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1. Problem of Interest 
We worked on a fundamental problem: 

• Decompose a signal into a small set of decaying complex exponentials. 

Usually, a limited sequence {s*} of noisy samples is available and the physics of the problem implies that 
the noiseless exponentials are damped sinusoids. The formal signal model is 

Sk = f2*rZk
r-\ (1) 

r=l 

where the coefficients {ar} and knots {zr} are 2R unknowns to be determined. This problem arises in a wide 
range of disciplines, including nuclear magnetic resonance [1], speech processing [3], and system identification 
[4]. Two effective solution procedures were given by Prony in 1795 [5] and S.Y. Kung et al. in 1983 [4]. 
Unfortunately, Prony's method is relatively unknown and Kung's method and associated proof are tightly 
bound to the application in system identification. 

1.1. Our Contributions 

We developed a new class of numerical algorithms for solving this exponential approximation problem. Our 
class includes both methods of Prony and Kung as special cases. We gave a simple, purely linear algebraic 
proof on why our new approach works. 

2. Novel Matrix Pencil Approach 
The samples {s*} are laid out as entries in a Hankel matrix: 

(Sl S2 S3 SL 

S2 S3 S4 SL+I 

S3 Si S5 SL+2 TTKXL _ 

VsK SK+I SK+2 ••• SK+L-1 / 

where K > R. MatLab-like notations are used for matrix indexing, e.g., the colon ':' indicates a range (hence 
A3>: refers to the third row of A). We devised a new matrix pencil procedure for computing {zr}, after which 
we would solve a special (called Yule-Walker) set of linear equations to find {ar}. For full generality, we 
introduce two arbitrary but nonsingular transformations F and G, where F is (K - 1) x (K - 1) and G is 
L x L. Define two new (K-I)XL matrices C^ and C'2' by 

d1' = Fffi!K-i,:G       and       C® = FH2:K,.G. 

Consider the matrix pencil problem: 
CWy^CCMy. 

We proved that solutions exist such that Y is a L x R matrix of linearly independent eigenvectors: 

C^Y = C^YD*, (2) 

where D^ denotes a R x R diagonal matrix of eigenvalues {Q}. In addition, we also proved that {0} = {zr}- 

Matrix Pencil Method. 

Step 1. Choose matrices F and G. 

Step 2. Solve the matrix pencil: C^Y = C^YDf. Set {0} = {zr}. 

2.1. Our Contributions 

The important result is that {Q} — {zr}, so that eigenvalues of the matrix pencil provide the required 
solution. A huge benefit is the freedom to choose F and G. Specific choices result in Prony's and Kung's 
methods. Other choices of F and G could give us new methods with other desirable characteristics. 



3. Full Column Rank Case 
Both Prony's and Kung's methods assume full column rank, i.e., L = R. Hence the matrix Y is R x R and 
nonsingular and (2) becomes C& = C^iYDfY'1). Define X = YDRY~K We see that X satisfies 

CMX = CW. (3) 

The matrix equation (3) is usually overdetermined; in the presence of noise, X may be solved by least-squares 
or total least-squares methods. The matrix pencil method simplifies to an eigenvalue procedure. 

Eigenvalue Method. 

Step 1. Choose matrices F and G. 

Step 2. Find X by solving the linear equations: C^X = C^. 

Step 3. Find an eigenvalue decomposition of X: X = YDKY~l. Set {0} = {zT}. 

3.1. Prony's Procedure. 

Prony further assumed that K = R + 1. Hence the matrices C^ and C^ are RXR. Choose F - IRxR and 
G = H^l:R. So CM = /*** and and (3) simplifies to X = (PI Note that 

C1'     — #2:11+1,1:11 #1:R,1:R 

/     0 

0 
0 

0 
V-To 

1 
0 
0 

0 
-7i 

0 
1 
0 

0 
-72 

0 
0 
0 

0 
-7R-2 

\ 

1 

-7R-I / 

where the {7,} satisfy the Yule-Walker equation. Hence C'2' is a companion matrix to the polynomial pR(z), 
defined by pR(z) = 70 + 71z -I h 7R_izR_1 + zK. 

Prony's Method. 

Step 1. Choose F = 7RxR and G = H^1:R. 

Step 2. Solve the Yule-Walker equation. 

Step 3. Find the roots {zr} of the Prony polynomial PR(Z). Set {0} = {zr}- 

3.2. Kung's Procedure 

Start by computing a singular value decomposition (SVD) of a K x R Hankel matrix H: H = U"£VH. 
Choose F = /(K-I)X(K-I) and G = vs-i Then C[i] = [/1:K_1>: and C^ = U2K<-.. So (3) reduces to 
UUK-I,-.X = U2:K,:- An important advantage of Kung's method over Prony's procedure is that the polynomial 
PR(Z) is not explicitly computed. 

Kung's Method. 

Step 1. Choose F = /(K-I)X(K-I) and G _ yE-i. Compute an SVD of H: H = U^VH. 

Step 2. Solve the matrix equation: U\-K-\,-X = U2-.K,:- 

Step 3. Find an eigenvalue decomposition of X: X = YD^Y~l. Set {0} = {zr}. 

3.3. Our Contributions 

We showed that our matrix pencil scheme includes both Prony's and Kung's methods as special cases. So 
all our theoretical results, including the purely linear algebraic proof on why our new method works, cover 
these two procedures too. This is an important advance, for Kung's proof [4] can be difficult to digest. 



4. New Methods 
We may replace the expensive SVD by other techniques. The only restriction is that we need to operate 
on H from the left side. An example of a much cheaper, and yet almost as accurate, technique is the QR 
decomposition (QRD). Compute a QR decomposition of a K X R Hankel matrix H: H = QR. Choose 
F = /(K-I)X(K-I) and G = Rrl. We find that CM = Qi:K-i,: and C^ = Q2:K,:. So (3) reduces to 

Ql:K-l,X = Q2:K,:  • (4) 

Hankel QRD Method. 

Step 1. Choose F = /(«-I)X(K-I) and G = R~\ 

Step 2. Solve the linear equations: QI:K-I,:^ = Q2-.K,-.- 

Step 3. Find an eigenvalue decomposition of X: X = YD^Y~l. Set {0} = {zr}- 

4.1. Our Contributions 

Our new Hankel QRD method is about ten times faster than Kung's scheme (also known as the Hankel SVD 
method). An attractive property of the QRD approach is that it is easily updatable to accommodate new 
data, which is not so for an SVD technique. 

5. Denoising 
Our problem is particularly sensitive to errors in the samples {s*}, and a preliminary noise removal procedure 
is all-important. We assume an additive error model: 

where H^ and if'"' denote the signal and noise components of H, respectively. The SVD of the signal 
matrix H provides a convenient and numerically stable way to determine the noise subspace. Indeed, it 
often suffices to find a "gap" in the entries on the diagonal of E. Unfortunately, the Hankel structure of H 
is almost certainly lost in i?M. Cadzow [2] proposed to iterate signal extraction with the SVD followed by a 
restoration of the Hankel structure via averaging along the antidiagonals. He showed that under relatively 
mild assumptions this procedure will converge and reported very good noise removal performance. 

5.1. Our Contributions 

First, we constructed a counter-example for Cadzow's method, and showed that it will converge to a Hankel 
matrix of the wrong rank. 

Second, we proposed a new approach based on the following decomposition: 

H = VKXM(z)D^VLxM(zf, (5) 

where VKxM(z) and VLXM(z) are respectively KXM and LXM Vandemonde matrices, and the middle matrix 
D™ is diagonal. If K > M, L > M and all the {zr} values are distinct, then the Hankel matrix H has exact 
rank M. We examined algorithms to determine the factorization (5) for a given Hankel matrix. It seems 
reasonable to attempt to synthesize another Hankel matrix H of rank R, where R < M, from zeroing out 
(M — R) of the {ar} values. However, selecting which ar to set to zero is a nontrivial task. Unlike singular 
vectors, the columns of a Vandemonde matrix are not orthonormal. Hence, it is not always appropriate 
to select the R largest (in magnitude) ar's to synthesize a good approximation to H. Our work is still in 
progress. 



6. Combined Technique 
In our overall computation, we chose to grossly "overestimate" the rank R of the available samples. Just as 
in Prony's method, we would pick R so that the matrices were square. Figure 1 shows a cloud of zeros from 
the resulting polynomial for an example where the numerical rank of the signal was five, but a 65 x 65 noisy 
system had been solved. This example is taken from Van Huffel [6]; the signal-to-noise ratio is approximately 
2.4 (not dB). 
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Figure 1.    Prony's method with 65 degrees of freedom on data with numerical rank 5. The '+' 
are the computed z values while the exact values are depicted with 'x'. 

With the common assumption that the noise space is approximately orthogonal to the signal subspace, we 
would expect that a few components will still fit the embedded signal while most other zeros serve as outlets 
to fit the noise. Our numerical experiments seem to confirm this conjecture. Given our stability criterion, 
it is logical to discard those zeros (of the polynomial) that are greater than one in magnitude and hence 
cannot correspond to a stable component of the signal. Figure 2 shows the result. 
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Figure 2. left: The discrete Fourier spectrum of the given noisy signal, right: The spectrum 
after removing the unstable z values and computing the new samples s. The dashed curve shows 
the noiseless spectrum in both plots. 

6.1. Our Contributions 

There is a significant difference between our approach and Prony's method: we fix N, the number of samples, 
and choose R = (N/2J, whereas Prony fixed R, the rank of the matrix, and chose N = 2R. With noise, the 
Hankel matrix we get is always nonsingular. Our scheme has the important advantage that we do not need 
to decide on R at the very beginning. Another benefit is that the resultant Yule-Walker is square and can 
be solved using any of the well known techniques. 
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