
REPORT DOCUMENTATION PAGE
farm Approved

OMB No. 0704-0188

Puwic reoortmg ouroen tor tnis cotteaion 01 information n estimated to average i "our oer resoorse. mciuaing tne time tor reviewing instructions, searcning existing aata sources.
gatnenng ano maintaining tne aata neeoea. ana comcaetina ano reviewma trie collection or mtormation. Sena comments regaraing mis ouraen estimate or any otner asoect or tnis
collection ot information, inciuamo suggestions tor reaucirg mis ouraen to Wasnmaton neaaauarters ■services. Directorate tor information Ooerations ana Reoorts. 1215 jefterson
Davis Hignwav. Suite 1204. Arlington, va 22202-4302. ano tc f» Office o' Manaaemem ana 6uaaet. »joerwor« Reaucticn Proiect (0704-0 IM). Washington. DC 20503.

1. AGENCY USE ONLY (Leave OlanK) 2. REPORT DATE

July 1996
3. REPORT TYPE AND DATES COVERED

Final Apr. 1994 - Sep. 1995

4. TITLE AND SUBTITLE

Feasibility of Integrating IDEF Methodology with
Testing of System Dynamics (Short Term Project-STP#24)

6. AUTHOR(S)

T. 0. Boucher and M. A. Jafari

5. FUNDING NUMBERS

C-DLA900-88-D-0383
PE-7811s
PR-88003

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES)
Rutgers, The State University of New Jersey
The Center for Advanced Food Technology
Cook College, NJ Agricultural Experiment Station
New Brunswick, NJ 08903

8. PERFORMING ORGANIZATION
REPORT NUMBER

FTR18.0

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Logistics Agency
8725 John J. Kingman Road
Ft. Belvoir, VA 22060-6221

11. SUPPLEMENTARY NOTES

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

19960724 037
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Äßpioved tot pursue re.!?;-

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The "Integrated Computer Aided Manufacturing - Definition" (IDEF) methodology, developed
by the U.S. Air Force to analyze manufacturing, lacks a mechanism for direct evaluation of
system performance. Prototype software entitled "IDEF/System Dynamics" was developed
which allows a user to define a manufacturing system as an IDEF0 model and automatically
generate a simulation model of the system. After the user adds time durations of events and the
initial state of the system, the simulation model can be run. The prototype software demonstrates
the feasibility of the overall approach including the necessary algorithms and database
interaction. The IDEF/System Dynamics approach to manufacturing system design can be used
for either a "greenfield" project or to modernize the current operations of an existing plant. In
order to reach a commercial software user audience, it will be necessary to enhance the
prototype to allow models to be entered graphically (presently the model is entered in tabular
form) and to add more controller functions such as counters, timers and data manipulation
elements.

14. SUBJECT TERMS 15. NUMBER OF PAGES

80
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT <

UL
NSN 7540-01-280-5500 Stanaara Form 298 (Rev 2-89)

 • »w nUCI C*M

Contents

1.0 CRAMTD STP #24 1
1.1 Introduction and Background 1
1.2 Results and Conclusions 1
1.3 Recommendations 2

2.0 Program Management • 3
2.1 Summary of STP Accomplishments 3

3.0 Short Term Project Activities 3
3.1 STP Phase 1 Tasks • 3

3.1.1 Define Prototype Software Specification and Develop Prototype Algorithms .. 3
3.2 STP Phase H Tasks 4

3.2.1 Implementation and Feasibility Demonstration (Task 3.5) 4
3.3 STP Phase m Tasks 5

3.3.1 Provide Documentation (3.6) 5

4.0 Appendix "
4.1 Figure 1 'Time & Events and Milestones"
4.2 Technical Working Paper (TWP) 99, "IDEF/Systems Dynamics Evaluation Software:

Software Requirements Specification, Version 1.0"
4.3 Technical Working Paper (TWP) 110, "User Manual: IDEF/System Dynamics

Software, Version 1.0a"

1.0 CRAMTD STP #24
Results and Accomplishments

This Final Technical Report covers the activities for CRAMTD Short Term Project, STP #24,
"Feasibility of Integrating IDEF Methodology with Testing of System Dynamics".

1.1 Introduction and Background

The objective of this project was to test the feasibility of automatically generating a
simulation model of a system designed using the IDEF methodology. During the conduct of STP
#4 it was found that the IDEF methodology, which provides static models of the functional and
informational architectures of a CIM system, lacked a mechanism for direct evaluation of system
performance. In order to evaluate the dynamic performance of a system design, a designer would
have to separately specify a simulation model (IDEF2). A methodology was defined in concept
that could take the IDEF specification of a manufacturing system and automatically generate a
model that can be used to analyze system performance (EDEF2). Furthermore, the basic methods
were developed to also define the controller logic for operating the system and to automatically
generate the control code. The final report of STP #4 recommended that a new STP be defined
to demonstrate the feasibility of integrating the IDEF methodology with testing system dynamics.
This became STP #24, definitized in April, 1994.

1.2 Results and Conclusions

A prototype software entitled IDEF/System Dynamics was developed based on a software
requirements specification. The software was developed under Visual Basic and is user
interactive in a Windows environment. The software allows a user to define a system as an
IDEFO model. The model is entered in tabular form instead of graphical form. Once entered, the
user can automatically generate a simulation model of the system. After the user adds additional
information, such as time durations of events and the initial state of the system, the simulation
model can be run. The interactive screen is updated with the current state of the system as the
simulation continues. We conclude from this that the feasibility of directly constructing the
simulation model from IDEFO has been demonstrated.

Additional modules were developed under IDEF/System Dynamics for the purpose of
demonstrating interaction with a database and the generation of control programs. IDEFO
functional models usually specify the information flows that take place among related functions.
In order to capture information flows in the simulation, an extension to IDEFO was defined. That
extension allowed an IDEFO activity to be a predefined object that would interact with a database
by providing predefined information. The interaction is between the IDEF/System Dynamics
software and an Microsoft Access database file. When an output of an IDEFO activity is
information to be stored in a database, the predefined object executes an "insert" instruction,
placing that information into the database file. Although this feature was implemented on a very

preliminary basis, we conclude that it demonstrates the feasibility of including data flows within
the simulation of an BDEFO model.

When the IDEFO model is a representation of a set of machines under automatic control, the
simulation model is actually showing the sequencing of events that occurs among machines. In
that sense the simulation model contains the overall control logic for the sequencing of
operations. Algorithms were implemented to take that sequencing logic and define a supervisory
control program that could regulate those sequencing activities. Though limited to discrete
inputs and outputs, the algorithm was implemented and illustrated the capability of generating
such control logic in ladder logic format.

In order to prove the commercial viability of this software, it would be necessary to add more
controller functions, such as counters, timers and data manipulation elements. This is
recommended as further development in Section 1.3, Item 3.

The IDEF/Systems Dynamics approach to manufacturing system design can be used for
either a "greenfield" project or to modernize the current operation of an existing plant. It is
probably most appropriate for modernization projects because of the requirements for data in the
simulation model. Data on existing operations could be used to define the "as is" IDEF model of
the system. The simulation of this "as is" system should yield results consistent with the current
operation, thus giving credibility to the "as is" simulation model. The "to be" model would be a
perturbation on the "as is" model, showing the user the magnitude of the improvement in
operation for each modernization change.

At the present time IDEF/System Dynamics takes deterministic time data as input. It is
typical for production systems to generate events in stochastic time, i.e., a probabilistic
description of event time is required. This is a fairly minor extension to the software, but should
be implemented before it is used in a commercial project. This is recommended under Item 1 in
Secion 1.3.

A User Manual was written and is appended to this final report.

1.3 Recommendations

Based upon the experience developing this prototype software, we recommend:

1. Further development be funded for enhancing the IDEF / System Dynamics prototype
software into a more commercial software package.

2. Software be developed in C++ to allow a user to enter models graphically, as is the usual
practice in IDEF modeling. Microsoft Visual Basic has limited graphics capability; for
example, a user cannot scroll beyond a single screen, limiting the size of a model that can
be entered graphically.

3. Extend the control logic generating capability of the software to include timing and
counting functions, communication protocols, and data handling functions.

2.0 Program Management

This STP was proposed as a three phase activity as illustrated in Figure 1, "Time & Events
and Milestones" (Appendix 4.1). These include the following:

Phase I Define Prototype Software Specification and Develop Prototype
Algorithms

Phase II Implementation and Feasibility Demonstration

Phase HI Provide Documentation

The key first phase objective is to develop algorithms to translate IDEFO specifications into
an intermediate model that can be analyzed. Computer code was to be developed for those
algorithms in the second phase and implemented on an IBM PC class computer. The feasibility
demonstration consisted of constructing test cases of different manufacturing control situations
and running the prototype software against these test cases.

2.1 Summary of STP Accomplishments

• The feasibility of integrating IDEFO with the automatic generation of a simulation model
was demonstrated.

• The feasibility of integrating data flows to a database within the simulation model was
demonstrated.

• Prototype software was built that would allow IDEFO model building and simulation.

• A user manual was written for distribution with the prototype software.

3.0 Short Term Project Activities

3.1 STP Phase 1 Tasks

3.1.1 Define Prototype Software Specification and Develop Prototype Algorithms

(Task 34)
This phase concerned preliminary work to be done in preparation for writing software code.

It is necessary to develop a planning document that specifies the functionality of the software in
sufficient detail to guide the programmer. It is also necessary to design some of the important
algorithms or procedures that will be implemented.

3.1.1.1 Define Prototype Software Specification (3.4.1)
The work on developing a software requirements specification began in the third quarter of

1994. It was decided to write software that would run under Windows in an interactive mode to
provide a user-friendly interface. Visual Basic 3.0 was chosen as the development language due
to its ability to create a professional looking interface with a minimum of graphics programming
effort. The scope of the effort was defined to include an EDEFO development screen, an EDEF1X
development screen, and two modules for model analysis: one for simulation and one for
defining control code. The relationship between IDEFO and IDEF1X was to be made explicit in
the simulation by providing the ability to interact with a database file that could contain tables
based on the IDEF1X data model. The software requirements specification was published as
Technical Working Paper (TWP) #99, "IDEF/Systems Dynamics Evaluation Software: Software
Requirements Specification, Version 1.0". It was provided as an appendix to the interim
technical report (IRT 24.2) for the period ended February, 1995.

3.1.1.2 Algorithm Development (3.4.2)
Algorithm development began in the third quarter of 1994 and continued through the spring

of 1995. The basis of the algorithms and procedures for converting an IDEFO model to a
simulation model in the modeling formalism called Petri nets was previously developed by the
principal investigators on this project. These methods had to be refined during this phase of the
project.

3.2 STP Phase II Tasks

3.2.1 Implementation and Feasihilitv Demonstration (Task 3.5)

This phase focused on writing computer code for the algorithms being developed in Phase I.
It consisted of two tasks: software implementation and feasibility demonstration.

3.2.1.1 Software Implementation (3.5.1)
In January, 1995, we implemented the workstation for developing software. Visual Basic 3.0 and
Microsoft Access were purchased and installed. We began with the design interface for IDEFO,
which was intended to be implemented in graphics mode. However, we subsequently found that
the limitations of screen size made graphics mode usable only for very small problems. A
subsequent decision was made to provide data entry screens in matrix mode, which would allow
a user to enter very large models without difficulty.

Simultaneously, we were designing the modules for Petri net simulation and interaction with the
Access database. By May, 1995, we had linked the simulation model and the database.

During the spring and summer of 1995, we brought the two modules together by implementing
the procedures that would generate the simulation model from the JDEF model. Initially we
found that certain IDEF model structures resulted in simulation models that were non-cyclic; i.e.,
events of the simulation did not repeat themselves as in a closed system. This led to substantial
revisions of the simulation software to allow non-cyclic system behavior to be simulated. It was
during this period that we also implemented the module to generate the system control logic.

3.2.1.2 Feasibility Demonstration (3.5.2)
Manufacturing problem situations were developed to use for testing the functionality of the
software. These tests were conducted satisfactorily during the late summer, 1995.
Demonstration problems are provided in the User Manual, which is appended to this final report.

3.3 STP Phase TTT Tasks

3.3.1 Provide Documentation (3.6)

This phase consisted of reporting and documenting the results of the STP.

3.3.1.1 Develop Software User Manual (3.6.1)
A software user manual was developed that describes the functionality of the software. The
manual was released as Technical Working Paper (TWP #110) and is attached to this final report.

4.0 Appendix

o» 4.1 Figure 1 "Time & Events and Milestones*
4.2 Technical Working Paper (TWP) 99, "IDEF/Systems Dynamics Evaluation Software:

Software Requirements Specification, Version 1.0"
43 Technical Working Paper (TWP) 110, "User Manual: IDEF/System Dynamics Software,

Version 1.0a".

CO

in

en

CM (0
% CO
*- £ 0 o fl) ** ■2. >, (0
p 0)0)
1 - «

E -a
*- o 0) r=

CO

-a
c
(0
(0
+■« c
>
m

CO

o ■=
£ LL
(/) UJ
Q9
2 co

Ü o~ . I?
CO CO

o

I I u
nu
i i

ii ii ii II i

08
CO

E
■ MM

I
I
I
I I

3
O)
ii

o
0.

0
Ü
c

©

CE CO CO

CM

■<*

CO

0)
E
CO

10
(0

0
Q.

O
o
0.
Q
c
*0
Q

0
CO
CO

c
g
'S o
ö
0 a.

CO
0
CO

5
o

CO

c
0
E
a.
o
0 >
0
a
E

JZ
•+*
'u- o
<

m
CO

o
E
0
Q

o
CO

c
0
E
0
a.
E

0
CO
C3

in
CO

CM

in
cö

CD

CO

CO

cö

OJ

cd
cö

CO +•* c
0
E
o
ex
E
0
co
5
o

CO

c
o

"■*-»

CO

CO
c
o
E
0
Q

c

«
c
0
E
Ü
O
a

0
CO
CO
sz
Q_

CO

C
CO

0
CO

2
CO
5
o

CO

o a.
0

CE

"cö
c

CO

in
c\i
co
-Ö
0
c

COMBAT RATION
ADVANCED MANUFACTURING

TECHNOLOGY DEMONSTRATION
(CRAMTD)

IDEF/Systems Dynamics Evaluation Software:
Software Requirements Specification, Version 1.0

Technical Working Paper (TWP) 99

T.O. Boucher, MA. Jafari and R. Wurl
Department of Industrial Engineering

May 1995

Sponsored by:
DEFENSE LOGISTICS AGENCY

Cameron Station
Alexandria, VA 22304-6145

Contractor:
Rutgers, The State University of New Jersey

THE CENTER FOR ADVANCED FOOD TECHNOLOGY*
Cook College

N.J. Agricultural Experiment Station
New Brunswick, New Jersey 08903

Dr. John F. Cobum
Program Director

TEL: 908-445-6132
FAX: 908-445-6145

*A New Jersey Commission on Science and Technology Center

1.0 General

1.1 The purpose of this software requirements specification is to comply with section

10.9 and task item 3.4.1 of STP #24 of Contract DLA 900-88-D-0383 between Rutgers

University and the Defense Logistics Agency which requires that the contractor develop a

specification for software that links an EDEFO functional model and an IDEF1X

informational model with a model that can analyze system dynamics. The contractor has

reviewed methods for modeling system dynamics for discrete event systems that are

compatable with the IDEF specification schema and has published prior work on the

theory of how this can be accomplished. The contractor has also defined a methodology

for generating controller programs for operating a discrete event system based on the

IDEF functional specification. In order to test this methodology and to facilitate its use,

the contractor proposes to develop user-friendly software. The purpose of this document

is to provide the software requirements specification to guide that development effort.

This specification is a working document and is subject to revision as the project proceeds.

1.2 Project References

There are two articles that summarize the theory on which this computer software will

be based:

1. Boucher, T.O. and MA. Jafari, "Design of a Factory Floor Sequence Controller

from a High Level System Specification", Journal of Manufacturing Systems, Vol. 11,

No. 6, 1992.

2. Jafari, M.A. and T.O. Boucher, "A Rule Based System for Generating a Ladder

Logic Control Program from a High Level System Model", Journal of Intelligent

Manufacturing, Vol. 5, No. 2, 1994.

Other related documentation as follows:

a) Project request: STP #24, Integration of IDEF and System Dynamics, March 1,

1994, Contract No. DLA 900-88-D-0383.

b) Previously developed technical documation relating to this project: See references

(1) and (2), above.

c) Significant correspondence related to this project: None.

d) Documentation concerning related projects:

FTR6.0 Final Technical Report for STP#4 "Design and Development of a CIM
Architecture for Food Manufacturing", T.O. Boucher and M. A. Jafari.

TWP52 "Information Architecture for Packaged Food Manufacturing", N.R.
Adam, T.O. Boucher, T. Chamberlin, and J. Weber.

TWP37 "Functional Architecture for Packaged Food Manufacturing", T.O.
Boucher, M. A. Jafari, S. Kim, and J. McPhail.

e) Manuals and documents that contain or explain technical factors affecting project

development: None

f) Standards on reference documentation:

IDEFO Functional Modeling Manual, ICAM Project Report, Contract #F33612-78-
C-5158, Softech, Inc.,January, 1981

Information Modeling Manual IDEF1 - Extended, ICAM Project Report, Contract
#F33615-80-C-5155, D. Appleton Company, Inc., December, 1985.

1.3 Terms and Abbreviations

1.3.1 Integrated Computer Aided Manufacturing - Definition (IDEF)
Methodology: An approach to analyzing manufacturing developed by the U.S. Air Force
which is now in the public domain.

1.3.2 IDEFO is used to produce functional models, which are structured
representations of the functions of a manufacturing system and the information and objects
that interrelate those functions.

1.3.3 IDEFIX is used to produce informational models, which represent the

structure of information, or logical data base, needed to support functions of the
manufacturing system.

1.3.4 IDEF2 is used to produce dynamic models, which are simulations of the
time varying behavior of functions, information, and resources of a manufacturing system.

1.3.5 Petri nets are bipartite graphs which are used to model discrete event
systems and to analyze those systems.

2.0 System Summary

2.1 Background

During the conduct of STP #4 it was found that the EDEF methodology, which

provides static models of the functional and informational architecture of a CIM system,

lacked a mechanism for direct evaluation of system performance. In order to evaluate the

dynamic performance of a system design, a designer would have to separately specify a

simulation model (EDEF2). Furthermore, since IDEF methodology can be used to define

the specification of the manufacturing operations on the shop floor, it should be possible

to derive the specification of controllers and their information flows directly from the

EDEF models. This capability would enhance system specification, maintainability, and

transfer to industrial users. A methodology has been denned in concept that could take

the EDEFO specification of the manufacturing system, automatically generate a dynamic

model that can be used to analyze the system performance (IDEF2), and then

automatically generate the computer code for a discrete controller to run the system. The

final report of STP#4 recommended that a new STP be defined to demonstrate the

feasibility of integrating the EDEF methodology with testing system dynamics. This

became STP#24, definitized in April, 1994.

2.2 Objectives

There are six objectives to be satisfied by the proposed software. These objectives are

as follows:

1. Design and build a software module to enter a functional architecture in IDEFO format.

2. Design and build a software module and data base to enter an informational

architecture in IDEFIX format.

3. Design and build a software module to convert an IDEFO functional architecture to a

dynamic model in Petri net format that will maintain the features of the functional

architecture.

4. Design and build a dynamic link between the Petri net model and the IDEF1X data

base.

5. Design and build the modules necessary to perform a simulation of the Petri net

representation of the functional architecture, including interaction with the IDEF IX

informational architecture data base.

6. Design and build the modules necessary to convert the Petri net specification of the

functional architecture to code suitable for a discrete controller.

The software shall provide the above general specifications with a user friendly

interface and the ability to document and save user sessions. System definition and

functional diagrams follow in sections 2.3 and 2.4.

2.3 System Definitions

The following descriptions are referenced to figure 1, section 2.4, which is the

architecture for the proposed software.

2.3.1 Project Selection: A main menu that allows the user to enter and exit the

program. Program files are organized in directories by project. Once a project name is

selected, entry choices shall include the EDITOR mode, the ANALYSIS mode, and the

DATA DICTIONARY.

2.3.2 EDITOR Module: The EDITOR is used for entering, retrieving, changing,

saving and deleting data. These functions are performed in interaction with a model and

data representation Interface module. There is one for IDEFO and one for IDEF1X.

2.3.3 IDEFO Model and Data Representation Interface: A mouse driven IDEFO menu

and drawing template will be used to define Activities and Arcs. Arcs will include inputs,

outputs; controls, mechanisms, signals and communications. The latter two concepts are

extensions of the IDEFO standard that will be required to completely specify a CIM

application. The user defined IDEFO drawing will automatically generate a data

representation in matrix format. This will be used to save the model, redraw the model

and provide the basis for converting the model to IDEF2 format.

2.3.4 DDEF1X Model and Data Representation Interface: A mouse driven DDEF1X

menu and drawing template will be used to define Entities, Attributes and Relationships to

define a logical database. These definitions will automatically generate database tables

with the entity name and appropriate attribute fields. This interface will also be used for

entering instances (records) of entities in their table data fields.

2.3.5 IDEF1X Database: This is the physical implementation of the IDEF1X model as

generated from the IDEF1X Model and Data Representation Interface. It will be

implemented on the Microsoft Access database management system, which will be linked

to the IDEF1X Model and Data Representation Interface using Dynamic Data Exchange

(DDE).

2.3.6 New File: This allows the user to open a new file as either an IDEFO or

IDEF1X file and give it a file name. Files reside in the current project directory. Once the

file is established, the user is put into interaction with the appropriate IDEF Model and

Data Representation Interface.

2.3.7 Open File: This allows the user to open an existing file. Once the existing file is

requested by the user, the user is put into interaction with the appropriate IDEF Model

and Data Representation Interface and the file is loaded.

2.3.8 Save File: Allows the user to save the current IDEFO or IDEF1X file to disk.

2.3.9 Delete File: Allows the user to delete the current BDEFO or IDEFIX file from

disk.

2.3.10 Analysis Module: Must be entered by the user before any problem data can be

executed. The analysis module allows the user to 1) convert the IDEF Models and Data

Representation to a dynamic model representation, 2) simulate the dynamic model, 3)

generate discrete event system controller code from the dynamic model, 4) print output

and print results to files and 5) save current analysis sessions to memory and delete

previous analysis sessions from memory.

2.3.11 IDEF2.Mak: Converts the IDEF Models and Data Representation to a

dynamic model in Petri net representation. Retains the incidence matrix representation of

the Petri net that is used to save the model and redraw the model.

2.3.12 IDEF2.Sim: Queries the user for dynamic model event times. Performs the

simulation of the IDEF2 model, including interaction with the IDEF IX database. Retains

simulation results in files.

2.3.13 Control.Mak: Queries the user to define physical input and output channels.

Converts IDEF2 model to a generic code that can be applied to a programmable logic

controller using discrete inputs and outputs.

2.3.14 Reports: Prepares output displays of 1) IDEFO Model and Data

Representation, 2) IDEFIX Model and Data Representation, 3) IDEF2 Model and Data

Representation, 4) simulation results, 5) controller code model and data representation,

and 6) Data Dictionary definitions. Also generates hard copy of above.

2.3.15 Save/Delete Session Module: Allows user to save all data and results of an

analysis session in a file. Each session file will be uniquely named by the user. Allows the

user to delete previously saved session files.

2.3.16 Current Problem Files: Contains data files currently in use as well as

intermediate and final computations from problems in temporary storage. Data and results

are retained only when requested through "Save/Delete Session" Module.

2.3.17 Data Dictionary: Contains user defined definitions of data element names used

in IDEF models. This includes names of activities, arcs, entities and attributes.

2.4 Software Architecture: Referenced to Section 2.3

PROGRAM

MODULES

SOFTWARE

MODULES

TEMPORARY
AND

PERMANENT
DATA

RETENTION
FILES

IDEFO
(23.3)
New File
(23.6)

Open File
(23.7)
Save File
(2.3.S)

Delete File
(23.9)
Report!
(2.3.14)

Editon
(2.3.2)

Project Selection

(23.1)

IDEF1X
(2.3.4)
New File
(2.3.6)

Open File
(2.3.7)
Save File
(2.3.8)

Delete File
(2.3.9)
Reports
(13.14)

IDEF1X
Database
(23.5)

Analysis
(23.10)

IDEFZMak
(2J.11)

IDEFiSim
(13.12)

ControLMak
(23.13)
Reports
(23.14)

Save
Delete

(23.15)

CURRENT
PROBLEM

FILES
(2.3.16)

saved
problem

files

1
Data

Dictionary
(23.17)

Figure 1 Architecture of Proposed IDEF/System Dynamics Software

2.5 Computer Program Identification

1. Editor Module

2. Analysis Module

2.6 Assumptions and Constraints

None identified.

3.0 Environment

3.1 Equipment Environment

a) PC, Windows Operating System, 4 meg RAM.

b) Storage Media 3.5" Floppy disk.

c) Output devices VGA monitor, printer.

d) Input devices Keypad, mouse.

e) No additional communications requirement.

3.2 Support Software Environment

End product software will be compiled to run on a Windows operating system.

Source code will be developed in Visual Basic 3.0.

3.3 Interfaces

None.

3.4 Security and Privacy

No requirement for security and privacy. Software will be public domain.

4.0 Detailed Characteristics and Requirements

4.1 Specific Performance Requirements

4.1.1 Accuracy and Validity

a) Mathematical calculations shall yield final results accurate to one

decimal place.

b) Input data is subject to validity checks, the results of which are

presented to the user. User is responsible for insuring accuracy of

final input data,

c) No data transmission checks required.

4.1.2 Timing

Timing is not crucial in the use of this software. Time duration for

computations will be in the order of seconds.

4.2 Computer Program Functions

4.2.1 Identification of Computer Program No. 1

Program Name: Editor Module

This program is used for entering, modifying, deleting, saving and

retrieving of problem data. The program modules and reference

paragraphs are as follows:

a) IDEFO Model and Data Representation Interface (2.3.3)

b) IDEF1X Model and Data Representation Interface (2.3.4)

c) New File Module (2.3.6)

d) Open File Module (2.3.7)

e) Save File Module (2.3.8)

f) Delete File Module (2.3.9)

g) Reports Module (2.3.14)

4.2.2 Identification of Computer Program No. 2

Program Name: Analysis Module

This program performs conversion of input data into a dynamic

model, simulates the dynamic model, and provides code for

programming a controller. It provides a facility for output of results

and saving and deleting work. The program modules and reference

paragraphs are as follows:

a) IDEF2.Mak (2.3.11)

10

b) IDEF2.Sim (2.3.12)

c) Control.Mak (2.3.13)

d) Reports Generator (2.3.14)

e) Save/Delete Sessions (2.3.15)

4.3 Inputs - Outputs

• • The following paragraphs describe the inputs and outputs of each program

module identified in section 4.2.

IDEFO Model and Data Representation (2.3.3)

Inputs - Activities, Arcs and their relationships in IDEFO format

User changes to model structure

Names associated with Activities and Arcs

Outputs - Problem specific IDEFO model

Matrices retaining the information contained in the IDEFO structure

Files retaining the names associated with Activities and Arcs

IDEF1X Model and Data Representation (2.3.41

Inputs - Entities, Attributes, their names and their data structures

Relationships between Entities

Primary Keys and Foreign Keys

User changes to model structure

Outputs - Problem specific IDEFIX model

Tables retaining the information contained in the IDEF IX model

Files retaining the IDEF IX model

IDEF1X Database (2.3.51

Inputs - IDEF1X Model

Outputs - Data tables in Microsoft Access Database

New File Module (2.3.6)

Inputs - User request to establish new IDEF file

11

New file name

Outputs - User filename associated with current IDEFO or IDEF1X window

Open File Module (2.3.7)

Inputs - File name of existing IDEFO or IDEFIX file

Outputs- Retrieved IDEFO or EDRF1X data file

Save File Module (2.3.8)

Inputs - User specified IDEF file name

Outputs - Saved IDEFO or IDEF1X data file

Delete File Module (2.3.9)

Inputs - User specified IDEF file name

Outputs - Deleted IDEF data file

IDEF2.Mak Module (2.3.1 n

Inputs - IDEFO Data Representation

Outputs - Petri net graphical representation

Petri net incidence matrix

IDEF2.Sim Module (2.3.12)

Inputs - Petri net incidence matrix

Event timing

Outputs - Various performance results, such as reachability set, throughput, system
deadlock analysis, average activity utilizations, and system cycle time.

Control.Mak Module (2.3.13)

Inputs - Petri net incidence matrix

Physical input and output channels

Outputs - Controller program

Reports Module (23.14)

Inputs - IDEFO Input Data Files

IDEF IX Input Data Files

12

IDEF2 Output Data Files

IDEF2 Simulation Data Files

Controller Code Data Files

Outputs - Screen display of above files

Printer copy of above files

Save/Delete Session File (2.3.15)

Inputs - User specified file name

Outputs - Storage/Removal of complete session files

4.4 Data Characteristics

All input data will be standard integer. Resulting computations will be single

precision numbers displayed in decimal format. The following are extimated storage

requirements for the system (in bytes)

Programs 200,000

Databases 500,000

Data Dictionary 20,000

Total Storage 720,000 bytes

4.5 Failure Contingencies

This software is not critical to other system operations and will not have

redundancy or fail safe provisions. Failure during operation will result in the loss of files

not saved. Failure will require a restart and lost files will have to be reloaded.

4.6 Design Requirements

The only design requirement is modularity of functions. Each function will be

designed to function independently. Parameter passing will link execution among

13

functions. Main program construction will be designed as calls to subroutines and

functions.

4.7 Computer Security Requirements

None.

4.8 Human Performance Requirements

Human interface will be menu driven. No special human performance

requirements.

5.0 Test and Qualification Requirements

Software test will be conducted by generating sample problems that will be solved

manually. Comparison simulations of test problems will be run on a commercial

simulation software and results will be compared to DDEF2.Sim output. These test

problems will be used to verify intermediate and final computational results.

6.0 Notes

The following documents are cited in this specification and are available to the reader

to assist in understanding this specification.

References:

1. Adam, N.R., T.O. Boucher, T. Chamberlin and J. Weber, "Informational Architecture
for Packaged Food Manufacturing", TWP#52.

2. Boucher, T.O. and M.A. Jafari, "Design of a Factory Floor Sequence Controller from a
High Level System Specification", Journal of Manufacturing Systems, Vol. 11, No. 6,
1992.

14

3. Boucher, T.O. and M.A. Jafari, Final Technical Report for STP#4 "Design and
Development of a CIM Architecture for Food Manufacturing", FTR6.0.

4. Boucher, T.O., M.A. Jafari, S. Kim and J. McPhail, "Functional Architecture for
Packaged Food Manufacturing", TWP#37.

5. Jafari, M. A. and T.O. Boucher, "A Rule Based System for Generating a Ladder Logic
Control Program from a High Level System Model", Journal of Intelligent
Manufacturing, Vol. 5, No. 2, 1994.

15

COMBAT RATION
ADVANCED MANUFACTURING

TECHNOLOGY DEMONSTRATION
(CRAMTD)

IDEF/Systems Dynamics Software:
User Manual, Version 1.0

Technical Working Paper (TWP) 110

T.O. Boucher, M.A. Jafari, R.C. Wurl,
W. Zhao and G. Alpan

Department of Industrial Engineering

June 1996

Sponsored by:
DEFENSE LOGISTICS AGENCY

8725 John J. Kingman Rd.
Fort Belvoir, VA 22060-6221

Contractor:
Rutgers, The State University of New Jersey

THE CENTER FOR ADVANCED FOOD TECHNOLOGY*
Cook College

N.J. Agricultural Experiment Station
New Brunswick, New Jersey 08903

Dr. John F. Coburn
Program Director

TEL: 908-445-6132
FAX: 908-445-6145

*A New Jersey Commission on Science and Technology Center

1.0 INTRODUCTION

This manual describes software developed to enable a user to automatically generate a
simulation model from an EDEFO functional model that describes the functional operation
of a production/manufacturing system. The user must first define the EDEFO structure of
the system. This structure is entered in a tabular format as opposed to an EDEFO graphical
format. Using a menu command, the EDEFO model is converted to a simulation model.
This is done using transformation rules that map the EDEFO data structure into a Petri net
incidence matrix. The Petri net serves as the underlying modeling structure for the
simulation. For a description of Petri nets and their relation to EDEFO, the reader is
referred to the bibliography, particularly references [1,2,4].

To run the simulation, the user enters a simulation analysis screen. Here the user is
allowed to enter timing information concerning the length of time it takes for various
activities to execute. Once the timing information is entered, the simulation can begin.
The state of the system is updated on the simulation screen as the simulation executes.

In the following sections the user will be guided in the installation of the software, will
be taken through the various screens, and will be guided through the execution of tutorials
that illustrate typical manufacturing situations in the discrete parts and the batch process
industries.

By clicking on "Project" with the mouse, a pull down menu appears that gives the
following selections: "New Project". "Open Project", "Save Project'', "Save Project As",
and "Exit". Clicking on either "New Project" or "Open Project" will open a dialog box
for the user to either establish a new project or open an existing project.

When the user selects "New Project", the dialog box shown in Figure 2 appears. Here
the user clicks on the IDEFO label and an input box appears to request the name of the
new project.

'''iDEHSystems Dynamics EVa&iatton Soflfr'gia . ■
Project Edit Analysis Make

■=|*;- UnWteSÄ v. •y >>
logrotfejfe*",; ~^%

\}?jzc±<-t:. ■

Lsjry'.'.^i.'--.;»

Figure 2. "New Project" Dialog Box

The "Open Project" dialog box is shown in Figure 3. Here the user can select an
existing project file by clicking on the project filename. Project filenames have the
extension ".idf'.

IDEF/Systems Dynamics Evaluation Software

Project

File yams:

convey.idi
i.llidf

: FalheS idf

Open Project

"3

Qire clones

c:\idBl
!Öc:\
fcidet ~3

List Rles ot Iypa: Drives:

M !
jlDEFPTOiodPilas Tit«) *| S c: Q Ü 1

i

Figure 3. "'Open Project'Dialog Box

The "Save Project" and "Save Project As" menu choices are not active until a project
has been opened or a new project has been established. The "Exit" menu selection will
take the user out of the IDEF program and put the user into the Windows Program
Manager screen.

When a project is selected, the name of the project will appear on the screen as shown
in Figure 4, below. In this figure we have opened the project "CONVEY.IDF". In
addition, the user will be presented with three additional choices on the menu bar:
"Edit", "Analysis", and "Make". The "Edit" option allows the user to enter data for a
new model or to change data in an existing model. The "Analysis" option allows the user
to create the simulation model and to perform the system dynamics analysis. The
"Make" option allows the user to create a discrete event control program of the current
model. These features will be discussed later.

IDERSystems Dynamics Evaluation Software

Proiect Edit Analysis Make

CaJOEHCONVEY.IDF

B£FBK«te)

C:\IDEnCOUiVEVJDa

BEFlXfctaixl'

Figure 4. User Screen After Loading an IDEFO Model

3.2 Using the Editor

When the user clicks on the "Edit" menu, a pull down menu offers three options.
They are: "IDEFO", "IDEF IX". and "Input/Output". The "IDEFO" option puts the user
into the IDEFO model files for editing purposes. The "IDEF1X" option puts the user into
the IDEF1X model files for creating a data table. The "Input/Output" option is specific to
situations in which the operation of the system being modeled is governed by a controller.
An example of this is an IDEF model of an automated machining cell or an automated
packaging line which is controlled by a programmable controller. The "Input/Output"
option allows the user to enter the signaling requirements of the controller in terms of
input and output signals that will be used to control the system. A discussion and
example of this will be shown later. Here we will focus on the creation of an IDEFO
model and simulating its system dynamics.

Clicking on the "IDEFO" option under the "Edit" menu brings up the IDEFO input
screen. If it is an existing project, the screen will show the most current input values that
were previously entered. If it is a "New Project", the screen will be void of existing
values, as shown in Figure 5. This is the screen into which all IDEFO information is
entered. The title bar at the top of the screen indicates the title of the software and the
title of the project. Here we have established a new project called "TEST". There are six
data entry areas provided for the user as follows: "Incidence Matrix". "Activities",
"Arcs". "Mechanisms". "Intelligent Signals", and "Dumb Signals". In order to
understand the meaning of these catagories and their relationship to standard IDEF
concepts, we introduce the diagram in Figure 6. below.

IDEPSystems Pymmics Evaluation SoftwBre-(CaSDEBTEST.[DO]

File Edit Help

* tacidencs Moök '

CaicetE&tec&Ssaco

 Aico

f
1

Row Ofjamöorsü [asw/CctefsaOponsaaes:

:Ölip™]: (TteTj j|LüiJl
 Mechaaicras —

ptaw / Column Operation*]

Add 1 Remove

Figure 5. IDEFO Model Input Data Screen

The building blocks for an IDEFO model are the activity box, input arcs, output arcs,
mechanisms and controls. The activity box defines a specific activity, or function, that is
being modeled. The activity may be a decision-making or information-converting
activity or a material converting activity. Inputs to the activity are shown as arcs entering
from the left of the activity box. Inputs are items (material, information) that are
transformed by the activity. Outputs of the activity are shown as arcs exiting at the right
of the activity box. Outputs are a result of the activity acting on the inputs. Controls are
shown as arcs entering the activity box from the top. A control is a condition that
governs the performance of the activity. For example, a control may be a set of rules
governing the activity or a condition that must exist before the activity can be done.
Mechanisms are shown as arcs entering the activity box from the bottom. A mechanism
is the means by which an activity is realized. For example, the mechanism may be a
machine or a worker.

Control

Mechanism

Figure 6. Building Blocks of IDEFO Modeling

The activity box and the four entities of Figure 6 provide a concise expression: An
input is transformed into an output by an activity performed by a mechanism and
governed by a control. The specific activity, its inputs, outputs, mechanisms and controls
must be defined for the situation being modeled. Activity boxes represent actions being
performed and are labeled with verb phrases. Inputs, outputs, controls, and mechanisms
are things, and are labeled with noun phrases. For a more thorough discussion of the
IDEFO modeling constructs, the reader is referred to reference [6].

A sequence of related activities can be described by an IDEFO diagram, such as that
shown in Figure 7. Here, two activities are related in sequence. The output of activity 1
becomes the input to activity 2. Any number of activities can be related to each other in
order to describe a complete system. We will use Figure 7 as an illustration in this section
and introduce more complex situations in Section 4, the tutorial section. We have
adopted the following default labeling convention for activities(p), arcs(a), mechanisms (or
resources) (r), and controls(s).

In order to illustrate the input conventions used with the screen of Figure 5, we will
refer to the simple IDEFO diagram of Figure 7. The input data that represents that
diagram will be shown in Figure 8. The following describes the process by which the
model of Figure 7 is input as data in Figure 8. The user begins with the "Activities" input
box, Which is located in the upper center of Figure 8. By clicking on the "New"
command button, a dialog box appears to ask for the number of activities. When the user
responds, the activities are labeled consecutively from pi to pn and appear in the
activities box as shown. The user can "Add" and "Remove" from the activities list at any
time by using the "Add" and "Remove" command buttons in the activities box. For the
IDEFO model of Figure 7, there are 2 activities. To the right of the activity is the
"capacity" row. This is used to place a bound on the number of inputs that can utilize an
activity simultaneously. For example, if the activity is a machining operation and the

machine tool is capable of machining only one part at a time, it is necessary to enter a "1"
in the capacity cell next to the activity. If the activity is a transportation activity and the
transport device is capable of holding only 2 units at a time, a "2" is entered in the
capacity cell next to the activity. The user clicks on the left mouse button to select the
cell. After the cell is selected, the user may enter a number from the keyboard or click on
the right mouse button to increment the value in the cell by one. The user may click on
the left mouse button to decrement the value in the cell bv one.

Figure 7 "TEST" IDEFO Model

IDEFfSystenrg Dynamits Evsiuatton Software-{CMDEHTEOT.IPOS

File Edit Help !Ü
"Jrwadüsftco fcso&iÄ

el |o2 |o3
pi 1

0

-1
a

i
1
-i

0
-1

0
1

p*
el
c2

0

" —~ ~~ Activities ~

Cop 1
p' 1

2 1 P*

0.1 [Q2 jo3

Eli
EÖL

RCKT OpsratJcas (:&at pQfeS53 0^ars&3sc^f ^

Md-

~

rl 1* t
p' 1

0

0 | ' ';.

'I p*

ura / Cotem» Operation:

Add | 1 Romava | £^"J

lies;

Figure 8 Input for -'TEST' IDEFO Model

The user then moves to the "Arcs"' input box. shown at the upper right of Figure 8. In
a manner similar to entering the number of activities, the number of arcs are input. In the
IDEFO model of Figure 7 there are 3 arcs. Arc labels from al to am are automatically
provided. The user must then enter the relationship between activities and arcs in the arcs
input box. If an arc is an input to an activity, the user must put a "1" in the cell
representing that arc/activity combination. If an arc is an output of an activity, the user
must put a "-1" in the cell representing that arc/activity combination. If there is no
input/output relationship between an arc and an activity, the user leaves the cell blank,
which is a value "0". In order to enter a value in the cell, the user first clicks on the cell
with the left mouse button. This gives the user access to the cell. If the user clicks the
left mouse button, the value in the cell decrements by one. If the user clicks the right
mouse button, the value in the cell is incremented by one.

The user next moves to the •"Mechanisms" input box to input the number of
mechanisms in the same manner as the activities and arcs input box. In the case of our
example problem, there are 2 mechanisms. If a mechanism services an activity, the user
puts a "T' in the cell that shows the relationship between a particular mechanism and
activity.

The controls structure of the IDEFO model is unnecessary for the simulation model,
which is used to show the movement of input and output flows as well as the utilization
of resources. The control, or signal structure, is appropriate to the development of the
system controller. This will be discussed later in Section 5.

The user now moves to the incidence matrix, which shows the relationship between
the entities of the IDEFO model. When the user clicks on the -'Calculate Incidence"
command button, the arc labels appear across the top of the box and the activities labels
and the mechanisms labels appear down the rows of the box. The cells are automatically
filled with data that is derived from the information previously entered by the user. This
•incidence matrix" is a data structure representation of the complete IDEFO model.

The user will note an additional symbol in the incidence matrix. The symbol "c" is a
capacity holder which is derived from the information entered by the user in the
•'Activities" box. If the user declares mat an activity will have a capacity associated with
it. a capacity holder will be assigned the the activity. It's purpose will be apparent when
we discuss the simulation model.

This is the data model from which the system dynamics model is created. At this
point the user can save the model from the "Files" menu and can exit the IDEFO editor.

3.3 Using the Simulator

Exiting the editor puts the user back into the main menu, shown previously in Figure 4.
To enter the simulator, the user clicks on the "Analysis" menu item and selects "EDEF2-
Simulation". This brings up the simulation screen, which is shown in Figure 9, below.
The simulation screen has several input boxes and information displays as follows:
"Incidence Matrix", "Initial Marking", "Previous/Current Marking", "Run Control",
"Timing Vector", "Database Insert", and "Firing Vector".

File View options

IDEF/Systems Dynamics Evaluation Software - [IDEF2 - Simulation]

Incidence Meliw

al K [a3

pl 1

0

-1

a

-1

t

1

-1

0

P2 -1 !

cl 0

c2 1

Timing lot |a2 o3
Vector u 3

Data- !al |Q2 ;O3

bose NQ NQ No
Insert : "

Firinq al ;a2 a3
Vector i0 rj o

Initial
Markinq

pl 0

0 p2
cl t

2 c2

i

Prov. Currant
PJnrb Mark

P' -1 0 , ;

P2 o ! 1
cl J 1 i 1
c2 ? ; !

(5 Stop 1

r stap 5

r stap 10

r oilw Q

r Maximum Simulation l)

Current Simulation Time: i0_

Figure 9 IDEF2 Simulation Screen

The "Incidence Matrix" is the data structure of the simulation model. It is derived
from the "Incidence Matrix" (data structure) of the IDEFO model of Figure 8, but it is not
necessarily the same. For the "TEST" example, the IDEFO incidence matrix and the
simulation incidence matrix are identical. The simulation model uses the modeling
formalism known as Petri nets. A Petri net is a bipartite graph having two types of nodes,
known as "places" and "transitions". These nodes are connected by arcs. A graphical
model of a Petri net uses circles to represent places and bars to represent transitions.
When the IDEFO model of Figure 7 is converted to a Petri net, the resulting model
structure is as shown in Figure 10. Here you can see that the activities of the IDEFO
model have become the places of the Petri net and the arcs of the IDEFO model have

11

become transitions of the Petri net. In the incidence matrix of the simulation model, the
input places of a transition are labeled with a "-1" and the output places of a transition are
labeled with a "1".

The capacity holder for an activity is shown as a complementary place across the place
that represents the activity. The significance of this will be illustrated shortly.

Figure 10 is for illustration in this document. It is meant to clarify how the data
structure is related to an underlying Petn net model. Graphical displays are not available
in this software.

d c2
Figure 10 Petri net Representation of "TEST"

Before a simulation can be executed, it is necessary to initialize the model. The model
is initialized by marking the active places. A place is marked by putting a token in it. For
example, In Figure 10 there are two capacity places, cl and c2. The available capacity is
indicated by marking these places with tokens that equal their capacities. Presumably
these capacities must be present for the system to be initialized. In the "Initial Marking"
input box of Figure 9, we place a "1" next to cl and a "2" next to c2.

Before a simulation can execute, it is necessary to provide timing information on how
long it will take to perform an activity. There are two ways to do this in the Petri net
modeling methodology. The time can be directly associated with a place or it can be
associated with the output transition of a place. For example, if a time of 10 time units is
associated with activity pi of Figure 10, it would indicate that that activity takes 10 time
units. Alternatively, if a time of 10 time units is associated with transition a2, it would
indicate that activity pi must be marked for 10 minutes before it is completed.
Associating time with places or with transitions can result in the same interpretation. In
the "Timing Vector" input box of Figure 9. it can be seen that time is being associated
with transitions. The user must enter this timing information by placing the number of
time units in the "Timing Vector" input box.

We can now describe the dynamics of the simulation model. From the given initial
state, a Petri net changes state by firing one or more of its transitions. A transition fires
when it is enabled AND its timing vector has expired. A transition is said to be enabled

12

when all of its input places are marked. When the transition is enabled, the timing clock
associated with that transition begins to run. When the clock expires, the transition fires.
When the transition fires, it removes the tokens from its input places and puts tokens into
its output places. Thus, the new state of the system is shown by the new marking of the
places.

In order to run the simulation, the user enters the "Run Control" box. There are two
parameters to enter. Under "Step Control", the user selects the number of changes of
state that should occur before the simulation pauses. This is done by clicking the left
mouse button on the appropriate circle. The current selection will appear as a black dot in
the circle. In Figure 9, "Step 1" is selected. If "Step 5" is chosen, the simulation will run
through 5 changes of state (transition firings) before it pauses. The user can enter any
desired number of steps in the input box next to "Other". Under "Maximum Simulation",
the user enters the maximum number of steps the simulation should run before it is
finished. If this option is not selected, the simulation will run until it is ended by clicking
the "End" button. At any time during the simulation, the simulation can be "Reset".
Clicking the "Reset" button will reset all simulation counters to zero. After choosing the
"Step Control" and "Maximum Simulation" options, the user begins the simulation by
clicking "Start".

As the simulation runs, the simulation statistics appear on the simulation screen. The
"Current Simulation Time" block at the lower left of Figure 9 is a running total of the
amount of simulation time that has elapsed since the simulation began. The "Previous
Marking / Current Marking" block at the upper right of Figure 9 shows each place
(activity) that is marked (in process) at the last step and current step of the simulation.
Since Figure 9 is the state of the simulation at current simulation time t=0, there is no
"Previous Marking". The "Firing Vector" shows the number of times that transitions
fire during the simulation run.

In Figures 9 and 10, at time t=0, the system is in its initial state as shown by the initial
marking. At time t=l, the timing vector of transition al expires and transition al fires.
The system moves to the state shown in Figure 1 la and 1 lb.. In this state, activity pi has
begun and capacity cl has been consumed into activity pi. Since pi and c2 are the input
places of p2 and both are marked at t=l, the clock for transition a2 can now begin timing.
Transition a2 times out after 2 time units; i.e., at t=3. At that point transition a2 fires,
removing tokens from pi and c2 and placing tokens in p2 and cl. The new state of the
system, Figures 12a and 12b, shows that capacity cl is now available and that activity p2
is in progress. Transition al begins timing again and, after 1 time unit has elapsed,
transition al fires again at t=4. This is shown in Figures 13a and 13b. At that time,
activity pi begins again. At this point both pi and p2 are in progress. Finally, transition
a2 and a3 are scheduled to fire at t =6. Since only one transition will fire at each step, it
will take two steps to complete the firing of both transitions. The first firing is shown in
Figures 14a and 14b and the second firing is shown in Figures 15a and 15b. Therefore, at
t=6, the system has returned to the same state it was in at t=3. The circulation of tokens

13

and the marking of activities indicates the state of the system at various points in the
simulation.

This brief introduction to Petri nets will give the user some insight as to how the
simulation executes. The results of a simulation run can be interpreted in terms of the
origional EDEFO model. We will illustrate this in the tutorials of section 4. Users
interested in more information on Petri nets and their use in modeling manufacturing
systems are referred to references [1,3,5].

IDEBSystems Dynamics Evaluation Software - [IDEF2 - Simulation]

Eile Ylew Options

Incidence Matrix
:al |a2 a3

pi 11 -1 0

p2 0 1 -1

cl :-i 1 0

c2 !0 -1 1

Initial
Marking

pi
P2

0

a
cl i

2 cZ

Timing inl !a2 iB3
vector ij 2 3

Onto- al
base No

Insert

IB2

No

Ja3
No

■

i
i

Firing „i
Vector i

a2

0

|«3

0 1

PrBv
Mark.

Current
Mark.

pi

P2
1° Jo

1

0

0

2

cl ['
c2 12

S Step 1

r Step 5

r Step 10

r Other i 1

P Maximum Simulation 1

CurrBnl Simulation Time: I 1

Figure 1 lb

Figure 11 State of the Simulation at Time t=l

14

a1 p1

Figure 12a

IDEFfSystems Dynamics Evaluation Software - (IDEF2 - Simulation]

Die View options

Incidence Matrix

Timing |al \a2 ia3
Vector I ■) 2 3

Gala- 'ol ia2 |a3
base No No No
Insert I

al \a2 |Q3

pi 1

0

-1

o

-i
1
1
-1

0
-1
0
1

P2

cl

cZ

hiring al
Vector I-J 1

]„3
a

Prov. Current
Merk. Mark.

i Stop I

" Slep5

" Step 1 0

r Maximsm Simulation "II

Currant Simulaban Tima: |_3_

Figure 12b

Figure 12 State of the Simulation at t=3

15

Figure 13a

IDEF/Systems Dynamics Evaluation Software-[IDEF2- Simulation]

File View options

Incidence* Matrix

Timing l al
VBCtor h

Data- al \nZ
base No No
Insert '

Firinq gl
Vector i?

al a2 |a3

p> 1 -1 0

0 1 -1
-i i a
3 -1 1

p2
d

c2

Initial
Maria 'q
pi 0

p2
1, ;

c2 ;2

Prav. Currant
Mnifc Mark.

p1 I) 1

pZ 1 1

cl 1 0 I

c2 1 1

£ Step 1

r Slap 5

r Slap 10

r Other |

r Mmdnwim Simulation "11

Current Simulation Tima: i

Figure 13b

Figure 13 State of the Simulation at t=

16

Figure 14a

IDEFfSystems Dynamics Evaluation Software-(IDEF2- Simulation]

File View Options

Inddsnco Matrix

|al a2 ja3

P' 1 -1 0

p2 0 1 -1
-l i a

rj -i i
cl

c2

Initial
Uorfcinq

Pi 4°
P2]" '
cl 1l !
c2 2 ;

Prev. Current
Mo*. Mark.

pi 1

"l

1

1 i p2
cl 0 0 1

c2 1 2

Timinqial \nZ a3
Vector i, 2 3

Data- -al \a2 a3
base INQ No NQ

Firinq Q] ;o2 a3
vector ij i i

s Step 1

|~ Stop 5 I

r Step ia

r Othor !

" Mnparaum Simulation 1 j

Cunertt Simulation Tims: i_g_

Figure 14b

Figure 14 State of the Simulation at t=6, First Firing

17

Figure 15a

Hie View Options

IDERSystems Dynamics Evaluation Software -[IDEF2- Simulation]

InndönCB MalriK

at k |s3

pi

p2

1

0

-i a

Timing
Vector

Firing [Q1 !a2 a3

Initial
Marking

pi ;o

p2 jO
cl 1

c2 Iz

al |a2 o3
1 2 3

Data- al [a2 o3
base) No No No
Insert

PTOV. Currant
Mnrfc Mpik.

a
a l
o i

c2 2 1

5 rrni iQtl on if

Continue j

i Step 1

" Step 5
End

~ Step 1 0 Re3et

" Other 1

Maximum

Current Simulation Time: | b

Figure 15b

Figure 15 State of the System at t=6, Second Firing

3.4 Summary

At this point we have described the two key screens for running EDEFO / System
Dynamics in software. These are the IDEFO model input screen and the Simulation
screen. In the next section we will describe a tutorial problem and lead the user through
the running of a simulation.

18

4.0 TUTORIALS

There are two tutorials provided in the DATA directory. In this section we shall
describe a tutorial program that simulates the operation of a packaging line and a tutorial
program that simulates the operation of a robot cell.

4.1 Problem Description : Packaging Line Example

Figure 16 is the IDEFO model of the operation of certain activities along a
filling/packaging line. This model can be extended to include other operations and
functions of the production activities. For illustrative purposes we limit our attention to
the filling operation, weighing operation and movement of the package, called the "tray",
along the line.

al Pi
Fill
Trav

"T
Filler

rl

a2

p2
Move
Trav

T
Buffer 1

al - Empty Tray

a2 - Filled Tray

a3 - Filled Tray Entering Checkweigher

a4 - Filled and Weighed Tray

a5 - Accepted Tray

a6 - Rejected Tray

a7 - Tray Moving to Next Operation

a8 - Tray on Reject Conveyor

a3

P3
Weigh
Tray

T
Checkweigher

r3

a4

a7 Make p4

Acc/Rej
Decision

a5 \ P5
Accept:
Move to
Next OP

N /

a8

/
\

a6
^

Chechweigher
r3

Bufip2

\ Reject:
Move to
Rej Conv

\) /

Re
t

ect Convey
r5

or

Figure 16 IDEFO Model of a Filling and Weighing Operation

Events begin when an empty tray enters the filler. The first activity, "Fill Tray", is
performed by the resource called the "Filler". The filled tray then proceeds down the
conveyor in the activity "Move Tray". From a modeling perspective, the resource being
utilized by the tray is the buffer capacity on the conveyor that exists between operations.
Therefore, the resource is given the designation "Buffer 1". The tray then passes over the
checkweigher and the activity "Weigh Tray" takes place. This is followed by a decision
making activity "Make Accept/Reject Decision". It is important to note that one should
separate each activity of the activity sequence in modeling a problem. The accept/reject

19

decision is a separate step from the act of taking the weight of the tray. Thus, we
differentiate between activity p3 and activity p4. even though both are performed in
sequence by the same mechanism.

In the next set of arcs, we come to our first example of what is known as a "conflict".
A conflict exists when there is a choice of moving from an activity to only one of two or
more activities that are exclusive of one another. In Figure 16. the activity following p4
will be either activity p5 or activity p6. A tray cannot be both accepted and rejected at
the same time. The IDEFO methodology is unclear about how to represent the conflict
state. We have proposed in reference [2] that OR conditions be represented by having
two arcs with separate labels exiting the activity from which the conflict takes place.
This labeling convention is used in this software. Note the separate labels a5 and a6 in
Figure 16.

It should also be noted that activities p3 and p4 both use the same resource, the
checkweigher. The model must reflect the physical operation of the system. The
checkweigher first weighs the tray and then reports a decision. The checkweigher will
not weigh another tray until it has reported the decision for the last tray. In effect, the
checkweigher is occupied for both activities. In terms of IDEFO modeling, it is a shared
resource. That is to say, it is shared between two activities of the model. We will see
shortly that it is important to identify the shared resources in order to obtain a proper
simulation model.

4.1.1 Entering IDEFO Data: Packaging Line Example

The Packaging Line Example is in the IDEF directory under the project name
''Convey.idf'. However, we suggest that the user enter the problem data by following the
instructions in this and the following paragraphs. This will give the user a better feeling
for the process of entering a problem.

The first step is to start the software by double clicking on the IDEF icon and
maximizing the screen. The project screen will appear as previously shown in Figure 1.
Click on the Project menu and choose New Project. The "New Project" dialog box will
appear as previously shown in Figure 2. Click on Project and Save Project As.. Type the
project name "Filler.idf'. The software will not automatically give the extension ".idf.
You must type the extension. The "Untitled.idf' label will now change to the project
name. Click the left mouse button in the panel labeled "Untitled.idO". A dialog box will
appear requesting the name of the IDEFO file. Type in the project name "Filler.idO". The
software will not automatically give the extension ".idO". You must type the extension.
Click on the command button "OK" and the new IDEFO filename will be established.
The "Untitled.idO" label will now change to vour filename.

20

To enter the IDEFO model data, click on the menu item •'Edit". Three choices will
appear: "IDEFO", "IDEF1X". and "Input/Output". Click on -'IDEFO" and the IDEFO
data input screen will appear with the name of the project at the top.

Figure 17 shows the data as it will appear when the input steps are completed. The
data is partially obscured. Using the scroll bars, data can be moved within the windows.
The data requirements will be listed in the following paragraphs as we go through the
steps of creating that screen.

IDERSystsias Dynamics Evaluation Software - [CaiDEF\HllER.IDO|

Re Edit Help

tnadgccs Ma&Bc"
at w |s3 |a4 |s5 |aS \6U_

p« J
0

0
0
0

0
-1

-1
1

a
0
0
a
l

0 0 0
-10 0
! -1 0

0 1 -1
0 0 1
0 0 0

0 0 0

0
0
0
-1

0
1

0

öl
" r
0 j
0 j
-II
»L
»it

p*
p3
r*
P5

pS

A I H

Cep [

P1 1 |
5 1
, !
i [
0
o !

p*
P3

p4

P5

pS

|e? |o3 Ia4

m

CaSccä^s fcESÖtesCQ

"i.. 1

Mocfeeiiisma
rt 1* 1* H H

p' 1
0
0
0
0
0

a
i
0
0
0
0

0
0
1
1
0
0

o q
o a
o a
o a

0 1

pZ

P3 ■
p4

f«
ps

* t *
flow/- Coiaraa O^iziöonrj

A4ri j I FtoaagftKS |j

Figure 17 Input Data Screen for Filler.idf

Go to the "Activities" input box and click on the "New" command button. A dialog
box will appear with the title "Rows" and the request "Specify the number of rows". The
user is being asked for the number of activities in the IDEFO model. The activities of the
IDEFO model will become the rows of the incidence matrix. At this point type "6"
because there are six activities in the IDEFO model of Figure 16. Click on *'OK" and six
activities, labeled pi to p6. will appear in the activities box.

Now enter the capacities for each of the activities. Referring to Figure 16. the first
activity, pi. can only be performed on one tray at a time. Hence, it has a capacity of "1".
Click on the capacity cell of activity pi with the left mouse button. This will access the

cell. Click once with the right mouse button and the contents of the cell will be
incremented to "1". The second activity. p2. is the tray moving in the buffer. For the
purposes of this exercise we will assume a capacity of "5". That is, there will be buffer
capacity for five trays between the filling station and the weighing station. Click on the
cell with the left mouse button to enable it and click five times on the cell with the right
mouse button to add a capacity of "5". Similarly, go to the checkweigher cell (p3) and

enter a capacity of "I". This also applies to activity p4.

If the capacity of an operation is not limited, this is indicated by leaving the cell blank.
We will assume that there is no downstream blockage on the take away conveyors for the
accept and reject lanes. Therefore, their capacity cells will remain blank. We could
enlarge the model by adding all the downstream activities. In that case, we would have to
indicate the capacities of conveyor buffers between those activities that are further
downstream. At this point the activities data has been entered.

Go to the •'Arcs" input box and click on the "New"' command button. A dialog box
will appear with the label "Columns" and the statement •'Specify the number of
columns". The user is being asked for the number of arcs, which will become the
columns of the incidence matrix. Referring to Figure 16, there are 8 arcs, al through a8.
Therefore, enter the number ''8". The arc labels will appear across the columns of the
arcs matrix and the activities will appear down the rows. The user must now enter the
relationship between activities and arcs in the "Arcs"' input box matrix.

Figure 18 shows the complete matrix of inputs required. The relationship between
activities and arcs is given by the IDEFO model of Figure 16. If an arc is an input arc to
an activity, a "1"' is entered in the cell intersecting the row with the activity label and the
column with the arc label. If an arc is an output arc of an activity, a "-1" is entered in the
cell intersecting the row with the activity label and the column with the arc label.

The reader should enter the relationships as shown in Figure 18 and check the data
against the model of Figure 16 in order to confirm the relationship. Click on the left
mouse button to access a cell. Then click on the right mouse button to increment the
value in the cell by one and click on the left mouse button to decrement the value in the
cell by one. When all the data of Figure 18 is entered, the arc data entry is complete.

al a2 a3 a4 a5 a6 a7 a8

pi 1 -1
p2 1 -1
p3 1 -1
p4 1 -1 -1
p5 1 -1
p6 1 -1

Fisure 18 Data Entry for "Arcs" Input Box

Go to the ""Mechanisms" input box at the lower right of the screen. Click on the
"New*' command button. A dialog box appears that asks for the number of mechanisms.
There are five mechanisms (or resources) being employed in Figure 16, rl through r5.
Input the number "5"'. Click "OK". The mechanisms input box will list the mechanisms
as column labels. Go to each cell of the mechanisms input box and establish the
relationship that exists between the activities and their mechanisms. If a resource is a
mechanism of an activity, place a "1" in the cell that is the intersection of the activity
label and the mechanism label. Otherwise, leave the cell empty. This is done by first
accessing the cell with the left mouse button and incrementing the cell with the right
mouse button. The complete matrix of entries is shown in Figure 17. Note that there are
two entries under resource r3. the checkweigher. This resource supports two activities:
p3 and p4. This is a shared resource and will have a special significance in the
simulation. This will be discussed in a late section.

Go to the "Incidence Matrix"' input box in the upper left of the screen. Click on the
"'Calculate Incidence"' command button. The incidence matrix is automatically calculated
from the data that has been supplied. Note the arc labels along the top and activity labels
down the rows. In addition, capacity places are added as cl to c4. These are the
capacities of the first four activities. Also, the shared resource, r3, is included as an
activity.

At this point all the data has been entered for the simulation. Click on the 'Tiles"
menu and click on "Save As". You will be asked again to provide a filename. Type
"Filler.idO" and click "OK". The IDEFO model is now saved under the filename
"Filler.idO". Exit the IDEFO input screen by clicking on File and Exit. The next step is to
simulate the model.

4.1.2 Simulation: Packaging Line Example

Enter the simulation screen by clicking on the menu item "Analysis" and choosing
"IDEF2-Simulation". A screen shown with the layout of Figure 19 will appear, with the
incidence matrix provided at the upper left of the screen. In order to clarify the meaning
of the incidence matrix for this problem, we have diagrammed its Petri net structure in
Figure 20.

=, IDEF/Systems Dynamics Evaluation Software [IDER - Simulation) 1' $
= RIe View Options *

nadartco Ma£rm nttjai Prev Current
Mark. Mark. ai :aZ a3 al a5 a6 al « Wartung

Pi 1 -1 0

D 1 -1

0 Q 1

0 0 0

a o o
a o a
-1 1 0
a -l i
o a -i
a a a
0 0-1

0 0 0

0 0 0

-10 0

1 1 1

0 1 0

0 0 1

0 0 0

0 0 0

1 0 0

-1 1 1

0 1 1

a
a
a
9

1

0

3

0

0

a
0

0'

Q!

01

01

01

-1
01

01

oi
01

01

Pi 0

0

0

Pi 0

0

0

0

0

0

1

5

1

1

1

P* P2 P2

P3 P3 P3

Pi Pi 0 1
0

pi

P5 pS P*
p6 p6 0

1

5

1

1

1

p6

cl cl cl

c2 c2 c2

c3 c3 c3

c4 <H c4

r3 r3 r3

«-I ■»'

s Stop 1

r Step s

r Step 10

r Other | |

" Maximum Simulant

Timing al la2 ls3 i a4 j Q5 aS !«? aS
Vector 1 2 3 ! 2 2 1 1

| Start |

n al a2 jn3 a4 | o5 aß a? a»
j End | baso No No No No No No No No

Insert

Reset

Firing ai |o2 |a3 Q4 1 a5 a£ a7 aB
Vector 0 0 0 0 0 0 0 0

nlj

Current Simulation T me: I 0 1

Figure 19 IDEF2-Simulation Screen for Filler.idO

Figure 20 maps the flow of the IDEFO model of Figure 16. In addition, it includes the
capacity holders as complementary places of the activities for which capacities have been
specified. The shared resource, r3 (checkweigher) is shown entering the main flow at a3,
which enables p3 when fired. The activity p3 is the first activity for which the
checkweigher is required. The resource r3 is shown exiting the main flow at a5 and a6.
These are the events which occur after p4, which is the last activity for which the
checkweigher is required. A token placed in r3 will circulate through p3 and p4 and back
to r3 as the simulation runs. Since both p3 and p4 require that token from r3, either p3
OR p4, but not both, can be active at one time. In effect, the shared resource prevents
more than one tray from being in the checkweigher at a time. Note that, if r3 were not
present, c3 and c4 could not guarantee that a token would not be in p3 and p4
simultaneously. This is the special role of the shared resource place. In fact, c3 and c4 are
not needed for this simulation. They were included simply to make this point about the
special significance of shared resources in the IDEF2 simulation.

24

a1 - Empty Tray
a2 - Filled Tray
a3 - Filled Tray Entering Checkweigher
a4 - Filled and Weighed Tray
a5 - Accepted Tray
a6 - Rejected Tray
a7 - Tray Moving to Next Operation
a8 - Tray on Reject Conveyor

p1 - Fill Tray
p2 - Move Tray
p3 - Weigh Tray
p4 - Make Accept/Reject Decision
p5 - Accept: Move to Next Operation
p6 - Reject: Move to Reject Conveyor
d - Filler Capacity
c2 - Buffer 1 Capacity
c3. c4 - Checkweigher Capacity
r4 - Checkweigher resource

Figure 20 Petri net for Filling and Weighing Operation

At this point the user should initialize the simulation model. Figure 19 shows a
complete set of data entered. Note the the initial marking is the capacity of the capacity
places and the shared resource. The "Timing Vector"' was selected arbitrarily. Enter the
data as shown in Figure 19. This should be followed by running the simulation in "Step
1" increments. Figures 21 through 27 show the simulation at various stages. The stages
are given by the number of steps the program has executed. The user should step through
the simulation and compare the screens with the figures provided. The descriptions
beneath the figures give the number of steps and a brief description of the events. Events
can be followed by comparing the "Current Marking" with the "Previous Marking" at
each step.

The user should note the transition from step 7 to step 9. Here, the checkweigher has
executed the conflict condition by accepting the tray. In its current form, the software
executes conflicts using what is called a race condition. In effect, when there is a choice,
the event that will occur first depends on which transition fires first. The transition that
fires first is the one whose time expires first. Transitions a5 and a6 both have the same
time. When this is true, the software evaluates the lower number first. A future
enhancement of the conflict condition would be to allow the user to set probabilities for
the firing of the conflicting transitions. This is not available in this version of the
software.

iDEF/Systems Dynamics Evaluation Software -[IDEF2 - Simulation!

Elle Ylew options

lectdsnco tsScäro

! !0' o2 o3 o4 nS BJS a? iot

si 1
i»' i»
P3 1»

-1

1

0

a
-i
i

0

-l

a
0

a

9

3

0

3

0

3

u
0

0

it !»
^S la

II

a
a
a a i a -1 3

*H°, a
l

a
a

a
a

0

a a
3

Q 0

cz !a -i l 0 a a a U

c3 ja a
c4 3 a a -1 t i 0 J

r3 ;0 a -t 0 i i 3 0

«■1 *
Tumtq nl |o2]«J *A l"S 'aS ,«' 08

Vectra 1 2 3 t 2 2 1 1

Qetosr nl !o2 !a3 jal "5 aS a? oil

bosa No No No No No No No No
lauert

Firing nl k ;Oj !&< !a5 06 al r,8

VQCtOT 1 a a a 3 3 3 3 (

Prov. Cvnotft

"• Step 1

r Slap 5

r Stop 1Q

r Otftnr j |

r~ Mcuacntatn SirnuisSoii 1

Cuiranl Simulation Tima: Ll_

Figure 21 Step 1: Tray Enters the Filler

IDEF/Systems Dynamics Evaluation Software - (IDEF2 - Simulation]

Elle ¥lew <2ptions

Incidence Metria Initial
Markinq

pi 0

p2 0

pj 0

p4 0

p5 0

pE 0

cl 1

c2 5

c3 1

cl 1

r3 1

Timinqiai |o2 a3 'a4 a5 06 a7 oB j
Vednfi] 2 3 I 2 2 ' i :

Dolo- ol \aZ u3 aA a5 a6 a? a8

bQSQ No No No No No No No No

Insert 1

Firing !al lag ;o3
Vactof \\ ^ \

nS aß n? «S

Prov. CurrenJ

p' 1 o

0 1

o 0 !

0 0

3 0 i

3 0

P2

P3

p4

p5

p6

cl 0 1

c2

c3

S 4

1 1

cl

r3

I 1

1 1

~ Maximum Simulation 11

Current Simulation Time: [j_

Figure 22 Step2: Tray Leaves Filler, Enters Buffer 1

2| L

=1 IDEF/Systems Dynamics Evaluation Software - [IDEF2- Simulation] 1' £

■= File View Options i

IncidemcG Metro;

al 02 ja3 a4 a5 06 a7 a

pi 1 -1 0 I! 0 0 a 0

P2 0 1 -1 D a 0 a 0

>J 1! 0 1 -1 a 0 0 0

p4 a a 0 1 -i -1 a 0

P« 0 0 0 a l 0 -i u
p6 3 a 0 a a 1 a -'
cl -1 i 0 a a 0 0 II

cZ a -l 1 a o 0 a G

c3 a 0 -1 1 a a a a
c4 a 0

0

a
-1

-1

a
l •
i

i
i

a
0

a
0 r3 0

H 1*

Initial
Markinq

p' 0

P2 a
p3 a
pi n
P5 a
p6 a
cl 1

c2 5

c3 1

c4 1

r3 1

Prav. Currona

P' li 1

IP2 1 1

P3 0 0

P" a a
p5 i° 0

p6 a 0

cl i 0

c2 4 4

c3 1 t

c4 |1 1

r3 1 1

Timing al]a2 a3 |a4 jo5 aS >a7 n8
Vector 1 2 3 1 2 2 1 2

Date- al |a2 a3 |a4 |a5 a6 |a7 !aa
bass No No No No No No No No
nsart

Firing
Vector

al]a2 oJ |a4 |aS a£ 1»']o8

2 1 0 a 0 0 0 Q

a stop 1

ation "1

| Conttnao |

r stops End

r stop 10
r Oftor [

ResaJ '

~ Maximum Simu j
Cunsnl Simulation Time: f ^

Figure 23 Step 3: New Tray Enters Filler

=1 IDEF/Systems Dynamics Evaluation Software-(IDEF2-Simulation]] - j

- Eile yjew options ^

Incidence Matrox

al |a2 o3 a4 |a5 ob ja7 rt
pi 1

B

0

a
0

a
-i
a
0

a
a

-1

1

0

0

0

0

1

-1

0

0

0

a
-l

l

0

0

a
0
l
-i
0
-i

0
0
-1
1
0
0
0
0
1
-1
a

a
0
0
-i
i
0
0
0
0
1
1

0
0
3
-1
0
1
a
a
a
i

l

0

0

0

0

-1

0

0

0

0

0

0

11!

P2 01

P3 01

p4 0!

p5 01

p6 -1
d a!
c2 01

c3 ol
C4 0

r3 II

- I 1 -*!

Data-
base
In sort

Initial
Marking

pi 0

0 P2

P3 0 •

P4 °
P5 a
pS ~o
cl 1

c2 5

c3 1

c4 1

r3 1

al aZ a3 la4 ;aS aS n/
No No No No No No No No

PTBV. Current

'pi 1 0

0 1

1 1

0 0

0 0

0 0

0 t

5 4

0 0

1 1

0 0

P2
!P3
p4

;P5

£6
cl

c2

c3

c4

r3

Timing al a2 |a3 |a4 a5 a6 a7 ia3 \
Vector 1 2 3 1 2 2 1 1 i

Firing al a2 1=3 Ia4 l-s n6 al 1=8 ;
Vector 2 2 ! 0 0 0 0 0 I

£ Slap 1

r siBp 5

r Stap 10

r Othor i

F Maximum Simulation "li

Current Simulation Time: i 6

Figure 24 Step5: Tray Enters Checkweigher and Tray Enters Buffer 1

27

IDEBSystems Dynamics Evaluation Software - [1DEF2 - Simulation]

Eile yjew options

Incidocco Matrix

£?_
£2-
p*

£5_

1 -i 0 a 0 n 0 oi

11 1 -i a 0 0 0 0]

0 0 l -l a 0 0 Ol

a a 0 i -i -l 0 01

0 a a a i 0 -1 Ol

a a 0 a a 1 a -1

-I 1 a a a 0 0 01

0 -1 i a a 0 0 01

a a -l i a a 0 01

0 a 0 -i i I 0 0!

a a -1 a 1 1 0 01

pi 0

P2 0

p3 o i
P< 0

pS n
p6 .0

cl l

c2 5

c3 :i

cA J<
r3 1

Prev Current

pi 0 1

1

0

1

0

0

0

4

1

0

0

p2 "'l

P3 0

p4 l'
P5 ID
p6 0

cl i

c2 4

c3 1

d 0

r3 :0

Tlminq
Vector

Data-

a1 Ja2 ja3 at n5 o6 a7 a8

1 2 3 1 2 2 1 1

al !n2 ja3 \a4 a5 n6 :a? I-» ;
base No No No No No No No No !
Insert

Finnq
Vector

al |a2 |a3 a4 o5 QG a7 In8

3 2 1 1 0 0 a o 1
r Mowmum Simulation 1\

Current Simulation Time: UL

Figure 25 Step 7: Tray Enters Filler and Tray in Checkweigher Accept/Reject

IDEF/Systems Dynamics Evaluation Software - [IDEF2 - Simulation]

Eile YJew Options

incjdenca Matrix

al Ia2 1=3]a4 |.s nS a7 H

P1 1

0

II

0

:
-i
0
0
a
0

-1

1

0

0

0

0

1

1

a
0

a

a
-i
l
0
0
0
0
1
-1
0
-1

a
0

-l

1

o
0
0
0
i
-l
a

0

a
0
-i
i
0
a
0

D

i

1

11

0
,1

1

0

1

0

0

0
1

1

0

0

0

0

-1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

P2

p3

p4

p5

pS

cl

&
c3

ct

r3

«■i ! I ->

InrtioJ
Metfkjng

£L_J
p3

'■V*

0

0

0

0

0

0

1

5

1

1

1

!p5

p6

cl

c2

c3

c4

r3

Timingjol ja2 |a3 ja4 ja5 06 a7 a8
Vector | j 2 3 1 2 2 1 1

I
ial \aZ |a3 la4 laS nb a7 oO

INO No No No No No No No

1 1

Fifing Qt lo2 |a3 ;a4 !a5 r>6 n7 afl
Vector 3 3 1 1 1 0 0 0

Prev. Current

P1 1

1

0

0
1

0

0

1

1

1

1

0

2

0

0

1

0

1

3

1

1

1

P2

P3
p4

P5
ipS

cl

c2

c3

c4

r3

r Maximum Simulation 1

Cuntant Simulation Time: |jj_

Figure 26 Step 9: Two Trays in Buffer 1 and Accepted Tray Moving to Next
Operation

28

4.2 Problem Description: Robot Tending Lathe

In this example we will illustrate some additional points about the construction and
interpretation of IDEFO models in this software as well as illustrate the use of the
simulation to interact with a database file. In this example we consider the case of a
machining cell controller that is responsible for coordinating the activities of a robot and
a lathe. Figure 27 represents the relationship between the cell controller and the
controllers for the two machines. The activities of the IDEFO model are the sequencing
activities coordinated by the cell controller.

To Factory Database

Cell
Controller

LAN

Robot
Controller

Lathe
Controller

Figure 27 Machining Cell Communication Hierarchy

Figure 28 is the IDEFO model of a robot tending a lathe in a machining operation.
Events begin when a workpiece is put into the input buffer of the machining cell (activity
pi). At that point the workpiece is available to be loaded onto the lathe by the robot
(activity p2). Once loaded, the workpiece is turned by the lathe (activity p3). This is
followed by the robot unloading the lathe (activity p4). Finally, a finished component is
put into the finished part buffer (activity p5) and the cell controller logs to the database
the fact that a part has been completed (activity p6).

As in the previous example, there are resources that are shared among activities; i.e.,
the lathe and the robot. Unlike the previous example, there is no conflict. When activity
p4 is completed, both of the succeeding activities (p5 AND p6) are activated. This is an
example of parallelism. Parallelism occurs when an arc exiting one activity divides and
enters two or more succeeding activities. In order to indicate parallelism within this
software, the dividing arc has only one label, in this case a5. The reader will recall that,
in the case of conflict, two arcs exit the first activity and are given different labels.

.Another extension of the software illustrated in this example is the use of activity
objects. An activity object is more than just another activity box. It has attached to it a

29

procedure which defines the purpose of the object. In Figure 28. the activity p6
("Insert") is an activity object. When the activity is enabled, data is inserted into a
specific destination in a data base. The programmer must designate the destination data
table. The use of this activity object will be illustrated later.

Lathe

a1 - Workpiece r

a2 - Workpiece

a3 - Workpiece in Lathe

a4 - Turned Workpiece

a5 - Compleated Workpiece

a6 - Workpiece In-Transit to Storage

a7 - Data to Database

a5

Robot
r1 Output Buffer

Lathe
r2

Cell Controller

Figure 28 IDEFO Model: Robot Tending Lathe

4.2.1 Entering IDEFO Data: Robot Tending Lathe Example

The input data screen for the model of Figure 28 is shown in Figure 29. This example
is in the IDEF directory and has the project name "Lathel.idf". In reviewing this
example, the reader will load it from the "Project"' menu and "Open Project" submenu.
The reader should start the IDEF software, click on "Project', select "Open Project" and
select "Lathe 1 .idf'. Click "OK" and the project name will appear on the screen. Click on
"Edit" and "IDEFO". Figure 29 will appear on the screen.

IDEBSystems Dynamics Evaluation Software-[CUDERLATHE1.IDO)

File Edit Help

Incidonco Ms&ix
a) |aZ |o3 |a4 |o5 |sS i«li

p' 1
0
D
0
0

0

-1

-1
1

0
0

0
0

1

0
-l

I
0
0
a
0

0
a
-i
i
0
a
i

0
0
0
-1
1
1

1

0
0
D
3
-1
0

]

0
0 i

n !
0 1

a

11/

P*
P3

p4
pS
pS

*l 1 M

Cop [

p' 5 1
a
0 i
0
0
a

p2

p3

F*
P5

p5

a4 |f£ |aS Ia7 |
P> 0

a
-1
1
11
0

0
0

0

1
1

D
0
0
0

-1
0

0
0 ;

0 I
0 I
0 j
-1

P2

P3

p4
pS
pS

- 1 *
Row Operations lira I CDknssi Oparetraa- i

Add (Remove I
|NCTCT I i

Mocäejire^is
rl i*

P1 0
1
D
1
0

0

0
p2 i !

P3 i
l
0
a

pi
p5
pS

low / Co&rna OporotioR;

Romcva

Figure 29 IDEFO Input Screen: Robot Tending Lathe

From the previous example, the reader is familiar with the interpretation of the data in
the input boxes. We will assume a capacity of 5 units in the input buffer (activity pi).
Scroll through the other input boxes and confirm that the data entered reflects the IDEFO
model of Figure 28. The buffer capacities on the activities were chosen arbitrarily.

Note the data structure for parallelism in the "Arcs" input box (a5). This indicates an
exit at p4 and an entrance at both p5 AND p6. Note the fact that there is no distinction
made at this point between an ordinary activity (pi through p5) and an activity object
(p6). This distinction is made during the initialization of the simulation model, which is
the subject of the next section.

4.2.2 Simulation: Robot Tending Lathe Example

The reader should exit the input screen and select IDEF2-Simulation under the
Analysis menu. Figure 30 shows the simulation screen with the initial markings and
timing vector. Here we assume that the machining operation takes 4 time units and all
other operations take 1 time unit. The user should enter this information.

31

IDERSystems Dynamics Evaluation Software - [IDEF2 - Simulation]

File view options

JTU-Mifs^stm fcäa^El

*1 k 183 \eA |a5 |aS ja? |

p> 1

0

a
0

0

a
-i
D
a

i
0
0
0
0
l
i

-i

0

-1

1

0

a
a
0

i

0

0

0

-1

1

0

0

0

-1

0

a
0

0

-i

i

i

0
1

1

0

0

0

0

-1

0

1

0

0

0

0

0]
0

0

-1

0

a
3

P2

P3

p4
P5

P6

cl

it

it

Vector t

Mertdng

P1 o
0

0

0

0

a
5
1
i

P2

P3

p<
pS

pS

cl

M

r2

Prav. Currant
Mnfo nterfr..,,.

P1 0

0

0

0

0

D

p*
p3

p4

pS

pS

d

rl

i2

Dtnta- a! |a2 1-3 |a4 l«5 |eS 1.7 1
boscs No No No No No No No

Firtag Ql h* |o3 [B4 1=5 |a£ 1«? i
Vocto? 0 a 0 0 0 0 0

f SSsp CQG&OS

: eSCspt '
: CSto^S •

I C OSSS71 j

P METCSKKS SiincfcSEES! 1

COTVEJ!* SsaätaäUKi TKESO: j Q

Figure 30 Simulation Screen: Robot Tending Lathe

In order to illustrate interaction with a database, it is necessary to establish
connectivity between the model and a database file. A database file in Access format has
been provided in the DATA subdirectory under the title Newl .idl. The extension refers
to IDEF1X. Referring to the IDEFO model of Figure 28. the database insert occurs when
p6 is complete. Alternatively, this is when a7 fires. Therefore, the database insert will be
associated with transition a7.

Double click on a7 in the panel labeled "Database Insert". The dialog box shown in
Figure 31 will appear. Click on "newl .idl" and "Tablel" will appear. Click on "Tablel"
and ■'OK" and the software will return you to the screen shown in Figure 32. Note that
you are now connected to the database file by the appearence of "Yes" in the a7 cell of
the Database Insert panel. The title "newl .idl" is the name given to an Access database
file. "Tablel" is the name of a table in that file. That table has been previously
established and contains three attributes, or record fields. The insert object has been
written with a procedure that simply loads three random numbers into the database table
records each time the insert object executes.

^~>

IDEF/Svstems Dynamics Evaluation Software- [IDEF2 - Simulation)
File view Options

~w toiüeä

p1 0

0 !

0

0

i !
5

1

' 1

V2

p3

p«
pS
pS
cl

"
r2

Specify Linie to Databse TabSe

P"^^?TO
BCR9tJlil

PTOV. Q3TCT4

^_

a SijasfsSca 1 IZJ

Figure 31 Specify Link to Database Table

IDEFTSysteros Dynamics EvaiuaBon Software-[IDER- Simulation)

pie View Options

Bl |o2 |*3 |M 1=5 joS |=7 (

p<
0

0

0

0

0

-1

0

a

-l

a

Q

3

j

-l

a
-i
i
0
0
0
0
1
D

0
0

0
0
a
-l

0

0

0

0

-1

1

1

0

1

1

0

0

3

0

-1

0

0

0

0

3]
Q

0 '

a !

'. 1 a]
a i
a

1*
P3

r*
P5

P5

cl

II

12

fateaJ

p> 0

Q

o l
0 !
0 i

0 1

5 |

1

1 I

p*
p3
p4

P5

P6

ct

rl

n

Prcv. Conoid

P' a
3

a
a
0

a

1
1

P*
p3

P"
pS
pS
ct

rl

rZ

Tmksq ol I«* |*3 h k |o5 |o7
Veto» t 1 < 1

Offi£&* Ql k |a3 |a4 l«s |BS |«7
baoa No No No No No No YBO

Fträsg d l«z |«3 M k k 1»?
V<TTtffir 0 0 0 0 0 .1 3

DtSSTÖWS ScBCJCBaOO TtEKK)[|

Stop CcatrcS .

(B Slop I • . -A

C StepS,

rsxzpw

Eftd j

D >

Figure 32 Link Made with Database Table

33

Start the simulation by clicking on the Start button. Continue the simulation until the
firing vector cell a7 fires once. At that point an entry has been made into "newl.idl". In
order to see the entry, click on the menu item View and the submenu item Database
Insert. A screen like that of Figure 33 will appear. Click on JTablel and the current
contents of the database file will appear. Return to the simulation screen and continue the
simulation until a7 fires two more times. Return to View and verify that two more entries
have occurred.

Eile View options

IDEF/Systems Dynamics Evaluation Software-[IDEF2- Simulation]

bscäfcMBCCJ llteröx ' [JMÖSJ Prra?. Cumsnt
al |aZ |a3 [al |aS |a6 |a7 | Ufijfeiag Msrtt. (tot

f.1 I -1

0 1
0 0

0 0

o a
0 0

-i i

0 -1

0 -1

a
-1

l

0
0

a
0
I
a

0 0 0

0

0 ;

0 :
p' 0 j

0
P1 < 5 ,

1 1 1 p2 0

-1

0 F* p2
p3 =| Contents of Database Insert
(H

1

0

0

0

-1

0

ps Tabto CoateE33-l~ -T;;:.:':

Bald! ■■' j;«.i,SsSG '.,-."!

nsen441 nsert4539

p£ ItobtoL icounlaf
J72 c!

rl

A

«■1 1 |*

| EäBEEfl Ql \tlZ |a3 Ife* I |Ub |ttt> \ill |
Voctoj 1 1 1 5 1 1 ' 1

f SJ=3CäS3tiB3

Date* al - |a2 la3 . \e*Q |a5 |aS |a7 ; . @ SEEP 1; ■'] ' ;; ':
b{3SE3 No No No No No No Yos ■ rsi^5
httäb4ft

' !"'"csäJ'lo ' ' ',':'

Fsräwg al |a2 |a3 |a4 |B5 |aB |a7 |
Voctns 7 2 1 1 1 1 ' !

C 0&cr|: |

f U-rrf^mm -SkzrjZs&m 1

CESTOU*SfenuSoIätKaTiroa: ill

Figure 33 Contents of Database Insert

The user may create his/her own database tables from the project menu. Return to the
Project menu and click on Edit. Select IDEF1X submenu item. A screen such as that
shown in Figure 34 will appear. Here the filename "Part-idl" has been entered. Any
filename can be entered as long as the extension ".idl" is included. Enter a filename with
the extension "*.idf *. Click "OK'' and the user will enter the screen shown in Figure 35.
Click on Draw, then Entities, then Independent. This will put the user into a screen such
as that of Figure 36. The user should enter the name of the entity. This will become the
name of the database table. Here the name "Parts" is entered. Clicking on "OK" puts the
user into the screen shown in Figure 37. The user must now enter the name of the
attributes, or records that will appear in the table. One of these attributes should be the

34

primary key. By entering the name in the top panel and selecting a key type, if
appropriate, and clicking on ADD. the attribute name is entered. In Figure 37 we have
entered two fields. Click on EXIT and Figure 38 will appear. This shows the table
structure with the entity name at the top and the attribute names within the table. It is left
as an exercise for the user to return to the simulation model, connect a Database Insert
cell to the file "Part", execute the model and observe that the insert occurs.

IDEF/Systems Dynamics Evaluation Software

Protect Edit Analysis Make
i -Luni-rt! .-T-. .r- , ,„.- i . i

3 1
New IDEF1X Model lOEFOfcä,

OV0EF

IDOTXI

H
File üamo: Cirectones:

c:\idel
I OK j

net&l.idl : ■
: feidet

Drives:

1

UB&Jesi

T

Jst Fileo ot Iypo:

IDEF1X Files f.idl) £ j Sä c: a ±1

Figure 34 Establishing a New IDEF1X Model

IDERSystems Dynamics Evaluation Software - [CUDERPART.ID1]

Entities | Indgpgntignt

Figure 35 IDEFIX Data Entrv Screen

J3

IDEHSystems Dynamics Evaluation Software - (C:\CRAMTD\DATA\PART ID1]

=1 Entity

me Entity name Enler OK |

Cßitcot 1

Figure 36 Entering IDEF1X Entities

IDEF/Systems Dynamics Evaluation Software - [aCRAMTDtDATAtf>ART.IDl]

=j Part H-
1 - OPnmeiyKey

LSSLJ
fieldl (PK) [Oro-JiihiKuy
fiald2 [| Ct£A» j

1 EXrr 1
§ BtOQ&SGV: 2

Figure 37 Entering IDEF1X Attributes

36

The database files are in the Access database format. In order to clear the records
entered, the user can go into Access and open the file. Access uses the extension "'.MDB"
on database files, so it is necessary to select the list all files option and select the
appropriate ".idl" file to open.

It is important to point out that the work done in establishing database connectivity is
to test feasibility only. Thus the use of random numbers to show the connectivity was
used. In further development there are several uses to which this can be put. One use is
to record each event of the simulation and the simulation time at which it has occurred.
By so doing, the database would contain the entire record of a simulation run, providing
the data to be used in summary statistics, such as cycle times, queue lengths and output
rates. A second use is to run the simulation to a particular schedule by providing the
sequence of products to be produced in a data table, having the simulation enter product
types into the simulated manufacturing system from the table and reporting completions
to the database. These applications will require further development. However, the basic
methods and concepts, as well as the connectivity with IDEFO. has been established in
this prototype software.

IDERSystems Dynamics Evaluation Software - [«CRAMTmDATAiPAKT.IDl)

File Draw

Soldi (P r.)
fieldZ

Figure 38 Database Table Created by User

37

5.0 OTHER FEATURES OF IDEF/SYSTEM DYNAMICS SOFTWARE

There are three additional features of the software. These are the Policy Option
feature of the simulation model, the ability to compute Invariants of the simulation model
and the ability to develop ladder logic representations of the boolean control logic in cases
where the problem being modeled is an automatic control problem. In the following
sections we will describe each of these features.

5.1 Simulation Policy Options

Refer to Figure 39. The menu item labeled Options allows the user to select a policy
for the firing of transitions. Click on the Options menu and click on the Policy submenu.
A dialog box will appear such as that shown in Figure 39. There are two policies to
choose from: 1) Priority on event time and 2) Priority on enable. These can explained
with reference to Figure 40.

There are cases where a conflict can occur in a simulation and that conflict must be
resolved by a firing policy. Priority on event time settles conflicts by allowing the
transition that times out first to fire first. Assume in Figure 40 that pi obtains a token at
t=0. Since the transition al requires only a token in pi, the transition al is scheduled to
fire in 4 time units. Let us suppose that, at t=2, a token arrives in p2. Since a2 requires a
token in pi and p2 to fire, it is now scheduled to fire in 1 time unit; i.e., at t=3. Since both
transitions require the token from pi, only one of the transitions will be allowed to fire.
The user selected policy determines which token will fire. Priority on event time allows
a2 to fire first because it will time out first. Priority on enable states that the transition
that is first enabled captures the token at that time and that transition will fire after its
timing vector times out, regardless of whether or not another transition is enabled later
and requires the same token. This policy would have al fire first because it was enabled
first by the arrival of a token in pi.

The appropriate policy is a function of the interpretation of the situation being
modeled. When a conflict situation exists in a simulation, the user must decide which
policy is the best interpretation for that situation. In the filling example shown earlier we
used Priority on event time, which is the default policy used in this software.

IDERSystems Dynamics Evaluation Software-[IDEF2- Simulation)
 1 —
=> file view options *i

 : —-
acfescaB&grgä ..-,-• itä&i Pnw. Careon3

a? - jo2 |Q3 M (e5 |ES |o7
0
0
3.
0

H Umiar.q Mra*_ Ma*.

:
-■> ^;:-':.*•■/■.^

pi 1. .;.., -10 0 0 0

0 1 -10 0 0

0 0 1-10°
0 0 0 1-1-1

01
oi
01

01

pi IB ; < i>'
° !
0 1
0 i

: P* pg . P^
y I

PJ 0
0

0

P3

P« pA ^■\-:;^£\»^^
0 0 0

0 0 0
-1 1 0

0 1 3 01 n5 u!» o ■■'■■■■; ; ^ilk™

pS =,1 Poiky Settings ". ^ "'";^KJ
cJ ■■ -';-i-4IC; -'i
c2 0 -1 1

0 0 1
II 0 0
0 0-1

Hatsg) Foeoaa
C3 ';jf ^ ''
C4

O Priest^ eta EcsfcSa

.■ ;:^--'*iiv-j

f3

H I . ' ~r~ V'r^ij-:r.:i

ijcasrf . , -c^'', \
TisaSBg eiS |a2 |o3 ^.S-f-- ;

\fej£3ff 1 1 ' ■■ XI^^"'£;;2

-■

| Start i ; . -;v. V:ff-.^L,-J.,£«
- -. ■.-*.^s-ts?v;;;-./«

DsJa-< at. ■ {oZ |O3 Ia4 f»5 leS |a7 ^«3 | .; Hses53i
1 End j

!ä*"^' .1
bos© No No No No No No No No : CStepS ■ i

: CSSSplQ 1
: r otiEi | j

."- :;\i".l-:r,'-3.rv'^1

| ROSE* - {-:
*' ■ .■J^.i1s:-:.'--|

■■■"■ '*■ **■
. ■;: ■'-—ct y ? i js

Rns^ El toJ l«J M 1* 1«* jo? 1-» 1 -* > " .
VecEsr oooooo il 0

r MEDEsasa SitnateSoo li 1

Ccwcsa SiaKänSoa To jjo: 10
- ■

Figure 39 Policy Option Submenu

P2,

_^k- time = 1

M/ Si/

Figure 40 Example of a Conflict Requiring a Firing Policy

5.2 Petri Net Invariants

The EDEF2 - Simulation model is based on the Petri net modeling methodology, which
is rich in mathematical features. Two fundamental mathematical concepts used are the
T-invariants and P-invariants of the net. These provide tools that can be used to explore
properties of the simulation model. In this section we will describe the nature of these
invariants.

39

5.2.1 Mathematical Modeling of Petn Net Dynamics

We have previously stated that the dynamic behavior of the simulation is defined by
changes in its marking. The marking changes when a transition fires. A transition fires
after its input states are marked. More formally, a transition tj is enabled in marking M if

M(pi)>I(pitj).

When a transition tj fires it results in a new marking, M', which occurs by removing
I(pi tj) tokens from each of its input places and adding 0(pi tj) tokens to each of its output
places. More formally, M' is reachable from M according to the equation:

M'(pi) = M(pi) + 0(pi tj) - I(pi tj) (1)

So, for example, Figure 41 shows a change in state from Mk_i to Mk by the firing of tl.

Let u be a firing vector, where uT = { u(tl), u(t2), u(t3) }. Then,

Mk = Mk_i +Ouk-Iuk

MM O-I u

0 I

1

1 ~~ (

1
T

)

0 < 3

-1 0

0 -1

1 0

0 1

1

1

-1

-1

where a 1 in the firing vector indicates a firing ofthat transition. The matrix O-I is an nxm
matrix referred to as the incidence matrix, A. It defines the topology of the bipartite
graph. The columns of A indicate the input places (-1) and output places (1) of each

transition.

IV^_= { 1.1.0,0} M£= {0,1,1,0}

Figure ^ Change in Marking MK_! -» MK

One can imagine a sequence of firings given by \x\ + u2 + u3 + . . . Therefore, to
arrive at some destination marking, Mj, from and initial marking, M0:

40

d
Md = M0-rASuk

k=l

Let Z uk = y> Md - M0 = AM. Then
k=l

Ay = AM, (2)

and y is called the firing count vector. It is a vector whose elements are the number of
times each transition fires in going from M0 to Md. Note that the firing count vector only
shows the number of times that each transition is fired in the sequence; it does not
uniquely identify the sequence in which the firing takes place.

5.2.2 Petri Net Invariants

A number of important properties of a PN can be evaluated using the concept of PN
invariants. An invariant of a PN depends on its topology. There are two invariants of
interest, the P-invariant and the T-invariant.

Definition: If there exists a set of non-negative integers, x, such that x^A - 0, then x is
called a P-invariant of the PN.

Let x be a weighting vector x =[wj w2 W3...wn]. For the PN of Figure 41we
make the computation

1

[wj wo W3 W4]
1

= [0 0 0], (3)

-Wj + W3 =0

-W2 -*- W4 = 0

Wj + W-) - W3 - W4 = 0,

which has the following solutions:
pi p2 p3 p4

xi =(1 0 1 0)
x2 = (0 1 0 1)
x3 = (; 1 1 1 1)

41

Although the above three solutions exist, we are only interested in the minimal set of
P-invariants. If an invariant is covered by two or more other invariants, it is not in the
minimal set. Therefore x\ and xi are minimal P-invariants and they cover X3. In general,
there are (n-r) minimal P-invanants, where n is the number of places and r = the rank of A.

The meaning of a P-invanent can be seen by observing Figure 41. If one or more
tokens exist in places pi and/or p3, these two places will share the circulation of those
tokens. This is disclosed by the invariant x\. Similarly, places p2 and p4 may share the
circulation of tokens. This is disclosed by the invariant X2- The minimal P-invariants
disclose the minimal structure of circuits that will share tokens. This also inplies that these
tokens are conserved within the circuit; i.e., the number of tokens in the set of places
which make up the circuit, when weighted by the vector x, is a constant.

Definition: A vector,y, of non negative integers is a T-invariant iff there exists a marking
M and a firing sequence back to M whose firing count vector is y.

Since Ay = AM as given in Eq.(2), a T-invariant is a solution to the equation Ay = 0. Let
ybeavectory^Oi u2 . . .um]. For the PN of Figure41 >

-1 0 1
ul 0

0 -1 1
u-, = Ü

1 0 -1
u. 0

Ü 1 -1

-ui + u3 = 0
-u2 + u3 = 0

U! -u3 = 0
u2 - u3 = 0 ,

which yields the T-invariant yT = (1 1 1). The meaning of the T-invariant is clear from
Eq. (2). Since AM = 0, y defines the number of times each transition must fire in one
complete cycle from M0 back to itself. In this instance, each transition will fire once
during a cycle. In general, there are (m-r) T-invariants, where m is the number of
transitions.

The P and T-invarants of a PN provide tools to explore important properties of the
system being simulated by the PN. In the following sections we will examine some
properties of a PN.

42

5.2.3 Reachability

It is often important to know what states a system can reach from some initial state.
The set of all markings that can occur from some intial marking due to the firing of
transitions defines the reachable states of the PN.

Property: If a P-invanant exists, then any reachable marking, M', from a marking M0,
must satisfy the relation x^M' = xTM0.

Proof: M' = M0 + Au

xTM' = xTM0 + xTAu

since x*A = 0,

xTM' = xTM0 (4)

EXAMPLE

With reference to Figure 41 ,show that M=(0 0 1 1) is reachable from M0 but
M=(1 0 1 0) is not reachable from M0.

Answer

Anv reachable marking must satisfy Eq. (7.4), where M0 = (1 10 0).

Testing M = (0 0 1 1):

(10 10) (loio)! (0101) (0101)

1 = 1 1 = 1

TestingM = (10 10):

43

(10 10) (10 10)

2 * 1

The reachable markings can also be found by firing transitions until all the states of the
system have been reached. This yields the reachability graph of the net, as shown in
Figure 42 • This procedure for identifying reachable states is suitable for small problems,
but can be unsatisfactory for large problems because the state space explodes.

Figure 42 Reachability Graph for PN of Figure 41

5.2.4 Boundedness

A typical problem in manufacturing is to determine required buffer capacities between
machining or assembly operations within the system in order to handle work in process. If
tokens are used to represent parts being manufactured and places are used to represent
buffers, it is of interest to know that the buffer capacities will not be exceeded. A PN is
said to be k bounded if the number of tokens in each place does not exceed a finite number
k for every reachable marking from M0. A PN is said to be safe if it is 1 bounded. For
example, the PN of Figure 41is safe and the PN of Figure43 is unbounded.

In the above definition, boundedness depends on the initial marking. A stronger
condition for boundedness is structural boundedness, which means that the PN is bounded
for any finite marking M0.

44

Property: A Petn net is structurally bounded iff there exists a non zero vector, x, of non
negative integers such that x^A < 0.

Proof: FromEq.(2), M = M0 - Ay, y>0.
Therefore. xTM = xTM0 -r xTAy.
Since xTA< 0 and y> 0, xTAy < 0 and xTxM < xTM0

Therefore, for any marking, the number of tokens in all marked places has
an upper bound as follows:

5>p
TM<xX

p

Therefore, an upper bound for any individual place, p, is:

X(P)M(P)<XTM0

M(p) < (M0TX) / x(p),
where x(p) is the pth entry of x.

Another way to look at structural boundedness is to observe that a net becomes
unbounded when there exists the condition that, when its transitions fire, more tokens are
added to output places than are absorbed from input places. Therefore, a necessary and
sufficient condition for boundedness is that xT0 < xTI. which yields the equation xTA < 0.

Figure 43 is not structurally bounded. This is obvious since, for every firing of tl,
tokens are sent to p2 as well as p3. Eventually, tokens will accumulate in the lower circuit
without bound. Applying the criteria above,

w, w., w3 w,

xTA< 0
•1 0 1

1 -1 1

1 0 -1

0 1 -1

< 0 0 0

which yields the inequalities:
- wi + w? + W3 < 0

- W2 + W4 < 0
wl + w2 " w3 " w4 - 0

The fact that there is no solution to the system of inequalities indicates the net is
structurally unbounded for any initial marking. It should be pointed out that a structurally
unbounded net may not be unbounded for a particular initial marking. Structural
unboundedness refers to the fact that the topology of the net is such that there is at least
one initial marking for which the net will be unbounded.

45

Figure 43 Unbounded Petn Net

In Section 5.2.2 we discussed the fact that the P-invariant defined a circuit of the net in
which tokens were conserved; i.e., the number of tokens in the places of the circuit are
constant when weighted by the vector x. By implication, if there exists a set of
P-invariants that cover all places in PN, the weighted number of tokens in PN are
constant. This would also imply that the net is bounded. Hence, another test of
boundedness is to test for the conservative property; i.e., xTA = 0, where x is a positive
integer, x^O.

5.2.5 Summary on Invariants

The use of invariants as a tool for analyzing a system model has been demonstrated,
this software we have given the user a facility for computing the invariants after the
simulation model is generated. The selection items for the T-invariants and the P-
invariants can be found under the Analysis menu item. It is left to the user to enter the
model of Figure 41 and to compute the invariants and to compare themwiththe results
shown in 5.2.2.

In

46

5.3 Generating a Discrete Controller Program

IDEF/System Dynamics software can also be used to illustrate how an IDEFO / Petri
net incidence matrix structure can be used to generate discrete control logic. In the
following sections we will introduce an illustrative example and guide the user through the
process of entering the model.

5.3.1 A Filling Line Example

Consider the situation shown in Figure 44. The activities along this production line are
controlled by a supervisory controller. We are interested in modeling the problem and the
controls from the point-of-view of the supervisory controller.

The package is moving along a conveyor until it reaches sensor 1. The conveyor is
stopped momentarily by the supervisory controller while the filler dispenses product into
the conveyor. When complete, the filler sends a "filling done" signal to the supervisor and
the conveyor is restarted. The package passes to the weighing station, where the
conveyor is momentarily stopped while the package is weighed. The scale provides two
signals to the supervisor, a "weighing done" signal and a "reject" or "accept" signal.
Based on these signals the package is either sent through the accept lane or diverted down
the reject lane. For simplicity we assume that only one package is allowed through this
portion of the line at a time. Continuous operation could also be assumed, but it requires
a different incidence matrix than the one that will be introduced in this discussion.

filler

<J

package
accept

">

diverter

sensor 2

reiects sensor 4

Figure 44 Filling Line Example Situation

47

A Petri net model that represents this situation is shown in Figure 45. The packages
exiting at p5 and p6 give control back to the front of the line for the reentry of another
package. This is indicated by the arcs reentering at pi. Thus, the model is showing the

control logic.

The transitions between states occur as a result of the input signals from the sensors
along the line. The transitions of Figure 45 are labeled with the appropriate signal. The
activities along the line must actuate the outputs to control the overall operation of the
line. The approriate output for an activity is shown next to the activity. It is left to the
reader to examine the control model and confirm that it is appropriate to the situation.

package entering system

al

P2^

a2

conveyor on (01)

package at filler
sensor si

package being filled
fill package output signal (02)

filling done
~~ signal 1 from filler

®
a3

p4

package moving to scale
conveyor on (01)

package at scale
sensor 2

package being weighed
weigh package output signal (03)

a5

P6N

a7

accept
signal 2
signal 3 (complement)

package being accepted
convevov on (01)

©
sensor 4 a6

weighing done, reject
signal 2 from scale (done)
signal 3 from scale (reject)

package being rejected
conveyor on (01)
diverter on (04)
sensor 3

Figure 45 Petri Net of Filling Line Example

48

5.3.2 Entering Problem Data

The incidence matrix can be entered in the usual way. as previously shown with other
example problems. The incidence matrix for this example is as follows:

a\ al a3 a4 a5 a6 al

pi -1 11

p2 1 -1

p3 1 -1

p<\ 1 -1 -1

p5 1 -1

p6 1 -1

The reader may enter the incidence matrix data or load the problem from the IDEF
directory, where the project name is "Till.idf'. In using the incidence screen for modeling
controller problems, it is not necessary to enter mechanism data. It is assumed that all
inputs and outputs are going to be entered with respect to the supervisory controller.

Once the model is in active memory, the user should exit the incidence matrix screen
and click on the Edit menu item and the Input/Output submenu item. The user will be
presented with a screen having the format of Figure 46. The input box is where the user
enters the signaling and sensor information. The output box is where the user enters the
supervisory controller output actions. A description of the inputs and outputs can be
entered in the descriptions panels. If the user is entering the data, the appropriate input
and output matrices are given below. Note that the entry "2" indicates the complement
state of 15. That is. if 15 enabled is "1", 15 disabled is "2". Since 14 and 15 are the input
conditions for both a4 and a5. it is necessary to be specific about the state of 15. The user
must click on a cell and type the entry into the cell using the keyboard.

71 72 73 74 75 76 77

al 1

aj i

a4 1 1

a5 1 2

a6 1

al 1

Exit the Input/Ouput Screen and return to the project screen. Click on the menu item
Make and the submenu item Ladder Logic, as shown in Figure 47. The software will
compute the control logic and represent it in ladder logic form. There will be multiple

49

01 02 03 04

pl 1

pi 1

PJ 1

P4 1

p5 1 1

P6 1

pages of the logic code shown on the screen. The user can review earlier pages by
minimizing or closing each page. The logic underlying this ladder is created in a
particular manner. The interested reader is referred to reference [1].

IDEFfSystegs Pyrtantes EvE&ation Software- [triptri? Ouiyutj Az
Ths size snd elamnnts cri tha Inpui mrsnx:

Tha sue and elamerrta ai Mm Output mniroc

NGEEöO» o* Outputs: @

Input Doscnpticno

n |o 1* |,4 1* |ts •17

«.!) 1

0

0

0

0

0

0

a
i
a
a
8

0

0

0

Ü

1

0

0

0

Q

a
0
0
i
i
0
a

0

0

0

1

2

0

0

Q

0

0

0

0

0

a
0

0

0

D

0

1

(=2)

(&§

jt"«
(OS)

it"*)

11 Soaoor 1 (at hllor)

SigrsaJ (EHing dona)

SoQ3Qf Z (at scaJa)

Sigsd (\««cjhtnq ctooo)

SigneJ (rajad pndtorp)

Soo3(H 3 (rojact lara)

Sansor 4 (BCCOO* IKJQ)

1?

13

14

15

IS

17

Output Deicnpäorre

Ol |02 |03 |0«

pi 1

0

1

0

1

1

a
i
a
a
a
9

Q

0

e
!
0

0

0

a
0

a
i

0

p»

p3

P<

p5

P«

Ol Coovnyof Dn

FiD pacttago

Woiqil paduuja

Oivorta? on

02

03

OS

Figure 46 Input/Output Data Entry

IDERSystems Dynamics Evaluation Softwsre

Protect Edit Analysis Make

~^j : CSIDEBFluJ ladd*r tjogk: || ^1

HJfcFQ fc5ffi&23

cvsaviujoo

lOEFlKfcSsata»

"

UnSSadiaSl

Figure 47 Selection of Ladder Logic Submenu

50

IDEHSystems Dynamics Evaluation Software

Proiect Edit Analysis Make

Fieure 48 Ladder Logic Output

5.3.3 Summary on Generating Discrete Control Logic

The use of the incidence matrix structure to represent both an IDEFO model and a
Petri net has been shown. Using an incidence matrix in conjunction with input/output
information, it is demonstrated how discrete controller logic can be defined. This
prototype development is currently limited to small problem sizes (8 inputs and 8
outputs) and is used for problems which can be defined as a cyclic model, such as the
example shown in this section.

REFERENCES

[1] Boucher, T.O. (1996) Computer Automation in Manufacturing, Chapman & Hall,
London.

[2] Boucher, T.O. and M.A. Jafari (1992) Design of a factory floor sequence controller
from a high level system specification, Journal of Manufacturing Systems, Vol. 11,
No. 6.

[3] Desrochers, A.A. and Al-Jaar, R.Y. (1995) Applications ofPetri Nets in
Manufacturing Systems: Modeling, Control and Performance Analysis,
IEEE Press, Piscataway, New Jersey.

[4] Jafari, M.A. and T.O. Boucher (1994) A rule based system for generating a ladder
logic control program from a high level systems model, Journal of Intelligent

Manufacturing, Vol. 5, No. 1.

[5] Murata, T. (1989) Petri nets: properties, analysis and applications, Proceedings of
IEEE, Vol. 77, No. 4.

[6] Softech, Inc. (1981) Integrated Computer-Aided Manufacturing (ICAM) Final
Report: IDEFO Functional Modeling Manual, Contract No. F33612-78-C-5158.

REFERENCES

[1] Boucher, T.O. (1996) Computer Automation in Manufacturing, Chapman & Hall,
London.

[2] Boucher, T.O. and M.A. Jafari (1992) Design of a factory floor sequence controller
from a high level system specification, Journal of Manufacturing Systems, Vol. 11,
No. 6.

[3] Desrochers, A.A. and Al-Jaar, R.Y. (1995) Applications of'Petri Nets in
Manufacturing Systems: Modeling, Control arid Performance Analysis,
EEEE Press, Piscataway, New Jersey.

[4] Jafari, M.A. and T.O. Boucher (1994) A rule based system for generating a ladder
logic control program from a high level systems model, Journal of Intelligent

Mamufacturing, Vol. 5, No. 1.

[5] Murata, T. (1989) Petri nets: properties, analysis and applications, Proceedings of
IEEE, Vol. 77, No. 4.

[6] Softech, Inc. (1981) Integrated Computer-Aided Manufacturing (ICAM) Final
Report: IDEFO Functional Modeling Manual Contract No. F33612-78-C-5158.

