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Abstract 19960718 071 
Emphasis is often placed on the sample rate or spacing of 

sampled imagery, with less attention paid to how the output is 
constructed using the samples. The fidelity of a sampling process, 
however, depends on the reconstruction method as well as on the 
sample rate. This paper will discuss the benefits of display processing 
to improve image quality in sampled sensors. Topics will include: 
basic sampling theory, the application of Fourier Transforms to 
sampled imaging systems, the origin of phase artifacts in sampled 
imagery, and a discussion of the benefits of display processing when 
using more display pixels than sensor samples. Examples will be 
shown of images generated using different reconstruction techniques. 

1.0 Introduction 

It is widely recognized that a small sample interval is important in order to 
achieve good replication of sampled imagery. However, the fidelity of a sampling 
process is also affected by the method used to construct the output. In many applications 
one display pixel is used for each sensor sample. Further, newer systems might use flat 
panel displays with square, rectangular or round pixels which are unlikely to match the 
shape of the original image between the samples. Depending on display resolution, this 
mismatch might result in poor imagery or image artifacts. 

A higher resolution display is required to improve the displayed image, but it 
may not be necessary to take additional sensor samples. Once a minimum sample rate 
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has been reached for a given sensor, improved display techniques can substitute for 
increased sampling and perhaps save system cost and complexity. The shape of the signal 
between the samples can be estimated or "interpolated" from the sample data; these 
interpolated values can then be used to make the displayed image a closer match to the 
original scene. 

The benefits of display processing to improve image quality will be discussed. 
In Section 2.0, the process of sampling and reconstructing a signal is illustrated; the 
dependence of replicated signal fidelity on reconstruction technique is shown. In the 
next section, two expressions for the Fourier Transform of the reconstructed signal are 
derived. The first expression is used to clarify the reasons why a "system function" can 
not generally be associated with a sampled process. The second Fourier expression 
provides more insight into the signal reconstruction process and is the basis for most of 
what follows. 

Section 4.0 of the paper provides an example of typical display processing and 
describes the associated problems: loss of high frequency components in the signal and 
sample phase artifacts. Alternate reconstruction methods are then discussed in Section 
5.0 and examples given in Section 6.0 to illustrate the benefits. 

2.0 Sampling and Reconstruction 

In Figures 1 through 3, the function f(x) is sampled by finding the value at 
uniformly spaced intervals as indicated by the large asterisks (*'). If (n) samples are 
taken with spacing (X), an approximation g(x) to f(x) can be reconstructed: 

g(x) =   I f(nX)-r(x-nX) Equation 1 
alln 

where r(x) is a reconstruction function. The figures show three versions of g(x) using 
different r(x); in each case, r(x) is shown graphically as an insert. Figure 1 uses a 
rectangular function for reconstruction; bi-linear interpolation is used in Figure 2. In 
Figure 3, r(x) is the product of a sine function times a Gaussian function. The selection 
of reconstruction function r(x) and sample interval (X) are fundamental to the fidelity 
with which g(x) approximates f(x). In each of the examples shown, g(x) equals f(x) at the 
sample points; the match between g(x) and f(x) improves from Figure 1 through Figure 3 
because the different r(x) provide progressively better interpolation between sample 
points. 



3.0 Fourier Transform of the Reconstructed Signal 

This section provides background for the subsequent discussion on how the 
display affects image quality. The concept of reconstruction filter is described, and the 
reasons given why a Modulation Transfer Function (MTF) can not be defined for 
sampled systems. 

If R(w) is the Fourier Transform of r(x) defined in Section 1.0, then 
R(w)-exp-JwnX is the transform of r(x-nX). Since the reconstructed signal is just a sum 
of offset reconstruction pulses r(x-nX), the Fourier Transform of the reconstructed 
signal g(x) in Equation 1 is 

G(w)=   y f(nX)-R(w)-exp-JwnX Equation 2 

Equation 2 helps to illustrate why a MTF or "system function" can not be 
assigned to a sampled process. An MTF exists if the input to the system can be shifted 
without changing the frequency content of the output; the output would shift coincident 
with the input, but the shape would not be altered. If the output exhibits this invariance 
under a shift of the input, the system is said to be constant parameter, and the output 
spectrum will be the product of the input spectrum and a system function. 

In Equation 2, R(w) is not acting to weight or filter the input spectrum F(w); 
that is, G(w) does not equal F(w)-R(w). In the limit of (X) small and (n) large, the 
discrete transform: 

FdiscreteW = J f(nX)-exp-JwnX 

does approximate the continuous transform F(w);1 however, in most practical systems, 
the sample rate is limited and the attributes of a constant parameter system will be 
missing. That is, a sinusoidal input at frequency w0 will not necessarily and solely result 
in a sinusoidal output at the same frequency with amplitude ratio R(WQ). Further, the 
output spectrum G(w) is not uniquely determined by F(w) and R(w), but also depends 
on how (where) f(x) is sampled.^ 

An alternate and potentially more useful expression for the Fourier Transform 
of g(x) can be derived. By treating the output as having resulted from convolving r(x) 
with delta functions at the sample points, Equation 1 can be re-written:3 



g(x)=   I   S f(x*>«(x'-nX)T(x'-x)dx' 
all n ~*> 

=   I {f(x)*(x-nX)}-r(x) 
alln 

where (*) represents convolution. Since convolution in space results in multiplication in 
frequency, G(w) becomes: 

G(w) =   I {F(w)-e-Jwd*5(w-nws)}-R(w) 
alln 

ws =   1/(2TCX) 

and r(x) is assumed to be symmetrical about zero (a sample point). For generality the 
zero of f(x) can offset by a distance (d). Then: 

G(w) =   Y F(w-nws)-e-J(w-nws)d.R(w) Equation 3 
alln 

Figure 4 is a notional plot of G(w). The output spectrum can be represented as F(w) 
replicated at multiples of ws and then weighted by R(w). Note that the figure just shows 
the amplitude of the various spectra; the phase of the F(w) replicas varies due to the 
eJnwsd multiplier. The shape of the output waveform (i.e., the inverse transform of the 
"spectrum of reconstructed signal" shown in the figure) will vary with sample phase. 

Equation 3 shows why R(w) is sometimes called a "reconstruction filter." In this 
expression for G(w), R(w) is a multiplicative factor and has the appearance of a system 
function. This expression for the transform shows clearly what the desirable properties 
of R(w) should be: unit amplitude response in the frequency band of the original signal 
and a sharp drop in response at higher frequencies. Equation 3 also provides insight on 
the implications of using a less than ideal reconstruction function. 

It should be noted that the sum of F(w-nwQ) terms does not represent the 
frequency spectrum of a "sampled f(x)" but rather the transform of a series of delta 
functions. The delta functions do not have physical meaning outside their defining 
integral/''* but we often engage in the convenient engineering fiction that the spectrum 
consisting of all F(w-nwQ) terms is the transform of a series of infinitely bright, 
infinitesimally small spots at the sample points. It is these very small, very bright spots 
that we are "filtering" with the reconstruction. The actual samples are just the value of 
f(x) at spaced intervals; it is not physically sensible to associate a Fourier Transform with 
a list of numbers. 
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In order to achieve a good reproduction of the sampled signal, the sampling 
interval (X) must be small enough that the replicas of F(w) do not overlap significantly; 
that is, aliasing must be minimized. The reconstruction function r(x) serves two 
purposes. First, the function's transform should pass the desired frequencies F(w); if 
substantial aliasing does occur, however, it could be potentially beneficial to use R(w) to 
filter out the aliased portion of the spectrum. Second, the reconstruction should filter 
out the higher order replicas of F(w). Remnants of the high frequency replicas represent 
coherent changes to the image spectrum; they represent a degradation in the fidelity of 
the replicated signal. In practice, many of the image artifacts labeled as "aliasing" result 
in fact from the presence of the spurious higher frequencies and not from spectrum 
overlap; these artifacts can be corrected at the display. 

4.0 Display of Sampled Imagery Without 
Display Processing 

In many cases, the eye and normal display blur spots do not provide the ideal 
reconstruction described in Section 3.0; they do not provide a sharp differentiation 
between the desired original spectrum and the replicas at each sample frequency. A 
simplified model of a second generation thermal imager will serve as an example. In 
Figure 5, the "original spectrum" represents the transform of the analog output from an 
F/3 narrow field of view sensor using the Army standard focal plane. In this case, the 
optical blur is somewhat larger than the detector and sampling rate is two samples per 
dwell. The sampled signal would actually be the input scene convolved with the sensor 
MTF. For purposes of this example, we will use the MTF itself; consider the scene to be 
a point source or highly random. The MTF for the display and eye are based on a 6 inch 
by 8 inch, flat panel display with 50% pixel fill factor and a 28 inch eye distance. 

This example sensor is well sampled, perhaps over-sampled; adjacent replicas 
of the input spectrum do not overlap. As shown in Figure 5, this eye/display combination 
causes only a slight drop in the high frequency spatial response of the sensor system; i.e., 
the high end of the original spectrum is not attenuated. However, the eye/display 
combination does not completely "filter out" the adjacent replica of the input spectrum. 
As illustrated in the figure, the image spectrum has significant components beyond half 
the sample frequency. This high frequency signal is not "noise;" it represents a change in 
shape or intensity pattern of the image. Although significant aliasing is not present, 
sample phase artifacts would still be visible. 

If the sampling artifacts prove to be bothersome, one corrective action is to 
increase the sample rate and improve display resolution. The increased sample rate 



would further separate the high frequency replicas from the original spectrum; the 
eye/display filtering would then be more effective, although the display MTF would 
increase due to the smaller pixel size. Figure 6 illustrates what happens when the sample 
rate is doubled; the replicate spectra are more widely spaced, with the result that the eye 
provides better filtering of the unwanted high frequencies. The spectrum of the output 
is a closer match to the input spectrum. 

Improved image quality at the display can be supported without increasing 
sensor sample rate. Since significant aliasing is not present even at the lower sample rate 
shown in Figure 5, values of the input signal at the mid-points between samples can be 
interpolated from that data. That is, we find an r(x) with transform F(w) that does not 
degrade the desired spectrum but will filter out the adjacent replicate spectra; this r(x) is 
convolved (mathematically, in a computer or processor) with the input data to generate 
an estimate of the value of the input signal at points intermediate to the sample points; 
the expanded set of samples, original data plus interpolated values, drive the higher 
resolution display. 

If sensor imagery is just sufficiently sampled to avoid significant aliasing, but 
not excessively sampled, then the replicated spectra above and below the base-band 
(original) spectrum will be closely spaced to the original but not overlapping. In order to 
discriminate the original spectrum from the replicates, we would like an R(w) with a flat 
"passband" to frequency Wg/2 and a sharp cutoff beyond. 

5.0 Reconstruction Functions 

In theory a perfect r(x) exists, but perfection can not be attained in a realizable 
system. However, very good reconstruction functions can be easily implemented. In this 
section, the Sampling Theorem will be described and its practical limitations discussed; 
examples will then be given of practical extensions of the Sampling Theorem. 

Referring to Figure 4 and Equation 2, if f(x) is band-limited to Wg/2 so that the 
replicas of F(w) do not overlap, and if R(w) is a rectangular function centered at zero 
and with full width ws, then G(w) will equal F(w) and f(x) will be perfectly replicated. 
Since the Fourier Transform of a rectangular function is a sample function [sin(x)/(x)], 
Equation 1 becomes: 

g(x) =    I f(nX)-sin(*x/X-n7r)/(*x/X-ror) Equation 4 
all n 



The Sampling Theorem states that, for a signal f(x) for which the Fourier 
Transform has no components above Wg/2 inclusive, the function can be entirely 
reconstructed by the above series of sample functions. That is, a band-limited function 
can be uniquely determined from its values at a sequence of equidistant points, l/ws 

apart.2 The Sampling Theorem provides the capability to find the value of f(x) at points 
intermediate to the sample points. 

The Sampling Theorem has practical limitations in that realizable signals can 
not be ideally sampled. A signal can not be both band-limited and of limited extent;5 an 
ideal reconstruction would require either infinite sample rate or gathering an infinitude 
of samples. Although the work of Landau and Pollak^5 shows that the sample function 
expansion is not theoretically the best choice for realizable signals, in practice the 
Sampling Theorem does hold in an approximate sense and is a useful guide. 

The Sampling Theorem is awkward to apply because the sample function falls 
off slowly. In Equation 4, if we are interested in approximating g(x) at a point, the 
contribution to the approximation from a distant sample falls off inversely with the 
distance to the sample. In an imaging sensor, samples distant by more than a spread 
function diameter are not contributing real information content to the approximation. 
However, convolution with the sample function'can not be arbitrarily truncated since 
contributions from distance samples tend to cancel the contributions from adjacent 
distant samples. Truncating a sine wave reconstruction function results in a new 
reconstruction function with a transform which is the convolution of a rectangular 
function with a sine wave. The new R(w) has very poor reconstruction properties. 

Reconstruction functions which have a width of only a few samples and retain 
the desired frequency characteristics can be generated by applying a smooth window to 
the sample function. The reconstruction function used in Figure 3 is a sample function 
multiplied by a Gaussian which falls to about 3% amplitude at the third sample and the 
function is truncated at the third sample. A similar technique can be used to generate 
reconstruction functions of different widths; a wider function has a steeper cutoff at the 
desired band-limit. 

Figure 7 shows the reconstruction filters obtained when using functions with 
width of four, six and eight samples. The calculation of each interpolation point would 
involve a series with four, six or eight terms, respectively. Also shown in the figure is the 
transform of the triangular wave used in Figure 2. Using the triangular function for 
reconstruction provides a two point interpolation. The desirable qualities of a 
reconstruction function, unit amplitude in the passband and a sharp cutoff, are enhanced 
by using more points in the reconstruction. 



6.0 Examples 

In this section, examples will be given to illustrate that image quality is 
enhanced by using the reconstruction techniques described in Section 5.0. It is quite 
often possible to significantly enhance displayed image quality without taking additional 
sensor samples. 

The baseline images, referred to below and in the figures as "original," 
represent good quality, black and white video. These images are obtained using a digital 
frame grabber and a high quality, Charge Coupled Device camera. The Cohu camera is a 
frame transfer device with 760 horizontal by 480 vertical pixels. The camera output is 
digitized with a Data Translation video frame grabber taking 512 by 512 samples with 8 
bit accuracy. The digitizer electronics limits the video bandwidth to 4.5 MHz. 

The original image at the top left of Figure 8 shows a framed picture of an 
AH-1 Cobra Helicopter hanging on the laboratory wall. At top right in the figure, the 
helicopter image is zoomed eight times by pixel replication. The bottom, right picture in 
Figure 8 is generated by zooming the helicopter image eight times using bi-linear 
interpolation. Modified Sample Theorem interpolation was used to process the bottom, 
left-hand picture. Sample Theorem reconstruction clearly provides the best image 
quality. 

In Figure 9, the original image is down-sampled to 256 by 256 pixels. Three 
out of four of the original samples are discarded in order to represent a sensor which 
takes one forth the samples. The top right picture shows the result of replicating the 
down-sampled image sixteen times. The bottom, right picture results from bi-linear 
interpolation and the bottom, left picture from Sample Theorem reconstruction. The 
images at the bottom of Figure 9 look like Cobra Helicopters even though the 
reconstruction uses only a quarter of the sensor samples compared to Figure 8. If the 
top, right picture in Figure 9 is used as the basis of comparison, the improved image 
quality represented by the bottom, left picture in Figure 9 is obtained solely through the 
use of display reconstruction techniques, whereas four times as many sensor samples are 
required to achieve the improved image quality represented by the pictures in Figure 8. 

The original image of a face is shown at the top, left-hand side in Figure 10. 
To the right in the figure, this face is down-sampled to 256 by 256 pixels. The bottom, 
left picture results from Sample Theorem reconstruction. Only minor differences can be 
discerned. / 



The top, right image in Figure 11 is obtained by four pixel replications of the 
original face shown at the top, left of Figure 10. The top, left picture in Figure 11 results 
from eight pixel replications of the down-sampled image shown at the top, right of 
Figure 10. The bottom image in Figure 11 is a Sample Theorem reconstruction from the 
down-sampled data. The picture constructed from fewer samples using good 
reconstruction techniques is a close match to the pixel replicated image which is 
generated from four times the number of samples. 

7.0 Conclusion 

In many practical applications, poor image quality or sample artifacts result 
from poor signal reconstruction rather than from inadequate sampling. Good replication 
of a sampled image requires that sample spacing be small enough that aliasing does not 
occur. However, once a minimum sample rate has been reached for a given sensor, 
improved display techniques can substitute for increased sampling and perhaps save 
system cost and complexity. 

The examples illustrate that image quality can be improved by display 
processing. Further, near ideal reconstruction functions exist which are only a few 
samples wide. Improved image reconstruction by interpolating the input data is a 
practical alternative to taking additional sensor samples. 
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