than technical point of view, especially in

light of the technical nature of emitter data. But this approach is valid. As explained in

Chapter 1, the data items that describe an emitter retain the formatting particular to the

database from which they were contributed. In a global view, source-specific groupings

of data items are assigned group-specific administrative labels. A design that proceeds

within an administrative context preserves these important associations.

37

attributes:
NSA .retrieval„date.

SATE code
date of last significant

change
classification
reusability

method:
technical date

attributes:
ELNÖT

attributes:
S&Tl code

multiple source review
date

classification
releasability

attributes:
S&TI code

multiple source review
date

classification
releasability

methods:
overall classification
overall releasability

parametric update date

Figure 8. The Conceptual Schema: A Global View

38

As a result of the merging, the data items contributed by each source to describe a

particular emitter may overlap. Moreover, each source may contribute multiple value

entries for a given data item But the identity of each data entry remains intact. Multiple

entries for a given data item are not "fused" together to form a single EW1RDB entry.

Each data item remains separate and distinct, in a form that is suggestive of its source.

Approaching the conceptual design from an administrative bias thus ensures that the

overall structure of the database as a collection of emitter data from multiple sources will

be accurately reflected in the object-oriented schema.

In Figure 8, the aggregates KILTING EMITTER, S&TI EMITTER, and

USNCSDB EMITTER combine to form the composite EMITTER class of objects.

This aggregation precisely models the multi-source structure of the database. As the

composite, an EMITTER object represents the merging of all data for a given emitter.

Each aggregate, on the other hand, represents a source-specific portion of the data in the

composite. The aggregate KILTING EMITTER encapsulates Kilting technical data

contributed to the EWIRDB for a given emitter. The S&TI EMITTER aggregate

encapsulates the technical data contributed from S&TI centers, and the USNCSDB

EMITTER aggregate encapsulates USNCSDB data for a given emitter.

With aggregation semantics, emitter parametric data may be reasoned about on

two levels of abstraction: in the composite, dealing with all available data, or on the

aggregate (component) level, where the data from a particular contributory source is

considered singularly. This adds a degree of flexibility in the manipulation of data that

may not be achievable in more conventional models. Further, categorizing emitter data by

source is appropriate because it allows the drawing of relationships between source-

specific administrative data and the aggregates themselves. In Figure 8, each aggregate

participates in a 1:1 relationship with an administrative-data class of objects; KILTING

EMITTER with KILTING ADMINISTRATIVE DATA; S&TT EMITTER with

S&TI ADMINISTRATIVE DATA; and USNCSDB EMITTER with USNCSDB

ADMINISTRATIVE DATA. The participation of each a(hninistrative data class in its

39

respective 1:1 relationship is total because the existence of an administrative data class

depends solely on the viability of the relationship. If, for instance, the Kilting database

contributed no data to the EWIRDB for a given emitter, then for that given emitter, the

KILTING EMITTER class of objects would be undefined. In effect, KILTING

EMITTER would be non-existent, as would any relationship in which it participated. In

this example, the existence of the KILTING ADMINISTRATIVE DATA class of

objects would be meaningless as welL

As mentioned in Chapter L the formatting for S&TI and USNCSDB data are the

same. The attributes in the related administrative data classes are also the same. The

attribute values, however, are likely different between the two classes. This does not rule

out the possibility that some or all of the values may be identical. But the possibility,

likely or not, that the attribute values may differ depending on the source necessitates the

appearance of the same attributes in both classes. For the same reason, the attributes

classification and releasability are duplicated in all three administrative data classes.

This seems to contradict object-orientation, wherein commonality is factored out among

similar classes to form a superclass. However, because the attribute values may possibly

be different from class to class, the common attributes, by virtue of their values, still

function to differentiate the classes. In these particular situations, the semantics of

generalization simply do not apply and the same attribute values may appear in each class.

The EWDEIDB ADMINISTRATIVE DATA class contains methods to extract

information from the source-specific classes in the schema. These methods retrieve

administrative data for a given emitter that in turn define the administrative state of all

merged emitter data. An object of the class EWIRDB ADMINISTRATIVE DATA may

reflect data retrieved from more than one class of the schema. The method overall

classification returns the highest classification from among the source-specific

administrative data classes; it defines the classification or the composite classification for a

given emitter. Although not at present an attribute explicitly accounted for in the

EWIRDB, the method overall releasability was included to satisfy the requirement that

40

"...The releasability and handling caveats reflect a merger of the three sources... "[1] This

method, like the first, returns the most stringent of the releasability instructions and thus

defines the releasability for the data of a given emitter when the data are considered in the

composite. The method parametric update searches through all the class attributes in

the database for a given emitter and returns the latest data update date. The effect is an

EW1RDB ADMINISTRATIVE DATA class that describes the composite EMITTER

class of objects. EWIRDB ADMINISTRATIVE DATA therefore participates in a 1:1

relationship with EWTR EMITTER. And like the source-specific administrative data

classes, its participation in the relationship is total.

In Figure 8, the attribute ELNOT in the EMITTER class is a kind of social

security number for emitters. It uniquely identifies an emitter, or more precisely, the signal

that is characteristic of an emitter. ELNOT is an important attribute because it is the

primary means of emitter identification, and may often be the launch point for EWIRDB

queries. The attribute color is an appropriate addition to EMITTER because it describes,

in general, an emitter's role in terms of friendly or hostile use. The choice of attribute

values are "blue" for those emitters aboard US military platforms, "blue/gray" for those

originally in US production that were legitimately transferred to Rest of World (ROW)

countries (non-US, non-Corimiunist), "gray" for emitters aboard non-Communist country

platforms, and "red" for emitters produced by Communist countries [guide]. The attribute

color thus provides a big picture look at an emitter. Because it is not a source-specific

characteristic, it is best placed in the composite class.

The global, object-oriented view of the EWIRBD presented in Figure 8

incorporates all the data elements contained in the S00 and SOI records in the TERF

output. The S&TI Code found in SOI records (Figure 5) is included in both the S&TI

ADMINISTRATIVE DATA and USNCSDB ADMINISTRATIVE DATA classes. It

therefore applies to all assessed data encapsulated within an instantiation of S&TI

EMITTER or USNCSDB EMITTER. The duplicate S&TI Code entry found in S03

records (Figure 5) is removed from any further consideration.

41

Object-orientation eliminates the need for S02 branch information. The S02 data

element Technical Date (Figure 5), however, specific to Kilting emitter data, is included

as a method in the KILTING ADMINISTRATIVE DATA class. Similar to the method

parametric update, this method returns a date that indicates the latest update to emitter

data, but applies to smaller, more specific groups of data. These groups are collections of

generally related data elements, referred to in this thesis as logical groupings. Logical

groupings are introduced in section B and elaborated in section C.

The benefit of object-orientation is a more coherent and intuitive design. Now, for

a given emitter, administrative and technical emitter data are encapsulated within the

EMITTER class via aggregation, relationships, and inheritance. To this point in the

conceptual design, particularly from the administrative point of view, the presentation of

data is clearer than that found in the parametric tree-TERF model.

B. THE EMITTER SCHEMAS

The next step in the development of the conceptual design focuses on the technical

aspect of emitter data and addresses the data encapsulated within the classes KILTING

EMITTER, S&TI EMITTER, and USNCSDB EMITTER.

To reiterate, the conceptual designs presented in this section are based on portions

of the EWIRDB. These portions are sufficiently representative of the entire database and

accurately reflect the nature of EW data. Because the focus of this section is the overall

organization of emitter parametric data, the detail of object structure and behavior is

omitted. (Specific class attributes are provided in Chapter V as part of the logical design.)

This does not, however, take away from the intended semantics, and the schematics reveal

the utility of the object-oriented approach in providing a unified and intuitive picture of

emitter parametric data.

42

1. The Kilting Emitter Class

The overall configuration of the data encapsulated within the aggregate KILTING

EMITTER class is depicted in Figure 9. An emitter object is not described as the

composite of its component parts, i.e., an aggregation. Modeled as an aggregation, the

analysis of complex EW emitters could then be one of a hardware-oriented drvide-and-

conquer. An overall performance assessment could be made based on the intermediate

results obtained in the evaluation of the hardware components. But the hardware

components themselves are not central to the discussion of EW. For the purposes of the

EWIRDB, hardware components are only important in that they have some effect on, or

participate in the generation of, a given signal. The signal itself is pivotal in the analysis -

not the hardware. This is reflected in the design shown in Figure 9. Rather than being

exposed hardware component by hardware component, the KILTING EMITTER class

of objects is instead related to several logical groupings of data, all of which are signal-

based in their description of emitter performance.

KILTING EMITTER participates in a one to many relationship with

ANTENNA, a class that encapsulates a logical grouping of antenna-signal data. A single

emitter may contain one or more antennas, each of which may have a different function or

produce a different effect on a signal However, antenna hardware is not explicitly

addressed within the antenna-data grouping. Modeling the relationship between

KILTING EMITTER and ANTENNA as one-to-many is not intended to treat this

portion of EWIRDB data as hardware oriented, although this may be a collateral effect.

More important is the effect of any given antenna on an emitter's signal The one-to-many

relationship reflects the fact that that there may be multiple antennas, or multiple versions

of antenna data for a particular emitter, depending on the number of antennas and the

availability of information on each. The antenna data grouping is given more detailed

treatment in section C. 1.

43

Figure 9. The Conceptual Schema: Kilting Emitter Data

44

KILTING EMITTER participates in a one-to-many relationship with the class

SIGNAL, perhaps the most important grouping of data in identifying an emitter and its

signal signature. The one-to-many relationship indicates that an emitter's identifying

signal is subject to variation. A change in the configuration of the emitter's controls, for

example, causes a variation in the signal. Therefore, an emitter's signal may behave

differently, with respect to fundamental signal characteristics, depending on the

employment of the emitter. Signal characteristics are described in section C.2.

KILTING EMITTER also participates in a one-to-many relationship with the

WARM (Wartime Reserve Mode) class, which encapsulates those signal characteristics

likely to be encountered only when an emitter is in a wartime reserve mode. A single

emitter may have from zero to many such special modes. Wartime reserve modes are

those emitter capabilities, deliberately held in reserve, that differ from or exceed normal-

use capabilities. WARM'S are used exclusively in emergency or wartime scenarios to

counter attempts to exploit the perceived weaknesses in an emitter's performance. A

sound assessment or a foreknowledge of the WARM'S employed by an enemy can be a

huge advantage in the prosecution of EW. WARM data is therefore an important aspect

of the EWIRDB.

To provide for a simplified diagrammatic layout, the WARM class is surrounded

by a circle to represent the existence of a disjoint inheritance hierarchy. WARM data is

examined more closely in section C.4.

Finally, KILTING EMITTER objects have a one-to-one relationship with the

SUFFIX TABLE class of objects. The suffix table as it currently exists in the EWIRDB

describes complex emitter mode combinations in concise fashion. Knowledge of these

combinations allow EWIRDB analysts to establish emitter performance patterns and mode

usage tendencies. The suffix table is thus an important tool that helps the analyst to

discriminate between signals and ultimately associate a signal to an emitter. It is examined

more closely in section C.5.

45

2. The Association of an Emitter to its Signal

Associating a unique signal to its emitter is a difficult modeling problem, object-

oriented or otherwise. The association is characterized by an ELNOT that uniquely

identifies an emitter that is uniquely identified by its signal signature. (ELNOT is an

attribute encapsulated within the EMITTER class shown in Figure 8.) More precisely,

the ELNOT is "assigned to each noncommunications emission for collection guidance and

reporting purposes."[1] Thus, the uniqueness of the ELNOT, assigned to

noncommunications emissions, implies a one-to-one relationship from signal to emitter, or

equivalently from emitter to signal This modeling is easy to reason about in theory, but in

application, hard to achieve. In Figure 9, the general organization of the parametric data

describes an emitter by its signal attributes within the context of antenna-induced effects

(ANTENNA DATA), signal characteristics in general (SIGNAL), reserve modes

(WARM), and combinations of modes (SUFFIX TABLE). While this design provides a

comprehensive view of signal-based parametric data, the one-to-one nature of the

relationship between emitter and signal becomes obscured. Although the data are more

semantically meaningful when described within the logical groupings, the effect is a

partitioning of the data. Consequently, a relationship must be developed between the

emitter (KILTING EMITTER) and each partition. Several relationships then exist to

describe the relationship between emitters and signals. Not all, however, are one-to-one;

KILTING EMITTER participates in a one-to-many relationship with ANTENNA

DATA, SIGNAL DATA, and WARM DATA. The end result is an association between

an emitter and its signal, but the uniqueness of the relationship is directly modeled only

through the use of the ELNOT. The ability of an emitter to vary its signal characteristics -

and effectively produce more than one signal - makes it more difficult to visualize the one-

to-one nature of the relationship between emitter and signal, and therefore between

ELNOT and emitter. The one-to-one relationship remains intact, but is perhaps more

identifiable because of the existence of the ELNOT.

46

3. The S&TT and USNCSDB Emitter Classes

As discussed in Chapter I, the S&TI community produces performance

assessments based on an exhaustive search of all available information. These assessments

are particularly useful in developing an understanding of an emitter's receiver capabilities.

USNCSDB data, derived from equipment specifications, also includes receiver

performance data. Similar in all other design aspects, the USNCSDB and S&TI

conceptual designs shown in Figures 10 and 11 are the same.

In contrast, the KILTING EMITTER schema in Figure 9 does not contain

receiver data because Kilting data reveals nothing about receiver performance. Kilting

data are obtained from the direct analysis and measurement of emitter signals following

signal intercept. An emitter's receiver, however, produces no obvious observable effect.

The class RECEIVER, which encapsulates the logical grouping of receiver data in both

Figures 10 and 11, is similar to the ANTENNA class in that the information it presents is

important in describing the effect of hardware on any given signal. RECEIVER,

however, encapsulates data that tends to be more hardware-oriented. The receiver's

function is to accept a signal, process it, and then relay signal information to a display.

A receiver's manipulation of a signal is strictly internal and does not directly produce an

effect that is visible in the atmosphere. The internal function of receivers in processing

signal data is therefore best described within the context of hardware components.

The one-to-many relationship between the emitter class and RECEIVER in

Figures 10 and 11 convey the idea that an emitter may consist of one or more receivers.

The receiver data grouping is given more detailed treatment in section C3.

47

Figure 10. The Conceptual Schema: S&TI Emitter Data

48

Figure 11. The Conceptual Schema: USNCSDB Emitter Data

49

C. THE SCHEMAS WITHIN LOGICAL GROUPS

In this section I present a more detailed view of the data contained within the

logical data groupings described in the previous section. Logical groupings, like the

subfiles that currently exist in the EWIRD, encompass logically-related data elements. But

the Schemas depicted in this section reinforce the notion that the OODM provides for data

semantics previously unachievable in the EWIRDB. Emphasis is placed on the schema

design; complete technical descriptions of each data class are provided in [8] and [9].

Supplemental information is provided in [10] and [11].

1. Antenna Data

Figure 12 is an enlargement of antenna-related signal data. It represents a

substantial improvement over the semantically limited hierarchical tree representation of

antenna data discussed in section LB.l.b.

Specifically, an antenna may exhibit a polarization and a particular radiation

pattern, as described by the one-to-one relationship between ANTENNA and

POLARIZATION, and by the one-to-one relationship between ANTENNA and

RADIATION PATTERN. Two disjoint hierarchies branch out from the

POLARIZATION class. One addresses the orientation of the electromagnetic wave,

specializing the polarization as either linear or circular/elliptical. The other describes the

variation of the polarization as either fixed or variable. Thus, using the tools of the

OODM, the four possible polarization combinations - fixed-linear, fixed-circular/elliptical,

variable-linear, variable-circular/elhptical - are captured intuitively in the schema. An

antenna's cross polarization characteristics are now correctly modeled in the one-to-one

relationship between POLARIZATION and CROSS POLARIZATION. No longer are

cross polarization characteristics confused with those that determine an antenna's design

wave orientation or its polarization variation properties. Moreover, access to data

50

Figure 12. The Conceptual Schema: Antenna Data Enlargement

51

concerning an antenna's polarization also guarantees access to data concerning the

antenna's cross polarization, via the relationship.

The same is now true for antenna data connected with the VARIABLE

POLARIZATION class. The classes ADAPTIVE POLARIZATION, MANUAL

POLARIZATION, and PERIODIC PROGRAMMED POLARIZATION in the

hierarchies are clearly specializations, or types of variable polarization. The class

POLARIZATION MODULATION, possibly mistaken for a type of variable

polarization in the parametric tree model, is instead related to, and therefore descriptive

of, VARIABLE POLARIZATION via the one-to-many relationsMp.

The remainder of Figure 12 provides a straightforward representation of other

aspects of an antenna's functionality. An antenna may radiate directionally or

omnidirectionally. If the antenna is directional, then it is associated with one or more

scanning techniques. The antenna scan data is further refined within the specialization's

subordinate to the mechanical and electronic scan classes. In addition, an electronically

scanning antenna may be controlled by one or more scan programs, and employs a beam

formation method to effect its scanning movement. A directional antenna also performs a

tracking function, which may include simultaneous mechanical and electronic tracking.

Finally, the features of electronic scanning are largely determined by one or more

functional scan programs.

Figure 12 represents some of the salient aspects of antenna data in a way that is

understandable to both expert and novice. This depiction of antenna data, in the form of

the OODM, is clearly superior to that of the arbitrary tree model.

2. Signal Data

Figure 13 depicts an enlargement of the logical grouping of signal data and

addresses the complexities of signal transmission in a natural and intuitive way. The

information contained in this grouping details fundamental signal characteristics.

52

*:Rcfcrc&cefrom;

WARM Data (HglS)

Figure 13. The Conceptual Schema: Signal Data Enlargement

53

Any given signal is generated with a certain power that is either constant or

variable in nature. The object-oriented representation exactly matches these semantics.

SIGNAL participates in a one-to-one relationship with TRANSMISSION POWER, the

generalization of the specialization classes, CONSTANT POWER and NOT

CONSTANT POWER. The SIGNAL class is the root of the inheritance hierarchy that

spawns the PULSED RF (Pulsed Radio Frequency) and CW (Continuous Wave)

specialization classes. PULSED RF is the basis of the conceptual schema in Figure 13; it

is the starting point in the modeling of basic signal characteristics such as pulse duration,

pulse amplitude, pulse repetition interval (PRI) and pulse group repetition interval (PGRI),

and frequency (RF). (CW signal characteristics are represented within the class CW but

are not examined any further.)

For a given occurrence of PULSED RF there exists a one-to-one relationship with

the classes PULSE DURATION, PULSE AMPLITUDE, PR17PGRL and RF LINE

STRUCTURE. These classes characterize in detail the nature of a given signal pulse.

PULSED RF is a generalization class in the inheritance hierarchy that refines the

description of a pulsed signal's carrier frequency. The basis of specialization is the

constancy of the carrier frequency. A given pulsed signal therefore belongs to either the

RF CONSTANT class or RF NOT CONSTANT class. A subordinate hierarchy rooted

at RF NOT CONSTANT further describes the nature of the variation in the carrier

frequency.

Objects in the classes PULSE DURATION and PULSE AMPLITUDE may be

static or variable, as indicated by the specialization classes PD MODULATED and PA

MODULATED, respectively. Both are single specializations. If, for instance, an object

of the class PULSE DURATION is not modulated, then there is no information outside

of the class PULSE DURATION that is required to describe that object. If the intent is

to describe a modulated pulse duration, then additional or specialized data is required, and

an object of class PD MODULATED would be instantiated.

54

Objects of the class PRI/PGRI belong to either the CONSTANT PRI/PGRI

specialization class or the NOT CONSTANT PRI/PGRI, depending on the pulse-to-

pulse changes in pulse interval A member of the NOT CONSTANT PRI/PGRI reflects

interval changes that are either discrete or continuous. The classes DISCRETE and

CONTINUOUS are themselves generalizations in overlapping inheritance hierarchies.

Additionally, a pulsed signal whose pulse repetition interval is not constant exhibits the

characteristics of some type of interval scheduling control. A one-to-one relationship

therefore exists between NOT CONSTANT PRI/PGRI and the class INTERVAL

SCHEDULING. An interval scheduling control induces one or more recurrent pulse

repetition intervals. The schema therefore includes a one-to-many relationship between

INTERVAL SCHEDULING CONTROL and the class RECURRENT INTERVALS.

The RECURRENT INTERVALS class is important in its description of recurrent

interval sequences; it may be thought of as a higher level abstraction for an arrangement of

interval sequences. Moreover, it becomes meaningless as an abstraction without the

existence of interval sequences. Viewed in this way, a mapping may be developed

between recurrent interval an recurrent interval sequences. In Figure 13 this mapping is

represented as a covering; cover class RECURRENT INTERVALS covers the member

class RECURRENT INTERVAL SEQUENCES.

3. Receiver Data

Aggregation semantics model the hardware-orientation of the receiver data. In

Figure 14, the class RECEIVER is the "outermost" composite in a nested aggregation

wherein some of a receiver's aggregates are themselves composites that are composed of

aggregates. Objects that belong to the classes EF PREAMPLIFIER and D7

AMPLIFIER, for example, are aggregates of objects of the class INTERMEDIATE

FREQUENCY SECTION. Objects of the class INTERMEDIATE FREQUENCY

SECTION are, in turn, aggregates of objects of the class RECEIVER.

55

Reference from:

iOLTING Emitter (Dg 9)

S&TI Emitter (Fig 10)

TJSNCSDB Emitter (Fig 11)

/ßiEQUENC?

CONVERSION |

SECTION

Figure 14. The Conceptual Schema: Receiver Data Enlargement

56

Thus, RECEIVER represents the sum total of all components that function

together to perform the receiver task. More precisely, receiver functionahty and

component functionality, not hardware, is the basis of the aggregation. The specifics of

the hardware is important only in drawing boundaries between functional sections of

components that are common to all receivers. And despite hardware differences, all

receivers may be modeled in this way because of a similar functionahty. This is a logical

and natural representation of the data. The receiver portion of an emitter may now be

reasoned about in general terms as a singular unit and, or exposed in more detail as the

aggregation, or nested aggregation, of distinct functional sections.

Many of the actions performed by a receiver are described as either single pulse

processing or multiple pulse processing. These labels can be assigned to receiver

processes, within the setting of aggregation semantics, as shown in Figure 13. In the

schema, applicable object classes participate in one-to-one relationships with SINGLE

PULSE PROCESSING objects or MULTIPLE PULSE PROCESSING objects.

However, both the SINGLE PULSE PROCESSING and MULTIPLE PULSE

PROCESSING classes exist solely to provide the capability to access receiver-signal

information from a single pulse/multiple pulse processing bias. Their primary purpose is

navigational. These two classes are descriptive of receiver data in name alone.

Multiple one-to-one relationships originate from the SIGNAL PROCESSOR

SECTION class. The other participating classes - SPECIAL CAPABILITIES,

DOPPLER PROCESSING, INTEGRATION, MOVING TGT INDICATION, TGT

TRACKING, and THRESHOLDTNG/TGT DETECTION - encapsulate data that

describe the functionahty of a receiver's signal processor section. The choice to use

reference relationships instead of aggregation relationships is based on the composition of

the EWIRDB data. In general, as signal processing is addressed with an increasing level

of detail with respect to functionality, hardware differences among receivers tends to

become more pronounced. In other words, as the granularity of data increases, receivers

may still be described in terms of common functionahty, but tend to be less alike in

57

hardware. Functionality is therefore less prone to be cast in the light of hardware as the

data become more detailed. The other classes are not so much parts of SIGNAL

PROCESSOR SECTION as they are descriptors of the types of actions performed in

that section. Aggregation semantics become less applicable; reference relationships better

model the nature of this interaction.

4. WARM Data

The design of Figure 15 echoes previously introduced elements of the conceptual

schema. For example, the class POWER ECCM participates in a one-to-many

relationship with TRANSMISSION POWER from Figure 12. As will be found in the

logical design, this relationship indicates that a WARM mode affecting signal power, or an

object of the class POWER ECCM, is essentially a new instantiation of the class

TRANSMISSION POWER. WARM modes that are not variations of existing data

classes fall within the class OPERATIONAL ECCM.

The inheritance hierarchy in Figure 15 is disjoint; any given object of the WARM

class is a member of only one specialization class. However, an emitter may exhibit

multiple WARM modes, as modeled in the one-to-many relationships between the classes

KILTING EMITTER and WARM, S&TI EMITTER and WARM, and USNCSDB

EMITTER and WARM.

This approach to the modeling of WARM data does away with the need to

account for the Reserve Mode entry found in S03 records (Figure 5).

D. THE PARAMETRIC DATA CLASS

As discussed in section HI.A. Lb, complex attributes support objects as attribute

values. Therefore, in the case of complex attributes, the "type" of a given attribute is

58

Reference to:

IRANSMISSION POWER in Kgure 13

Reference to:

POLARIZATION in Hgnre 12

Figure 15. The Conceptual Schema: WARM Data Enlargement

59

equivalent to the particular object class from which that object value was instantiated.

Further, complex attributes may reflect an arbitrarily deep or recursive nesting of objects.

All complex attributes in the object-oriented design of EWIRDB, regardless of the

depth of nesting, ultimately lead to objects of the class PARAMETRIC DATA, the focus

of this section. The PARAMETRIC DATA class itself exhibits a nesting of objects that

incorporates the semantically-usefiil data elements of the S03, S04, and S05 records.

The PARAMETRIC DATA class and the data encapsulated therein is depicted in

Figure 16. TEXTUAL DATA and NUMERIC DATA are specializations of

PARAMETRIC DATA, and intuitively indicate whether the parametric data entry for a

given attribute is text-based or numerical. Numerical parametric data are either single-

valued or range-valued as expressed in the specialization classes SPECIFIC VALUE and

VALUE RANGE.

In the EWIRDB, comments are used to further characterize parametric data

values. PARAMETRIC DATA thus participates in one-to-one relationship with the

class DATA COMMENT. The participation of DATA COMMENT in the relationship

is total; a parametric data entry must first exist before a corresponding comment can be

made, but not all parametric data entries must be commented. If a parameter is assessed,

then a related comment must also include the comment classification. This is depicted in

the specialization class ASSESSED DATA COMMENT. Comment data and the

inheritance hierarchy directly subordinate to the PARAMETRIC DATA class are

enclosed within the dotted line in Figure 16. Together they constitute the core of

EWIRDB parametric data.

On the global scale, each emitter is linked to emitter-specific administrative data;

on a smaller scale, each class attribute is associated with the attribute-specific

administrative data associated with the S03, S04, and S05 records. The attribute-specific

administrative data identifies data references and highlights important descriptive

information. As indicated in Figure 15, the format of this data is source-dependent.

ORIGINAL SOURCE DOCUMENTATION includes those attributes common to both

60

i attributes:
date of last update

attributes:
measurement accuracy

measurement accuracy units
intelligence source
preferential rating

releasibility

Figure 16. The Conceptual Schema: Parametric Data

61

formats, report classification and report releasability. Formatting distinctions are made

within the specialization classes ASSESSED REFERENCE and OBSERVED

REFERENCE. Attribute values are further characterized in the DATA DESCRIPTION

class by date of last update. (The method parametric update date in the class

EWTRDB ADMINISTRATIVE DATA (Figure 9) accesses date of last update

information throughout the database and returns the most recent value for a given

emitter.) Source-dependent characteristics that generally describe the soundness and

accuracy of a given attribute value are addressed in the specialization classes ASSESSED

DATA and OBSERVED DATA.

Two methods are specified in the PARAMETRIC DATA class: return all data

and return parametric data. For a given attribute, return all data will reply with all

available data - the actual parametric data as well as the associated administrative data.

return parametric data will yield only the data enclosed within the dotted line in Figure

15 for a given attribute. One attribute is specified as well, suffix code, a label for the

given attribute as it appears in the suffix table.

Thus, all useful data items from the S03, S04, and S05 records, with the exception

of suffix table information, are nested within the PARAMETRIC DATA class of Figure

15. Object-orientation eliminates the need for many previously maintained data items

listed in Figure 5. Tree Number, which provides indexing into the parametric tree is no

longer required. Linking-type entries related to the format of the output file - Reference

Number (S03), Comment Number (S03), Reference Number (S04), Reference Line

Number, Comment Number (S05), and Comment Line Number - are eliminated. Finally,

the entry Measurement Name (S03) is replaced by the attribute name itself.

At this point, all meaningful data entries of the TERF have been integrated into

one comprehensive, encapsulated model.

62

E. SUFFIX CODING AP«) THE SUFFIX TABLE

EWIRDB suffix-coded data and the suffix table representation of data comprise

the most difficult modeling task in the conceptual design. Suffix coding is incorporated

within the EWIRDB to describe the vast array of mode combinations an emitter may

exhibit. In effect, suffix-coding links together the parametric values that characterize

known or suspected emitter usage. A particular combination of parametric values defines

a given mode; suffix coding and suffix table thus provide the means for establishing

relationships between parametric values throughout the database. (A comprehensive

review of suffix coding and the suffix table is provided in [1].)

Herein lies the complexity in modeling modal relationships. Parametric values are

synonymous with attribute values. The attributes whose values describe a given mode are

likely interspersed throughout the many classes in the schema. The relationships defined

by suffix coding and the suffix table therefore describe associations between attributes ~

not classes. An additional complication is the possibility of multiple values (multiple

instantiations of the object that contains the attribute) each for a given attribute. Modeling

modal (attribute) relationships is difficult because neither the OODM, nor any other data

model, explicitly supports such a capability. From a modeling perspective, the problem of

representing modal relationships such as those found in the suffix table reduces to problem

of representing attribute-to-attribute relationships and attribute-to-attribute combinations.

Upgrading each attribute to a class is an ineffective solution. Related attributes are

grouped into classes for the purpose of collectively describing the characteristics of a

particular set of objects. The transformation of attribute to class obscures these semantics;

each attribute instead becomes a reference within a given class. Moreover, the problem of

modeling combinations remains unsolved. There exists no "built-in" OODM mechanism

for the purpose of defining combinations of objects, not to mention attributes, throughout

a schema.

The process of defining modal combinations, regardless of the modeling tool used,

is formidable in the realization that an emitter could likely exhibit hundreds of thousands

63

of modes. Object-orientation does not appear to simplify this task. Despite its

dependence on an artificial labeling system and a non-intuitive table representation, suffix

coding has proven to be effective in this combination-oriented modeling. Moreover, it

helps to link signal signatures to emitters. At present, I am unable to offer an easier or

more viable modeling alternative. The current methodology is therefore incorporated into

the object-oriented conceptual design.

The conceptual schema includes a suffix code entry for every attribute throughout

the schema; a suffix code entry can be made for every attribute in each instantiation of the

object to which the attribute belongs. This provides for the same modeling flexibility as

exists in the current model: the binding together of related parameters, the labeling of

multiple values for a given attribute, and the inclusion of suffix-coded data within the

SUFFIX TABLE class of objects (Figures 9, 10, 11) to develop modal combinations.

SUFFIX TABLE objects would also contain a method, expand table (not shown), to

return all combinations represented in the suffix-coded data table.

In the object-oriented design, the use of the special suffix codes is no longer useful.

The semantics of the special suffix code, ++, used to indicate that a particular parametric

value is present in all modes, may be addressed via comment in the DATA COMMENT

class (Figure 15). The special code, //, applies specifically to the parametric tree structure

and indicates that a given value pertains to all modes described within the subtree rooted

at the branch containing the special code. Such semantics are implicit in inheritance and

aggregation hierarchies, and may be explicitly addressed via comment.

This completes the conceptual design phase. The next stage in the overall design

process is the logical design, addressed in Chapter V.

64

V. A LOGICAL OBJECT-ORIENTED EWIRDB

The O-ODDL native to the M2DBS in the NPS Laboratory for Database Systems

Research provides the structure of the logical design presented in this chapter. The O-

ODDL, designed and specified in [12], thus provides the means to convert the conceptual

database as proposed in Chapter IV into an M2DBS-compatible representation.

Still in its first phase of development, the object-oriented interface to the M2DBS

is functional but does not yet support all aspects of the object-oriented paradigm. To

date, methods and the aggregation abstraction are not implementable on the M2DBS.

Therefore, in the logical design, aggregation will be represented via relationships, and

methods will not be addressed.

It is not necessary to address all aspects of the conceptual schema in the logical

design to demonstrate the operation of the M2DBS object-oriented interface in handling

EWIRDB data. To this end, I address a representative portion of the conceptual schema

in developing the logical design. The subsequent implementation of the logical schema on

the M2DBS is a continuation of the work in this thesis, and is addressed in [13,

unpublished]. The final result of this combined effort will be an on-line object-oriented

EWIRDB with which to demonstrate both the utility of the new M2DBS object-oriented

interface, and the usefulness of the new object-oriented EWIRDB design.

The O-ODDL logical design constructs are reproduced in Figures 17 through 20.

Refer to [12] for a comprehensive discussion of the O-ODDL specification.

In Figure 17, "attribute type" refers to the traditional notion of attribute domain.

As described earlier in sections HL A La and b, the domain or type of an attribute may be

simple, characterized by literal attribute values, or the type may be complex, characterized

by object attribute values. Complex attributes can therefore exhibit an arbitrarily deep

nesting of objects. Whereas a simple attribute maybe of type "character" or "integer", the

type of a complex (or reference) attribute is a class. The class defines the legal attribute

values (object values) for the given attribute.

65

Figures 18 and 19 contain the specifications for the inheritance and covering

abstractions. In Figure 20, one-to-many and many-to-many relationships are addressed.

One-to-many (1:N) relationships between object classes are represented via the set_of

construct. set_of appears within the class on the "1" side of the relationship; an attribute

that references the class on the "1" side of the relationship appears within the class on the

'ISP' side of the relationship. Many-to-many (N:M) relationships are represented with the

set_of (N side) and inverse_of (M side) constructs. One-to-one (1:1) relationships are

represented directly through use of reference attributes. The classes in the 1:1 relationship

each contain an attribute whose type is that of the class to which it is associated via the

1:1 relationship.

Gass Class_name{
attributetypei
attribute_type2

attribute_
attribute

namei;
name2;

};

attributetyper , attribute namen

Figure 17. The O-ODDL Class Specification

Class ClassjiameXl: inherit Class_name_X{
attributetypei attributenamei;
attribute_type2 attribute_name2;

attributetypen attributename,,

Figure 18. The O-ODDL Inheritance Specification

66

Class Class name XI : cover Class name X{
attributetypei attributenamei;
attribute_type2 attribute_name2;

attributetype,, attribute name„

};

Figgie 19. The O-ODDL Cover Specification

set of Class name attribute name;

inverse of Class «awe. attribute name attribute name:

Figure 20. The O-ODDL Set_of and Inverse_of Specifications

The logical design incorporates the O-ODDL constructs as outlined in Figures 21

through 29. Because all complex attributes in the object-oriented design of EWIRDB,

ultimately lead to objects of type PARAMETRIC DATA (section IV.D), the logical

design begins with the O-ODDL representation of PARAMETRIC DATA in Figure 21.

The design then proceeds with the classes EMITTER (Figure 22), KILTING

EMITTER and KILTING ADMINISTRATIVE DATA (Figure 23), ANTENNA

(Figure 24), SIGNAL (Figure 25), RECEIVER (Figure 26), WARM (Figure 27),

SUFFIX TABLE (Figure 28) and S&TI EMITTER and S&TI ADMINISTRATIVE

DATA (Figure 29).

67

class Parametric_Data{
char* suffixcode;
DataComment comments;
DataDescript description;
set_of OrigSrcDoc; references;

>;

class TextualData: inherit ParametricJData {
char* text;

};

class Numeric_Data : inherit Parametric Data {
char* units;

};

class Specific Value : inherit Numeric_Data{
char* value;

};

class ValueRange : inherit Numeric_Data{
char* uppervahie;
char* lowervalue;

};

class DataComment {
char*
Parametric Data parametricdata;

};

char* commenttext;

class Assess Comment: inherit DataComment {
char* comclassif;

};

Figure 21. The Logical Design: DDL Implementation of the
PARAMETRIC DATA Class (cont'd into next page)

68

class DataJDescrip {
char* lastupdate;

};

Parametric Data paradata;

class Assessed Data: inherit Data_Descrip{
char* confidence level;
char* classification;

};
char* releasability;

class Observed Data inherit Data_Descrip{
char* measaccuracy;
char* meas ace units;
char* intelsource;

};

int preferrating;

class OrigSrcDoc {
char* rptclassif;
char* rpt release;

};
inverse_of Parametric.Data.references pdata;

class Assessed_Ref: inherit Orig_Src_Doc {

};
char* referencetext;

class ObservedRef: inherit OrigSrcDoc {
char* document number;
char* document title;
char* reportdate;
char* producer;
char* reportclassification;

};

Figure 21. (cont'd) The Logical Design: DDL Implementation of
the PARAMETRIC DATA Class

69

class Emitter{
char* elnot;
char* color;
Kilting Emitter
S&TI Emitter

>;

kfltingdata;
sandtidata;

Figure 22. The Logical Design: DDL Implementation of the
EMITTER Class

class Kilting Emitter {
char* technicaldate;
KiltingAdmin kadmindata;
set of Antenna antennadata;
set_of Signal signaldata;
set of Receiver receiver_data;
set of WARM warresmodes;
SuffixJTable modes;
Parametric Data weaponsystem;
Parametric Data function;
Parametric Data platform;
Emitter

>;

generaldata;

class Kilting_Admin{
char* nsadate;
char* saecode;
char* datesigchange;
char* kclassification;
char* kreleasabihty;

};

Figure 23. The Logical Design: DDL Implementation of the
KILTING EMITTER and KILTING
ADMINISTRATIVE DATA Classes

70

class Antenna{
Parametric Data
Parametric Data
Parametric Data
ParametricData
Polarization
RadiationPattern
KiltingJEmitter

};

antennatype;
antennafunction;
horizontaldimension;
verticaldimension;
ant_polarization;
antradchar;
kilt emitter;

class Polarization^
Cross^Polarization
Antenna

>;

cross_pol_char;
antenna;

class Cross_Polarization{
Parametric_Data
ParametricData
Polarization

patt_pk_offset;
pattjpkresp;
polarization; };

class LinearJPolarization : inherit Polarization^
ParametricData majoraxistiltangle;

};

class Circ or Ellipt Polarization : inherit Polarization{
Parametric Data sense;
Parametric Data axialratio;

};

Figure 24. The Logical Design: DDL Implementation of the
ANTENNA Class (cont'd into next page)

71

class Radiation_Pattern{
Parametric Data
Antenna

};

antenna_gain;
ant;

class Directional_Ant: inherit Radiation_Pattern{
Parametric Data beamwidthaz;
Parametric Data beamwidthel;
Parametric Data first_sidelobe_M_az;
Parametric Data firstsidelobeMel;
set_of Scan scanningchar;
set oi Track tracking char;

};

class Omnidirectional: inherit Radiation_Pattern{
Parametric_Data
elevation coverage angle;

};

class Scan{
Parametric Data
Parametric Data
Parametric Data
Directional Ant

};

sampleavgtime;
SNRJhreshold;
plane_ofjscan;
dirantenna;

class Mechanical'Scan : inherit Scan{
Parametric_Data
Parametric Data

>;

typechange;
scan function;

class Circular: inherit Mechanical_Scan{
Parametric Data

>;

cperiodhmits;

Figure 24. (cont'd) The Logical Design: DDL Implementation of
the ANTENNA Class (cont'd into next page)

72

class Sector : inherit Mechanical Scan{
Parametric Data sectortype;
Parametric Data speriodlimits;
Parametric Data sector width az;
Parametric Data

};
sectorwidthel;

class Track{
Parametric Data planeofscan;
Directional Ant

>;

directant;

class Mech_Tracking: inherit Track{
Parametric Data
auto track max rate az;
Parametric Data
auto track max rate

};
_el;

Figure 24. (cont'd) The Logical Design: DDL Implementation of
the ANTENNA Class

73

class Signal{
TransJPower
Kilting Emitter

>;

signal_pwr;
kemitter;

class Trans_Power{
Parametric Data
Parametric Data
Parametric Data
Signal

>;

linelossontx;
pk_p\\r_eff_rad;
pk_pwr_at_trans;
signal;

class Constant Power : inherit Transmission_Power{
Parametric Data time to switch;

};

class NotConstantPower : inherit TransmissionPower {
Parametric Data max rate of change;

};

class Pulsed_RF: inherit Signal{
RF_Line_Structure
Pulse Duration
PRI/PGRI

>;

coherence;
pulselength;
pulse_groups;

class RFJLine Structure {
ParametricJData
Parametric Data
Pulsed RF

};

3_db_sp ecwidth;
transtype;
rfjpulse;

Figure 25. The Logical Design: DDL Implementation of the
SIGNAL Class (cont'd into next page)

74

class Pulse_Duration{
Parametric Data pulsedurlim;
Parametric Data pd_most_prob;
PulsedJRF pulse;

};

class PD_Modulated: inherit Pulse Duration{
Parametric Data devlimits;

};
Parametric Data modulation_rate;

class RF Constant: inherit Pulsed_RF{
Parametric Data rfjimits;
Parametric Data most_prob_rf;

};

class RF Not Constant: inherit Pulsed_RF{
>;

class ModonPulse : inherit RF_Not_constant{
Parametric Data rfmodchange;

};

class PMOP: inherit Mod_on_Pulse{
Parametric Data rfjimits;
Parametric Data phase_shift;

};

class FMOP: inherit Mod_on_Pulse{
Parametric Data JBmoprfJimits;
 Parametric Data freq_excursion;
};

Figure 25. (cont'd) The Logical Design: DDL Implementation of
the SIGNAL Class (cont'd into next page)

75

class Pulsed_Agility: inherit RF_Not_constant{
ParametricData agilfunccorr;
Parametric Data modwaveform;

};

class Cont_Agility : inherit Pulsed_Agility{
ParametricData rfjimits;

};

class Disc_Agility : inherit Pulsed_Agility{
Parametric Data rfjimits;
Parametric Data nodiscsteps;

};

class PRI{
Parametric Data
Pulsed_RF

};

measbandwidth;
rf;

class Not_Const_PRI: inherit PRI{
Parametric Data
Intvl_Sked

};

modulationtype;
intervalcntrl;

class Intvl_Sked{
Parametric Data
set_of Recurrent_Intvl

};

dutycycle;
intervals;

Figure 25. (cont'd) The Logical Design: DDL Implementation of
the SIGNAL Class

76

class Recurrent_Intvl{
Parametric Data
IntvljSked

};

nbrdscreteint;
sked control:

class RecurJntvlSeq: cover RecurrentJntvl{

};
Parametric Data sequencel;

Figure 25. (cont'd) The Logical Design: DDL Implementation of
the SIGNAL Class

class Receiver {
Parametric Data
SigProcSect
ADConvSect
S&TI_Emitter

>;

recervertype;
sig_processor;
a_d_section;
semitter;

class SigProcSect {
Doppler^Processing
Receiver

>;

dopproc;
receiver;

class Doppler processing {
ParametricData
ParametricData
SigProcSect

>;

cohjprocjntrvl;
pulses incpi;
processor

Figure 26. The Logical Design: DDL Implementation of the
RECEIVER Class (cont'd into next page)

77

class Multiple_PulseProcessing {
Doppler Processing

};

class A_D_Conv_Sect {
Parametric_Data
Parametric_Data
Receiver

};

class Single Pulse Processing{
A_D_Convr_Sect
Pulse Compression

>;

class Pulse Compression{
ParametricData
ParametricData
Sig_Pulse_Proc

};

mp_dop_proc;

a_sample_period;
conv_trig_meth;
rcvr;

a_d_converter;
pulse_compress;

typeofcoding;
time_band_prod;
singlejulse;

Figure 26. The Logical Design: DDL Implementation of the
RECEIVER Class

78

class WARM{
char*
Kilting Emitter

};

probcode;
kfltemit;

class Power_ECCM: inherit WAEM{
set_of Trans Power

};

res_pwr_mode;

class Polar_ECCM: inherit WARM{
set of Polarization

};
res_polar_mode;

class Ant_Scan_ECCM: inherit WARM{
set of Scan

};
resscanmode;

class Sig_Shape_ECCM: inherit FKiRM{
set of Pw/se Duration resjpdmode;

class RF_ECCM: inherit J^ÄMf
set of Aifeerf ÄF

};
resrfmode;

Figure 27. The Logical Design: DDL Implementation of the
WARM Class

79

class Suffix_Table{
char*

};

modematrix;

Figure 28. The Logical Design: DDL Implementation of the
SUFFIX TABLE Class

class S&TI_Emitter{

S&TI_Admin
set_of Antenna
set_of Signal
set_of Receiver
set_of WARM
Sujfix_Table
Parametric Data
Parametric_Data
Parametric Data
Emitter

>;

class S&TI_Admin {
char*
char*
char*
char*

};

kadmindata;
antennadata;
signaldata;
receiverdata;
warresmodes;
modes;
weaponsystem;
function;
platform;
generaldata;

s&ticode;
multsrcreview;
sclassification;
sreleasability;

Figure 29. The Logical Design: DDL Implementation of the
S&TI EMITTER and S&TI ADMINISTRATIVE
DATA Classes

80

The effect of the object-oriented logical design is profound. Now, all available

data for a given emitter, both technical and administrative, is contained within an object of

the class EMITTER. This effect is achieved via the nesting of objects within the

framework of relationships, inheritances, and a covering.

EMITTER contains complex (reference) attributes (object values) of type

PARAMETRIC DATA, and also contains references to source-specific emitter data

objects of type KILTING EMITTER and S&TI EMITTER. KILTING EMITTER

and S&TI EMITTER objects likewise contain attributes of type PARAMETRIC

DATA, and attributes that reference analogous administrative data objects. These

administrative data objects contain simple-valued, source-specific attributes corresponding

to S00, SOI, and S02 record data. The KILTING EMITTER and S&TI EMITTER

objects additionally encapsulate antenna data, signal data, receiver data, WARM data, and

suffix table objects. (Suffix table objects correspond to S05 record data). The attributes

within each of these objects, in turn, are either of type PARAMETRIC DATA, or exhibit

a nesting of objects that ultimately lead to attributes of type PARAMETRIC DATA.

Finally, attributes of type PARAMETRIC DATA exhibit a nesting of objects that

leads to simple parametric values and simple parametric-vahie-related administrative data.

All such information corresponds to S03 record data.

The overall result is a cohesive, encapsulated, and comprehensive logical schema

of EWIRDB data.

81

82

VI. CONCLUSION

The EWIRDB is a vitally important instrument of EW and EW research and

development, containing up-to-date and mission-critical performance data on the EW

systems of friendly and hostile forces. Its utilization in the areas of battle planning and

EW research helps to shape the outcome of war. The usefulness of the EWIRDB,

however, is hampered by its cumbersome data model, the basis of which is an inherently

arbitrary parametric tree structure. The inconsistencies that exist among the data as

modeled in the parametric tree and the data as addressed in the record-based output file

further obscure the intended semantics. The overall data representation is non-intuitive,

disjoint, and difficult to comprehend. The burden of data interpretation is transferred to

the user, and the user must deal at length with formatting and coding issues.

la this thesis, I have proposed an alternative and improved representation of

EWIRDB data. The design effort was centered on the development of a legitimate

conceptual design, followed by development of a logical design suitable for

implementation on the M2DBS in the NPS Laboratory for Database Systems Research.

The conceptual and logical designs are the first two phases in the overall database design

and implementation process.

The conceptual design has yielded a conceptual schema that captured the nature of

a representative portion of EWIRDB data in a way that closely paralleled the user's

perception of the data. The basis of the conceptual design was the OODM, a powerful

modeling tool that enables the designer to reduce the semantic mismatch between real-

world entities and their database representations. The OODM incorporates the concepts

of objects, encapsulation, object classes, instantiation and classification, generalization and

specialization, aggregation, and covering to achieve this end. The object-oriented

conceptual design has captured both the technical and administrative semantics of EW

data to a degree not previously achievable. This was the realization of the primary

objective of the thesis.

83

In the logical design, I have mapped the object-oriented conceptual schema to the

object-oriented data model of the M2DBS. The mapping is accomplished via the O-

ODDL native to the M2DBS. The resulting O-ODDL statements constitute the logical

schema; they are an M2DBS-readable specification of the conceptual schema. The O-

ODDL provided for an arbitrarily deep nesting of objects within a framework of

relationships, inheritance, and covering. The semantics of the data have been preserved in

the mapping; when implemented on the M2DBS, these semantics will be supported by the

M2DBS. This is a huge benefit - the database user is thereafter relieved of the

responsibility of data translation and interpretation. Although it does not yet support

methods or aggregation, the O-ODDL provides for an intuitive, cohesive, and nested

implementation of technical and administrative data. Therefore, the implementation is

much improved over the complex record-based format that currently exists.

The logical design portion of the this work provides input for the subsequent use

and evaluation of the object-oriented interface to the M2DBS, and in this regard satisfies

the secondary objective of the thesis. In due course, the logical schema will be

implemented on the M2DBS to produce an on-line object-oriented EWTRDB with which

to demonstrate both the utility of the new M2DBS object-oriented interface and the

usefulness of the new object-oriented EWTRDB design.

Object-orientation did not appear to simplify the formidable task of modeling

emitter mode combinations, currently represented through use of suffix codes and suffix

tables. For this reason, I retained the suffix code-suffix table system in the designs

presented in this thesis. Consequently, the use of this system complicates the

implementation of the database. In the object-oriented approach, however, a reliance on

external software to interface with suffix tables is unnecessary. Such manipulation may be

achieved internal to the DBMS via methods. A true modeling solution may depend on the

development of a data model that provides the flexibility to address attribute-to-attribute

relationships and combinations.

84

Overall, the conceptual and logical designs developed in this thesis support and

confirm the object-oriented approach as a viable solution to the modeling inadequacies of

the present EWIRDB.

85

86

LIST OF REFERENCES

[I] National Air Intelligence Center, Electronic Warfare Integrated Reprogramming
Database (EWIRDB) Guide, Volume 1, April 1994.

[2] Elmasri, R, and Navathe, S., Fundamentals of Database Systems, The
Benjamin/Qmimings Publishing Company, Inc., 1994.

[3] Kim, W., "Object-Oriented Databases: Definition and Research Directions," IEEE
Transactions on Knowledge and Data Engineering, vol. 2, no. 3, September 1990.

[4] Cattell, R, Object Data Management - Object-Oriented and Extended Relational
Database Systems, Addison-Wesley Publishing Company, Inc., 1994.

[5] Bertino, E., Martino, L., "Object-Oriented Database Management Systems:
Concepts and Issues," Computer, April 1991.

[6] Hsiao, D., "The Object-Oriented Database Management: A Tutorial On It's
Fundamentals," Proceedings of the Second Far-East Workshop on Future
Database Systems, Kyoto, Japan, April 1992.

[7] Hsiao, D., 'Interoperable and Multidatabase Solutions for Heterogeneous
Databases and Transactions," a speech delivered at ACM CSC 1995, Nashville,
Tennessee, March 1995.

[8] National Air Intelligence Center, Pulsed/CW Tree Measurement Guide Table, July
1992.

[9] National Air Intelligence Center, RPA Measurement Guide Table, July 1992.

[10] Stimson, G., Introduction to Airborne Radar, Hughes Aircraft Company, 1983.

[II] Frieden, R, Principles of Naval Weapons Systems, United States Naval Institute,
1985.

[12] Badgett, R, Design and Specification of an Object-Oriented Data Definition
Language, Master's Thesis, Naval Postgraduate School, Monterey, California,
September 1995.

[13] McKenna, T., Lee, J., The Object-Oriented Database and Processing of
Electronic Warfare Data, Master's Thesis, Naval Postgraduate School Monterey,
California, to be published March 1996.

87

88

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library, Code 13
Naval Postgraduate School
Monterey, California 93943-5101

3. Sharon Cain
NAIC/SCDD
4115 Hebble Creek Rd
Wright-Patterson AFB, Ohio 45433

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

5. Dr. David K Hsiao, Code CS/HS
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

6. Dr C. Thomas Wu, Code CS/KA
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

LT Kevin M. Coyne
203 Colmar Rd
Seaside, California 93955

89

