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Abstract 

Electric fields and potentials of an equilibrated assembly of ions and water molecules adjacent 
to a charged metal surface are calculated as a function of perpendicular distance z from the 
surface from data derived from molecular dynamics trajectories.   The spatial distributions of 
atoms or molecules along direction z are found by ensemble averaging of trajectories followed 
by averaging with a localized function with a well defined length scale.   Two methods were 
used calculate z dependent charge density distributions.   In the first, to be called the atom 
method, the trajectories of charged atoms are averaged.   In the second, called the molecule 
method, a Taylor expansion of charged atom positions relative to molecular centers is per- 
formed and the charge density separated into monopole, dipole, quadrupole, octopole,... 
components.   These distributions are used to calculate the electric potential and in one ex- 
ample to study the progressive loss of structure due to water as the length parameter is 
scanned through the dimension of a water molecule.   This latter result provides a link be- 
tween simulations with detailed atomic modeling of intermolecular interactions and electric 
potentials derived from Gouy-Chapman theory.   Illustrative examples are chosen from sim- 
ulations of aqueous solutions of simple alkali halide electrolytes next to charged and un- 
charged flat metal surfaces.   The smallest system has one ion and 157 water molecules, the 
largest 60 ions and 1576 water molecules. 
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Abstract 

Electric fields and potentials of an equilibrated assembly of ions and water molecules adjacent 

to a charged metal surface are calculated as a function of perpendicular distance z from the 

surface from data derived from molecular dynamics trajectories. The spatial distributions of 

atoms or molecules along direction z are found by ensemble averaging of trajectories followed 

by averaging with a localized function with a well defined length scale. Two methods were used 

calculate z dependent charge density distributions. In the first, to be called the atom method, 

the trajectories of charged atoms arc averaged. In the second, called the molecule method, a 

Taylor expansion of charged atom positions relative to molecular centers is performed and the 

charge density separated into monopole, dipole, quadrupole, octopole,... components. These 

distributions are used to calculate the electric potential and in one example to study the pro- 

gressive loss of structure due to water as the length parameter is scanned through the dimension 



of a water molecule. This latter result provides a link between simulations with detailed atomic 

modeling of intermolecular interactions and electric potentials derived from Gouy-Chapman 

theory. Illustrative examples are chosen from simulations of aqueous solutions of simple alkali 

halide electrolytes next to charged and uncharged flat metal surfaces. The smallest system has 

one ion and 157 water molecules, the largest 60 ions and 1576 water molecules. 



I. INTRODUCTION 

In this paper we describe the calculation of electrostatic fields arising from ions and polar mol- 

ecules in equilibrium distributions in front of charged metal electrodes. The focus is on fields 

within ten water molecule diameters of the electrode-aqueous electrolyte interface. Molecular 

dynamics simulations are used to calculate the trajectories of ions and polar molecules, which 

are time and space averaged in a manner to be described to get time independent distributions 

depending only on the coordinate z perpendicular to the surface. These averaged distributions 

are then used as the source terms in Maxwell's equations to calculate fields and potentials that 

are in a form that can be compared with potentials derived intuitively from electrochemical 

knowledge or the results of non simulation methods like that of Gouy-Chapman-Stern theory 

or Henderson and coworkers more sophisticated correlation function technique . These latter 

methods solve Poisson's equation with the Boltzmann ansatz and calculate from the charge dis- 

tribution the electric field and potential across the double layer region. In our work examples 

are chosen from simulations of aqueous solutions of simple electrolytes next to charged metal 

surfaces that represent frequently encountered situations in adsorption from electric double lay- 

ers.   All sums of electrostatic interactions are evaluated without spatial cut-offs using the fast 
6-9 multipole method of Greengard and coworkers 

The cartoon in Figure 1 depicts the traditional view 10' U of the electric double layer in the 

thermodynamically stable region of electrode potential for a metal with a flat surface. The 

electric potential due to ions is schematically shown at top. We will show that near the surface 

this way of depicting the distance dependence of the potential is wrong because it neglects the 

contribution from oriented water molecules. In Figure 1 the labels IHP and OHP denote the 

inner and outer Helmholtz planes respectively. In the cartoon the compact part of the double 

layer contains an anion in physical contact with a flat surface and a cation two water molecules 
12 

distant from the electrode as in the the model of Bockris, Devanathan and Müller   . The diffuse 



part is symbolized by the labelled arrows which cover the region from the OHP to the bulk 

electrolyte region. 

The calculation of the classical electric field of a set of charges is a well studied problem. Given 

a set of charges the electric field and potential can be found with arbitary high accuracy by a 

number of methods. In molecular dynamics and Monte Carlo simulations Ewald's method has 

been frequently used. However in systems large numbers (N > 200) of charged or polar species, 

Ewald methods are slow (time t «= A/1-5) compared to the fast multipole method (t °= AT) and 

particle-mesh methods13 (t «= N log A/). The molecular dynamics simulations described in this 

paper would not be possible without the use of the fast multipole method to evaluate the long 

range electrostatic fields. Using the fast multipole method we have performed many simulations 

on systems containing 600 charged particles and a few simulations on larger systems containing 

5000 charged particles and their electrostatic images. 

Given that we are able to accurately evaluate long range electrostatic interactions in a molecular 

dynamics simulation, the next step is the calculation of local electric fields from time averaged 

charge distributions. This is the main task of the present paper. We concentrate on two methods 

to calculate time and space averages of charge source functions, and the corresponding electric 

fields and potentials. The first method, to be called the atom charge method, uses the positions 

of the atoms and the charge or partial charge of the atoms to calculate a time independent electric 

charge density. After making averages parallel to the surface this technique yields results 

equivalent to that described by Wilson, Pohorille and Pratt1 ' , based on the derivation given 

in Landau and Lifshitz16. The second method (called the molecule method) considers the system 

in a fundamentally different way. It views the world as a collection of charged or polar mole- 

cules. It uses a Taylor series expansion of charged atom coordinates relative to an origin on the 

molecule to express the electric source in terms of a sequence of electric multipole (monopole, 

dipole, quadrupole, octopole,...)   polarization source densities.   This method follows the de- 



scription given in standard texts such as Jackson17, which is based in part on the lucid de- 

scription in the paper by Russakoff18. By this second method the contribution to the electric 

field and potential of monopole, dipole, quadrupole, octopole,... moments of the molecules can 

be calculated separately in a systematic way, and could in principle be used to input exper- 

imentally measured values of electric multipole moments. Each of the two methods provides 

its own particular insight in the computation of the fields. 

To illustrate the calculation of the fields and potentials we choose examples from on going work 

in simulations of aqueous electrochemical interfaces that typify general classes of behaviour. 

All the systems were composed of water and monovalent ions adjacent to a metal surface. The 

examples chosen from small scale simulations are: a non contact adsorbed Li ion, a contact 

adsorbed I" ion, a neutral solution of Li+ and I" (anion contact adsorbed), a neutral solution of 

Li+ and F, and Li+ and two iodides 21" (cation attracted to contact adsorbed anions). As an 

example of a larger calculation that shows that some of the main features in the small simulations 

are also found in calculations ten times larger is given at the end of the paper. In this example 

we discuss a IM NaCl salt solution in front of a charged electrode. In this simulation the region 

of electrolyte that screens the charge on the electrode and the bulk solution are evident 

In our smallest simulations the cell size (L = 1.862 ran) is too small for us to be confident that 

we can do more than describe the average electric field between the metal and the OHP. The 

decay of the average electric field to zero at the non metal boundary is the result of charge 

neutrality in the immersed electrode model. Consequently in the smaller simulations we focus 

primarily on the interfacial fields within the first three or four water molecules, corresponding 

to a distance up to about one ran from the electrode. In the large simulation with a cell (L = 

3.74 ran) containing 5000 charges19, the distribution of ions from the zone where the screening 

of the charged metal occurs, all the way to the 'bulk' electrolyte is observed. In this case we 

can more confidently interpret the decay of field and potential found in the calculations and 



identify what corresponds to the diffuse region of the electric double layer. Traditionally the 

structure of the compact region where ions contact adsorb is thought of as being static and re- 

sembling a capacitor of atomic separations. Our model permits the ions to move in and out 

freely from the diffuse layer and to contact adsorb and desorb. We note that Henderson and 

coworkers20 in their work solving the Omstein-Zemike equation for the electrode-electrolyte 

interface have shown (as does the work presented here) that there is no sharp division between 

the diffuse and inner layers, in contrast to the ideas conveyed by the pictures in many textbooks. 

We summary the goals of the present work are as follows. First, the calculation of averaged 

electric field and potential for systems of electrochemical interest Second, to contrast the atom 

and molecule methods of calculating charge densities and potentials. Third, to qualitatively 

analyse deviations in the electric potential from the curve for ions in a dielectric fluid interms 

of distribution of solvent and ions near the metal surface. 

We close this section with a brief mention of important parts of the physics that are still missing. 

First there is no feature that permits explicit consideration of the metal surface topography and 

conduction electron densities at the surface. For example, one can go much further and use 

jellium models or jellium with embedded ions but this is beyound the scope of the current study. 

Halley and coworkers have developed theories based on jellium electrode models of the 

charged metal surface and adjacent solution that accounts for aspects of measured capacitance 

vs. potential curves. Cluster calculations have been used to obtain metal-water and metal-ion 

potentials for use in molecular dynamics simulations that introduce aspects of metal surface 

corrugation24"26 ,27"29 ,30"34 ,35"37. Second the are no effects due to electronic polarizability 

or geometric distortions of molecules in the high electric fields of the double layer. 



II. MODELS AND METHODS. 

A. The Immersed Electrode Model. 

When the electrode potential is altered and charge flows onto the electrode, the composition of 

the electrolyte next to the electrode adjusts to screen the new charge on the electrode. For dilute 

solutions (< 0.1 M) a rough estimate of the screening layer thickness is d= le1, where K is the 

Debye-Huckel screening constant. According to the Gouy-Chapman theory the concentration 

of monovalent ions has fallen to e"1 of its 'surface' value at a distance d from the electrode given 

by 

d = 
\ V $ne2nb / 

[2.1] 

Here e is the macroscopic dielectric constant of the solvent, and nfa is the concentration of the 

ions in the bulk. Typical values of d are: 3.1 nm for 0.01 M, and 0.96 ran for 0.1 M. At higher 

salt concentrations outside the range of the derivation of this formula we get 0.55 nm for 0.3 

M, and 0.31 nm for 1 M salt solutions. The formula provides some rough measure perhaps even 

within a factor 2 (the effective dielectric constant of water near the electrode may be ten times 

smaller than in bulk38) of the double layer thickness even though the basis of the derivation is 

not valid. These brief considerations suggest we can use molecular dynamics to simulate an 

immersed electrode when the salt concentration is about 0.3 M or larger by including the adja- 

cent electrolyte region out to a thickness of about ten water molecules. In this paper we do this 

first for a small cell about five water molecules thick, expecting only to be able to model the 

so-called inner part of the double layer where contact adsorption occurs. Later we study a cell 

about 10 waters thick and are able to identify a region in space that has bulk-like properties, 

lending support to the immersed electrode model as we use it.   Our immersed electrode model 



consists of a layer of electrolyte between two walls. The wall on the left carries no charge it 

is simply a restraining wall and ideally would allow a continuous transition to the bulk 

electrolyte region. The complete system of electrolyte and electrode (always on the right hand 

side in all the Figures of this paper) is neutral. The approach is useful because it reduces the 

number of water molecules in the calculation, and because there is only one metal surface, there 

is only one electrostatic image plane. Finally we point out that in our system the electrical 

properties of the system are due to three layers. The vacuum half space occupying: -«. < z < - 

Vih; the xy periodically replicated simulation cells: -Vih< z < V2L; and the metal half space: ViL 
39 < z < °o. More details and discussion of the immersed electrode model are found elsewhere   . 

B. Models for water and ions. 

In the smaller scale simulations reported here we used the parameters of the Stillinger ' ST2 

water model and the interaction parameters with alkali metal ions and halide ions developed by 

Heinzinger and coworkers 24. The ST2 water molecule model consists of a central oxygen atom 

surrounded by two hydrogen atoms and two massless point charges (PC) in a rigid tetrahedral- 

like arrangement.   The charges on the particles are q =0.23570lel, q   =-q , and q   =0.   The 
H rC rl U 

alkali metal and halide ions are non-polarizable Lennard-Jones atoms with point mass and 

charge. The atom-atom interaction parameters are taken from Heinzinger's review . In the 

larger simulations with a 3.74 nm wide cell containing IM NaCl solution the SPCE water model 

was used primarily because this water model has fewer charges (three compared to four for ST2) 

and requires less time to compute the electrostatics. The Lennard-Jones potential between the 

atoms of each molecule was smoothly cut-off at distances of R = 0.68 nm. 

C. Molecule-Wall and Ion-Wall Potentials. 

There are two walls. The simplest is the uncharged restraining non metallic wall on the left hand 

side in Figures 2 - 15. It restrains the fluid by a 9-3 potential. The metal wall, on the right hand 

side, is represented by two superimposed potentials.   The first is a 9 - 3 potential to represent 



both the Pauli repulsion and dispersive attractive interactions. The second potential is an 

electrostatic image potential that describes the interaction between a charge in the electrolyte and 

the conduction electrons of the metal. In the calculations described here the image plane and 

origin plane of the 9-3 potential were coincident This is equivalent to choosing the image plane 

and the nuclear plane of the metal surface to be the same. This is acceptable in our scheme 

because the Lennard-Jones core parameters a are all large and the 'thickness' of the repulsive 

wall is also large (ca. 0.247 nm). The atom-surface interaction parameters describing interaction 
42 

with nonconduction electrons were chosen to be the same as those of Lee at al , 

A=17.447xl0"6 kJ(nm)6/mole and B=76.144xl0"3 kJ(nm)3/mole for O, I ion and Li ion. The A 

and B parameters for H and PC were set to zero for water molecules. Note that in this model 

the adsorption well depths of the Lennard-Jones wall potentials is a few kcal/mole, similar to 

kT at room temperature, and therefore pretty whimpy. 

D. Advantages of the Fast Multipole Method. 

Simulations of aqueous electrolyte solutions using molecular dynamics and Monte Carlo meth- 

ods require the evaluation of the superimposed Coulomb fields of thousands particles (a 5 nm 

cube of water contains about 12,500 atoms). In this paper we use the fast multipole method 

(fmm) of Greengard and Rokhlin6"9 to evaluate the electric fields acting on the charged particles 

during the computer simulation. A number of methods are in use to calculate or approximate 

long range Coulomb fields.  Friedmann and Honig43 have surveyed some of empirical dielectric 
44 

recipes in use in biological simulations. For example recipes like the Hingerty function and 

other distance dependent dielectric 'constants' 45, 46 have been used in simulations of proteins. 

Direct summation with a cut off after about 1.00 nm is common in many commercially available 

codes like Charmm47 and Amber45' 48. There are a number of plane wise summation methods 

from crystal physics49. For homogeneous systems the reaction field method of Barker is 

simple and easy to use.  This method is not easily applied to liquid-solid interfaces though at- 



tempts to extend it have been described 51' 52. The Ewald method 53~55 has been extensively 

used when rigor and accuracy are needed. Ewald's summation crudely applied is proportional 

to N2 and at best N3/2 where N is the number of charges. The fast multipole method (fmm) 

developed by Greengard and Rokhlin 6"9 is an order N algorithm, and consequently is the only 

viable method for very large simulations. The fmm technique is attractive because of the ease 

of implementation of a variety of boundary conditions such as periodic, Dirichlet, Neumann and 

mixed boundaries and because an adaptive version of the algorithm is available in which re- 

gions of low or no charge density are not subdivided when the charge count falls below a 

specified integer. 

10 



III. ELECTROSTATICS OF ELECTROCHEMICAL CELLS 

There are many ways that electric fields and potentials can be calculated. For example, at every 

time step we use the fast multipole method to compute the electric forces acting on every 

charged particle in the system. We could take the electric field evaluated at a specified particle, 

say an O atom, at a given instant of time and then either allow the molecule to move and average 

the field at regular intervals or confine the atom to a spatial well that would then be transported 

so as to sample all space. This would clearly be useful for interpreting experiments like NMR, 

but is not in the spirit of Gouy-Chapman theory which attempts to solve the Poisson equation 

using a Maxwell-Boltzmann ansatz for local charge fluctuations. It is not pursued further here. 

Instead in this section we describe two methods for getting source distributions to be used to 

calculate averaged electric fields and potentials for comparison with other theoretical methods 

which are in the spirit of Gouy-Chapman approach. The first method assumes that the atoms 

are fundamental objects and uses the charge or partial charge on each atom and the three space 

coordinates of each atom recorded at regular time separations (usually 0.5 or 1 ps) as input into 

the generation of a charged source distribution. We call this the atom approach. The only source 

term is the charge density function in vacuum. Without any local spatial averaging this point 

of view is similar to that followed by Wilson, Pohorille, and Pratt14, 15. The second way, to 

be called the molecule method, assumes that the system is a collection of molecules that have 

internal electrical structure. These are inherently more complex objects than atoms. To specify 

the electrical properties we need space coordinates, orientations and electrostatic multipole mo- 

ments for each molecule in the system. The approach we follow can be found in the clearly 

written article by Russakoff18, or the treatise by de Groot and Suttorp56, both sets of authors 

derive a set of macroscopic equations from Maxwell's equations in vacuum for point charged 
i n 

particles. Their approach is summarized in a number of standard texts . We note that though 

the dynamics are uniquely defined by the models we use, the time independent average fields 



and potentials that are calculated are not unique because we can broaden the point charge dis- 

tributions inside the ions and molecules in a spherically symetric way and so long as the broaden 

distributions stay well inside the Lennard-Jones spheres (so that distributions on different mol- 

ecules do not overlap) the the dynamics are unchanged. This means we can smooth some of the 

averages within limits set by geometry of the models and the energetics of collisions. This point 

was clearly recognized by Wilson, Pohorille and Pratt14' 57 in their interesting discussion of the 

properties of the vacuum-water surface. 

The atom method uses the distribution of point charges in vacuum. Consider the set of point 

charges without regard for whether they originate from neutral water molecules or charged ions. 

In this case the source term for Maxwell fields in vacuum is the microscopic charge density 

p,(r,t) = pmetal(r,t) + patent). t3J] 

Here 

Pmemi(r,t) = pmetaI(x,y,t)b(z - VlL), [3-2] 

and 

Patom,(r,0=^^5(r-r/0•), [3-3] 
;=i 

where Naloms is the number of atoms in the simulation cell and r, is the position of the j-th atom. 

The surface charge density on the metal pmMj,t) is time dependent because it depends on the 

position of the atomic charges.  All the charge in the system is described by p,. 

12 



We can subject this charge density to local space averaging using a test function. Let/(r) be a 

real positive function localized around r = 0.  We define the local spatial average of F(r, t) by 

<F(r, /)> = jdr'f(r')F(r - r', t). &A] 

The time average 

lim     ,   r' 
F(r)= \-\<F{r,t')>df t3-5] 

t —> °o     •'o 

can be replaced by an average over configurations at different times 

^configs 

F(r)=—i— Y <F(r, *,-)>. 
"configs     . _ j 

[3.6] 

The systems we consider have translational invariance in the xy plane. The function f (r) is a 

function of z only. In light of this we consider only test functions which are functions of z. 

We use two test functions, a bin-like test function 

fir)=,
1" • ,2|<*s { 0        ,    \z\  > Vig 

13 



and a localized one dimensional Gaussian function 

Az) = (KgYl2e-™. [3-8] 

The metal surface charge density ^ta{x,y,t) is replaced by the averaged image charge density 

which is a constant. The metal image charge is denoted by pw,,. After we have averaged over 

the many spatial configurations from the molecular dynamics calculation we obtain a z de- 

pendent charge density profile given by 

P/W = Pmetafiiz - VlL) + Patoms(z) [3-9] 

where as in Eq.(3.6) 

*"configs 

nconfigs    ^-J 

After substituting explicitly for the test function we get 

[3.10] 

"configs        "atoms 

rwO^^T^X    5>*z-*;<*» [3J1] 
^configs     (.= 1 .     j 

The electric field is given directly by integrating the vacuum Maxwell's equation. Since we have 

already averaged over the xy plane the electric field normal to the surface is given by 

14 



%(z)=-^pz'p;(z') [3-12] 

The electric potential is given by a second integration 

Ö,(z) = --i-f dz%,{z') [3.13] 

The second approach views the system as a collection of molecules (labels n, positions r„) 

composed of atoms (label b, position i*. charge qnb). The charge density of the system is: 

P//(r,0 = P*rt,/(*0'.05(z - ViL) + pmol(r,t) [3-14] 

where pmela, is the same charge density on the metal surface as in the atomic method, and 

P,no/0v) = Xp«(r<f)- [3-15] 

«=i 

Here AL, is the total number of molecules in the system, 

p„(r,/) = ]T<u5(r-r„-rnft), [3-16] 
6=1 

15 



is the charge density of the n th molecule. The number of atoms in the n th molecule is AL-, 

and r„i is the position of the charge q„b measured from the center r„ of the n th molecule. 

Next we perform explicit local spatial averaging with a test function and take the ensemble av- 

erage. These steps are formally the same as described for the atom method. For each molecule 

label n we take the average with respect to the test function/(z), then make a Taylor expansion 

of atomic coordinates i\* relative to the molecular centers rm. This yields the following ex- 

pression for the averaged charge density by the molecule method 

p„Jz) = p(z) - -|- Pz{z) + -4" QJ*) ~ TT °*& + - [3"17] 
az dz dz 

where 

Nconfigs     AL,/ Nm 

p(z)=^— Y    y Az-zJt;))S\qmb [3-18] 
configs f=l     m=\ b=\ 

^configs     i^mol ^ma 

Pz{z) = -j^— Y    y f(z - zm(ti)) Yqmbzmb(ti) [3-19] 
co^«J   iT\   £T\ b=\ 

Konfus AL, ty„i 

eH(z)=—*— y v^y /(z-zj/,-)) y^z^oz^/,-) 
""^    ,-=1 m=\ 6=1 

[3.20] 
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^configs 

ozzz(z)=-^— y ±- y & - Z„A) ) x^*z'"*(r')z'"6(r'')z"ifc(r'') [3-21] 

Here the charge density in the second method has been resolved into contributions from 

monopoles (ions only in this paper), dipoles, quadrupoles, octopoles, and higher order terms. 

In principle, experimental moments can be substituted for dipoles, quadrupoles,.. where these 

are known. 

In the following sections we report simulations designed to typify general electrochemical sys- 

tems. The distributions displayed in most of the Figures were calculated using a one dimensional 

binning function with width 0.004655 nm. In one case to be described in next section we discuss 

the effect of changing the size of the region averaged from smaller (.03 nm) to larger than the 

dimension of a water molecule. 

17 



IV. ALKALI METAL ION 

This section describes molecular dynamics calculations with one Li cation and 157 ST2 water 

molecules against a metal surface. The simulation cell is periodically replicated in the xy plane 

parallel to the metal surface. The simulation was run for 2500 ps, the first 100 ps of which were 

used to equilibrate the system. The charge on the electrode is the image charge -lei. At any 

instant this charge is not uniformily distributed across the electrode but localized on the surface 

in such a way as to produce the same electric field and potential as the electrostatic image of 

the lithium ion and all the water moleci'les. The field acting on the lithium ion comes from all 

the water molecules in the cell, all water and ions in xy periodically replicated cells, and all of 

the electrostatic images of the contents of all cells in the image plane of the metal. We 

emphasise again that in this calculation as in all the others descibed in this paper no electrostatic 

interaction is truncated. Figures 2 and 3 show the probability density profiles averaged over the 

xy direction and electrical potential calculated by the two ways described in section III. Note 

that in Figure 2 the probability of finding the ion and water have scales differing by fifty. Also 

plotted in Figure 2 is the total charge density by the atomic method. The bin size is L/400 = 

0.004655 nm where L is the edge length of the simulation cell. 

In Figure 2 we see that the Li+ ion mass center mapped out a diffuse-like region between -0.6 

and 0.4 nm. The lithium Li+ ion has the smallest ionic radius of all the monovalent cations. 

Consequently it's hydration shell is very strongly bound making it more difficult for this ion to 

contact adsorb on the electrode. The asymmetry of the distribution may well be affected by the 

small width of the cell and consequently no significance is attached to its shape other than it is 

diffuse in nature. There may possibly be an hydrophobic plating of the ion to the left hand 

interface. On the metal side the ion rarely approached closer than 0.3 nm to the repulsive part 

of the wall potential shown by dashed line at 0.68 nm in Figure 2. This is approximately the 

average of the separate a parameters for Li+ and 0_ST2 suggesting that lithium ion remains fully 



hydrated at the metal surface, and that though surface water restricts the approach of the ion to 

the metal it does not exclude it. This behaviour of lithium ion is more like that postulated in 

the Grahame's picture of the double layer58, than say the Bockris model . To confirm such 

behaviour would require extending the simulation over many nanoseconds, or performing um- 

brella sampling59. This particular aspect of the problem is not pursued further here. 

The water profile shows some new structure not seen in water without ions ' . Most inter- 

esting is the leading peak (closest to the metal surface) at ca. 0.68 nm due to a few localized 

water molecules. The orientation of these localized water molecules can be ascertained from the 

H_ST2 and PC_ST2 probability distributions (not shown here). The protons on these molecules 

give rise the distinct peak at ca. 0.75 nm in the H_ST2 distribution. In the PC_ST2 distribution 

(not shown) there is peak at ca. 0.625 nm that is enhanced more than the second peak in the 

H_ST2 profile which is at ca. 0.6 nm. The first water peak at ca. 0.68 nm lies between the first 

H and PC peaks measured from the metal surface. It appears therefore that some of the localized 

water molecules have one proton pointing at the electrode. 

The atomic charge density profile in Figure 2 is dominated by neutral water. The large oscil- 

lation centered near 0.70 nm is due to partially oriented water. The main positive peak at ca. 

0.75 nm is due to protons attracted to the metal by their images and the image field of the lithium 

ion. There are smaller oscillations in charge profile further from the surface that are more clearly 

seen if the distribution is smoothed. These tend to follow the oscillations in the water density 

probability in Figure 2. The actual lithium charge density is buried under the contribution from 

the water when the bin size is 0.004655 nm. 

Figure 3 shows the electric potential across the cell calculated by the atomic charge method, and 

by the molecular method with systematic inclusion of higher electrostatic multipoles. For clarity 

the dashed vertical line denoting the point z = 0.628 nm where the wall potential goes through 

zero has been omitted except for die tick mark on the x axis.   Since all the curves go off scale 

19 



near z = 0.682 ran all the data for z > 0.4 ran have been plotted again on a larger scale and are 

shown in the right hand panel. Note too that in this right hand panel the monopole curve m 

(broken curve) is scaled by 0.1 to distinguish it from the other curves. The notation in the fig- 

ures is m = monopole, d = dipole, q = quadrupole. When m and d contributions are combined 

the curve is labelled m+d. When m, d and q contributions are combined the curve is labelled 

m+d+q. Only when three multipoles are included (m+d+q curve) do the potentials calculated 

by the two methods agree reasonably. Due to the small size of the bin it is necessary to include 

more higher multipoles before the atom and molecular methods agree quantitatively. The 

monopole contribution m (dashed line in Figure 3) due to lithium ion alone drops monotonically 

as expected for the potential inside a capacitor where the charge on the left is in a diffuse layer 

spatially separate from the charge on the right plate (metal) at z = 0.931 ran. Adding the dipole 

completely changes the potential (see m+d curve). The water molecules very effectively screen 

the field inside the capacitor, except for the region z > 0.68 ran where the water distribution 

drops rapidly to zero. Adding the quadrupole (also from water only) term brings the atomic and 

molecular calculations into some measure of agreement (note that the atomic and m+d+q po- 

tentials are off set by 0.04 in Figure 3). The quadrupole contribution to the potential is a neg- 

ative constant in the region away from the wall potential. This occurs because its contribution 

to the charge <pmo((iy)> contains a double derivative in space coordinates. The differences are 

greatest at the surfaces where the atomic method traces charge density smoothly whereas the 

molecular method, based on an expansion about molecular centers, requires many high multi- 

poles to describe the field. 

The variation in potential is rapid near the metal and Figure 3 shows this variation for the atomic 

and m+d+q approximation scaled by a factor 0.1. After adjusting for the offset of 0.04 the two 

curves become identical for z > 0.8 ran as expected for a region containing no molecules or ions. 

Between 0.6 and 0.75nm the difference between the methods are largest due the difference in 
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source terms. The dangers of omitting higher multipole was clearly pointed out by Wilson, 

Pororille and Pratt14' 57 for water without ions. 

Finally we return to the asymmetry in the lithium ion distribution. There are effects due to 

system size and ion-ion correlation. We have repeated some of the calculations with two lithium 

ions and 598 water_ST2 molecules for a few hundreds of picoseconds. The water structures 

appear almost exactly as in the smaller simulations. The lithium probability p(z) for the two ion 

system is spread across most of the cell in a diffuse zone with a moderate bias towards the metal 

side of the cell. This result is satisfying in that no peculiar or pathological features are revealed 

implying that the smaller calculations can give usefully insight into water structure within about 

two water layers (ca. 0.6 nm from the point where the wall potential becomes repulsive at z=0.68 

nm.). 

We close this section with a discussion of changing the length scale over which the test function 

averaging is performed. The lithium system is chosen because the ion occupies a diffuse region 

and does not contact adsorb on the electrode. The initial smearing of ion charge by the localized 

gaussian average does not overlap the metal surface region so that changes near the metal reflect 

averaging the local distributions. Figure 4 shows the result of changing the size of the length 

scale when gaussian averaging is performed. It shows that as the averaging length scale in- 

creases the atom potential loses features at the scale of a water molecule. The parameter g (in 

nm units) is the width of the function fg(z) defined in Eqn.(3.8). There are two families of curves, 

the broken lines are for the atom (method I) potential with g = .03, .1, .3 and 1.0. Though hardly 

apparant because of the factor x20 in ordinate scale, the atom potential with g = .03 is close in 

numerical value to the atomic potential shown previously by the dotted curve in Figure 3. The 

g = 1.0 is extreme because it is close to half the box edge ViL = .931 nm. The behaviour of the 

g = 1.0 monopole shows there is some smeared charge beyond the left hand wall. What Figure 

4 demonstrates is that as the size of die region averaged is increased from g = .03 nm (.1 x water 



molecule dimension) to g = 1.0 nm ( 3 x water molecule dimension) the structure in the electric 

potential near the surface due to the water profile is lost. The total potential becomes monotonic 

and resembles the family of monopole potential curves calculated using the monopole charge 

distribution. Since the component of the water dipole perpendicular to the surface is not aver- 

aged to zero the atom potential at the surface remains smaller in magnitude. The macroscopic 

dielectric polarization remains and reduces the value of the surface potential by roughly an order 

of magnitude (curves for g = .3 nm). As expected the monopole potentials are not as sensitive 

to the value of the width g as the atomic potentials. This is an important qualitative result be- 

cause it shows the transition from the microscopic scale, where surface water oscillatory struc- 

ture dominates the potential, to macroscopic scale behaviour where water contributes a simple 

scaling of the electric potential. 
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V. IODIDE ION 

In this section we describe simulations for one iodide anion I" and 157 water molecules inter- 

acting with a metal surface. In practise it was found not necessary to run the simulation beyond 

500 ps because the ion adsorbed on the metal after approximately 10 ps and remained there. 

However for consistency with the other simulations reported in this paper the calculation was 

allowed to run for 1000 ps. As in the case of lithium the first 100 ps were used to allow the 

system to equilibrate and were excluded from any statistical analyses. When the ions and water 

are described by the Heinzinger parameter set24 we have shown in previous publications that: 

i) in fields of one GV/m all the halide ions except fluoride contact adsorbed on non-metal (sur- 

face with no electrostatic image interactions) electrodes61, and ii) that similar behaviour occurred 

for the model of the metal used here when there was an unscreened external field of 1 GV/m 

pulling the ion to the surface   . 

Figures 5 and 6 show the probability density distributions and electric potential for the iodide 

system. Figure 5 shows the iodide ion distribution peaked at ca. 0.7 nm closer to the electrode 

than where the wall potential becomes positive at 0.68 nm. Compared to the previous example 

(lithium ion Figure 2) there is less structure in the water and in the H_ST2 and PC_ST2 com- 

ponent distributions (not shown). In fact apart from a small peak at 0.65 nm the distribution 

resembles water without ions in zero applied field39, 62. The atomic charge distribution displays 

a medium positive peak at ca. 0.65 nm (H_ST2) and two negative peaks at ca. 0.7 nm (iodide), 

and ca. 0.75 nm (PC_ST2). 

The Figure 6 shows the electric potential calculated by the two methods. All components go 

off scale near z - 0.682 nm, and are plotted for z > 0.65 nm on a reduced scale (x0.2 in the right 

hand panel). The monopole potential m (broken curve) due to the iodide alone, is zero except 

close to the wall where the iodide is localized. There it changes swiftly from 0 to a high positive 

value corresponding to an electric field E.    of approximately -5 GV/m.   The absense of an 
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electric field due to iodide ions means there is little or no reaction from the water molecules and 

they are less ordered between -0.6 nm and 0.4 nm, and what ordering there is comes from the 

presence of the surfaces. In Figure 6 the m+d curve for combined monopole and dipole poten- 

tials shows a weaker variation compared to lithium ion. This means that before z = 0.4 nm the 

charge on the electrode is completely shielded. The curves of the atomic and m+d+q potentials 

overlap well for z < 0.4 nm due primarily to the water quadrupole contribution. 
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VI. NEUTRAL SOLUTIONS. POTENTIAL OF ZERO CHARGE 

In this section we compute the properties of a neutral solution of Lil comprised of one Li ion 

and one I ion and 156 water molecules in the simulation cell, and compare it to the case of LiF 

with the same number of water molecules. There is no net attractive electric field on either ion 

because the total electroststic image charge on the metal is zero. The two systems are quite 

different because iodide contact adsorbs on the metal and creates a surface localized electric 

dipole and field. Because the aqueous phase is neutral this simulation models a system at the 

potential of zero charge. This potential does not have to be zero, it will be very small if the 

charge distribution in the aqueous subphase is everywhere almost zero. The potential of zero 

charge is considered the natural reference point from which to measure electrode potentials. 

The measurement of change of surface tension of liquid metals with electrode potential is the 

only reliable direct method63 of determining the PZC. The calculation of electric field and po- 

tential using the atom charge distribution have been published so in this section we focus on 

comparing the atom calculations with the molecular method to gain further insight. Figure 7 

displays the most important density profiles for the Lil system, and Figure 8 shows the various 

components of the electric potential. 

In Figure 8 we note that the monopole potential m drops steeply as it passes through the diffuse 

layer of lithium ion (much as it did in the case of one lithium ion) because the iodide adsorbed 

on the metal acts like the second plate in a capacitor. The m+d curve shows that the water 

dipoles orient in the ion field and shield the ions from each other accept close to the metal. 

As in the previous two examples Hie water quadrupole shifts Hie electric potential to lower values 

by a constant amount. Note that the shift in potential from vacuum to metal, which measures 

the potential of zero charge, depends on the net dipole moment of the system . The atomic 

and molecular methods give similar results. Closer results requires the inclusion of octopole and 

higher moments which contribute most near the surface. 
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We have also performed simulations on LiF under the same conditions that mimic the potential 

of zero charge. Figure 9 shows the probability distributions. In neutral LiF solution in contrast 

to Lil solution neither ion adsorbs on the electrode and both are comingled into a diffuse layer 

that is predominantly neutral across the system. The water distribution looks like water between 

uncharged plates. Figure 10 displays the electric potentials. As expected the contact potential 

was calculated to close to zero since the net dipole moment is very small. The monopole po- 

tential m shows a minimum related to the apparant bimodal distribution of the lithium ion. The 

water dipole orients to reduce the local electric field to a small value, with the result the curve 

m+d shows weak changes across the film. Adding the quadrupole in m+d+q shifts the whole 

potential downwards bringing it into close correspondence with the result of the atomic method 

of calculation. For z < 0.4 ran the atomic and m+d+q potentials are similar in shape and value. 

Higher multipole contribution to the molecular method are needed to bring it into closer corre- 

spondence to the atom method near the metal surface. 
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VII. LITHIUM CATION 'COADSORBED* WITH IODIDE IONS. 

In this simulation we explore another important aspect of the adsorption of ions on metal 

electrodes, namely the ability of strong contact adsorbers like iodide ions I" to adsorb on posi- 

tively charged electrodes in sufficent excess to change the sign of the charge at the interface as 

observed by an ion located in the diffuse layer. In the case under consideration cations will be 

attracted out of the diffuse layer to compensate the excess negative charge at the interface. The 

interface can develope a layered structure of alternating charges. First there is positively charged 

metal, then a narrow layer of contact adsorbed negative ions, and then a layer of compensating 

cations. In real systems this compensating layer may be part of a diffuse layer or it could be a 

separate structure. The coadsorption of the cations is required to maintain overall charge neu- 

trality. It is in this sense that we refer to the cations as coadsorbed. Phenomena of this type 

occur frequently in electrochemistry. In a previous paper we very briefly described results for 

this system in an external applied field corresponding to uncompensated charge on the immersed 

electrode. In the present calculation the charge on the electrode due to electrostaic images is 

+lel. The presence of two adsorbed iodides creates an anisotropic surface electric field and some 

simulations were run for 3 ns to improve the cation statistics. Even though only small changes 

in the distribution were observed due to configurations accumulated at later times, we regard the 

calculated distributions for the cation as being approximate. A prelimary account of the proba- 

bility distributions of this simulation has been published39. This is the first report of the po- 

tentials across this cell. 

Figure 11 shows the probability density profiles for selected species in solution. There are some 

similarities in the results for water and die lithium ion for this system and the one discussed in 

the last section. In particular the water looks quite unstructured compared to hydrated ions, and 

the Li+ ion is bimodal. The I" ion distribution is sharper because the electrode is positively 

charged. 
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The initial configuration was a random arrangement of ions and water on a cubic lattice. Both 

the iodides adsorbed within 50 ps. Note that the iodide distribution is localized at the surface 

as in the case of one iodide, and the lithium is more diffuse than in the case of a single lithium 

in the field of its own electrostatic image charge. Except for slightly accentuated broad struc- 

tures in the range 0.4 to 0.6 nm, the water distribution resembles the distribution already calcu- 

lated for zero applied field62. In particular we note that there are no new peaks near 0.65 nm 

indicative of localized surface water. The proton H_ST2 and point charge PC_ST2 components 

have more structure near the metal than in zero field. This is to be expected since they are 

charged and the field between them and their images is unscreened. The atomic charge density 

has a deep minimum at ca. 0.7 nm due to iodide and a shoulder at ca. 0.75 nm due to the 

PC_ST2. 

Figure 12 shows the electric potential calculated using the two methods. Starting from the left 

the monopole potential first rises as it passes through the lithium layer, and then drops rapidly 

as it approaches the sheet of adsorbed iodide, finally it turns upward because the electrode carries 

a net positive image charge. Apart from the upward turn near the metal this monopole behaviour 

is qualitatively similar to that depicted for the model in Figure 1. Our assertion that the tradi- 

tional models neglect significant contributions from the water can be seen by examination of 

Figure 12. There is significant structure in the electric potential calculated by either method 

induced by orientation and packing distribution of the waters at the surface. The monopole term 

is completely compensated (-0.65 < z < 0.4 nm) by the dipole potential from the water molecules 

as shown by curve m+d until next to the metal surface where water is more strongly oriented 

and where the water supply drops rapidly to zero. From 0.4 nm to 0.65 nm the atomic potential 

closely follows that of one iodide (see Figure 6). On the right hand side of Figure 12 we show 

the potentials atomic (atm), monopole m and m+d+q scaled by a factor 0.1. 



Scale up is likely to be an important issue since the size of the system may be too small to allow 

the diffuse layer lithium ion enough space to distribute without interference from the restraining 

wall at z=-0.931 nm. However conclusions drawn concerning the behaviour of ions within 1.0 

nm of the metal surface will not be very sensitive to the position of the restraining wall. An 

example of a large system with intact double layer is discussed next. 
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VIII. IM NaCI SOLUTION. 

In this final example we describe a simulation with approximately 1600 water molecules and 

ions in a box with edge length L = 3.724 nm. The simulation cell contains 32 Na+ ions, 28 

Cl" ions, and 1576 water molecules. The NaCI concentration is about IM. The electrostatic 

image charge on the electrode surface due to the difference in number of positive over negative 

ions is -4lel or 0.046 C m"2. This essentially the same charge density as in all the earlier smaller 

simulations with non zero electrode charge density. Computer time constraints dictated the use 

of a simple water model. For this reason we chose the SPCE water model (three charged mass 

points66) over the ST2 water model (two charged mass points, two charged zero mass points, 

one uncharged mass point). The NaCI parameters67 used are those appropriate for SPCE water. 

We also experimented with simulations run at elevated temperatures to increase the diffusion rate 

of the ions in order to get better statistics. In this calculation the temperature was 30 °C. The 

simulation was run for 840 ps with the first 100 ps used to equilibrate the system. On a dedi- 

cated IBM RS6000 model 550 workstation the calculation takes approximately 10 to 12 weeks. 

Figure 13 shows the probability density profiles for the water proton, water mass center, Na 

ions and Cf ions. The anion distribution (broken line) has been smoothed to permit it to be 

distinguished from the cation. Also shown rising monotonically from the left are the integrals 

of the ion densities. The near coincidence of the integrals for z < 0.7 nm shows that the 

electrolyte is approximately charge neutral. For z > 0.7 nm the integrated densities systemat- 

ically diverge as expected for a transition from the locally neutral 'bulk' electrolyte into the 

'diffuse' part of the electric double layer where screening occurs. At z = 1.0 nm the divergence 

in the integrated densities equals the largest previous difference in the two curves implying that 

the region z > 1.0 nm corresponds to solution shielding the charge on the metal. The Na ion 

distribution shows well defined structure in the form of a broad peak at ca. 1.1 nm, and a sharp 

peak at 1.4 nm.  The water and proton distributions appear flat for Izl < 0.8 nm.  On the metal 
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side the water probability distribution has peaks at 0.9 nm, 1.2 nm, and a strong asymetric peak 

at 1.6 nm. This latter feature appears to be composite being the superposition of a broad feature 

at 1.5 nm and a narrow peak at 1.6 nm. The peaks in the proton distribution are at 0.9 nm, 1.2 

nm, 1.55 nm, and 1.7 nm. The last peak at ca. 1.7 nm comes from protons in water OH bonds 

pointing at the metal. 

Figure 14 shows the atomic charge density for a bin function with width 0.004655 nm ( or 

L/800). We note that the charge density appears flat for Izl < 0.8 nm. The contribution from 

the ionic charge for z > 0.8 nm is not evident because the charge on the waters dominates. The 

electric field was obtained by integration from -~> to position z. The field is flat with small 

variations around zero in the region Izl < 0.8 nm. Near the metal the electric field undergoes a 

series of rapid oscillations as it vears upwards. These oscillations are due to the water structure 

at the interface. The general rise is due to the excess Na+ charge in the double layer. 

Figure 15 shows the potential calculated using the atom method, and the components of the 

potential calculated by the molecule method. The contact potential is about -2.0 V, and as in 

the smaller simulations the potential in the 'bulk-like' zone comes from the water quadrupole. 

The broken curve labeled m is that from the ionic charge. If the system were truely neutral then 

curve m would be flat and zero all the way to the beginning of the diffuse layer. Clearly the 

small charge imbalances seen in Figure 13 do affect shape of the potential curve and may be 

an exacting criterion with which to judge these larger simulations. The transition to monotonic 

decrease starting near z = 0.7 nm is another indicator of where the diffuse layer begins in this 

simulation. Note that m+d shows that the dipole potential completely compensates the 

monopole. Including the quadrupole to give m+d+q shifts the core region downwards by 3 V 

and brings the molecular calculation of potential into correspondence with the atom method of 

calculation. The molecular method has larger extrema near die surface compared to the atom 

method.   The reason for this is the very small bin size and the consequential need to include 

31 



many high order multipoles in the molecule method. However as required the contact potential 

is the same in each case. Note also that adding the quadrupole term does not change the contact 

potential. 

In summary this larger simulation has verified that water structure near walls is not an artifact 

of small size. In IM NaCl the double layer is about 1 nm thick and encompasses about three 

layers of water. These water layers can significantly affect the distribution of ions near the metal 

creating features in the probability distributions that are not describable in the Gouy-Chapman- 

Stern model. 
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IX. CONCLUSIONS 

In this paper we have shown how the results of molecular dynamics simulations performed at 

constant N,V,T can be used to calculate the electrostatic field and potential across an electric 

double layer. Apart from usual molecular dynamics assumptions we used a model for an im- 

mersed electrode in which electrode charge was equal to the image charge on the metal. All 

electrostatics were summed without trunkating the long range coulomb interaction using the fast 

multipole method. The charge distribution in the system was analysed by two methods. One 

was based on the charges in atoms in vacuum, the other was based on molecules and required 

expanding the positions of charge inside a molecule about an origin on each molecule. The later 

method provided a natural route for decomposing fields into monopole and higher order multi- 

pole components. We also showed, by increasing the length scale over which local average is 

taken, how microscopic structure due to the water probability distribution is systematically 

washed away leaving only the macroscopic effect of the water dielectric polarization on the 

electric surface potential. We also showed using the results of a calculation almost an order of 

magnitude larger in number of water molecules, that the main features evident in smaller cal- 

culations of the probability profiles for water near charged metal surfaces are not greatly affected 

by scale up. This implies that small simulations involving a few hundred water molecules pro- 

vide a useful starting point for studying double layer properties. 

In a series of examples starting with single ions in water, and then to increasingly more complex 

cases we explored fields close to the surface and across double layers in some electrochemically 

interesting examples. The case of lithium was chosen to explore some of the consequences of 

averaging over length scales from smaller to larger than a water molecule. In die final example 

of IM NaCl we demonstrated the coexistence of bulk and double layer regions in equilibrium 

in the same simulation. Since the system contained sixty ions there is a ample correlation be- 

tween ions and amongst ion and water molecules. 
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OHP 

Efectri: potential; 

Figure 1 Schematic diagram of the traditional view of the electric double layer showing a flat 
negatively charged electrode with contact adsorbed anion and fully hydrated cations at the outer 
Helmholtz plane (OHP). Electric potential shown schematically at the top. 
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Figure 2. Density profiles for lithium cation Li+ ion, 157 ST2 waters and the total atomic charge 
density p near an immersed electrode. Image charge on metal -1 is screened by the Li+ ion. 
Metal electrode on right hand side, restraining wall on the left. Image plane at z = 0.931 nm. 
Wall potentials go through zero at 1x1=0.682 nm.   Simulation from 100 ps to 2500 ps. 
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Figure 3 Potential drop across the system Li+ ion and 157 ST2 waters in the immersed electrode 
model Calculations using atom and molecule methods. Bin size 0.004655 nm. Molecule 
method- m monopole only, m+d monopole and dipole, m+d+q monopole dipole and quadrupole. 
The right side panel shows the potentials on larger scale for z > 0.4 nm, with the monopole 
scaled by 0.1. Image charge on metal -1 is screened by the Li+ ion. Metal electrode on right 
hand side, non metallic restraining wall on the left. Image plane at z = 0.931 nm. Wall po- 
tentials go through zero at lzl=0.682 nm. 
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Figure 4. Potential drop across the system Li+ ion and 157 ST2 waters in the immersed electrode 
model. Calculations using atom and molecule methods with gaussian widths g = .03, .1, .3, 1.0 
nm. Curves for monopole potentials (broken lines) and the total potential by the atom (dotted 
lines) method. Oscillations in the atomic potential clearly visible in Figure 3 for z > 0.2 nm are 
washed out on the scale of a water molecule g = .3. 
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Figure 5 Density profiles for iodide anion I" ion, 157 ST2 waters and the total atomic charge 
density p near an immersed electrode. Image charge on metal +1 is screened by the V ion. 
Metal electrode on right hand side, restraining wall on the left. Image plane at z = 0.931 nm. 
Wall potentials go through zero at lzl=0.682 nm. 
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Figure 6. Potential drop across the system r ion and 157 ST2 waters in the immersed electrode 
model. Calculations using atom and molecule methods. Bin size 0.004655 nm. Molecule 
method: m monopole only, m+d monopole and dipole, m+d+q monopole, dipole and quadrupole. 
Panel on the right hand side shows the curve for z > 0.4 nm on a reduced scale. Image charge 
on metal +1 is screened by the I" ion. Metal electrode on right hand side, restraining wall on 
the left.  Image plane at z = 0.931 nm. Wall potentials go through zero at lzl=0.682 nm. 
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Figure 7. Density profiles a neutral solution consisting of one lithium cation Li+, iodide anion 
I- and 157 ST2 waters and the total atomic charge density near an immersed electrode. Metal 
electrode on right hand side, restraining wall on the left. Image plane at z = 0.931 nm. Wall 
potentials go through zero at lzl=0.682 nm. 
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Figure 8. Electric potential drop across a the neutral solution consisting of one lithium ion 
Li+, one iodide ion I", and 156 ST2 waters next to an immersed electrode. Potential due to atom 
method shifted by -0.04. Potential from: ions only m, ions and water dipoles m+d, ions and 
water dipole and quadrupole m+d+q. Note that the potential m+d+q is almost the same as cal- 
culated from atomic charges. There is no net image charge on the metal. Metal electrode on 
right hand side, restraining wall on the left. Image plane at z = 0.931 nm. Wall potentials go 
through zero at lzl=0.682 nm. 
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Figure 9 Density profiles for a neutral solution consisting of one lithium ion Li+, one fluoride 
ion F- and 156 ST2 waters and the total atomic charge density p near an immersed electrode. 
Image charge on metal is zero. Metal electrode on right hand side, restraining wall on the left. 
Image plane at z = 0.931 nm. Wall potentials go through zero at lzl=0.682 nm. 

47 



.02 

0 

CM 
C\J 
in 

> 

CD 

-.02 - 

-£       0 o 
Q_ 

-.02 - 

-.04 
-0.8 -0.4 0.0 0.4 

Distance z / nm 
0.8 

Figure 10. Electric potential drop across a neutral solution consisting of one lithium ion Li+, 
one fluoride ion P, and 156 ST2 waters next to an immersed electrode. Potential due to atom 
method is shifted by -0.04. Potential from: ions only m, ions and water dipoles m+d, ions and 
water dipole and quadrupolc m+d+q. Note that the potential m+d+q is almost the same as cal- 
culated from atomic charges. Metal electrode on right hand side, restraining wall on the left. 
Image plane at z = 0.931 nm. Wall potential goes through zxro at lzl=0.682 nm. 
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Figure 11 Density profiles for two I, one lithium cation Li+, 155 ST2 water molecules and total 
atomic charge density next to an immersed electrode. The net image charge on the metal +1 is 
screen by three ions in solution. 
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Figure 12. Electric potential drop across a charged solution consisting of one lithium ion Li+, 
two iodide ions I", and 155 ST2 waters next to an immersed electrode. Potential due to atom 
method is shifted by -0.04. Potential from: ions only m, ions and water dipoles m+d, ions and 
water dipole and quadrupole m+d+q. Note that the potential m+d+q is almost the same as cal- 
culated from atomic charges. Metal electrode on right hand side, restraining wall on the left. 
Image plane at z = 0.931 nm. Wall potential goes through zero at lzl=0.682 nm. Panel on right 
shows potentials for z > 0.4 nm on a scale x5 larger than the left side. 
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Figure 13. Screening for IM NaClaq at 30 °C. Electrolyte composition: 32 Na+ ions, 28 Cl" ions, 
and 1576 SPCE water molecules near an immersed electrode. Image charge on me metal -4le . 
Metal electrode on right hand side at z = 1.862nm (position of image plane), restraining wall 
origin on the left at z = -1.862 nm, wall potentials on both sides of the simulation cell go through 
zero at lzl= 1.615 nm.  Simulation duration 100 ps to 840 ps. 
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Figure 14. Vacuum charge density, electric field and potential for IM NaClaq at 30 °C and -4e 
image charges. Electrolyte composition: 32 Na+ ions, 28 Cl" ions, and 1576 SPCE water mol- 
ecules near an immersed electrode. Metal electrode on right hand side at z = 1.862nm (position 
of image plane), restraining wall origin on the left at z = -1.862 nm, wall potentials on both sides 
of the simulation cell go through zero at lzl= 1.615 nm.  Simulation duration 100 ps to 840 ps. 

52 



0 
CM 
CM 
LO -0.2 
> 

"CO -0.4 
1    ■ 

c 
CD 
O 

Q_ 
-0.6 

Ü 

■4—» 

Ü 0 
CD 

LU 

-0.2 

-1.6-1.2-0.8-0.4 0.0   0.4   0.8 
Distance z / nm 

1.2 

Figure 15 Electric potential drop across a charged solution consisting of for IM NaCl solution 
at°30 °C and -4lel image charge on the metal. Potential calculated hy the atom method is shifted 
by -0 8 Molecule method potentials from: ions only m, ions and water dipoles m+d, ions and 
water dipole and quadrupole m+d+q. Note that the potential m+d+q is almost the same as cal- 
culated by die atom method. The net image charge on die metal -4lel is screened by a total ol 
sixty ions Electrolyte composition: 32 Na+ ions, 28 Cl" ions, and 1576 SPCE water molecules 
near an immersed electrode. Metal electrode on right hand side at z = 1.862nm (position ol 
image plane), restraining wall origin on the left at z = -1.862 nm, wall potentials on both sides 
of the simulation cell go through zero at lzl= 1.615 nm.  Simulation duration 100 ps to 840 ps. 
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