
Technical Report

CMU/SEI-96-TR-012
ESC-TR-96-012

Carnegie-Mellon University

Software Engineering Institute

Software Risk Management

Ronald P. Higuera

Yacov Y. Haimes

<# June 1996

X

x

iKHC QUümU'lf INSPECTED i

Carnegie Mellon Umve.ty **» no, d,scr,m,nate anc C^^^^^^^^^TZ t^l^^^

,n add.cn Carnegie Menon University does no, discnmma.e ^^Z^Z^^Z^^^e^H^. in ,ne .dgment o, ,he
^„~, ar veteran status sexual orientation or in violation OMederal stale. 01 JO don't pursue.' excludes openly gay. lesbian and

Ä ^ Ä R---om„^ - don t telt * ^ ^ ^ Un|vers|ty ^ ava„ab!e t0

bisexual students from'eceiving HUIL, scnoid,siH,jao, ^. . M

ails:udenIS ,, ,hoPm„nst Carnegie Mel'on University. 5000 Forbes Avenue. PittsburghPA

(4:2) 263-2056

Obtain genera, Information about Carnegie Mellon Umversi.y by calling (412, 268-2000.

Technical Report

CMU/SEI-96-TR-012
ESC-TR-96-012

June 1996

Software Risk Management

Ronald P. Higuera

Software Risk Management Program

Software Engineering Institute

Yacov Y. Haimes

Center for Risk Management of Engineering Systems

University of Virginia

Risk Program

19960723 021
Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB. MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHAN1TBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so.
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street. Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield. VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center. Attn: FDRA. Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Contents

Acknowledgements
1 Preface

2 Introduction

6 Epilogue

References

v
1

9
11
13

A Holistic Vision of Software Risk Management 9
3.1 Temporal Dimension
3.2 Methodological Dimension
3.3 Human Dimension
3.4 Graphic Representation of the Holistic Vision of

Software Risk Management 15

Software Risk Management Methodologies 19

4.1 Basic Constructs to Risk Management 19

4.1.1 Risk Management Paradigm 19

4.1.2 Risk Taxonomy 2i
4.1.3 Risk Clinic 23

4.2 Supporting Practices 26

4.2.1 Software Risk Evaluation (SRE) Practice 26
4.2.2 Continuous Risk Management (CRM) 28
4.2.3 Team Risk Management (TRM) 31

4.3 Methodological Framework for Software Risk Management (SRM) 34
4.3.1 Software Capability Maturity Model (SW-CMMSM) 34
4.3.2 Software Acquisition-Capability Maturity Model (SA-CMMSM) 35

Deployment of the SEI Risk Management Program 39
5.1 Major Classes Within the Hierarchy 41

5.2 Major Elements of Risk Within Each Class 41
5.3 Major Attributes Within Each Element and Class 42

5.3.1 Product Engineering Class 42

5.3.2 Development Environment Class 43
5.3.3 Program Constraints Class 43

45

47

CMU/SEI-96-TR-012

CMU/SEI-96-TR-012

List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Risks Within a System Context 5
The Need to Manage Risk Increases With System Complexity 6
SEI Risk Management Paradigm 7
Methodological Framework for Software Risk Management 13
Holistic View of Risk Management 16
Complete Taxonomy 21
Taxonomy of Software Risks: Overview 22
Risk Clinic Integrates Risk Management with Current Practices 24
Risk Clinic Process Overview 25
SRE Functional Components 26
Seven Principles of Risk Management 28
Team Risk Management 32
SA-CMM KPAs 35
Representation of Levels of Risk From SEI Deployment 40

CMU/SEI-96-TR-012

IV CMU/SEI-96-TR-012

Acknowledgements
We are grateful to all the individuals who have contributed over the years to the development
of the methodologies, tools, and approaches on software risk management cited and summa-
rized in this paper. In particular we would like to acknowledge the valuable comments and sug-
gestions received from Marvin Carr, Julie Walker, and Bill Wilson on an earlier draft of this
paper.

CMU/SEI-96-TR-012

VI CMU/SEI-96-TR-012

Software Risk Management

Abstract: This paper presents a holistic vision of the risk-based
methodologies for Software Risk Management (SRM) developed at the
Software Engineering Institute (SEI). SRM methodologies address the entire
life cycle of software acquisition, development, and maintenance. This paper is
driven by the premise that the ultimate efficacy of the developed methodologies
and tools for software engineering is to buy smarter, manage more effectively,
identify opportunities for continuous improvement, use available information
and databases more efficiently, improve industry, raise the community's
playing field, and review and evaluate progress. The methodologies are based
on seven management principles: shared product vision, teamwork, global
perspective, forward-looking view, open communication, integrated
management, and continuous process.

1 Preface

The hierarchy of Software Risk Management (SRM) methodologies discussed in this paper
addresses two classes of functions: software acquisition and software development. The ba-
sic methodological framework with which functions are managed is composed of the Software
Acquisition-Capability Maturity Model (SA-CMMSM) and the Software Capability Maturity Mod-
el (SW-CMMSM) and their supporting practices and constructs. This framework for software
risk management is supported by three groups of practices:

1. Software Risk Evaluation (SRE)

2. Continuous Risk Management (CRM)

3. Team Risk Management (TRM)

These practices are based oh three basic constructs for software risk management developed
at the Software Engineering Institute (SEI): Risk Management Paradigm, Risk Taxonomy,
Risk Clinic, and Risk Management Guidebooks. The three constructs and three practices will
be discussed in subsequent sections.

The complexity of software risk management cannot be understood nor appropriately ad-
dressed from the above methodological context alone. To capture the multifarious aspects of
this complexity, we make use of hierarchical holographic modeling, where we consider two ad-
ditional visions or dimensions: the temporal and human dimensions. Thus the three dimen-
sions adopted in this paper to represent the holistic vision of software risk management are
the temporal dimension, the methodological dimension and the human dimension.

CMU/SEI-96-TR-012

The temporal dimension is decomposed into two sub-visions:

1. Macro vision represents the global perspective of the acquisition life cycle.

2. Micro vision represents the view of the project manager.

The methodological dimension has already been introduced.

The human dimension addresses the intellectual dimension of software acquisition—the most
critical dimension, since software development is such an intellectual activity. Four aspects
are identified here:

1. individual

2. team

3. management

4. stakeholder (including customer and client)

The last section shares the experience gained through the deployment of the above method-
ologies by SEI teams.

Ample literature exists on the process of risk assessment and management. The majority of
this literature, however, is devoted to theories and methodologies that have not been subject-
ed to the ultimate test of practice. This paper presents comprehensive theories and processes
developed at the SEI at Carnegie Mellon University that have been successfully deployed and
tested in the field by numerous clients. (Adhering to confidentiality agreements, the identity of
clients will not be revealed.) Authentic statistical information on the use of SEI risk methodol-
ogies will be presented and analyzed in the section on the deployment of SEI risk manage-
ment program.

The goal of SEI Risk Program is to enable engineers, managers, and other decision makers
to identify, sufficiently early, the risks associated with software acquisition, development, inte-
gration, and deployment so that appropriate management and mitigation strategies can be de-
veloped on a timely basis. Time is critical and the goal is to act early before a source of risk
evolves into a major crisis. In other words, being mainly reactive in risk mitigation and control
rather than proactive in risk prevention and control is at the heart of good risk management.
Furthermore, should the system fail regardless of all risk management efforts, then ensuring
the safe failure (e.g., safe shutdown) of the system must be the mandate of the software risk
manager. Clearly, the secret to effective risk management is the trade-off of mitigation cost
against the potential adverse effects of avoided risk. In this context, the value of the method-
ologies and tools for software risk management is to buy smarter, manage more effectively
and identify opportunities for continuous improvement, use available information and databas-
es more efficiently, improve industry and raise the community's playing field, and review and
evaluate the progress made on risk management.

CMU/SEI-96-TR-012

It is important to note that the developed software risk methodologies have three fundamen-
tally different, albeit complementary, objectives:

1. risk prevention

2. risk mitigation and correction

3. ensuring safe system failure

The following seven risk management principles are instrumental in the quest to achieve these
three objectives [Higuera 94]:

Shared product vision

• sharing product vision based upon common purpose, shared ownership, and
collective commitment

• focusing on results

Teamwork

• working cooperatively to achieve a common goal

• pooling talent, skills, and knowledge

Global perspective

• viewing software development within the context of the larger system-level
definition, design, and development

• recognizing both the potential value of opportunity and the potential impact
of adverse effects, such as cost overrun, time delay, or failure to meet
product specifications

Forward-looking view

• thinking toward tomorrow, identifying uncertainties, anticipating potential
outcomes

• managing project resources and activities while anticipating uncertainties

Open communication

• encouraging the free flow of information between all project levels

• enabling formal, informal, and impromptu communication

• using consensus-based process that values the individual voice (bringing
unique knowledge and insight to identifying and managing risk)

Integrated management

• making risk management an integral and vital part of project management

• adapting risk management methods and tools to a project's infrastructure
and culture

CMU/SEI-96-TR-012

Continuous process

• maintaining constant vigilance

• identifying and managing risks routinely throughout all phases of the project's
life cycle

CMU/SEI-96-TR-012

2 Introduction

Making informed decisions by consciously assessing what can go wrong, as well as the like-
lihood and severity of the impact, is at the heart of risk management. Making informed deci-
sions involves the evaluation of the trade-offs associated with all policy options for risk
mitigation in terms of their costs, benefits, and risks, and the evaluation of the impact of current
decisions on future options. This process of risk management embodies the identification,
analysis, planning, tracking, controlling, and communication of risk.

Acquisition, development, and deployment programs continue to suffer large cost overruns,
schedule delays, and poor technical performance. Generally, this is a result of failing to deal
appropriately with uncertainty in the acquisition and development of complex, software-inten-
sive and software-dependent systems. The acquisition and development communities, both
governmental and industrial, lack a systematic way of identifying, communicating, and resolv-
ing technical uncertainty. Often the focus is on the symptoms of cost overruns and schedule
delays rather than on the root causes in product acquisition and development. In fact, all areas
in systems development are potential sources of software risks (see Figure 1) since it involves
technology, hardware, software, people, cost, and schedule.

Technology

Hardware

People

Software

Schedule

Cost

Figure 1: Risks Within a System Context

CMU/SEI-96-TR-012

Risk'is commonly defined as a measure of the probability and severity of adverse effects [Low-
rance 76]. Software technical risk can be defined as a measure of the probability and severity
of adverse effects inherent in the development of software that does not meet its intended
functions and performance requirements [Chittister 93].

The need to manage risk increases with system complexity. Figure 2 demonstrates this con-
cept by indicating that as the complexity of the system increases, both technical and non-tech-
nical (cost and schedule) risks increase. There is an increasing need for more systematic
methods and tools to supplement individual knowledge, judgment, and experience. These hu-
man traits are often sufficient to address less complex risks. It is worth noting that many man-
agers believe that they are managing risk in its multifaceted dimensions. The fact of the matter
is that they are merely managing cost and schedule along with isolated cases of technical risk.
The SEI Risk Program provides a structured process, supported by methods and tools, for
identifying, analyzing, and mitigating the uncertainties encountered in a specific software en-
gineering effort. Many of the most serious issues encountered in system acquisition are the
result of risks that either remain unrecognized and/or are ignored until they have already cre-
ated serious consequences. This focus on risk management is important because structured
techniques, even quite simple ones, can be effective in identifying risk, and approaches, pro-
cedures, and techniques do exist for risk mitigation.

RISK

• Technical

•Cost

• Schedule

Methods, tools,

and processes

Expert knowledge,

judgment, and

experience

Individual knowledge,

judgment, and

experience

SYSTEM COMPLEXITY

Figure 2: The Need to Manage Risk Increases With System Complexity

CMU/SEI-96-TR-012

Experience has shown that only a few programs are managing risk in a systematic way, and
that the approaches of the programs that do manage risk tend to be ad hoc, undocumented,
and incomplete [Kirkpatrick 92]. SEI teams have also found that software risk is among the
least measured or managed in a system.

In its attempt to respond to these problems, the goal of the SEI Risk Program is to improve the
process for acquisition and development of software-intensive systems. In particular, its aims
are: to enable acquisition and development managers and engineers to make better decisions
(by identifying risk before they become problems); to communicate risks in a positive, non-
threatening way; and to resolve technical risk in a cost-effective manner. The three groups of
methodologies (SRE, TRM, and CRM) are based on three basic constructs for risk manage-
ment developed at the SEI. These are: Risk Management Paradigm, Risk Taxonomy, and
Risk Clinic. These constructs, the three groups of methodologies cited above, and the two
methodological frameworks will be discussed in subsequent sections. The Risk Management
Paradigm (Figure 3), which advocates a continuous set of activities to identify, confront, and
resolve technical risk [Van Scoy 92], will be further discussed in Section 4.1.1.

A continuous set of activities to identify,

confront, and resolve technical risk

Figure 3: SEI Risk Management Paradigm

CMU/SEI-96-TR-012

CMU/SEI-96-TR-012

3 A Holistic Vision of Software Risk Management

The complex process of software acquisition encompasses most, if not all, aspects associated
with software risk management. Thus, it seems natural to focus on the entire life cycle of the
software acquisition process in developing a holistic vision of risk management. Indeed, risk
management of software engineering cannot be restricted to any subset or a single phase of
the life cycle of software development.

The following objectives of the overall methodological framework for software risk manage-
ment apply to software-intensive systems.

1. Improve the process of software acquisition in organizations.

2. Improve software risk management methodology, technology, and practice in
the acquisition process.

3. Improve the access to, acquisition, repository, use, and integration of infor-
mation and data for software acquisition in industry and government.

4. In general, institutionalize risk management and decision support within the
software acquisition community and make it an integral part of the communi-
ty's practice.

The multifarious and complex nature of the acquisition process is a fundamental attribute of
software-intensive systems. This complex process involves multiple decision makers and mul-
tiple non-commensurate objectives, a multitude of sources of risks and uncertainties, and an
evolving technology that is shifting the focus from hardware to software. Furthermore, soft-
ware is playing an increasingly central and pivotal role in systems integration. This complexity
of software-intensive systems makes modeling and managing of such systems more challeng-
ing and demands new approaches and new schemes. Thus, the representation of all aspects
and perspectives of software risk management in a single model, or paradigm, is impractical.
The multifaceted dimensions of the risks associated with the software acquisition process can-
not be modeled or described by one single vision or a single planar model, and any attempt
to do so would necessarily compromise the intended communication between that limited de-
scription and the reader. No single planar picture of a car, for example, would be able to com-
municate all the intricate functions and components of this complex system. The same holds
true for the methodological framework for software risk management developed at the SEI.
Here, one may distinguish among at least three visions: temporal, methodological, and func-
tional. In this paper, we make use of hierarchical holographic modeling (HHM) [Haimes 81] to
construct a holistic vision that represents the software risk management process.

3.1 Temporal Dimension
It is plausible to assert that the genesis of a formal acquisition process can be traced to the
Statement of Needs and Requirements. In terms of risk management, the seeds of critical
sources of risk are often sown at this seemingly benign stage. An example from urban devel-
opment demonstrates this point. A mayor and the city council identify a need for a new housing

CMU/SEI-96-TR-012

development. Given the high cost of land due to its scarcity, the requirements for meeting
these needs evolve into the construction of high rise apartments. At this stage, the risks that
the new project might become a major slum and a magnet for crime and drug distribution are
not considered. The goal of risk management is in the prevention of such risks. The impor-
tance the Needs and Requirements stage places this stage at the foundation of the holistic
vision of software risk management depicted in Figure 5, which follows the introduction of all
components of the hierarchical holographic model for software risk management.

The total acquisition life cycle is presented in two separate yet overlapping visions. The micro
vision primarily represents the view of the project manager. The macro vision represents the
more global and broader perspective of the acquisition life cycle. It is worth noting that within
each stage of the temporal domain, the human dimension (individual, team, manager, or
stakeholder) has a different and unique role to play.

Micro vision

1. specification

2. solicitation (including request for proposal and contractor selection)

3. design and development (including architecture)

4. systems integration (including deployment and maintenance)

Macro vision
1. conceptual design

2. demonstration/validation

3. engineering, manufacturing, development, and production

4. maintenance and major upgrade (including termination)

Although the two perspectives somehow overlap, they do represent the life cycle development
of software in its multifaceted dimensions. For example, most software risk-based methodol-
ogies developed so far are applicable to the developmental stages identified within the micro
vision, because most managerial decisions are indeed made in this domain. At the same time,
however, the only way that the micro vision makes sense is when it is understood and acted
upon from the broader macro vision.

Because the Needs and Requirements stage is too important a contributor to the sources of
risk, it is separated in our overall model presentation from the micro and macro visions. In-
deed, the Needs and Requirements stage constitutes the base of the spiral model depicted in
Figure 5. One reason that many of the seeds of risk are sown during the Needs and Require-
ments stage is that software engineering remains more an art than a science in spite of the
major gains that have materialized during the last several years. It is worth noting the testimo-
ny by William Wulf before a Congressional committee in 1989 when he served as Assistant
Director for Computer and Information Science and Engineering at the National Science Foun-

10
CMU/SEI-96-TR-012

dation. Commenting on the need to improve our knowledge on software, Wulf said, 'The fun-
damental intellectual foundation, even the appropriate mathematics, does not exist" to solve
"software crises" [House 89]. Even earlier, in 1987, Frederick P. Brooks recognized the quint-
essential role that the Needs and Requirement stage plays in software risk:

The hardest single part of building a software system is deciding precisely what
to build. No other part of the work so cripples the resulting system if done
wrong; no other part is more difficult to rectify later.

Therefore, the most important function that the software builder performs for the client is the
iterative extraction and refinement of the product requirements. For the truth is that the client
rarely knows what he or she wants. The client usually doesn't know what questions must be
answered, and he or she probably hasn't thought of the problem in the detail necessary for
specification.

Clearly, understanding and appreciating the evolution of risks during the temporal life cycle
are requisites for effective risk management.

3.2 Methodological Dimension
The risk-based methodologies discussed in this paper are designed to improve the overall
software developmental process an offer a fresh way to integrate knowledge into the software
acquisition process in a way that would enable managers to make more timely decisions. This
is accomplished by providing a structured approach to the assessment and management of
the risks and uncertainties associated with the developmental process. In risk assessment the
analyst often attempts to answer the following three questions: What can go wrong? What is
the likelihood that it would go wrong? and What are the consequences? [Kaplan 81] Answers
to these questions help risk analysts identify, measure, quantify, and evaluate the conse-
quences and impacts of risks. The remaining risk analysis builds on the risk assessment pro-
cess by seeking answers to a second set of questions: What can be done? What options are
available? What are their associated trade-offs in terms of all costs, benefits, and risks? and
What are the impacts of current management decisions on future options [Haimes 91]? Only
when these questions are addressed in the broader context of management can total risk
management be realized. The methodologies developed at SEI provide answers to these sets
of questions.

More specifically, these methodologies provide answers to the following sample of more spe-
cific questions:

/ know that improving the process will improve my software. How do I choose
the improvement method that will have the most effect for my current state?
How do I secure against major disasters? What cost will I face?

CMU/SEI-96-TR-012 11

What makes a good software professional? How can I inspire my team to their
best efforts? How do I know training is of any use? How can I convince my
management to invest in risk management? How can I overcome resistance to
change?

How do I make trade-offs among the risk factors affecting software quality, cost
overrun, and time delay in project completion schedule?

The hierarchy of SRM methodologies discussed in this paper addresses the two life cycle
functions of software acquisition and development. The basic methodological framework with
which the functions are managed is composed of the SW-CMMSM, and the SA-CMMSM.

The above methodological framework for software risk management is supported by three
groups of practices:

1. SRE

2. CRM

3. TRM

These practices build on three basic constructs of risk management:

1. the Risk Management Paradigm

2. the Risk Taxonomy

3. the Risk Clinic

Each will be discussed in detail in Section 4. Figure 4 depicts the relationships among the cur-
rently available models, practices, and constructs for risk management of software-intensive
systems.

12
CMU/SEI-96-TR-012

Methodological Framework for
SOFTWARE LIFE CYCLE:

ACQUISITION & DEVELOPMENT

Models

Practices

(SA-CMMS")

(SRE) (CRM) (TRM)

Constructs

(RISK PARADIGM) (RISK TAXONOMY) (RISK CLINIC)

Figure 4: Methodological Framework for Software Risk Management

3.3 Human Dimension
The third dimension in the holistic vision of software risk management addresses the intellec-
tual dimension of software acquisition—the most critical one, since software development is
such an intellectually intensive activity. Four perspectives are identified:

1. individual

2. team

CMU/SEI-96-TR-012 13

3. management

4. stakeholder

There is an obvious interplay and overlap among all four elements that constitute the human
dimension. The individual perspective represents an important source of risk in software de-
velopment. The lack of training, knowledge, skill, commitment to the project, loyalty to the or-
ganization as a whole, dedication to quality, and many other factors are critical to the initiation
of risks and to their identification at an early stage of the development.

Although teams are composed of individuals, the team perspective is different from the Indi-
vidual one. In their book, The Wisdom of Teams, Katzenbach and Smith [Katzenbach 93] pro-
vide the following succinct definition of a team:

A team is a small number of people with complementary skills who are
committed to a common purpose, performance goals, and approach for which
they hold themselves mutually accountable.

It is clear from the above definition that software risk and its management are heavily depen-
dent on the quality of the team and its commitment to identifying, preventing, and managing
software risk. In the subsequent section, we will elaborate on the role of teams in risk manage-
ment through a discussion of TRM methodology.

The third perspective of the human dimension is management. These are the engineers who
are managers of risk, and risk experts who are managers of engineering systems. Further-
more, one must also appreciate the hierarchical managerial structure and the consequences
of its divisions [Chittister 94]:

Upper management views risk almost exclusively in term of profitability,
schedule, and quality. Risk is also viewed in terms of the organization as a
whole and the effects on multiple projects or a product line.

Program management is concerned with profitability. It concentrates more on
cost, schedules, product specificity, quality, and performance, usually for a
specific program or project.

The technical staff overlaps with the individual element, and may have some of
its members in supervisory roles. This group concerns itself primarily with
technical details of components, subassemblies, and products for one or more
projects.

Clearly, differences among the risk managers at each level of this hierarchical decision-mak-
ing structure are caused by numerous factors, including the scope and level of responsibilities,
time horizon, functionality, requirements of skill, knowledge, and expertise.

14
CMU/SEI-96-TR-012

The stakeholders—the fourth perspective in the human dimension—are also a conglomerate
of constituencies. This may include government agencies, a specific branch of the Armed
Forces, major corporations, and other power brokers—all of whom have direct or indirect in-
terest in the acquisition of software.

Understanding the role of each and all of the four perspectives in the human dimension is es-
sential to effectively assessing and managing software risk.

3.4 Graphic Representation of the Holistic Vision of Software Risk
Management

The holistic vision of software risk management is depicted in Figure 5, where the three di-
mensions of the software acquisition process—temporal, methodological, and human dimen-
sions—are represented in a spiral that evolves upward over time. The spiral mode
emphasizes the iterating nature of risk management, where at each stage of the software ac-
quisition process, the manager-analyst adheres to the Risk Paradigm—identify, analyze, plan,
track, and control [Van Scoy 92]. Communication is, of course, at the heart of the Risk Para-
digm.

CMU/SEI-96-TR-012 15

Holistic Vision
of System Risk
Management

People

/
Individual Turn

\

Management Stakeholder

\ /

Systems
Integration

Design &
Development

Contractor
Selection

Specification

Conceptual
Design

Demonstration /
Validation

Engineering, Manufacturing,
Development, & Production

Maintenance &
Major Upgrade

d >

Figure 5: Holistic View of Risk Management

16 CMU/SEI-96-TR-012

The micro level of the temporal dimension is represented by its four stages, evolving upward
in the spiral (specification; contractor selection; design and development; and systems inte-
gration). The four stages of the macro level (conceptual design; demonstration/ validation; en-
gineering, manufacturing, development, and production; and maintenance and major
upgrade) are depicted on the horizontal line of Figure 5, representing the time element that
characterizes the macro level.

The methodologies associated with system risk management are presented in Figure 5
through the rising column within the upward evolving spiral. The intention is to emphasize the
fact that at each stage of the software acquisition decision-making process, the manager-an-
alyst is able to make use of these methodologies.

The third dimension—human—is represented through a cross section of the upward evolving
temporal domain. At each stage of the acquisition process, the influence, involvement, lead-
ership, imagination, and impact of the individual, the team, the management, and the "exter-
nal" stakeholders are felt.

The hierarchical holographic model that represents the holistic vision of software risk manage-
ment as depicted in Figure 5 will be revisited in this paper after each of the three dimensions
has been discussed in some detail.

CMU/SEI-96-TR-012 17

18 CMU/SEI-96-TR-012

4 Software Risk Management Methodologies

Although the Risk Paradigm is not considered a "methodology" per se, it is discussed under
the methodological dimension. The Risk Paradigm transcends all risk analysis activities dis-
cussed earlier; for this reason, it constitutes the foundation of each stage in the spiral form de-
picted in Figure 5. Similar reasoning applies to the Risk Taxonomy [Carr 93] and to the Risk
Clinic. The taxonomy provides a framework for organizing and studying the breadth of soft-
ware development issues and hence provides a structure for surfacing and organizing soft-
ware development risks. Since several of the methodologies discussed here make use of the
Risk Taxonomy, it is presented along with the risk management paradigm as "Basic Con-
structs to Risk Management." The Risk Clinic is a workshop that constitutes an important part
of CRM and TRM.

4.1 Basic Constructs to Risk Management
Three basic constructs will be discussed here. All three constructs build on the seven risk
management principles discussed in the preface—shared product vision, teamwork, global
perspective, forward-looking view, open communication, integrated management, and contin-
uous process.

4.1.1 Risk Management Paradigm
The risk management paradigm (see Figure 3) depicts the different activities involved in the
management of risk associated with software development [Van Scoy 92]. The paradigm is
represented by a circle to emphasize that risk management is a continuous process, while the
arrows show the logical flow of information between the activities. Communication is placed in
the center of the paradigm because it is both the conduit through which all information flows
and, often, the largest obstacle in risk management. Essentially, the paradigm is a framework
for software risk management. From this framework, a project may structure a risk manage-
ment practice best fitting into its project management structure. A brief summary of each risk
management paradigm activity is described below.

Identify

Before risks can be managed, they must be identified. Identification surfaces risks before they
become problems. The SEI has developed techniques for surfacing risks by the application of
a systematic process that encourages project personnel to raise concerns and issues. One
such method, the SRE, is described in a subsequent section.

Analyze

Analysis is the conversion of risk data into risk decision-making information. Analysis provides
the basis for the project manager to work on the "right" and most critical risks.

CMU/SEI-96-TR-012 19

Plan

Planning turns risk information into decisions and actions. Planning involves developing ac-
tions to address individual risks, prioritizing risk actions, and creating an integrated risk man-
agement plan. The plan for a specific risk can take many forms. For example:

• Mitigate the impact of the risk by developing a contingency plan (along with
an identified triggering event) should the risk occur.

• Avoid a risk by changing the product design or the development process.

• Accept the risk and take no further action, thus accepting the consequences
if the risk occurs.

• Study the risk further to acquire more information and better determine its
characteristics to enable wiser decision-making.

The key to risk action planning is to consider the future consequences of a decision made to-
day.

Track

Tracking consists of monitoring the status of risks and the actions taken to ameliorate them.
Appropriate risk metrics are identified and monitored to enable the evaluation of the status of
as well as of risk mitigation plans. Tracking serves as the "watchdog" function of management.

Control

Risk control corrects deviations from planned risk actions. Once risk metrics and triggering
events have been chosen, there is nothing unique about risk control. Risk control melds into
project management and relies on project management processes to control risk action plans,
corrects for variations from plans, responds to triggering events, and improves risk manage-
ment processes.

Communicate

Risk communication lies at the center of the model to emphasize both its pervasiveness and
its criticality. Without effective communication, no risk management approach can be viable.
While communication facilitates interaction among the elements of the model, there are higher
level communications to consider as well. In order to be analyzed and managed correctly,
risks must be communicated to and between the appropriate organizational levels. This in-
cludes levels within the development project and organization, within the customer organiza-
tion, and most especially, across that threshold between the developer, the customer, and,
where different, the user. Because communication is pervasive, our approach is to address it
as integral to every risk management activity and not as something performed outside of, or
as a supplement to, other activities.

20
CMU/SEI-96-TR-012

4.1.2 Risk Taxonomy

The Risk Taxonomy follows the life cycle of software development and provides a framework
for organizing data and information. The taxonomy-based identification method provides the
organization developing software with a systematic interview process with which to identify
sources of risk.

The taxonomy construct consists of a Taxonomy-Based Questionnaire and a process for its
application. The taxonomy organizes software development risks into three levels: class, ele-
ment, and attribute. The questionnaire consists of questions under each taxonomic attribute
that are designed to elicit the range of risks and concerns potentially affecting the software
product. The application process is designed such that the questionnaire can be used in a
practical and efficient manner consistent with the objective of surfacing project risks. Both the
questionnaire and the application process have been developed using extensive expertise
and multiple field tests.

The taxonomy methodology [Carr 93] is an instrument with which one can obtain a broad, sys-
tem level of risks. These risks are commonly identified by program members, and are classi-
fied by categories within the hierarchical structure of the taxonomy. Moreover, the taxonomy
identifies risk areas for more detailed investigation and is applied by interviewing peer groups
of managers, engineers, and support personnel. Figure 6 and Figure 7 depict the hierarchical
nature of the taxonomy.

Software Development Risk

Element' Requirements ••• |n9|n.e??n9 Development... Work ciemeni , nequiremems Specialties Process Environment Resources ••• Externals

IÄÄ/\
Attribute j Stability Scale Formality • •• g^j» Schedule ... Facilities

Figure 6: Complete Taxonomy

CMU/SEI-96-TR-012
21

A. Product Engineering
1. Requirements

a. Stability
b. Completeness
c. Clarity
d. Validity
e. Feasibility
f. Precedent
g. Scale

2. Design
a. Functionality
b. Difficulty
c. Interfaces
d. Performance
e. Testability
f. Hardware

Constraints
g. Non-

Developmental
Software

3. Code and Unit Test
a. Feasibility
b. Testing
c. Coding/Imple-

mentation

4. Integration and Test
a. Environment
b. Product
c. System

5. Engineering
Specialties
a. Maintainability
b. Reliability
c. Safety
d. Security
e. Human Factors
f. Specifications

B. Development Environment
1. Development Process

a. Formality
b. Suitability
c. Process Control
d. Familiarity
e. Product Control

2. Development System
a. Capacity
b. Suitability
c. Usability
d. Familiarity
e. Reliability
f. System Support
g. Deliverability

3. Management Process
a. Planning
b. Project Organization*
c. Management

Experience
d. Program Interfaces

4. Management Methods
a. Monitoring
b. Personnel

Management*
c. Quality Assurance
d. Configuration

Management

5. Work Environment
a. Quality Attitude*
b. Cooperation*
c. Communication
d. Morale*

C. Program Constraints
1. Resources

a. Schedule
b. Staff
c. Budget
d. Facilities

2. Contract
a. Type of Contract*
b. Restrictions
c. Dependencies

3. Program Interfaces
a. Customer*
b. Associate

Contractors
c. Subcontractors*
d. Prime Contractor*
e. Corporate

Management
f. Vendors
g. Politics*

* Areas in which risks are not expected to be encountered prior to contract award

Figure 7: Taxonomy of Software Risks: Overview

The SEI taxonomy of software development maps the characteristics of software development
and software development risks. The questionnaire is a list of non-judgmental questions to
elicit issues, concerns (i.e., potential risks), and risks in each taxonomic group. Hence, the
questionnaire ensures that all risk areas are systematically addressed, while the application
process is designed to ensure that the questions are asked of the right people and in the right
manner to produce optimum results.

22 CMU/SEI-96-TR-012

The questionnaire application is semi-structured. The questions and their sequence are used
as a defining but not as a limiting instrument. That is, the questions are asked in a given se-
quence, but the discussion is not restricted to that sequence. This is done to permit context
and culture-sensitive issues to arise. A completely structured interview, while arguably yield-
ing more reliable data for subsequent analysis across different projects, may also yield less
valid data. Since the pragmatics of risk management are paramount, the semi-structured for-
mat was chosen by the SEI. In other words, the questionnaire can be described as a form of
structured brainstorming.

The taxonomy's risk identification method identifies and clarifies the uncertainties and con-
cerns of a project's technical and managerial staff. The software taxonomy is organized into
three major classes:

1. product engineering: the technical aspects of the work to be accomplished

2. development environment: the methods, procedures, and tools used to pro-
duce the product

3. program constraints: the contractual, organizational, and operational factors
within which the software is developed, but which are generally outside of the
direct control of the local management

These taxonomic classes are further divided into elements and each element is characterized
by its attributes.

4.1.3 Risk Clinic
A Risk Clinic is a workshop that takes the SEI CRM and TRM and adapts and integrates it with
a client's communication channels, infrastructure, existing practices, project management,
risk management (if any), and technical problem management (see Figure 8).

CMU/SEI-96-TR-012 ^

SEI
Team
Risk
Mgt _ '',

Client's

Risk
Mgmt

\

Pilot
Projects

Client's
Current Practices

Figure 8: Risk Clinic Integrates Risk Management with Current Practices

The Risk Clinic is the cornerstone of a process of interactive, adaptive transition that spans
several months. It takes place after planning meeting is held between SEI and the client to es-
tablish the schedules deliverables and identify the pilot projects. The Risk Clinic is the center-
piece of the transition effort and should occur within 30 days of the planning meeting to keep
up the momentum. If more than one pilot project is considered, multiple Risk Clinics should be
held to provide the chance to evaluate alternative types of activities and procedures. The most
successful can then become part of the client's risk management practice or they can be used
to provide alternatives for the organization. The executive briefing is an internal briefing used
by the client sponsors to educate management and pilot project personnel about the risk man-
agement transition effort.

Once the Risk Clinic has established proposed client risk management practices, these are
implemented into one or more pilot projects whose progress is followed with coaching meet-
ings between SEI and pilot project personnel. These meetings are used not only to evaluate
progress, but also to adjust and revise practices. Coaching continues until the proposed risk
management practice has been fully implemented and tested. Revisions and changes are
then made to improve the client's risk management practices and these improvements are
documented so as to institutionalize them.

Figure 9 illustrates the overall process for conducting a Risk Clinic. A typical Risk Clinic takes
two full days of high-energy activity with personnel from the SEI, from the client's pilot project,
and from the process improvement or process definition groups (typically the software engi-
neering process group). Once the client's proposed risk management framework has been es-
tablished, a plan for incremental transition and implementation of these activities is defined.

24 CMU/SEI-96-TR-012

Optional preliminary surveys of change implementation history and the cultural barriers to
change1 can be used to help identify any specific barriers to change that may need to be over-
come during this transition, as well as to identify any enablers for change that can be used to
aid the transition. Specific milestones and target dates are identified for the next several
months (e.g., implement a risk database, complete with all report templates, in three months).
Finally, the transition plan is discussed and a preliminary agenda is defined.

Present SEI
Framework

I
Redline/Revise Framework

Group 1 Group 2 Group 3

Client's

Current State

of Practice

I
Define Incremental

Transition Plan

I
Barriers

&

Enablers

Technology

Transition

Surveys

Define First

Coaching Meeting

Figure 9: Risk Clinic Process Overview

1 Examples of such surveys include the following, developed at the SEI by John H. Maher, Jr. and Charles R.
Myers, Jr.:

Managing Technological Change: Implementation History Assessment and Managing Technological Change:
Cultural Assessment (SEI-90-SR-20). Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon Univer-
sity, 1990.

The above documents are Copyright © IMA 1989. They are available to U.S. government agencies only.

CMU/SEI-96-TR-012 25

4.2 Supporting Practices
In this group there are three practices: SRE, CRM, and TRM.

4.2.1 Software Risk Evaluation (SRE) Practice

The SRE practice, developed by the SEI, is a formal method for identifying, analyzing, com-
municating, and mitigating software technical risk [Sisti 94]. It is used by decision makers for
evaluating and mitigating the technical risks associated with a software-intensive program or
project. The SRE is conducted at major milestones early and periodically in the acquisition life
cycle. This practice consists of primary and support functions (see Figure 10). Primary SRE
functions are Detection, Specification, Assessment, and Consolidation. The support functions
are Planning and Coordination, Verification, and Training and Communication.

SRE

Primary Functions Support Functions

Detection Planning
&

Coordination

Specification Verification
&

Validation Assessment

Training
&

Communication
Consolidation

Figure 10: SRE Functional Components

Primary Functions

Four primary functions are identified in the SRE practice—detection, specification, assess-
ment, and consolidation.

26
CMU/SEI-96-TR-012

Detection is the function of finding software technical risks of a target project. This function en-
sures systematic and complete coverage of all potential technical risk areas. It also ensures
efficiency and effectiveness through the use of appropriate tools and techniques. Risk detec-
tion in the SRE practice is performed by using the following:

• SEI Taxonomy-Based Questionnaire ensures complete coverage of all areas
of potential software technical risks.

• Selection of appropriate individuals and guidelines for the make-up of the
interview groups ensures coverage of all viewpoints including software
development and support functions, technicians, and managers.

Risk specification is the function of recording all aspects of the identified software technical
risk including its condition, consequences, and source. One representation of a software risk
statement, (developed, for example, in [Gluch 94]), has several advantages. For instance, it
serves as a simple, guiding structure for risk detection activities and for communicating risks
coherently and with sufficient detail. It captures components of the risk and simplifies the task
of prioritizing, isolating the condition within which the risk applies, and focusing the risk mitiga-
tion efforts to the source(s) of the risk. Additionally, risk specification records the source of the
particular risk.

Assessment is a function that determines the magnitude of each software technical risk. By
definition, magnitude is the product of severity of impact and the probability of an occurrence
of the risk.

The SRE practice's mechanism for risk assessment is adapted from previous work conducted
by the U.S. Air Force [AFSC 88]. Risk statements are assessed at one of three levels of mag-
nitude—high, medium, or low. The level at which a particular risk is assessed depends on the
separate assessments of its severity of impact and its probability of occurrence.

Consolidation is the function of merging, combining, and abstracting risk data into concise
chunks of decision-making information. This is necessary due to multiple risk detection activ-
ities which identify related risks from different sources. One example is similar risks that are
identified in different interview sessions.

CMU/SEI-96-TR-012 27

Only that set of risk statements which meets the defined criterion are considered as candi-
dates for consolidation. Candidate risk statements must meet one of the following criteria for
consolidation:

• manifestation of the same risk statement; that is, identical in every way
except in the wording of the statements

• fragmentation due to minor variations or different aspects of the same risk
statement

• differences in granularity; for example, a minor risk statement which is
covered in the context of another risk statement of larger magnitude

4.2.2 Continuous Risk Management (CRM)
CRM is a principle-based practice for managing project risks and opportunities throughout the
lifetime of the project. When followed, these principles provide an effective approach to man-
aging risk regardless of the specific methods and tools used. These principles, depicted in Fig-
ure 11,2 are composed of three groups: core, sustaining, and defining.

Minus v*~ r Continuous »„f Integrated
Process ^'e* Management

' GLOBAL
PERSPECTIVE

Figure 11: Seven Principles of Risk Management

2 Williams, Ray C. "Applying the Seven Principles of Team Risk Management." Presented at the Software En-
gineering Symposium, Pittsburgh, Pa., September 11-14, 1995.

28 CMU/SEI-96-TR-012

Core Principle

Effective risk management requires constant attention to fostering the core principle of open
communication. Clearly, the professionals associated with a project are the most qualified to
identify the risks in their work on a daily basis. One should always ask, "Does project manage-
ment provide a conducive environment for staffers to share their concerns regarding potential
risks?" or, "Does management follow the 'killing the messenger' pattern instead of 'rewarding
the messenger'?" Open communication requires

• encouraging free-flowing information at and between all project levels

• enabling formal, informal, and impromptu communication

• using consensus-based processes that value the' individual voice, which can
bring unique knowledge and insight to identifying and managing risk

Sustaining Principles

The sustaining principles focus on how project risk management is conducted on a daily basis.
These are inward-directed, fundamental principles. If established early in the program and
constantly nurtured, they should ensure that risk management becomes "the way we do busi-
ness around here."

CMU/SEI-96-TR-012 29

Integrated management

This principle helps to assure that risk management processes, paperwork, and discipline are
consistent with established project culture and practice. Risk management is simply an area
of emphasis in good project management; therefore, wherever possible, risk management
tasks should be integrated into well-established project routine. Integrated management re-
quires

• making risk management an integral and vital part of project management

• adapting risk management methods and tools to a project's infrastructure
and culture

Teamwork: No single person can anticipate all the risks that face a project. Risk management
requires that project members find, analyze, and work on potential risks together. Group syn-
ergy and interdependence in dealing with risk need to be rewarded. Teamwork requires

• working cooperatively to achieve a common goal

• pooling talent, skills, and knowledge

Continuous process: Risk management guidelines must not be allowed to become "shelf-
ware." The processes must be part of daily, weekly, monthly, and quarterly project manage-
ment. The premise that risk management takes place only during "risk management seasons"
is obviously foreign to true management. Continuous process requires

• sustaining constant vigilance

• identifying and managing risks routinely throughout all phases of the project's
life cycle

Defining Principles

The defining principles focus on how project staff members identify risks, and the extent to
which staff and management are ready to address uncertainty. These principles are outward-
directed and concerned with focus; they foster the development of shared mental models that
clarify the when, why, and what of risk management.

30
CMU/SEI-96-TR-012

Forward-looking view: This principle develops the ability to look ahead, beyond today's crisis
and into the likely consequences and impacts of current decisions on future options. Its staff
is also concerned with defining how far into the future to look, so that all risk mitigation efforts
of project's staff are complementary. Forward-looking view requires

• thinking toward tomorrow, identifying uncertainties, anticipating potential
outcomes

• managing project resources and activities while anticipating uncertainties

Global perspective: This principle requires that project staff replace their parochial views and
interests with those that benefit the common good of the overall project. It also demands that
the perspectives of the customer be harmonized with those of the supplier to reach a common
view of "what's most important to the project." Project staff should develop and share a com-
mon viewpoint at a global level, and be able to jointly address and mitigate specific risks. Glo-
bal perspective requires

• viewing software development within the context of the larger systems-level
definition, design, and development

• recognizing both the potential value of opportunity and the potential impact
of adverse effects

Shared product vision: This principle focuses on the development of a common understanding
of the project's objectives and the goods and services it produces. Once clearly defined,
shared product vision makes it much easier to reach a common understanding of what may
adversely impact the timeliness, cost, or features of the final result. Shared product vision re-
quires

• sharing a product vision based upon common purpose, shared ownership,
and collective commitment

• focusing on results

The functions of CRM, as discussed in Section 4.1.1, are: Identify, Analyze, Plan, Track, Con-
trol, and Communicate.

4.2.3 Team Risk Management (TRM)
TRM extends risk management with team-oriented activities involving the customer and sup-
plier (e.g., government and contractor), where both customer and supplier apply the method-
ologies together [Higuera 94]. TRM establishes an environment built on a set of processes,
methods, and tools that enables the customer and supplier to work cooperatively, continuous-
ly managing risks throughout the life cycle of a software-dependent development program. It
is built on a foundation of the seven principles of risk management discussed in the preface
of this paper, and on the philosophy of cooperative teams. Guided by the seven principles,
TRM further extends the SEI Risk Management paradigm by adding two functions—initiate
and team. Each risk goes through these functions sequentially, but the activity occurs contin-
uously, concurrently, and iteratively throughout the project life cycle (e.g., planning for one risk
may identify another). The TRM Guidebook3 provides an effective instrument with which to fa-

CMU/SEI-96-TR-012 3T

miliarize the reader with the concepts, functions, processes, methods, and products of TRM.
The guidebook accomplishes this through a description of the overall methodology, a road
map for applying it within a project, and detailed descriptions of the processes and methods
used to implement the functions of TRM. Figure 12 [Higuera 94] depicts the extension of the
SEI Risk Management Paradigm by incorporating the TRM functions (initiate and team)*.

* Initiate

Recognize the need and commit to create the team culture. Either customer or supplier may
initiate team activity, but both must commit to sustain the teams.

*Team (verb)

Formalize the customer and supplier team and merge the veiwpoints to form a shared product
vision. Systematic methods periodically and jointly applied establish a shared understanding
of the project risks and their relative importance. Establish joint information base of risks, pri-
orities, metrics, and action plans.

Team Risk Management

Program Manager *lWA -_ MM Jlsl^ Alflf|

■llll
I I

tit» ^Communications!^- IAl lift]

Teaminc
Individuals

Customer Supplier
Risk Management Risk Management

Figure 12: Team Risk Management

Dorofee, A. J., et al. Team Risk Management Guidebook: Version 0.1. Software Engineering Institute Carn-
egie Mellon University, 1994. Draft technical report not approved for public release.

32
CMU/SEI-96-TR-012

Note that the last six functions (Identify, Analyze, Plan, Track, Control, and Communicate) are
adopted from the risk management paradigm discuss-' earlier in Section 4.1.1. In summary,
TRM offers a number of advantages for a project, as c ared to individual risk management.
It also involves, however, a change from past custor supplier (government-contractor) re-
lationships, and this will require new commitments by both. These new commitments, in turn,
may involve investment in risk mitigation—particularly early in the program.

CMU/SEI-96-TR-012 ~ ^

4.3 Methodological Framework for Software Risk Management
(SRM)

Acquisition and development of large software-driven systems continue to suffer large cost
and schedule overruns. While industry is improving its capability and performance through the
use of the SW-CMMSM [Humphrey 90] for software, many acquisition organizations continue
to operate in an unstable environment. Staffing is based on the availability of individuals, re-
sulting in a random composition of acquisition skills. Very few team members have software
acquisition or application domain skills, and little documentation exists to define procedures or
capture corporate memory. Software acquisition typically proceeds in an ad hoc manner.

4.3.1 Software Capability Maturity Model (SW-CMMSM)

The SW-CMMSM provides software organizations with guidance on how to gain control of their
process for developing and maintaining software and how to evolve toward a culture of soft-
ware engineering excellence. The SW-CMMSM was designed to guide software organizations
in selecting process improvement strategies by determining current process maturity and
identifying the few issues most critical to software quality and process improvement. By focus-
ing on a limited set of activities and working aggressively to achieve them, organizations can
steadily improve their organization-wide software process to enable continuous and lasting
gains in software process capability.

The staged structure of the SW-CMMSM is based on product quality principles that have exist-
ed for the last 60 years. These principles have been adapted into a maturity framework that
establishes the project management and engineering foundation during the initial stages, and
quantitatively controls the process during the more advanced stages of maturity.

The maturity framework into which these quality principles have been adapted was first in-
spired by Philip Crosby in his book Quality is Free [Crosby 79]. Crosby's quality management
maturity grid describes five evolutionary stages in adopting quality practices. This maturity
framework was adapted to the software process by Ron Radice and his colleagues [Radice
85] working under the direction of Watts Humphrey at IBM. Humphrey brought this maturity
framework to the SEI in 1986, revised it to add the concept of maturity levels, and developed
the foundation for its current use throughout the software industry [Humphrey 90].

34 CMU/SEI-96-TR-012

4.3.2 Software Acquisition-Capability Maturity Model (SA-CMMSM)
The SA-CMM4 is based upon the principles of the SW-CMM [Humphrey 90]. Similar to the
SW-CMM, the SA-CMM describes five levels of organizational software acquisition maturity
(see Figure 13). The key process areas (KPAs) define the requirements that must be satisfied
in order to accomplish that level of maturity. In other words, progress is made in stages or
steps. The levels of maturity and their KPAs thus provide a road map for attaining ever higher
levels of maturity.

SA-CMMSM Key Process Areas

Level Focus Key Process Areas

5
Optimizing

Continuous
process
improvement

Acquisition Innovation Management
Process Evolution Quality

Productivitity

4
Manaaed

Quantitative
management

Quantitative Process Management
Quantitative Acquisition Management

3
Defined

Acquisition
processes and
organizational
support

Training Program
Software Acquisition Risk Mgt
Contract Performance Management
Project Performance Management
Org Process Defn and Improvement

2
Repeatable

Project
management
processes

Transition and Maintenance
Evaluation
Contract Tracking and Oversight
Project Office Management
Requirements Development and Mgt
Solicitation
Software Acquisition Planning

Risk
Rework 1

Initial
Competent people and heroics

Figure 13: SA-CMM KPAs

The KPAs at any given level describe the minimum requirements for that level of maturity. This
does not mean that some portion of those requirements cannot be satisfied or performed at a
lower level; in fact, they typically will. However, an organization cannot achieve the next level
of maturity unless all the requirements of all lower levels are maintained. The stages of the
model are complimentary and flow upward. For example, the tracking and oversight at level 2
will result in corrective actions (reactive approach to defects). This process grows and matures
into risk management at level 3 where actions are taken to identify and prepare for risks before

Ferguson, J. J. et al. Software Acquisition Maturity Model (SA-CMM) Version 00.02. Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1996. Draft report not publicly released.

CMU/SEI-96-TR-012 35

they happen (proactive approach). Risk management grows and matures to become defect
prevention at level 4 when the potential for a risk is removed by adjusting the process(es) (pre-
ventive approach). While defects should decrease as maturity increases, the need for correc-
tive actions (established for level 2) never goes away completely.

The vast experience of the SEI in developing the SW-CMMSM is directly applicable to devel-
oping the SA-CMMSM. The two models must be, and are, synergistic. The SW-CMMSM de-
scribes the contractor's role in the software acquisition process, while the SA-CMMSM

describes the acquirer's role. In addition, the SA-CMMSM includes certain pre-contract-award
activities, such as preparing the software statement of work, documentation requirements,
and participating in source selection. During the engineering phase of the project, the two
models are parallel in their treatment of the processes involved. The SA-CMMSM often ends
with the completion of the software acquisition process, when the "new" software is transi-
tioned from the developer to the maintainer. This, however, may not always be the case. In
some instances, acquisition offices are being assigned "cradle to grave" responsibility and
their authority is being expanded into the maintenance area. In addition, the increased use of
incremental and evolutionary deliveries raises a number of maintenance issues during the ac-
quisition until the final component of the system is delivered.

The current SW-CMMSM provides the appropriate level of detail for translation into the SA-
CMMSM. Ensuring the compatibility of the two models, the items in the SW-CMMSM have been
examined and, where appropriate, reworded to reflect the difference between engineering
functions (contractor) and the acquisition function (government).

The SA-CMMSM is intended to be generic enough to be used by any organization acquiring
software (e.g., subcontracting). For this usage, the term "contractor" refers to the organization,
developing the software. The term "government" or "project team" refers to the customer or-
ganization and the term "contract" refers to the agreement between the organizations.

Buyers may include a Program Executive Office (PEO) who may be acquiring software across
several projects, a Program Manager (PM) who is responsible for a single system acquisition,
or a Software Support Activity responsible for supporting PEOs and PMs. The model also in-
cludes provisions for the participation of other functional organizations involved, such as
testers, product assurance, and laboratories. When conducting a self-assessment, all of these
groups should be included, depending on the project organization. The SA-CMMSM does not
address the system level acquisition process.

As systems become more complex, a continuing improvement initiative is needed to stay
abreast of technology in order to increase efficiency and to take advantage of the latest tech-
niques. There are no road maps, however, to help organizations efficiently improve their tech-
nology base and to ensure that they build the best quality products at the lowest cost with the
least amount of risk. Although several methodologies exist that can provide an insight into soft-
ware development and software project management practices, they are not in systematic
practice today. The Software Capability Evaluation (SCE) method, for example, does offer a
look at organizational capability to produce a product and provides insight into contractor man-

36
CMU/SEI-96-TR-012

agement processes; the SRE method provides a framework for evaluating risks that would
prevent project success; and the SW-CMMSM [Humphrey 90] provides through the ranking of
the organization's level of technical maturity an index with which to measure the likelihood of
success. However, these methods do not explicitly address contractor selection.

If one accepts the premise that more mature software development organizations build better
products, then more mature acquisition organizations should be better prepared to do a better
job of acquisition. A current argument in the Department of Defense (DoD) is that as DoD ac-
quisition organizations or contractors move from level 1 to level 3, the development organiza-
tion has to mature as well. Note, for example, that if a level 1 organization is buying from a
level 3 organization, the program office might waste time on the wrong issues; it might want to
focus on documentation or on reviews, but it does not need that degree of oversight if the level
3 company already does this well.

In order to guide implementation and institutionalization of software acquisition improvement,
the SA-CMMSM must be augmented by a framework and road map to guide improvement ac-
tivities. The Software Acquisition Improvement Framework identifies candidate practices and
supporting technologies, expertise, infrastructure, and implementation guidance to satisfy the
requirements of KPAs of the SA-CMMSM. The road map shows a path through the possible
improvement choices provided by the model, identifying practices for which implementation
guidebooks are needed and including measures of the improvement activity's success.

The Acquisition Risk Management Guidebook is one example of a set of guidebooks that will
provide practical "how to" practices for selected KPAs. The other guidebooks are: TRM Guide-
book, SRM Guidebook, and CRM Guidebook. All these guidebooks are in preparation; they
will leverage the lessons learned in risk management and build on earlier work which provided
guidance to the source selection process.

CMU/SEI-96-TR-012 37

38 CMU/SEI-96-TR-012

5 Deployment of the SEI Risk Management Program

One of the major problems facing software engineering today is the lack of accessible data
about development practices and the use of software products. Currently, risk management
data are buried within projects and not available to the wider community. Consequently, soft-
ware engineers are forced to resort to non-empirical arguments in deriving or evaluating many
software engineering methods and tools.

The Software Engineering Risk Repository (SERR) is the response of the SEI to this urgent
need for an informative database5. The SERR is planned to be a national on-line service
where widely dispersed information on the development and transfer of software technology
will be collected or made available through a variety of sources, including already existing on-
line data-bases, data-gathering instruments such as interviews, questionnaires, reports, and
case studies, and printed materials that can be scanned on-line. Technology transfer is a so-
cial process which is dependent on the creation of shared meaning and interpretation. Often
this is only achievable through sharing trial-and-error experiences with other groups undergo-
ing similar learning and discovery processes. This sharing of experience is an important basis
for the construction and dissemination of most software engineering methods, tools, and ap-
proaches. The ultimate goal of SERR is to provide a mechanism where the transfer, reception,
and evaluation of advanced software engineering process technologies can be communicat-
ed, interpreted, and negotiated. The effectiveness of such a mechanism depends on the ex-
tent to which relevant and accessible information is made available. In this section, highlights
from SEI field work are shared with the reader.

5 Konda, Suresh L; Monarch, Ira & Carr, Marvin J. Software Engineering Risk Repository: Concepts of Opera-
tion and Function Requirements. Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon University,
1994. Draft report not publicly released.

CMÜ/SEI-96-TR-012 39

Requirements

Design

Int & Test

Eng Spec

Code & UT

Mgm't Process

Dev System

Mgm't Methods

Dev Process

Work Env

Program Interface

Contract

0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 12.0% 14.0% 16.0% 18.0%

Figure 14: Representation of Levels of Risk From SEI Deployment

This section provides statistical information on the deployment of the risk methodologies that
have been developed and deployed by the SEI. The risk data and their analyses have been
obtained through the risk assessments and field tests that the SEI conducts as part of its mis-
sion. For reasons of propriety and confidentiality, the information is presented here in an ag-
gregate form. As a result of conducting dozens of risk assessments and field tests, the SEI
has developed a database on the risks associated with software development.

40 CMU/SEI-96-TR-012

The usefulness and value of this database are significant and transcend many dimensions:

• It provides important foundations from which new programs can learn and
benefit.

• The database represents user and contractor communities with distinct
domain knowledge (e.g., airplanes, embedded systems contains applicable
information and experiences from different systems and domains). These
can be translated, compared, contrasted, and related to new systems and
programs (e.g., airplanes to automobiles to submarines; and government to
non government).

• The database can be a major asset in supporting the DoD's goal of buying
more commercially available systems instead of custom-developed systems.

• The database helps identify risks, and provides linkage between the sources
of risk and the appropriate mitigation strategies.

The database also raises some interesting questions, for example: Can we develop a profile
of a community from the database?

5.1 Major Classes Within the Hierarchy
Recall that the SEI Taxonomy is built on a hierarchy, with three classes of risk at the highest
level: product engineering, development environment, and program constraints. The overall
distribution of all the risks in the assessment database within these three classes indicates a
surprisingly even division:

• 30% product engineering

• 33% development environment

• 37% program constraints

Below is a summary of the distribution of risks associated with each sub level of the taxonomy
hierarchy (see Figure 7). All the raw data were collected and analyzed from the risk assess-
ments conducted by the staff of the SEI Risk Program:

5.2 Major Elements of Risk Within Each Class
Of the five subcategories of risk within product engineering

• Requirements scored over 50% of all risks in the class (at 53%)

• Design scored about 27% of all risks

• Integration and Test scored about 14%

The two remaining categories, Engineering Specialties and Code and Unit Test, scored a total
of about 6% (4% and 2%, respectively).

These results are not surprising because they confirm the notion that within product engineer-
ing, about 80% of all risks are attributed to Requirements and Design.

CMU/SEI-96-TR-012 41

Of the five categories of risk within development environment, only Management Process
scored appreciably more than the other four categories—about 37%. The remaining four cat-
egories—Development System, Management Methods, Development Process, and Work En-
vironment—scored, in descending order, from 17% to 12% respectively. These statistics
confirm that management process is critically important in meeting development require-
ments.

Two categories dominate the sources of risk in the program constraint class: Resources at
about 43% and Customer at about 39%. In other words, over 80% of all sources of risk in Pro-
gram Constraint are attributed to Resources and Customer. The remaining less than 20% are
divided between Program Interface at about 11% and Contract at about 7%.

5.3 Major Attributes Within Each Element and Class

5.3.1 Product Engineering Class
Statistical data on each element within the Product Engineering Class are given below:

Requirement element: Among the seven attributes within the Requirement element, Com-
pleteness dominates the other six attributes at 36%. The remaining attributes scored the fol-
lowing percentages of sources of risk: Stability at 21%, Feasibility at 14%, Validity at 10%,
Precedent at 8%, Scale at 7%, and Clarity at 4%.

Design element: The distribution of sources of risk among the six attributes within the Design
element decreases gradually as follows: Non-Developmental Software at 28%, Functionality
at 22%, Performance at 19%, Hardware Constraints at 15%, Difficulty at 9%, Interface at 7%,
and Testability at an insignificant level.

Code and Unit element: The sources of risk within the Code and Unit element are uniformly
distributed among the three attributes: Feasibility, Testing, and Coding/Implementation.

Integration and Test element: The Environment attribute dominates the other two attributes
within this element at 72%; Product Integration scored 21%, and System Integration scored
merely 7%.

Engineering Specialties element: The Specifications attribute dominates the sources of risk
in this element at 58%. The other five attributes scored as follows: Security at 25%, Maintain-
ability at 9%, Safety at 8%, and Human factors at an insignificant level.

42 CMU/SEI-96-TR-012

5.3.2 Development Environment Class
Statistical data on the various elements within the Development Environment Class are given
below:

Development Process element: Two attributes dominate the Development Process ele-
ment: Formality, at 48% of all sources of risk within this category, and Product Control, at 28%.
The remaining 24% are distributed as follows: Suitability at 13%, Familiarity at 7%, and Pro-
cess Control at 4%. Deliverability showed an insignificant level of risk.

Development System element: Capacity, Suitability, and Usability attributes together scored
75% of all sources of risk within this element: Capacity at 35%, Suitability at 23%, and Usability
at 17%. The remainder of the six attributes scored as follows: Familiarity and Reliability each
scored 10%, and system support showed an insignificant level of risk.

Management Process element: At 54% the Planning attribute dominates all sources of risk
within this element. The distribution of the remaining 46% is as follows: Project Organization
at 24%, Program Interfaces at 20%, and Management Experience at 2%.

Management Methods element: Over 75% of all risks in this element are related to two at-
tributes: Personnel Management at 45% and Configuration Management at 33%. Scores for
the other attributes were: Monitoring 15%, and Quality Assurance 7%.

Work Environment element: Of the four attributes in this element, Communication, as ex-
pected, dominated all others at 74%. The distribution of the risks among the remaining three
attributes are as follows: Quality Attitude at 24%, and Cooperation and Morale at 1% each.
These statistics are not surprising; communication in the acquisition process among the user,
the customer (often the contracting agent), and the contractor are a major source of risk of cost
overrun, time delay in delivery, and risk of not meeting performance criteria.

5.3.3 Program Constraints Class
Statistical data for each element within the Program Constraints Class are given below:

Resources element: At 50%, the Staff attribute dominates the other three attributes in this
element. The distribution of risk among the remaining attributes is as follows: Schedule at
21%, Facilities at 18%, and Budget at 11 %.

Contract element: The distribution of risks among the three attributes within this element is
as follows: Dependencies at 54%, Type of Contract at 36%, and Restrictions at 10%.

Program Interfaces element: No attribute dominates this element. Subcontractors and Cor-
porate Managementeach scored 25%, Vendors scored 22.5%, Prime Contractor scored 15%,
and Politics scored 12.5%. Associate Contractors scored an insignificant level of risk.

CMU/SEI-96-TR-012 43

Customer element: The distribution of risk factors within the seven attributes of the Customer
Element ranges from 25% for Management to 6% for Organization. The remaining attributes
scored as follows: Delays at 21 %, User Interface at 19%, Customer Furnished Resources at
12%, Technical Knowledge at 10%, and Scope Change at 6%.

The above statistical data collected by SEI teams sheds important light on some critical sourc-
es of risk. Requirements, Management Process, Resources, and Customer, for example, are
the four most critical sources of risk in software development. Indeed, central to the holistic
vision of software risk management depicted in Figure 5 are Needs and Requirements—they
determine, to a large extent, the path that software development takes in its evolving life cycle.
Another important component in this holistic vision of software risk management is the Human
Dimension—Individual, Team, Management, and Stakeholder. People make up the other
three critical sources of risk—Management Process, Resources, and Customer. The remain-
ing sources of risk, identified in Figure 14, can be mainly attributed to the Temporal and Meth-
odological dimensions of the holistic vision presented in this paper.

44
CMU/SEI-96-TR-012

6 Epilogue

This paper presents a brief summary of the methodologies developed by the SEI for the man-
agement of risk associated with the acquisition, development, and use of software. Although
software continues to grow in importance as a critical system component and, more important-
ly, as an overall system integrator, major sources of risk the user, the customer, and the con-
tractor communities. The methodologies presented in this paper shed some light on the
professional community's effort to assess and ultimately control these inherent risks. Clearly,
as systems become increasingly more complex, individual knowledge, judgment, and exper-
tise will not suffice and systemic methodologies for risk management such as those presented
in this paper become imperative. This observation, which is based on SEI experience in the
deployment of software risk methodologies, is further amplified by the fact that software risk is
among the least measured or managed in a system today.

CMU/SEI-96-TR-012 45

46 CMU/SEI-96-TR-012

References
[AFSC 88]

[Brooks 87]

[Carr 93]

[Chittister 93]

[Chittister 94]

[Crosby 79]

[Gluch 94]

[Higuera 94]

[Haimes81]

[Haimes91]

[Humphrey 90]

[Kaplan 81]

AFSC/AFLC Acquisition Management Sofhrare Risk Abatement, Air Force
Systems Command and Air Force Logistics Command, Pamphlet 800-45,
September 30,1988.

Brooks, Frederick P. "No Silver Bullet," Computer20, 4 (April 1987):
10-19.

Carr, Marvin J.; Konda, Suresh; Monarch, Ira; Ulrich, Carol; & Walker, Clay.
Taxonomy-Based Risk Identification (CMU/SEI-93-TR-6, ADA266992).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon Universi-
ty, 1993.

Chittister, Clyde & Haimes, Yacov Y. "Risk Associated with Software De-
velopment: A Holistic Framework for Assessment and Management," IEEE
Transactions on Systems, Man, and Cybernetics 23, 3 (May-June1993):
710-723.

Chittister, Clyde & Haimes, Yacov. "Assessment and Management of Soft-
ware Technical Risk," IEEE Transactions on Systems, Man, and Cybernet-
ics 24, 2 (February 1994): 187-202.

Crosby, P.B. Quality Is Free. New York: McGraw-Hill, 1979.

Gluch, David. A Construct for Describing Software Development Risks
(CMU/SEI-94-TR-14). Pittsburgh, Pa.: Software Engineering Institute, Car-
negie Mellon University, 1994.

Higuera, Ronald P.; Dorofee, Audrey J.; Walker, Julie A.; & Williams, Ray
C. Team Risk Management: A New Model for Customer-Supplier Relation-
ships (CMU/SEI-94-SR-005, ADA283987). Pittsburgh, Pa.: Software Engi-
neering Institute, Carnegie Mellon University, 1994.

Haimes, Yacov Y. "Hierarchical Holographic Modeling,"IEEE Transactions
on Systems, Man, and Cybernetics 11, 9 (September 1981): 606-617.
1981.

Haimes, Yacov Y. 'Total Risk Management," Risk Analysis 11, 2 (June
1991): 169-171.

Humphrey, Watts S. Managing the Software Process. New York: Addison-
Wesely Publishing Company, Inc., 1990.

Kaplan, S. & Garrick, B. J. "On the Quantitative Definition of Risk," Risk
Analysis 1,1 (March 1981): 11-27.

CMU/SEI-96-TR-012 47

[Katzenbach 93] Katzenbach, Jon R. & Smith, Douglas K. The Wisdom of Teams. New York:
Harper Business, 1993.

[Kirkpatrick 92]

[Lowrance 76]

[Sisti 94]

[Van Scoy 92]

[House 89]

Kirkpatrick, Robert J.; Walker, Julie; & Firth, Robert. "Software Develop-
ment Risk Management: An SEI Appraisal," Software Engineering Institute
Technical Review '92 (CMU/SEI-92-REV). Pittsburgh, Pa.: Software Engi-
neering Institute, Carnegie Mellon University, 1992.

Lowrance, William W. Of Acceptable Risk: Science and the Determination
of Safety. Los Altos, Ca; William Kaufmann, 1976.

Sisti, Francis J. & Joseph, Sujoe. Software Risk Evaluation Method
CMU/SEI-94-TR-19). Pittsburgh, Pa.: Software Engineering Institute, Car-
negie Mellon University, 1994.

Van Scoy, Roger L. Software Development Risk: Opportunity, Not Problem
(CMU/SEI-92-TR-30, ADA 258743). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 1992

United States House of Representatives Committee on Science, Space,
and Technology, Subcommittee on Investigations and Oversight. Bugs in
the Program: Problems in the Federal Government Computer Software De-
velopment and Regulation. Washington, D.C.: United States Government
Printing Office, 1989.

48
CMU/SEI-96-TR-012

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
1 b. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY

N/A
3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited 2b. DECLASSEFICATION/DOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-96-TR-012

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-96-012

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731 -2116

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/ENS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
11. TITLE (Include Security Classification)

Software Risk Management

12. PERSONAL AUTHOR(S)

Ron Higuera, Yacov P. Haimes

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

June 1996
15. PAGE COUNT

48
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

. continuous risk management, software risk evaluation
software risk management, team risk management

FIELD GROUP SUB. GR.

19. ABS 1RAC1 (continue on reverse if necessary and identify by block number)

This paper presents a holistic vision of the risk-based methodologies for Software Risk Management (SRM) developed
at the Software Engineering Institute (SEI). SRM methodologies address the entire life cycle of software acquisition,
development, and maintenance. This paper is driven by the premise that the ultimate efficacy of the developed meth-
odologies and tools for software engineering is to buy smarter, manage more effectively, identify opportunities for con-
tinuous improvement, use available information and databases more efficiently, improve industry, raise the community's
playing field, and review and evaluate progress. The methodologies are based on seven management principles:
shared product vision, teamwork, global perspective, forward-looking view, open communication, integrated manage-
ment, and continuous process.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED | SAMEASRPTQ DTIC USERS |

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code)

(412)268-7631
22c. OFFICE SYMBOL

ESC/ENS (SEI)

DDFORM 1473. 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED. UNCLASSIFIED

ABSTRACT — continued from page one, block 19

