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Progress and Challenges in CFD Methods 
and Algorithms 

(AGARD CP-578) 

Executive Summary 

Computational Fluid Dynamics (CFD) now plays an essential role in the design of aerospace vehicles. 
The ability of numerical methods to accurately simulate complex external and internal aerodynamic 
flows is crucial to the success of these methods in the design process, and for airplanes leads to 
improved performance, agility and maneuverability. 

In the last decade, considerable progress has been made in the development of numerical methods 
related to CFD. As a result, various promising CFD schemes and algorithms have been developed. 
However, they are not currently used in industrial codes. At the same time, new developments in 
computer hardware and architectures have led to significant advances in parallel computing and 
multiprocessing. These topics, which are considered likely to constitute pacing items and new 
challenges in CFD in the near future, formed the framework for the program for this Symposium. 

The following subjects were addressed: parallel computing, advanced spatial discretization techniques, 
unstructured, hybrid and overlapping grids, adaptive meshes, fast implicit and iterative solvers, large 
eddy and direct numerical simulations of turbulent flows, chemically reacting flows and unsteady 
aerodynamics. Interesting and new aspects of techniques involving these subjects were discussed, 
substantiating their extended potential and improved capabilities. Several important directions of 
research such as aerodynamic shape optimization and multidisciplinary analysis and design were 
identified, which should be the subject of intensive advanced research in the near future. 

The Symposium provided a very valuable opportunity for exchange of information about recent 
developments and achievements. It can, therefore, be expected to significantly contribute to future 
important progress in the advancement of numerical techniques used in the design of aerospace vehicles 
and other flying objects. 

Jean-Andre Essers 
Programme Committee Chairman 

DHC QUALITY INSPECTED 1 



Progres realises et defis en methodes 
et algorithmes CFD 

(AGARD CP-578) 

Synthese 

L'aerodynamique numerique (CFD) joue desormais un role essentiel dans la conception des vehicules 
aerospatiaux. La capacite des methodes numeriques ä simuler avec precision des ecoulements 
aerodynamiques complexes internes et externes est essentielle pour la reussite de ces methodes dans le 
processus de conception et pour les aeronefs, eile permet d'ameliorer les performances, l'agilite et la 
manceuvrabilite des appareils. 

Au cours de la derniere decennie, des progres considerables ont ete realises dans le developpement de 
methodes numeriques se rapportant au CFD. De ce fait, divers algorithmes et diverses methodes CFD 
prometteurs ont ete developpes. Cependant, ils n'ont pas ete integres aux codes industriels. En meme 
temps, les nouveaux developpements en materiel et architectures informatiques ont permis des 
avancees appreciates dans le domaine du calcul en parallele et du rnultitraitement. Ces sujets, qui sont 
consideres comme susceptibles de constituer les jalons et les nouveaux challenges du CFD dans un 
avenir proche, ont consume l'ossature du programme de ce symposium. 

Les sujets suivants ont ete examines: le calcul en parallele, les techniques de discretisation spatiale 
avancees, les maillages non-structures, hybrides et imbriques, les maillages adaptatifs, les codes de 
resolution rapides, implicites et iteratifs, la simulation des grands tourbillons et la simulation numerique 
directe d'ecoulements turbulents, les ecoulements ä reaction chimique et l'aerodynamique non 
permanente. 

Des discussions pertinentes ont eu lieu sur des aspects nouveaux et interessants de techniques se 
rapportant ä ces sujets, confirmant ainsi l'extension de leur potentiel et 1'amelioration de leurs 
capacites. Plusieurs orientations importantes pour la recherche, telles que 1'optimisation du profil 
aerodynamique et F analyse et la conception multidisciplinaires ont ete identifiees comme devant faire 
l'objet de travaux de recherche avances intensifs dans un avenir proche. 

Le symposium a fourni 1'occasion inestimable pour echanger des informations sur les realisations et les 
developpements recents. II devrait, par consequent, representer une contribution non negligeable aux 
futurs progres importants dans l'avancement des techniques numeriques pour la conception des 
vehicules aerospatiaux et d'autres objets volants. 

Jean-Andre Essers 
Programme Committee Chairman 
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Technical Evaluation Report 
AGARD Fluid Dynamics Panel Symposium on 

Progress and Challenges in CFD Methods and Algorithms" 

N. Kroll 

Institute of Design Aerodynamics 
DLR, 38108 Braunschweig 
Lilienthalplatz 7, Germany 

SUMMARY 

The Fluid Dynamics Panel of AGARD conducted a 
Symposium on "Progress and Challenges in CFD Meth- 
ods and Algorithms" in Seville, Spain, on October 2-5, 
1995. The purpose of this symposium was to identify 
and discuss topics which are likely to constitute pacing 
items and challenges in Computational Fluid Dynamics. 
Sessions were devoted specifically to parallel comput- 
ing, advanced discretization schemes and advanced grid 
structures. Topics also include adaptive meshes, fast it- 
erative methods and algorithmic aspects for the compu- 
tation of reacting flows and unsteady flows. In this eval- 
uation report an attempt is made to point out the critical 
issues for each particular subject and to assess how far 
they were addressed by the conference papers. Some 
general concluding remarks and recommendations are 
given. 

1. INTRODUCTION 

The 77th Meeting of the AGARD Fluid Dynamics Panel 
was held from the 2nd to the 5th of October, 1995, in 
Seville, Spain. The symposium was focused on 
"Progress and Challenges in CFD Methods and Algo- 
rithms". The background and need for such a meeting 
was stated in the call for papers: 

"The design of aerospace vehicles strongly de- 
pends on the ability of numerical methods to 
simulate complex flow fields. In the last de- 
cade, considerable progress has been made in 
the development of numerical methods related 
to CFD. As a result, various promising CFD 
schemes and algorithms have been developed 
which are not yet currently used in industrial 
codes. At the same time, new developments in 
computer hardware and architectures have led 
to significant advances in parallel computing 
and multiprocessing." 

It must also be stated that despite the recent advances 
CFD still suffers from deficiencies in accuracy, robust- 
ness and efficiency for complex applications, such as 

complete aircraft flow predictions. From the aeronauti- 
cal industry's point of view, CFD is expected to deliver: 

- detailed viscous flow analysis for complex geome- 
tries at realistic Reynolds numbers 

- accurate prediction of aerodynamic data 

- fast response time per flow case at acceptable total 
costs 

- aerodynamic   optimization   of   aircraft   compo- 
nents/complete aircraft 

- interdisciplinary analysis of aircraft (aerodynamics 
+ structure + flight control) 

In order to meet these requirements, improvements in 
CFD are needed in all areas. 

Based on this, the aim and scope of the symposium were 
set by the program committee in the call for papers as 
follows: 

"The symposium will focus on those topics 
which are likely to constitute pacing items and 
new challenges in CFD. Its aim is to bring to- 
gether scientists and engineers working on new 
numerical developments in different fields of 
interest to the aerospace sciences and industrial 
communities. 

Papers may address a broad range of research 
fields of current interest. A list of possible top- 
ics includes (but is not limited to) the follow- 
ing: 

• Unstructured grid, hybrid, adaptive, multi- 
block and grid embedding methods and algo- 
rithms 

• Implicit and iterative methods for Euler and 
Navier-Stokes equations, fast iterative solv- 
ers (multi-grid, Krylov subspace techniques) 

• Numerical techniques for parallel computing 
and multiprocessing 
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• Advances in accurate capturing techniques 
for shock waves and contact discontinuities, 
TVD high resolution schemes, multidimen- 
sional upwinding 

• Numerical algorithms and problems specifi- 
cally related to the implementation of turbu- 
lence models and to the simulation of 
nonequilibrium chemically reacting flows 

• Numerical accuracy assessment. 

In order to limit the scope of the symposium, 
papers essentially devoted to grid generation 
techniques and turbulence or chemistry model- 
ling are not encouraged." 

The symposium spanned three and one-half days and 
the program listed 38 technical papers coming from 13 
countries, of which 36 papers were presented. The pro- 
gram committee organized a keynote session, eight ma- 
jor sessions and a general discussion at the end of the 
meeting. The following table presents the topics covered 
by the symposium. Although many papers addressed 
several topics, they are categorized in this table based on 
their central focus. The papers are listed in chapter 4 in 
the order of their presentation. 

topic reference 

invited papers [1], [2], [3] 

parallel computing 
[4], [5], [6], [7], [21], 
[25], [36] 

advanced spatial 
discretization schemes 

[9], [10], [12], [14], [15], 
[16], [17] 

unstructured grids, 
hybrid grids, overlap- 
ping grids, meshless 
techniques 

[8], [11],, [28], [29] 

adaptive schemes [13], [20], [24], [34] 

fast implicit and 
iterative solvers 

[18], [19], [26] 

turbulent flows, 
LES / DNS 

[22], [23] 

chemically reacting 
flows 

[30], [31] 

unsteady flows [[27], 32], [35], [33] 

It is worthwhile to note that the majority of the papers 
were concerned with parallelization of CFD methods, 
use of more flexible grid structures and development of 
advanced discretization schemes including adaptive 
methods. This may reflect the contemporary trends of 
CFD research in most aeronautical companies, gover- 
ment research laboratories and universities. Surpris- 
ingly, except for the keynote paper by Jameson, no tech- 
nical paper addressed optimization and interdisciplinary 
analysis which, in the author's opinion, are major chal- 
lenges in CFD. 
The evaluation undertaken in this report attempts to 
cover two aspects. Chapeter 2 comprises summaries of 
the presented papers for each topic given in table 1. It is 
not intended to give an extensive review of all individ- 
ual papers, but instead, for each particular subject it is 
aimed to identify the critical issues and to assess how far 
they were addressed by the papers. In chapter 3, con- 
cluding remarks are presented indicating to what degree 
the aims of the meeting and the needs of the aerospace 
community were met. Furthermore, recommendations 
arising from the meeting are given. 

2. SYNOPSIS OF THE PAPERS 
With respect to the theme of the meeting "Progress and 
Challenges in CFD Methods and Algorithms", in the 
evaluator's opinion, many papers of high quality were 
given, which represent the current status of CFD, focus 
on unresolved issues and present new important direc- 
tions of development to overcome current deficiencies. 
On the other hand, many papers of lower quality were 
presented. Some of them did not meet the main focus of 
the symposium, several others did not reflect the present 
status of CFD or were largely redoing or reinventing 
well established topics that have been known in the lit- 
erature for some time. 

2.1 Invited Papers 
Keynote papers were provided by A. Jameson, P. Rub- 
bert and D. Knight. 

Jameson [1] gave an excellent overview of present sta- 
tus, challenges and future developments in computa- 
tional fluid dynamics. He addressed the essential re- 
quirements on numerical simulation for their effective 
industrial use. Assured accuracy, acceptable computa- 
tional and human costs as well as fast turn around were 
identified as major issues. In his opinion, more sophisti- 
cated algorithms are required in order to substanially re- 
duce computational costs. Improved methods should in- 
clude higher order schemes, advanced acceleration 
methods, fast inversion methods for implicit schemes 
and the effective exploitation of massively parallel com- 
puters. The paper reviewed modern numerical methods 
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and addressed several issues in algorithm design. In par- 
ticular, a unified approach to design accurate and effi- 
cient shock capturing algorithms was presented. Some 
examples of state-of-the-art calculations, which can be 
performed in an industrial environment, were given. 
Jameson pointed out that beside the transition to more 
sophisticated algorithms, the present challenge is to ex- 
tend the effective use of CFD techniques to more com- 
plex applications. As key problems, he identified turbu- 
lent flows at Reynolds numbers associated with full 
scale flight, chemically reacting flows, combustion and 
unsteady flows. Furthermore, multidisciplinary analysis, 
aerodynamic shape optimization and in the long run 
multidisciplinary optimization were designated as im- 
portant future target areas of CFD. In his presentation, 
Jameson outlined a very promising technique for effi- 
cient three-dimensional shape optimization based on 
control theory. He demonstrated a successful design of a 
swept wing with very low wave drag within 40 design 
iterations. In this example, the flow was modeled by the 
Euler equations. He mentioned that with this technique, 
even in the case of three-dimensional flows, the compu- 
tational requirements are so moderate that the calcula- 
tions can be performed with workstations such as the 
IBM RISC 6000 series. 

In summary, the invited paper delivered by Jameson 
gave a precise outline of the scope of the symposium 
and the expected outcome of the meeting. 

In his presentation [2], Rubbert focused his remarks on 
challenges and pacing items in CFD that extend beyond 
the technical ones. He pointed out that the key to devel- 
oping better airplanes or better CFD is the same, namely 
to analyze, understand and improve the processes by 
which airplanes or CFD are created. Rubbert called the 
process by which CFD capabilities are created the re- 
search engine. Such a research engine involves industry, 
academia and government, and the three components in- 
teract with each other as a system. In the past this sys- 
tem functioned quite well, but, in his opinion, it has 
been almost disconnected from the customers of CFD 
research, namely the practicing design engineers. Im- 
pressive results of research have been achieved, but they 
were not necessarily applicable by industry. The paper 
pointed out many principal characteristics and attributes 
which an improved, properly functioning research en- 
gine should have. The leading principles are customer 
focus and customer satisfaction. Two further key factors 
were identified which will pace the change of the re- 
search engine. The first is a two-way, more intensive 
communication between the research community and 
the engineering community in industry. The second is a 
modification of the evaluation system of the research 

work towards more industrial applicability. As stated by 
Rubbert, this is the responsibility of the money givers 
who inhabit the research engine. 

In summary, Rubberfs, paper performed a general criti- 
cal assessment of today's system of research and its 
stage of change. His observations represent the prag- 
matic point of view of industry, from which the interest 
of researcher's basic scientific findings are less empha- 
sized. This paper makes CFD researchers sensitive to in- 
dustrial needs, but some specific views of aeronautical 
industry on the status of CFD and future requirements 
would have been desirable. 

The paper by Knight [3] presented an overview of paral- 
lel computing in computational fluid dynamics. In the 
first part of the paper the basics of parallel computing 
were addressed, including the introduction of the dis- 
tinct levels of parallelism, the classification of parallel 
computer architectures and the description of the two 
basic programming paradigms, namely message passing 
and data parallelism. The second part focused on several 
key issues in the context of code development for paral- 
lel computing. Dynamic load balancing and scalability 
were identified as critical issues for complex CFD appli- 
cations carried out on massively parallel computers. 
Furthermore, a major concern of parallel computing is 
portability. Here, Knight discussed current research ac- 
tivities, including the development of message passing 
standards (e.g. PVM, MPI) and data parallel program- 
ming language standards (e.g. HPF). In his presentation, 
Knight pointed out that in the U.S. aerospace industry 
has taken a leading role in the application of parallel 
computing to practical analysis and design. In the past 
few years several major aerospace corporations have de- 
veloped extensive networks of workstations for routine 
applications. Several examples were given in the paper. 

Knight's presentation provided a basic introduction into 
the field of parallel computing. The fundamental termi- 
nology were explained and all critical issues were dis- 
cussed. Therefore, the paper was very helpful for the un- 
derstanding and assessment of the following technical 
papers which dealt with parallelization. Unfortunately, 
the paper did not discuss the potentials and limitations 
of high performance parallel computers to tackle large 
scale applications or new challenges in CFD. Results 
were only presented for networks of loosely coupled 
workstations. 

Although papers on grid generation techniques were ex- 
plicitly not encouraged by the call for papers, an invited 
paper on status and progress of both structured and un- 
structured grid generation for complex configurations 
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might have been desirable. The turn around time and ac- 
curacy of the numerical simulation of industrial applica- 
tions very often depend on the capability of the avail- 
able grid generation procedure. Therefore, for the 
critical assessment of numerical algorithms using struc- 
tured, unstructured or hybrid meshes, the capabilities 
and limits of the underlying grid generation techniques 
have to be taken into account. 

2.2 Parallel Computing 

Parallel computing is an important means to cut down 
turn around time and computational costs of large scale 
applications. Furthermore, it is believed that the exploi- 
tation of massively parallel computing is the key to 
tackle new grand challenges in CFD such as multidisci- 
plinary analysis and optimization. In the last several 
years a wide variety of parallel architectures have be- 
come available which differ in the design of the CPU's 
(vector versus RISC processor), the memory organiza- 
tion (e.g. shared versus distributed memory) and the 
communication system (hardware and software). For the 
future some of the vendors promise substantial increase 
of computational power in both memory and CPU. One 
of the main issues in parallel computing is the design of 
numerical algorithms which efficiently exploit the capa- 
bilities of the parallel hardware. Especially in the case of 
distributed memory machines, this is a non trivial task. 
The important aspects in designing parallel algorithms 
for these architectures are partioning of data and compu- 
tation among the processors, communication at the in- 
ternal boundaries, load balancing and overhead due to 
communication and extra computations. Simpler algo- 
rithms, such as explicit schemes, parallelize quite easily 
and they lead to high performance on most parallel com- 
puters. However, due to their poor convergence rates 
they are overall much less efficient than implicit 
schemes, although the latter ones generally perform far 
below the peak of the parallel machines due to the more 
intensive and more global communication involved. The 
adjustment and further development of more sophisti- 
cated algorithms such as multigrid and domain decom- 
position methods on parallel architectures are very 
promising. In contrast to explicit schemes, they provide 
global distribution of information, however in a much 
more efficient way than traditional implicit schemes. 
Further research in this direction is needed in order to 
efficiently exploit the capabilities of parallel computers. 

In this symposium, papers [4], [5], [6], [7], [21], [25] 
and [36] dealt mainly with parallel computing and cov- 
ered various aspects thereof. The paper by Eisfeld et al. 
[4] stressed the issue of portability. They described the 
portable parallelization of a state-of-the-art block-struc- 

tured multigrid solver for industrial CFD applications. 
Portability is achieved through the use of a message 
passing based high level communication library. This li- 
brary supports any operation which is necessary in par- 
allel mode and involves communication between differ- 
ent processes. Performance measurements on a large 
variety of computers of different architectures demon- 
strated the comprehensive portability of the code. Appli- 
cations included inviscid computations for a generic air- 
craft consisting of wing/body/pylon/engine and viscous 
calculations for a wing-body configuration on a compu- 
tational mesh with 6.6 million points. The paper showed 
that the complexity of today's problems in applied aero- 
dynamics can be tackled with parallel computers. It also 
revealed the necessity for an automatic and effective 
load balancing tool that allows the mapping of an initial 
block structure to a higher number of processors than 
given blocks. Details on the parallel efficiency of the 
multigrid method used in the applications were not 
given. 

The papers by Wissink et al. [6], Dias d'Almeida et al. 
[7] and Badcock et al. [36] focused on the parallel im- 
plementation of implicit Euler/Navier-Stokes solvers. In 
[6] for example, two modifications of the well known 
implicit LU-SGS scheme (Lower-Upper Symmetric 
Gauss-Seidel) were presented. The first replaces the 
Gauss-Seidel sweep in LU-SGS with a Jacobi-like 
sweep which only requires nearest neighbor communi- 
cation and is therefore easy to parallelize. The second 
one is a hybrid approach that couples the global Jacobi 
type communication with the more efficient Gauss- 
Seidel sweep on each subdomain. In both strategies 
multiple sweeps are required in each subdomain in order 
to maintain the convergence behavior of the baseline 
LU-SGS method. Both strategies have been investigated 
in detail with respect to parallel speed-up, convergence 
rate and computational efficiency. Inviscid calculations 
for 3-D hovering helicopter blades demonstrated that 
the hybrid strategy is a promising implicit scheme for 
parallel computers with a smaller number of powerful 
processors. 

The presentations delivered by Pinelli et al. [5] and 
Streng et al. [21] addressed the parallelization of algo- 
rithms for DNS and LES. In [21] the various aspects of 
the parallel implementation of a typical higher order 
DNS solver based on domain decomposition were dis- 
cussed. The intrinsic or algorithmic efficiency has been 
defined (see also [4]), which deals with the paralleliz- 
ability of a given algorithm, regardless of the machine. 
Based on some analysis, the authors showed that due to 
extra floating point operations at inner block boundaries 
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the algorithmic efficiency decreases rapidly as the spa- 
tial discretization increases, that is, as the corresponding 
stencil-size grows. Test calculations on different parallel 
architectures indicated that the machine efficiency is 
even considerably lower than the algorithmic efficiency. 
Furthermore, the paper reported on first experience that 
has been gained for the implementation of the DNS 
solver on a SGI Power Challenge Array (4 nodes each 
comprised of a 16-CPU shared memory parallel ma- 
chine) using a combination of fine-grained (shared 
memory) and coarse-grained parallelism (explicit mes- 
sage passing). The results were very promising, how- 
ever, this parallelization strategy needs further investi- 
gation. 

The paper by Sibilla and Vitaletti [25] did not show any 
parallel computations, but it addressed several important 
aspects of multiblock-structured grid algorithms in a 
parallel computing environment. As in [4] the manage- 
ment of data communication between adjacent blocks is 
provided by a parallel library (PARAGRID) which en- 
sures that the same average values are assigned to all 
replicas of the same boundary node owned by different 
blocks. The paper discussed the influence of block sub- 
division on accuracy and efficiency within the frame- 
work of a multigrid scheme. The solution algorithm has 
been modified in order to account for the presence of lo- 
cally unstructured topologies at block boundaries (sin- 
gular points). For some test cases it could be demon- 
strated that the convergence of the numerical method 
could only be ensured with this modification. 

In conclusion, most of the papers focused on some spe- 
cific algorithmic aspects of parallel computing. Effort 
was essentially put in adjusting sequential algorithms 
rather than developing new parallel schemes. Only a 
few large scale CFD applications have been presented 
demonstrating the capabilities and limits of parallel ar- 
chitectures for industrial CFD applications. One of the 
main challenges for parallel complex applications is the 
load balanced partioning of the flow domain, which is 
essential for obtaining optimal machine performance. 
This important issues were hardly addressed in the con- 
ference. 

2.3 Advanced Spatial Discretization Schemes 

Although in the last decade extensive research has been 
ongoing towards the development of accurate Euler and 
Navier-Stokes solvers, the improvement of spatial dis- 
cretization schemes is still a major concern in CFD. 
Suitable discretization schemes are expected to offer 
certain properties. These are conservation, at least sec- 
ond order accuracy in smooth flow regions and sharp 

resolution of discontinuities and viscous shear layers. 
High resolution of all physical phenomena is required 
on a computational mesh with a minimum number of 
grid points. Furthermore, the spatial discretization 
should support a robust and efficient time integration. 
Recently, substantial progress has been made in this area 
and many different promising approaches for the im- 
proved discretization of the Euler and Navier-Stokes 
equations are known in the literature. Among these are 
e.g. improved shock capturing algorithms based on flux 
difference and flux vector splitting, multidimensional 
upwinding, residual distribution schemes and kinetic 
flux splitting. These methods have been investigated in 
detail for one and two-dimensional flows . Very often, 
however, their superiority to conventional methods have 
only been demonstrated for simple test cases. Therefore, 
the key issue remains the manifestation of the improved 
abilities of the advanced methods for relevant 2-D and 
3-D viscous flows around more complex geometries. 

At the symposium several papers [9], [10], [12], [14], 
[15], [16] and [17], were specifically devoted to im- 
provements of the spatial discretization of Euler/Navier- 
Stokes solvers. The paper by Delanaye et al. [9] pre- 
sented the development of a new quadratic reconstruc- 
tion finite volume scheme for unstructured polygonal 
meshes. The most frequently employed linear cell re- 
construction of the flow variables requires sufficiently 
regular grids for second order accuracy and it results in 
a first order scheme for irregular meshes. In contrast to 
this, the proposed quadratic reconstruction provides a 
full second order scheme even for very irregular 
meshes. In order to avoid spurious oscillations in the vi- 
cinity of discontinuities, the quadratic reconstruction is 
switched to a monotone constant one with the help of a 
properly defined discontinuity detector. The method is 
designed to deal with adaptive unstructured grids con- 
sisting of cells with an arbitrary number of edges. Time 
integration is performed by an implicit scheme based on 
Newton-Krylov techniques. The efficiency and high ac- 
curacy of the numerical method were demonstrated for 
various 2-D inviscid and viscous laminar computations 
including test cases with locally distorted meshes. How- 
ever, the method needs to be carefully investigated for 
3-D complex geometries and turbulent flows at high 
Reynolds numbers where highly irregular meshes are 
expected. Furthermore, the sensitivity of the quadratic 
reconstruction with respect to implementation of wall 
boundary conditions has to be investigated. 

The paper delivered by Villedieu et al. [ 10] presented a 
second order scheme based on kinetic flux splitting. The 
main feature of this approach is that under a CFL like 
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condition density and energy can be proved to remain 
nonnegative. This makes the method very attractive for 
predictions of flow fields with near vacuum conditions, 
such as flows around hypersonic vehicles. Promising re- 
sults were shown for 2-D supersonic and hypersonic in- 
viscid flows in comparison with the classical Roe flux 
difference split scheme. First 3-D results for a wing 
alone application were presented which do not yet allow 
the assessment of the approach for 3-D more complex 
application. Furthermore, detailed remarks on the con- 
vergence behavior of the method were missing. 

The paper by Briggs et al. [13] addressed the effect of 
certain parameters of a classical TVD scheme on the so- 
lution of the specific viscous flow problem of a trans- 
verse jet interacting with a supersonic flow. As already 
known from many other applications, the size of the en- 
tropy correction parameter and the choice of the flux 
limiter can significantly influence the accuracy of the 
viscous solution, especially on coarse meshes or meshes 
with improper point distribution in the boundary layer. 

The papers [14], [15] and [16] were devoted to multidi- 
mensional upwinding. Vinckier et al. [14] presented a 
so-called flux filter scheme which operates on the dis- 
crete cell flux balance and assigns filtered parts of the 
residuals to the corresponding cell vertices according to 
the characteristic propagation directions. For stability 
reasons some kind of artificial viscosity, similar to the 
classical central scheme, has to be added, which is an 
unwelcome feature in the framework of a multidimen- 
sional upwind approach. Results for 2 D inviscid and 
viscous laminar flows on both structured and unstruc- 
tured meshes were presented indicating high resolution 
of flow features like shocks and expansion fans. How- 
ever, for airfoil flows improved accuracy of the method 
compared to classical central or upwind schemes was 
not demonstrated. 

The paper by Paillere et al. [15] reviewed recent devel- 
opments in multidimensional upwind schemes based on 
the residual decomposition or fluctuation splitting ap- 
proach. Substantial progress has been made in the im- 
plementation of truly multidimensional upwinding in 
which unlike the standard upwind schemes the upwind 
biasing is determined by properties of the physics rather 
than the computational mesh. For scalar conservation 
laws various advection schemes distributing the conser- 
vative flux balance to only the downstream nodes have 
been developed. These schemes can be designed such 
that properties as conservation, positivity and second or- 
der accuracy are guaranteed. It was reported that the ex- 

tension of these schemes to Euler/Navier-Stokes equa- 
tions is straight forward provided that a conservative 
linearization can be found. This can easily be achieved 
for triangular meshes, whereas for quadrilateral meshes 
it is more difficult and still subject of ongoing research. 
The paper presented various numerical examples for 2- 
D flows demonstrating the ability of the residual decom- 
position approach. In particular, the results indicate the 
improved resolution of flow disontinuities which are not 
aligned with mesh lines. Unfortunately, the issue of ac- 
curate prediction of turbulent viscous flows was not ad- 
dressed in the paper. Furthermore, no 3-D results were 
shown. The residual decomposition schemes have been 
successfully combined with implicit methods and solu- 
tion adaptive techniques. 

The paper by Van Ransbeeck and Hirsch [16] presented 
an alternative approach for multidimensional upwind 
schemes on structured meshes. In this framework the 
numerical flux is formulated using the artificial dissipa- 
tion concept. The diffusive contribution is constructed 
with directional terms, whereas the antidiffusive term is 
designed according to the direction of the convection 
speed and to variations of the solution in different mesh 
directions. The paper presented a classification of first 
and second order accurate schemes that have respec- 
tively minimum and zero cross diffusion. Second order 
monotone schemes have been developed using the con- 
cept of non-linear limiter functions applied to multidi- 
mensional ratios of flux differences. Extensions of the 
scalar dissipation model to the Euler/Navier-Stokes 
equations have been achieved through a characteristic 
decomposition. Different choices for the propagation di- 
rection are possible. Promising results were presented 
for 2-D and 3-D supersonic test cases showing compara- 
ble or somewhat improved accuracy with respect to 
classical second order dimensional-split upwind 
schemes. However, no results for subsonic test cases 
such as flow past an airfoil were shown. Therefore, a 
comprehensive assessment of the concept is not possible 
at the current stage of research. 

In summary, promising approaches were presented, 
which aimed at improving the accuracy of state-of-the- 
art Euler/Navier-Stokes solvers. In particular, the higher 
order reconstruction approach and the multidimensional 
upwind schemes offer properties which in theory make 
them superior to standard algorithms. Numerical results 
for various two dimensional test problems support this. 
However, in order to push the implementation of these 
advanced techniques into 3-D production codes for vis- 
cous flow calculations, further investigations are re- 
quired. A critical assessment should include sensitivity 
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studies with respect to grid fineness and grid regularity 
for transonic 2-D and 3-D viscous flows. It should be 
clarified whether with these new concepts substantial 
progress can be made towards accurate drag prediction 
for 2-D and 3-D configurations at relevant Reynolds 
numbers. 

2.4 Unstructured Grids, Hybrid Grids, Overlapping 
Grids and Meshless Techniques 

The key problem of numerical simulation of complex 
configurations is the construction of an appropriate grid 
to represent the computational domain of interest. Grid 
generation is the decisive factor concerning the turn 
around time of simulations for industrial applications. 
Essentially two alternative strategies exist, namely 
structured and unstructured meshes. Currently, block- 
structured body-fitted meshes are most widely used. 
They have been proved to be well suited for viscous cal- 
culations and they form the building blocks of most of 
the industrial state-of-the-art production codes. How- 
ever, with this approach, grid generation for complex 
geometries itself is the major challenge. Various strate- 
gies are being developed to simplify the grid generation 
problems. Among these are the overlapping grid tech- 
niques where the structured grids of various blocks may 
overlap. The alternative approach is to divide the com- 
putational domain into an unstructured assembly of 
computational cells by using tetrahedra or general po- 
lygonal volumes. In contrast to structured meshes, this 
strategy substantially simplifies the discretization of 
complex geometries. On the other hand, it complicates 
the design of accurate and efficient algorithm. While in 
the past promising and flexible unstructured methodolo- 
gies have been developed for inviscid flows, the accu- 
rate calculation of viscous flows using unstructured 
meshes is still an important issue of current research. In 
particular, efficient simulation of high Reynolds number 
flows requires extremely stretched cells, which in the 
case of tetrahedral meshes lead to tetrahedra with acute . 
angles. This may cause numerical errors, at least for 
classical schemes currently used in industrial codes. An 
interesting alternative is the use of hybrid grids consist- 
ing of tetrahedra and hexahedral or prismatic cells. It of- 
fers the possibility of combining the flexibility of tetra- 
hedral meshes with the accuracy of regular grids in the 
boundary layer. The ability of this approach to simulate 
turbulent flows around complex 3-D geometries is still 
to be verified. 

Some of the before mentioned issues concerning the use 
of more flexible grid structures were addressed during 
the meeting. The paper delivered by Ramakrishnan et 
al. [8] presented the experience on unstructured grid 

computations gained at Rockwell Science Center over 
the past several years. One of the most important lessons 
they have learned from many 3-D applications is the 
fact that in spite of all the advances that have been made 
in the field of unstructured procedures, on comparable 
grid fineness structured-grid simulations yield more ac- 
curate solutions. The authors concluded that for inviscid 
flows unstructured Euler solvers have a clear edge over 
their structured counterparts. This is due to the fact that 
the solution of Euler equations, unlike Navier-Stokes 
equations, does not require very fine meshes in the vi- 
cinity of solid bodies. Therefore, unstructured grid gen- 
eration becomes much easier to handle and several com- 
putations for many different configurations can be 
carried out in a matter of a few weeks. In the case of vis- 
cous flows, however, the stringent resolution require- 
ments in the wall normal direction makes structured 
solvers more suitable for efficient calculations. In the 
framework of unstructured meshes, paper [8] presented 
a generalization of the implementation of boundary con- 
ditions which allows the specification of interior bound- 
aries anywhere in the computational domain. This con- 
cept allows the effective computation of moving bodies, 
like in the case of aircraft store release. However, no de- 
tailed numerical results were shown. 

The paper by Galle [28] addressed the solution of Euler 
and Navier-Stokes equations on hybrid grids consisting 
of prismatic cells near the body surface and tetrahedral 
cells elsewhere. The use of prismatic cells offers the 
possibility to efficiently and accurately resolve regions 
such as boundary layers by applying high aspect ratio 
cells in the respective areas. An upwind finite volume 
scheme has been implemented on an auxiliary mesh of 
control volumes. This dual mesh formulation guarantees 
conservation in the entire flow field and in particular at 
interfaces between prismatic and tetrahedral domains. 
The integration in time is performed by an explicit mul- 
tistage scheme accelerated by a multigrid technique 
based on agglomeration of control volumes. Promising 
numerical results were shown for 3-D inviscid and 2-D 
viscous flows demonstrating the ability of the method. 
However, further 3-D viscous calculations for more 
complex geometries are required to proof the concept of 
the hybrid mesh approach. 

The paper delivered by Brenner [29] presented a com- 
putational procedure to simulate rocket stage separation. 
The Euler equations with mixing gases are solved with 
an upwind finite volume method on unstructured 
meshes, which may consist of a combination of tetrahe- 
dral, prismatic and hexahedral cells. In order to simulate 
the motion of bodies, a conservative overlapping grid 
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technique have been implemented. A temporal adaptive 
algorithm is used to calculate the unsteady flow field. A 
very impressive application was shown, which however 
did not allow a critical assessment of the method con- 
cerning its accuracy. 

The interesting concept of meshless simulation tech- 
niques for fluid flow problems was presented by Onate 
et al. [11]. According to the work of Batina the discrete 
approximation of the governing equations uses a cloud 
of arbitrary points. Unlike conventional meshes, no 
fixed connectivities between the points is needed and 
therefore grid properties like regular cells or non nega- 
tive cell volumes are not required. A weighted least 
square interpolation is used to construct a linear or qua- 
dratic function from the values given at the arbitrary 
points in the local interpolating domain. First examples 
for the solution of the 1-D convection diffusion equation 
and for 2-D compressible inviscid flows were shown. 
For these calculations the points generated by an un- 
structured mesh have been used. It was pointed out that 
major difficulties of this approach are the definition of 
the local interpolating domain and the selection of the 
most significant points for the interpolation in each do- 
main. The interpolation strategy strongly influences the 
quality of the solution. Another drawback is that the 
method is not conservative. Furthermore, it is quite dif- 
ficult to access the accuracy of the numerical procedure 
if a set of arbitrary points is used. However, since in the- 
ory the meshless approach does not require a suitable 
grid of high quality and allows an efficient adaption 
strategy, further research in this area is encouraged. 

The papers reviewed above addressed different and in 
comparison to structured meshes more sophisticated 
grid strategies which are expected to improve or even 
enable the simulation of 3-D complex configurations. 
Promising results for various, mostly inviscid test cases 
were shown. However, the abilities of the advanced 
techniques to accurately calculate turbulent viscous 
flows around more complex geometries were not dem- 
onstrated at the conference. 

2.5 Adaptive Schemes 

In recent years adaptive grid methods for computational 
fluid dynamics have gained popularity due to their po- 
tential to provide highly accurate solutions on the basis 
of cost-effective calculations. In contrast to global re- 
duction of the mesh interval, very fine mesh cells are re- 
stricted to those regions where flow features need high 
grid resolution; elsewhere the computational grid may 
be quite coarse. Grid adaption methods can be catego- 
rized into either point redistribution or mesh embed- 

ding/enrichment. Point redistribution schemes maintain 
a constant number of points, which are moved such that 
they congregate near flow features. This technique can 
be easily implemented into existing structured and un- 
structured flow solvers. However, it can lead to quite 
skewed grids, especially in the case of structured 
meshes. The grid embedding technique add points to the 
existing grid. This procedure maintains the global grid 
accuracy outside embedded regions and simultaneously 
increases the accuracy in the embedded regions. The 
key issue for adaptive methods is the design of suitable 
error estimators. By far the most common approach is to 
use physical features such as local solution gradients. 
These indicators efficiently detect high-gradient regions 
such as shock waves, however the global error may not 
necessarily be reduced and the numerical solution may 
depend on the adaption pattern. Recently more ad- 
vanced, direct error estimators are used. They are either 
based on the discretization error, which may be esti- 
mated by comparing quantities calculated on two differ- 
ent fine meshes, or on the residual error. This strategy is 
very promising but needs further research, especially if 
it is applied to viscous flows. In conclusion, adaptive 
strategies are considered as one of the pacing items of 
algorithmic research. Issues which have to be clarified 
for complex applications are the development of suit- 
able adaption criteria allowing grid independent solu- 
tions and dynamic load balancing for parallel comput- 
ing. 

The issue of adaptivity has been addressed by many 
conference papers. Papers [9], [15] and [34] reported on 
adaptive refinement in the context of unstructured solv- 
ers based on insertion and removal of grid points. The 
papers [15] and [34] presented an adaption strategy 
which relies on a finite element error estimator. Whereas 
in [15] the application is restricted to steady 2-D invis- 
cid flows, Friedrich et al. [34] presented a dynamical 
adaption for various 2-D unsteady flows. The error indi- 
cator, which has been proved reliable for many inviscid 
calculations, is currently being extended to the Navier- 
Stokes equations. First grid adaptions for viscous flows 
were shown. Furthermore, the finite element residual 
has been successfully used for a 3-D inviscid wing ap- 
plication. The adaptive unstructured solver of [34] has 
been parallelized on the basis of an intelligent dynamic 
load balancing procedure for performance controlled 
domain decomposition. In the parallel mode an explicit 
time integration is employed, whereas on a sequential 
computer unsteady calculations are carried out by an 
implicit method using a preconditioned GMRES tech- 
nique. 
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The paper by Becker et al. [24] addressed the adaptive 
grid refinement for block structured solvers. In this con- 
cept, locally refined mesh blocks are patched into the 
existing mesh. The additional fine subblocks are con- 
nected with the original mesh via the multigrid tech- 
nique. The level of local truncation error is used as error 
indicator. Following the idea of Brandt, truncation error 
estimates can be extracted directly from the multigrid 
cycle. So far, the refinement procedure is set up outside 
the flow solver. First results presented for 2-D and 3-D 
inviscid and viscous test cases show the feasibility of 
the strategy of subblock refinement. However, consider- 
able more work is required to establish a fully auto- 
matic, robust and accurate adaption method. 

Van der Vegt et al. [20] presented a hexahedron based 
grid adaption procedure. The method uses the discontin- 
ues Galerkin finite volume formulation with local grid 
enrichment. A directional grid adaption is employed 
which allows subdividing of cells, independently in 
each of the three local grid directions. This anisentropic 
grid refinement is expected to be more efficient in cap- 
turing local flow phenomena than isentropic refinement, 
since many flow features are one-dimensional. The sen- 
sor uses primitive variables and is constructed such that 
it prevents regions with discontinuities from constantly 
dominating the local grid refinement procedure. The ca- 
pability of the adaptive method was demonstrated by 
calculations of the inviscid transonic flow around a ge- 
neric delta wing. From the author's viewpoint, the hexa- 
hedral based adaptive solver is a good candidate for 
large eddy simulations (LES), because it offers the op- 
portunity to accurately capture viscous sublayers with 
successively fine grids through local grid refinement. 
LES results, however, were not shown. 

Grid adaptive procedures based on point redistribution 
were discussed in the papers [12], [27], [33]. This tech- 
nique was mainly used in the framework of moving 
grids for unsteady calculations. 

In conclusion, various adaptive strategies were pre- 
sented. The important issue of developing a suitable in- 
dicator for adaption was addressed. Various error esti- 
mators have been proposed and successfully applied to 
inviscid flows. However, further research is needed to 
establish efficient and robust adaptive methods for vis- 
cous flows. 

2.6 Fast Implicit and Iterative Solvers 

As numerical flow simulations pave their way into the 
practical aerodynamic design process, the need for effi- 

cient algorithms to solve the spatial discretized Eu- 
ler/Navier-Stokes equations has become very obvious. 
Many solvers still used in current aerospace develop- 
ment programs exhibit slow convergence towards the 
desired steady state solutions which leads to high com- 
puter costs and long turn around times. Consequently, 
there is a substantial amount of research work focused 
on methods for convergence acceleration. Promising ap- 
proaches are the multigrid time-stepping technique and 
the Newton iteration with fast iterative solvers. In struc- 
tured codes multigrid techniques based on explicit mul- 
tistage schemes are widely used and they have been 
proved to yield good convergence rates for many practi- 
cal applications. However, for the numerical simulation 
of high Reynolds number flows, the convergence of the 
standard multigrid schemes considerably slows down. 
This is due to the stiffness of the numerical problem, 
which is introduced through the high-aspect ratio cells 
required for the efficient solution of such flow fields. 
Therefore, one of the key issues concerning algorithmic 
development is the design of appropriate multigrid com- 
ponents, such as smoothing and grid transfer operators, 
which efficiently tackle high aspect ratio cells. 

Interest in fast iterative methods has been mainly moti- 
vated by unstructured solvers. It was shown that cou- 
pling Newton's method with iterative solvers for the in- 
ner iteration is an effective approach for solving the 
large systems of nonlinear equations arising from the 
discretization of Euler and Navier-Stokes equations. An 
interesting feature of Newton's method is its ability to 
provide superlinear asymptotic convergence. On the 
other hand, efficient iterative schemes based on New- 
ton's iteration require excessive memory allocations for 
three dimensional applications. Therefore, strategies 
have to be developed which eliminate the large storage 
requirements but still remain the favorable convergence 
characteristics of Newton's method. 

The paper by Pulliam et al. [19] gave an excellent over- 
view of the potentialities and drawbacks of Newton's 
method applied to CFD solvers. For practical reasons, in 
each Newton iteration the large block banded matrix is 
solved by an iterative matrix solution method. In partic- 
ular, the paper addressed the class of Krylov subspace 
methods known as GMRES. It presented practical as- 
pects and implementation issues of these methods. The 
main components of the Newton-GMRES approach, 
such as evaluation of the Jacobian, matrix-vector multi- 
ply and matrix preconditioning, were discussed with re- 
spect to global convergence behavior, memory require- 
ments and accuracy. Trade-offs between full Newton 
and approximate Newton and other pertinent approxi- 
mations were investigated. The Newton-GMRES solver 
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was analyzed in the framework of a structured and un- 
structured 2-D Navier-Stokes code. In both cases very 
promising results were shown. Calculations with similar 
methods were also carried out in papers [9], [ 15]. It can 
be concluded that optimal strategies which ensure favor- 
able convergence characteristics will lead to excessive 
memory requirements. No 3-D calculation with New- 
ton-Krylov subspace techniques were presented at the 
conference. 

The paper by Cambier et al. [26] proposed a new im- 
plicit algorithm called DDLU factorization. Compared 
to the classical ADI factorization, this strategy enables a 
reduction in both CPU time and memory. The new im- 
plicit technique was applied to a 3-D supersonic test 
case on a relatively coarse mesh. For a comprehensive 
assessment of this technique further test calculations are 
required. 

The paper by Merkle et al. [ 18] was devoted to conver- 
gence acceleration of the Navier-Stokes equation 
through a time-derivative preconditioning of the gov- 
erning equations. Using physical arguments, a general- 
ized preconditioner was developed, ensuring conver- 
gence characteristics which are independent of the 
Mach number. The uniform convergence was demon- 
strated for a variety of applications covering a wide 
range of Mach numbers. In many low speed cases, the 
preconditioned system showed a much improved con- 
vergence rate while having no detrimental effects in re- 
gimes where the original method already worked effi- 
ciently. So, preconditioning of the governing equations 
may offer the possibility to develop an efficient unified 
flow solver for the whole Mach number regime. Further 
research is required to establish this approach. 

At the conference none of the papers devoted to conver- 
gence acceleration addressed the key problem of com- 
puting realistic Reynolds number flows. These flows re- 
quire computational meshes with very high aspect ratio 
or irregular cells leading to very stiff discrete equations. 
The development of numerical strategies to overcome 
the stiffness and to ensure fast convergence in these flow 
situations is one of the grand challenges in algorithmic 
research. 

2.7 Turbulent Flows, LES/DNS 

The key problem of accurate numerical simulation of 
complex flows is the description of transition and turbu- 
lence. Currently, in all industrial relevant calculations, 
the Reynolds averaged Navier-Stokes equations are 
solved, in which only the statistically stationary flow is 

calculated and the effects of turbulence are modelled by 
a so-called turbulence model. However, in many cases 
the quality of the solution may strongly depend on the 
turbulence model used in the calculation and at best 
questionable results may be obtained for more complex 
flow phenomena such as massive flow separation. The 
rapid increase of computer resources motivated the re- 
search on direct numerical simulation (DNS) or large 
eddy simulation (LES) of turbulent flows. In the case of 
DNS, the unsteady Navier-Stokes equations are solved 
directly. No turbulence model is required since all scales 
and turbulence motions present are resolved numeri- 
cally. Due to excessive computer resources required 
even for simple geometries, this simulation technique is 
out of question for practical applications. However, it 
provides a very important methodology for turbulence 
research. In contrast to DNS, the large eddy simulation 
of turbulent flows resolves only the large scale structure 
of the turbulence, while the effects of smaller eddies are 
described by a statistical subgrid model. As the resolu- 
tion of the fine scale turbulence motion is not required, 
far fewer grid points are needed making LES feasible 
for practical problems at relevant Reynolds numbers in 
the near future. On the other hand, in order to ensure im- 
proved results compared to the solution of the Reynolds 
averaged Navier-Stokes equations (RANS), besides the 
establishment of a suitable subgrid model, accurate res- 
olution of the viscous sub-layers in the near wall regions 
is needed. This substantially increases the number of 
grid points for LES compared to RANS solvers. Fur- 
thermore, since time accurate solutions are calculated in 
the framework of LES, significant further development 
of the classical CFD methods is needed. In addition to 
the validation of a subgrid model, more sophisticated al- 
gorithms such as adaptive grids, higher order discretiza- 
tions, efficient unsteady solvers and parallel computing 
have to be made available for LES before this technique 
can be used as a tool for flow simulations. 

Numerical aspects of DNS and LES were addressed by 
papers [5],[20],[21] and [22]. As already mentioned 
above, the papers [5] and [21] were devoted to the ex- 
ploitation of parallel computers, whereas paper [20] pre- 
sented a grid adaption method specially designed for 
LES. The focus of Comte et al. [22] was the investiga- 
tion of subgrid scale models within a classical explicit 
finite difference method. The aim of the presentation 
was to show some examples of what can be achieved 
with today's supercomputers and standard codes using 
eddy-viscosity models. 

In summary, from the papers delivered at the conference 
it is very difficult to estimate whether a large eddy simu- 
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lation for a practical problem, such as a clean wing at a 
relevant Reynolds number, will become feasible in near 
future. In order to reach that goal, significant research 
work on both algorithms and subgrid scale models is 
needed. A few preliminary approaches for algorithmic 
improvement were shown at the conference. 

2.8 Chemically Reacting Flows 

The effective use of CFD for viscous hypersonic react- 
ing flows is one of the present challenges. In the past, 
substantial effort has been devoted to this research area 
and key requirements for efficient solution algorithms 
have been identified [30]. These are sharp capturing of 
strong shocks, robustness in regions of strong flow ex- 
pansion, high resolution of viscous regions, efficient 
treatment of adverse grid and flow situations in the case 
of complex 3-D geometries, and effective integration of 
stiff equations introduced by the large chemical source 
terms. 

The two conference papers devoted to reacting flows ad- 
dressed these algorithmic issues. The paper by Rade- 
spiel et al. [30] reviewed recent progress made with flux 
vector splitting methods to ensure high resolution and 
robustness for hypersonic viscous reacting flow simula- 
tions. Two promising approaches recently published in 
the literature were discussed and compared. Both 
schemes use scalar dissipation functions and their con- 
ceptual differences appear in the resolution of shock 
waves. Implementation details and recommendations 
for their effective use for viscous flows were given. Fur- 
thermore, the capabilities of the multigrid method based 
on explicit multistage time-stepping schemes were in- 
vestigated for reacting flows. A number of modest mod- 
ifications of the standard multigrid method successfully 
used for subsonic and transonic flow problems were re- 
ported in order to ensure fast convergence for high 
Mach number flows with strong shocks. The stiffness of 
the equations introduced by the large chemical source 
terms is removed by a point implicit treatment. Various 
computations for different complex flow problems were 
presented. They impressively demonstrate that with the 
reported algorithmic improvements converged flow so- 
lutions for reacting flows over complex 3-D configura- 
tions are now feasible. 

The paper devoted by Coquel et al. [31] focused on the 
extension of a hybrid upwind spitting method to non- 
equilibrium flows. Based on the experience that the clas- 
sical Van Leer flux vector scheme is not suitable for vis- 
cous calculations and the Roe type flux difference 
solvers are not robust for hypersonic flows, a new up- 
wind approach was presented which basically combines 

the distinct flux vector and flux difference splitting con- 
cepts while retaining their interesting features. The pro- 
posed method is a combination of the Van Leer scheme 
and the Osher scheme with some modifications and ex- 
tensions. The ability of the new method to resolve vis- 
cous hypersonic reacting flows was illustrated by vari- 
ous results including internal and external flow 
configurations. The time integration is performed by an 
unfactored implicit scheme, which in the current imple- 
mentation leads to somewhat slow convergence rate and 
needs to be improved for further applications. 

In conclusion the two papers on reacting flows covered 
the key issues for developing efficient numerical tools 
for the simulation of complex flows. Very promising re- 
sults were presented, illustrating that effective predic- 
tions in terms of both accuracy and efficiency for com- 
plex configurations are now feasible. 

2.9 Unsteady Flows 

For steady flows, substantial CFD capability has been 
achieved over the last two decades and Euler/Navier- 
Stokes solvers are intensively used in aerodynamic de- 
sign. In contrast, although some isolated unsteady flow 
calculations have been carried out for various classes of 
problems, numerical simulation of unsteady flow fields 
based on Euler/Navier-Stokes equations is certainly not 
routine for industrial applications, due to the excessive 
computational effort involved in these calculations. 
From the algorithmic point of view, new innovative con- 
cepts are required, which substantially cut down the 
costs of time accurate simulations. This is especially im- 
portant for viscous flow calculations, where a very fine 
mesh near the wall is required to resolve the boundary 
layer. Issues that are central to unsteady CFD are the use 
of efficient implicit time integration with favorable sta- 
bility and accuracy characteristics, moving grids, adap- 
tive grids with local grid refinement/coarsening and par- 
allel computing. Moreover, for aeroelastic applications 
efficient coupling strategies are required. 

Time accurate calculations have been addressed by sev- 
eral papers (e.g. [27], [32], [33], [34], [35]). The paper 
by Pentaris et al. [32] focused on the solution of the un- 
steady incompressible 2-D Navier-Stokes equations us- 
ing a projection methodology developed for collocated 
grids. Standard numerical schemes, such as approximate 
factorization techniques, were employed. The numerical 
results presented for some test cases were encouraging, 
however, no remarks on the efficiency of the method 
were given. 
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The paper delivered by Allen [33] was devoted to grid 
adaption for unsteady inviscid airfoil flows. The solu- 
tion adaptive grids are generated by a new transfinite in- 
terpolation technique. An interesting approach was pre- 
sented, in which adaption is performed by adapting the 
interpolation parameters instead of the physical grid po- 
sitions. For unsteady calculations, grid adaption is per- 
formed gradually by imposing a so-called adaption ve- 
locity onto each grid point. The grid interpolation 
strategy was shown to be well suited for structured mov- 
ing grids. It is very flexible and requires only little CPU 
time. Steady and unsteady airfoil computations were 
presented illustrating the improved results from the 
adapted meshes. For the calculation, an upwind Euler 
solver with the dual-time implicit approach was used, 
which is considerably more efficient than the basic ex- 
plicit solver. The paper focused on two-dimensional in- 
viscid applications, so that the flexibility and efficiency 
of the proposed grid adaption strategy are still to be ver- 
ified for both viscous and three-dimensional flows. A 
time-varying grid technique was also presented by [26]. 
Here, the time integration was carried out with a second 
order implicit scheme. 

A more sophisticated moving grid technique was pre- 
sented by Jones et al. [27], with the goal of computing 
aircraft store trajectories. The technique is based on 
fully unstructured or hybrid meshes. It was pointed out 
that the geometric conservation law has to be satisfied 
within the framework of moving grids in order to guar- 
antee consistent results. So far, only two-dimensional 
unsteady results have been achieved. 

The paper by Ruis Calavera et al. [35] addressed para- 
metric studies of a time accurate Euler code for oscillat- 
ing wings. A rather standard central scheme with artifi- 
cial dissipation and explicit multistage time stepping 
scheme was used. Effects of grid density and artificial 
viscosity on the time accurate solutions were discussed 
showing the expected behavior. The code has been im- 
plemented on a powerful parallel computer, namely the 
National Wind Tunnel of NAL in Japan. It was demon- 
strated that parallel computing is a necessary ingredient 
for effective three-dimensional unsteady flow calcula- 
tions. 

In summary a view central issues for unsteady computa- 
tions were discussed by the conference papers. How- 
ever, no major progress in the development of algo- 
rithms for efficient three-dimensional time accurate 
calculations was presented. 

3. CONCLUDING REMARKS 

In chapter 2 each specific subject of the meeting has al- 
ready been fully commented, so that only general con- 
cluding remarks are given here. 

In the evaluator's opinion the theme of the symposium 
"Progress and Challenges in CFD Algorithms and 
Methods" was too encompassing and too ambitious for 
a 3 1/2 day long AGARD conference. Many papers of 
great interest and high technical standard were deliv- 
ered. They addressed specific challenges in CFD, pro- 
posed new methods or modifications to known method- 
ologies and presented smaller or larger progress. On the 
other hand, however, quite a large number of papers of 
lower quality were presented, which either did not focus 
on current key issues of algorithmic research or mainly 
reinvented well known results. Probably this situation is 
very similar to all other large CFD conferences. But 
measured against the ambitious theme of this sympo- 
sium, it has to be clearly stated that in many areas the 
Seville conference did not reflect the actual status of 
CFD and its recent progress. Considering Jameson's ex- 
cellent survey paper, it is obvious that several important 
algorithmic developments and recent improvements 
were not addressed. For example, no paper was devoted 
to aerodynamic shape optimization and multidisci- 
plinary analysis, topics which are increasingly important 
for future CFD applications in industry. Furthermore, in 
some areas such as unstructured grids and adaptive 
schemes, CFD is much further developed than reported 
at the conference. Since many leading experts, espe- 
cially those from the U.S., did not contribute to the con- 
ference, it is hard to expect that the high demands of the 
symposium could be met. 

Nevertheless, several important directions of algorith- 
mic research were addressed, which are expected to im- 
prove the capability of CFD for complex applications in 
the industrial environment. These included parallel 
computing, advanced discretization techniques, fast iter- 
ative solvers and powerful acceleration techniques, 
adaptive schemes and flexible strategies for discretizing 
the computational domain. Interesting and new aspects 
of these techniques were discussed, substantiating their 
extended potentials and improved abilities. In most 
cases, however, the superiority of the more sophisticated 
methods to the well established standard schemes was 
only demonstrated for simplified test problems, for 
which the classical methods also perform quite well. 
Very often results were shown for 2-D inviscid and lam- 
inar viscous flows. Three-dimensional calculations were 
restricted in most cases to inviscid flows or simplified 
geometries. Only a few more realistic calculations were 
presented. To make a step forward, it is very important 
to apply the advanced methodologies to those problems, 
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for which the standard methods show substantial defi- 
ciencies in terms of accuracy and efficiency or do not 
work at all. One of the grand challenges in CFD is the 
effective simulation of viscous flows at realistic, full 
scale Reynolds numbers for complex configurations. 
This problem, although ideal for testing advanced dis- 
cretiztion and time integration schemes, was hardly 
tackled at the conference even for simplified geometries. 
Furthermore, in order to raise the confidence level of 
CFD methods, careful grid refinement studies, sensitiv- 
ity investigations, estimation and control of the numeri- 
cal error as well as detailed code validation are required 
for a wide class of relevant applications. In many pa- 
pers, these issues were only partly or not all considered. 

In conclusion, considerable research work is still needed 
to establish CFD as an effective tool in the aerodynamic 
design process. The most important, but probably also 
the most limiting factor, is turbulence modelling, a sub- 
ject which was outside the scope of this symposium. 
With respect to algorithms, further development and im- 
provement remain essential but have to be directed to- 
wards the real challenges in CFD, which include: 

• accurate viscous flow simulation at relevant 
Reynolds numbers 

• effective treatment of complex configura- 
tions, such as a complete aircraft 

• efficient simulation of more complex flows 
with multiple space and time scales, such as 
unsteady flows or reacting flows 

• large eddy simulation for practical applica- 
tions 

• aerodynamic shape optimization 

• multidisciplinary analysis and design 

The Seville symposium was a step in the right direction. 
For some topics, it showed some good promise but there 
is still considerable work to be done to meet the chal- 
lenges of industrial CFD. The symposium provided a 
valuable forum for exchange of information about re- 
cent developments and achievements. 
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The Present Status, Challenges, and 
Future Developments in 

Computational Fluid Dynamics 

Antony Jameson 
Department of Mechanical and Aerospace Engineering 

Princeton University 
Princeton, New Jersey 08544 USA 

1.   SUMMARY 

This paper presents a perspective on computational fluid 
dynamics as a tool for aircraft design. It addresses the 
requirements for effective industrial use, and trade-offs 
between modelling accuracy and computational costs. Is- 
sues in algorithm design are discussed in detail, together 
with a unified approach to the design of shock capturing 
algorithms. Finally, the paper discusses the use of tech- 
niques drawn from control theory to determine optimal 
aerodynamic shapes. In the future multidisciplinary anal- 
ysis and optimization should be combined to provide an 
integrated numerical design environment. 

Despite the advances that have been made, CFD is still 
not being exploited as effectively as one would like in the 
design process. This is partly due to the long set-up and 
high costs, both human and computational of complex 
flow simulations. The essential requirements for indus- 
trial use are: 

1. assured accuracy 

2. acceptable computational and human costs 

3. fast turn around. 

2.   INTRODUCTION 

Computational methods first began to have a significant 
impact on aerodynamic analysis and design in the period 
of 1965-75. This decade saw the introduction of panel 
methods which could solve the linear flow models for 
arbitrarily complex geometry in both subsonic and super- 
sonic flow [58, 147, 179]. It also saw the appearance of 
the first satisfactory methods for treating the nonlinear 
equations of transonic flow [123,122,63,64,43,54], and 
the development of the hodograph method for the design 
of shock free supercritical airfoils [15]. 

Computational Fluid Dynamics (CFD) has now matured 
to the point at which it is widely accepted as a key tool 
for aerodynamic design. Algorithms have been the sub- 
ject of intensive development for the past two decades. 
The principles underlying the design and implementation 
of robust schemes which can accurately resolve shock 
waves and contact discontinuities in compressible flows 
are now quite well established. It is also quite well under- 
stood how to design high order schemes for viscous flow, 
including compact schemes and spectral methods. Adap- 
tive refinement of the mesh interval (h) and the order of 
approximations (p) has been successfully exploited both 
separately and in combination in the h-p method [126]. 
A continuing obstacle to the treatment of configurations 
with complex geometry has been the problem of mesh 
generation. Several general techniques have been devel- 
oped, including algebraic transformations and methods 
based on the solution of elliptic and hyperbolic equations. 
In the last few years methods using unstructured meshes 
have also begun to gain more general acceptance. The 
Dassault-INRIA group led the way in developing a fi- 
nite element method for transonic potential flow. They 
obtained a solution for a complete Falcon 50 as early 
as 1982 [25]. Euler methods for unstructured meshes 
have been the subject of intensive development by several 
groups since 1985 [110, 82, 81, 163, 14], and Navier- 
Stokes methods on unstructured meshes have also been 
demonstrated [117, 118, 11]. 

Improvements are still needed in all three areas. In par- 
ticular, the fidelity of modelling of high Reynolds number 
viscous flows continues to be limited by computational 
costs. Consequently accurate and cost-effective simula- 
tion of viscous flow at Reynolds numbers associated with 
full scale flight, such as the prediction of high lift devices, 
remains a challenge. Several routes are available toward 
the reduction of computational costs, including the re- 
duction of mesh requirements by the use of higher order 
schemes, improved convergence to a steady state by so- 
phisticated acceleration methods, fast inversion methods 
for implicit schemes, and the exploitation of massively 
parallel computers. 

Another factor limiting the effective use of CFD is the 
lack of good interfaces to computer aided design (CAD) 
systems. The geometry models provided by existing CAD 
systems often fail to meet the requirements of continuity 
and smoothness needed for flow simulation, with the con- 
sequence that they must be modified before they can be 
used to provide the input for mesh generation. This bottle- 
neck, which impedes the automation of the mesh genera- 
tion process, needs to be eliminated, and the CFD software 
should be fully integrated in a numerical design environ- 
ment. In addition to more accurate and cost-effective flow 
prediction methods, better optimizations methods are also 
needed, so that not only can designs be rapidly evaluated, 
but directions of improvement can be identified. Posses- 
sion of techniques which result in a faster design cycle 
gives a crucial advantage in a competitive environment. 

A critical issue, examined in the next section, is the choice 
of mathematical models. What level of complexity is 
needed to provide sufficient accuracy for aerodynamic 
design, and what is the impact on cost and turn-around 
time? Section 3 addresses the design of numerical algo- 
rithms for flow simulation. Section 4 presents the results 
of some numerical calculations which require moderate 
computer resources and could be completed with the fast 
turn-around required by industrial users. Section 5 dis- 
cusses automatic design procedures which can be used 
to produce optimum aerodynamic designs. Finally, Sec- 
tion 7. offers an outlook for the future. 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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3.   THE COMPLEXITY OF FLUID FLOW AND 
MATHEMATICAL MODELLING 

3.1   The Hierarchy of Mathematical Models 

Many critical phenomena of fluid flow, such as shock 
waves and turbulence, are essentially non-linear. They 
also exhibit extreme disparities of scales. While the ac- 
tual thickness of a shock wave is of the order of a mean 
free path of the gas particles, on a macroscopic scale its 
thickness is essentially zero. In turbulent flow energy 
is transferred from large scale motions to progressively 
smaller eddies until the scale becomes so small that the 
motion is dissipated by viscosity. The ratio of the length 
scale of the global flow to that of the smallest persisting 
eddies is of the order Re", where Re is the Reynolds num- 
ber, typically in the range of 30 million for an aircraft. In 
order to resolve such scales in all three space directions a 

9 

computational grid with the order of Re' cells would be 
required. This is beyond the range of any current or fore- 
seeable computer. Consequently mathematical models 
with varying degrees of simplification have to be intro- 
duced in order to make computational simulation of flow 
feasible, and to produce viaole and cost-effective meth- 
ods. 
Figure 1 (supplied by Pradeep Raj) indicates a hierar- 
chy of models at different levels of simplification which 
have proved useful in practice. Efficient flight is gen- 
erally achieved by the use of smooth and streamlined 
shapes which avoid flow separation and minimize vis- 
cous effects, with the consequence that useful predictions 
can be made using inviscid models. Inviscid calculations 
with boundary layer corrections can provide quite accu- 
rate predictions of lift and drag when the flow remains 
attached, but iteration between the inviscid outer solution 
and the inner boundary layer solution becomes increas- 
ingly difficult with the onset of separation. Procedures for 
solving the full viscous equations are likely to be needed 
for the simulation of arbitrary complex separated flows, 
which may occur at high angles of attack or with bluff 
bodies. In order to treat flows at high Reynolds numbers, 
one is generally forced to estimate turbulent effects by 
Reynolds averaging of the fluctuating components. This 
requires the introduction of a turbulence model. As the 
available computing power increases one may also as- 
pire to large eddy simulation (LES) in which the larger 
scale eddies are directly calculated, while the influence 
of turbulence at scales smaller than the mesh interval is 
represented by a subgrid scale model. 

A. 
TV. RANS (1990s) 

/ + Viscous \ 

III. Elder (1980s) 

11. Nonlinear Potential (1970s) 

1. Linear Potential (1960s) 

Inviscid, Irrotational 
Linear  

Figure 1: Hierarchy of Fluid Flow Models 

3.2   Computational Costs 

Computational costs vary drastically with the choice of 
mathematical model. Panel methods can be effectively 
used to solve the linear potential flow equation with 
higher-end personal computers (with an Intel 80486 mi- 
croprocessor, for example). Studies of the dependency 
of the result on mesh refinement, performed by this au- 
thor and others, have demonstrated that inviscid transonic 

potential flow or Euler solutions for an airfoil can be ac- 
curately calculated on a mesh with 160 cells around the 
section, and 32 cells normal to the section. Using multi- 
grid techniques 10 to 25 cycles are enough to obtain a 
converged result. Consequently airfoil calculations can 
be performed in seconds on a Cray YMP, and can also 
be performed on 486-class personal computers. Corre- 
spondingly accurate three-dimensional inviscid calcula- 
tions can be performed for a wing on a mesh, say with 
192x32x48=294,912 cells, in about 5 minutes on a sin- 
gle processor Cray YMP, or less than a minute with eight 
processors, or in 1 or 2 hours on a workstation such as a 
Hewlett Packard 735 or an IBM 560 model. 

Viscous simulations at high Reynolds numbers require 
vastly greater resources. Careful two-dimensional studies 
of mesn requirements have been carried out at Princeton 
by Martinelli [114]. He found that on the order of 32 
mesh intervals were needed to resolve a turbulent bound- 
ary layer, in addition to 32 intervals between the boundary 
layer and the far field, leading to a total of 64 intervals. 
In order to prevent degradations in accuracy and conver- 
gence due to excessively large aspect ratios (in excess of 
1,000) in the surface mesh cells, the chordwise resolu- 
tion must also be increased to 512 intervals. Reasonably 
accurate solutions can be obtained in a 512x64 mesh in 
100 multigrid cycles. Translated to three dimensions, this 
would imply the need for meshes with 5-10 million cells 
(for example, 512x64x256 = 8,388,608 cells as shown 
in Figure 2). When simulations are performed on less 
fine meshes with, say, 500,000 to 1 million cells, it is very 
hard to avoid mesh dependency in the solutions as well as 
sensitivity to the turbulence model. 

256 cells 
spanwise 

Total: 512x64x256= 8388 608 cells 

Figure 2: Mesh Requirements for a Viscous Simulation 

A typical algorithm requires of the order of 5,000 floating 
point operations per mesh point in one multigrid iteration. 
With 10 million mesh points, the operation count is of the 
order of 0.5x 1011 per cycle. Given a computer capable 
of sustaining 1011 operations per second (100 gigaflops), 
200 cycles could then be performed in 100 seconds. Sim- 
ulations of unsteady viscous flows (flutter, buffet) would 
be likely to require 1,000-10,000 time steps. A further 
progression to large eddy simulation of complex config- 
urations would require even greater resources. The fol- 
lowing estimate is due to W.H. Jou [90]. Suppose that a 
conservative estimate of the size of eddies in a boundary 
layer that ought to be resolved is 1/5 of the boundary layer 
thickness. Assuming that 10 points are needed to resolve 
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a single eddy, the mesh interval should then be 1/50 of 
the boundary layer thickness. Moreover, since the eddies 
are three-dimensional, the same mesh interval should be 
used in all three directions. Now, if the boundary layer 
thickness is of the order of 0.01 of the chord length, 5,000 
intervals will be needed in the chordwise direction, and 
for a wing with an aspect ratio of 10,50,000 intervals will 
be needed in the spanwise direction. Thus, of the order of 
50 x 5,000 x 50,000 or 12.5 billion mesh points would 
be needed in the boundary layer. If the time dependent 
behavior of the eddies is to be fully resolved using time 
steps on the order of the time for a wave to pass through a 
mesh interval, and one allows for a total time equal to the 
time required for waves to travel three times the length 
of the chord, of the order of 15,000 time steps would be 
needed. Performance beyond the teraflop (1012 opera- 
tions per second) will be needed to attempt calculations 
of this nature, which also have an information content far 
beyond what is needed for enginering analysis and de- 
sign. The designer does not need to know the details of 
the eddies in the boundary layer. The primary purpose 
of such calculations is to improve the prediction of aver- 
aged quantities such as skin friction, and the prediction of 
global behavior such as the onset of separation. The main 
current use of Navier-Stokes and large eddy simulations 
is to gain an improved insight into the physics of turbulent 
flow, which may in turn lead to the development of more 
comprehensive and reliable turbulence models. 

3.3   Turbulence Modelling 

It is doubtful whether a universally valid turbulence 
model, capable of describing all complex flows, could be 
devised [52]. Algebraic models [30,9] have proved fairly 
satisfactory for the calculation of attached and slightly 
separated wing flows. These models rely on the boundary 
layer concept, usually incorporating separate formulas for 
the inner and outer layers, and they require an estimate 
of a length scale which depends on the thickness of the 
boundary layer. The estimation of this quantity by a 
search for a maximum of the vorticity times a distance 
to the wall, as in the Baldwin-Lomax model, can lead to 
ambiguities in internal flows, and also in complex vorti- 
cal flows over slender bodies and highly swept or delta 
wings [40, 115]. The Johnson-King model [88], which 
allows for non-equilibrium effects through the introduc- 
tion of an ordinary differential equation for the maximum 
shear stress, has improved the prediction of flows with 
shock induced separation [148,91]. 

Closure models depending on the solution of transport 
equations are widely accepted for industrial applications. 
These models eliminate the need to estimate a length scale 
by detecting the edge of the boundary layer. Eddy viscos- 
ity models typically use two equations for the turbulent 
kinetic energy A; and the dissipation rate e, or a pair of 
equivalent quantities [89, 178, 160, 1, 121, 35]. Models 
of this type generally tend to present difficulties in the 
region very close to the wall. They also tend to be badly 
conditioned for numerical solution. The k — I model [ 154] 
is designed to alleviate this problem by taking advantage 
of the linear behaviour of the length scale I near the wall. 
In an alternative approach to the design of models which 
are more amenable to numerical solution, new models 
requiring the solution of one transport equation have re- 
cently been introduced [10, 159]. The performance of 
the algebraic models remains competitive for wing flows, 
but the one- and two-equation models show promise for 
broader classes of flows. In order to achieve greater uni- 
versality, research is also being pursued on more complex 
Reynolds stress transport models, which require the solu- 
tion of a larger number of transport equations. 

Another direction of research is the attempt to devise 
more rational models via renormalization group (RNG) 
theory [182,155]. Both algebraic and two-equation k-e 
models devised by this approach have shown promising 
results [116]. 

The selection of sufficiently accurate mathematical mod- 
els and a judgment of their cost-effectiveness ultimately 
rests with industry. Aircraft and spacecraft designs nor- 
mally pass through the three phases of conceptualdesign, 
preliminary design, and detailed design. Correspond- 
ingly, the appropriate CFD models will vary in complex- 
ity. In the conceptual and preliminary design phases, the 
emphasis will be on relatively simple models which can 
give results with very rapid turn-around and low computer 
costs, in order to evaluate alternative configurations and 
perform quick parametric studies. The detailed design 
stage requires the most complete simulation that can be 
achieved with acceptable cost. In the past, the low level 
of confidence that could be placed on numerical predic- 
tions has forced the extensive use of wind tunnel testing 
at an early stage of the design. This practice was very 
expensive. The limited number of models that could be 
fabricated also limited the range of design variations that 
could be evaluated. It can be anticipated that in the fu- 
ture, the role of wind tunnel testing in the design process 
will be more one of verification. Experimental research 
to improve our understanding of the physics of complex 
flows will continue, however, to play a vital role. 

4.   CFD ALGORITHMS 

4.1   Difficulties of Flow Simulation 

The computational simulation of fluid flow presents a 
number of severe challenges for algorithm design. At the 
level of inviscid modeling, the inherent nonlinearity of 
the fluid flow equations leads to the formation of singu- 
larities such as shock waves and contact discontinuities. 
Moreover, the geometric configurations of interest are 
extremely complex, and generally contain sharp edges 
which lead to the shedding of vortex sheets. Extreme 
gradients near stagnation points or wing tips may also 
lead to numerical errors that can have global influence. 
Numerically generated entropy may be convected from 
the leading edge, for example, causing the formation of 
a numerically induced boundary layer which can lead to 
separation. The need to treat exterior domains of infinite 
extent is also a source of difficulty. Boundary conditions 
imposed at artificial outer boundaries may cause reflected 
waves which significantly interfere with the flow. When 
viscous effects are also included in the simulation, the 
extreme difference of the scales in the viscous boundary 
layer and the outer flow, which is essentially inviscid, is 
another source of difficulty, forcing the use or meshes with 
extreme variations in the mesh intervals. For these rea- 
sons, CFD has been a driving force for the development 
of numerical algorithms. 

4.2   Structured and Unstructured Meshes 

The algorithm designer faces a number of critical deci- 
sions. The first choice that must be made is the nature 
of the mesh used to divide the flow field into discrete 
subdomains. The discretization procedure must allow for 
the treatment of complex configurations. The principal 
alternatives are Cartesian meshes, body-fitted curvilinear 
meshes, and unstructured tetrahedral meshes. Each of 
these approaches has advantages which have led to their 
use. The Cartesian mesh minimizes the complexity of 
the algorithm at interior points and facilitates the use of 
high order discretization procedures, at the expense of 
greater complexity, and possibly a loss of accuracy, in the 
treatment of boundary conditions at curved surfaces. This 
difficulty may be alleviated by using mesh refinement pro- 
cedures near the surface. With their aid, schemes which 
use Cartesian meshes have recently been developed to 
treat very complex configurations [120, 149, 22, 94]. 

Body-fitted meshes have been widely used and are par- 
ticularly well suited to the treatment of viscous flow be- 
cause they readily allow the mesh to be compressed near 
the body surface. With this approach, the problem of 
mesh generation itself has proved to be a major pacing 
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item. The most commonly used procedures are alge- 
braic transformations [7, 44, 46, 156], methods based on 
the solution of elliptic equations, pioneered by Thompson 
[170,171,157,158], and methods based on the solution of 
hyperbolic equations marching out from the body [161]. 
In order to treat very complex configurations it generally 
proves expedient to use a multiblock [177, 150] proce- 
dure, with separately generated meshes in each block, 
which may then be patched at block faces, or allowed 
to overlap, as in the Chimera scheme [19, 20]. While a 
number of interactive software systems for grid genera- 
tion have been developed, such as EAGLE, GRIDGEN, 
and ICEM, the generation of a satisfactory grid for a very 
complex configuration may require months of effort. 

The alternative is to use an unstructured mesh in which the 
domain is subdivided into tetrahedra. This in turn requires 
the development of solution algorithms capable of yield- 
ing the required accuracy on unstructured meshes. This 
approach has been gaining acceptance, as it is becoming 
apparent that it can lead to a speed-up and reduction in 
the cost of mesh generation that more than offsets the in- 
creased complexity and cost of the flow simulations. Two 
competing procedures for generating triangulations which 
have both proved successful are Delaunay triangulation 
[41, 11], based on concepts introduced at the beginning 
of the century by Voronoi [175], and the moving front 
method [111]. 

4.3   Finite Difference, Finite Volume, and Finite Ele- 
ment Schemes 

Associated with choice of mesh type is the formulation of 
the discretization procedure for the equations of fluid flow, 
which can be expressed as differential conservation laws. 
In the Cartesian tensor notation, let X{ be the coordinates, 
p, p, T, and E the pressure, density, temperature, and 
total energy, and u, the velocity components. Using the 
convention that summation over j=lj 2,3 is implied by a 
repeated subscript j, each conservation equation has the 
form 

*a + ^-=o. 
dt     dxj 

(1) 

For the mass equation 

w=P,   fj=PUj- 

For the i momentum equation 

Wi=PUi,    fij=pUiUj +pSij - (Tij, 

where cr,j is the viscous stress tensor.   For the energy 
equation 

w=pE,  fj=(pE + p) Uj - VjkUk - « 
8T 
ox/ 

where K is the coefficient of heat conduction. The pressure 
is related to the density and energy by the equation of state 

p=(7~ 1) P[E ' - 2Uiui) (2) 

in which 7 is the ratio of specific heats. In the Navier- 
Stokes equations the viscous stresses are assumed to be 
linearly proportional to the rate of strain, or 

C7ij=fl 
(dm     duj\ (duk\ 

(3) 

where p, and A are the coefficients of viscosity and bulk 
viscosity, and usually \=—2p/3. 

The finite difference method, which requires the use of 
a Cartesian or a structured curvilinear mesh, directly ap- 
proximates the differential operators appearing in these 

equations. In the finite volume method [112], the dis- 
cretization is accomplished by dividing the domain of 
the flow into a large number of small subdomains, and 
applying the conservation laws in the integral form 

%-fwdV+f   i 
dt Jn Jan 

f ■ dS=0. 

Here f is the flux appearing in equation (1) and dS is 
the directed surface element of the boundary d£l of the 
domain £2. The use of the integral form has the advantage 
that no assumption of the differentiability of the solutions 
is implied, with the result that it remains a valid statement 
for a subdomain containing a shock wave. In general the 
subdomains could be arbitrary, but it is convenient to use 
either hexahedral cells in a body conforming curvilinear 
mesh or tetrahedrons in an unstructured mesh. 

Alternative discretization schemes may be obtained by 
storing flow variables at either the cell centers or the ver- 
tices. These variations are illustrated in Figure 3 for the 
two-dimensional case. With a cell-centered scheme the 
discrete conservation law takes the form 

3a: Cell Centered Scheme. 

3b: Vertex Scheme. 

Figure 3: Structured and Unstructured Discretizations. 

wV + £ f-s=o, (4) 
faces 

where V is the cell volume, and f is now a numerical 
estimate of the flux vector through each face, f may be 
evaluated from values of the flow variables in the cells 
separated by each face, using upwind biasing to allow for 
the directions of wave propagation. With hexahedral cells, 
equation (4) is very similar to a finite difference scheme 
in curvilinear coordinates. Under a transformation to 
curvilinear coordinates £,-, equation (1) becomes 

lt^W) + -( Jdx/3 -0, (5) 

where J is the Jacobian determinant of the transformation 
matrix gff . The transformed flux Jffv/j corresponds 
to the dot product of the flux f with a vector face area 
Jfar> wmle J represents the transformation of the cell 
volume. The finite volume form (4) has the advantages 
that it is valid for both structured and unstructured meshes, 
and that it assures that a uniform flow exactly satisfies the 
equations, because JZfaces ^=® ^or a cl°se(i control vol- 
ume. Finite difference schemes do not necessarily satisfy 
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this constraint because of the discretization errors in eval- 
uating I&- and the inversion of the transformation matrix. 
A cell-vertex finite volume scheme can be derived by tak- 
ing the union of the cells surrounding a given vertex as the 
control volume for that vertex [55, 71, 139]. In equation 
(4), V is now the sum of the volumes of the surrounding 
cells, while the flux balance is evaluated over the outer 
faces of the polyhedral control volume. In the absence of 
upwind biasing the flux vector is evaluated by averaging 
over the corners of each face. This has the advantage of 
remaining accurate on an irregular or unstructured mesh. 
An alternative route to the discrete equations is provided 
by the finite element method. Whereas the finite differ- 
ence and finite volume methods approximate the differ- 
ential and integral operators, the finite element method 
proceeds by inserting an approximate solution into the 
exact equations. On multiplying by a test function <f) and 
integrating by parts over space, one obtains the weak form 

m cj>wd£l: 

■////'*"" 
ff  <j>{-dS 

J Jaa 
(6) 

which is also valid in the presence of discontinuities in the 
flow. In the Galerkin method the approximate solution is 
expanded in terms of the same family of functions as those 
from which the test functions are drawn. By choosing 
test functions with local support, separate equations are 
obtained for each node. For example, if a tetrahedral 
mesh is used, and (j> is piecewise linear, with a nonzero 
value only at a single node, the equations at each node 
have a stencil which contains only the nearest neighbors. 
In this case the finite element approximation corresponds 
closely to a finite volume scheme. If a piecewise linear 
approximation to the flux f is used in the evaluation of 
the integrals on the right hand side of equation (6), these 
integrals reduce to formulas which are identical to the flux 
balance of the finite volume scheme. 

Thus the finite difference and finite volume methods lead 
to essentially similar schemes on structured meshes, while 
the finite volume method is essentially equivalent to a fi- 
nite element method with linear elements when a tetra- 
hedral mesh is used. Provided that the flow equations 
are expressed in the conservation law form (1), all three 
methods lead to an exact cancellation of the fluxes through 
interior cell boundaries, so that the conservative property 
of the equations is preserved. The important role of this 
property in ensuring correct shock jump conditions was 
pointed out by Lax and Wendroff [97]. 

maximum Vk - Vj < 0, and at a minimum Vk - Vj > 0. 
Thus the condition 

cjk > 0,   k ft (8) 

is sufficient to ensure stability in the maximum norm. 
Moreover, if the scheme has a compact stencil, so that 
Cjfc=0 when j and k are not nearest neighbors, a local 
maximum cannot increase and local minimum cannot de- 
crease. This local extremum diminishing (LED) property 
prevents the birth and growth of oscillations. The one- 
dimensional conservation law 

provides a useful model for analysis. In this case waves 
are propagated with a speed a(u) =-gfr, and the solution 
is constant along the characteristics ^=a(u). Thus the 
LED property is satisfied. In fact the total variation 

TV(u) - f°° \?± 
J-oo 9x 

dx 

of a solution of this equation does not increase, provided 
that any discontinuity appearing in the solution satisfies an 
entropy condition [96]. Harten proposed that difference 
schemes ought to be designed so that the discrete total 
variation cannot increase [56], If the end values are fixed, 
the total variation can be expressed as 

TV <«>-2(£ maxima E minima 
)• 

Thus a LED scheme is also total variation diminish- 
ing (TVD). Positivity conditions of the type expressed 
in equations (7) and (8) lead to diagonally dominant 
schemes, and are the key to the elimination of improper 
oscillations. The positivity conditions may be realized by 
the introduction of diffusive terms or by the use of up- 
wind biasing in the discrete scheme. Unfortunately, they 
may also lead to severe restrictions on accuracy unless the 
coefficients have a complex nonlinear dependence on the 
solution. 

4.4.2   Artificial Diffusion and Upwinding 

4.4   Non-oscillatory Shock Capturing Schemes 

4.4.1   Local Extremum Diminishing (LED) Schemes 

The discretization procedures which have been described 
in the last section lead to nondissipative approximations 
to the Euler equations. Dissipative terms may be needed 
for two reasons. The first is the possibility of undamped 
oscillatory modes. The second reason is the need for the 
clean capture of shock waves and contact discontinuities 
without undesirable oscillations. An extreme overshoot 
could result in a negative value of an inherently positive 
quantity such as the pressure or density. The next sec- 
tions summarize a unified approach to the construction of 
nonoscillatory schemes via the introduction of controlled 
diffusive and antidiffusive terms. This is the line adhered 
to in the author's own work. 

The development of non-oscillatory schemes has been a 
prime focus of algorithm research for compressible flow. 
Consider a general semi-discrete scheme of the form 

dt 
k?j 

(7) 

A maximum cannot increase and a minimum cannot de- 
crease if the coefficients Cjk are non-negative, since at a 

Following the pioneering work of Godunov [51], a variety 
of dissipative and upwind schemes designed to have good 
shock capturing properties have been developed during 
the past two decades [162, 23, 98, 100, 146, 130, 56, 
129, 166, 5, 68, 183, 62, 180, 13, 12, 11]. If the one- 
dimensional scalar conservation law 

is represented by a three point scheme 

dvj    +    , -.      _     / N 

the scheme is LED if 

c++. >0,   c7_, >0. (10) 

A conservative semidiscrete approximation to the one- 
dimensional conservation law can be derived by subdi- 
viding the line into cells. Then the evolution of the value 
Vj in the jth cell is given by 
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where hi+1 is an estimate of the flux between cells j and      4.4.3 
J  i 

j + 1.  The simplest estimate is the arithmetic average 
(/j+i + /j) A but this leads to a scheme that does not 
satisfy the positivity conditions. To correct this, one may 
add a dissipative term and set 

hj+i=- (fj+i + fi) - aj+i {vj+l - Vj) . (12) 

In order to estimate the required value of the coefficient 
a,+i, let a •+1 be a numerical estimate of the wave speed 

du' 

if   vj+i fvj 

if   Vi+i=Vj 
(13) 

Then 

Vi '3-t + I 2°i+l 

where 

a^ 

+ l 2ai-i+0lj-l 

Avi+rvi+l ~vi> 

Avi-\> 

and the LED condition (10) is satisfied if 

ai+\ * 
1 I        I 

2 I 3  2I 
(14) 

If one takes 
1 I       I 

ai+l=2H'+i|' 
one obtains the first order upwind scheme 

if a+i > 0 
ht i   \ Sj+i ifa,-+. <0 

J     2 

This is the least diffusive first order scheme which satisfies 
the LED condition. In this sense upwinding is a natural 
approach to the construction of non-oscillatory schemes. 
It may be noted that the successful treatment of transonic 
potential flow also involved the use of upwind biasing. 
This was first introduced by Murman and Cole to treat the 
transonic small disturbance equation [123]. 

Another important requirement of discrete schemes is 
that they should exclude nonphysical solutions which do 
not satisfy appropriate entropy conditions [95], which 
require the convergence of characteristics towards ad- 
missible discontinuities. This places more stringent 
bounds on the minimum level of numerical viscosity 
[113, 169, 128, 131]. In the case that the numerical flux 
function is strictly convex, Aiso has recently proved [2] 
that it is sufficient that 

a,+ i > max {\h ,esign(.Vj+i Vj>} 

fore > 0. Thus the numerical viscosity should be rounded 
out and not allowed to reach zero at a point where the 
wave speed a(u) =|£ approaches zero. This justifies, for 
example, Harten's entropy fix [56]. 

Higher order schemes can be constructed by introducing 
higher order diffusive terms. Unfortunately these have 
larger stencils and coefficients of varying sign which are 
not compatible with the conditions (8) for a LED scheme, 
and it is known that schemes which satisfy these condi- 
tions are at best first order accurate in the neighborhood 
of an extremum. It proves useful in the following de- 
velopment to introduce the concept of essentially local 
extremum diminishing (ELED) schemes. These are de- 
fined to be schemes which satisfy the condition that in 
the limit as the mesh width Ax ->■ 0, local maxima are 
non-increasing, and local minima are non-decreasing. 

High Resolution Switched Schemes: 
Schmidt-Turkel (JST) Scheme 

Jameson- 

Higher order non-oscillatory schemes can be derived by 
introducing anti-diffusive terms in a controlled manner. 
An early attempt to produce a high resolution scheme 
by this approach is the Jameson-Schmidt-Turkel (JST) 
scheme [85]. Suppose that anti-diffusive terms are intro- 
duced by subtracting neighboring differences to produce 
a third order diffusive flux 

di+l=am W+l ~ 2 (A^+i + Avi-l)} ' (15) 

which is an approximation to ^aAx3j^. The positivity 
condition (8) is violated by this scheme. It proves that it 
generates substantial oscillations in the vicinity of shock 
waves, which can be eliminated by switching locally to the 
first order scheme. The JST scheme therefore introduces 
blended diffusion of the form 

di+\ 

—    e (4) (A«i+j-2A«i+i+At;j_i)) 

(16) 

The idea is to use variable coefficients e.?, and e:?{ 

which produce a low level of diffusion in regions where 
the solution is smooth, but prevent oscillations near dis- 

continuities. If e'li is constructed so that it is of order 

Ax2 where the solution is smooth, while e :*\ is of order 

unity, both terms in dj+1 will be of order Ax3. 

The JST scheme has proved very effective in practice in 
numerous calculations of complex steady flows, and con- 
ditions under which it could be a total variation dimin- 
ishing (TVD) scheme have been examined by Swanson 
and Türkei [165]. An alternative statement of sufficient 

conditions on the coefficients e>?' and erf i for the JST 

scheme to be LED is as follows: 

Theorem 1 (Positivity of the JST scheme) 
Suppose that whenever either v^x or Vj is an extremum 
the coefficients of the JST scheme satisfy 

,(2) >lLxl|   f(
4)=n 

J+t  — 2 I    3   2I        J+2 
(17) 

Then the JST scheme is local extremum diminishing 
(LED). 

Proof: We need only consider the rate of change of v at 
extremal points. Suppose that Vj is an extremum. Then 

.(4W4)_0 

JT2     J-5 

and the semi-discrete scheme (11) reduces to 

.(2 Ax^i 
dt ill ~ \"j+\) A«jH 

e :(2)+k Aw„- 

and each coefficient has the required sign. □ 
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In order to construct e.   i ande. \ with the desired prop- 
3    1 3    2 

erties define 

*(«,«>-i   \mr\\     if«/*0or«/0 
0   ifu=u=0, 

(18) 

where q is a positive integer. Then R(u, v) =1 if u and u 
have opposite signs. Otherwise R(u,v) < 1. Now set 

Qj=R(Avj+i, A^_i),  Qj+i=max(Qj,Qj+i) 

and 

e$=aj+iQJn,  &y-aj+i(l-Qj+i).       (19) 
JTi 

4.4.4   Symmetric Limited Positive (SLIP) Scheme 

An alternative route to high resolution without oscillation 
is to introduce flux limiters to guarantee the satisfaction 
of the positivity condition (8). The use of limiters dates 
back to the work of Boris and Book [23]. A particularly 
simple way to introduce limiters, proposed by the author 
in 1984 [68], is to use flux limited dissipation. In this 
scheme the third order diffusion defined by equation (15) 
is modified by the insertion of limiters which produce an 
equivalent three point scheme with positive coefficients. 
Trie original scheme [68] can be improved in the following 
manner so that less restrictive flux limiters are required 
Let L(u,v) be a limited average of u and v with the 
following properties: 

PI. L(u,v) =L(v,u) 

P2. L(au,av) =aL(u,v) 

P3. L(u,u) =u 

P4. L(u,v) =0 if u and v have opposite signs: other- 
wise L(u,v) has the same sign as u and v. 

Properties (P1-P3) are natural properties of an average. 
Property (P4) is needed for the construction of a LED or 
TVD scheme. 

It is convenient to introduce the notation 

<£(r)=L(l,r)=L(r,l), 

where according to (P4) </>(r) > 0. It follows from (P2) 
on setting a=^ or £ that 

L(u,v) =(j) (-) u=(j> (-) v. 

Also it follows on setting v=l and u=r that 

(j>(r) =r<f> [ - 

Thus, if there exists r < 0 for which <p(r) > 0, then 
<j> (£) < 0. The only way to ensure that <j>{r) > 0 is to 
require <f>(.r) =0 for all r < 0, corresponding to property 

Now one defines the diffusive flux for a scalar conserva- 
tion law as 

di+fai+\ {Avjn - L (^i+\'Avi-i)} ■ (20) 

Set 

and 

Then, 

+_A^+i 
Av. j-t 

.Avi-l 

'Avm 

L(Aü,+ 3)Au,i)    =    <t>(r+) Au,-_i 
J    2 J     2 ■>     2 

L (AVJ_ £, Avj+1)    =   <f> (r~) Avj+1. 

Ax: 
dt 

={«i+!-2V4+a;-2>(r >}Aüi+i 

Thus the scheme satisfies the LED condition if a •+1 > 

a+i   for all j, and <p(r) > 0, which is assured by 

property (P4) on L. At the same time it follows from 
property (P3) that the first order diffusive flux is can- 
celed when Av is smoothly varying and of constant sign. 
Schemes constructed by this formulation will be referred 
to as symmetric limited positive (SLIP) schemes. This 
result may be summarized as 

Theorem 2 (Positivity of the SLIP scheme) 
Suppose that the discrete conservation law (11) contains 
a limited diffusive flux as defined by equation (20). Then 
the positivity condition (14), together with the proper- 
ties (Pl-P4)for limited averages, are sufficient to ensure 
satisfaction of the LED principle that a local maximum 
cannot increase and a local minimum cannot decrease. G 

A variety of limiters may be defined which meet the re- 
quirements of properties (P1-P4). Define 

S(u,v) =- {sign(u) + sign(t>) } 

which vanishes is u and v have opposite signs. 

Then two limiters which are appropriate are the following 
well-known schemes: 

1. Minmod: 

L(u,v) =S(u,v) min(|w|,|u|) 

2. Van Leer: 

L(u,v) =S(u,v) 
2|it||u| 

\u\ + \v\ 

In order to produce a family of limiters which contains 
these as special cases it is convenient to set 

L(u,v) =-D(u,v) (u + v) , 

where D (u, v) is a factor which should deflate the arith- 
metic average, and become zero if u and v have opposite 
signs. Take 

D(u,v)=l-R(u,v)=l- 
u — v 

\u\ + \v\ 
(22) 

where R(u,v) is the same function that was introduced 
in the JST scheme, and q is a positive integer. Then 
D(u, v) =0 if u and v have opposite signs. Also if q=\, 
L(u,v) reduces to minmod, while if <p2, L(u,v) is 
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equivalent to Van Leer's limiter. By increasing q one can 
generate a sequence of limited averages which approach 
a limit defined by the arithmetic mean truncated to zero 
when u and v have opposite signs. 

When the terms are regrouped, it can be seen that with 
this limiter the SLIP scheme is exactly equivalent to the 
JST scheme, with the switch is defined as 

Qj+\    =   Ä(A«i+j,Ai;i+i) 

This formulation thus unifies the JST and SLIP schemes. 

4.4.5   Essentially Local Extremum Diminishing (ELED) 
Scheme with Soft Limiter 

The limiters defined by the formula (22) have the disad- 
vantage that they are active at a smooth extrema, reducing 
the local accuracy of the scheme to first order. In or- 
der to prevent this, the SLIP scheme can be relaxed to 
give an essentially local extremum diminishing (ELED) 
scheme which is second order accurate at smooth extrema 
by the introduction of a threshold in the limited average. 
Therefore redefine D (u, v) as 

D(.u,v)=l- 
u-v 

max( |u| + \v\ ,eAxr) 
(23) 

where r=§, q > 2. This reduces to the previous definition 
if |u| + \v\ > eAxr. 

In any region where the solution is smooth, Avj+1 - AVj _ 1 
is of order Ax2. In fact if there is a smooth extremum in 
the neighborhood of Vj or Vj+i, a Taylor series expansion 
indicates that Av,-+i, Aw.+ i and Aw,-_i are each individ- 

JT2 J     2 J     2 

ually of order Ax2, since ^=0 at the extremum. It may 
be verified that second order accuracy is preserved at a 
smooth extremum if q > 2. On the other hand the lim- 
iter acts in the usual way if Awj+|  or Avj_^   > eAxr, 
and it may also be verified that in the limit Ax ->■ 0 
local maxima are non increasing and local minima are 
non decreasing [79]. Thus the scheme is essentially local 
extremum diminishing (ELED). 

The effect of the "soft limiter" is not only to improve the 
accuracy: the introduction of a threshold below which 
extrema of small amplitude are accepted also usually re- 
sults in a faster rate of convergence to a steady state, and 
decreases the likelyhood of limit cycles in which the lim- 
iter interacts unfavorably with the corrections produced 
by the updating scheme. In a scheme recently proposed 
by Venkatakrishnan a threshold is introduced precisely 
for this purpose [174]. 

4.4.6   Upstream Limited Positive (USLIP) Schemes 

By adding the anti-diffusive correction purely from the 
upstream side one may derive a family of upstream limited 
positive (USLIP) schemes. Corresponding to the original 
SLIP scheme defined by equation (20), a USLIP scheme 
is obtained by setting 

dm=am {Awi+i -1- (Ari+j'At,i-i)} 
ifOj+1 > 0, or 

di+imai+i {Avi+i ~L (Awi+J'AVj)} 

if o,-+i < 0. If a,-+i=i a,-+i   one recovers a standard 
high resolution upwind scheme in semi-discrete form. 
Consider the case that aj+i_ > 0 and a^i > 0. If one 
sets 

r+_At,i+l r =- , 
Avi-\ 

Av; 
r  = 

AV3-i 

the scheme reduces to 

To assure the correct sign to satisfy the LED criterion the 
flux limiter must now satisfy the additional constraint that 
4>(r) < 2. 
The USLIP formulation is essentially equivalent to stan- 
dard upwind schemes [130,166]. Both the SLIP and US- 
LIP constructions can be implemented on unstructured 
meshes [75, 79]. The anti-diffusive terms are then calcu- 
lated by taking the scalar product of the vectors defining 
an edge with the gradient in the adjacent upstream and 
downstream cells. 

4.4.7   Systems of Conservation Laws: Flux Splitting and 
Flux-Difference Splitting 

Steger and Warming [162] first showed how to generalize 
the concept of upwinding to the system of conservation 
laws 

aw     a ,.   .   _ .... 
_ + ^/(«,)-0 (24) 

by the concept of flux splitting. Suppose that the flux is 

split as /=/+ + /" where ^- and ^ have positive and 
negative eigenvalues. Then the first order upwind scheme 
is produced by taking the numerical flux to be 

This can be expressed in viscosity form as 

*\{fi*x*fT)*\{f7*x-n) 

where the diffusive flux is 

dj+h=-A{f+-f-)j+i. (25) 

Roe derived the alternative formulation of flux difference 
splitting [146] by distributing the corrections due to the 
flux difference in each interval upwind and downwind to 
obtain 

Az^ +(/j+1 - /,)-+(£ - /i-i)+=0, 

where now the flux difference /j+i - fj is split. The 
corresponding diffusive flux is 

Following Roe's derivation, let Aj+i be a mean value 
Jacobian matrix exactly satisfying the condition 

fj+i ~ fi=Ai+\ toj+i - wi'> (26) 
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Aj+\ may be calculated by substituting the weighted av- 
erages 

_T/PJ+I
U

J+I +ypJui ,H= /Pj+iHj+i + \fiiHJ (27) 

into the standard formulas for the Jacobian matrix A= g£. 
A splitting according to characteristic fields is now ob- 
tained by decomposing Aj+1 as 

Ai+i=TAT-\ (28) 

where the columns of T are the eigenvectors of Aj+i, 
and A is a diagonal matrix of the eigenvalues. Now the 
corresponding diffusive flux is 

1 

where 

Ay+JOuj+i -Wj), 

U.+i =T|A|T- 
I       **      2 

and |A| is the diagonal matrix containing the absolute 
values of the eigenvalues. 

4.4.8   Alternative Splittings 

Characteristic splitting has the advantages that it intro- 
duces the minimum amount of diffusion to exclude the 
growth of local extrema of the characteristic variables, and 
that with the Roe linearization it allows a discrete shock 
structure with a single interior point. To reduce the com- 
putational complexity one may replace \A\ by al where 
if a is at least equal to the spectral radius max |A(,4) |, 
then the positivity conditions will still be satisfied. Then 
the first order scheme simply has the scalar diffusive flux 

Vr2a^Awi+i 
The JST scheme with scalar diffusive flux captures shock 
waves with about 3 interior points, and it has oeen widely 
used for transonic flow calculations because it is both 
robust and computationally inexpensive. 

An intermediate class of schemes can be formulated by 
defining the first order diffusive flux as a combination of 
differences of the state and flux vectors 

(30) rfj+j = 2a^c K+i -«*) + 2^*+i (fi+i ~ fi) 

where the factor c is included in the first term to make 
a*.., and 3i+\ dimensionless.   Schemes of this class 

are fully upwind in supersonic flow if one takes a*.+, =0 

and ßj+\ =sign(M) when the absolute value of the Mach 
number M exceeds 1. The flux vector / can be decom- 
posed as 

f=uw + fp, (31) 

where 

U= 
0 
P 
up 

(32) 

Then 

i)+w («,-+! -uj)+ fp+i - fPj, 
(33) 

where u and w are the arithmetic averages 

1 
(«j+l + Uj 

1 
w= K+i + Wj 

Thus these schemes are closely related to schemes which 
introduce separate splittings of the convective and pres- 
sure terms, such as the wave-particle scheme [141,8], the 
advection upwind splitting method (AUSM) [106, 176], 
and the convective upwind and split pressure (CUSP) 
schemes [76]. 

In order to examine the shock capturing properties of these 
various schemes, consider the general case of a first order 
diffusive flux of the form 

1 
dm=^aJ+\BJ+\ K+i Wj (34) 

where the matrix B+i determines the properties of the 
scheme and the scaling factor a +i is included for con- 

•*      2 

venience. All the previous schemes can be obtained by 
representing B^+i as a polynomial in the matrix Aj+i 
defined by equation (26). Schemes of this class were 
considered by Van Leer [99]. According to the Cay ley- 
Hamilton theorem, a matrix satisfies its own characteristic 
equation. Therefore the third and higher powers of A can 
be eliminated, and there is no loss of generality in limiting 
Bi+1 to a polynomial of degree 2, 

**     2" 

*,-+ i =a0I + aiAj+±+ a2Aj+,_ (35) 

The characteristic 
upwind scheme for which JB4+I=L4+I   is obtained by 

•*     2      |      **     2 [ 

substituting Aj+1 =TAT~l, A2.+, =TA2T~l.   Then a0, 

a.\, and «2 are determined from the three equations 

ao + aiXk + a2A|=|Afc|,   A;=l,2,3. 

The same representation remains valid for three dimen- 
sional flow because Aj+\ still has only three distinct 
eigenvalues u, u + c, u — c. 

(29)      4.4.9   Analysis of Stationary Discrete Shocks 

Figure 4: Shock structure for single interior point. 

The ideal model of a discrete shock is illustrated in fig- 
ure (4). Suppose that WL and WR are left and right 
states which satisfy the jump conditions for a stationary 
shock, and that the corresponding fluxes are /i=/(w£,) 
and /ü=/(tüfi). Since the shock is stationary fL=fR- 
The ideal discrete shock has constant states WL to the left 
and WR to the right, and a single point with an intermedi- 
ate value WA- The intermediate value is needed to allow 
the discrete solution to correspond to a true solution in 
which the shock wave does not coincide with an interface 
between two mesh cells. 

Schemes corresponding to one, two or three terms in equa- 
tion (35) are examined in [80]. The analysis of these three 
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cases shows that a discrete shock structure with a single 
interior point is supported by artificial diffusion that sat- 
isfies the two conditions that 

1. it produces an upwind flux if the flow is determined 
to be supersonic through the interface 

2. it satisfies a generalized eigenvalue problem for the 
exit from the shock of the form 

(AAR - OLARBAR){WR - wA)=0, (36) 

where AAR is the linearized Jacobian matrix and BAR 
is the matrix defining the diffusion for the interface AR. 
This follows from the equilibrium condition h,RA=hRR 
for the cell j + 1 in figure 4. These two conditions are 
satisfied by both the characteristic scheme and also the 
CUSP scheme, provided that the coefficients of convective 
diffusion and pressure differences are correctly balanced. 
Scalar diffusion does not satisfy the first condition. In the 
case of the CUSP scheme (30) equation (36) reduces to 

OL c 
ARA + TS ) (WR ~ WA)=0 

1+0 

Thus WR - WA is an eigenvector of the Roe matrix ARA, 

and -fr§ is the corresponding eigenvalue.   Since the 
eigenvalues are u, u + c, and u — c, the only choice which 
leads to positive diffusion when u > 0 is u - c, yielding 
the relationship 

a*c=(l+/?) (c-u) ,0<u<c 

Thus there is a one parameter family of schemes which 
support the ideal shock structure. The term /?(/# - /A) 
contributes to the diffusion of the convective terms. Al- 
lowing for the split (31), the total effective coefficient of 
convective diffusion is ac=a*c + ßü. A CUSP scheme 
with low numerical diffusion is then obtained by taking 
a=|M|, leading to the coefficients illustrated in figure 5. 

ß(M) 

4.4.10 

Figure 5: Diffusion Coefficients. 

CUSP and Characteristic Schemes Admitting 
Constant Total Enthalpy in Steady Flow 

In steady flow the stagnation enthalpy H is constant, cor- 
responding to the fact that the energy and mass conserva- 
tion equations are consistent when the constant factor H 
is removed from the energy equation. Discrete and semi- 
discrete schemes do not necessarily satisfy this property. 
In the case of a semi-discrete scheme expressed in viscos- 
ity form, equations (11) and (12), a solution with constant 
H is admitted if the viscosity for the energy equation re- 
duces to the viscosity for the continuity equation with p 
replaced by pH. When the standard characteristic de- 
composition (28) is used, the viscous fluxes for p and 
pH which result from composition of the fluxes for the 
characteristic variables do not have this property, and H 
is not constant in the discrete solution. In practice there 
is an excursion of if in the discrete shock structure which 
represents a local heat source. In very high speed flows 

the corresponding error in the temperature may lead to a 
wrong prediction of associated effects such as chemical 
reactions. 

The source of the error in the stagnation enthalpy is the 
discrepancy between the convective terms 

P 
pu 
pH 

in the flux vector, which contain pH, and the state vector 
which contains pE. This may be remedied by introducing 
a modified state vector 

Whz 
P 

pu 
pH 

Then one introduces the linearization 

fR ~ fh=Ah (.WhR - WhL ) • 

Here Ah may be calculated in the same way as the stan- 
dard Roe linearization. Introduce the weighted averages 
defined by equation (27). Then 

/       0 1 0    \ 

V   -uH       H       u   J 

The eigenvalues of Ah are u, A+ and \~ where 

7 + 1 
=^7~ 

«± ,7+1   .,    c 
27 

,2 — I, ,2 

7 
(37) 

Now both CUSP and characteristic schemes which pre- 
serve constant stagnation enthalpy in steady flow can be 
constructed from the modified Jacobian matrix Ah [80]. 
These schemes also produce a discrete shock structure 
with one interior point in steady flow. Then one arrives at 
four variations with this property, which can conveniently 
be distinguished as the E- and H-CUSP schemes, and the 
E- and H-characteristic schemes. 

4.5   Multidimensional Schemes 

The simplest approach to the treatment of multi- 
dimensional problems on structured meshes is to apply 
the one-dimensional construction separately in each mesh 
direction. On triangulated meshes in two or three dimen- 
sions the SLIP and USLIP constructions may also be 
implemented along the mesh edges [79]. A substantial 
body of current research is directed toward the imple- 
mentation of truly multi-dimensional upwind schemes in 
which the upwind biasing is determined by properties of 
the flow rather than the mesh. A thorough review is given 
by Pailliere and Deconinck in reference [132]. 

Residual distribution schemes are an attractive approach 
for triangulated meshes. In these the residual defined by 
the space derivatives is evaluated for each cell, and then 
distributed to the vertices with weights which depend on 
the direction of convection. For a scalar conservation 
law the weights can be chosen to maintain positivity with 
minimum cross diffusion in the direction normal to the 
flow. For the Euler equations the residual can be linearized 
by assuming that the parameter vector with components 
i/p,y/p~Ui, and y/pH varies linearly over the cell. Then 

dfjdw) 

dxj 

dw 

' dxj 

where the Jacobian matrices Aj=-J^ are evaluated with 
Roe averaging of the values of w at the vertices. Waves 
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in the direction n can then be expressed in terms of the 
eigenvectors of rijAj, and a positive distribution scheme 
is used for waves in preferred directions. The best choice 
of these directions is the subject of ongoing research, 
but preliminary results indicate the possibility of achiev- 
ing high resolution of shocks and contact discontinuities 
w&ch are not aligned with mesh lines [132]. 

Hirsch and Van Ransbeeck adopt an alternative approach 
in which they directly construct directional diffusive terms 
on structured meshes, with anti-diffusion controlled by 
limiters based on comparisons of slopes in different di- 
rections [60]. They also show promising results in calcu- 
lations of nozzles with multiply reflected oblique shocks. 

4.5.1   High Order Godunov Schemes, and Kinetic Flux 
Splitting 

A substantial body of current research is directed toward 
the implementation of truly multi-dimensional upwind 
schemes [59,135,101]. Reference [132] provides a thor- 
ough review of recent developments in this field. Some of 
the most impressive simulations of time dependent flows 
with strong shock waves have been achieved with higher 
order Godunov schemes [ 180]. In these schemes the aver- 
age value in each cell is updated by applying the integral 
conservation law using interface fluxes predicted from 
the exact or approximate solution of a Riemann problem 
between adjacent cells. A higher order estimate of the 
solution is then reconstructed from the cell averages, and 
slope limiters are applied to the reconstruction. An ex- 
ample is the class of essentially non-oscillatory (ENO) 
schemes, which can attain a very high order of accu- 
racy at the cost of a substantial increase in computational 
complexity [32, 153, 151, 152]. Methods based on re- 
construction can also be implemented on unstructured 
meshes [13, 12]. Recently there has been an increasing 
interest in kinetic flux splitting schemes, which use solu- 
tions of the Boltzmann equation or the BGK equation to 
predict the interface fluxes [42, 36,45,136, 181]. 

4.6   Discretization of the Viscous Terms 

The discretization of the viscous terms of the Navier 
Stokes equations requires an approximation to the ve- 
locity derivatives f^- in order to calculate the tensor CTJJ, 

defined by equation'(3). Then the viscous terms may be 
included in the flux balance (4). In order to evaluate the 
derivatives one may apply the Gauss formula to a control 
volume V with the boundary S 

/  -—l-dv= / UiUjdS, 
Jv dxj      Js 

where rij is the outward normal.   For a tetrahedral or 
hexahedral cell this gives 

duj 

dxj 

J_ 
vol 

YJ   m rij S 
faces 

(38) 

where H, is an estimate of the average of u, over the 
face. If u varies linearly over a tetrahedral cell this is 
exact. Alternatively, assuming a local transformation to 
computational coordinates £,-, one may apply the chain 
rule 

[Öul 
[dxj 

du 

0£ 

ÖX 

[0* 

-1 

(39) 

Here the transformation derivatives ||f can be evaluated 

by the same finite difference formulas as the velocity 
derivatives |?f In this case || is exact if u is a linearly 

varying function. 

For a cell-centered discretization (figure 6a) fg- is needed 

at each face. The simplest procedure is to evaluate §g- 

in each cell, and to average ||f between the two cells 
on either side of a face [87]. The resulting discretization 
does not have a compact stencil, and supports undamped 
oscillatory modes. In a one-dimensional calculation, for 

example, §^ would be discretized as   ,T; 4Aa,2 . In 

order to produce a compact stencil ff1 may be estimated 
from a control volume centered on each face, using formu- 
las (38) or (39) [144]. This is computationally expensive 
because the number of faces is much larger than the num- 
ber of cells. In a hexahedral mesh with a large number of 
vertices the number of faces approaches three times the 
number of cells. 

This motivates the introduction of dual meshes for the 
evaluation of the velocity derivatives and the flux bal- 
ance as sketched in figure 6.   The figure shows both 

6a: Cell-centered „    _ „ . 
scheme, au evaluated 6b: Cell-vertex scheme, 
at vertices of the primary f« eva uated at cell cen- 
mesn ters of the primary mesh 

Figure 6: Viscous discretizations for cell-centered and 
cell-vertex algorithms. 

cell-centered and cell-vertex schemes. The dual mesh 
connects cell centers of the primary mesh. If there is a 
kink in the primary mesh, the dual cells should be formed 
by assembling contiguous fractions of the neighboring 
primary cells. On smooth meshes comparable results are 
obtained by either of these formulations [114, 115, 107]. 
If the mesh has a kink the cell-vertex scheme has the 
advantage that the derivatives |^- are calculated in the 
interior of a regular cell, with no loss of accuracy. 

A desirable property is that a linearly varying velocity dis- 
tribution, as in a Couette flow, should produce a constant 
stress and hence an exact stress balance. This property is 
not necessarily satisfied in general by finite difference or 
finite volume schemes on curvilinear meshes. The char- 
acterization fc-exact has been proposed for schemes that 
are exact for polynomials of degree k. The cell-vertex fi- 
nite volume scheme is linearly exact if the derivatives are 
evaluated by equation (39), since then f^- is exactly eval- 
uated as a constant, leading to constant viscous stresses 
CTij, and an exact viscous stress balance. This remains 
true when there is a kink in the mesh, because the sum- 
mation of constant stresses over the faces of the kinked 
control volume sketched in figure 6 still yields a perfect 
balance. The use of equation (39) to evaluate f^-, how- 
ever, requires the additional calculation or storage of the 
nine metric quantities fj1 in each cell, whereas equation 
(38) can be evaluated from the same face areas that are 
used for the flux balance. 

In the case of an unstructured mesh, the weak form (6) 
leads to a natural discretization with linear elements, in 
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which the piecewise linear approximation yields a con- 
stant stress in each cell. This method yields a represen- 
tation which is globally correct when averaged over the 
cells, a result that can be proved by energy estimates for el- 
liptic problems [164]. It should be noted, however, that it 
yields formulas that are not necessarily locally consistent 
with the differential equations, if Taylor series expansions 
are substituted for the solution at the vertices appearing 
in the local stencil. Figure 7 illustrates the discretization 
of the Laplacian uxx + uyy which is obtained with linear 
elements. It shows a particular triangulation such that 
the approximation is locally consistent with uxx + 3uyy. 
Thus the use of an irregular triangulation in the boundary 
layer may significantly degrade the accuracy. 

Figure 7: Example of discretization uxx + uyy on a trian- 
gular mesh. The discretization is locally equivalent to the 
approximationuM=u'-ffi+u°, 3uyy=3u*-6ft+3u> . 

4.7   Time Stepping Schemes 

If the space discretization procedure is implemented sep- 
arately, it leads to a set or coupled ordinary differential 
equations, which can be written in the form 

-+R(w)=0, (40) 

where w is the vector of the flow variables at the mesh 
points, and R (w) is the vector of the residuals, consisting 
of the flux balances defined by the space discretization 
scheme, together with the added dissipative terms. If the 
objective is simply to reach the steady state and details 
of the transient solution are immaterial, the time-stepping 
scheme may be designed solely to maximize the rate or 
convergence. The first decision that must be made is 
whether to use an explicit scheme, in which the space 
derivatives are calculated from known values of the now 
variables at the beginning of the time step, or an implicit 
scheme, in which the formulas for the space derivatives 
include as yet unknown values of the flow variables at 
the end of the time step, leading to the need to solve 
coupled equations for the new values. The permissi- 
ble time step for an explicit scheme is limited by the 
Courant-Friedrichs-Lewy (CFL) condition, which states 
that a difference scheme cannot be a convergent and stable 
approximation unless its domain of dependence contains 
the domain of dependence of the corresponding differen- 
tial equation. One can anticipate that implicit schemes 
will yield convergence in a smaller number of time steps, 
because the time step is no longer constrained by the CFL 
condition. Implicit schemes will be efficient, however, 
only if the decrease in the number of time steps outweighs 
the increase in the computational effort per time step con- 
sequent upon the need to solve coupled equations. The 
prototype implicit scheme can be formulated by estimat- 
ing ^ at t + fj,At as a linear combination of R(wn) and 

R(wn+1). The resulting equation 

wn+1=wn _ At {(1 - M)R (W
n) + fiR (wn+1) } 

can be linearized as 

I + M*ip ) <*w + AtR(w") =0. 

If one sets fi=l and lets At -> oo this reduces to the 
Newton iteration , which has been successfully used in 
two-dimensional calculations [173, 50]. In the three- 
dimensional case with, say, an N x N x N mesh, the 
bandwidth of the matrix that must be inverted is of or- 
der N2. Direct inversion requires a number of operations 
proportional to the number of unknowns multiplied by 
the square of the bandwidth of the order of N1. This is 
prohibitive, and forces recourse to either an approximate 
factorization method or an iterative solution method. 

Alternating direction methods, which introduce factors 
corresponding to each coordinate, are widely used for 
structured meshes [17, 137]. They cannot be imple- 
mented on unstructured tetrahedral meshes that do not 
contain identifiable mesh directions, although other de- 
compositions are possible [108]. If one chooses to adopt 
the iterative solution technique, the principal alternatives 
are variants of the Gauss-Seidel and Jacobi methods. A 
symmetric Gauss-Seidel method with one iteration per 
time step is essentially equivalent to an approximate 
lower-upper (LU) factorization of the implicit scheme 
[86,125, 31,184]. On the other hand, the Jacobi method 
with a fixed number of iterations per time step reduces 
to a multistage explicit scheme, belonging to the gen- 
eral class of Runge-Kutta schemes [33]. Schemes ofthis 
type have provecf very effective for wide variety of prob- 
lems, and they have the advantage that they can be applied 
equally easily on both structured and unstructured meshes 
[84,67, 69,145]. 

If one reduces the linear model problem corresponding to 
(40) to an ordinary differential equation by substituting a 
Fourier mode ij)=eipx>, the resulting Fourier symbol has 
an imaginary part proportional to the wave speed, and 
a negative real part proportional to the diffusion. Thus 
the time stepping scheme should have a stability region 
which contains substantial intervals of both the negative 
real axis and the imaginary axis. To achieve this it pays 
to treat the convective and dissipative terms in a distinct 
fashion. Thus the residual is split as 

R(w)=Q(w) + D(w) , 

where Q (w) is the convective part and D (w) the dissi- 
pative part. Denote the time level nAt by a superscript n. 
Then the multistage time stepping scheme is formulated 
as 

w (n+i,o) w 

w (»+1.0       =      »«-«^(Q^+Ö^
0
) 

wn+l       =      w(n+l,m)) 

where the superscript k denotes the k-th stage, am=l, and 

Q (0) Q(wn),  D(o) =D(wn) 

DW     =    ßkD (w("+1>fc)) +(1 - ßk) D^-ti. 

The coefficients ak are chosen to maximize the stability 
interval along the imaginary axis, and the coefficients 
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ßk are chosen to increase the stability interval along the 
negative real axis. 

These schemes do not fall within the standard framework 
of Runge-Kutta schemes, and they have much larger sta- 
bility regions [69]. Two schemes which have been found 
to be particularly effective are tabulated below. The first 
is a four-stage scheme with two evaluations of dissipation. 
Its coefficients are 

ai=5 

«2=75 
"3=1 
04=1 

01 = 1 

&=o 

(41) 

The second is a five-stage scheme with three evaluations 
of dissipation. Its coefficients are 

ai=z 

«3=1 
a4=i 

A=i 
&=o 
/33=0.56 

#=0.44 

(42) 

4.8   Multigrid Methods 

4.8.1   Acceleration of Steady Flow Calculations 

Radical improvements in the rate of convergence to a 
steady state can be realized by the multigrid time-stepping 
technique. The concept of acceleration by the introduc- 
tion of multiple grids was first proposed by Fedorenko 
[48]. There is by now a fairly well-developed theory 
of multigrid methods for elliptic equations based on the 
concept that the updating scheme acts as a smoothing op- 
erator on each grid [24,53]. This theory does not hold for 
hyperbolic systems. Nevertheless, it seems that it ought 
to be possible to accelerate the evolution of a hyperbolic 
system to a steady state by using large time steps on coarse 
grids so that disturbances will be more rapidly expelled 
through the outer boundary. Various multigrid time- 
stepping schemes designed to take advantage of this effect 
have been proposed [124,65, 55, 71,29, 6, 57, 83,93]. 

One can devise a multigrid scheme using a sequence of 
independently generated coarser meshes by eliminating 
alternate points in each coordinate direction. In order to 
give a precise description of the multigrid scheme, sub- 
scripts may be used to indicate the grid. Several transfer 
operations need to be defined. First the solution vector on 
grid k must be initialized as 

w fo)-TM-i«'*-i, 

where wk-i is the current value on grid fc — 1, and Tk<k-\ 
is a transfer operator. Next it is necessary to transfer a 
residual forcing function such that the solution grid k is 
driven by the residuals calculated on grid k — l. This can 
be accomplished by setting 

Pk=Qk,k-\Rk-\ {wk-i)-Rk [u>t
(o)] , 

where Qk,k-\ is another transfer operator. ThcnRk(wk) 
is replaced by Rk (wk ) + Pk in the time- stepping scheme. 
Thus, the multistage scheme is reformulated as 

w (i)    _ =   w (0) 

w C»+t)    =   ,„(o) wi 

- atAtk [ä<°> + Pk] 

- aq+l\tk [R^ + Pk] 

,(m) 

has to be transferred back to grid k—l with the aid of 
an interpolation operator Ik-\,k. With properly optimized 
coefficients multistage time-stepping schemes can be very 
efficient drivers of the multigrid process. A W-cycle, of 
the type illustrated in Figure 8 proves to be a particularly 

8c: 5 Levels. 

Figure 8: Multigrid W-cycle for managing the grid cal- 
culation. E, evaluate the change in the flow for one step; 
T, transfer the data without updating the solution. 

effective strategy for managing the work split between the 
meshes. In a three-dimensional case the number of cells 
is reduced by a factor of eight on each coarser grid. On 
examination of the figure, it can therefore be seen that the 
work measured in units corresponding to a step on the fine 
grid is of the order of 

1 + 2/8 + 4/64 + ... < 4/3, 

and consequently the very large effective time step of the 
complete cycle costs only slightly more than a single time 
step in the fine grid. 

4.8.2   Multigrid Implicit Schemes for Unsteady Flow 

Time dependent calculations are needed for a number 
of important applications, such as flutter analysis, or the 
analysis of the flow past a helicopter rotor, in which the 
stability limit of an explicit scheme forces the use of much 
smaller time steps than would be needed for an accurate 
simulation. In this situation a multigrid explicit scheme 
can be used in an inner iteration to solve the equations of 
a fully implicit time stepping scheme [74]. 

Suppose that (40) is approximated as 

Dtw
n+1 + R(wn+l) =0. 

Here Dt is a kth order accurate backward difference op- 
erator of the form 

«4 £>->•■ 
The result wj:' then provides the initial data for grid      where 
k + 1.   Finally, the accumulated correction on grid k 

A*^* 

A~wn+1=wn+l -wn 
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Applied to the linear differential equation 

dw 
~dl 

=aw 

the schemes with k=l, 2 are stable for all a At in the left 
half plane (A-stable). Dahlquist has shown that A-stable 
linear multi-step schemes are at best second order accurate 
[38]. Gear however, has shown that the schemes with 
k < 6 are stiffly stable [49], and one of the higher order 
schemes may offer a better compromise between accuracy 
and stability, depending on the application. 

Equation (40) is now treated as a modified steady state 
problem to be solved by a multigrid scheme using variable 
local time steps in a fictitious time t*. For example, in the 
case k=2 one solves 

dw 
di*~ 

■R*(w), 

where 

3 2 
R* (w) =TT-W + RM + — wn 

2At At 2At 
w n-\ 

and the last two terms are treated as fixed source terms. 
The first term shifts the Fourier symbol of the equivalent 
model problem to the left in the complex plane. While 
this promotes stability, it may also require a limit to be 
imposed on the magnitude of the local time step At* rel- 
ative to that of the implicit time step At. This may be 
relieved by a point-implicit modification of the multi- 
stage scheme [119]. In the case of problems with moving 
boundaries the equations must be modified to allow for 
movement and deformation of the mesh. 

This method has proved effective for the calculation of 
unsteady flows that might be associated with wing flutter 
[3,4] and also in the calculation of unsteady incompress- 
ible flows [18]. It has the advantage that it can be added 
as an option to a computer program which uses an explicit 
multigrid scheme, allowing it to be used for the efficient 
calculation of both steady and unsteady flows. 

in the different coordinate directions. The need to resolve 
the boundary layer generally forces the introduction of 
mesh cells with very high aspect ratios near the bound- 
ary, and these can lead to a severe reduction in the rate 
of convergence to a steady state. Pierce has recently ob- 
tained impressive results using diagonal and block-Jacobi 
preconditioned which include the mesh intervals [133]. 

An alternative approach has recently been proposed by 
Ta'asan [168], in which the equations are written in a 
canonical form which separates the equations describ- 
ing acoustic waves from those describing convection. In 
terms of the velocity components u, v and the vorticity 
u, temperature T, entropy s and total enthalpy H, the 
equations describing steady two-dimensional now can be 
written as 

Dx     D2     0 
dy dx 

0 0 
0 0 
0 0 

■S-   -l 

-Q 

0 
0 

^ 
7Ü- 

0    i 
0 

D3    
L

qD3 

0 
PQ -I 

u 
v 
UJ 

s 
H 

where 

D2 

D3 

Q 

l'fe! 2, d       d\ 
uz) — -UV-Z-) 

dx        dy J 

d 
c2 \ dy        dx 

d__ d_ 
dx dy 

— + — 
dx dy 

Here the first two equations describe an elliptic system if 
the flow is subsonic, while the remaining equations are 
convective. Now separately optimized multigrid proce- 
dures are used to solve the two sets of equations, which 
are essentially decoupled. 

4.9   Preconditioning 

Another way to improve the rate of convergence to a 
steady state is to multiply the space derivatives in equa- 
tion (1) by a preconditioning matrix P which is designed 
to equalize the eigenvalues, so that all the waves can be 
advanced with optimal time steps. A symmetric precondi- 
tioner which equalizes the eigenvalues has been proposed 
by Van Leer [102]. When the equations are written in 
stream-aligned coordinates this has the form 

P= -w 
0 
0 
0 

-w 0 0 0 

0 
0 
0 

0 
r 
0 
0 

0 
0 
r 
0 

0 
0 
0 
1 

where 

ß   =   -nry/l - M2,   if   M < 1 

ß   =    Vl-M2,T=\/l M2' 
if  M> 1 

Türkei has proposed an asymmetric preconditioner which 
has also proved effective, particularly for flow at low Mach 
numbers [172]. The use of these preconditioners can lead 
to instability at stagnation points where there is a zero 
eigenvalue which cannot be equalized with the eigenval- 
ues ±c. 

The preconditioners of Van Leer and Türkei do not take 
account of the effect of differences in the mesh intervals 

4.10   High Order Schemes and Mesh Refinement 

The need both to improve the accuracy of computational 
simulations and to assure known levels of accuracy is the 
focus of ongoing research. The main routes to improv- 
ing the accuracy are to increase the order of the discrete 
scheme and to reduce the mesh interval. High order differ- 
ence methods are most easily implemented on Cartesian, 
or at least extremely smooth grids. The expansion of 
the stencil as the order is increased leads to the need for 
complex boundary conditions. Compact schemes keep 
the stencil as small as possible [140, 104, 28]. On simple 
domains, spectral methods are particularly effective, es- 
pecially in the case of periodic boundary conditions, and 
can be used to produce exponentially fast convergence of 
the error as the mesh interval is decreased [127, 27]. A 
compromise is to divide the field into subdomains and 
introduce high order elements. This approach is used in 
the spectral element method [92]. 

High order difference schemes and spectral methods have 
proven particularly useful in direct Navier-Stokes simula- 
tions oftransient and turbulent flows. High order methods 
are also beneficial in computational aero-acoustics, where 
it is desired to track waves over long distances with min- 
imum error. If the flow contains shock waves or contact 
discontinuities, the ENO method may be used to construct 
high order non-oscillatory schemes. 

In multi-dimensional flow simulations, global reduction 
of the mesh interval can be prohibitively expensive, mo- 
tivating the use of adaptive mesh refinement procedures 
which reduce the local mesh width h if there is an indica- 
tion that the error is too large [21, 39, 109, 61, 138, 103]. 
In such /i-refinement methods, simple error indicators 
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such as local solution gradients may be used. Alterna- 
tively, the discretization error may be estimated by com- 
paring quantities calculated with two mesh widths, say 
on the current mesh and a coarser mesh with double the 
mesh interval. Procedures of this kind may also be used 
to provide a posteriori estimates of the error once the 
calculation is completed. 

This kind of local adaptive control can also be applied 
to the local order of a finite element method to produce 
a p-refinement method, where p represents the order of 
the polynomial basis functions. Finally, both h- and p- 
refinement can be combined to produce an h-p method in 
which h and p are locally optimized to yield a solution 
with minimum error [126]. Such methods can achieve 
exponentially fast convergence, and are well established 
in computational solid mechanics. 

5.   CURRENT STATUS OF NUMERICAL SIMU- 
LATION 

This section presents some representative numerical re- 
sults which confirm the properties of the algorithms which 
have been reviewed in the last section. These have been 
drawn from the work of the author and his associates. 
They also illustrate the kind of calculation which can be 
performed in an industrial environment, where rapid turn 
around is important to allow the quick assessment of de- 
sign changes, and computational costs must be limited. 

5.1    One-dimensional shock 

In order to verify the discrete structure of station- 
ary shocks, calculations were performed for a one- 
dimensional problem with initial data containing left and 
right states compatible with the Rankine Hugomot condi- 
tions. An intermediate state consisting of the arithmetic 
average of the left and right states was introduced at a 
single cell in the center of the domain. With this interme- 
diate state the system is not in equilibrium, and the time 
dependent equations were solved to find an equilibrium 
solution with a stationary shock wave separating the left 
and right states. Table 1 shows the result for a shock 
wave at Mach 20. This calculation used the H-CUSP 
scheme, which allows a solution with constant stagna- 
tion enthalpy, with the limiter defined by equation (23), 
and q=3. The formulation is described in detail in refer- 
ence [80]. The table shows the values of H, p, M and 
the entropy 5=log ^ 
shock structure is displayed. The entropy is zero to 4 
decimal places upstream of the shock, exhibits a slight 
excursion at the interior point, and is constant to 4 deci- 
mal places downstream of the shock. It may be noted that 
the mass, momentum and energy of the initial data are 
not compatible with the final equilibrium state. Accord- 
ing to conservation arguments the total mass, momentum 
and energy must remain constant if the outflow flux fn 
remains equal to the inflow flux fi,. Therefore /A must 
be allowed to vary according to an appropriate outflow 
boundary condition to allow the total mass, momentum 
and energy to be adjusted to values compatible with equi- 
librium. 

log f ^f) • A perfect one point 

I H P M s 
19 283.5000 1.0000 20.0000 0.0000 
20 283.5000 1.0000 20.0000 0.0000 
21 283.5000 1.0000 20.0000 0.0000 
22 283.4960 307.4467 0.7229 40.3353 
23 283.4960 466.4889 0.3804 37.6355 
24 283.4960 466.4889 0.3804 37.6355 
25 283.4960 466.4889 0.3804 37.6355 

5.2   Euler Calculations for Airfoils and Wings 

The results of transonic flow calculations for two well 
known airfoils, the RAE 2822 and the NACA 0012, are 
presented in figures (22-25). The H-CUSP scheme was 
again used. The limiter defined by equation (23) was used 
with <p3. The 5 stage time stepping scheme (42) was aug- 
mented by the multigrid scheme described in section 4.2 
to accelerate convergence to a steady state. The equations 
were discretized on meshes with O-topology extending 
out to a radius of about 100 chords. In each case the 
calculations were performed on a sequence of succes- 
sively finer meshes from 40x8 to 320x64 cells, while the 
multigrid cycles on each of these meshes descended to a 
coarsest mesh of 10x2 cells. Figure 22 shows the inner 
parts of the 160x32 meshes for the two airfoils. Figures 
23-25 show the final results on 320x64 meshes for the 
RAE 2822 airfoil at Mach .75 and 3° angle of attack, and 
for the NACA 0012 airfoil at Mach .8 and 1.25° angle of 
attack, and also at Mach .85 and 1° angle of attack. In the 
pressure distributions the pressure coefficient Cp=-f- =2<* 

is plotted with the negative (suction) pressures upward, so 
that the upper curve represents the flow over the upper side 
of a lifting airfoil. The convergence histories show the 
mean rate of change of the density, and also the total num- 
ber of supersonic points in the flow field, which provides 
a useful measure of the global convergence of transonic 
flow calculations such as these. In each case the conver- 
gence history is shown for 100 cycles, while the pressure 
distribution is displayed after a sufficient number of cy- 
cles for its convergence. The pressure distribution of the 
RAE 2822 airfoil converged in only 25 cycles. Conver- 
gence was slower for the NACA 0012 airfoil. In the case 
of flow at Mach .8 and 1.25° angle of attack, additional 
cycles were needed to damp out a wave downstream of 
the weak shock wave on the lower surface. 

As a further check on accuracy the drag coefficient should 
be zero in subsonic flow, or in shock free transonic flow. 
Table 2 shows the computed drag coefficient on a se- 
quence of three meshes for three examples. The first two 
are subsonic flows over the RAE 2822 and NACA 0012 
airfoils at Mach .5 and 3° angle of attack. The third is the 
flow over the shock free Korn airfoil at its design point 
of Mach .75 and 0° angle of attack. In all three cases the 
drag coefficient is calculated to be zero to four digits on a 
160x32 mesh. 

Mesh 

40x8 
80x16 

160x32 

RAE 2822 
Mach .50 

«3° 

NACA 0012 
Mach .50 

a 3° 
DÜÖ2" 
.0013 
.0000 

Korn Airfoil 
Mach .75 

a0° 
.0047 
.0008 
.0000 

.0017 

.0000 

Table 1: Shock Wave at Mach 20 

Table 2: Drag Coefficient on a sequence of meshes 

As a further test of the performance of the H-CUSP 
scheme, the flow past the ONERA M6 wing was cal- 
culated on a mesh with C-H topology and 192x32x48 = 
294912 cells. Figure 26 shows the result at Mach .84 
and 3.06° angle of attack. This again verifies the non- 
oscillatory character of the solution, and the sharp resolu- 
tion of shock waves. In this case 50 cycles were sufficient 
for convergence of the pressure distributions. 

Figure 9 shows a calculation of the Northrop YF23 by R J. 
Busch, Jr., who used the author's FL057 code to solve 
the Euler equations [26]. Although an inviscid model of 
the flow was used, it can be seen that the simulations are 
in good agreement with wind tunnel measurements both 
at Mach .90, with angles of attack of 0, 8 and 16 degrees, 
and at Mach 1.5 with angles of attack of 0, 4 and 8 de- 
grees. At a high angle of attack the flow separates from 
the leading edge, and this example shows that in situations 
where the point of separation is fixed, an inviscid model 
may still produce a useful prediction. Thus valuable in- 
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formation for the aerodynamic design could be obtained 
with a relatively inexpensive computational model. 

Figure 9: Comparison of Experimental and Computed 
Drag Rise Curve for the YF-23 (Supplied by R. J. Bush 
Jr.) 

•     WIM 
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Force Coefficients, Mach 2.1. 

Sonic Boom Prediction, Mach 2.5. 

Figure 10: Comparison of Experimental and Calculated 
Results for a HSCT Configuration 

The next figures show the results of calculations using the 
AIRPLANE code developed by T. J. Baker and the author, 
to solve the Euler equations on an unstructured mesh. This 
provides the flexibility to treat arbitrarily complex config- 
urations without the need to spend months developing an 

No. of Nodes Seconds/Cycle Speedup 
1 36.03 1.00 
2 18.11 1.99 
4 9.11 3.96 
8 4.66 7.73 
16 2.30 15.08 

Table 3: AIRPLANE Parallel Performance on the SP2, 
MD-11 Model 

acceptable mesh. Figures 10 and 11 show calculations 
for supersonic transport configurations which were per- 
formed by Susan Cliff. The agreement with experimental 
data is quite good, and it has also been possible to predict 
the sonic boom signature [34]. Figure 12 shows an Euler 
calculation for the McDonnell Douglas MD11 with flow 
through the engine nacelles, using 348407 mesh points of 
2100466 tetrahedra. This calculation takes 4 hours on an 
IBM 590 workstation. A parallel version of the code has 
been developed in collaboration with W.S. Cheng, and the 
same calculation can be performed in 20 minutes using 
16 processors of an IBM SP2. The parallel speed-up for 
the MDl 1 is shown in table 3. 

Figure 11: Pressure Contours and Sonic Boom on a Rep- 
resentative HSCT Configuration 

5.3   Viscous Flow Calculations 

The next figures show viscous simulations based on the 
solution of the Reynolds averaged Navier Stokes equa- 
tions with turbulence models. Figure 13 shows a two- 
dimensional calculation for the RAE 2822 airfoil by L. 
Martinelli. The vertical axis represents the negative pres- 
sure coefficient, and there is a shock wave half way along 
the upper surface. This example confirms that in the 
absence of significant shock induced separation, simula- 
tions performed on a sufficiently fine mesh (with 512 x 64 
cells) can produce excellent agreement with experimental 
data. Figure 21 shows a simulation of the McDonnell- 
Douglas Fl 8 performed by R.M. Cummings, Y.M. Rizk, 
L.B. Schiff and N.M. Chaderjian at NASA Ames [37]. 
They used a multiblock mesh with about 900000 mesh 
points. While this is probably not enough for an accu- 
rate quantitative prediction, the agreement with both the 
experimental data and the visualization are quite good. 

Figure 14 shows an unsteady flow calculation for a 
pitching airfoil performed by J. Alonso using the code 
UFL082, which hejointly developed with L. Martinelli 
and the author [4]. This uses the multigrid implicit scheme 
described in Section 3.7.2 which allows the number of 
time steps to be reduced from several thousand to 36 per 
pitching cycle. The agreement with experimental data is 
quite good. 
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Figure 12: Computed Pressure Field for a McDonnell 
Douglas MD11 

5.4   Ship Wave Resistance calculations 

Figures 15-17 show the results of an application of the 
same multigrid finite volume techniques to the calculation 
of the flow past a naval frigate, using a code which was 
developed by J. Farmer, L. Martinelli and the author [47]. 
The mesh was adjusted during the course of the calcu- 
lation to conform to the free surface in order to satisfy 
the exact non-linear boundary condition, while artificial 
compressibility was used to treat the incompressible flow 
equations. 

6.   AERODYNAMIC SHAPE OPTIMIZATION 

6.1   Optimization and Design 

Traditionally the process of selecting design variations has 
been carriea out by trial and error, relying on the intuition 
and experience of the designer. With currently available 
equipment the turn around for numerical simulations is 
becominig so rapid that it is feasible to examine an ex- 
tremely large number of variations. It is not at all likely 
that repeated trials in an interactive design and analysis 
procedure can lead to a truly optimum design. In order 
to take full advantage of the possibility of examining a 
large design space the numerical simulations need to be 
combined with automatic search and optimization proce- 
dures. This can lead to automatic design methods which 
will fully realize the potential improvements in aerody- 
namic efficiency. 

The simplest approach to optimization is to define the 
geometry through a set of design parameters, which may, 
for example, be the weights a* applied to a set of shape 
functions b{ (x) so that the shape is represented as 

Then a cost function I is selected which might, for exam- 
ple, be the drag coefficient or the lift to drag ratio, and / 
is regarded as a function of the parameters a*. The sen- 
sitivities g^: may now be estimated by making a small 
variation öai in each design parameter in turn and recal- 
culating the flow to obtain the change in I. Then 

dl_ ^ I(aj + Satj) -J(QJ) 

dcti öai 

The gradient vector |£ may now be used to determine a 
direction of improvement. The simplest procedure is to 
make a step in the negative gradient direction by setting 
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Figure 13: Two-Dimensional Turbulent Viscous Calcula- 
tion (by Luigi Martinelli) 

so that to first order 

8IT 

I + 81=1 - ^6a=I 
da 

MT dl 
da da 

„n+l- XSa, 

More sophisticated searchprocedures may be used such as 
quasi-Newton methods, which attempt to estimate the sec- 
ond derivative ga

9/a. of the cost function from changes in 

the gradient |£ in successive optimization steps. These 
methods also generally introduce line searches to find 
the minimum in the search direction which is defined at 
each step. The main disadvantage of this approach is the 
need for a number of flow calculations proportional to the 
number of design variables to estimate the gradient. The 
computational costs can thus become prohibitive as the 
number of design variables is increased. 

An alternative approach is to cast the design problem as a 
search for the shape that will generate the desired pressure 
distribution. This approach recognizes that the designer 
usually has an idea of the the kind of pressure distribu- 
tion that will lead to the desired performance. Thus, it is 
useful to consider the inverse problem of calculating the 
shape that will lead to a given pressure distribution. The 
method has the advantage that only one flow solution is 
required to obtain the desired design. Unfortunately, a 
physically realizable shape may not necessarily exist, un- 
less the pressure distribution satisfies certain constraints. 
Thus the problem must be very carefully formulated; oth- 
erwise it may be ill posed. 

The difficulty that the target pressure may be unattainable 
may be circumvented by treating the inverse problem as 
a special case of the optimization problem, with a cost 
function which measures the error in the solution of the 
inverse problem. For example, if pa is the desired surface 
pressure, one may take the cost function to be an integral 
over the the body surface of the square of the pressure 
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Figure 14:  Mach Number Contours.   Pitching Airfoil 
Case. Re=l.O x 106, Moo=0.796, Kc=0.202. 

error, 

T=\ f(p-Pd)2dB, 1 JB 

or possibly a more general Sobolev norm of the pressure 
error. This has the advantage of converting a possibly ill 
posed problem into a well posed one. It has the disadvan- 
tage that it incurs the computational costs associated with 
optimization procedures. 

6.2   Application of Control Theory 

In order to reduce the computational costs, it turns out that 
there are advantages in formulating both the inverse prob- 
lem and more general aerodynamic problems within the 
framework of the mathematical theory for the control of 
systems governed by partial differential equations [105]. 
A wing, for example, is a device to produce lift by control- 
ling the flow, and its design can be regarded as a problem 
in the optimal control of the flow equations by variation 

Figure 16: Contours of Surface Wave Elevation Near the 
Transom Stern 

Figure 15:   Contours of Surface Wave Elevation for a 
Combatant Ship 

Figure 17: Pressure Contours in the Bow Region 

of the shape of the boundary. If the boundary shape is re- 
garded as arbitrary within some requirements of smooth- 
ness, then the full generality of shapes cannot be defined 
with a finite number of parameters, and one must use the 
concept of the Frechet derivative of the cost with respect 
to a function. Clearly, such a derivative cannot be deter- 
mined directly by finite differences of the design param- 
eters because there are now an infinite number of these. 
Using techniques of control theory, however, the gradient 
can be determined indirectly by solving an adjoint equa- 
tion which has coefficients defined by the solution of the 
flow equations. The cost of solving the adjoint equation 
is comparable to that of solving the flow equations. Thus 
the gradient can be determined with roughly the compu- 
tational costs of two flow solutions, independently of the 
number of design variables, which may be infinite if the 
boundary is regarded as a free surface. 

For flow about an airfoil or wing, the aerodynamic prop- 
erties which define the cost function are functions of the 
flow-field variables (w) and the physical location of the 
boundary, which may be represented by the function T, 
say. Then 

1=1 (w,F), 
and a change in T results in a change 

dIT dIT 

in the cost function. Using control theory, the governing 
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equations of the flowfield are introduced as a constraint 
in such a way that the final expression for the gradient 
does not require reevaluation or the flowfield. In order to 
achieve this Sw must be eliminated from (43). Suppose 
that the governing equation R which expresses the depen- 
dence of w and T within the flowfield domain D can be 
written as 

R(w,D=0. (44) 
Then Sw is determined from the equation 

6R= 
dR' 
dw 

Sw + 
dR' 

SF=0. (45) 

Next, introducing a Lagrange Multiplier ip, we have 

Choosing ip to satisfy the adjoint equation 

dR iT 

dw 
^ dl_ 

dw 

the first term is eliminated, and we find that 

SI=QST, 

(46) 

(47) 

where 

y dT 
■V 

dK 
dT 

The advantage is that (47) is independent of Sw, with the 
result that the gradient of / with respect to an arbitrary 
number of design variables can be determined without the 
need for additional flow-field evaluations. In the case that 
(44) is a partial differential equation, the adjoint equation 
(46) is also a partial differential equation and appropriate 
boundary conditions must be determined. 

After making a step in the negative gradient direction, 
the gradient can be recalculatedand the process repeated 
to follow a path of steepest descent until a minimum is 
reached. In order to avoid violating constraints, such as 
a minimum acceptable wing thickness, the gradient may 
be projected into the allowable subspace within which 
the constraints are satisfied. In this way one can devise 
procedures which must necessarily converge at least to a 
local minimum, and which can be accelerated by the use 
of more sophisticated descent methods such as conjugate 
fradient or quasi-Newton algorithms. There is the possi- 

ility of more than one local minimum, but in any case 
the method will lead to an improvement over the original 
design. Furthermore, unlike the traditional inverse algo- 
rithms, any measure of performance can be used as the 
cost function. 

In reference [72] the author derived the adjoint equations 
for transonic flows modelled by both the potential flow 
equation and the Euler equations. The theory was de- 
veloped in terms of partial differential equations, leading 
to an adjoint partial differential equation. In order to 
obtain numerical solutions both the flow and the adjoint 
equations must be discretized. The control theory might 
be applied directly to the discrete flow equations which 
result from the numerical approximation or the flow equa- 
tions by finite element, finite volume or finite difference 
procedures. This leads directly to a set of discrete adjoint 
equations with a matrix which is the transpose of the Jaco- 
bian matrix of the full set of discrete nonlinear flow equa- 
tions. On a three-dimensional mesh with indices i, j, fcthe 
individual adjoint equations may be derived by collecting 
together all the terms multiplied by the variation ÖWijtk 
of the discrete flow variable tüy,*. The resulting discrete 
adjoint equations represent a possible discretization of the 

adjoint partial differential equation. If these equations are 
solved exactly they can provide an exact gradient of the 
inexact cost function which results from the discretization 
of the flow equations. On the other hand any consistent 
discretization of the adjoint partial differential equation 
will yield the exact gradient in the limit as the mesh is 
refined. The trade-off between the complexity of the ad- 
joint discretization, the accuracy of the resulting estimate 
of the gradient, and its impact on the computational cost 
to approach an optimum solution is a subject of ongoing 
research. 

The true optimum shape belongs to an infinitely dimen- 
sional space of design parameters. One motivation for 
developing the theory for the partial differential equa- 
tions of the flow is to provide an indication in principle 
of how such a solution could be approached if sufficient 
computational resources were available. Another moti- 
vation is that it highlights the possibility of generating 
ill posed formulations of the problem. For example, if 
one attempts to calculate the sensitivity of the pressure 
at a particular location to changes in the boundary shape, 
there is the possibility that a shape modification could 
cause a shock wave to pass over that location. Then the 
sensitivity could become unbounded. The movement of 
the shock, however, is continuous as the shape changes. 
Therefore a quantity such as the drag coefficient, which 
is determined by integrating the pressure over the surface, 
also depends continuously on the shape. The adjoint 
equation allows the sensitivity of the drag coefficient to 
be determined without the explicit evaluation of pressure 
sensitivities which would be ill posed. 

The discrete adjoint equations, whether they are derived 
directly or by discretization of the adjoint partial differen- 
tial equation, are linear. Therefore they could be solved 
by direct numerical inversion. The cost of direct inversion 
can become prohibitive, however, as the mesh is refined, 
and it becomes more efficient to use iterative solution 
methods. Moreover, because of the similarity of the ad- 
joint equations to the flow equations, the same iterative 
methods which have been proved to be efficient for the 
solution of the flow equations are efficient for the solution 
of the adjoint equations. 

The control theory formulation for optimal aerodynamic 
design has proved effective in a variety of applications 
[73,77, 142]. The adjoint equations have also been used 
by Ta'asan, Kuruvila and Salas [167], who have imple- 
mented a one shot approach in which the constraint repre- 
sented by the flow equations is only required to be satisfied 
by the final converged solution, and computational costs 
are also reduced by applying multigrid techniques to the 
geometry modifications as well as the solution of the flow 
and adjoint equations. Pironneau has studied the use of 
control theory for optimal shape design of systems gov- 
erned by elliptic equations [134], and more recently the 
Navier-Stokes equations, and also wave reflection prob- 
lems. Adjoint methods have also been used by Baysal 
andEleshaky [16]. 

6.3   Three-Dimensional Design using the Euler Equa- 
tions 

In order to illustrate the application of control theory to 
aerodynamic design problems, this section treats the case 
of three-dimensional wing design using the inviscid Eu- 
ler equations as the mathematical model for compressible 
flow. A transformation to a body-fitted coordinate system 
will be introduced, so that variations in the wing shape in- 
duce corresponding variations in the computational mesh. 
Thus the flow is determined by the solution of the trans- 
formed equation (5). Let 

Kij- 
dxi 

dtj 

and 

,J=dct(K),Kr/= 

Q=JK~\ 

d£i 
dxj 
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The elements of Q are the coefficients of K, and in a 
finite volume discretization they are just the face areas of 
the computational cells projected in the x\, x2, and xi 
directions. Also introduce scaled contravariant velocity 
components 

The transformed equations can now be written as 

where 

and 

8W    dFj 

dt  + 0fc 

W=Jw 

(48) 

ti-Qijjj 

pUi 
pUiUi + QuP 
pUiU2 + Qap 
pUiU3 + Qap 

pUiH 

Assume now that the new computational coordinate sys- 
tem conforms to the wing in such a way that the wing 
surface Bw is represented by £2=0. Then the flow is 
determined as the steady state solution of equation (48) 
subject to the flow tangency condition 

U2=0  on Bw- (49) 

At the far field boundary BF, conditions are specified for 
incoming waves, as in the two-dimensional case, while 
outgoing waves are determined by the solution. 

The weak form of the Euler equations for steady flow can 
be written as 

/ ^-FidV= f mfFidß, (50) 
Jv 0& JB 

where the test vector <j> is an arbitrary differentiable func- 
tion and rii is the outward normal at the boundary. If a 
differentiable solution w is obtained to this equation, it 
can be integrated by parts to give 

L Äp=o 
0& 

and since this is true for any <f>, the differential form can 
be recovered. If the solution is discontinuous, equation 
(50) may be integrated by parts separately on either side 
of the discontinuity to recover the snock jump conditions. 

Suppose now that it is desired to control the surface pres- 
sure by varying the wing shape. It is convenient to retain 
a fixed computational domain. Variations in the shape 
then result in corresponding variations in the mapping 
derivatives defined by K. Introduce the cost function 

I'\Jj    (P-Pdfdtidb, 

where pd is the desired pressure. The design problem is 
now treated as a control problem where the control func- 
tion is the wing shape, which is to be chosen to minimize 
/ subject to the constraints defined by the flow equations 
(48-50). A variation in the shape will cause a variation 
Sp in the pressure and consequently a variation in the cost 
function 

HI (p-Pd)Sp d£id£3. (51) 

Since p depends on w through the equation of state (2), 
the variation dp can be determined from the variation Sw. 
Define the Jacobian matrices 

A-^li      n-O-A- (52) 

The weak form of the equation for Sw in the steady state 
becomes 

/ ?f-5FidV= [ im^SFi) dB, 
Jv <Jt,i JB 

where 
6Fi=Ci8w + SQijfj, 

which should hold for any differential test function <j>. 
This equation may be added to the variation in the cost 
function, which may now be written as 

SI = //     (P-Pd)8p dtidb 
J JBW 

+ / (n^TSFi) dB. (53) 
JB 

On the wing surface Bw, ni=n3=0 and it follows from 
equation (49) that 

SF2= 

0 0 

Q21ÖP SQi\P 

QuSp + SQ22P 
Q23SP SQ2W 

0 0 

(54) 

Since the weak equation for Sw should hold for an arbi- 
trary choice of the test vector <f>, we are free to choose (j) to 
simplify the resulting expressions. Therefore we set ^=y>, 
where the costate vector ip is the solution of the adjoint 
equation 

|-Cf|=0   inD. (55) 

At the outer boundary incoming characteristics for ip cor- 
respond to outgoing characteristics for Sw. Consequently 
one can choose boundary conditions for ip such that 

n,iijjTCiSw=0. 

Then if the coordinate transformation is such that SO is 
negligible in the far field, the only remaining boundary 
term is 

^TSF2 deidfc- 
I Bw -II J JB, 

Thus by letting ip satisfy the boundary condition, 

Quipi + £22^3 + Q23ip4=(p - Pd)  on Bw,       (56) 

we find finally that 

I.T 
51 - f d-^sQij fjdV 

■a (5Q2i4>i + 6Q22il>3 + Q23^)pd^d^3.    (57) 

A convenient way to treat a wing is to introduce sheared 
parabolic coordinates as shown m figure 18 through the 
transformation 

x   =   xo(0+\a(0{t2-(ri + Sti,0)2} 

y   =   Vo(Q + a(OZ(V + S(t,Q) 
z   =   C- 
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< = 

18a: x,y-Plane. 18b: ^-Plane. 

Figure 18: Sheared Parabolic Mapping. 

Here x=x\, y=X2, z=xi are the Cartesian coordinates, and 
£ and rj + S correspond to parabolic coordinates generated 
by the mapping 

1 2 
x + iy=x0 + iyo + ^a (0 {£ + *'(»? + 5)} 

at a fixed span station C,. xq(0 and 2/o (0 are the coor- 
dinates of a singular line which is swept to lie just inside 
the leading edge of a swept wing, while a (Q is a scale 
factor to allow for spanwise chord variations. 

We now treat S (£, Q as the control. Substitution of these 
formulas yields the variation in the form 

-// 
gu,ti)8Sit,Ti)dtdn 

where the gradient Q (£, rj) is obtained by evaluating the 
integrals in equation (57). Thus to reduce / we can choose 

ss=-xg 
where A is sufficiently small and non-negative. In order 
to impose a thickness constraint we can define a baseline 
surface So (£, 0 below which S (£, Q is not allowed to 
fall. Now we take A=A (£, Q as a non-negative function 
such that 

<S (£,0 + <5<S (£,<)> <So(£,0- 

Then the constraint is satisfied, while 

(58) 

SI =- f f   xg2d£ dc < o. 
J J Bw 

The costate solution tp is a legitimate test function for 
the weak form of the flow equations only if it is differ- 
entiable. Smoothness should also be preserved in the 
redesigned shape. It is therefore crucially important to 
introduce appropriate smoothing procedures. In order 
to avoid discontinuities in the adjoint boundary condition 
which would be caused by the appearance of shock waves, 
the cost function for the target pressure may be modified 
to the form 

!//(— (f)!) d£dr] 

\ v d xdZ 

Then 

SI 
//( 

XiZSZ + A2 
dz_ 
dt ir) d£dr] 

• !Iz(x'-¥(x4)szd('"' 
=     f f Z6pd£dr] 

and the smooth quantity Z replaces p — pn'm the adjoint 
boundary condition. 

Independent movement of the boundary mesh points 
could produce discontinuities in the designed shape. In 
order to prevent this the gradient may be also smoothed. 
Both explicit and implicit smoothing procedures are use- 
ful. Suppose that the movement of the surface mesh points 
were defined by local B-splines. In the case of a uniform 
one-dimensional mesh, a B-spline with a displacement d 
centered at the mesh point i would produce displacements 
d/4 at i + 1 and i— \ and zero elsewhere, while preserv- 
ing continuity of the first and second derivatives. Thus 
we can suppose that the discrete surface displacement has 
the form 

6S=Bd, 

where B is a matrix with coefficients defined by the B- 
splines, and di is the displacement associated with the 
B-spline centered at i. Then, using the discrete formulas, 
to first order the change in the cost is 

6i=gTss=gTBd. 

Thus the gradient with respect to the B-spline coefficients 
is obtained by multiplying g by BT, and a descent step is 
defined by setting 

d=-XBTg, SS=Bd=-XBBTg 

where A is sufficiently small and positive. The coefficients 
of B can be renormalized to produce unit row sums. With 
a uniform mesh spacing in the computational domain this 
formula is equivalent to the use of a gradient modified by 
two passes of the explicit smoothing procedure 

with a similar smoothing procedure in the k discretization. 

Implicit smoothing may also be used. The smoothing 
equation 

~ei+i,k(Gi+i,k — di,k) + €i_ik(gitk - Qi-\,k) =gi,k 

approximates the differential equation 

If one sets 6S=—Xg, then to first order the change in the 
cost is 

SI - f fgssd^dt] 

ill 
Q^jGdidr, 

& + <[*?) \dt*n 

<  o, 

assuring an improvement if A is sufficiently small and pos- 
itive, unless the process has already reached a stationary 
point at which g=0. 

6.4   Design of Swept Wings for Very Low Shock Drag 

The method has been used to carry out a study of swept 
wing designs which might be appropriate for long range 
transport aircraft. Since three dimensional calculations 
require substantial computational resources, it is ex- 
tremely important for the practical implementation of the 
method to use fast solution algorithms for the flow and the 
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adjoint equations. In this case the author's FL087 com- 
puter program has been used as the basis of the design 
method. FL087 solves the three dimensional Euler equa- 
tions with a cell-centered finite volume scheme, and uses 
residual averaging and multigrid acceleration to obtain 
very rapid steady state solutions, usually in 25 to 50 multi- 
grid cycles [66, 70]. Upwind biasing is used to produce 
non-oscillatory solutions, and assure the clean capture of 
shock waves. This is introduced through the addition 
of carefully controlled numerical diffusion terms, with a 
magnitude of order Ax3 in smooth parts of the flow. The 
adjoint equations are treated in the same way as the flow 
equations. The fluxes are first estimated by central differ- 
ences, and then modified by downwind biasing through 
numerical diffusive terms which are supplied by the same 
subroutines that were used for the flow equations. 

The study has been focussed on wings designed for cruis- 
ing at Mach .85, with lift coefficients in the range of .5 to 
.55. In every case, the wing planform was fixed while the 
sections were free to be changed arbitrarily by the design 
method, with a restriction on the minimum thickness. The 
initial wing has a unit-semi-span, with 38 degrees leading 
edge sweep. It has a modified trapezoidal planform, with 
straight taper from a root chord of 0.38, and a curved 
trailing edge in the inboard region blending into straight 
taper outboard of the 30 percent span station to a tip chord 
of 0.10, with an aspect ratio of 9.0. The initial wing sec- 
tions were based on a section specifically designed by 
the author's two dimensional design method [73] to give 
shock free flow at Mach 0.78 with a lift coefficient of 
0.6. This section, which has a thickness to chord ratio of 
9.5 percent, was used at the tip. Similar sections with an 
increased thickness were used inboard. The variation of 
thickness was non-linear with a more rapid increase near 
the root, where the thickness to chord ratio of the basic 
section was multiplied by a factor of 1.47. The inboard 
sections were rotated upwards to give the initial wing 3.5 
degrees twist from root to tip. The two-dimensional pres- 
sure distribution of the basic wing section at its design 
point was introduced as a target pressure distribution uni- 
formly across the span. This target is presumably not 
realizable, but serves to favor the establishment of a rela- 
tively benign pressure distribution. The total inviscid drag 
coefficient, due to the combination of vortex and shock 
wave drag, was also included in the cost function. Since 
the main objective of the study was to minimize the drag, 
the target pressure distribution was reset after every fourth 
design cycle to a distribution derived by smoothing the ex- 
isting pressure distribution. This allows the scheme more 
freedom to make changes which reduce drag. The cal- 
culations were performed with the lift coefficient forced 
to approach a fixed value by adjusting the angle of attack 
every fifth iteration of the flow solution. It was found that 
the computational costs can be reduced by using only 15 
multigrid cycles in each flow solution, and in each adjoint 
solution. Although this is not enough for full conver- 
gence, it proves sufficient to provide a shape modification 
which leads to an improvement. 
Figures 27 and 28 show a wing which was designed for a 
lift coefficient of .50 at Mach .85. In order to prevent the 
final wing from becoming too thin the threshold So (£, rf) 
was set at three quarters of the height of the bump S (£, rj) 
defining the initial wing. This calculation was performed 
on a mesh with 192 intervals in the £ direction wrapping 
around the wing, 32 intervals in the normal rj direction 
and 48 intervals in the spanwise ( direction, giving a 
total of 294912 cells. The wing was specified by 33 sec- 
tions, each with 128 points, giving a total of 4224 design 
variables. The plots show the initial wing geometry and 
pressure distribution, and the modified geometry and pres- 
sure distribution after 40 design cycles. The total inviscid 
drag coefficient was reduced from 0.0210 to 0.0112. The 
initial design exhibits a very strong shock wave in the 
inboard region. It can be seen that this is completely 
eliminated, leaving a very weak shock wave in the out- 
board region. To verify the solution, the final geometry 
was analyzed with another method, using the computer 

program FL067. This program uses a cell-vertex formu- 
lation, and has recently been modified to incorporate a 
local extremum diminishing algorithm with a very low 
level of numerical diffusion [76]. When run to full con- 
vergence it was found that a better estimate of the drag 
coefficient of the redesigned wing is 0.0094 at Mach 0.85 
with a lift coefficient of 0.5, giving a lift to drag ratio 
of 53. The results from FL067 for the initial and final 
wings are illustrated in Figures 29 and 30. A calculation 
at Mach 0.500 shows a drag coefficient of 0.0087 for a 
lift coefficient of 0.5. Since in this case the flow is en- 
tirely subsonic, this provides an estimate of the vortex 
drag for this planform and lift distribution, which is just 
what one obtains from the standard formula for induced 
drag, CD=CL

2
I^AR, with an aspect ratio AR=9, and 

an efficiency factor e=0.97. Thus the design method has 
reduced the shock wave drag coefficient to about 0.0007 
at a lift coefficient of 0.5. Figure 31 shows the result of 
an analysis for an off design point with the Mach number 
increased to .86 with the same lift coefficient of .5. This 
results in a flat-topped pressure distribution terminating 
with a weak shock of nearly uniform strength across the 
whole span. The drag coefficient is .0097. The penalty 
of .0003 is so small that this might be a preferred cruising 
condition. 
A second wing was designed in exactly the same manner 
as the first, starting from the same initial geometry and 
with the same constraints, to give a lift coefficient of .55 
at Mach .85. This produces stronger shock waves and is 
therefore a more severe test of the method. In this case the 
total inviscid drag coefficient was reduced from 0.0243 to 
0.0134 in 40 design cycles. Again the performance of the 
final design was verified by a calculation with FL067, and 
when the result was fully converged the drag coefficient 
was found to be 0.0115. A subsonic calculation at Mach 
.500 shows a drag coefficient of 0.0107 for alift coefficient 
of 0.55. Thus in this case the shock wave drag coefficient 
is about 0.0008. For a representative transport aircraft the 
parasite drag coefficient of the wing due to skin friction is 
about 0.0045. Also the fuselage drag coefficient is about 
0.0050, the nacelle drag coefficient is about 0.0015, the 
empennage drag coefficient is about 0.0020, and excres- 
cence drag coefficient is about 0.0010. This would give 
a total drag coefficient CD=0.0255 for a lift coefficient 
of 0.55, corresponding to a lift to drag ratio L/D=21.6. 
This would be a substantial improvement over the values 
obtained by currently flying transport aircraft. 

6.5    Optimization of Complex Configurations 

In order to treat more complex configurations one can use 
a numerical grid generation procedure to produce a body- 
fitted mesh for the initial geometry, and then modify the 
mesh in subsequent design cycles by an analytic perturba- 
tion formula. In the two-dimensional case, for example, 
with computational coordinates f, rj, let the boundary dis- 
placement at rpO be ÖXb (O, 5yb (O • Then the mesh 
points along the radial coordinate lines £=constant can be 
replaced by 

Ox (£,77) 
=   TZ(ri)öyb(0 

yielding 

SK= 
KWi*Vb    %Syb 

Such a procedure has been implemented by J. Reuther for 
the three-dimensional Euler equations, and applied to the 
optimization of wing-body configurations [143]. 

It is also possible to show that in the continuous limit 
the field integral in equation (57) can be eliminated. Let 
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the change in the coordinates Xi at fixed £ be 6xt (£). 
Then, using the fact that the fluxes fj (w) satisfy the flow 
equation (48), it is possible to show by a direct calculation 

9 xn   ,    d n   dfidwxt 
Wi6Qijfj=WiQiid^W^k 

where 
St-K^Sx. 

A detailed derivation is given in reference [78]. Thus the 
perturbation equation can be written as 

£{§£<*"♦«">}■« 
where 6w is the variation in the solution at fixed £ caused 
by the change in the boundary, while 5w* is the change 
in the original solution w (f) corresponding to the mesh 
movement Sx (£) 

X   *   dwixt 

Ot,k 

Now 

/ **&*« 

- L 
riiipT6Fid^B 

dil)T 

,   ^-Ciidw + Sw*) d£ 

and if ip satisfies the adjoint equation the entire field in- 
tegral is eliminated, leaving only the boundary integral in 
equation (57). 

In an actual discretization the field terms are not zero, 
but this result suggests that they should be small if a fine 
enough mesh is used, and might be dropped. This al- 
lows a drastic simplification of the treatment of complex 
configurations. Preliminary numerical experiments with 
airfoil and wing calculations indicate roughly the same 
convergence with and without the field terms in the gra- 
dient. 

7.   OUTLOOK AND CONCLUSIONS 

Better algorithms and better computer hardware have con- 
tributed about equally to the progress of computational 
science in the last two decades. In 1970 the Control Data 
6600 represented the state of the art in computer hard- 
ware with a speed of about 106 operations per second 
(one megaflop), while in 1990 the 8 processor Cray YMP 
offered a performance of about 109 operations per sec- 
ond (one gigaflop). Correspondingly, steady-state Euler 
calculations which required 5,000-10,000 steps prior to 
1980 could be performed in 10-50 steps in 1990 using 
multigrid acceleration. With the advent of massively par- 
allel computers it appears that the progress of computer 
hardware may even accelerate. Teraflop machines offer- 
ing further improvement by a factor of 1,000 are likely to 
be available within a few years. Parallel architectures will 
force a reappraisal of existing algorithms, and their effec- 
tive utilization will require the extensive development of 
new parallel software. 

In parallel with the transition to more sophisticated algo- 
rithms, the present challenge is to extend the effective use 
of CFD to more complex applications. A key problem is 
the treatment of multiple space and time scales. These 
arise not only in turbulent flows, but also in many other 
situations such as chemically reacting flows, combustion, 
flame fronts and plasma dynamics. Another challenge, is 
presented by problems with moving boundaries. Exam- 
ples include helicopter rotors, and rotor-stator interaction 
in turbomachinery. Algorithms for these problems can 

be significantly improved by innovative concepts, such 
as the idea of time inclining. It can be anticipated that 
interdisciplinary applications in which CFD is coupled 
with the computational analysis of other properties of the 
design will play an increasingly important role. These 
applications may include structural, thermal and electro- 
magnetic analysis. Aeroelastic problems and integrated 
control system and aerodynamic design are likely target 
areas.  The development of improved algorithms contin- 
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Figure 19: Concept for a numerical wind tunnel. 
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Figure 20: Advanced numerical wind tunnel. 

ues to be important in providing the basic building blocks 
for numerical simulation. In particular, better error esti- 
mation procedures must be developed and incorporated 
in the simulation software to provide error control. The 
basic simulation software is only one of the needed ingre- 
dients, however. The flow solver must be embedded in a 
user-friendly system for geometry modeling, output anal- 
ysis, and data management that will provide a complete 
numerical design environment. These are the ingredients 
which are needed for the full realization of the concept of 
a numerical wind tunnel. Figures 19 and 20 illustrate the 
way in which a numerical wind tunnel might evolve from 
current techniques, which involve massive data handling 
tasks, to a fully integrated design environment. 

In the long run, computational simulation should become 
the principal tool of the aerodynamic design process be- 
cause of the flexibility it provides for the rapid and com- 
paratively inexpensive evaluation of alternative designs, 
and because it can be integrated in a numerical design en- 
vironment providing for both multi-disciplinary analysis 
and multi-disciplinary optimization. 
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Figure 21: Navier-Stokes Predictions for the F-18 Wing-Fuselage at Large Incidence 
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22a: RAE-2822 Airfoil 22b: NACA-0012 Airfoil 

Figure 22: O-Topology Meshes, 160x32 
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23a: Cp after 25 Cycles 
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23b: Convergence. 

Figure 23: RAE-2822 Airfoil at Mach 0.750 and a=3.0°H-CUSP Scheme. 
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24a: Cp after 35 Cycles. 
CpO.3654, Cd=0.0232. 
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24b: Convergence. 

Figure 24: NACA-0012 Airfoil at Mach 0.800 and a=l .25°H-CUSP Scheme. 
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Figure 25: NACA-0012 Airfoil at Mach 0.850 and a=1.0°H-CUSP Scheme. 
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26a: 12.50% Span. 
C(=0.2933, Cd=0.0274. 
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26b: 31.25% Span. 
C/=0.3139, Cd=0.0159. 
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26c: 50.00% Span. 
Cj=0.3262, Cd=0.0089. 
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26d: 68.75% Span. 
CpO.3195, Cd=0.0026. 

Figure 26: Onera M6 Wing.  Mach 0.840, Angle of Attack 3.06°, 192x32x48 Mesh.   Cx=0.3041, Cß=0.0131. 
H-CUSP scheme. 
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27a: Initial Wing 
Ci=0.5001, (7/3=0.0210, a=-1.672° 

27b: 40 Design Iterations 
CL=0.5000, CD=0.0112, a=-0.283° 

Figure 27: Swept Wing Design Case (1), M=0.85, Fixed Lift Mode.Drag Reduction at CL=-5. 
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UPPER SURFACE PRESSURE UPPER SURFACE PRESSURE 

28a: Initial Wing 
CL =0.5001, Cjr,=0.0210, a=-1.672° 

28b: 40 Design Iterations 
CL=0.5000, CD=0.0112, a=-0.283° 

Figure 28: Swept Wing Design Case (1), M=0.85, Fixed Lift Mode.Drag Reduction at CL=0.50 
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29c: span station z=0.625 29d: span station z=0.937 

Figure 29: FL067 solution for initial wing.M=0.85, CL=0A997, CD=0m01, a=-1.970°. 
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30c: span station z=0.625 30d: span station z=0.937 

Figure 30: FL067 check on redesigned wing.M=0.85, CL=0.4992, CD=0.0094, a=-0.300°. 
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31c: span station z=0.625 31 d: span station z=0.937 

Figure 31: FL067 check on redesigned wing at a higher Mach number. M=0.86, CL =0.4988, Cr>=0.0097, a=-0.440°. 
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CFD RESEARCH IN THE CHANGING U.S. AERONAUTICAL INDUSTRY 

Paul E. Rubbert 
The Boeing Company 

Boeing Commercial Airplane Group 
P.O. Box 3707, M/S 67-UC 
Seattle, WA 98124-2207 

U.S.A. 

SUMMARY 

Changes are taking place in the world of 
CFD that extend beyond the technical. They 
include change to the "research engine," the 
system infrastructure that powers CFD 
research, as it seeks to adapt to the new 
industrial paradigm that is sweeping the 
aeronautics industry, and the world. The 
"research engine" involves government, 
academia, and industry. Because it is a 
system, all parts of it must participate in 
change. None of the parts can exist in 
isolation. 

This paper analyzes the workings of the 
research engine and finds that it is 
encountering considerable strain. Resources 
for all elements of research are below 
historic levels. "Money givers" are faced 
with a lack of metrics and infrastructure for 
telling them how to invest their resources 
except in high level terms. Leaders of 
research are having to redefine their jobs. 
Researchers are hunkered down to wait it 
out. And value systems are in disarray and 
conflict. The adaptation of the research 
engine to the changing world is far from 
complete. It is in transition. 

The paper goes on to describe what the 
author believes to be the principal 
characteristics and attributes of a well- 
functioning research engine, together with a 
few personal experiences that shed some 
light on how those attributes can be 
achieved. He concludes that further 
adaptation of the research engine will be 
paced by two key factors. One is the need to 
change the types of communication that take 
place between the research community and 

the engineering community in industry. The 
other is the need to unshackle the minds of 
researchers from the imprisonment of an 
overly narrow value system, a task which 
must be led by the money givers who inhabit 
the research engine. 

INTRODUCTION 

I find it interesting to contemplate those 
topics which are likely to be the pacing 
items and new challenges in CFD. 
Traditionally, such an endeavor would focus 
on the technology issues associated with 
CFD; things like algorithmic developments, 
hardware architectures, and so forth. 
Concerning the latter, Pradeep Raj has 
recently presented an up-to-date review 
(ref. 1) of the issues and pacing items in 
CFD technology. It addresses both the 
functional characteristics and the operational 
requirements that tomorrow's CFD codes 
must have in order to be effective, and it 
speaks for the U.S. aeronautical industry. 
Also, Professor Antony Jameson, the first 
keynote speaker, will share with us his 
vision of the technical challenges and future 
developments in CFD. There is little that I 
could add to their remarks. Therefore, I will 
focus my remarks on challenges and pacing 
items that extend beyond the technical. 

We live at an interesting time. Our world is 
immersed in a period of large and rapid 
change. It is moving away from a dogmatic 
belief and reliance upon technology 
innovation as being the most significant 
element of competitiveness. That is being 
replaced by a new paradigm, one that is 
centered about customer satisfaction, quality 
and value as key goals. 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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We in industry are pursuing those goals by 
focusing on processes (ref. 2). We now 
understand that the key to developing better 
airplanes is to analyze, understand, and 
improve the processes by which airplanes 
are created. Similarly, the key to developing 
better CFD is to analyze, understand, and 
improve the processes by which CFD is 
created. We also now understand that the 
leading principle of good processes is 
customer focus and customer satisfaction. 
That principle applies equally to the 
processes that produce airplanes and the 
processes that produce CFD. 

And so it seems to me that the most 
significant pacing item in the world of CFD 
is the need to analyze, understand and 
improve the process by which CFD 
capabilities are created. I call that process 
the research engine. There is more leverage 
in fixing up the research engine and adapting 
it to the changes in the world than in 
anything else I can think of. And so that is 
what I am going to talk about. 

The "Old" Research Engine and How it 
Worked 

The research engine as we know it today 
involves industry, academia, and 
government. Those three components 
interact with each other as a system. And 
like most systems, one component cannot be 
changed without affecting the others. It 
doesn't work for industry to change and the 
others not to change. We are all in this 
together. 

The need to change pervades the entire 
research infrastructure. It involves 
information systems and the methods by 
which we communicate, including the holy 
grails of technical societies, publications, 
and technical conferences. It involves the 
changing of value systems, which is almost 
a cultural characteristic. And reward 
systems. Changing is not easy. 

I would like to begin by examining how the 
research engine functioned in the era that we 
are leaving behind. Figure 1 (see Page 2-3) 
presents a description of the fundamental 

factors and forces that powered the research 
engine. This description appears to be 
universal. It looks the same, no matter 
whether you reside in industry, academia, or 
in a government laboratory. It works the 
same way. Only the names of the players 
may differ. 

Key players are the money givers. Their 
role is to divide up money into various large 
buckets, each directed at a particular 
category of research, and to distribute it. 
We all know who those people are. They 
are the ones to whom we write research 
proposals. Money givers can be found in 
NASA, in the National Science Foundation, 
in the Department of Defense, and in similar 
institutions in Europe. They also are present 
in industry. 

Most money givers are not close to the real 
details of airplane design, or to the detailed 
processes that use CFD as a tool. They 
operate at a higher, more strategic level. But 
they still need criteria by which to decide 
how to divide up the money. It is instructive 
to take a look at what some of those criteria 
were. 

One such criteria was to divide up the 
money based on historical precedent. That 
was, and still is, practiced far and wide. It is 
a symptom of zero accountability and zero 
ability to discern what is important. 

Money givers are also susceptible to being 
influenced by the visionary utterances of the 
people who inhabit the lower left box of 
figure 1, the research leaders. Research 
leaders are in the business of creating and 
marketing visions of how to make the world 
better. Many of them have become very 
good at creating visions for research that 
will be looked favorably upon by the money 
givers. They treat the money giver as the 
customer. One result of that, of course, is 
that the research funding decisions that get 
made can be quite unrelated to the true 
needs of the people who design airplanes for 
a living. 

Money givers also are desirous of evaluating 
the caliber of the researchers to whom they 
will give money. It is rarely possible to 
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Money Givers 

Divide funding into broad 
categories 
Perturbations on 
historical levels 
Weak accountability 
Susceptible to "gee 
whiz" visions 
Hope that good things 
will happen 

4 
Back to the 
well for next 
year's funding 

Dollars 

Research Leaders 

Dream up "gee whiz" 
visions that capture 
funding 
Make decisions on the 
detailed content of the 
annual research plan 

Research plan 
> 

Value Systems 

• Prestige among peers 
• Number of refereed papers 
• Is it novel? 
• Number of codes 

deposited on airplane 
companies 

• Whatever is perceived to 
influence the money givers 

• Amount of research 
monies captured 

• Size of your empire 

A publication 

Researchers 

• Turn ideas into primitive 
code 

• No standards 
• A "gee whiz" demo 

nursed to semi- 
convergence 

• Write, present and publish 
a paper 

Figure 1. The Engine That Powered CFD Research 

point to a feature on an airplane and say 
"this research contributed to —." So, it was 
necessary to establish other measures in 
order to create a value system which could 
be applied to individuals. 

One popular measure was to look at the 
prestige bestowed upon a researcher, not by 
his customers, but by his peers, the other 
researchers. Can you imagine what 
automobiles would be like if the criteria for 
designing them was to please the other 
designers, rather than the people who want 
to use cars to drive about in? 

Another popular measure has been to count 
the number of refereed papers that are 
produced by a researcher. One consequence 
of this is that our journals and conferences 
have become littered with papers whose real 
contribution is low or nonexistent. The 
journals have evolved into being primarily a 
scorekeeping system. Scientific information 

today travels largely by other means. 
Another consequence of the numbers game 
is that it encourages researchers to attack 
problems that they know how to solve rather 
than the problems that need to be solved. 
And so our entire research infrastructure was 
caught up in a value system that was largely 
unrelated to what was important to the 
engineers who design and build airplanes for 
a living. What counted was paying homage 
to a value system that controlled access to 
the annual pot of money necessary to 
support the research leader and his/her staff. 

A standard part of the job of being a 
research group leader was also to make all 
of the important decisions concerning the 
detailed content of the annual research plan. 
After all, since research leaders are normally 
exposed to new and emerging technology 
that a design engineer is not, it was quite 
obvious to research leaders that they, and 
not design engineers, should be in charge of 



2-4 

defining the annual research plan. And so 
the design engineering community was 
excluded from participating. 

The researchers themselves focused their 
work on paying homage to the value system, 
because that is what entitled them to go back 
to the well for next year's funding, and to 
become eminent in the eyes of their peers. 

So there it is. A stable, self-sustaining 
research engine that was capable of 
functioning quite smoothly, all by itself in 
its own little world. It did so for many 
years. Its weakness, of course, is that it had 
been almost disconnected from the 
community of people who we now 
understand to be the customers of CFD 
research, namely the practicing engineers 
who design airplanes for a living. 

Figure 2 (see Page 2-5) exhibits the 
interfaces, such as they were, that existed 
between the research engine and the 
aeronautical industry. One such interface 
involved the money givers, who were visited 
periodically by clouds of collective wisdom 
passing overhead. Those clouds appeared in 
the form of high level advisory committees, 
wishes of the U.S. Congress, or of industry 
executives, depending upon where the 
money giver happened to reside. It is not 
entirely coincidental that these clouds are 
shown to be comprised of the condensation 
of hot air rising from airplane companies. In 
any event, the resulting fallout from these 
clouds caused the money givers to 
occasionally re-balance their research 
portfolios. 

The other interface lay between the 
researchers and the practicing engineers who 
reside in airplane companies. This interface 
is characterized by the fence in figure 2. 
Interestingly, the site of the fence was not 
always in front of the door of the airplane 
company. It frequently could be found 
inside the airplane company, standing 
between the internal company research 
department and the practicing engineers who 
designed the airplanes. In those cases, the 
company research departments paid most 
allegiance to the research engine and acted 
as an integral part of it, particularly if they 

were dependent upon outside contract 
funding as a source of research money. 

Communication over the fence was mostly 
one way. It consisted primarily of attempts 
by researchers to interest the engineering 
community in the products of their research. 
The system coined a name for this, calling it 
"technology transfer." 

The favored means of lofting the results of 
CFD research over the fence was to send it 
across on the wings of a scientific 
publication. The publication was the 
messenger that told of its charms and 
attributes. And to make sure that at least 
some folks in the airplane company would 
see it, the researcher empowered his delivery 
system to honk, to attract attention. Such 
honking is frequently heard at technical 
conferences and symposia. In fact, that 
seems to have become the prime motivation 
for conference attendance. Overlooked was 
the fact that airplane design engineers rarely 
attended those conferences. 

The boards of the fence have names 
inscribed upon them, entitled "conferences," 
"journals," "perceptions," "value systems," 
"reward systems," etc.. Those pillars of 
tradition and conventionality are turning out 
to be among the factors that impede our 
ability to create a research engine that is 
more properly connected to the customer. 

It was a very eye-opening experience to us 
in the United States when NASA instituted 
some dramatic changes in communication. 
They changed the format of some of their 
conferences from one wherein the 
researchers did all of the honking to one in 
which industry did most of the talking and 
researchers did most of the listening. Lo and 
behold, it was discovered that the research 
community was not in fact immune to 
learning about what was important. We 
found that they could even learn from people 
who didn't have PhDs and a lengthy record 
of refereed publications. The power of two- 
way communication began to be unlocked! 

So, somewhere along this journey of change 
we must abandon or at least supplement our 
old, one-way habits of communication as 
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Figure 2. Interfaces With the Airplane Industry 

institutionalized by the conventional 
scientific establishment. We must replace 
them with forms of communication that do 
the job that needs to be done. We are faced 
with the challenge of tearing down a fence 
whose pillars appear to be set in solid 
concrete. 

The Status of Change 

The process of changing has begun. Various 
people and organizations in all parts of the 
research engine are experimenting with new 
and different ways of operating. We are 
searching for a more effective research 
engine, but we have not found it yet. 

When I look around, I see an increased level 
of tension throughout the infrastructure. 
Many researchers feel pressured to become 
more "applied." NASA is being battered 
from many sides, with some voices calling 
for them to get back to basic research while 
others are calling for them to increase their 

relevance to industry's needs. Academia is 
struggling to play a part, while finding a role 
for the individual graduate student and the 
educational mission. There are many 
conflicting forces at work. It is a difficult 
problem to even think about, much less 
resolve. 

But we have changed. Figure 3 (see Page 2- 
6) presents my view of the current state of 
affairs in the United States. In the right 
hand part of the figure one can observe a 
new player appearing in industry. At 
Boeing we call these people "process 
owners," but that is not a universally used 
name. What is universal is the realization 
within airplane companies that processes are 
really important and that somebody must 
therefore be in charge of them. 

And so, these "process owners" represent a 
new connection to the research engine. 
They have created a gap in the fence through 
which their voices are being increasingly 
heard. Money givers, research leaders, and 
researchers alike in government, academia, 
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Figure 3. The Research Engine in Transition 

and industry are being exposed increasingly 
to their input. They are postured to evolve 
eventually into a strong component of the 
overall research engine. 

The life of a money giver has become more 
challenging. They now all subscribe to the 
new vision of investing in things that reduce 
cycle time, cost, and so forth. But they 
mostly lack an infrastructure of established 
methods and metrics to guide them. They 
are inventing and innovating as they go. 

The life of a research leader is also 
changing. The more progressive ones view 
their new role to be to define and manage 
the process of developing the annual 
research plan, rather than personally making 
the planning decisions. The new style of 
operating that I most frequently encounter is 
for the research leader and researchers to 
simply ask the process owners what they 
want and need, and then to set about 
implementing it. That is not leading to 
many of the attributes that we desire in the 
research engine. 

The individual researchers are impacted by 
this evolving research engine and its 
changing power structure. They feel 
buffeted from several directions, not the 
least of which is a value system that is 
crumbling and in disarray. Their attitude is 
"don't make waves and do what people in 
power say they want done." They are not 
particularly happy. 

And so we have not yet arrived at a properly 
functioning research engine. I don't have a 
complete vision of what that research engine 
would look like, but I do know many of the 
attributes that it should have. Those 
attributes include: 

• a lead role in supporting the strategic 
direction set by the industrial 
enterprise. 

• a proper balance between basic and 
applied research across the R&D 
food chain. 

• a recognition of the importance of 
vision building within the research 
process. 
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• ability to draw upon all of our 
intellectual resources, both in 
developing the research plan and in 
executing it. 

• nimbleness in translating the output 
of research into products and 
processes. 

• a value system that causes more of 
the "right" things to occur. 

• and perhaps most important of all, a 
value system that supplies high 
levels of human motivation and 
sense of worth, one that leads people 
from within to do more of the right 
things, and to make it fun once again 
to be a researcher. 

Even though my vision of how to 
accomplish all of that is yet incomplete, I 
find within myself a growing conviction 
about some of the things that tomorrow's 
research engine must contain. One of those 
things is a better understanding of the proper 
distribution of roles, responsibilities, and 
core competencies that should prevail across 
the R&D food chain comprising industry, 
academia, and government. What that 
distribution should be can be derived by 
testing it against the axioms that accompany 
the new industrial paradigm, an exercise that 
certain segments of the research 
establishment find to be somewhat 
threatening. One outcome of that testing is 
the finding that a best and proper role for 
academia, and for much of NASA, is to 
concentrate on the foundational, 
overarching, enabling technology research 
which comprises the head of the R&D food 
chain. 

Another of my convictions is that we must 
find a much better way of connecting the top 
and the bottom of the R&D food chain. This 
is something that we as a country have not 
yet learned to do well at all. And yet the 
issues involved are central to achieving a 
research engine that contains the attributes 
that we desire. 

Connecting the two ends of the food chain is 
an issue in communication. We have to 
develop an understanding of what needs to 

be communicated, and when. And then we 
have to institute mechanisms to make it 
happen. 

I have been fortunate enough to have 
enjoyed the privilege of running a research 
operation that encompassed the entire span 
of a research food chain, from foundational, 
enabling algorithm technology, and fluid 
mechanics, to production software, and 
customer support. In that position, I was 
able to experiment, so I learned about some 
things that don't work and other things that 
do work in properly connecting the two ends 
of the R&D food chain. 

One thing that doesn't work well at all is to 
have research leaders at the head of the food 
chain simply ask the folks at the bottom of 
the food chain what they want or need, and 
then to blindly carry out their wishes. That 
leads mostly to short-term, evolutionary 
improvements of limited vision. It leads to 
tactical research rather than the strategic 
research which belongs at the head of the 
food chain, and it places the researchers in 
the position of "the boiler room" staff. They 
have much more to offer than that. Many 
people have yet to learn the true meaning of 
the words "customer focus" that have 
entered our language. 

What does work, not only well but 
incredibly well in connecting the two ends 
of the R&D food chain, is to do the 
following four things: 

1.     Eliminate the constraints imposed 
in a researcher's mind by the value 
system under which he/she was 
educated. Make it O.K. to do 
things that are outside of the limits 
imposed by an overly narrow value 
system. Create a mind-set and a 
curiosity within the researcher to 
wander freely up and down the 
R&D food chain and even into 
manufacturing. 

This is easier said than done. But it can be 
done. I've done it! It has to be done, 
because, more than anything else, it is the 
key that unlocks the power and the 
potential of the highly educated, highly 
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paid research people whose minds have 
been refined and proven by our rigorously 
competitive academic system up to the PhD 
and post doctoral levels. The organization 
or the nation that does this earliest and best 
will have a very significant competitive 
advantage. 

2. Expose and educate the researchers 
who inhabit the head of the food 
chain in the high level strategic 
thinking that supports the 
enterprise in which their customers 
are engaged. We don't do that very 
well today, and yet this is the 
element that enables researchers to 
identify and prioritize head-of-the- 
food-chain research topics in 
accordance with their strategic 
leverage. It must be realized that 
strategically relevant research 
should be the primary 
responsibility of the head of the 
research food chain. The lower 
levels of the chain, where most 
process owners reside, are focused 
on tactical implementations. 

3. Expose the researcher to the real 
world of the aerospace engineer. 
This only works well when carried 
out at the engineering site. Let the 
researcher "look over the shoulder" 
of the engineering community or 
the process owner as they 
encounter their daily challenges. 
Let the researcher build personal 
relationships with real engineers. 
What works even better is to 
expose a team of researchers 
encompassing a complementary set 
of differing skills and strengths, 
because you will then be deploying 
a more complete set of intellectual 
assets. The imperative is to 
"enable the researcher to look 
beyond what the customer 
says he/she needs, and to 
formulate a vision of what 
he/she could provide that 
would really be useful to the 
customer and his/her 

environment." This is not 
accomplished by talking mostly 
with the management, which has 
been our past practice. It is the 
direct exposure to the daily issues 
faced by the engineering design 
process that really turns on the 
creation juices. It is what enables 
the parable which says "necessity 
is the mother of invention" to 
operate! 

These three steps, tearing down the 
imprisoning walls of the value system, 
exposing the researcher to the strategic 
thinking, and exposing him/her to the 
engineering world so as to enable the 
researcher to look beyond what the customer 
says he needs is the one means that I have 
found to be consistently successful in 
creating ideas for research that have high 
relevancy and which are supercharged by 
bringing to bear the latest and greatest in 
enabling technology while bathed in the 
light of high level strategic thinking. This is 
what we must strive for in our research 
engine. 

The reason that one must proceed to a fourth 
step is that, at this stage, the customer will 
generally not agree with or approve of the 
ideas and plans that the researchers have 
formed as a result of the first three steps. 
Not yet! 

The reasons are several. One is that the 
differing educational background of an 
engineer frequently makes it impossible for 
him to understand the approach being 
proposed by the researcher, or to assess the 
risk involved in turning ideas into reality. 
And engineers who are immersed in hot 
projects are much more focused on the 
answer they need tomorrow than in the 
strategic directions of interest at a higher 
corporate level. They tend to be tactical 
thinkers. But support and enablement of 
high level strategic direction is what head- 
of-the-food-chain research is all about! 

And so a means must be found to allow the 
researchers to proceed with development of 
their ideas in the face of customer 
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opposition. This requires an act of courage 
on the part of the research leader and the 
money givers. But in my experience it 
rarely fails to produce handsome dividends. 
The only problem, if it should even be called 
a problem, is that at this stage nobody yet 
knows in exactly what form that dividend 
will be experienced. That appears only in 
step four. 

Step 4 is what I call "vision building." This 
is the key activity that converts push to pull 
in the R&D food chain. The primary cause 
of failed research — and I define failed to 
mean research that doesn't get picked up and 
used by anybody — is that the vision from 
the head of the food chain that propelled the 
research, and the vision from the bottom of 
the food chain about what those folks think 
is useful, have no common intersection. If 
those two visions, originating from opposite 
ends of the food chain, cannot be made to 
intersect, the research will not be accepted. 
It will be ignored by the people who call the 
shots in determining what CFD gets used in 
the design of airplanes. 

And so, a key element in the successful 
operation of an R&D food chain is the 
process that I call "vision building," a 
process for bringing together the separate 
visions that originate at the two ends of the 
R&D food chain. What does it take? 
Throwing publications or codes over the 
fence, which is the traditional approach to 
vision building, doesn't work well at all. 
Presenting "gee whiz" papers at conferences 
doesn't work. Arguing back and forth 
doesn't work well either. Neither does 
voting. I've tried them all. 

What works is for the research community 
to produce something that an engineer can 
"touch and feel," usually a CFD code 
capable of performing a small number of 
computations that illustrate what can be 
done. This is not the time or the place for 
well-documented code, user friendly input 
formats, or polished and orderly software. 
Rather, the researcher at this point is 
engaged in a race to discovery and 
understanding before his fragile support 
system runs out of patience. Shortcuts are 
acceptable and encouraged, with one 
exception. That exception is execution 
efficiency. This is one of the key measures 

that will be "touched and felt" and usually 
should not be comprised. 

Some people (managers and software 
specialists in particular) will be troubled 
with the idea of producing code that is 
undocumented, which probably does not 
adhere to standards, and which contains 
shortcuts. That is because they interpret the 
code to be the product. They fail to realize 
that the primary product of research at this 
stage is vision, not code! 

The best way I found to build vision was for 
the researchers to again return to the 
customer site. They would identify real 
design problems being faced by the design 
engineers and they would set up and run 
demonstrations of their new CFD 
technology on those problems. This led to 
side-by-side comparisons of new versus old 
ways of doing things. It frequently did not 
contribute much at that point to the 
engineering project's near term design goals 
because the code was still developmental, 
fragile, hard to use, perhaps containing a few 
bugs, and not yet trustworthy. 

What it did do, and do well, was to build 
vision within the minds of design engineers. 
A typical reaction to a set of these 
calculations would be "so that is what you 
can do! Well, if you add this and that, I can 
use it for ." That is vision building! At 
that point the engineer becomes an advocate 
of the research. This is when "push" 
changes to "pull" in the R&D food chain. 

The other thing that must happen is that the 
researcher must be able to now let go of his 
original vision, the one that led him to 
produce the CFD technology that is being 
demonstrated. He must allow himself to be 
influenced by the engineer-now-becoming- 
the-customer. He must adopt a new and 
better vision. 

Vision building must be a two way street. It 
is a coming together, in the middle, of what 
were originally different visions at opposite 
ends of the food chain. It is not for one end 
of the food chain to convince the other end 
that its vision is best. // demands two-way 
communication. It is intense. It requires 
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face-to-face interactions over a period of 
time. It demands that a new paradigm of 
communication be built into the research 
engine! 

This is the type of vision building that 
generates the high levels of motivation and 
feelings of personal worth that must be 
present in a good research engine. It results 
in engineers and process owners anxiously 
awaiting the results of your research, calling 
you to find out how things are going, 
offering to help you, and telling your money 
giver to give you more money. It creates 
passion. It also causes researchers to drive 
themselves from within to work 16 hours a 
day, 7 days a week. In that kind of 
environment, it is a lot of fun to be a 
researcher. 

Can we really be bold enough to think in 
terms of government or academic 
researchers really interacting with industry 
in those ways? Well, this past summer, I 
and the Director of ICASE (Institute for 
Computer Applications in Science and 
Engineering), Dr. M. Yousuff Hussaini, 
conducted an experiment in communication. 
He sent one of his research staff, Dr. 
Michael Lewis, to Boeing for seven weeks. 
One of those weeks was spent being tutored 
in the teachings of competitiveness and 
strategic direction. The other six were spent 
in learning and observing first hand what the 
practice of business acquisition, engineering, 
design, manufacturing, and customer 
support was all about. The thing that he was 
not allowed to do during these seven weeks 
was to engage in research. 

At the end, I interviewed Michael. I found 
that he had learned enough to be able to 
"look beyond what industry says it needs 
and to gain an understanding of what he 
could contribute in terms of research that 
could really help industry but that we were 
probably unaware of." That is what we must 
strive to achieve in the minds of all research 
leaders who profess to be working at the 
head of the research food chain in areas that 
are related to aeronautics. 

I cannot envision the entire population of 
university faculty and government 

laboratories descending upon industry sites 
for seven weeks each. But I can envision a 
selected subset of strategically placed 
research leaders perhaps doing it. And if we 
experiment with different formats and 
exposure times, we can probably reduce the 
exposure time significantly. We simply must 
develop a new paradigm for communication! 
Another interesting experiment would be to 
provide that type of exposure to the money 
givers who inhabit the research 
infrastructure. 

I don't yet know what research Michael 
Lewis will choose to work on. That will be 
his decision. In any event, I am now 
contemplating a second experiment of 
inviting him back for a try at vision building 
whenever his research has progressed to the 
proper state. It will provide him with the 
opportunity to expose Boeing people to 
"touch and feel." I will attempt to measure 
his impact on the change in vision that he is 
able to create within Boeing people, and I 
will attempt to ascertain how his own vision 
has been caused to change. I will look for 
an intersection of those two visions as a 
measure of the effectiveness of his research. 

In my view, the two purposes of 
communication that I am testing with the 
Michael Lewis experiments are the key 
communications that we must build into the 
research engine of tomorrow. One is to 
communicate strategic alignment and a 
broad understanding of the customer and 
his environment. The other is to provide a 
means for vision building, the process of 
achieving an intersection of the vision from 
the head of the research food chain with 
the vision from the engineering trenches. 
That is the process that converts push to 
pull and opens the door to industrial 
exploitation of research. 

The other component of the research engine 
that will be particularly influential in leading 
change is the value system. We simply must 
find a way to tear down the walls that are 
imprisoning the minds of many of our most 
brilliant people. 

Value systems cannot be created or even 
modified very much by proclamation. It 
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doesn't work to simply proclaim that we will 
now adhere to a new and different set of 
values. In the long run, it is the money 
givers within the research engine who have 
the only real power over the value systems. 
Value is ultimately associated with those 
endeavors that bring in money. That is true 
in industry, in academia, and in government. 
It will be up to the money givers to do the 
right things. 
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Abstract 2    What is Parallel Computing? 

The paper presents an overview of parallel com- 
puting in computational fluid dynamics. A tax- 
onomy of parallel computing architectures and 
programming paradigms is described. Issues in 
parallel computing are discussed including do- 
main decomposition and load balancing, perfor- 
mance, scalability, benchmarks and portability. 
Examples of experience with parallel computing 
in the aerospace industry is described. 

1    Overview 

This paper is intended for researchers in Com- 
putational Fluid Dynamics (CFD) who do not 
have experience in parallel computing. It pro- 
vides a description of parallel computing hard- 
ware architecture, software paradigms, the prin- 
cipal issues in utilizing parallel computing for 
CFD, and examples of use of parallel comput- 
ing in the aerospace industry. 

Parallel computing, particularly in computa- 
tional fluid dynamics, is a broad field of research 
and development. The software and hardware 
technology is developing at an extraordinary 
pace. The reader is directed to the numer- 
ous journals on parallel computing (e.g., Inter. 
Journal of High Speed Computing, The Journal 
of Supercomputing, Inter. Journal of Parallel 
Programming, Inter. Journal of Supercomputer 
Applications), as well as recent conferences and 
workshops (e.g., Parallel CFD '95), for further 
information. Additionally, extensive informa- 
tion is available on the World Wide Web, e.g., 
http://www.cnb.compunet.de/para/para.html, 
http://www.nethb.org/nhse/. 

This section presents an anecdotal discussion of 
the earhest refernce to parallel computing, de- 
scribes Flynn's and BeU's classifications of paral- 
lel computer architectures, and briefly discusses 
the message passing and data parallel program- 
ming paradigms. 

2.1    Introduction 

Parallel computing is the simulataneous opera- 
tion of multiple computational tasks on a com- 
puter system. Parallel computing has been an 
integral part of computing systems from their 
beginning. The earhest reference to parallel 
computing appears to be the description by 
L. Menabrea of Charles Babbage's computer. 
Among the principal virtues of an earher (but 
evidently not final) design, Menabrea describes 
the capability (and importance) of parallel com- 
puting [1]: 

"... Secondly, the economy of time: to 
convince ourselves of this, we need only 
consider that the multiplication of two 
numbers, consisting each of twenty fig- 
ures, requires at the very utmost three 
minutes. Likewise, when a long series 
of identical computations is to be per- 
formed, such as those required for the 
formation of numerical tables, the ma- 
chine can be brought into play so as to 
give several results at the same time, 
which will greatly abridge the whole 
amount of the processes." 

Also, the first general purpose electonic digi- 
tal computer ENIAC, built to compute projec- 
tile and firing tables for the US Army in World 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms' 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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War II, was a parallel computer with 25 inde- 
pendent computing units (20 accumulators, 1 
multiplier, 1 divider/square rooter, and 3 table 
look-up units) performing different tasks for the 
solution of the specific problem. Moreover, the 
ENIAC used decimal arithmetic internally (as op- 
posed to the binary arithmetic used on modern 
computers) and operated on all ten decimal dig- 
its of a number in parallel. The ENIAC was pro- 
grammed in hardware, i.e., using a plugboard to 
wire connections between the units. However, 
the parallel computing capability of the ENIAC 
was never fully realized in practice. After two 
years of operation, it was reconfigured as a serial 
centralized computer [2]. 

There are four distinct levels of parallelism 
[1]. The highest level is job, where the com- 
puter system operates simultaneously on unre- 
lated tasks (e.g., a CFD simulation for an F- 
18 and a CEM simulation for a B-2). The sec- 
ond level is program, where the computer sys- 
tem operates simulaneously on different parts 
of the same program (e.g., the parallelization 
of a DO loop across multiple processors). The 
third level is instruction, where the different in- 
structions are performed in parallel (i.e., fetch- 
ing one instruction from memory while perform- 
ing an arithmetic operation). The fourth level is 
arithmetic and bit, where parallelism is achieved 
within an individual arithmetic or bit instruc- 
tion. This paper focuses on the second level 
(program) of parallelism in computational fluid 
dynamics. We consider the issues of parallelism 
in the context of a single program (e.g., the sim- 
ulation of a combustion chamber) operating on 
a parallel computer. 

2.2     Classification of Parallel 
Computer Architectures 

Flynn [3] originated a classification of paral- 
lel architectures which has become widely 
accepted (Table 1). Four distinct categories 
are defined based on the data stream which is 
the sequence of instructions and/or data exe- 
cuted or operated on by a processor. Single 
Instruction Stream/Single Data Stream (SISD) 
is the conventional serial architecture employ- 
ing a single stream of data and a single pro- 
cessor. This is also known as the von Neu- 
mann computer (or architecture) or a serial com- 

puter. Modern single-processor workstations 
or micro-computers are examples of this cate- 
gory. Single Instruction Stream/Multiple Data 
Stream (SIMD) computers have several compu- 
tational units which can perform the same op- 
eration (e.g., adding two numbers) simultane- 
ously on different parts of the data stream. An 
example is the Cray C-90. Multiple Instruc- 
tion Stream/Single Data Stream (MISD) implies 
simultaneous different operations by separate 
computational units on the same data stream. 
Examples of this type are rare. Multiple Instruc- 
tion Stream/Multiple Data Stream (MIMD) in- 
dicates multiple computational units operating 
simultaneously on multiple data streams. Ex- 
amples are the Thinking Machines Corporation 
CM-5, the Cray T3D and, indeed, the ENIAC. 

Table 1: Flynn's Taxonomy 

Acronym    Definition  
SISD Single Instruction Stream - 

Single Data Stream 
SIMD Single Instruction Stream - 

Multiple Data Stream 
MISD Multiple Instruction Stream - 

Single Data Stream 
MIMD        Multiple Instruction Stream - 

Multiple Data Stream 

Multiprocessors 
Single Address Space 
Shared Memory 

Distributed Memory Multiprocessors 
KSR, BBN  

Central Memory Multiprocessors 
Cray, Fujitsu, Hitachi, IBM, DEC, SCI, Sun 

Multicomputers 
Multiple Address Space 
Message Passing 

Distributed Multicomputers 
Intel Paragon, CMS, NCUBE, Networks of Workstation. 

Central Multicomputers 

Figure 1: Bell's taxonomy of MIMD architec- 
tures (with examples) 

Flynn's classification, although useful for 
broadly categorizing parallel computers and 
widely cited, is nonetheless incomplete, and var- 
ious other classifications have been introduced. 
Bell [4] subdivides the MIMD category into two 
subcategories as indicated in Fig. 1. Multi- 
processors are parallel computers with a single 
address memory (shared memory), i.e., the 
central memory (RAM) is organized into a sin- 
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PI Pn 

Shared Memory 

a) Multiprocessor b) Multicomputer 

Figure 2: Multiprocessor and Multicomputer 

gle logical address domain which is accessible 
to all of the processors (Fig. 2). Processors 
PI,..., Pn can access the same data in mem- 
ory (i.e., the same address location), albeit not 
simultaneously. Examples are the Cray C-90 
and SGI Power Challenge XL. Multicomputers 
are parallel computers with multiple distributed 
memory address spaces (Fig. 2). Processor 
PI,..., Pn have dedicated, independent mem- 
ories Ml,..., Mn which are not directly acces- 
sible by each other. Examples are the Intel 
Paragon, IBM SP2 and networks of individual 
workstations. If processor PI needs to access 
data in the memory assigned to processor Pn, 
it sends a message to Pn requesting the data, 
and Pn complies. The transfer of data from 
the memory of one processor to the memory 
of another is denoted message passing, and 
is a principal characteristic of multi-computers. 
All communications between processors occur 
through a communications network C in Fig. 
2. Many different types of communications net- 
work topologies have been developed (see Fig. 3 
of Bell [4]). 

The relative advantages and disadvantages of 
multi-processors vs. multi-computers have been 
widely studied, and numerous research (and pro- 
duction) machines of both types have been con- 
structed [4]. Although greatly oversimplified, 
the main issues are as follows. For a multi- 
processor, the shared memory eliminates the 
computational cost and program complexity of 
message passing. However, a multi-processor 
with a single shared memory is not scalable, 
i.e., the architecture cannot simply be scaled 
to an arbitrary number of processors and arbi- 
trary memory size. This arises from the limi- 
tation on data transfer rate (bandwidth) be- 
tween memory and processors. This has led to 
a subdivision of multiprocessors into two cate- 

gories, the central memory multi-processors as 
described previously, and the distributed mem- 
ory multi-processors (Fig. 1) where the indepen- 
dence of the distributed memories is hidden from 
the user by means of an automatic data trans- 
fer mechanism (caching). For a multi-computer, 
the distributed memory eliminates the scalabil- 
ity problem associated with a single memory 
of limited bandwith. However, multi-computers 
incur the computational cost and program com- 
plexity of message passing. 

Other classifications of parallel computers have 
been developed, e.g., Shore [5], and Hockney 
and Jesshope [1]. 

2.3 Parallel Programming 

There are two basic types of parallel program- 
ming paradigms (or environments). As the 
name suggests, message passing involves the 
explicit use of send and receive functions by the 
applications programmer. These functions com- 
municate information between the memory as- 
signed to individual processors. Many manufac- 
turers of distributed memory parallel computers 
have developed specialized message passing li- 
braries (e.g., nCUBE, Intel), although standards 
are emerging (see §3.5.2 and 3.5.3). The data 
parallel paradigm involves a single program 
which controls the distribution of data across 
all processors, and the operations on the data. 
Typically, the data parallel language supports 
array operations and permits entire arrays to be 
used in expressions. Manufacturers of shared 
memory parallel computers have developed spe- 
cialized compiler directives for data parallel pro- 
gramming (e.g., Cray C-90 and SGI). An emerg- 
ing standard for a data parallel language is High 
Performance Fortran (§3.5.1). 

2.4 Examples of Parallel Computers 

Table 2 lists a number of current parallel com- 
puters. It should be emphasized that the infor- 
mation shown does not fully describe the capa- 
bilities (and limitations) of a parallel computer. 
Other relevant factors include memory band- 
width, cache memory, I/O bandwidth, compiler 
technology, debugging software, etc. Further- 
more, the performance specifications change fre- 
quently due to product upgrades. 
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Table 2: Examples of Current and Future Parallel Computers 

Name Class Max No. of MFlops/ Max Memory Type of 

Processors Processor 
240 

(GByte) 
32 

Memory 

Convex SPP1200/XA MIMD 128 Shared 

Cray J-90 SIMD 32 200 8 Shared 

Cray C-90 SIMD 16 1000 2 Shared 

Cray T-90 SIMD 32 2000 8 Shared 

Cray T3D MIMD 2048 150 128 Distributed 

Cray T3E (2Q96) MIMD 2048 600 1024 Distributed 

DEC 8400 5/300 SIMD 12 600 14 Shared 

Fujitsu VPP300 SIMD 16 2200 32 Distributed 

IBM SP-2 MIMD 128 266 256 Distributed 

Intel Paragon XP/S 35 MIMD 512 150 16 Distributed 

NCUBE-2 MIMD 4000 4 250 Distributed 

NCUBE-3 (Dec 95) MIMD 12000 100 3000 Distributed 

SGI Power Challenge XL SIMD 18 360 16 Shared 

Thinking Machines CM-5 MIMD 512 160 64 Distributed 

Thinking Machines CM-500 (Fall 95) MIMD 2048 160 256 Distributed 

LEGEND 

GByte      Gigabyte (109 byte) 
MFlops    Millions of floating point operations per second (theoretical maximum) 

NOTES 

1. Maximum Number of Processors may refer to processing elements on some systems. 

2. Memory does not include secondary memory storage (e.g., Solid-State Storage Device (SSD) 
on the Cray C-90/T-90). 

3. Dates in parentheses indicate manufacturer's published date for availability. 
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3    Issues in Parallel Computing 

Effective utilization of parallel computing in 
computational fluid dynamics involves numer- 
ous issues which must be adequately addressed. 
In this section, we focus on several key questions, 
in the context of development of new codes for 
parallel computing. 

3.1     Domain Decomposition and Load 
Balancing 

The partitioning of data and computational 
tasks among multiple processors is denoted do- 
main decomposition. An example is shown in 
Fig. 3. A two-dimensional structured grid for a 
jet engine nozzle is partitioned into subdomains, 
and each subdomain assigned to an individual 
processor. This approach typifies the domain 
decomposition for a multi-computer. The do- 
main decomposition may occur prior to or dur- 
ing the execution of the flow code. 

Figure 3: Multi-block grid (from [46]) 

The principal objective of domain decomposi- 
tion is to maintain uniform computational activ- 
ity on all processors. This is known as load bal- 
ancing. For a fixed numerical algorithm (e.g., 
the Euler equations) on a fixed grid, load balanc- 
ing is straightforward, i.e., each processor is as- 
signed approximately the same number of cells. 
However, several factors can complicate load 
balancing. First, the nature of the governing 
equations can change during the computation. 
An example is combustion, where the chemical 
reaction source terms are computed only when 
the local static temperature exceeds a preset 
value [6, 7]. Second, the number of govern- 
ing equations in a given subdomain can change. 
An example is particle tracking where particles 
can accumulate in a subregion (e.g., recircula- 
tion zone). Third, the grid can change during 
the computation due to adaptation.   Thus, in 

many cases it is necessary to incorporate dy- 
namic load balancing, wherein the load on each 
processor is monitored and the overall task load 
redistributed to achieve an approximate uniform 
load. 

An example of a simple dynamic load balancing 
method is presented in Borrelli [6] for hypersonic 
reacting flow. The chemical reactions are im- 
portant only when the local static temperature 
exceeds 2000 deg K, and the ratio of computa- 
tional work for reacting vs. non-reacting flow is 
approximately ten. The dynamic load balancing 
algorithm decomposes the domain by assigning 
a weighting function of either 1 or 10 to each 
cell, corresponding to non-reacting and react- 
ing, respectively, and subdividing the domain to 
achieve an approximate uniform average weight- 
ing function for each subdomain. 

3.2     Performance 

A key issue is the performance of a CFD code 
on a parallel computer. Many different mea- 
sures of performance have been proposed, and 
there is an active debate regarding the most ap- 
propriate. However, in solving a given problem 
(e.g., viscous flow past an F-18), the true mea- 
sure of performance is simply the wall clock 
time to completion. Inotherwords, given the 
opportunity to choose among different compu- 
tational resources, the individual typically se- 
lects the resource which yields the answer in the 
shortest elapsed time, subject to existing con- 
straints (e.g., budget, system load, etc). 

Of course, it is impossible to model this selec- 
tion process in a universal manner, and thus the 
development of performance measures have fo- 
cused principally on more ideal cases. One per- 
formance measure is megaflop (i.e., millions of 
floating point operations per second) vs. num- 
ber of processors. An example is presented in 
Fig. 4 from Simon et al [8] for two different 
codes: a 2-D unstructured Euler code [9], and 
a 3-D particle simulation code for rarefied gas 
flows [10]. Both codes were executed on an In- 
tel iPSC/860 multicomputer for 2" processors 
where n = 1,...,7. The unstructured Euler 
code achieves a substantially higher megaflop 
performance than the particle code. 

Another  performance  measure  is  efficiency, 
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Figure 4: Megaflops of Two Codes on the Intel 

iPSC/860 

i.e., the fraction of the peak performance (rela- 
tive to a single processor) achieved on a machine 
by a specific code. It is denned as 

CPU time for one processor 

n x CPU time for n processors 
(1) 

Typically, the efficiency 7/ is plotted against the 
number of processors n. A related quantity is 
the speedup S denned as 

nr) (2) 

Efficiency can depend strongly on the algorithm. 
An example is presented in Fig. 5 from Simon et 
al [8] for the same codes as in Fig. 4. Here the 
trend is opposite to the megaflop performance 
measure, i.e., the 3-D particle code retains 88% 
efficiency at n = 128, while the 3-D unstruc- 
tured code drops to 52% at n — 128. 
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Figure 5: Efficiency of Two Codes on the Intel 

iPSC/860 

3.3    Scalability 

The impact of scaling a given parallel computer 
architecture to increasingly larger number of 
processors is a key concern. Although this prob- 
lem may be viewed from several perspectives, it 
is instructive to examine it in the following con- 
text. Consider the solution of a given computa- 
tional fluid dynamics problem, e.g., a Reynolds- 
averaged Navier-Stokes simulation of an entire 
aircraft configuration using a fixed number of 
grid points. How does the efficiency of the com- 
putation depend on the number of processors ? 
This question may be treated (albeit simplis- 
tically) by a straightforward analysis proposed 
by Amdahl [11]. Denote the execution time of 
the program on a single processor by t\. As- 
sume that an analysis of the program and algo- 
rithm structure indicated that a portion of the 
code could be reprogrammed for parallel execu- 
tion {e.g., the product of a matrix and a vector, 
which is a common operation in iterative meth- 
ods for solution of linear systems). Let tp denote 
the cpu time on the single processor for this po- 
tentially parallelizable section. Let ts denote the 
cpu time for the remaining unparallelizable (i.e., 
scalar) code. Neglecting the cost of scheduling 
processors, communications between processors 
(if any) and synchronization time (i.e., the time 
required to allow all processors to reach a com- 
mon point following execution of the parallel sec- 
tion of code), the efficiency of a parallel compu- 
tation with n processors is 

n 
Z3 ~r £p 

ntn      n(ts + tp/n) (3) 

and defining the parallelizable fraction / 

tp/(tg -j- tp), 

1 
V / + »(!-/) (4) 

This is known as Amdahl's Law and is dis- 
played in Fig. 6. The precipitous drop in ef- 
ficiency for all but the highest possible paral- 
lelizable fractions is strikingly clear. Even for 
/ = 0.99, the efficiency r? is 0.5 at n - 101. 

In some cases, the communications cost may 
yield even lower efficiencies than predicted by 
Amdahl's Law. Consider a fixed domain V of 
JV3 cells on a multi-computer with n processors. 
Assume a equi-distribution T>k, k = 1,..., n of 
N3/n cells to each processor. Typically, a halo 
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Figure 6: Amdahl's Law 

of fictitious cells are added to each processor 
which represent the additional information nec- 
essary to integrate the flow variables within cells 
assigned to the processor by a single time step. 
The number of halo cells is proportional to the 
number of cells in T>k which share one or more 
faces with other sub domains T>i, I / k, and is 
therefore £>(iV3/n)2/3. The ratio of communica- 
tions time to flowfield integration time, denoted 
by C, is therefore 

c 
C(iV3/n)2/3 

N3/n 
O 

N3/n 

1/3 

(5) 

Thus, for a fixed number of cells, the relative 
cost of communications can increase as the num- 
ber of processors increases1. 

3.4    Benchmarks 

Numerous benchmarks have been developed for 
parallel computers2. All benchmarks have limi- 
tations, of course, and the overemphasis on (and 
misuse of) benchmarks has naturally led to a 
somewhat skeptical attitude towards them. This 
is perhaps best epitomized by Bailey's "Twelve 
Ways to Obfuscate the Performance of a Parallel 
Machine" [12]. 

'An alternate definition of efficiency (denoted as 
scaled effiency, and it counterpart, scaled speedup) 
has been proposed whereby the ratio of communications 
cost to computational cost remains fixed as n is increased. 
This is achieved by increasing the problem size (i.e., N) 
with the number of processors. From the above analysis, 

this implies that N3 ~ n. 
2 A compendium of benchmark reports is a- 

vailable at http://performance.netlib.org/performance/- 

html/PDSreports.html. 

Nevertheless, benchmarks provide insight into 
the relative performance of different parallel 
computers. One of the most widely cited is 
the NAS Parallel Benchmarks [13,14] which 
includes five kernels (two dimensional statistics 
from a Gaussian pseudo-random number gener- 
ator, multigrid 3-D Poisson equation, conjugate 
gradient methods computation of the smallest 
eigenvalue of a large sparse symmetric positive 
definite matrix, 3-D Fast Fourier Transform, and 
integer sort) and three simulated CFD applica- 
tions (SSOR algorithm for block 5x5 system, 
scalar pentadiagonal system, and block tridiago- 
nal system). The NAS Parallel Benchmarks are 
described algorithmically, rather than in a spe- 
cific programming language3.They have been ex- 
ecuted on numerous machines including Convex 
Exemplar SPP1000, Cray C90/T90/J90/T3D, 
DEC Alpha Server 8400, Fujitsu VPP500, IBM 
SP2 (Thin and Wide Node) and SGI Power 
Challenge XL. Saini and Bailey [16] make sev- 
eral observations. These include 1) the perfor- 
mance per unit cost (e.g., MFlops per dollar) 
of the Cray C-90 was the lowest of all systems 
tested4, and 2) all vendors employed their own 
specialized parallelization directives to achieve 
maximum performance. Future enhancements 
to the NAS Parallel Benchmarks include the de- 
velopment of a version using High Performance 
Fortran and Message Passing Interface (see be- 
low). 

3.5    Portability 

In recent years, significant effort has been de- 
voted to the development of standardized en- 
vironments for development of parallel codes. 
Three specific areas of activity are discussed 
here, namely, development of a standard For- 
tran for parallel computing (HPF), a standard 
for heterogeneous, network-based parallel com- 
puting environments (PVM), and the more re- 
cently developed standard message-passing in- 
terface MPI. There are many other similar re- 
search efforts in progress; however, space does 
not permit their discussion here. 

3In contrast, for example, to the LINPACK benchmark 
[15] for the matrix of order 100 which is written in FOR- 
TRAN and which may not be modified, including the com- 

ment statements. 
4The system cost is assumed to be the list price. 
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3.5.1 High Performance Fortran 

High Performance Fortran [17, 18, 19] is 
a data parallel language which extends For- 
tran 90 to provide additional support for the 
data parallel programming style while main- 
taining compatibility5 with Fortran 90. Devel- 
opment of HPF was initiated in 1991 through 
the establishment of the High Performance 
Fortran Forum, and the language specifica- 
tion was published in May 1993. At present, 
twelve vendors have announced support of HPF. 
Additional information may be obtained at 
http://www.erc.msstate.edu/hpfF/home.html. 
A good introduction to HPF is provided by Fos- 

ter [21]. 

HPF extends Fortran 90 to include specific com- 
piler directives to control the alignment and dis- 
tribution of data on parallel machines, and in- 
troduces new parallel features and additional 
intrinsic library functions. For example, the 
PROCESSORS directive specifies the shape and 
size of an array of (abstract) processors, and 
the ALIGN directive aligns elements of different 
arrays with each other, thereby indicating that 
they should be distributed across processors in 
the same manner. New intrinsic functions intro- 
duced by HPF include NUMBER_0F_PR0CESS0RS 
and PROCESSORS-SHAPE which allow a program 
to obtain information on the number of proces- 
sors on which it executes and the connection 
topology. 

Examples of applications written in HPF are 
presented in Hawick and Fox [22] and Mueller 
and Ruehl [23]. A more extensive list is available 
on http://www.npac.syr.edu/hpfa/bibl.html. 

3.5.2 Parallel Virtual Machine (PVM) 

A recent major advancement is the develop- 
ment of heterogeneous, network-based parallel 
computing environments. Unlike fixed paral- 
lel computer architectures (e.g., Cray C-90, In- 
tel Paragon, etc.), these network-based paral- 
lel computers are created as a virtual machine 
using software tools such as PVM, Linda, P4 
or Express. Typically, any number of different 
networked computers may be connected to form 
a parallel machine, although usually the com- 

[20]. 

5For a description of Fortran 90, see Metcalf and Reid 

puters are fairly similiar. Below, we provide a 
brief description of PVM. Description of other 
systems are available (e.g., [24, 25, 26]), and a 
reasonably comprehensive listing has been com- 
plied by Turcotte [27]. Comparisons of the rel- 
ative merits of different systems have also been 
pubUshed (e.g., [28]). 

PVM (Parallel Virtual Machine), created 
by the Heterogeneous Network Project (Oak 
Ridge National Laboratory, the University of 
Tennessee and Emory University) initiated in 
1989, consists of two software packages [29, 30, 
31, 32, 33]. The first is a daemon pvmdS which 
executes on all of the computers which comprise 
the virtual parallel machine. PVM is designed 
to enable any user with a valid login to install 
and initiate pvmdS. The user specifies a list of 
computers which comprise the virtual parallel 
machine, and starts pvmdS on each one. The 
PVM application can then be initiated from any 
of the computers. The second is a library of 
PVM routines UbpvmS. a which contains the user 
callable routines for message pasing, spawning 
processes, coordinating tasks and modifying the 
virtual machine. 

PVM has been successfully implemented on nu- 
merous computer architectures [33]. These in- 
clude heterogeneous and homogeneous networks 
of computers, and also "individual" massively 
parallel computers (e.g., Intel Paragon and Cray 
T3D). PVM is widely utilized in academia, in- 
dustry and government laboratories. It is es- 
timated that more than 10,000 individuals or 
installations have obtained the PVM software 
and approximately 20% to 25% are actively us- 
ing it [34]. An index of PVM software may be 
obtained by sending the message send index 
from pvm3  to  netlib@ornl.gov. 

An example of a PVM apphcation is the Kor- 
ringa, Kohn and Rostoker coherent potential ap- 
proximation (KKR-CPA) method for computing 
the electronic properties, energetics and other 
ground state properties of substitutionally disor- 
dered alloys [33]. An approximate three month 
effort converted the 20K line KKR-CPA code 
for PVM. The code achieved approximately 200 
MFlops using a network of ten IBM RS/6000 
(6 model 530's and 4 model 320's) worksta- 
tions, which is estimated to be approximately 
82% of the maximum floating point capability 
of this virtual system.   Also, the PVM KKR- 
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CPA code achieved over 9 GFlops performance 
using a network of twenty seven Cray C-90 and 
Cray Y-MP processors scattered across several 
sites. Furthermore, the PVM KKR-CPA code 
was successfully demonstrated for a virtual ma- 
chine consisting of two Intel Paragons, a CM-5, 
an Intel i860 and IBM workstations, which were 
geographically distributed at several sites. 

Load balancing, latency and bandwidth are 
clearly important issues for implementation of 
a virtual machine with PVM or other similar 
tools. In a heterogeneous environment, due con- 
sideration of the relative performance of indi- 
vidual hosts is obviously needed in domain de- 
composition. Latency (i.e., the time required to 
initiate a message) can be a critical issue, de- 
pending on the ratio of communications to com- 
putation. Network bandwith may be restricted 
due to existing traffic. Recent enhancements 
to PVM [34] provide for improved performance. 
For example, the message passing performance 
of PVM on the Intel Paragon6 is only 5% to 8% 
slower than the native functions [34]. 

3.5.3    Message Passing Interface (MPI) 

MPI (Message Passing Interface) is a mes- 
sage passing standard for homogeneous and het- 
erogeneous parallel and distributed computing 
systems. The development of the MPI standard 
is a multinational effort which was initiated in 
1992 and is supported by ARPA, NSF and the 
Commission of the European Community. The 
MPI standard was published in 1994 and is de- 
scribed in [35, 36, 37]. A good introduction to 
MPI is provided by Foster [21], and a brief de- 
scription is presented in [38]. 

An MPI program includes one or more processes 
which communicate with each other through 
calls to MPI library routines. There are two 
types of communications, namely, point-to- 
point communication between pairs of processes, 
and collective communication between groups of 
processes. Several variants of "send" functions 
are provided to enable users to achieve peak per- 
formance. Two basic types of communications 
topologies are provided: a cartesian grid and an 
arbitrary process graph [38]. 

6Using the functions pvm_psend() and pvm_precv() 
introduced in PVM Version 3.3. 

Due to its recent introduction, there are a rela- 
tively small number of applications to date us- 
ing MPI. A recent review by Skjellum, Lusk 
and Gropp [39] describes recent applications in- 
cluding unsteady incompressible viscous flows, 
groundwater modeling, volume visualization 
and traffic simulation. Native MPI implementa- 
tions are currently under development by several 
parallel computer vendors [40]. 

4    Parallel Computing in 
Aerospace Research 

Despite the extensive research on parallel com- 
puting, only a small fraction of numerical sim- 
ulations of aerospace research problems employ 
parallel computing. A survey of the citations 
for parallel and other computers for three jour- 
nals is presented in Table 3. The period July 
1993 through July 1995 was surveyed for all ar- 
ticles presenting research involving significant 
numerical simulation. Approximately 44% of 
these articles indicated that a serial or vector 
machine (single processor) was employed, while 
only 3.4% specifically noted that a parallel com- 
puter was used. Approximately 52% did not in- 
dicate that machine used. If the statistics for 
the first two categories are assumed statistically 
representative of the last group, than an overall 
estimate (upper bound) for the parallel applica- 
tions is 7%. 

Why are so few research simulations performed 
on parallel computers ? Certainly, research on 
parallel computing has shown the capability for 
solving a wide range of fluid dynamics problems. 
At the Parallel CFD '95 Conference, applica- 
tions of parallel computing were presented for 
reacting flows, Euler and Navier-Stokes solvers, 
spectral methods, multigrid methods, and adap- 
tive schemes. Numerous other applications 
have been developed (e.g., see, for example, 
[41, 42, 43, 44]). 

I posed this question to a number of experts in 
parallel CFD. The answers tended to be fairly 
similar, and not at all surprising. All focused 
on the issue of calendar time required to solve a 
particular problem. As one person stated, "The 
machine which you use to solve a problem is ir- 
relevant. The only thing that matters is how 
quickly you can get the problem done." At the 
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Table 3: Citations of Parallel and Other Computers (July 93 - July 95) 

Journal Parallel    Serial/Vector    Not Stated      Total 

AIAA Journal 7 104 110 221 

Journal of Aircraft: 0 48 47 95 

Journal of Fluid Mechanics 8 44 76 128 

Total 
Percent 

15 
3.4% 

196 
44.1 % 

233 
52.5% 

444 
100.0 % 

present time, many CFD researchers who are 
not using parallel computing view parallel CFD 
as 1) lacking a decisive advantage performance 
advantage (e.g., MFlops) over conventional se- 
rial (and vector) computers in many instances, 
2) difficult to program efficiently, and 3) lacking 
in portability. 

All of these factors are likely to diminish in the 
near future, and thus the use of parallel comput- 
ing in aerospace research should increase. Mi- 
croprocessor CPU performance continues to im- 
prove by a factor of 1.5 to 2.0 per year7 [45], and 
consequently parallel machines are now compa- 
rable or faster than traditional vector super- 
computers. For example, the Cray T3D (512 
processors) is on average 41% faster8 than the 
Cray C-90 (16 processors) for the three sim- 
ulated CFD applications in the NAS Parallel 
Benchmarks. The Cray T-3D (1024 processor) 
is 128% faster. The IBM SP2-WN (160 proces- 
sors) was also significantly faster than the Cray 
C-90 (16 processors) [16]. Also, the emergence 
of standards in parallel programming languages 
(e.g., HPF) and message passing functions (e.g., 
PVM, MPI) simplify the development of parallel 
code and significantly enhance its portability. 

5    Parallel Computing in 
Aerospace Industry 

Parallel computing has a major presence in the 
aerospace industry. Within the past few years, 
several major aerospace corporations have de- 
veloped extensive Networks of Workstations 

7 The rate of improvement of microprocessor perfor- 
mance is much faster than for the specialized processors 
developed for traditional vector machines (e.g., Cray C- 

90) 
8 i.e., the ratio of the execution time on the Cray C-90 

to the Cray T3D was 1.41. 

(NOWs) for production analysis and design. 
Two examples are Pratt & Whitney (East Hart- 
ford, CT, and Pakn Beach, FL) and McDonnell 
Douglas Aerospace (St. Louis, MO). 

Pratt & Whitney (P&W) initiated their Net- 
work of Workstations concept [46] in mid-1989. 
The decision was motivated by two factors. 
First, P&W had an installed base of worksta- 
tions which had been acquired principally for 
design/drafting work, but which were effectively 
unused in the evenings and on weekends. Thus, 
there was a surplus of compute cycles which 
could be employed for analysis and design, pro- 
vided that the computational tasks could be de- 
composed and parallelized. Second, their exist- 
ing Cray X-MP, purchased in 1986, was both 
severely overloaded and limited in capability 
(e.g., memory). Hence, there was a significant 
incentive to invest resources in development of 
a new paradigm for CFD analysis and design. 

The P&W approach consists of several parts. 
The flow solver is NASTAR, a 3-D struc- 
tured grid multi-block Navier-Stokes code. Do- 
main decomposition is straightforward, i.e., 
each block is assigned to an individual processor 
(workstation). An example is shown in Fig. 3. 
The momentum, energy and turbulence scalar 
equations are solved using Successive Line Un- 
der Relaxation (SLUR). The SLUR iterations 
are performed independently within each block, 
with periodic updating of the boundary condi- 
tions to transmit information between blocks. 
The optimal updating strategy is found by nu- 
merical experiments. The pressure correction 
equation is solved to satisfy the continuity equa- 
tion, and employs a parallelized Preconditioned 
Conjugate Residual (PCR) algorithm. The ma- 
jority of the computational effort is expended in 
the pressure correction equation, and thus con- 
siderable effort was focused on efficient paral- 
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lelization of the PCR algorithm. Management of 
the individual block computations is performed 
by Prowess (Parallel Running of Workstations 
Employing Sockets), developed by P&W, which 
provides communications, parallel job process 
control, accounting, reliability and workstation 
user protection. Communications between in- 
dividual workstations is performed directly us- 
ing sockets which emulate a file I/O paradigm. 
Checkpointing is employed to achieve high reli- 
ability. Workstation user protection is the im- 
plementation of the P&W policy that the in- 
teractive user has the first priority on a work- 
station. Thus, for example, Prowess suspends 
(or terminates) any remote process executing 
on a workstation as soon as any activity is de- 
tected on the workstation's keyboard or mouse. 
Idle worksations capable of executing NASTAR 
are identified using the Load Sharing Facil- 
ity (LSF) software from Platform Computing 
Corporation. 

The P&W workstation network employed for 
parallel computing is substantial. Approxi- 
mately 400 to 600 workstations are employed 
daily for parallel CFD jobs at P&W's East Hart- 
ford, CT facility, and another 300 to 400 work- 
stations at Palm Beach, FL. The growth in us- 
age of the workstation network for parallel CFD 
application is displayed in Fig. 7. 

Cray XMP Equivalents 
Jan. 1992-Aug. 1994 
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Figure 7: Daily parallel CFD throughput on 
Pratt & Whitney's East Hartford, CT worksta- 
tion network (from [46]) 

A critical element in the Network of Work- 
stations approach is the network configuration. 
Adequate communications bandwith is essential 
for effective distributed parallel computing. The 
P&W East Hartford, CT network architecture is 
shown in Fig. 8. It includes multiple Fiber Dis- 
tributed Data Interface (FDDI) 100 Mbps back- 
bone networks connected by Digitial Equipment 

Multlpla PE Rings 

Figure 8: Pratt & Whitney network backbone 
in East Hartford, CT (from [46]) 

FDDI Gigaswitches. There are approximately 
200 ethernet segments. 

Pratt & Whitney has concluded that their Net- 
work of Workstations paradigm has been suc- 
cessful. Fischberg et al [46] cite a reduction in 
design time of 50% to 67% for a high pressure 
compressor and fan design, respectively. 

McDonnell Douglas Aerospace initiated their 
Network of Workstations concept [47] in late 
1992. The decision was motivated by factors 
similar to Pratt & Whitney. First, McDonnell 
Douglas had a substantial number of worksta- 
tions (mostly Hewlett-Packard 7xx, plus a small 
number of IBM RS/6000 and Silicon Graphics) 
which had been acquired principally for CAD. 
These workstations were typically utilized dur- 
ing the daytime, and largely unused in evenings 
and on weekends. Second, their existing Cray 
X-MP/18 was both heavily loaded and limited 
in capability (e.g., memory), and the corporate 
financial position precluded a multi-million dol- 
lar new supercomputer acquisition. Third, Mc- 
Donnell Douglas wanted to gain experience with 
parallel computing technology. 

The McDonnell Douglas Aerospace approach 
consists of several parts. The flow solver is 
NASTD, a proprietary 3-D structured grid 
multi-block compressible Euler/Navier-Stokes 
code. The code is heavily utilized at McDon- 
nell Douglas, with typically fifty active users. 
A straightforward domain decomposition is em- 
ployed, whereby a grid block (subdomain) is as- 
signed to an individual processor (workstation). 
The code is operated in a master/slave relation- 
ship using PVM [32] for process control and ex- 
plicit message passing between processors. 

Parallel computations using NASTD are per- 
formed in the evenings and on weekends us- 
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ing up to 400 workstations in clusters of 15 to 
20 workstations per job. The reliability (i.e., 
the percentage of submitted jobs which com- 
plete successfully) exceeds 95%. Numerous dif- 
ficulties were resolved in achieving this perfor- 
mance, many of which were management issues, 
e.g., negotiating scheduled hardware, software 
and network maintenance (which had oftentimes 
occurred at random intervals at nights and on 
weekends), and changing the perception that 
the individual user "owned" the workstation and 
could therefore reboot it whenever desired (thus 
terminating any slave process in operation and 
crashing the entire parallel computation). 

6    Conclusions 

Several main conclusions can be drawn regard- 
ing parallel computing in CFD: 

• There is a large number of vendors of par- 
allel computers whose systems offer a wide 
range of performance. 

• Modern parallel computers can equal or ex- 
ceed the performance of the largest multi- 
processor Cray supercomputers. 

• The aerospace industry has taken a leading 
role in the application of parallel computing 
to practical analysis and design. 

• The aerospace research community (e.g., 
academia and research laboratories) has 
taken a leading role in research on par- 
allel computing, but has not significantly 
employed parallel computing in solving 
aerospace research problems. 

• The development of message passing stan- 
dards (e.g., PVM and MPI) and data par- 
allel programming language standards (e.g., 
HPF) will expand use of parallel computing 
in CFD. 
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SUMMARY 

This paper describes the portable parallelization of the 
FLOWer code, a large, block structured CFD solver for 
industrial use. Basic requirements for the parallelization 
are identified, and the strategies applied for its parallel- 
ization are explained. Special emphasis is put on the 
parallel heart of the program, the communications li- 
brary CLIC-3D. Results obtained on several platforms 
demonstrate the success of the method chosen and allow 
an assessment of today's capabilities of parallel comput- 
ers in CFD applications. Parallel computations of air- 
craft configurations of varying complexity prove that 
parallel computers have become operational in aircraft 
development. 

LIST OF SYMBOLS 

D 

E 

F 

H 

k 

Pr 

P 
■> 

q 
-> 
R 

S 

T 

t 

u 

V 

v 
-» 
W 

w 

Y 

specific heat at constant pressure 

vector of artificial dissipative fluxes 

total energy 

flux tensor 

total enthalpy 

heat transfer coefficient 

number of blocks 

outward pointing unit normal vector 

Prandtl number 

pressure 

velocity vector 

residual vector 

speed-up 

temperature 

execution time 

velocity in x-direction 

volume 

velocity in y-direction 

vector of conservative variables 

velocity in z-direction 

ratio of specific heats 

P 

a 

x 

Indices 

viscosity 

density 

normal stress components 

shear stress components 

components of the energy dissipation 
function 

alg 

ijk 

1 

t 

x 

y 

algorithmic ideal 

discrete point 

laminar 

turbulent 

in x-direction 

in y-direction 

z in z-direction 

°° at infinity 

1. INTRODUCTION 

When looking on the progress made in CFD during the 
last decade, one observes that improvements are made 
in two directions: The algorithms became more flexible 
and faster, e. g. by multigrid techniques, and the hard- 
ware platforms increased in main memory and CPU per- 
formance. As far as the progress in computer power is 
concerned, experts predict that only parallel architec- 
tures will allow further improvements leading to peak 
performances of about 1 TFLOP/s [1, 2]. 

Therefore, since this type of super computers might re- 
quire a new type of application software, the develop- 
ment of parallel flow solvers is mandatory, if one wants 
to exploit their abilities in the future. This could be 
treated as an isolated subject, when dealing with ques- 
tions of basic research interest, but when concerning 
large codes in industrial use, several constraints are lim- 
iting the development. 

First of all the effort spent for parallelization must be 
justified by the gain in compute power or the reduction 
of computing costs, respectively. Secondly, large CFD 
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solvers usually have been developed throughout a long 
period involving a number of different scientists, and 
they are applied by numerous users which both must be 
respected by a parallelization. Last but not least, there is 
not just one parallel architecture available at the mo- 
ment, but the platforms differ in the design of the CPUs 
(vector versus RISC processors), the memory organiza- 
tion (shared versus distributed memory) and the com- 
munication systems (hardware and software). There- 
fore, if one wants to be able to follow any hardware 
development in the future, one must keep the parallel- 
ization as flexible as possible. 

The paper presented here describes the portable parallel- 
ization of the FLOWer code which is currently carried 
out within the project POPINDA (POrtable Paralleliza- 
tion of INDustrial Aerodynamical applications) funded 
by the German Ministry of Research (BMBF). The 
FLOWer code is a block structured CFD solver for com- 
plex flows in configuration aerodynamics. It has directly 
evolved from the DLR-CEVCATS code [3] and is de- 
veloped in close cooperation of the DLR with the Ger- 
man national research center for computer science 
(GMD) and the German aeronautical industry (DASA) 
as a multi purpose flow solver. 

After a description of the numerical algorithm of this 
large CFD code in the next section, the strategy chosen 
for its parallelization will be explained outlining the 
ideas of how to meet the requirements for large applica- 
tion programs in industrial use. The communications li- 
brary CLIC-3D which solves the portable parallelization 
problem of such codes is then reviewed. 

Benchmark results obtained on various platforms dem- 
onstrate the portability of the FLOWer code and allow 
an assessment of today's parallel platforms. Further- 
more, computations of different aircraft configurations 
show that such architectures have become operational 
for CFD applications and what effects on the obtainable 
performance occur. Finally, the computation of a 6 mil- 
lion grid point test case on 129 processors indicate the 
future potential of parallel processing in CFD. 

2. NUMERICAL METHOD OF THE FLOWer 
CODE 

2.1 Governing Equations 
The FLOWer code is solving the Euler- or Navier- 
Stokes equations in conservative form [3, 4] written as 

£pdv+Ji 
V 3V 

F•ndS = 0 (1) 

W - I   p pu pv pw pE 

and F is the flux tensor being defined by 

(2) 

F = 

pu                pv pw 

pu2 + p + ox        puv puw 

puv       pv2 + p + a pvw 

puw pvw       pw^ + p + CJj 

puH + <l>x      pvH + (j)y      pwH + <|)z    j 

(3) 

with the abbreviations 

(4) 

»x = U0x + VXxy + WTxZ-
k^ 

»y = UOTxy + VGy + WTyz-k^ 

b   = UX     +VT     + WO   -k=r— *z xz yz z        gx 

The elements of the viscous stress tensor are determined 
by Newton's law of skin friction, i. e. 

„  3u    2 3   > 
ax = -2^ + 3^Vu 

,  3v    2  =»   * 

°z   = 
„  3w    2  3   -> 

-2^ + §M.V-u 

T      = xy 
(du    3v^ 

Ady + d-J 

v = fd\    3w^\ 
Adi^J 

Xxz   = 
fdw    3u^ 

(5) 

Further simplification is obtained by applying a thin 
shear layer approximation accounting only for gradients 
normal to surfaces. 
For the non-dimensional pressure and temperature the 
following relations hold 

p = p(Y-l)[E- 

T = P 
P 

\2 

(6) 

where W denotes the vector of conservative variables and the system is closed by the relations for the trans- 
port coefficients 
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M- = M-i + M-t 

k = C./^ 
PVPr,    Prt 

(7) 

where the laminar viscosity u., is given by Sutherlands's 
formula 

3/2 T^+llOK 

T+110K (8) 

In turbulent flows the eddy viscosity u.( is computed 
from the algebraic Baldwin-Lomax model [5]. 

2.2 Discretization and Time Integration 

The governing equations are discretized by the method 
of lines separating the space and time coordinates. After 
the space discretization, a system of ordinary differen- 
tial equations in time results involving each finite vol- 
ume. For any hexaeder of the structured grid one obtains 
the equation. 

dtWijk + v ijk3v 

ndS = 0 (9) 

The space discretization is central, so that an artificial 
dissipation term due to Jameson et al. [6] is added 
damping high frequency oscillations and allowing a suf- 
ficiently sharp resolution of shock waves in the flow 
field. The resulting system of equations then reads 

d^i 
dt 

k + : Rijk- Dijk I = (10) 

with Rjjk and Dyk being the vector of the residuals and 
the artificial dissipative fluxes respectively. 

The time integration is carried out by an explicit, hybrid 
multi stage Runge-Kutta scheme which is accelerated 
by the techniques of local time stepping, enthalpy damp- 
ing (Euler) and implicit residual smoothing [7]. 

This procedure is embedded into a powerful multigrid 
algorithm [3, 8] which allows standard single grid com- 
putations as well as a successive grid refinement and 
simple or full multigrid, respectively. As is illustrated in 
[3], where a more detailed description can be found, 
high convergence rates can be obtained, using this tech- 
nique. 

the flow field is split into regions for each of which the 
generation of a structured grid is possible. Figure 1 is 
showing schematically such a grid topology around a 
transport aircraft. As one can see, the flow field is subdi- 
vided into four areas of similar size around the wing 
body. Three subdomains are covered by one block each 
(blocks 1 to 3), whereas the fourth region is further sub- 
divided, due to the presence of an engine there (blocks 4 
to 9). The engine is surrounded by a polar grid (blocks 8 
and 9) which is adapted by blocks 6 and 7 to the general 
O-H topology (blocks 3 to 5). 

The program then treats the blocks more or less inde- 
pendently of each other which can only be done prop- 
erly by exchanging data of the current solution at block 
interfaces before each time step. 

Therefore, the blocks are surrounded by layers of 
dummy cells, which at block intersections correspond 
with the physical cells of the neighboring domain.The 
FLOWer code allows an overlap width of two cells re- 
sulting in second order accuracy of the scheme at those 
boundaries. This is necessary, in order to treat the artifi- 
cial dissipation terms correctly which otherwise could 
spoil the solution as shown in [9]. 

Currently, the FLOWer code allows different exchange 
strategies for the data at block intersections varying in 
effort and accuracy [10]. 

Fig. 1     Schematic multiblock decomposition of the flow 
field around a generic transport aircraft. 
Decomposition into 9 blocks due to the adaption 
of an engine fitted polar mesh to a global O-H 
topology. 

3. PARALLELIZATION OF THE FLOWer CODE 

2.3 Block Structure 
Since structured grids around complex geometries can- 
not be generated as one logically rectangular domain, 
the FLOWer code is block structured. That means that 

3.1 Requirements 

When parallelizing a large CFD solver as the FLOWer 
code, the parallelization cannot be treated in isolation, 
but must be integrated into the general development 
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procedure [9]. Therefore, certain objectives must be 
met, the most important of which are specified in the 
following. 

Portability 

The FLOWer code is developed by a number of scien- 
tists working at different locations on a variety of com- 
puters. Furthermore, it is applied by several users run- 
ning the program on other platforms than the 
developers. Finally, the life time of the program will 
certainly exceed that one of most of today's computers, 
so that portability is a major requirement: 

The FLOWer code must run on any platform, it may be 
sequential or parallel ! 

Conservation of the development history 

When developing the parallel FLOWer code, its algo- 
rithm had already reached a high degree of maturity es- 
tablished by various scientists during a long period 
within the DLR-CEVCATS code. Moreover, the users 
had become experienced with its handling and in inter- 
preting its results. Therefore, the parallelization had to 
respect that development history: 

The FLOWer code must not be completely re-written 
due to its parallelization ! 

Low parallelization effort 

Parallelization is only one means of high performance 
computing and should not be done just for its own sake. 
The effort spent for parallelization must therefore be 
justified by the corresponding gain in performance or re- 
duction in computational costs, respectively: 

The parallelization of the FLOWer code must achieve 
the highest performance possible at lowest costs ! 

3.2 Parallelization Strategies 

Parallelization of a CFD solver means mapping of in- 
herent parallelism incorporated in the program to a par- 
allel architecture using a communication model. As far 
as structured codes are concerned, there is parallelism 
on statement level (multiply / add), in the data (loops 
over all points of a block) and in the geometry (the dif- 
ferent blocks) which can be expressed by parallelizing 
languages, e. g. HPF or C++, parallelizing compilers 
(directives / autotasking) or by message passing, i. e. by 
explicitly sending and receiving data to and from differ- 
ent processes. Moreover, the parallel hardware design 
varies with respect to the arrangement of CPUs, mem- 
ory and the interconnecting network (shared / distrib- 
uted memory, hybrid constructions) [9]. 

Therefore, one has to decide which type of parallelism 
should be exploited using which communication model, 

and how to achieve portability. When parallelizing the 
FLOWer code, general considerations led to the follow- 
ing guidelines allowing to meet the requirements stated 
above: 

Grid partitioning as parallelization strategy 

The idea is to map the different blocks to different pro- 
cesses where they are solved separately. Between the it- 
eration steps the boundary data are exchanged via the 
network. 

This technique is not only said to be efficient when solv- 
ing partial differential equations [11, 12], but moreover 
guarantees the conservation of the sequential develop- 
ment history, because it is directly based on the sequen- 
tially well established multi block method. 

Separation of computation and communication 

A strict application of this rule allows an algorithmic de- 
velopment which remains independent from the paral- 
lelization or other hardware aspects. Additionally, the 
code structure can be kept modular more easily which is 
highly desired from software engineering reasons. Fi- 
nally, the portability problem becomes much easier to 
handle, when concentrating the communication parts 
within separate units. 

Communication by message passing 

Besides efficiency arguments, the decision for the mes- 
sage passing communication model results mainly from 
the portability demand. Using a parallelizing language 
would have caused a complete re-implementation of the 
FLOWer code which was clearly unacceptable, and par- 
allelizing compilers are only available on some plat- 
forms restricting the portability of the code. 

In the contrary, it should be noted that the message pass- 
ing approach does not exclude a parallelization by auto- 
tasking supported by compiler directives [9]. 

Use of a portable communications library 

Combining the requirements for the parallelization of 
the FLOWer code with the above guidelines leads to the 
demand for a portable communications library 

Such a high level library should perform all typical op- 
erations necessary in parallel mode involving communi- 
cation between the different processes. Its usage should 
therefore guarantee parallel portability, keep the sequen- 
tial code almost unchanged and reduce the paralleliza- 
tion effort drastically. Moreover, it should lead to a 
highly reliable parallelization. 

This library has been developed by the GMD as CLIC- 
3D and will be described in the following section. 
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4. THE CLIC-3D COMMUNICATIONS LIBRARY 

4.1 Background 

The communications library CLIC-3D (Communica- 
tions Library for Industrial Codes in 3 Dimensions) is 
currently developed by the GMD within the German re- 
search project POPINDA. It is based on the former 
GMD Comlib library and supports general block struc- 
tured PDE solvers, particularly involving multigrid al- 
gorithms. Its development was based on the observation 
that for this class of programs the communication pat- 
terns are generally quite similar, although the numerical 
algorithms might differ considerably. 

The major aim of the CLIC development is, to make 
programming for complex geometries as easy as for 
simple single block domains providing high level rou- 
tines for all communication and mapping tasks. The 
CLIC user interface, therefore, provides the application 
program with all necessary data on the problem to be 
solved. 

Currently, the CLIC library supports cell vertex and cell 
centered discretizations. 

The portability of the CLIC library is achieved using the 
PARMACS as portable message passing interface [13]. 
This system was chosen, because it is a commercial 
product and not public domain as PVM [14], and MPI 
[ 15] was not yet available at the time, when the POP- 
INDA project started. The corresponding software lay- 
ers of the parallelized FLOWer code are illustrated in 
figure 2. 

FLOWer 

\ 1 

CLIC-3D 

\ 1 

PARMACS 

\ 1 

vendor's systems 

Fig. 2    Software layers of the parallel FLOWer code 

4.2 General Code Structure 

Since the CLIC library is based on the PARMACS mes- 
sage passing system, it is designed for a host-node (mas- 
ter-slave) programming model. The host process starts 
the distributed application on several nodes, performs 
the input and output and transfers data to and from the 

node processes. The host itself does not participate in 
the solution process which is exclusively carried out by 
the node processes. Consequently the user application 
program is seperated into a host and a node program as 
shown in figure 3. 

Fig. 3    Host-node structure of the parallel FLOWer 
code 

The host program reads in the same input parameters as 
the sequential user program. Then, CLIC routines read 
in the description of the block structured grid, create the 
node processes and map the blocks onto the allocated 
node processors respecting load balance aspects as far 
as possible. Then, the input parameters are distributed to 
the node processes. Finally, another routine reads in the 
grid coordinates and sends them to the corresponding 
node processes only. After reading and distributing all 
data to the nodes, the host process waits for output gen- 
erated by the node processes and writes it to the desired 
units. 

Each node process executes an identical node program 
which may contain the complete sequential code. In 
case of the FLOWer code, the only differences in paral- 
lel mode are: 

• The input data is not read in but received from the 
host process 

• Global operations involving all blocks are passed to 
the CLIC library for performation 

• The data exchange at block boundaries is carried out 
fully automatically by the CLIC library 

• Write statements are replaced by parallel output rou- 
tines of the CLIC library 

A schematic flow chart of the parallel FLOWer code is 
given in figure 4. 

Further activities of the CLIC library consist in the anal- 
ysis of the given block structure, in order to allow a spe- 
cial treatment of grid singularities. For each segment 
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edge and point the adjoining blocks and the number of 
adjoining cells is determined leading to a topological 
classification. If the segment is part of the physical 
boundary, the boundary conditions of all adjoining 
blocks are determined, additionally. Finally, geometrical 
singularities are detected, so that the user can inquire all 
data for a special treatment of irregular grid points. 

—*■ control stream 

—- data stream 

Fig. 4    Schematic flow chart of the parallel FLOWer 
code based on the CLIC library 

The same data is needed by the CLIC library for optimi- 
zation of the data exchange at block boundaries. The 
aim is, to send the minimum number of messages neces- 
sary for a correct update of the boundaries. This is im- 
portant especially on coarse grids of multigrid algo- 
rithms where the communication may become 
significantly time consuming. Basic idea is the introduc- 
tion of a global orientation for larger portions of the 
block structure leading to a fast exchange procedure. 
Only in topologically more complicated situations addi- 
tional messages must be sent. 

Another specialty of the CLIC library is the possibility 
of parallel output, i. e. output files can be directly writ- 
ten by the node processes. 

4.3 Examples of High Level CLIC Operations 

Exchange of boundary data 

As already mentioned, the grid partitioning strategy re- 
quires an exchange of boundary data at the interfaces of 
the blocks. Therefore, the information on the topology 
of the block structure is stored in terms of block surface 
segments in a file that is read in by the CLIC library. 
During the initialization phase, this information is ana- 
lyzed with respect to the necessary send and receive op- 
erations within a data exchange procedure. 

When the corresponding exchange routine is called on 
each process, as sketched in figure 5, all interface data 
of the blocks on a process is stored segmentwise in a re- 
spective buffer which is sent (asynchroneously block- 
ing) to the corresponding neighboring block on another 
process. Afterwards, messages of the other processes 

are received in the order they come in, and the buffers 
are unpacked. If necessary, the procedure is repeated for 
segment edges and corner points, so that finally all block 
interfaces are updated correctly. 

Exchange of Segment Data 

—*• control stream 

—*"  data stream 

process 1 

1 

process 2 

1 *i it 

all 
blocks 

pack data 

in buffer 

pack data 

in buffer 

all 1 1 
cuts 

send buffer send buffer 

1 1 

all 
blocks 

all 
culs 

* * 
receive bitfTcr receive buffer 

1 I 
unpack buffer unpack buffer 

1 1 1 1 * ♦ 

all 
blocks 

all 
culs 

all 
blocks 

all 
cuts 

Exchange of edge and corner point data accordingly 

Fig. 5    Schematic flow chart for a parallel data 
exchange. 

Global operation 

Global operations involving all blocks of a given block 
structure are necessary, e. g. for the computation of a 
global residual. They are carried out within another spe- 
cial CLIC routine using an embedded binary tree for the 
process topology. As illustrated by figure 6, each parent 
process receives data from its child processes, performs 
a local operation on this data and communicates it to its 
own parent process. Afterwards, the process waits for a 
message from its parent process containing the correct 
global value which is obtained at the end of the chain. 
After its reception, this value is further communicated to 
the corresponding child processes. 

process 1 process 2 

control stream 

data stream 

Fig. 6    Schematic flow chart for a global operation. 
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5. RESULTS 
As a first result it should be noted that the parallel 
FLO Wer code using the CLIC library meets all of the re- 
quirements stated above: 

• The FLOWer code is fully portable, in sequential as 
well as in parallel mode. 

• The effort spent for the development of the sequen- 
tial FLOWer code and its predecessor CEVCATS 
was fully conserved. 

• The effort needed for the parallelization was 
extremely low 

The results obtained with this code are given in the fol- 
lowing. 

5.1 Performance Measurements 
Since parallelization is a means of increasing the com- 
pute power for CFD applications, performance measure- 
ments were carried out on several platforms. With this 
not only the portability of the FLOWer code is demon- 
strated, but an assessment of different architectures is 
possible. 

As test case the flow around a non-swept wing consist- 
ing of NACA 0012 airfoils was computed at M = 0.6 
and a = 0° (figure 7). Two different grids with 40000 
and 320000 cells were used, respectively, that were sub- 
divided into 1, 4 and 8 blocks in the small case and into 
1, 4, 8, 16 and 32 blocks in the large case. Each block 
was of equal size and was mapped to one CPU on the 
parallel machines leading to an ideal load balance. 

Fig. 7    NACA 0012 wing test case for performance 
measurements. 

Figures 8 and 9 show the obtained computing times on 
various parallel and vector machines with respect to the 
time needed on a Cray C90 single processor. As can be 
seen, the single processor performance of the NEC SX-3 
is hard to beat, even by parallel vector computers using 
up to 8 CPUs. On the other hand, the results show that 
parallel RISC processor architectures, as the IBM SP2 
or the NEC Cenju-3, are able to compete with or even to 
outperform the Cray C90 single processor using a mod- 

erate number of 32 CPUs. The CM-5 and the Intel Para- 
gon showed to have weaker single processors, so that 
they need many more CPUs in order to reach the perfor- 
mance of the other machines. 

NACA 0012 wing test case 

I        I  coarse grid (40000 cells) 

ME]  fine grid (320000 cells) 

XI 
CrayJ90       CrayY-MP        CrayC90       NEC SX-3 

Fig. 8    Relative execution times on single processor 
vector computers 

NACA 0012 wing test case 

coarse grid (40000 cells) 

I        I  fine grid (320000 cells) 

"TCT 

Intel IBM NEC 
Paragon XP/S        SP2 Cenju-3 

8 / 32 Proc.       4 / 32 Proc.    8 / 32 Proc. 

Cray 
J936 

Cray 
C916 

8/16 Proc.      8/8 Proc. 

Fig. 9    Relative execution times on parallel computers 

5.2 Speed-up for Aircraft Configurations 
For evaluating the potential of the parallelization of the 
FLOWer code, speed-up measurements were carried out 
for a more realistic configuration. The inviscid flow 
around the generic DLR-F4 wing-body combination 
shown in figure 10 was computed on a grid consisting of 
approximately 410000 cells which was subdivided into 
1, 4 and 8 equally sized blocks, respectively. For the 
conditions of Mach number M = 0.75 and incidence a = 
0°, 35 W cycles involving 4 multigrid levels were per- 
formed on an IBM SP1 computer . 

The results obtained for different communication sys- 
tems available there are plotted as speed-up versus pro- 
cessor number in figure 11. As can be seen, PVM using 
an Ethernet connection restricts the processor number to 
be employed to only four indicating that workstation 
clusters based on the Ethernet are not suitable for paral- 
lel computations with the FLOWer code. The result can 
be markably improved, when replacing the Ethernet by 
the IBM high performance switch, but still the fastest 
runs were obtained using the IBM MPL/p communica- 
tions system. 
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Fig. 10  Iso-Mach contours and block structure of the 
DLR-F4 wing-body combination (M = 0.75, 
a = 0°). 

DLR-F4 wing body combination 

256 x 40 x 40 

algorithmic ideal 
MPL/p with Interrupt 
MPL 
PVM with HP Switch 

MPL/p (default) 

PVM with Ethernet 

Fig. 11   Speed-up versus processor number for the 
DLR-F4 wing-body combination on IBM SP1. 

What can be observed, is that even with the most power- 
ful communciations systems on the IBM SP1, the accel- 
eration obtained is considerably deviating from the lin- 
ear speed-up. This effect is caused by an increase of 
operations due to the multiple computations of points at 
block interfaces. 
Therefore, there is an upper limit for the maximum ac- 
celeration below the linear speed-up the which can be 
obtained from single processor computations of the 
multi block cases. This value is called algorithmic ideal 
speed-up an is defined as the ratio of computing times 
for the one block case and the multi block case multi- 
plied with the number of processors that could be em- 
ployed, i. e. the number of blocks: 

The algorithmic ideal speed-up is also plotted in figure 
11, and as can be seen, is reached to a degree of approx- 
imately 95% using the MPL/p system. 

Of course, the decrease of the maximum obtainable 
speed-up reported above is not satisfactory, but on the 
other hand it is questionable, whether its value is mean- 
ingful for complex CFD problems at all. First of all, for 
speed-up measurements one would need problems that 
are small enough to be computed on a single CPU, in or- 
der to get a reference value. Secondly, the decrease in 
the maximum speed-up is only felt, because it was pos- 
sible to compute a single block solution for the DLR-F4 
wing-body combination. On the other hand the multi 
block cases were ideally load balanced, because all 
blocks were of equal size. 

When dealing with more complex configurations, this 
will certainly not be the case. In such situations there 
will be several blocks from grid generation reasons 
which cannot be guaranteed to have all the same number 
of points. Therefore, more complicated test cases must 
be studied. 

5.3 Parallel Computation of a Generic Aircraft 

As a more realistic configuration, the DLR-ALVAST ge- 
neric aircraft model carrying a high bypass engine [17] 
was computed at a Mach number of M = 0.75 and an in- 
cidence of a = 1.0°. The grid for this test case consists 
of about 575000 cells and is subdivided into 11 blocks 
the size of which is varying between 4096 and 87552 
cells. This is a typical situation where neither load bal- 
ancing nor single block computations are possible, both 
due to grid generation reasons. The configuration is 
shown in figure 12. 

,'A 

w^\ 
m 

Fig. 12 ALVAST generic aircraft configuration. Iso-Mach 
lines at M = 0.75 and a = 0°. 
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In order to study the corresponding effects on the paral- 
lel performance, 50 W-cycles were performed mapping 
the 11 blocks to 1, 7 , 8 and 10 processors of an IBM 
SP2 respectively. The single processor result was ob- 
tained on a slightly more powerful wide node, whereas 
the parallel runs were obtained on weaker thin nodes. 

As can be seen from figure 13, on 8 processors a speed- 
up of 6.6 can be gained, but a further increase does not 
lead to an improvement any more. This behavior is ex- 
actly what must be expected looking on the block struc- 
ture and the mapping strategy of the CLIC library. 

The work load per processor is determined by the num- 
ber of grid points to be solved, and the largest number of 
points on any processor constitutes the total execution 
time of the parallel run. When mapping the 11 blocks to 
less than 11 processors, there will always be more than 
one block per CPU. Therefore, the CLIC library applies 
a mapping strategy that tries to distribute the blocks ac- 
cording to their size, so that the work load on the nodes 
is as equal as possible. 

Up to 8 processors one is able to continously reduce the 
maximum grid size per CPU by simply mapping the 
largest block of the heaviest loaded node to an addi- 
tional processor. But when employing 8 nodes, the max- 
imum work load is determined by the absolutely largest 
block which of course cannot be reduced any further by 
mapping the block structure to more CPUs. Therefore, 
the minimum computing time or maximum speed-up, 
respectively, is to be obtained on 8 nodes and remains 
constant afterwards, as illustrated by figure 13. 

Any further increase of the speed-up would require an 
additional blocking of the largest block which is 
planned to be automatically supported by the CLIC li- 
brary in the future. 

linear 10.0 

s 
AL VAST generic aircraft                        , 
575000 cells                                   / 

8.0 

^ 
6.0 X>" 
4.0 \           XX 
2.0 

" ....  I   1  ....  I 

IBM SP2 

0.0 2.0 4.0 6.0 8.0   Np 10.0 

5.4 Feasibility Study for Large Problems 
Since parallelization is believed to be the appropriate 
method of tackling the future grand challenge problems 
in design aerodynamics, attempts must be made, in or- 
der to demonstrate the feasibility of this approach. 
Therefore, the viscous flow field around the DLR-F4 
wing-body combination (compare figure 10) was com- 
puted on a grid generated by the Deutsche Airbus com- 
pany consisting of 6.6 million grid points subdivided 
into 128 blocks of equal size. 800 multigrid cycles were 
performed on a 129 processor IBM SP2 (1 host + 128 
nodes) which took less than three hours of response time 
(13 seconds per cycle). The convergence of the compu- 
tation is given in figure 14 in terms of the logarithmic 
density residual versus the number of multigrid cycles. 

DLR-F4 wing-body combination 
6.6 million points, 128 blocks 

Fig. 13  Speed-up versus processor number for ALVAST 
generic aircraft configuration on IBM SP2. 

100 200 300 400 500 600 700 800   N 

Fig. 14 Density residual versus number of multigrid 
cycles. DLR-F4 wing-body combination (6.6 
million cells) on 129 processors of an IBM SP2. 

A grid convergence study was carried out by repeating 
the computation on four grids each differing in the num- 
ber of total points by a factor of 8. The result is given in 
figure 15 in terms of the total lift coefficient versus the 
scaled grid size. As one can see from an extrapolation of 
the development of the lift between the levels three and 
one, the large grid size of 6.6 million cells is necessary, 
in order to get the lift within an accuracy of one percent. 
Since the quality of the solution was spoiled by regions 
of highly distorted cells, a repetion of the study is 
planned with an improved grid. 

Nevertheless, what is proven, is that such large scale 
problems can be treated with the parallel FLOWer code 
and that today's parallel hardware is already allowing 
such computations. Therefore, this study is a promising 
demonstration of the potential of parallel processing in 
CFD heading towards the solution of the aerodynamic 
grand challenges expected in the future. 
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Fig. 15 Total lift coefficient versus scaled number of grid 
points. DLR-F4 wing body combination 
computed on 129 processors of an IBM SP2. 

6. CONCLUSIONS 

This paper shows, how the computational power of par- 
allel architectures is exploited by the three-dimensional 
structured solver for complex flows FLOWer under the 
restricting demands for portability, conservation of the 
former development history and minimization of the 
parallelization effort. 
The basic considerations to use the grid partitioning ap- 
proach as parallelization strategy and to strictly separate 
communication and computation lead to the implemen- 
tation of the message passing based portable CLIC-3D 
communications library supporting any high level oper- 
ation occuring in typical partial differential equation 
solvers on structured meshes. With this library the paral- 
lelization meets all general requirements for the devel- 
opment of large codes in industrial use. 

Performance measurements on a large variety of com- 
puters of different architecture demonstrate the compre- 
hensive portability of the CLIC based FLOWer code and 
allow an assessment of today's hardware capability in 
CFD. Still the NEC SX-3 vector computer appeared to 
be the most powerful machine solving a standard bench- 
mark problem, but with a moderate number of 32 RISC 
processors the IBM SP2 already outperforms a Cray 
C90 single processor, and a 32 processor NEC Cenju-3 
is at least competitive. 
Speed-up studies for a typical wing-body combination 
show that the communication system has a decisive in- 
fluence on the achievable overall acceleration. It turns 
out, that Ethernet based workstation clusters communi- 
cating via PVM are not suitable to replace true parallel 
computers as far as performance is concerned. 

Additionally, the maximum speed-up to be obtained is 

algorithmically limited by the grid partitioning strategy, 
because points at block interfaces are multiply com- 
puted increasing the total number of operations. But this 
drawback is only felt for simple problems, where a 
speed-up can still be measured and which are, therefore, 
far away from being a grand challenge. 

Parallel computations of a generic aircraft consisting of 
a wing-body combination carrying a pylon with an en- 
gine demonstrate, that the complexity of today's prob- 
lems in configuration aerodynamics can be tackled on a 
parallel computer. Speed-up measurements with respect 
to a multiblock single processor computation give sat- 
isfatory results, but also reveal the necessity for an auto- 
matic load balancing tool that allows to map an initial 
block structure to a higher number of processors than 
given blocks. 

Finally, a Navier-Stokes computation of the flow field 
around a wing-body combination on a grid consisting of 
6.6 million points on a 129 processor IBM SP2 outlines 
the potential of parallel processing in CFD for the fu- 
ture. It proves that high numbers of processors can be 
successfully handled in numerical aerodynamics and 
that parallelization, indeed, is a promising means for 
solving the grand challenge problems. 
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Abstract 

In the present paper we introduce and discuss an efficient par- 
allel algorithm for the spectral multi-domain solution of the 
incompressible Navier-Stokes equations. Firts, the algorithm 
is given in its basic form for the 2-dimensional case and, later 
on, a possible extension to 3-dimensional flows exhibiting a 
homogeneous (periodic) direction is proposed. The algorithm 
is validated both for its parallel performances, and its accu- 
racy. 

1    INTRODUCTION 

In the last years domain decomposition methods have gained 
much attention in the CFD comunity. One of the most rel- 
evant features of such methods is concerned with the possi- 
bility of tuning the accuracy of the numerical discretization 
according to the expected behaviour of the solution in each 
subdomain. Consequently, subregions of flow field contain- 
ing sharp boundary layer, can be enclosed within subdomains 
with high resolution, while low resolution can be assigned to 
subregions where smooth solutions can be expected. 

These advantages can be fully exploited when discretizing the 
equations with spectral methods which guarantee a fast decay 
of the error with the number of the nodes, termed as "spectral 
accuracy". 

On the other hand domain decomposition methods might pro- 
vide a natural stabilization strategy for the spectral discretiza- 
tion which is a "central one" in nature. In fact the local cell 
Peclet number can be locally diminished by reducing the mesh 
spacing within the critical subdomain, without the introduc- 
tion of any particular stabilization procedure. 

From the computational point of view, the domain decompo- 
sition techniques is well suited for parallel computing, even 
if in practical case several difficulties arises whenever good 
performances have to be reached [1]. 

In the first part of the present paper, a parallel algorithm for 
the solution of the bidimensional incompressible Navier-Stokes 
equations is presented. After a brief introduction of the time 
splitting scheme used for the time discretization of the un- 
steady incompressible Navier-Stokes equations, the attention 
will be mainly focused on the the spectral multidomain ap- 
proach and on its parallel features. Performance results con- 
cerning the parallel implementation on two different MIMD 
parallel architectures will be presented. The second part of 
the paper is concerned with the application of the algorithm 
to three dimensional unsteady problems. 

2    NAVIER-STOKES   EQUATIONS 
TIME SPLITTING SCHEME 

When the incompressible Navier-Stokes equations 

AND 

f + i(f/.w + v. (UU)) 

V -u   = 

=    -VP + ±AU (1) 

(2) 

are solved by means of a projection method [2], with the diffu- 
sive terms treated in an implicit fashion [3], the time stepping 
procedure consists in a cascade of scalar elliptic kernels, to be 
solved at each time step. Namely two (for the two-dimensional 
equations) Helmohltz problems for the inversion of the diffu- 
sive part, and a Poisson problem for the pressure need to be 
solved at each time step. It is then clear that, in order to 
achieve a globally efficient algorithm, it is of fundamental im- 
portance to tackle effectively the mentioned scalar problems. 
For the sake of completeness in the following the adopted frac- 
tional step scheme (i.e. Van Kan's pressure correction method 
[4])is given 

U-Un 

At 2Re 
A (ü + ir) -Vpn-^C(U' )+\c(un~1 

(3) 

Ü n+1 

At 

U\aa    =    U ((n + 1) At)    (4) 

(5) 

V-£/n+1     =    0 (6) 

- + Jv(p"+1-p")    =    0 

the advective term where       C (U)       represents 
|(t/-V[/ + V •([/[/)). 

In the first step, a non physical intermediate velocity field U 
is computed. In fact, U does not satisfy the incompressility 
condition. Then in the second step U is projected onto the 
divergence free space to get an adeguate velocity approssima- 
tionof U"+l. 
The scheme with the given boundary conditions is nothing else 
then a second order Crank-Nicolson Adams-Bashforth scheme 
with an Ö (At2) deviation in the tangent direction of the 
boundary. By applying the divergence operator to (6), it turns 
out that the latter is equivalent to 

Al   n+1    . 
{P +P At 

-V-U 

dp' n+1 

dn -|an = 0 

t/n+1 =U ■ 
At 

V (p"+] 

(7) 

(8) 

(9) 

In the next section the attention will be focused on the way 
each scalar elliptic problem has been tackled in the framework 
of a spectral multidomain discretization. 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms' 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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3    SPACE DISCRETIZATION 

In the present work, a Legendre spectral collocation technique 
coupled with a domain decomposition method has been used 
for the space discretization of the differential equations. Ad- 
ditional references can be found in ( [6], [5]) for the projection 
decomposition method, and in ( [7]) for the spectral approxi- 
mation method. 

3.1    Elliptic terms 

The following problem, rappresentative of one of the elliptic 
scalar problems mentioned in the previous section, is consid- 
ered hereafter: 

-Au + au    =    /infi,    / e L2{ü) (10) 

u    =    0   on 90 (11) 

where a is a real constant > 0, and_where Qjs_an open con- 
nected set (1 C S2; in particular, U = l!?=i$li with Qi is a 
closed rectangle having either common side or common ver- 
tex with each neighbour; a > 0 is either identically equal to 
zero (i.e., for the Poisson problem related with the pressure) or 
is equal to 2/AtRe (i.e., for one of the momentum equations), 
and the equivalent weak formulation of (10), (11) is: 

find u   eHo(tt) suchthat 

l(u,v) = (f,v)L2(tt)Vv €  Hi(Ü)   (12) 

where HQ(SI) is the real Hilbert space defined as follows: 

ffo'(n) = {« e L2(Q) : p- € L2(Q) (13) 
ox i 

and  p- € L2(Q),   u|en = 0} (14) 
OX2 

equipped with the scalar product: 

i(u,t>) =   / (VuVv + auv)dQ      Vti, v € //'Ö(O)       (15) 
Ja 

Following the classical domain decomposition technique prob- 
lem (12) is decoupled into a set of problems within each sub- 
domain plus an additional problem at the interfaces F: 

T = {U\Uo)\dQ   with   fi0 = U^O, (16) 

Let Hg(T) be the completion of the normed vector space S 
defined as: 

S    =    {z£ C°(r) :  34> € C0°°(n) such that z = 4>r) 

inf     | 
*<=c~(n) 

lltf'(n) 

where <j>r is the restriction of </> on T. 
The linearity and continuity of the operator 

(17) 

(18) 

into r/0
1/2(r) and the fact that Cg°(Q) is dense in H£(Sl) leads 

to the existence and uniqueness of a linear and continuous 
operator 7 (trace operator) from HQ (Q) onto H0 (F) defined 
as 

7<t> = <t>r    V<t>eHl(Q) (19) 

The 7 operator allows to identify two closed mutually orthog- 
onal subspaces 

where ker(7) is the kernel of operator 7, and its orthogonal 
complement KL is defined as: 

KL = {Ü e Hl
0 (fi) : l(ü, vo) = 0   V vo € A'}        (21) 

Therefore, the solution u € Ho(U) of problem (12) can be 
uniquely decomposed as 

u = uo + ü,    uo £ K   and   it € K (22) 

Since the restriction 70 of the operator 7 to K1 is an isometric 
isomorphism between A'x and HQ(T) it follows that 

VÜ€Ä"X   3! V € H0
1/2(r) :   « = 7o~V (23) 

Identity (22) can be reformulated as: 

U = UO + 7O-10   with   uo€K   and   t/> 6 tf0
1/2(r)      (24) 

Thus, problem (12) can be easily proven to be equivalent to 
the set of the two following ones: 
Problem (PI): find u0    € A' such that: 

J("o,fo) = (/, fo)z.2(n)  V t;0  6  A' 

Problem (P2): find V   € Ho'2(T) such that: 

i(7o"V,7o"!*) = (/.7o_,*W)V*  € tf0
1/2(r) 

(25) 

(26) 

Problem Pi is nothing else than the solution of N decoupled 
elliptic problems with homogeneous Dirichlet boundary con- 
ditions on both dQ and T. To build its discrete conterpart, 
a standard Legendre collocation method has been used ( [7]). 
To this end, the unknowns are decomposed into a series of 
Legendre polynomials: 

k=l   1=1 

(27) 

where Lk is the kth Legendre polynomial. Likewise, the func- 
tion v is decomposed into a series of Lagrange polynomials 
constructed on the Gauss-Lobatto nodes. 

*>{x,y) = ^2^vk,iLak(x)Lal(y), (28) 

*=i 1=1 

where Lak is the k'h Lagrange polynomial for which 
Lak(xi) = <$*,;. By taking into account the expression of u 
and t> and by replacing the scalar product l(.,.) by its discrete 
counterpart, the differential problem reads: 

find ufc,j, l<k < Nx , 1 <l < Ny such that 

Efc .HI?*)*.« + ««*.' - fkALa^x^La'iyi^ui = 0 Vi, 3 
(29) 

where Wk are the Gauss Lobatto weights for the quadrature. 
Using the definition of Lagrange polynomials [Laj[xi) = &ij), 
the disretized equations become: 

find  u*,i,    1 < k < Nx , 1 < / < Ny 

such that        JV + auk.i = fk,i (30) 

A = ker(T) = {«0 6 #0 (fi) : 7«o = 0} (20) 

An efficient procedure to solve the given algebraic problem 
will be given in the next section. 
As concern problem P2, if {£} i = 1, .., 00 is a set of linearly 
independent functions which constitute a base for H0 (F), 
then the discrete version of problem P2 reads as: 

M 

'(7o~,£*fc.7o~,W = (/.To~,&W)   Vj = l,..,M   (31) 



5-3 

Typically M corresponds exactly to the number of points on 
the interface. To set up an algebraic equivalent of (31) the 
operator 7J"1 should be explicitly formulated. In practice, the 
operator -/g1 is never required if an iterative procedure is in- 
troduced to solve problem P2. To illustrate this point, it must 
be remarked that ük G KL must satisfy the orthogonality con- 
dition: 

l(ük,vQ) = 0     VvoZK (32) 

which corresponds to the solution of N elliptic problems (25) 
with Dirichlet boundary conditions: homogeneous on du and 
to be iteratively determined on T. 
To provide at each iteration k the condition on T for problem 
(32) the Green's formula is applied to (31) 

«■-/^-/fc«-   "-•■■» 
(33) 

where ük = 7J"1 Yli=\ ak£' *s 'ne solution at iteration k of 
problem (32), where ^ represents the jump of the normal 
derivatives on T. Rk is the residual at iteration k, from which 
the updating of the boundary value öfc+1 |r can be obtained 
within the chosen iterative procedure. 
The convergence rate of the iterative procedure strongly de- 
pends on the choice of the basis {£;} [8]. For the present work 
the basis functions proposed by Ovtchinnikov [8] have been 
used. These constitute a nearly optimal basis, in the sense 
that the condition number of system (31) is bounded by a 
constant independent of M, where M is the dimension of the 
subspace of H0 (T) generated by span{£;} i = 1,.., M. 
In view of the character of the algebraic problem (symmetric 
positive defined) the conjugate gradient has been employed to 
solve problem (31). 

3.2    Solution procedures for multiple prob- 
lems 

When multiple solutions for an elliptic problem of the form 
(10, 11) are required (i.e., within a fractional step time ad- 
vancement), it turns out to be much more efficient to invert, 
once for all (in a pre-processing stage), the abstract operator 
S handling the interface unknowns. 
To introduce the method let us reconsider problem (10, 11). 
With reference to the previous section, we reconsider the same 
differential problems: problem PI (25) and the the differential 
problem leading to the solution on the interface (P2), here 
given in the following abstract form: 

Sak   =  bk (34) 

Where the a* 's refers to the Galerkin coefficients of the solu- 
tion on the interface, and the 6* 's are the Galerkin coefficients 
of the jump of the normal derivatives produced by the solution 
of the N problems PI. 
Let us now consider the M problems (see 31): 

Sak   =  Sij (35) 

Meaning problems with a jump of the normal derivatives lead- 
ing to a unitary Galerkin coefficient i and zero values for all 
the other coefficients j, (j ^ i). Succesive inversions, through 
the iterative procedure outlined in the previous section, al- 
low for constructing by columns the operator 5_1. The latter 
might, then, be considered as a capacitance Galerkin matrix 
that applied to the Galerkin coefficients of the computed nor- 
mal derivatives jumps (problem Pi) release the coefficients of 
the solution on the interface to guarantee a zero weak normal 
derivative jumps between subdomains. It is also remarked 
that matrix 5_1 is simmetryc because obtained from the dis- 
cretization of a self-adjoint problem (33). Of course this is a 
nice property leading to an evident storage reduction. 

A final remark concerns the importance of achieving an ef- 
ficient technique to invert the decoupled Dirichlet problems 
(PI). To this end, we make use of a modified matrix diagonal- 
ization approach [9]. The Legendre collocation approximation 
to one of the mentioned sub-problems migh be re-written as: 

UD + DTU + aIU  =  F (36) 

where D is the collocated Lagrange second derivative matrix 
acting on the subdomain internal nodes, U is the unknow 
matrix ordered by rows, and F is a modified right hand side 
matrix keeping into account the effects of the boundary values. 
First, we determine the eigenvalues of D, its left and right 
eigenvector system (ordered by columns) and the respective 
inverses. 

E'1 D Er =    A (37) 

Ef1 DT Ei =    A (38) 

Matrices Er, Ei, £r ', El ' and the diagonal eigenvalue matrix 
A are computed and stored in a pre-processing stage. Indicat- 
ing with Ü = E~x U Ei and with F= E?1 F Ei we invert 
the diagonalised problem: 

AÜ + ÜA - aÜ =  F (39) 

and recover the final solution as: 

U  =  ErÜE^1 (40) 

Having solved the eigenvalue  problem in a pre-processing 
stage, the recursive solution cost turns out to be order n 
operations, n being the number of nodes used to discretized 
each direction within a single subdomain. 

3.3    Projection step treatment 
If each single differential problem is tackled with the algorithm 
described in the previous section, at the end of each time step 
the solution is equivalent to one, hypotetically achieved by 
solving the whole domain at once. 
The last statement requires some comments. When finite di- 
mensional approximation of the space where the solution is 
sought are considered numerical problem might arise within 
the fractional step algorithm in the interface neighbouring re- 
gions. In particular when the projection step (5) is considered, 
a straigh use of the results obtained with the present multido- 
main method leads a discontinuous value of the divergence 
free velocity field along the interfaces. 
From the numerical point of view, these discontinuities, even 
if limited to a set of measure zero (r) might introduce an 
artificial "numerical boundary layer" that the whole time in- 
tegration procedure cannot damp out and that might lead 
to catastrophic instabilities. To avoid such a drawback two 
solutions are possible. The first one relies upon increasing 
the dimension of the approximation subspaces to reduce the 
jumps at the interface. The second one consists in replacing 
the gradient of the pressure in equation (5) with an equiv- 
alent function in L2(ü), which differs from the original one 
only along sets of measure zero. In particular, the gradient 
Q = V(<£n+1 — <t>n) of the solution, achieved by solving (7) 
with the previously outlined multi-domain spectral method is 
substituted with the vector function Q defined as: 

Gi(x,y) = 
Q.(*,y) v(*,y)Gn\r 
CT^[sr«; + e,M]   v(*,y)err3   (41) 

V t, j = 1, 2 component. 
where rr_. = Or n fi;, wj (uij) is the Gauss-Legendre quadra- 
ture weight along rrs (either j or i) corresponding to the node 
(x, y) in the subdomain fir (fi3) and Qr (Qa) is the restriction 
of Q in Qr (Qs) evaluated in (x, y). 
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3.4    Accuracy tests 
To test the accuracy of the proposed spectral multi-domain 
algorithm we have considered the classical Taylor-Green ana- 
lytical test case for the 2-dimensional incompressible Navier- 
Stokes equations: 

u(x,y)    =    — COS(TTI) sin(n-y)e_t/2,r 

v(x,y)    =    sin(jrr) cos(jry)e~''2,r 

p(x,y)    =    -1/4 (cos(2?ra;) + cos(2)ry))e-"r 

(42) 

(43) 

(44) 

on the domain fi = [0,2] x [0,2]. The following set of boundary 
conditions have been applied: 

• on the edges x = 0 and x = 2 homogeneous Dirichlet 
conditions for u and homogeneous Neumann conditions 
for v. 

• on the edges y = 0 and y = 2 homogeneous Dirichlet 
conditions for v and homogeneous Neumann conditions 
for u. 

The tests have concerned both time and space accuracy. The 
latter has been measured imposing an extremely small value 
for the time step. Different configurations have been consid- 
ered and the error has always been measured according with 
the L2(fi) norm. The following table, showing the results of 
different tests with different domain partitioning configura- 
tions, summarizes the accuracy measurements both for one of 
the velocity components and for the pressure. 

Num. Nodes Total Error Error 
doms per dom. nodes L2 u L2p 
1 8 64 .6 x 10~s .2 x 10-4 

1 11 121 .2 x lO-1" .2 x 10-' 
1 14 196 .7 x HP1' .8 x 10-s 

4 8 256 .9 x 10_i4 .6 x 10_s 

4 11 484 .8 x 10"" .6 x KT" 
4 14 784 .6x 10-1' .8 x lCT" 

From the given results, the accuracy of the solution is quite 
evident. It is remarked that the convergence for the pressure 
is lower than for the velocity, but nevertheless, still spectral. 
In order to measure the time accuracy of the present scheme, 
we considered the same test case with a prescribed discretiza- 
tion in space (4 subdomains 14 x 14 nodes each) sufficient to 
deliver optimal spatial accuracy. In the following table we 
present the relative L2(fi) norm of the velocity error achieved 
after 1 time unit. 

time step size Relative L2 x-component velocity error 
0.1 .4 x 10_1 

0.01 .5 x 10_J 

0.001 .3 x 10-5 

0.0001 .5 x 10-' 

From the results it turns out that the adopted scheme is sec- 
ond order in time, at least for the velocity. 

4    PARALLEL IMPLEMENTATION 

As concerns the parallel implementation of the given algo- 
rithm, we have used a slightly modified version of master- 
slave computational model. In particular, the major differ- 
ence with respect to the classical model is that our master ac- 
tively cooperates with the slaves during the calculation phase, 
while in the standard version, the master is only demanded 
to distribute initial data and to gather the results. In our 
implementation, the activities are shared between master and 
slaves as follow.   At the beginning of the computation, the 

master process calculates the guess values for the Dirichlet 
problems. These values are then trasmitted to the slave pro- 
cesses: each of the slaves solves the Dirichlet problems for 
the assigned domains; it should be noted that, in this case, 
the domain decomposition (which allow the slaves to operate 
in parallel) derives directly from the multi-domain approach. 
After this first phase, the slaves transmit the calculated values 
at the domain interfaces to the master, which calculates the 
new values by applying a Conjugate Gradient algorithm, and 
communicates these values to the slaves for the next iteration. 
The main causes of inefficiency in using parallel architectures 
are an uneven load-balancing and the communication over- 
heads. In general, the multidomain technique can generate 
load balancing problems because the size and/or computa- 
tion of blocks can widely differ; however, in our case each 
domain has the same number of points. Thus, if the number 
of domains is a multiple of the number of processor, we obtain 
an optimal load balancing. The communication overheads is 
mainly related to the Conjugate Gradient algorithm: at each 
time iteration, data need to be exchanged between processors 
containing adjacent domain interfaces and the master proces- 
sor. Because of the sequantial flow of these activities, it is 
not possible to overlap computation and communication, so 
the time spent for these communications can represent a not 
negligible part of the overall computing time. 
The parallel version of the code has been developed for mes- 
sage passing environments. In particular, the code has been 
written in Fortran 77 plus PVM 3.3 communication primi- 
tives. In order to meet the goal of overlapping computation 
and communication, non-blocking communication primitives 
have been used. Note that the parallelism is exploited only 
among slaves: the master and the slaves cannot operate in 
parallel. Anyway, as the great part of the computation is de- 
manded to the slaves, the obtained performances on various 
homogeneous parallel systems are quite good. 

4.1      Performance evaluations 

For the tests, we have used two different parallel machines. 
The first is a CONVEX C210-MPP0 with a vector processor 
and 4 scalar processor HP 730 connected via FDDI. The sec- 
ond machine is a MEIKO CS2 with 18 super-Sparc processors 
connected through a switching network. Both the machine 
are distributed memory MIMD parallel computers. The tests 
have been performed by using a number of domain multiple 
of the number of processors used, so that load balancing is 
guaranteed. Hence, the cause for the loss of efficiency are the 
time tc spent for the communication and the idle time tw of 
the slaves waiting for the master results. Note that, while the 
time tw is indepenedent of the number N of processors, the 
time tc increases according to N: so, for a given problem, a 
linear decrease of the efficiency is expected. 
In figg. (1-4) the results obtained on the Meiko machine are 
shown. Note that the values of efficiency are quite good, ex- 
pecially when the number of points for each domain increases. 
Moreover, when the number of processor grows the efficiency 
linearly decrease, as expected. 
Figures (5,6) shows a comparison of the results obtained for 
both the Meiko CS2 and the Convex MPP0 machines. It 
should be noted that the Convex machine performs better 
than Meiko when two processors are used; on contrary, by in- 
creasining the number of processors the performances of the 
Meiko are better. This behaviour is essentially related to the 
different characteristics of the interconnection networks; the 
FDDI network of the Convex allows very fast communication 
between two processors at time (the optical fiber is a common 
shared resource). On the other hand, the CS2 switching net- 
work allows to simultaneously execute different communica- 
tions, so reducing the overall communication time (as matter 
of fact, also the presence of properly designed communication 
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Fig. 1:       12 domains with 15 x 15 nodes; speed up 

6  - 

"1 1 T" 

9x9 points   • 
15 X 15 points   o 
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Fig. 2:       12 domains with 15 x 15 nodes; efficiency 
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Fig. 4:       16 domains; efficiency 

processors which handle the communication on behalf of the 
spare processor has to be taken into account). 
To further reduce the computing time, we have also used het- 
erogeneous systems. In fact, whenever the execution of differ- 
ent tasks constituting the same program is strictly sequential, 
heterogeneous processing can help in enhancing performance 
by placing a task on the most suitable machine for that task. 
To this goal, tests have been performed by placing the master 
process on a vector computer for a more efficient calculation, 
and the slave processes on a parallel homogeneous system with 
scalar processors. 
However, in our case the time spent by the master is a negligi- 
ble part of the total comuputing time; so, the test performed 
by using an heterogeneous environment have shown no appre- 
ciable improvements. 

5    3-DIMENSIONAL EXTENSION 

In this section, we present a method extension which allows 
for the simulation of three-dimensional flows with one peri- 
odical direction. For this class of flows it is possible to take 
advantage of the classical Fourier decomposition of the flow 
variables in the periodical direction. This choice leads to re- 
duce all the three-dimensional scalar differential problems in 
the physical space (momentum equations and pressure cor- 
rection equation) into a sequence of two-dimensional scalar 
differential problems in terms of the transformed variables. 
Once the two-dimensional problems are set up, it is possible 

to take advantage of the given multi-domain solution method 
to solve them efficiently. 
In particular, let 

N/2-l 

u?(x,y,z) =    22    ulik(x,y)e'k\    i = 1,2,3, (45) 
k=-N/2 

N/2-1 

pn+1(x,y,z) =    J2   Ä+1 (*.»)«"". 
k = -N/2 

N/2-1 

üi(x,y,z) =    2_,    Ui,k(x,y)elkz,    i = 1,2,3, 
k=-N/2 

and 

N/2-1 

(46) 

(47) 

Su,{x,y,z) =    ]T    M,,k(x,y)eIkz,    t = 1,2,3,        (48) 
k=-N/2 

with / = V—T.   Applying the same methodology as for the 
2-dimensional case, the 3-D dimensional algorithm can be re- 
formulated as: 
For every n = 0,1,.. (n being the time counter) 

1 For i = 1,2,3, solve for u,,* (the predicted velocity field) 
the momentum equations, for k = —N/2,..., JV/2 — 1: 
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Fig. 5:       3 domains with 11 x 11 nodes; speed up 

5.1    A 3-D test case 
To validate the proposed 3-D algorithm we have considered 
a direct numerical simulation (DNS) of a low Reynolds num- 
ber fully turbulent channel flow. This flow ([10]) might be 
considered periodic both in stream and spanwise direction 
if the dimensions of the computational box are made large 
enough. In the present case we took as Fourier direction the 
streamwise one, while, to impose periodicity spanwise we im- 
posed the edges of the subdomains to be neighbours one with 
the other. All the lenghts have been made non-dimensional 
with the channel half-height, and the velocity has been non- 
dimensionalized with the center-line velocity. With this se- 
lection the Reynolds number Re = Uc h/v has been fixed to 
the value of 6000 and the computational box had dimensions 
2, 2, .8 in streamwise, normal to the wall and spanwise direc- 
tions respectively . The grid configuration in a section normal 
to the mean flow is displayed in figure (7). 

0.8 

0.7 

Convex   • 
Meiko   o 

3 4 
Nproc 

Fig. 6:      3 domains with 11 x 11 nodes; efficiency 

(-8-^+8k2 + ^)6ü,,k = rhsi,k,    1 = 1,2,      (49) 
' dx2 At' 

2 Solve   for   p"+1    the   pressure    correction,    for   k     = 
-N/2,...,N/2-l: 

d2   , .2^-„+i 2  da,,*     Ik- 

(50) 

3 For   i    =    1,2,3,   update   the   velocity   field,   for   k    = 
-N/2,...,N/2-l: 

n+i       - Afj    a(F''o ~~P*)     if i= 1,2 ,,i\ "..*    = "*,* — At ^ ex, J ' (51) 
Ik.p^ otherwise 

The subscript I has been introduced to stress the fact that the 
collocated derivatives are computed in the two non-periodical 
directions only. The term rhsi:k represents the k' mode 
of the transform of the right-hand-side of the i' momen- 
tum equation. The treatment of the boundary conditions is 
straightforward and does not introduce any supplementary 
difficulty. Despite its apparent complexity, this algorithm 
presents the advantage that all the computations of the ellip- 
tic terms take place in the transformed space (for the periodic 
direction) leading to the full exploitations of the 2-dimensional 
algorithm. 

Fig. 7:      Grid configuration in the normal plane 

Five subdomains, the first and the latter selected to embedd 
the wall sublayer, are used. Each subdomain contains 20 x 20 
nodes, while in the Forier direction 24 modes are employed. 
The present case has been run on a IBM RS6000 360H work- 
station with about 100Mflops peak performance. The cpu 
required for each full time iteration is of about 4.5 seconds 
when the Galerkin capacitance matrix is computed and stored 
in a pre-processing stage. 

Fig. 8:      Mean stream-wise velocity near the wan 

After having reached a statistical steady state we measured 
some typical turbulent value to assess the quality of the ob- 
tained results. In figure (8) we compare the obtained velocity 
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profile with the logarithmic wall law (u/utau = 2.5 log(y+) + 
5). In figure (9) the computed turbulence intensities are com- 
pared both with the experimental ones of Wei and Willmarth 
([11]) at Reynolds 3850 and with the ones predicted by the 
DNS of Jimenez and Moin ([10]) at Reynolds 5000. 

- (vV) present 
- (u'u') present 
* Wei and Willmarth 
o Jimenez and Moin 

X 

10 

y^ 

Fig. 9:      Near the wall turbulence intensities in wall coor- 
dinates 

Finally, an instantaneous velocity field in a plane normal to 
the mean stream is displayed in figure (10). The agreement 
of the data is acceptable and paves the way for simulation 
of more complex turbulent flow configurations. Indeed when 
more points are necessary the actual code might allow for a 
full exploitation of MIMD computers architectures. 

iuiii iv 
Fig. 10:    Instantaneous normal plane velocity field 

6    CONCLUSION 

The present work has been concerned with the solution of 
the unsteady incompressible Navier-Stokes equations, using a 
high order collocated spectral multi-domain method. The ra- 
tionale behind the choice and development of the method is 
given both by the possibility of coupling the potential high 
accuracy of spectral methods with the flexible framework of- 
fered by multi-domains methods, and with the natural way in 
which a parallel implementation of the present algorithm can 
be achieved. 
In particular, we have shown how the developed algorithm al- 
lows for the solution of completely independent and balanced 
sub-problems leading to full exploitation of MIMD parallel 
computers. 

Moreover the data from the channel DNS simulation seems 
to confirm the viability of the present algorithm to deal with 
complex turbulent flow configurations. At the same time it 
should be stressed that the capability of selecting the accuracy 
in determined flow regions might reveal to be a powerful tool 
for resolved Large Eddy Simulations in complex configurations 
(i.e., when approximate wall conditions are not available). 
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ABSTRACT 
A parallel implementation of the three-dimensional 
Navier-Stokes Rotorcraft flow solver TURNS is stud- 
ied. We investigate two modifications of the LU-SGS 
operator to improve parallel performance. The first 
is the Data-Parallel LU Relaxation (DP-LUR) tech- 
nique. This operator uses a Jacobi sweeping pro- 
cedure in place of the Gauss-Seidel sweeps in LU- 
SGS. The resulting algorithm is very amenable to 
parallel processing but requires significantly more 
computational work. The second approach is a Hy- 
brid technique which maintains the nearest neigh- 
bor communication patterns of DP-LUR but uses 
the more efficient Gauss-Seidel sweeps of LU-SGS 
for the on-processor computations. The TURNS 
code, with the DP-LUR and Hybrid operators, is 
implemented on the massively parallel Thinking Ma- 
chines CM-5 using a MIMD (i.e. requiring mes- 
sage passing) approach. The convergence qualities 
and the CPU time of the two implicit operators 
are studied for an example calculation, computing 
the quasi-steady three-dimensional flowfield around 
a helicopter blade with subsonic and transonic tip 
Mach numbers. Both the DP-LUR and Hybrid mod- 
ifications of LU-SGS show very good parallelism, 
and maintain the convergence rate of LU-SGS. How- 
ever, the Hybrid method uses less overall CPU time 
than DP-LUR. 

1. INTRODUCTION 
In recent years helicopters have proven to be eco- 
nomical and convenient vehicles with their ability to 

•Presented at the 77th AGARD F.D.P Meeting, Seville, 
Spain; Oct. 2-5 1995 
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'Associate Professor 
5 Research Scientist 

land, take-off and maneuver in areas inaccessible to 
fixed-wing aircraft. The ability to predict the flow 
around helicopter rotors is vital for the control of 
high-speed losses, vibration and noise. 

Transonic flow is normally encountered on rotors in 
high-speed forward flight. Various transonic flow 
models have been used for the modeling of the tran- 
sonic aerodynamics around the rotor. The transonic 
small disturbance potential formulation is the sim- 
plest approximation used. A more accurate formula- 
tion is the full potential formulation. Two examples 
of these full potential formulations are the FPR [1] 
(Full Potential Rotor) code, and the RFS2 [2] code. 
The main advantage of the full potential rotor codes 
is that they can provide a good solution at a low 
cost (CPU time). These codes, however, require an 
approximate wake model to calculate the induced 
downwash. The wake models are based on simple 
linear aerodynamics and, consequently, have a nar- 
row range of applicability. 

A more accurate CFD method is the Transonic 
Unsteady Rotor Navier Stokes (TURNS) code, re- 
cently developed at NASA Ames by Srinivasan and 
co-workers [3-5]. TURNS is capable of computing 
the tip vortices and the entire vortical wake as a 
part of the overall flowfield solution. The code has 
been demonstrated to calculate accurately the three- 
dimensional flow around the tip of a helicopter rotor 
in both hover and forward flight at subsonic and 
transonic flow conditions   [3-11]. 

Recently, TURNS has been applied in a multidisci- 
plinary setting, computing a near-field CFD solution 
that is then used as input for a Kirchhoff method 
that predicts the far field noise [12]. The code is 
currently used by NASA, the Army, various Uni- 
versities, and the major US helicopter companies. 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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However, one drawback of TURNS is the amount 
of computation time it requires. An acceptable cal- 
culation with TURNS requires a supercomputer of 
Cray-class. A typical quasi-steady coarse-grid Eu- 
ler computation by TURNS requires about 30 min- 
utes CPU time on a Cray C-90, while an unsteady 
computation requires 3-4 hours. Fine-grid viscous 
computations require considerably more time. 

Parallel computers, which include massively parallel 
supercomputers as well as workstation clusters, are 
beginning to replace traditional vector supercomput- 
ers for large scale computations due to their lower 
cost and high peak execution rates. At present, 
TURNS is inefficient on parallel machines. The main 
bottleneck preventing better parallel efficiency is the 
LU-SGS algorithm [16] used for the implicit time 
step. The objective of our work is to study tech- 
niques that will improve its efficiency. Thus, the 
majority of this paper will focus on the LU-SGS al- 
gorithm and some modifications thereof which im- 
prove its parallel efficiency. Initial results of this 
effort were presented in reference [13]. 

Although the TURNS code is primarily used for ro- 
tor CFD calculations, the solution algorithm is the 
same as many other CFD methods. Consequently, 
the parallelization procedures proposed here could 
readily be used for other codes that use the LU-SGS 
implicit operator. 

2. CODE DESCRIPTION 
The governing equations for the TURNS code are 
the unsteady, compressible, three-dimensional thin 
layer Navier-Stokes equations. These equations are 
applied in conservation form in a generalized body- 
conforming curvilinear coordinate system 

dTQ + diE + d„F + d(G = ^d(S + ^     (1) 

where r = t, £ = £(x,y,z,t), TJ = r)(x,y,z,t), and 
£ = Q(x,y,z,t). The coordinate system (x,y,z,t) 
is attached to the blade. The vector of conserved 
quantities is Q, and the inviscid flux vectors E, F, 
and G are 

Q=l 

1 

7 

p 
pu 
pv 
pw 

e 

E=l 

pU 
puU + £xp 
pvU + kyP 
pwU + \zp 
UH - £tp 

(2) 

pV 
puV + r)xP 
PVV  +  f]yP 
pwV + r]zp 
VH - T]tp 

G = 

PW 
puW + (xp 
pvW + (yP 
pwW + CzP 
WH - (tP 

where H - (e + p) and U, V, and W, are the con- 
travariant velocity components (e.g. U = £* +£E« + 
tyV + £zw). The cartesian velocity components u, 
v, and w are defined in the x, y, and * directions, 

respectively. The quantities £t,tx,ty, and 6* are the 
coordinate transformation metrics and J is the Jaco- 
bian of the transformation. The pressure p is related 
to the conserved quantities through the perfect gas 
equation of state 

(7-l){e-f(«: 2 + v2 + w2)} (3) 

The viscous flux vector S is incorporated in the code 
but the calculations given in this paper are all invis- 
cid (i.e. e = 0 in Eq. 1) so the viscous terms are not 
described here. Details can be found in [4]. 

The governing equations are applied to an inertial 
reference system that moves with the blade. Because 
the blade is rotating, the system is continuously un- 
steady. In order to get a quasi-steady starting so- 
lution, the blade must be held in in fixed position. 
This is done, in effect, by adding source terms to the 
right hand side 

3? = - 
J 

0 
Qpv 

-Qpu 
0 
0 

(4) 

where fi is the angular velocity of the rotor. The 
9? vector is used only for the quasi-steady case to 
get a starting solution. It is not used for unsteady 
calculations. 

The inviscid fluxes are evaluated using Roe's upwind 
differencing [14] in all three directions. The use of 
upwinding obviates the need for user-specified arti- 
ficial dissipation and improves the shock capturing 
in transonic flowfields. Third order accuracy is ob- 
tained using van Leer's MUSCL approach [15] and 
flux limiters are applied so the scheme is Total Vari- 
ation Diminishing (TVD). 

The final Euler discretized form of Eq. 1 in unfac- 
tored implicit delta form is 

[I + h (S(A
n + 6,Bn + 6cC

n)] AQn = -hRHSn 

where 
(5) 

RHSn = dsEn + dnF
n + dcG

n - SJ"       (6) 

/ is the identity matrix, h is the time step to which 
the formulation is described more completely in [4], 
and AQn = Qn+l-Qn. The 5x5 matrices A, B and 
C are the Jacobians of the flux vectors^ with respect 
to the conserved quantities (e.g. A dE\ 

dQ>- 

3. IMPLICIT OPERATOR 
The TURNS code uses the two-factor LU-SGS 
(Lower-Upper Symmetric Gauss Seidel) algorithm 
of Yoon and Jameson [16] for the implicit time step. 
The LU-SGS algorithm has been used in a number 
of well-known CFD codes (e.g. INS3D [17], OVER- 
FLOW [18]) primarily for it's stability properties 
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with larger timesteps. Classic implicit methods such 
as Beam-Warming approximate factorization have a 
large factorization error (of order At3) which further 
restricts the size of the time step. The two-factor 
LU-SGS method has enhanced stability along with 
a reduction in factorization error (order At2) that 
make it an attractive alternative. Unfortunately, the 
LU-SGS method is difficult to parallelize. 

The LU-SGS scheme resembles a typical LU factor- 
ization scheme with diagonal preconditioning to in- 
crease robustness. The scalar diagonal terms are 
obtained by use of approximate Jacobians, avoiding 
costly matrix inversions. The Jacobian terms A,B, 
and C in Eq. 5 are split into "+" and "-" parts, with 
positive parts constituting only the positive eigenval- 
ues and negative parts constituting only the negative 
eigenvalues. The positive matrix is backward differ- 
enced and the negative matrix is forward differenced, 
as follows 

Ai    =    6^A+ + 8+A- (7) 

=    Af-A+_1 + Aj+1-Aj 

This splitting ensures diagonal dominance. Approx- 
imate Jacobians are constructed using a spectral ap- 
proximation 

A±=s^(A±PAI)±epAI (8) 

where pA is the spectral radius of A (in the £ direc- 
tion). 

pA=max[\\A\l = \U\ + a\VZ\ (9) 

e is some small value (e.g. .001), and s* is defined 
as 

*s = il      iLt{u,tam)-°   do) otherwise 

The same procedure is used in the rj and ( directions 
to form the B and C terms. 

Substituting this development into Eq. 5, we arrive 
at a system of the form 

LD~1UAQn = -hRHSn 
(11) 

where 

D    -    I + h(pA+PB+Pc)jtk,i 

L    =    JD-MAt_1 + S+_1+C+1) 

U    =    D + h(A-+1 + B^+1+Cf+l)      (12) 

D is a diagonal matrix, and the two step LU decom- 
position can be performed by 

LAQ*    =    -hRHSn 

UAQn    =    DAQ* 

D~lh 

which can also be written 

-RHSn + (Af_16Q*j_1 

+Bt16Ql-i + CtitQl 

Aj+16Q*j+1 + B^+1 SQ* k,l D~lh 
jfc+i + ^i+i^Q*+i 

(14) 

In the first step of (14), sweeps updating SQ* are 
performed in the positive direction (that is, from 1 
to jmax,lcmax,lmax) through the solution domain. 
The second step then computes 6Qn by sweeping 
back through the domain in the opposite direction. 
This algorithm can be vectorized using a hyperplane 
approach, as outlined in [19]. Vectorization is done 
across hyperplanes in which j+k+l=const. This is 
outlined in Fig. 1. 

(13) 

Figure 1: Domain sweeping strategy used by LU- 
SGS algorithm. Can vectorize on hyperplanes where 
j+k+l — const. 

While the hyperplane approach leads to good vector 
execution rates, it is difficult to parallelize for two 
reasons; 1) the size of the hyperplanes vary through- 
out the grid, leading to load balancing problems, and 
2) there is a recursion between the planes, leading 
to a large amount of communication. 

Parallelization of the LU-SGS algorithm in (14) has 
been addressed by other researchers. Barszcz et 
al. [19] implemented the LU-SSOR algorithm, which 
is similar to LU-SGS, on a massively parallel ma- 
chine by restructuring the data-layout using a skew- 
hyperplane approach. Although they were able to 
extract reasonable parallelism with this approach 
the data-layout is complex and considerable effort 
was required to implement the domain partitioning 
in an efficient manner when using a MIMD (Multiple 
Instruction Multiple Data) implementation. Also, 
the restructuring of data on the left hand side in 
turn causes the right hand side layout to be skewed 
and extra communication is required. Overall, the 
LU-SGS algorithm (14) is not conducive to efficient 
parallel execution. 

Several researchers have proposed modifications of 
the LU-SGS algorithm to make it more paralleliz- 
able. Candler et al. [21, 22] have investigated a mod- 
ification called Data-Parallel LU Relaxation (DP- 
LUR), which has shown excellent results in a data- 
parallel environment. It is used in this study and is 
discussed more thoroughly in section 3.1. Wong et 
al. [20] have investigated a domain decomposition 
implementation of LU-SGS.  For  two-dimensional 
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steady state reacting flow problems, they found that, 
while the convergence rate of the operator is re- 
duced with the domain breakup, the affect is rel- 
atively weak (e.g. with 64 subdomains, the number 
of iterations increases by less than 20%). Thus, the 
domain decomposition strategy appears promising, 
and is used as a basis for the Hybrid algorithm, dis- 
cussed in section 3.2. 

3.1 DP-LUR Method 
A modification of LU-SGS, referred to as Data- 
Parallel LU Relaxation, has been introduced by Can- 
dler et al. [21, 22] for solving hypersonic flow prob- 
lems. Essentially, the modification involves trans- 
ferring the nondiagonal terms to the right hand side 
and using values from the previous iteration for these 
terms. The modified operator then becomes Jacobi- 
like and requires only nearest neighbor communica- 
tion. This operator has been found to be very effi- 
cient in a data-parallel environment (e.g. [22, 23]). 
The DP-LUR modification of the LU-SGS algorithm 
is given in (15). 

ÖQlkl = D-l-hRHSn 

For z'=l,.. Do 

D- (15) 

RHSn + 
(i-i) 

Bt-itäk 
(i-i) 

(I-I) 

c^sQii-cr+M+i 
End Do 

- znV SQ?,k,i = Wit" 

The main difference between the LU-SGS and DP- 
LUR algorithms is that a Jacobi sweeping strategy is 
used in DP-LUR while Gauss-Seidel sweeps are used 
in LU-SGS. The advantage of using Jacobi sweeps is 
that there is no recursion of data and only nearest 
neighbor communication is required at each node. 
Thus, it can be completely load balanced with com- 
munications only at the borders of each partition 
(Fig. 2). 

^<y><*jtf\ 

-H- 
-ff 

-ff 

Figure 2: Jacobi Sweeping Strategy of DP-LUR al- 
gorithm. Load balanced parallelism with nearest 
neighbor communication. 

Although DP-LUR is more amenable to parallel pro- 

cessing than LU-SGS, the use of Jacobi sweeps leads 
to a larger amount of computational work. It is 
well-known that a Jacobi method will have a theo- 
retically slower convergence rate than Gauss-Seidel. 
Multiple sweeps (e.g. 4-6) are therefore required in- 
side Eq. (15) to maintain a comparable convergence 
rate to LU-SGS. Although DP-LUR can be executed 
efficiently on a parallel machine, the added compu- 
tational cost is a significant penalty, the specifics of 
which are discussed in section 5.1. The question is 
whether the computational penalty of DP-LUR is 
the best that we can do. 

3.2 Hybrid Method 
The motivation behind development of the Hybrid 
approach is to replace a source of inefficiency in 
DP-LUR. The DP-LUR algorithm was developed 
primarily for data-parallel computations. Its con- 
vergence is independent of the number of proces- 
sors used because the same Jacobi sweeping strat- 
egy that allows nearest neighbor communications 
between the processors is also used for the compu- 
tations on each processor. Doing the on-processor 
computations with Jacobi sweeps is a source of in- 
efficiency, since the computational work can be per- 
formed more efficiently with the Gauss-Seidel sweeps 
of LU-SGS. The strategy behind the Hybrid ap- 
proach is to use the communications structures of 
the DP-LUR algorithm, to maintain load-balanced 
parallelism with nearest neighbor communications, 
along with the more efficient LU-SGS algorithm for 
the on-processor computations. The algorithm is 
referred to as the Hybrid approach because it re- 
tains features of both the LU-SGS and DP-LUR al- 
gorithms. 

SQfl^D-'-hRHS" 

For i = 1, Do 

*$,/ 

=  SQ&? (16) 

-l D 

= *#a D 

-RHSn + (Af_16Q*(^\ 
+Bt_16Q«!}1+Ct16Q«l 

-l 
y(») *(0 [C+ci;iC 

End Do 

6Q?xi = ^!r,r) 

The equations used inside the sweeps of (16) are the 
same as those used by the LU-SGS algorithm (14). 
Thus, with 1 sweep (i.e. imax = 1), the Hybrid 
algorithm is very similar to a domain decomposition 
implementation of LU-SGS, the only difference being 
the initial condition on the first line of (16). The use 
of multiple sweeps improves the convergence rate, 
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making up for the loss of connection in the domain 
decomposition. 

On 1 processor (with 1 sweep), the method is iden- 
tical to the original LU-SGS algorithm. On many 
processors, (i.e. in the limiting condition where the 
number of processors approaches the number of grid- 
points) the Hybrid method is identical to the DP- 
LUR algorithm. The computational workload of the 
Hybrid algorithm, therefore, is dependent upon the 
number of processors used. The algorithm should be 
most efficient with few processors, and should always 
require less computational work than DP-LUR. 

Parallel implementation of the Hybrid algorithm is 
done in essentially the same way as DP-LUR. Border 
data is communicated to nearest neighbors at the be- 
ginning of each sweep and each processor performs 
the standard LU-SGS algorithm on its domain. Be- 
cause the size of the domains corresponds with the 
number of processors used, the convergence will be 
different with different processor partitions. How- 
ever, like DP-LUR, the Hybrid algorithm maintains 
load balanced parallelism with only nearest neighbor 
communications. 

4. PARALLEL IMPLEMENTATION 
A MIMD approach (i.e. requiring message passing) 
is used for parallel implementation. There are two 
reasons for choosing the MIMD approach over a 
SIMD (Single Instruction Multiple Data) or data- 
parallel approach; 1) Code portability; because mes- 
sage passing codes are more portable to different 
parallel architectures (e.g. from massively paral- 
lel supercomputers to workstation clusters), and 2) 
Ease of implementation; since the original code is 
over 6000 lines, it is much easier to add message 
passing directives to the existing code than rewrite 
the entire code in a High Performance Fortran type 
language (e.g. CMFortran). To ensure easy porta- 
bility of the code, a set of generic message passing 
subroutines was used. With this protocol, the spe- 
cific message passing commands can be altered in 
one line of the code rather than throughout, making 
conversion to different message passing languages, 
such as PVM (Parallel Virtual Machine) and MPI 
(Message Passing Interface), a relatively short pro- 
cedure. 

Fig. 3 shows the breakup of the three-dimensional 
solution domain. The flowfield domain is layed out 
on a two-dimensional array of processors. The flow- 
field is split in the wraparound (/) and spanwise (K) 
directions. The normal direction (L) is left intact so 
that the implementation of surface boundary condi- 
tions is unchanged from the existing serial code. A 
single layer of ghost cells is placed on the border of 
each processor, providing a location where the com- 
municated data can be stored. 

The communications between neighboring proces- 
sors is done once during each of the inner sweeps 

Figure 3: Partitioning the three-dimensional domain 
on a two-dimensional array of processors. 

of the DP-LUR and Hybrid algorithms, totaling 
4 x imax communication steps. One communica- 
tion step is required to pass information to form the 
RHS, since third order accuracy requires data at the 
j, k,l±2 points. This communication step could be 
eliminated if a layer of two ghost cells were used but 
this increases memory and communications. The 
boundary conditions at the flowfield borders and on 
the rotor blade can be imposed locally on each pro- 
cessor, but communication is required in the wake 
region where L = 1 to enforce the boundary con- 
dition where the C-H grid collapses and data is av- 
eraged across this wake plane. Only the processors 
holding this data perform communications and only 
one communication step is needed. 

5. RESULTS AND DISCUSSION 
The TURNS code with the DP-LUR and Hybrid im- 
plicit operators have been implemented on the mas- 
sively parallel Thinking Machines CM-5 at the Army 
High Performance Computing Research Center (AH- 
PCRC) in Minneapolis, MN. The CM-5 has a total 
of 896 processors, configurable in processor parti- 
tions of 64, 256, and 512 processors. The implemen- 
tation is performed by adding message passing calls 
to the existing Fortran 77 code. The message pass- 
ing calls are taken from the CMMD library, which 
is supported by Thinking Machines, Inc. 

Each processor on the CM-5 has a peak performance 
of 5 Mflops/Processor.     Vector Units (VU's) ex- 
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ist on each processor that increase the performance 
substantially (e.g. from 5 Mflops/processor to 128 
Mflops/processor). Unfortunately, the only way to 
utilize the VU's at this time is to rewrite the code in 
CMFortran, a High-Performance-Fortran type lan- 
guage. Since TURNS is over 6K lines, rewriting the 
code would require considerable effort and was one 
of the main reasons we chose the MIMD implemen- 
tation in the first place. In addition, rewriting the 
code to CMFortan would eliminate code portability. 
Consequently, the results presented here are deter- 
mined without utilizing the VU's. Although this 
degrades the performance on the CM-5, it is not a 
big drawback overall, because our future plans are 
to run the code on parallel systems such as the IBM 
SP-2 and workstation clusters, which do not have 
vector units. 

The code is run for a test problem that computes 
the quasi-steady flowfield around a symmetric OLS 
blade. The OLS blade has a sectional airfoil thick- 
ness to chord ratio of 9.71% and is a 1/7 scale model 
of the main rotor for the Army's AH-1 helicopter. A 
135 x 50 x 35 C-H type grid is used, with the do- 
main extending eight chords in all directions. The 
upper half of the grid is shown in Fig. 4. We chose 

Figure 4: Upper half of the 135 x 50 x 35 C-H type 
grid used for OLS airfoil calculations on the CM-5. 

to use this particular grid and airfoil because they 
were used for calculations in the aeroacoustic study 
in [12]. Unfortunately, the unusual mesh dimensions 
cannot be partitioned in a way that exactly matches 
the processor partitions on the CM-5 (64, 256, and 
512 processors). For example, the J dimension has 
only odd factors so it is impossible to partition it on 
an even number of processors. We did break up the 
mesh in a way that used most of the processors in 
the partition. For the 64 node partition, the mesh 
was broken in 19 points in the J direction, and 3 
points in the K direction, giving a total of 57 pro- 
cessors. For the 256 node partition, the mesh was 
broken in 19 points and 12 points in the J and K di- 
rections, respectively, giving 228 processors. Finally, 
for the 512 node partition, the mesh was broken in 
19 points and 24 points in the J and K directions, 
giving 456 processors. When executing the code, the 
remaining processors in the partition sit idle. Gen- 

erally, most newer machines (e.g. IBM SP-2) allow 
the user to choose the exact number of processors 
they want for their partition, so this will most likely 
not be an issue on more modern machines. 

The three dimensional quasi-steady starting solution 
is computed around the rotating blade in subsonic 
conditions, with Miip = 0.664, and a more tran- 
sonic condition, with Mtip — 0.80. In both cases, 
the freestream Mach number is Moo = 0.17 and the 
blade position is fixed at zero degrees azimuth an- 
gle (Fig. 5). It should be noted that the first case, 
Mtip = 0.664, is a realistic test case for rotor cal- 
culations. The Mup = 0.800 case, however, is far 
too transonic to be used in a practical helicopter ap- 
plication. It was added as an extreme test case to 
investigate the behavior of the implicit solvers with 
more nonlinear transonic flows. 

nniii 
Quasi-Steady 

Starting Solution 

Blade fixed 
at 0 deg Azimuth 

Figure 5: Quasi-Steady solution. Blade fixed at zero 
degrees azimuth angle. 

It should be also be noted that results are presented 
for a quasi-steady fixed blade case instead of an un- 
steady case because the convergence behavior of the 
implicit solvers can be quantified most easily with 
this quasi-steady case. It is difficult to investigate 
convergence behavior with an unsteady case without 
also verifying time-accuracy for the implicit solver. 
This does not indicate that the method is unable 
perform unsteady runs. The same algorithm is used 
for time-accurate unsteady cases so these cases can 
be run without further modifications to the algo- 
rithm. 

5.1 DP-LUR Results 
The results of timings of TURNS with the DP- 
LUR algorithm on 57, 228, and 456 processors are 
given in Tables 1 and 2, for the MUp = 0.664 and 
Mup = 0.800 cases, respectively. The method is 
stopped when the density residual drops by two or- 
ders of magnitude below its maximum value. Plots 
of the L2-norm density residual vs. number of iter- 
ations are shown for the two cases in Figs. 6 and 
7. The convergence of the original LU-SGS method, 
run on a single processor, is also shown in the plots 
for comparison purposes. 
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Table 1 - Timing Results on the CM-5 for TURNS 
with DP-LUR for subsonic test case. 135 x 50 x 35 
mesh, Mup = 0.664, density residual converged to 
5 x IQ"7. 

Procs Iterations % Comm. Tot. Time 

5 sweeps 
57 436 10.4 % 9330 sec 

228 440 15.3 % 2508 sec 

456 438 21.0 % 1445 sec 

6 sweeps 
57 351 9.2% 8505 sec 

228 350 15.1 % 2233 sec 

456 353 19.9 % 1292 sec 

7 sweeps 
57 304 9.6% 8229 sec 

228 304 16.6 % 2110 sec 

456 306 20.6 % 1224 sec 

Table 2 - Timing Results on the CM-5 for TURNS 
with DP-LUR for transonic test case. 135 x 50 x 35 
mesh, Map = 0.800, density residual converged to 
5 x 10"7. 

Procs Iterations % Comm. Tot. Time 
5 sweeps 

57 464 10.0 % 9902 sec 
228 457 14.8 % 2628 sec 
456 465 20.8% 1511 sec 

6 sweeps 
57 379 10.0% 9210 sec 

228 380 15.1 % 2424 sec 
456 383 19.9 % 1402 sec 

7 sweeps 
57 335 9.6% 9068 sec 

228 335 16.6% 2383 sec 
456 345 20.6 % 1380 sec 
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Figure 6:   Convergence of TURNS with DP-LUR       Figure 7:   Convergence of TURNS with DP-LUR 
method. Mtip = 0.664 method. MUp = 0.80 
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Figure 8: Parallel Speedups of the time per iteration using the DP-LUR operator 
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Table 3 - Timing Results on the CM-5 for TURNS 
with the Hybrid method for subsonic test case. 
135 x 50 x 35 mesh, Mup = 0.664, density residual 
converged to 5 x 10-7. 

Procs Iterations % Comm. Tot. Time 

1 sweep 
57 461 10.3 % 4937 sec 

228 470 15.1 % 1434 sec 
456 502 18.8 % 863 sec 

2 sweeps 
57 394 10.1 % 5410 sec 

228 398 14.8 % 1524 sec 
456 404 20.6 % 889 sec 

3 sweeps 
57 386 10.0% 6423 sec 

228 385 14.8% 1771 sec 
456 385 19.7 % 1012 sec 

Table 4 - Timing Results on the CM-5 for TURNS 
with the Hybrid method for transonic test case. 
135 x 50 x 35 mesh, Mtip = 0.800, density residual 
converged to 5 x 10"7. 

Procs Iterations % Comm. Tot. Time 
1 sweep 

57 531 10.6% 5719 sec 
228 558 15.3 % 1707 sec 
456 580 18.8% 998 sec 

2 sweeps 
57 483 10.1 % 6568 sec 

228 485 14.8% 1858 sec 
456 492 20.4% 1082 sec 

3 sweeps 
57 467 9.9% 7748 sec 

228 466 14.4% 2143 sec 
456 470 19.2% 1226 sec 

Figure 9:    Convergence of TURNS  with Hybrid 
method. MUp = 0.664 

Figure 10:   Convergence of TURNS with Hybrid 
method. Mtip = 0.80 

Panda Speedup - HYBRID 

Figure 11: Parallel Speedups of the time per iteration of TURNS using the Hybrid operator 
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The convergence plots show that a minimum of 5 
inner sweeps (i.e. imax — 5) of DP-LUR are re- 
quired to converge the solution. In both the subsonic 
and transonic cases, 4 sweeps began to diverge. For 
the Mtip = 0.664 case, 5 sweeps gives slightly worse 
convergence than single processor LU-SGS while 6 
sweeps gives slightly better. For the Mup = 0.800 
case, 5 sweeps of DP-LUR gives about the same con- 
vergence as single processor LU-SGS, and 6 sweeps is 
better. This seems to indicate that DP-LUR main- 
tains a good level of robustness for transonic cases, 
since it requires less inner sweeps to maintain the 
convergence rate of LU-SGS. The single processor 
LU-SGS method requires the work of approximately 
1.8 sweeps of DP-LUR. Consequently, these results 
show that, in order to maintain the same conver- 
gence rate, the DP-LUR implicit operator requires 
about 3 times the computational work of single pro- 
cessor LU-SGS. 

Timings of the DP-LUR method indicate that more 
sweeps seems to be the better choice. The overall 
CPU time with 7 sweeps is fastest, but the difference 
between 6 and 7 sweeps is small (less than 2%). Each 
additional sweep increases the CPU time per itera- 
tion by 10-15%. Communication represents a rela- 
tively small percentage of the total CPU time. The 
communication percentage increases with increasing 
number of processors. Also, the percentages tend to 
fluctuate for different cases which is probably due 
to the fact that these runs were done on a loaded 
rather than dedicated machine. 

It should be noted that, in theory, the solution us- 
ing DP-LUR is the same regardless of the number of 
processors used, so the number of iterations should 
be the same for all processor partitions. However, 
Tables 1 and 2 show that the implementation did 
show some slight discrepancies in the number of iter- 
ations. Generally, the differences are small (less than 
4%) and we attribute them to numerical roundoff in 
the machine. Differences in the overall solution are 
indistinguishable for the different partition sizes. 

A plot of the parallel speedups of the time per iter- 
ation of TURNS with DP-LUR is shown in Fig. 8. 
The speedup from 57 to 228 processors is nearly lin- 
ear, but some falloffis noted for 456 processors. This 
is believed to be due to the relatively small problem 
size of 236,250 gridpoints. It is expected that the 
speedup will be more linear with larger problems. 
The parallel speedup increases slightly for a larger 
number of sweeps, since the amount of computa- 
tional work goes up. However, the difference is not 
significant. 

5.2 Hybrid Results 
Results of timings with the Hybrid algorithm are 
given in Tables 3 and 4, for the Mtip = 0.664 and 
Map = 0.800 cases, respectively. Plots of the density 
residual vs. CPU time are given in Figs. 9 and 10. 

The efficiency of the Hybrid method is apparent in 

the number of inner sweeps required for convergence. 
While DP-LUR required a minimum of 5 sweeps, the 
Hybrid method converges at a comparable rate to 
single processor LU-SGS with only 1 sweep. This 
is due to the more efficient Gauss-Seidel procedure 
used for the on-processor computations. With 2 
sweeps, the convergence of the Hybrid method is 
almost identical to single processor LU-SGS. With 
one sweep, there is significant spread between the 
convergence curves for the different numbers of pro- 
cessors, but with 2 sweeps, the spread is reduced 
considerably so that all processor partitions follow 
essentially the same convergence path as LU-SGS. 
Although it is not shown in the figures, the conver- 
gence plot with 3 sweeps is only slightly better than 
with 2, and it is therefore not plotted to avoid the 
graph from becoming too crowded. 

The Hybrid method is considerably faster than DP- 
LUR. The CPU times of the Hybrid method are only 
55-60% those of DP-LUR. This is due to the larger 
amount of computational work in DP-LUR, because 
a larger number of sweeps are required for conver- 
gence. 

It should be pointed out that each sweep with DP- 
LUR involves only a single sweep through the do- 
main on each processor, whereas the Hybrid method 
performs the two-step LU-SGS algorithm on each 
processor, performing two sweeps through the do- 
main. Thus, each sweep of the Hybrid method is 
approximately equivalent to the work of two sweeps 
in DP-LUR. This is indicated in the CPU times; the 
CPU time using 6 sweeps of DP-LUR is approxi- 
mately equal to 3 sweeps using the Hybrid method. 

Using 1 sweep in the Hybrid method gives the best 
CPU time, but requires 17-18% more iterations than 
single processor LU-SGS. The CPU time with 2 
sweeps is worse than that of 1 sweep by about 8%, 
but the convergence rate is much closer to that of 
single processor LU-SGS. When 3 sweeps are used, 
the convergence is only slightly better (a reduction 
in iterations of less than 5%) than 2 sweeps, while 
the CPU time is about 11-15% more. Thus, 3 sweeps 
or more appears to be unnecessary. 

A plot of the parallel speedups of the time per iter- 
ation is shown in Fig. 11. The parallel speedups are 
essentially the same as with DP-LUR. 

6. SUMMARY AND CONCLUSIONS 
A strategy is presented for implementing the three- 
dimensional Navier-Stokes Rotorcraft CFD code 
TURNS on massively parallel computer architec- 
tures. The main portion of the code that is difficult 
to parallelize is the implicit timestep using the LU- 
SGS operator. We study two modifications of this 
operator that make it more amenable to parallel im- 
plementation. The first is the Data-Parallel LU Re- 
laxation (DP-LUR) technique, which essentially re- 
places the Gauss-Seidel sweeps in LU-SGS with Ja- 
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cobi sweeps, and uses multiple sweeps of the domain 
to maintain the same convergence rate. The sec- 
ond is a new approach that couples the Jacobi com- 
munication strategy of DP-LUR with Gauss-Seidel 
sweeps of LU-SGS for the on-processor computa- 
tions. It also uses multiple inner sweeps to maintain 
the convergence rate of LU-SGS. Because this sec- 
ond approach retains features of both the DP-LUR 
and LU-SGS algorithms, we call it a Hybrid method. 

The TURNS code is tested on the Thinking Ma- 
chines CM-5, using a MIMD approach for parallel 
implementation. It is run for an Euler quasi-steady 
calculation with 236,250 gridpoints, computing the 
flow around the tip of a helicopter blade rotating 
with subsonic and transonic tip Mach numbers. Re- 
sults from various processor partitions show that 
both the DP-LUR and Hybrid modifications of LU- 
SGS are very parallelizable, showing good parallel 
speedups. Both methods are also able to maintain 
the convergence qualities of original LU-SGS for all 
test cases. The Hybrid method, however, requires 
less CPU time due to lower computational work re- 
quirements. The DP-LUR modification of LU-SGS 
causes the amount of computational work in the im- 
plicit solver to increase threefold, to maintain the 
same convergence rate. The Hybrid modification, 
however, can match to within 25% the convergence 
rate of single processor LU-SGS with no increase in 
the computational work. It can exactly match the 
convergence rate with twice as much work in the im- 
plicit solver, yielding CPU times that are only 8% 
higher than the single sweep cases. Overall, the CPU 
times for the Hybrid method are only 55-60% those 
of DP-LUR. 

The computational work required of the Hybrid ap- 
proach on a parallel machine will always be less than 
that of DP-LUR. On a few processors, the amount 
of computational work will be about the same as 
LU-SGS. The Hybrid approach is therefore ideally 
suited for machines that have smaller numbers of 
more powerful, non-vectorized, processors. One ex- 
ample of a machine that fits this category is the 150 
processor IBM SP-2. We are currently implement- 
ing the code on the IBM SP-2 at NASA Ames, and 
expect better CPU times than what were obtained 
on the CM-5. 

Finally, although the TURNS code is used primarily 
for rotorcraft CFD applications, the parallelization 
strategy is not unique to this application. The paral- 
lelization procedures proposed here could be readily 
used for other CFD codes that use the LU-SGS al- 
gorithm. 
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DEVELOPMENT OF A PARALLEL IMPLICIT 
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Rua dos Bragas, 4099 Porto CODEX, Portugal 

Abstract 

The present article reports on further developments 
of an implicit coupled algorithm for fluid flow equa- 
tions. Mass and momentum conservation equations 
are solved as part of one large system of equations 
in one single step. Iterations are needed because 
of nonlinearities only. The algorithm requires no 
under-relaxation factors and can reach convergence 
in a reduced number of iterations, compared to de- 
coupled approaches. This article describes improve- 
ments leading to reduction of both memory and com- 
puting time. The algorithm exceeds the memory re- 
quirements of the SIMPLE algorithm of Patankar 
and Spalding by a factor of K2, where K is the num- 
ber of independent variables. Computing time reduc- 
tion'was achieved by using GMRES and a precon- 
ditioner based on incomplete LU factorization. The 
algorithm compares favourably with conventional de- 
coupled approaches. To overcome the high mem- 
ory requirements and enable the simulation of large 
physical problems two different approaches for par- 
allelization were also tested, at the expense of in- 
creased computing time. 

1    INTRODUCTION 

The SIMPLE [1, 2] algorithm is amongst the most 
widely used algorithms for solving the fluid flow 
equations. The difficulties of convergence of SIM- 
PLE when dealing with large problems, either in 
terms of physical complexity or grid size, are well 
known and have been discussed in the open litera- 
ture (e.g.: [3] [4], [5]). SIMPLE is relatively easy to 
implement and accommodate for increased number 
of transport equations, but its sensitivity to numer- 
ical aspects as for instance, under-relaxation factors 
[6] has led to many research efforts and even new 
algorithms (e.g.: [7]), sometimes closely related to 
SIMPLE (e.g: [8] [9]). 

The algorithm discussed in this article (designated 
DIRECTO [10]) solves the fluid flow equations as a 
complete coupled system. The cell face velocities are 
predicted using a momentum equation, which once 
replaced into the continuity equation leads to a pres- 
sure equation fully coupled to the velocity field. No 
simplification is made at this stage, the equation is 

exact, opposed to pressure (or pressure-correction) 
equation derived from segregated [11] algorithms. 

The code development was made using the two 
classical geometries of a two-dimensional cavity with 
a sliding lid and a backward-facing step. Results [12] 
show that for instance, in case of the square cavity 
with sliding lid at Re=1000 the DIRECTO algorithm 
with LU factorization converged in 8 iterations, inde- 
pendently of grid size, for a residual error of 1 x 10-3. 
On the other hand the SIMPLE algorithm although 
requiring 186 iterations for a grid of 64x64, used 10 x 
less CPU time. This order of magnitude ratio was 
reduced by using Block Band L U factorization [13] 
and GMRES [14], since at each iteration there is the 
solution of a large, sparse, unsymmetric, block-band 
(block tridiagonal) linear system. 

The need for finer grids, mainly on complex ge- 
ometries, leads to very large systems of equations re- 
quiring the use of secondary storage and large CPU 
times. Parallel architectures with distributed mem- 
ory may be one answer to those problems. The main 
drawbacks are the communication between proces- 
sors and additional computations. In this work a 
cluster of 4 DEC AlphaStation AXP, models 500S 
and 600S, connected by FDDI (Fiber Distributed 
Data Interface) and Gigaswitch using PVM (Parallel 
Virtual Machine) [15, 16] was used as a parallel envi- 
ronment. PVM is a software package that allows the 
concurrent use of heterogeneous processing elements. 

The article is made up of 3 major Sections. In Sec- 
tion 2 the algorithm is described. Section 3 discusses 
the results with respect to accuracy, memory require- 
ments and computing time, including a discussion on 
the linear solvers and parallelization. Section 4 con- 
cludes the article. 

2    MATHEMATICAL MODEL 

The governing equations for two-dimensional incom- 
pressible Newtonian and isothermal flows are, in ten- 
sorial notation, 

dUj 
dxi 0, (1) 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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and, 

dxj 

8P_      _d_ 

dxi       dxj 

dUi     dUj 

dx;      dxi 
(2) 

where £/,• is the velocity component along the Xi di- 
rection and P, p and p are the static pressure, density 
and dynamic viscosity, respectively. 

'NW 

Iff, 

SW 
-A- 

I 

1- 

'NE 

\E 

£E- 

A.V 

Figure 1: Control volume for nodal point P (upper 
and lower case denote nodal and face values, respec- 

tively) . 

When the first-order derivatives of equa- 
tions (1) and (2) are integrated in the control 
volume P (Fig. 1) of a non-staggered grid, new 
equations will arise depending on the velocities at 
the faces of the control volume. 

Face velocities 

The relationship between the nodal and face values 
is found by discretization (in a control volume cen- 
tred at the face of control volume P) of a simplified 
version of equation (2), obtained assuming mass con- 
servation and constant viscosity 

dxj 

dP_       d2Uj 

'dxi+fldx? 
(3) 

Two different discretizations of the convective 
term of equation (3) were tested: (Dl), with a first- 
order upwind scheme for the two derivatives; and 
(D2), with a second-order central difference scheme 
for the derivative in the direction perpendicular to 
the unknown velocity only. For instance, for velocity 
ue we have in case of Dl discretization, if uk~x > 0 
and vk~l > 0, 

0X >i 

l"e ul 

+ (">', 
:-l2« 

Ax 
k       jrk       Tfk 

~ US ~ USE 
(4) 

2Ay 

and in case of D2 

dxi 
= 2pu k-l "e 

+ PV, 
k-l 

Ax 

UkN ~ Ul 
Ay 

+ 'NE -ul SE 

Ay 
(?) 

if uk~x > 0.   The superscripts k — 1 and k denote 
previous and current iteration. 

The second member of equation (3) is discretized 
using second-order finite differences, 

dP 
dx 

P<k        pk 

Ax 

d2U      A   U
k

P-2uk + Uk 

dx2 Ax2 

<?U _H (Uk
N-Wkp + Uk

s 

dy2 P *„2      2 V Ay2 

+ UNE ~ IUE + USE 

Ay2 

(6) 

(7) 

(8) 

Replacing (4) - (8) into equation (3), 

Ue = 2J AnbUnb + E ^nbPnb (9) 
nb nb 

where A^h, A%b are the coefficients for the nodal 
values of velocity and pressure surrounding face east. 

Mass conservation 

When equation (1) is integrated in the control vol- 
ume of Fig. 1, 

I ,   ^idV=(uk-uk
w)Ay+(vk-vk)Ax 

v 0x% (10) 

The equations for face velocities (9) are now replaced 
into (10) leading to the following algebraic equation, 

nb nb nb (H) 

The coefficients A%f and Av
n£ represent links to a 

total of 18 nodal velocities, i.e. 9-node star for veloc- 
ity U and V, surrounding P; whereas A„f includes 
connections to 5 nodal pressures (Pp, PE, PW, PN 

and Ps). 

Momentum conservation 

The integration of equation (2) along i = 1 direction 
is. 

0(„.k-i„.k     „,fc-i„,fc «:_X-U*  1uk
w)Ay + 

p{vk
n-
luk

n-vk-'uk)Ax = -^ 
P<k        nk 

W Ay 

+ » 
Ul -Ul     Ul- U w 

Ax Ax 
2Ay 

+ P Ay 

+ P 

Ay 

NE ~ VNW 

S >Aa 

VMp. — VMW — VSE + Vsw \ ^        Q2) 
4Aa; 
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which, after replacing the equations for the velocities 
at the faces, yields, 

£4K> + 5X?v& + I>nÄ = o 
nb nb nb (13) 

The coefficients A™ represent links to the 9 nodal U 
velocities surrounding P, and A™ represent links to 
4 nodal velocities (VNE, VNW, VSE and Vsw)- The 
A™ coefficients includes the contributions from 7 
nodal pressures (Pp, PE, PW, PNE, PNW > PSE and 
Psw). 

The momentum equation in the i = 2 direction 

5X»vi& + £^v#» + E47p»> = ° 
n& n& n& (14) 

may be obtained by an identical procedure. 
Equations (11), (13) and (14) are all assembled in a 

single system of equations and solved simultaneously. 
The system of equations is of the form, 

Ax = b (15) 

x is a vector with sequence of blocks with variables 
U, V and P. The order of matrix A is (NI - 2) x 
(NJ—2)xK, where NIxNJ is the problem size, and 
K stands for the number of variables (i.e., 3 in case 
of a two-dimensional laminar flow). This is a sparse, 
unsymmetric, block-band (block tridiagonal) linear 
system. Because this is the most time consuming 
part of the algorithm, special attention was given to 
this subproblem (in Section 3.3.1). 

After solution of the linear system (15) one global 
iteration is completed. Because of the non-linearity 
of the differential governing equations, several global 
iterations are needed to obtain convergence and new 
coefficients are calculated using the new velocity and 
pressure fields, repeating the process until conver- 
gence. The nomenclature "global iteration" is used 
here to distinguish from the number of iterations as- 
sociated with the solver. 

Because all the conservation equations are solved 
as part of a single set, with no decoupling (or seg- 
regation, accordingly to nomenclature in ref. [11]), 
the algorithm can converge in a small number of it- 
erations, and for this reason it has been designated 
DIRECTO [10] (direct, in English). 

3.1    Accuracy 
To obtain the accuracy of DIRECTO we performed 

simulations of the flow in a two-dimensional square 
cavity with sliding lid for 2 Reynolds numbers, (400 
and 1000), and 3 grid sizes (64x64, 96x96 and 
128x128). The Reynolds number definition was 
Re = pUiidH/ß. Und is the lid velocity and H is 
the size of the square cavity. 

The velocities were set constant at every bound- 
ary, and zero normal gradient for the pressure was 
used. This condition was implemented in an im- 
plicit fashion to preserve the implicit feature of the 
method. The calculations were stopped for residuals 
lower than 1 x 10-5. The residuals are the sum of the 
absolute errors of the algebraic equations divided by 
reference quantities pUfidH, and pUudH for momen- 
tum and continuity equations, respectively. Calcula- 
tions were all performed in single precision. 

Method Grid Umin y-min r 771 ax 

DIRECTO Dl 64 -0.31999 -0.43943 0.29404 
96 -0.32443 -0.44721 0.29897 
128 -0.32614 -0.44996 0.30090 

Exact value -0.32878 -0.45356 0.30399 
Accuracy 1.73 1.97 1.69 

DIRECTO D2 64 -0.31956 -0.43968 0.29383 
96 -0.32430 -0.44729 0.29893 
128 -0.32608 -0.45000 0.30087 

Exact value -0.32877 -0.45360 0.30380 
Accuracy 1.78 1.95 1.77 

CPI 64 -0.32368 -0.44862 0.29925 
96 -0.32653 -0.45163 0.30183 
128 -0.32751 -0.45274 0.30271 

Exact value -0.32873 -0.45431 0.30379 
Accuracy 2.05 1.85 2.07 

SIMPLE 128 -0.32614 -0.45119 0.30143 

Table 1:  Square cavity results for Re = 400 (CPI 
results from Deng et al, 1994). 

The estimated exact values and order of accuracy 
of the results were estimated following the general- 
ization of the Richardson extrapolation method. The 
exact value can be approximated in terms of results 
on finite grids plus the leading term of the truncation 
error as, 

h = <i>ex + h"Xn + (16) 

3    DISCUSSION OF RESULTS + hn
2Xn + ..., (17) 

The code development was made using the two clas- 
sical geometries of a two-dimensional cavity with a 
sliding lid and a sudden expansion. In this paper re- 
sults will be presented for the two-dimensional square 
cavity only. 

This Section discusses 3 major aspects of the algo- 
rithm: the accuracy, memory requirements and com- 
puting time, in subsections 3.1, 3.2 and 3.3, respec- 
tively. 

+ h"Xn + ... (18) 

where h is the grid spacing in both directions and Xn 

is a grid function, assumed the same for every grid 
spacing (hi, h2 and h3). Provided that h is small 
enough for the leading term to be dominant, the or- 
der of the numerical scheme is estimated as [17], 

ln[A(A2/A1)"-A+l] 
In (h3/hi 

(19) 
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with, 

A = 
<f>3 -<i>i (20) 

Tables 1 and 2 show non-dimensioned values of 
maximum and minimum V velocity (Vmax and Vm;„) 
in the horizontal centreline and minimum value of U 
in the vertical centreline. The tables include values 
predicted by 3 different grids and also the order of 
accuracy and estimated exact value, obtained by the 
Richardson extrapolation. Results are also shown for 
SIMPLE algorithm of Patankar [1, 2], CPI (Consis- 
tent Physical Interpolation) and CSG (Centred Stag- 
gered Grid) methods of Deng et al. [17]. Dl and D2 
are versions of DIRECTO algorithm with the con- 
vective term of equation (3) discretized using equa- 
tions (4) and (5), respectively. 

Method Grid U min *min Vmax 

DIRECTO Dl 64 -0.36722 -0.49426 0.35565 

96 -0.37763 -0.51104 0.36628 

128 -0.38198 -0.51747 0.37037 

Exact value -0.38510 -0.52146 0.37292 

Accuracy 1.26 1.38 1.38 

DIRECTO D2 64 -0.36544 -0.49382 0.35414 

96 -0.37704 -0.51088 0.36577 

128 -0.38177 -0.51747 0.37022 

Exact value -0.39003 -0.52772 0.37701 

Accuracy 1.57 1.73 1.75 

CPI 64 -0.37436 -0.51015 0.36364 

96 -0.38233 -0.51947 0.37109 

128 -0.38511 -0.52280 0.37369 

Exact value -0.38867 -0.52724 0.37702 

Accuracy 2.01 1.94 2.01 

CSG 64 -0.35726 -0.48858 0.34556 
96 -0.37441 -0.50982 0.36271 

128 -0.38050 -0.51727 0.36884 

Exact value -0.38855 -0.52690 0.37705 

Accuracy 1.96 1.94 1.99 

SIMPLE 128 -0.37233 -0.51014 0.36234 

Table 2: Square cavity results for Re = 1000 (CPI 
and CSG results from Deng et al., 1994). 

The SIMPLE algorithm [1, 2] is implemented here 
in a non-staggered grid [18] [19] and uses the hy- 
brid finite difference scheme, switching from upwind 
to central differencing for mesh Reynolds number 
higher than 2. 

The CPI method of Deng et al. [17] is similar 
to the DIRECTO method. CPI uses a governing 
differential equation for momentum and a relation- 
ship between face and nodal values identical to our 
equations (3) and (4), designated Dl. In CPI and 
CSG, the governing differential equations of mo- 
mentum are discretized at the centre of the control 
volumes before integration, while in the DIRECTO 
method the equations are first integrated in the con- 
trol volume and then discretized.    This leads to 

different velocity coefficients in discretized momen- 
tum equation of CPI and DIRECTO for control vol- 
umes near the boundaries. Differences could also oc- 
cur in the implementation of the pressure boundary 
conditions; Deng et al. [17] does not state explicitly 
what kind of boundaries were used. 

In the CSG method of Deng et al. [17] the 
convection terms are discretized using central 
finite differences for all mesh Reynolds numbers 
(pUiAxi/fi) and a staggered grid is used, to avoid ve- 
locity interpolation when discretizing the mass con- 
servation equation. 

As can be seen in Table 1, the estimated exact 
values from Dl, D2 and CPI methods agree well with 
each other. The maximumpercentual error is 0.17%, 
and is found in the Vmin for the Dl method. The 
estimated accuracy of Dl and D2 is almost second 
order, although lower than CPI method (if based on 

Umin Or  Vmax)- 
In case of Re=1000, Table 2, the decrease of accu- 

racy of the Dl method is obvious. This is due to the 
first-order upwind scheme used to discretize the con- 
vective term of equation (3), as can be seen by com- 
parison with the D2 method, which uses a second- 
order accurate finite difference discretization. Nev- 
ertheless the estimated accuracy of CPI is closer 
to second order compared with D2. The largest 
difference between the estimated exact values pro- 
duced by D2 and CPI is 0.35% (based on Umin)- 

Compared to DIRECTO, SIMPLE algorithm with 
the hybrid scheme requires finer grids to achieve 
identical level of accuracy, as can be seen in Fig. 2 
and Table 2. At Re=1000, the results of Dl and D2 
methods for a grid of 96 x 96 are much closer to the 
estimated exact value of the CPI method than the 
results of SIMPLE with a grid of 128 x 128. This lack 
of accuracy is due to hybrid scheme that is first-order 
accurate for Peclet numbers greater than 2. 

Figure 2: Evolution of Umin with grid resolution for 
Re=400. 

Fig. 3 shows the streamlines for D2 and SIMPLE 
methods for a Re=1000 and a grid of 96x96. SIM- 
PLE is unable to predict the streamline distribution 
in the centre.    The dashed line (SIMPLE) at the 
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centre of the flow represents the the value —0.11, 
whereas the solid line (D2) represents —0.115. 

Figure 3: Stream function for Dl method (—) and 
SIMPLE method (- -) at Re=1000. 

Given the similarities between DIRECTO and the 
algorithms CPI and CSG of Deng et al. [17] one 
would expect higher accuracy of the DIRECTO algo- 
rithm; this is an aspect requiring further attention. 

3.2 Memory Requirements 

Fig 4 shows the memory requirements for different 
implementations of DIRECTO, compared to SIM- 
PLE using hybrid differencing. 

The coefficient matrix, derived from a 9-node star, 
has a dimension of (NI- 2) x (NJ-2) x K by (NI- 
2) x (NJ - 2) x K, where NI x NJ is the problem 
size, and K stands for the number of variables (i.e., 
3 in case of a two-dimensional laminar flow). This is 
shown by line a) in Fig. 4. 

Because of the block-tridiagonal structure it can 
be stored as a [(NI - 2) x (NJ - 2)] x K by 2 x 
[(NI - 2) x 3 + 5] + 1 matrix (b) in Fig. 4). 

For finer grids the block band structure becomes 
sparser. This was exploited by using a sparse ma- 
trix structure, storing only the non-zeros values on 
a vector, the column indices on an integer vector 
and using pointers to the beginning of each row. 
This structure reduced the memory requirements to 
[(NI - 2) x (NJ - 2) x K] x K x 9 (line c) in Fig. 

On the other hand SIMPLE only requires 5 matri- 
ces of dimension (NI — 2) by (NJ — 2) to store the 
coefficients (d) in Fig. 4). 

3.3 Computing Time 

The following computer tests were run on a DEC Al- 
phaStation AXP 3000, model 600S, for sequential al- 

Figure 4: Memory requirements of DIRECTO (a), 
b) and c)) compared to SIMPLE (d)) using hybrid 
finite difference discretization scheme. 

gorithms and a cluster of 4 DEC AlphaStations AXP 
3000, models 500S and 600S, connected by FDDI and 
Gigaswitch using PVM, for parallel versions. 

3.3.1     Linear solvers 

The Gaussian elimination method was used ini- 
tially [10] during the FORTRAN implementation of 
the algorithm. The first idea was to optimize the 
Gaussian elimination method by adapting it to the 
block band structure and using BLAS kernels and 
LAPACK library [20], on a vector processor VAX 
6520-2VP. This reduced the computing time but still 
far from the SIMPLE+TDMA method, and required 
a large amount of storage [13]. 

The next stage was the use of an iterative method 
so that the sparse structure could be taken into ac- 
count. An iterative method has the additional ad- 
vantage of controlling the degree of accuracy for solv- 
ing the linear system of equations. Because the solver 
is an inner step of a global iteration required because 
of nonlinearities, solving the equations to a high de- 
gree of accuracy may prove useless. 

Several methods were tested and GMRES (Gen- 
eralized Minimum Residual) [14] was retained for 
its robustness. GMRES is a Galerkin type method 
based on an orthonormal basis of a Krylov subspace. 
To obtain the solution of 

Ax = b , 

of the form 

xfc = x0 + Zfc , (21) 

where XQ is an initial solution with residual 

ro b — Axn (22) 

Zfc is computed such that its residual projected onto 
the Krylov subspace generated by r0 is minimized. 
Iterative methods of this type require the use of 
preconditioners in order to improve the convergence 
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rate. Several preconditioners were tested and the 
best proved to be the Incomplete LU factorization 
of degree zero ILU(O) and ILUT [14, 21]. The diag- 
onal preconditioner although very simple to imple- 
ment did not give as good results as the others [12]. 

Table 3 shows the total CPU times, and cor- 
responding number of outer iterations needed to 
achieve a residual of 1 x 10-5, on a DEC AlphaS- 
tation AXP 3000 model 600S, for several grid sizes, 
using the DIRECTO+GMRES methods and for the 
SIMPLE+TDMA method [22]. The SIMPLE algo- 
rithm was used with 4 sweeps of TDMA for compu- 
tation of the velocities and 8 for computation of the 
pressure.   It can be seen in Table 3 that the CPU 

Grid SIMPLE D/GMRES D/GMRES 
TDMA ILU(O) ILUT 

32 13.1s (124) 8.5s (19) 11.7s (16) 
64 169.9s (381) 99.4s (20) 89.2s (16) 
96 764.2s (735) 608.4s (39) 285.2s (23) 

128 2292.0s (1212) 10689.1s (91) 1667.2s (65) 

Table 3: CPU time and number of iterations for a 
residual of 1 x 10-5. 

times are competitive. ILU(0) is a good choice for 
small grid sizes and ILUT is recommended for finer 
grids because it keeps the number of outer iterations 
low. 

3.3.2     Parallelization 

For this type of problems the parallelization by do- 
main decomposition was selected. A non-overlapping 
domain decomposition strategy was used, where the 
domain was decomposed into disjoint subdomains 
separated by interfaces. The grid nodes were num- 
bered first inside each subdomain and then on the 
interfaces, leading to a bordered block diagonal ma- 
trix shown in Figs. 5 and 6 [23]. 

Rl R2 R3 

S2        S3 

R4 

Figure 5: One-way dissection ordering. 

The algorithm was parallelized in two versions: the 
first using a master-slave approach where the mas- 
ter performs the computations corresponding to the 
interface, and the second using a SPMD (Single Pro- 
gram Multiple Data) approach where each processor 
deals with a subdomain and one interface. Each pro- 
cessor had an independent preconditioner. 

Table 4 reports the CPU and elapsed times on a 
cluster of workstations for a 64x64 grid and 3, 4 and 

Rl R2 R3 R4 S1S2S3 

Rl 

R2 

R3 

R4 

SI 
S2 
S3 

Figure 6: Reordered (one-way dissection) matrix. 

5 processes. There was a reduction in (elapsed) time, 
when passing from 3 to 4 processes; this is a 22% re- 
duction corresponding to a relative speed-up of 1.27. 
For 5 processes, there is a degradation of CPU and 
elapsed times because the farm is composed only by 
4 machines, and more than 1 process will have to 
share the same processing element. 

CPU time                Elapsed time 
Processes     Master     Slave (max.) -  

192.7s 
627.7s 
1167.7s 

2734.3s 
1780.3s 
1217.4s 

3090.4s 
2434.5s 
3401.5s 

Table 4: CPU and elapsed time for a 64x64 grid and 
Master-Slave approach. 

To be able to use finer coarse-grain parallelism it is 
necessary to reduce the CPU time spent by the mas- 
ter to accompany the decreasing of the total time 
induced by the reduction of the CPU time in the 
slaves. Based on this need, another parallel version 
of the code was created, based on a SPMD strat- 
egy. Table 5 shows the CPU and elapsed times of 
the Master-Slave and SPMD approaches for 3 sub- 
domains on a 64x64 grid.    The SPMD approach 

CPU time     Elapsed time 

Master-Slave 
SPMD 

1780.3s 
1568.5s 

2434.5s 
1642.3s 

Table 5: CPU and elapsed times for a 64x64 grid for 
Master-Slave and SPMD approaches. 

is faster because it is more adequate to the sparse 
nature of the problem. Furthermore, for identical 
number of subdomains, the SPMD approach uses 
one process less than the Master-Slave. However 
the implementation of the SPMD approach is more 
complex, and given the reduced number of worksta- 
tions available running PVM, we cannot conclude yet 
which of these approaches is the most appropriate. 

4    CONCLUSIONS 

The present article reported on further developments 
of an implicit coupled algorithm for fluid flow equa- 
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tions. The main conclusions of this study are the 
following. 

1. Computing time reduction was achieved by 
moving from a direct to an iterative solver based 
on GMRES. 

2. It was shown that DIRECTO + GMRES with 
ILU(O) and ILUT preconditioners is always 
faster than SIMPLE+TDMA (4 and 8 sweeps 
for velocities and pressure, respectively). ILU(O) 
is a good preconditioner for coarse grids and 
ILUT is better for finer grids, because it keeps 
the number of outer iterations small. 

3. Reduction of memory storage was also achieved 
by taking advantage of the sparse nature of the 
coefficient matrix. However, memory require- 
ments are still large compared to SIMPLE and 
this is an aspect calling for further investiga- 
tion. Efforts were made to overcome this disad- 
vantage by reverting to domain decomposition 
techniques, at the expense of increased comput- 
ing time. 
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1.   SUMMARY 
This paper describes work done at Rockwell Science Center 
on the development and application of computational fluid 
dynamics (CFD) solvers for unstructured grids. A 
description of the use of "interior boundary" conditions in 
simulating moving bodies is also presented. 

2.  INTRODUCTION 
The CFD group at Rockwell Science Center has been 
involved over the past fifteen years in the development and 
application of numerical techniques for the simulation of 
flow past complex aerodynamic shapes. Starting with 
small perturbation equations, codes have been developed to 
solve more and more complex governing equations on 
structured grids (Ref. 1-4). The latest version of the 
structured grid code solves Reynolds Averaged Navier- 
Stokes (RANS) equations in generalized curvilinear 
coordinates. It includes the ability to simulate reacting 
multispecies flows (Ref. 5). Simulations requiring grid 
movements are handled quite elegantly using this code 
(Ref. 6). CFD codes developed at Rockwell Science Center 
have played a significant role in several national projects 
including the Space Shuttle, B-1B and National AeroSpace 
Plane (NASP) projects. 

Time required for performing accurate numerical simulation 
of complex fluid-dynamics problems is still sufficiently 
large to discourage designers from including CFD 
techniques in the design cycle. Total time required for a 
numerical simulation consists of the time required for 

a) preprocessing, which consists of modifying the CAD 
geometry to a form suitable for numerical simulation, 
(in the case of structured grids) dividing the 
computational domain into zones, choosing proper 
grid resolution at the boundaries and finally grid 
generation, 

b) solver, 

and 

c) post-processing, which consists of extracting 
physical quantities like skin-friction and heat- 
transfer, from the numerical solution; and 
visualization of the solution. 

Several years of research in structured-grid simulations and 
developments in computer software and hardware 
technologies have considerably reduced the turnaround time 
for numerical solutions. Still the time required to simulate 
flow past complex geometries is unacceptably 

large. Especially, the time required for preprocessing 
increases almost exponentially as more and more details of 
the geometry are included in the simulation. For example, 
in the case of the multibody space shuttle configuration 
(Ref. 7), several months were needed to generate a 
structured grid when the fidelity requirements for the model 
employed in the numerical simulation were increased 
considerably. 

Unstructured grid methodologies appear to be very 
promising, since the preprocessing time could be orders of 
magnitude less than that required for structured grids. It is 
indeed the case for inviscid flows. But, our experience with 
unstructured grid computations has opened our eyes to 
several issues involved in such simulations. We propose to 
discuss some of those issues in this paper. 

Research on the development of unstructured grid solvers 
for Computational Fluid Dynamics (CFD) and 
Computational ElectroMagnetics (CEM) has been in 
progress at the Rockwell Science Center for the past 
several years. An unstructured grid solver for CFD, called 
UNIV, that can handle tetrahedral, triangular prizmatic and 
hexahedral cells, has been developed (Ref. 8). UNTV 
employs a finite-element-like formulation that uses 
piecewise polynomial interpolation for the dependent 
variables. The dependent variables are the cell averages of 
internal energy, mass, x-, y-, and z-momenta. 
Interpolating polynomials may be discontinuous across 
cell boundaries. An approximate Riemann solver is used to 
resolve discontinuities at cell boundaries. The domain of a 
dependent variable polynomial is restricted to a cell. The 
discretization of the governing equations is constructed 
directly from the integral form of the conservation laws. 
No variational principle or method of weighted residuals or 
other indirect approach is employed. The code has the 
option to use either a least-square polynomial or a ENO 
(Essentially Non-Oscillatory) reconstruction. 
Reconstruction is the process of constructing an 
interpolating function for a cell that satisfies the cell 
average. Please see Ref. 9. for details on ENO schemes. 

Numerical formulation employed in UNTV and a new 
approach for simulating bodies in relative motion are 
discussed in the following sections. A generalized Lax- 
Wendroff scheme for Euler equations adapted from CEM i s 
also presented. A pointwise turbulence model that is highly 
suitable for unstructured grids is discussed. Lessons learned 
from our experience with unstructured grid computations are 
elucidated. 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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3. NUMERICAL FORMULATION 
Two different approaches to solving the initial-/boundary- 
value problem (IBVP) for general hyperbolic system of 
conservation laws in the "conservation-law form" 
represented by 

3q    9fi    3f2    3f3    . — + — + — + — = 0 
3t    3x    3y    3z 

(1) 

have been developed. Equation (1) is satisfied at all (x, y, z) 
belonging to domain D with prescribed initial and 
boundary values for the dependent (conserved) variable 
vector q. Here, the Cartesian coordinate directions 
(independent variables) are x, y, and z. The components of 
flux tensor in the three coordinate directions are the vectors 
//, J2 and/j. In both approaches the domain D is divided 
into several cells, and the integral form of the conservation 
equations in each cell given by 

3t 
(qv)+J JSC F ■ n I dS = 0 (2) 

is solved with prescribed initial values for c\ 

qo = q(x,y,z,t„) 

and relevant boundary conditions. Here, q denotes the cell 
average of the dependent variables; 

n = nxj + Uyk  + ry 

is the outward unit normal at any point on the boundary -» —> -> 
surface S of a cell; j , k , and 1 are the unit vectors in x, y 

and z directions respectively; V is the cell volume and F 
is the tensor of fluxes with (/}, f2, /?) as components. 
Stated in words, Eqn. 2 implies that the rate of increase of a 
conserved quantity (qV) inside a cell is given by the net 
inflow (flux) of that quantity into the cell. Therefore, as in 
the case of cell-centered finite-volume structured grid 
solvers (Ref. 3), solving the governing equations requires 
evaluation of surface integrals from known values of cell 
averages. 

Surface integrals are evaluated using numerical quadrature 
formulas. In this method an integral is written as the 
weighted sum of the integrant evaluated at the quadrature 
points. The location and weights of quadrature points are so 
chosen as to give the best possible approximation for the 
integral. Higher order schemes require larger number of 
quadrature points. Choosing the centroid of a surface as the 
quadrature point yields second order accuracy. Since only 
the cell-averages of the dependent variables are known, we 
need to develop a procedure for evaluating the dependent 
variables at the quadrature points in order to compute the 
surface integrals (fluxes). The spatial accuracy of the 
numerical scheme is determined by the accuracy of this 
"reconstruction" procedure. The dependent variable vector q 
at a quadrature point may not be uniquely specified, since 
the point belongs to two neighboring cells with different 
polynomial representations. If the two vectors evaluated at 
a quadrature point using the polynomial reconstruction in 
the two "containing" cells are qL and qR (Fig. 1), then a 
unique value q* is determined from the solution of a locally 
one-dimensional Riemann problem with qi and q^ as the 
"left" and "right" values. An approximate Riemann solver 

suggested by Roe (Ref. 10) is employed for this purpose in 
the UNIVERSE-series of codes of which UNIV is a member. 

The two approaches alluded to at the beginning of this 
section differ in their "reconstruction" procedure and also 
in the time-stepping scheme. Only explicit time-stepping 
schemes are considered in both approaches. Both 
approaches permit use of multiple quadrature points and 
curved surfaces for higher accuracy. Codes developed using 
these approaches can handle hexahedral, tetrahedral and 
triangular- prismatic cells. 

qR = Pc(f?,t) 
qL = P" (r7,t) 

0 (origin) 
SC.1654E.091195 

Fig. 1 "Left" and "Right" states for locally one- 
dimensional Riemann problem. 

3.1   The   First   Approach;   a   Finite-element   Like 
Algorithm 

The major credit for this work goes to Dr. Chakravarthy. 
This approach employs a unified treatment for structured 
and unstructured grids. The codes developed using this 
formulation are called UNIVERSE-series of codes. The 
UNIVERSE-series includes "least-square" and "ENO" (Ref. 
9) reconstruction options. Both these procedures involve 
development of an interpolating polynomial Pc(x,y,z) for 
each of the conserved quantities, where 

Pc(x,y,z) = £ pFxi(i» yk(i) z1 (3) 

where, pC are the coefficients of the polynomial.   Pc is 

applicable only within a given cell C. Integral of Pc over C 
reproduces the corresponding cell average. That is, 

V,r   „C -iiJcP^dV = XaCpC=qC 

where, 

aC= 
Il!c xj(i)k(i)zl(i)dv 

HI 

(4) 

(5) 
CdV 

The spatial accuracy of the numerical scheme is determined 
by the form of P . A linear polynomial in x, y and z 
results in second-order accuracy while a quadratic 
polynomial yields a third- order scheme. Linear 
polynomial requires evaluation of 4 coefficients, while the 
quadratic polynomial requires 10. In the case of the "least- 
square" option, the polynomial coefficients are computed 
such that the integral of Pc over cell C reproduces the 
corresponding cell average values (Eqn. 4), and the 
integrals over the neighboring cells satisfy the 
corresponding cell averages in a least-square sense. That is, 
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 E = 0 
dp? 

for 0 < i < np. The error term E is given by, 

v2 E = X(lanpC.qn 

n=l V i 

(6) 

(7) 

where n refers to a neighboring cell, nc is the number of 
cells in the neighborhood of cell C, excluding C itself. 
Obviously, a least-square approximation for Pc can be 
constructed only if 

nc > np (8) 

Therefore, the neighborhood of a cell should be properly 
defined to satisfy equation (8). The UNIVERSE-series CFD 
formulation defines a "neighbor" of a given cell in a very 
flexible and useful way. 

First, we consider two types of cell connectivities (Fig. 2): 

(1) Node-aligned cells (NAC) 

(2) Surface-aligned cells (SAC) 

Node Aligned Cells 
(NAC) 

SC.1656E.091195 

Surface Aligned Cells 
(SAC) 

Fig. 2 Node-aligned and surface-aligned cells. 

Next, we consider different types of neighbors: 

(1) Touching neighbors (TN) 

These include 

(la) Common-node neighbor (CNN) 

(lb) Common-face neighbor (CFN) 

(lc) Touching-face neighbor (TFN) 

(2) Proximity neighbors (PN) 

This latter type is defined in terms of distance from a given 
cell. 

A neighborhood is now defined to be a collection of 
neighboring cells. A neighborhood hierarchy is defined as 
follows: 

H° is the cell itself. 

H1 is the cell and its neighbors. 

H2 is the union of H1 and the neighbors of all the 
cells in H1. 

This process may be continued recursively, and depending 
on the order of Pc, a neighborhood may be found such that 
equation (8) is satisfied. 

In the case of ENO (Essentially NonOscillatory) 
reconstruction, we seek to obtain a "best" polynomial 
rather than a "least-squares" one. The "best" polynomial 
corresponds to the "smoothest". As always, the equation 
for cell C must be satisfied (Eqn. 4). From the remaining nc 
equations, we can select any combination of np equations 
and solve the resulting set of np + 1 equations. There are 

lnc\ 

\np) 
(9) 

such combinations. The combination that yields the best 
polynomial in terms of its ENO property is to be preferred. 
For example, when the flow field contains a single shock 
wave, the neighbors selected should lie on the same side of 
the shock as cell C. This approach may be termed the "best 
stencil" formulation and has been applied very successfully 
in various forms to structured grid ENO formulations. 
Reference 9 contains many different strategies for this 
task. Note that the "least squares" strategy may result in a 
stencil that includes cells from both sides of a 
discontinuity and hence not desirable. 

Alternatively, a "best term" strategy has also been tried 
out. In this formulation, the least-squares polynomials are 

first determined for all cells. Each coefficient p*P of the 
l 

polynomial Pc (Eqn. 3) in a given cell C corresponds to the 
appropriate derivative of the polynomial (up to a constant 
coefficient) evaluated at the centroid of the cell. That is, 

(10) 

3P 

W^y^W^j 
= Kp9 

where the subscript c refers to the centroid and K1 is a 
constant. In the case of the "best term" strategy, we replace 

each   pC   by   that   computed   from   the   corresponding 

derivative at the cell centroid evaluated from a neighboring 
cell polynomial pn, provided 

|pn|<a|pC| (11) 
111      In 

where a > 1. In other words, p^is selected such that the 

corresponding derivative at the centroid does not differ 
"too much" from its value in a neighborhood. This 
procedure    attempts     to     construct     a    reconstruction 
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polynomial that uses only neighboring cells on the same 
side of a discontinuity. 

For one-dimensional shock-tube problems, it has often 
been demonstrated that it is better to select the best 
stencils based on comparing interpolates of local 
characteristic variables and not the conserved dependent 
variables. However, within the context of unstructured grid 
formulations this approach is very expensive, and 
consideration of such issues is postponed for future work. 

We have so far discussed the spatial discretization problem. 
As far as temporal discretization is concerned, only 
explicit schemes have been considered. A second-order 
time-accurate formulation is given below as an example. 
This is fashioned after Heun's method or the second-order 
Runge-Kutta method (RK2). The RK4 method can be 
implemented in similar fashion. Higher than second-order 
spatial accuracy results in reduced numerical dissipation, 
and this sometimes necessitates the use of the fourth-order 
Runge-Kutta formulation, which has a larger stability range 
than the second-order Runge-Kutta method. 

In semidiscrete form, the equations to be solved are 

^<qV)=RHS(q,t) 
3 

(12) 

where RHS(q,t) is the net flux.  The corresponding  time 
stepping method can be written as 

(qV)1 =(qV)"+RHS(qn, t")At 

(qV)n+14(flV)n+(qV)1+ÄtRHS(fl1.tn+1)]     ^ 
2 

The  fourth-order   accurate  Runge-Kutta   scheme   can   be 
written as 

k1=RHS (q", tn) 

(qV^qvA —ki 
2     i 

k2 = RHS(q\ t" + —) 

(qV)2=(qV)n + ^k2 

k.=RHS<fl2, tn + ^i) 
j 2 

(qV)   = (qV)n + Atk3 

,-3    n+lx k4 = RHS (q   , t       ) 

(qV)n+1 = (qV)n + ^L(k1 +2^+21*,+ty (J4) 

In the above, the explicit dependence of RHS on t is useful 
for time-dependent problems where the boundary 
conditions or other behavior explicitly depend on time. 

This numerical scheme was originally developed under the 
leadership of Dr. Shankar (Ref. 11) for solving Maxwell's 
equations and later was adapted for Euler equations. This 
approach employs a multilevel time stepping scheme. The 
second-order scheme uses a two time-level discretization. 
The first fractional time-step employs first-order spatial (qL 

and qR are set equal to the corresponding qn) and temporal 
discretizations to compute qn+1/2. Here, the superscript n 
refers to the time-level n. For the second time-step, qi and 
qR are computed from the corresponding centroidal values 

ofqnandVq"as 

qL(orqR) = qn + (rf-rc). Vqn 

where Tt and I"c refer to  the  position   vectors 
centroids of the surface and cell, respectively, and 

(v?>4 nq*dS 

(15) 

of the 

(16) 

where q* is obtained from the Roe's approximate Riemann 
solver with qL and qR set equal to qn. The algorithm 
described above may be considered as a generalization of 
Lax-Wendroff upwind integration, since it reduces to the 
Lax-Wendroff scheme for uniform rectangular hexahedral 
cells. Note that only details of the second order scheme are 
presented, and that extension to higher order schemes is 
indeed straight-forward, albeit tedious. 

3.3   Computation   of   Viscous   Fluxes 
Viscous fluxes at a quadrature point on a cell face are 
computed as the mean of the corresponding contributions 
from the two adjacent cells that share the face. That is, the 
average of the derivatives computed from the polynomial 
reconstruction in the two adjacent cells are employed in the 
calculation. When the quadrature point lies on the boundary 
of the computational domain, the polynomial 
reconstruction employed is centered about the quadrature 
point. 

4. BOUNDARY CONDITIONS 
The implementation of boundary conditions ensures 
consistency in flux computations. That is, just like in the 
case of any interior cell boundary, computation of fluxes 
for a cell boundary that lies on the boundary of the 
computational domain involves determination of "left" and 
"right" states and Roe's approximate Riemann solver. The 
state that corresponds to the "outside" of the domain should 
satisfy the appropriate boundary conditions. For instance, 
when computing fluxes for a cell on the left boundary of the 
domain where inviscid tangency condition is to be 
satisfied, the "left" state should be such that the 
corresponding velocity vector should be tangential to the 
surface. This manner of imposing boundary conditions 
ensures that only the information at a boundary that 
corresponds to waves propagating in to the computational 
domain is actually used in the computation of fluxes. 

3.2    The   Second    Approach; 
Wendroff   Scheme 

Generalized    Lax- 

4.1   Interior   Boundary   Condition 
The concept of boundary conditions has been generalized 
to include specification of boundary conditions anywhere 
in the computational domain (Ref. 12). The part of the 
boundary condition that does not correspond to the actual 
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boundary of the computational grid is referred to as 
"interior boundary conditions." In this case the user 
specifies, among several attributes, the coordinate location 
of each boundary point as well as a vector normal 
associated with the point. The need for the normal arises 
from the fact that even though interior boundary points are 
specifiable as individual points, they arise from boundary 
surfaces that they are a part of. It is the surface normal 
along with its location that describes the local geometry. 
Note that the surface in question could very well be a surface 
of discontinuity (a shock wave), and it may not be possible 
to assign unique values for the dependent variables at the 
corresponding boundary point. To account for such a 
situation, for every interior boundary location identified by 
the user, two interior boundary points are created and added 
to the data base of the UNTV flow solver. One of the added 
points has the normal pointing one way and the second 
point the other way (Fig. 3). 

SC.1655E.091195 

associate with each (pair of) interior boundary point the 
cell that contains it. This chore of searching through the 
mesh to determine the one cell that contains the boundary 
point is efficiently accomplished in the UNTV flow solver 
using an "octree" sort and search procedure. Given an 
interior boundary point, an octree search of the sorted list 
of node points of the mesh quickly yields the nearest mesh 
node. All cells that contain the node as well as the 
common-node neighbors of this set of cells are searched, in 
that order, to determine if the given point is in any of those 
cells. If not, the "nearest" cell is identified. 

In the previous paragraphs, it was convenient to describe 
the procedure as if the user provides pointwise information 
related to interior boundaries. Depending on the relative 
fineness or coarseness of the geometry description of the 
interior surface with respect to the surrounding mesh, there 
may be two or more user-specified (before the flow solver 
replaces each user-specified point with two points, with the 
normals facing in opposite directions) interior boundary 
points in a cell, or there may be none (Fig. 4). In Fig. 4 the 
cells 1,5,8 and 10 have two or more interior boundary 
points while cells 4,7 and 9 have none. The case of 
multiple interior points in a cell can be dealt with easily 
(e.g., by replacing them with an equivalent single point, if 
necessary). But, the case of no interior point in a cell that 
actually straddles the interior boundary is not acceptable. 
To avoid such problems, we start with the user describing 
the interior surface as an unstructured grid (triangular 
elements). Using an octree-based sort and search procedure, 
the intersection of the mesh with this surface is identified 
(Fig. 5). Interior boundary points are assigned to each such 
intersection. There could be interior surface geometry 
elements that do not participate in such intersections. The 
centroids of these elements are optionally added to the list 
of interior boundary conditions. 

Fig. 3 Interior boundary points. 

The user-specified boundary condition is applied to each 
pair of interior boundary points. Certain boundary 
conditions such as surface tangency are applied 
individually to both points of the pair; i.e., they are 
applied in a decoupled fashion. Certain boundary 
conditions such as those associated with "shock fitting" or 
"contact-surface fitting" are applied in a coupled fashion. 
For example, the values on the supersonic side of the shock 
are accepted as is, and the values on the subsonic side are 
computed (along with the shock speed value) by accepting 
only the pressure from the subsonic side and applying the 
Rankine-Hugoniot shock-jump relations. The availability 
of the boundary points in pairs facilitates such 
transactions. 

The process of computing the "left" and "right" states i s 
modified when a cell has an interior boundary point. The 
contribution of each of the boundary points to the 
quadrature points is computed using the proportion of the 
surface area that is in the region of influence of the 
boundary point. In Fig. 3, the face AB is completely in the 
region of influence of boundary point 1, whereas face CA 
gets contributions from both the boundary points. Note 
that the boundary points actually differ only in the normals 
associated with them, and their coordinates are identical. 
For the sake of clarity, they are shown as two different 
points in Fig. 3. 

SC.1658E.091195 

Fig. 4 An example of user specified interior boundary 
points. 

As  part  of the  infrastructure  necessary   to   implement 
interior boundary point treatment, one needs the ability to 
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Fig. 5 An example of UNIV generated interior boundary 
points. 

5. GRID GENERATION 
The UNIVERSE-series of codes includes an unstructured grid 
generator, named UNIVG. UNTVG accepts specification of 
surface geometry in the form of a collection of patches. A 
patch geometry could be specified either in the IGES format 
or by specifying sufficient number of non-intersecting 
lines on the patch. Each line in turn is discretized by an 
ordered collection of sufficient number of points. 
Triangular elements are first generated on the boundary of 
the computational domain satisfying user specified 
clustering requirements. The computational domain is then 
discretized in the form of tetrahedral cells using the 
"advancing front" technique (Ref. 8). 

The method of "advancing front" does not possess a good 
mechanism for controlling the distribution of cells in the 
computational domain, and often regions with large 
variations in cell sizes and shapes are encountered. Such 
regions deteriorate the fidelity of numerical simulation. To 
overcome this problem, grid smoothing strategies based 
on constrained optimization techniques have been 
developed and employed successfully (Ref. 13). 

UNTVG has the capability to develop an unstructured grid 
that includes a specified "cloud" of points as nodes. This is 
sometime useful in controlling the distribution of cells i n 
the computational domain. 

6. STORE SEPARATION 
The concept of interior boundary conditions, described in 
section 4.1, is used to simplify numerical simulation of the 
store separation problem. The process starts by generating 
an unstructured mesh for the parent vehicle. The store 
geometry is discretized by generating an unstructured 
surface mesh. The intersection of the store surface mesh 
with the unstructured volume cells of the parent grid is 
determined by using an octree sort/search procedure. 
Centroids of the intersecting surfaces and their normals are 
computed. A data base consisting of these centroids and 
normals is thus generated and used as input by the interior 
boundary condition routines. Note that the boundary 
condition for the store accounts for its initial motion. The 
governing equations are then solved with appropriate 
boundary conditions to obtain solution for the next time 
level. Aerodynamic forces and moments for the store are 
computed, and the equations for the conservation of linear 

and angular momenta are solved to obtain the location and 
orientation of the store at the next time level. This process 
also yields velocity vectors at all points on the store. The 
intersection of the store geometry in its new location with 
the unstructured volume mesh is determined, and the 
process is repeated for all subsequent time steps. This 
approach is not suitable for viscous flows, since the parent 
vehicle grid would be too coarse to resolve viscous regions 
when the store moves away from the parent vehicle. This 
problem may be circumvented by adapting the mesh as the 
store moves, but at present such a strategy does not appear 
attractive due to the large amount of work involved in 
adapting the mesh and performing required interpolations 
that could result in loss of accuracy. 

7. TURBULENCE MODELING 
Until recently all the turbulence models employed in 
numerical simulations required the knowledge of the normal 
distances of a point from surrounding walls. This 
information is very difficult to obtain in the case of 
unstructured grids. In the case of structured grids, mostly 
distances along grid lines were employed. This was 
sufficient since the grid lines were nearly orthogonal in the 
vicinity of a body where viscous effects are dominant. But 
when complex geometries requiring a multizone grid 
topology were encountered, it became difficult to maintain 
continuity of eddy viscosity at zonal interfaces. To 
circumvent this problem, a pointwise turbulence model that 
does not require any information regarding the distance of a 
point from surrounding walls was developed at Rockwell 
Science Center by Goldberg and Ramakrishnan (Ref. 14). 
Since then, several such models have been developed, and 
reliable computation of turbulent flows on structured grids 
has become a possibility. 

8. LESSONS LEARNED 
One of the most important lessons that we have learned 
from our own experience and the experience of our peers i n 
the CFD and CEM community with unstructured grid 
computations is that in spite of all the advances that have 
been made in this field so far, on comparable grids 
structured-grid simulations yield more accurate solutions. 
For complex geometries, it is indeed possible to speed up 
the preprocessing stage of a numerical simulation by an 
order of magnitude by employing unstructured grids. On the 
other hand, a structured grid computation requires less CPU 
time and memory and converges in fewer number of time 
steps. For example, in the case of an inviscid flow past a 
sphere with M„ = 0.5, it has not been possible to obtain 
even two orders of magnitude drop in the L-2 norm for the 
net-flux vector in reasonable number of time steps (less 
than 1000) for an unstructured grid, while a structured grid 
computation on a comparable grid converges by about four 
orders of magnitude in less than 600 time steps. Attempts 
have been made to develop implicit schemes for 
unstructured grids, but in our opinion, a structured grid still 
performs better as far as convergence and accuracy are 
concerned. 

During the design phase of an aerospace configuration, 
several possible candidates are evaluated, and a small 
number of viable candidates is down selected from the 
original pool for further considerations. This process is 
usually carried out using a relatively low-level CFD 
analysis requiring less stringent accuracy and convergence 
criteria. Mostly only inviscid flows are considered. 
Structured grids are not suitable for this purpose, since the 



preprocessing takes an unacceptably long time. 
Unstructured Euler solvers offer the most viable solution. 
Since Euler equations, unlike Navier-Stokes equations, do 
not require very fine grids in the vicinity of solid bodies, 
unstructured grid development becomes much easier to 
handle, and several solutions for many different 
configurations can be carried out in a matter of a few weeks. 
This was indeed demonstrated in the case of some 
modifications that were carried out for B-1B bomber. 
Starting with the geometry of the aircraft in IGES format, 
an Euler solution was obtained for this complex 
configuration (Fig. 6) in about five working days. With the 
use of Massively Parallel Processing (MPP) computers, 
this process may be accelerated even more. From this point 
of view, unstructured grid solvers have a clear edge over 
their structured grid counterparts. 

SCP.1287E.091195 

Fig. 6 Unstructured grid for inviscid flow past B-1B 
configuration. 

In the case of viscous flows, stringent resolution 
requirements in the direction normal to a solid body force 
an unstructured tetrahedral grid to have similar resolutions 
on the body surface in order to maintain acceptable shapes 
for the conservation cells in such regions. This results in 
an unstructured grid with too many conservation cells in 
the vicinity of a solid body. Such a restriction does not 
exist in the case of a structured grid and thus makes it more 
suitable for viscous flows. 

Arguably a hybrid grid, consisting of a structured grid in 
the viscous regions and unstructured grid elsewhere may be 
the most suitable way to discretize a computational 
domain. But, considering the fact that one of the main 
reasons for resorting to an unstructured grid is the difficulty 
involved in generating body-conforming structured grids 
for complex geometries, it is indeed questionable whether 
much could be gained from such a strategy. At the Rockwell 
Science Center we have been experimenting with a hybrid 
unstructured grid consisting of triangular prismatic cells in 
the viscous regions and tetrahedral cells elsewhere. This 
approach seems to be promising. 

One aspect of unstructured-grid solvers in which real 
progress has been made is the storage requirement. Whereas 
the structured grid solvers require only about 30 words of 
storage per conservation cell, the unstructured grid solvers 

used to demand about 200. This situation has been vastly 
improved, and the storage requirement has been brought 
down to a manageable 60 words per conservation cell. 

The concept of "interior" boundary conditions described in 
section 4.1 is very promising. It was used successfully in 
computing the trajectory of a store released from an F-18. 
This concept also proved its usefulness in analyzing the 
effect of mounting an additional equipment on an aircraft. 
In this case, the grid and solution from an earlier 
computation could be used along with the geometry of the 
added equipment to obtain the required information in a 
timely manner. The present implementation of this 
concept has some shortcomings. To minimize the number 
of arithmatic operations, several approximations were 
introduced. Instead of computing the exact contribution of 
each face for updating the interior boundary points, some 
simple recipes were employed. This results in 
communication between the cells that lie on either side of a 
solid object. That is, the interior boundary point pairs 1 
and 2 in Fig. 3. interact, resulting in an erroneous 
interaction between the inside and outside of the body. It 
appears that shortcuts may not work, and it may be 
necessary to consider the exact geometry of the 
intersecting surfaces when interior boundary conditions are 
encountered. Since this process is very involved, it may 
not be acceptable for many problems. Alternative 
solutions are currently being investigated. 

One burden that we have carried over from structured-grid 
algorithms to unstructured grid is the use of locally one- 
dimensional approximate Riemann solvers. This conscious 
introduction of a known problem is due to lack of a better 
alternative. Several multidimensional Riemann solvers 
have been considered in the structured-grid world without 
much success. This problem is accentuated in the case of 
unstructured grids due to the difficulty in controlling cell 
shapes. Of course, when sufficiently fine grids are 
employed, Riemann solvers do not play a major role. But, 
this doesn't happen in the real world and hence, at least for 
now, we do have to reckon with errors that arise from 
locally one-dimensional approximate Riemann solvers. 

9.   CONCLUSIONS 
The most important conclusion that we have arrived at from 
our experiments with unstructured grid computations is that 
they offer a chance to prove to the designers that CFD is a 
tool not just for analysis, and that it may very well be a 
better alternative to existing design tools such as panel 
methods. Structured grid solver will still play a major role 
as an analysis tool and as a tool for understanding some 
complex flow features. 
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1. SUMMARY 

In this paper, recent advances in the development of a new 

quadratic reconstruction finite-volume scheme for unstruc- 

tured polygonal meshes are presented. The scheme is used 

to discretize the two-dimensional compressible Euler and full 

Navier-Stokes equations. The quadratic reconstruction is 

shown to lead to a full second-order accurate discretization of 

the advective derivatives. The accuracy of the scheme is very 

weakly dependent on grid distortions, a property which is very 

attractive for adaptive unstructured grids computations. The 

pseudo-time integration of the equations is performed by an 

implicit scheme based on Newton-Rrylov techniques. The li- 

near system that arises from the Newton linearization is solved 
by the GMRES algorithm. The incomplete LU factorization 

is employed for the system preconditionning. The accuracy, 
efficiency and robustness of the method are demonstrated on 

various classical test cases respectively corresponding to in- 

viscid and viscous laminar flows. 

2. LIST OF SYMBOLS 

Ö€ 
a 
9f 

s conservative variables 

u,Q any flow variable 

f.fi advective fluxes 

F,G viscous fluxes 

T^x ffiy edge normal components 

n area of control volume 

8Q contour of control volume 

h length of edge k 

% Hessian matrix 

0 cell gravity center 

r position vector 

r volume surrounding a cell and 

bounded by its neighbors 

Ai© 0; - ©o 
QUA quadratic reconstruction 

LIN linear reconstruction 

CON constant reconstruction 

* Research Assistant 
tF.R.I.A. Research Assistant 
' Professor 
§F.N.R.S. Research Assistant 

ROE Roe's flux difference splitting 

VL Van Leer's flux vector splitting 

<j discontinuity detector 

At time step 

h local characteristic mesh size 

3. INTRODUCTION 

During this last decade, many investigations have been carried 

out to develop efficient numerical techniques for solving the 

compressible Navier-Stokes equations for complex geometries. 

Unstructured meshes turn out to be a useful tool to generate 

grids around general configurations, and offer the powerful 

capability of adaptation to local flow features. Nevertheless, 
the inherent distortions present in unstructured grids cause the 
classical schemes used for structured meshes to be mostly in- 

efficient for computing accurate solutions. 

In 1990, Barth and Frederickson ' proposed the concept of 

high-order polynomial reconstruction also named k-exact re- 

construction schemes. Depending on a discrete set of cell va- 

lues, a high-order cell-by-cell reconstruction of the flow vari- 

ables is performed. A high-order Gauss quadrature coupled 

with an approximate Riemann solver is used to evaluate the 
flux balance integrals. This approach essentially corresponds 

to the generalization of the Godunov method to high-order 

schemes on any type of meshes. It was initially designed for 

Essentially Non Oscillatory schemes 2'3. However, the appli- 

cation of the latter to steady state computations proved to be 

difficult due to the large computational time requirement and to 

some convergence problems 4. Barth 5 developed a quadratic 

reconstruction with a fixed support stencil in the frame of a 

cell-vertex finite-volume scheme. At the same time, Essers et 

al. 6'7 proposed a non fully conservative finite-volume scheme 

for structured meshes which also preserved quadratic polyno- 

mials. Despite its lack of conservativity, the accuracy and the 

robustness of the method were demonstrated by the computa- 

tions of viscous flows on very distorted meshes. 

In the frame of the present research 8~10, we contribute to 

the work of these authors by developing a robust and accu- 

rate scheme. The accuracy of the scheme is determined by 

the use of an original quadratic reconstruction of the flow 

variables and a second-order Gauss quadrature within a cell- 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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centered finite-volume solver. The quadratic reconstruction 

can be interpreted as a higher-order generalization of the ro- 

bust Green-Gauss linear reconstruction u'12 widely employed 

in unstructured solvers. The method is designed to deal with 

grids that contain general polygonal cells with an arbitrary 

number of edges. It provides a high flexibility. Hybrid grids 

which are of high interest when solving viscous flows can be 

used. Adaptation by h-refinement and coarsening is employed. 

The second-order accuracy of the scheme with respect to the 

discretized advective derivatives can be demonstrated, and is 

achieved regardless of the amount of grid distortions. The 

viscous term is discretized by using a central approximation. 

The monotonicity of the solution is guaranteed by using a 

discontinuity detector that switches the scheme to a constant 

reconstruction. 

For large problems, convergence rates obtained by explicit 

methods (Runge-Kutta), even with some acceleration tech- 

niques such as local time-stepping or residual averaging, fi- 

nally remain insufficient. The speed-up of the convergence 

can be achieved by employing a multigrid approach or/and 

implicit schemes 13'14. Venkatakrishnan and Barth 15 tested 

a fully implicit scheme for unstructured meshes, wherein the 

system arisen from the Newton's linearization was solved by 

direct methods. However, that attempt showed that direct 

methods, despite their robustness, are plagued by extremely 

prohibitive memory and computational requirements. As an al- 

ternative, iterative implicit solvers have been studied by many 
authors 16-'s. The Newton-Krylov methods 19 have turned out 

to be really successful for a broad class of problems. Within 
the frame of the Inexact Newton methods 20, iterative solvers 

based on Krylov subspace generation are employed to approx- 

imately solve the linear system that arises from the Newton 

linearization. Among others, the Generalized Minimum Resid- 

ual (GMRES) algorithm of Saad and Schultz 21 has proved to 
be very efficient thanks to its robustness. We employ it in its 

finite-difference version that has the major advantage not to 

require the storage of the system Jacobian. To accelerate the 

convergence of conjugate-gradient like algorithms, precondi- 

tionning is highly recommended for clustering the eigenvalues 

of the matrix 22. For that purpose, we use the incomplete LU 

factorization with no fill in. 

4. FINITE VOLUME DISCRETIZATION 

Consider a finite-volume discretization of the Navier-Stokes 

equations onto a set of polygonal cells whose number of edges 

Ni can be arbitrary: 

/   dts dCli + I     [(f + F)n, 
Ja, Jdfi, 

+ (g+G)ny]d(dSli) = 0 (1) 

Within the frame of the cell-centered variant of the finite- 

volume method, we associate to each polygonal cell a set of 

conservative variables (S;) which refer to the unknowns at the 

cell gravity center (node). A second-order spatial discretization 

of the time derivatives of (1) can therefore be achieved without 

requiring any artifice such as for example the mass lumping 

implicitly present in the cell-vertex technique. The Navier- 

Stokes equations reduce to the following semi-discretized con- 

Fig. 1: Control volume, quadrature points 

servative system of the non-linear equations: 

(2) 

where : f„ (tnl + gnk
y)d6k 

J6i 

5. ADVECTIVE DERIVATIVES 

Obviously the accuracy of the scheme (2) is essentially depen- 

dent on the numerical integration of the non-linear advective 

flux along the mesh edges. Two steps follow: 

• First, a reconstruction phase reconstructs the flow vari- 

ables in the cell from the discrete values at the neigh- 

boring cell gravity centers. 

• Secondly, a high-order Gauss quadrature integrates the 

upwind numerical flux computed by a Riemann Solver. 

5.1 Preliminary note on the order of accuracy 

Various definitions of the accuracy of a scheme exist in the 

CFD community. In this paper, we use a definition which is 

usual in the finite-difference community, i.e we refer to the 

accuracy obtained in the evaluation of the advective and dif- 

fusive derivatives appearing in the equations. Hence, second- 

order accuracy on first order derivatives (like for the advective 

part of the Euler equations) means that the error on these first 

order derivatives for any sufficiently smooth function u should 

decrease quadratically when the mesh is refined similarly in 

all space directions. The dominant term of the truncation error 
is therefore proportional to third-order derivatives times the 

square of a local characteristic mesh size: 

dtu — dtu s:    num ^ exact K(d$xu)h2 
(3) 

with K a constant. 

A scheme discretizing advective derivatives is considered as 

second-order accurate if it leads to an exact evaluation of the 

latter when the corresponding flux vectors are any quadratic 

(or linear) function of the cartesian coordinates of the physical 
domain. Indeed, in that case, the third and higher order deriva- 

tives appearing in the truncation error (3) obviously vanish. 

In the literature, the most frequently employed cell reconstruc- 

tion uses a representation of the flow variables based on linear 

polynomials.   Clearly, it can only evaluate exactly a linear 
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function, but not a quadratic function. This means that the 

dominant term of the truncation error involves a second order 

derivative and can be written: 

^num-d^act^K'(dl(u)h (4) 

with K' ^ 0 a constant. 

The resulting scheme is therefore first-order accurate only. 

However, when the mesh is sufficiently regular, it can be 

demonstrated that K' is equal to 0, and the second-order ac- 

curacy is recovered. Similarly, for irregular meshes, the domi- 

nant error on the advective derivative computed by a constant 

reconstruction involves a first order derivative with a coeffi- 

cient that does not tend to zero with the mesh size. For these 
meshes, the constant reconstruction is thus inconsistent, but 

consistency (i.e. first-order accuracy) is recovered on regular 

grids. 

By extending the linear reconstruction to a quadratic recon- 

struction defined as a third-order truncated Taylor series expan- 

sion of the variables around the cell gravity center, a quadratic 

function can be reconstructed exactly provided that the numeri- 

cal gradient and Hessian matrix are respectively computed with 

a second-order and a first-order accuracy at least: 

Mrec(r) = M0 +ArTVw0 + ^ArTW0Ar      (5) 

with Ar = r — To, and u is any flow variable. 

Therefore, if the numerical integration of the numerical flux 

is sufficiently accurate, a second-order accurate scheme is 

obtained without any assumption about the grid regularity. 

This property is quite attractive when using unstructured grids 

which are usually very irregular. 

The calculation of the flux f * (see eq. (2)) through each edge 
is performed by a high-order numerical integration of the flux 

functions using the n-points Gauss quadrature: 

n 

fn = 8kJ2"i [f(**,l£)"* + g(**.!/?K]        (6) 

where {x- ,Vj) are the coordinates of the Gauss quadrature 

point j, ujj denotes the weight associated with this point. 

By using n quadrature points, the formula (6) allows the ex- 

act integration of polynomials with degree 2n — 1 at most. 

To meet the second-order accuracy requirement described in 

section 5.1, two quadrature points are at least needed in order 

to compute exactly the flux integral of a quadratic polyno- 
mial of the cartesian coordinates. Schemes employing linear 

reconstruction only necessitate one quadrature point (located 

at the mid-point edge), but they are usually first-order accu- 

rate only as already mentioned above. Essers et al. 7 however 

proved that a one quadrature point integration can produce a 
full second-order scheme even for very irregular meshes. This 

accuracy can only be recovered by applying a non conserva- 

tive correction to the scheme, which definitely constitutes a 

drawback with respect to the present method. 

or the Van Leer's flux vector splitting is employed to compute 

the upwind numerical flux at each quadrature point. 

5.2 Reconstruction phase 

5.2.1 Fixed support stencil 

Contrary to the Essentially Non Oscillatory schemes, the 

stencil that supports the reconstruction is fixed during the 

iterations. The major advantage is an important saving of CPU 

time, but an accuracy deterioration occurs in the vicinity of 

discontinuities. Indeed, to satisfy some monotonicity require- 

ments in shocks or other regions with strong flow gradients, 

the scheme should locally reduce to a constant reconstruction 
whatever the methodology employed : TVD 23 , LED 24, or 

hybrid schemes 25. 

5.2.2 A classical linear reconstruction 

By dropping off the quadratic terms of (5), a linear reconstruc- 

tion is obtained which in fact corresponds to the extension of 

the classical finite-difference Fromm scheme to multiple di- 

mensions: 

■"rec(r) = u0 + ArTVu0 (7) 

The gradient at the cell gravity center is computed by the well- 

known robust Green-Gauss reconstruction widely employed 

in unstructured grid solvers 5,12.The Green-Gauss theorem is 
applied to compute the averaged gradient of u over the surface 

of a bounding control volume: 

V«o — i>   un ddT 
r/9r 

(8) 

where T denotes a bounding volume surrounding fi and is 

defined by the neighbors of Q, (fig. 1). The integral in (8) is 

discretized by a summation of the contributions of the linear 

segments of dT obtained from the trapezoidal rule. It leads to 

a linear combination of the values of the neighboring nodes: 

Vu0 = DiAu (9) 

with: Au = 

«l - uo 

«JVo - u0 

Na is the number of neighbors of f2, i.e. the cells connected 

to f2 by at least a common edge or a common vertex. D i is 

a 2 X NQ matrix with constant coefficients. 

5.2.5 Extension of the linear to the quadratic reconstruction 

By using a Taylor series expansion of u around node 0 in 

(9), the truncation error E corresponding to formula (9) can 
be expressed as: 

E = ErV/«o (10) 

with: V2uo = 

r dlxu0 
d2 uo 

,uo 

Note that Er is a 2 X 3 matrix containing constant coeffi- 

cients of 0(h). For arbitrary meshes, second-order accuracy 

is nevertheless recovered by subtracting E from the right-hand- 

side of (9): 

A Riemann solver such as the Roe's flux difference splitting VMO = D i Au - Er V2
M0 (11) 
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This second-order numerical gradient does indeed depend on 

some sufficiently accurate (first-order at least) second-order 

derivatives. By replacing (11) in (5), we obtain a quadratic 

reconstruction for which the only unavailable coefficients are 

the second-order derivatives of u: 

linear part 

„(r) = «o+A^DjAu 

+ [-ArTEr + ^Ax2±Ay2AxAy]] V2«o 
(12) 

quadratic part 

The second order derivatives are computed by a technique 

sometimes referred to as the minimum-energy reconstruction 
5'26. It simply consists in fitting the cell quadratic polynomial 

urec to the values of the neighboring nodes. The following 

functional is minimized with respect to V up- 

E (urec(r;) - Ui) (13) 

which is equivalent to solve in the least square sense the fol- 

lowing linear system of Na equations and 3 unknowns: 

(A2- AiEr)V2«o = (I- AiDi)Au       (14) 

with: 

Ax\   Aj/i 

A2 = 

" \Ax\   \Ay'{    Ax^Ayi 

AxNnAyNn_ _i Ax2
Na i Ay2

Nn AxNnAyNc2 _ 

The normal equations are non singular provided that the stencil 

contains at least 6 nodes. Although this condition is generally 

fulfilled for interior nodes, it may not be for boundary nodes. 

In that case, the stencil must be enlarged by incorporating the 

neighbors of the neighbors sharing an edge with the concerned 

node. The solution of (14) corresponds to a first-order approxi- 

mation of the second order derivatives which can be expressed 

as a linear combination of the nodal values: 

V2u0=D2Au (15) 

with D2 a 3 X Na matrix with constant coefficients: 

D2 =   (A2 - AjEr)T (A2 - AiEr) 

(A2-AiEr)T(I-AiD1) 

All the matrices involved in the reconstruction Er, Di and 

D2 are preprocessed and stored. 

Note that variables u are actually the primitives variables. As 

a result, the gradients of the primitives variables are therefore 
directly available for the computations of the viscous fluxes. 

For inviscid flows, the conservative variables could however 

be used as well. 

5.3 Monotonicity of the reconstruction 

High-order schemes produce oscillations in the vicinity of dis- 

continuities. That problem can be overcome in two different 

ways: either by selecting another stencil for the reconstruction 

which does not involve the discontinuity (ENO schemes 27), or 

by modifying the reconstruction within the same stencil (TVD 

schemes 23). 

The design of multidimensional limiters has been introduced 

by Barth and Jespersen n. However, as shown by Venkata- 

krishnan 28, such limiters may severely hamper the conver- 

gence to the steady state. This problem is still more dramatic 

when employing implicit schemes with large CFL numbers. 

Venkatakrishnan 28 proposed some modifications to the limiter, 

and obtained convergence at the price of the evaluation of an 

additional constant. 

We employ another approach by using the rather old idea of 

hybrid schemes 25 , however applied to the reconstruction. 

The quadratic reconstruction is switched to a monotone con- 

stant reconstruction in the vicinity of discontinuities. While in 

"smooth flows regions", it remains unaltered. 

This is easily achieved with the formulation (12), but requires 

a discontinuity detector, that is taken of the form: 

Y^ |Ari(V,-u - Vo«) 

<?o 
«=i 

Na r 1 
Y, [(|Ar,-V<u| + |Ar;Vo-u|) +7 (N + l«o|)J 
8=1 

(16) 

u is the pressure or/and the velocity norm. The complete form 

of 7, which acts as a filter term, is given in reference ( 9). 

Formula (16) is an extension of the error indicator developed 

by Lohner 29 for transient finite-element computations. 

By construction <To is always bounded by 1, and provided a 

threshold value ß, a discrete discontinuity detector <r0 can be 

defined at each node 0: 

if    eo < ß 

if    TO > ß 

(TO  = 1 

o-o=0 
(17) 

where ß is usually chosen close to 0.2, and turns out to be 

relatively case independent. 

The quadratic reconstruction (5) is finally modified as follows: 

urec(r) = U0 + <T0 [ArTVu0 + *ArTW0Ar]   (18) 

do is computed once at the beginning of each Newton's 

iteration. Unfortunately, the detector is sometimes found to 

fluctuate at some nodes usually located in the neighborhood 

of the discontinuities. At these locations, it may indeed appear 

difficult to decide whether the cells involve the discontinuity 

or not. However, after a sufficient residual decay, the iterative 

process can be supposed to be close enough to the solution, 

and the detector is frozen everywhere for the rest of the con- 

vergence. A similar but more complex strategy, which has not 

been tested in this paper yet, can be found in reference ( 9). 

6. DIFFUSIVE DERIVATIVES 

A centered discretization is used to discretize the viscous terms 

of the Navier-Stokes equations. The viscous flux is estimated 
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at one quadrature point located at the mid-edge, which requires 

the evaluation of the gradients of the primitive variables at the 

nodes. As pointed out in section 5.2.3, these gradients have 

been previously computed with a second-order accuracy during 

the quadratic reconstruction phase. They are obtained at the 

quadrature point by using a linear interpolation between the left 

(L) and the right (R) neighbors of the edge. Strictly speaking, 

that procedure is only valid if the mid-edge point lies on the 

line joining the left and right neighbors. If it does not, the 

following modified interpolation formula has to be used: 

dxuP =   adxuR + (1 - a)dxuL (19) 

+AxPQ(ad2
xuR + (1 - a)d2

xxuL) 

+AyPQ(ad2
yuR + (1 - a)d2

xyuL) 

where P is the quadrature point, Q the projection of P on 

LR, and a = ^4 
\\LB\\ 

The accuracy of that discretization is restricted to first-order 

for arbitrary meshes, but remains second-order when the mesh 

is sufficiently regular. That accuracy limitation is however 

not too restrictive because the truncation error is multiplied 

by a usually small factor (i.e. the inverse of the freestream 

Reynolds number). 

7. IMPLICIT INTEGRATION SCHEME 

7.1 Newton's method 

As our purpose is to compute steady state solutions of the 

Euler and Navier-Stokes equations, Newton's method could 
be directly applied to the steady state equations. However, 

a well-known drawback of the Newton's method is the need 

for a sufficiently "close initial guess" in order to guarantee 

convergence. A common approach to bypass that problem is 

to consider the unsteady equations and to march in time. Be- 
cause fully implicit schemes are known to be unconditionally 
stable, the time step At is allowed to increase and finally 

tend to infinity during the time-marching in order to permit 

quadratic convergence when approaching the solution. The 

time-marching strategy can also be interpreted as the addition 

of an extra ^7 term to the diagonal of the Jacobian of the 

steady equations in order to increase its magnitude, which in 

fact corresponds to an under-relaxation procedure. 

An Euler-backward time-stepping is employed to discretize 

the time derivative of the equations (1). A Newton-Raphson 

iterative process is performed at each time step / to find the 

solution s +1 of the following system of non-linear equations: 

where J(Q) = -1 
At ~^~ dcJ *s t'le Jacorjian °f F■ 

T(* '+i\_ 
='+1 — s 

At 
+ n(s'+l) = o     (20) 

The operator TZ(Q) corresponds to the discretization of the 

spatial derivatives of the Euler and Navier-Stokes equations 

described in the previous sections. Finally, the whole iterative 

process can be summarized in two loops: 

For / = 0,1,. . .until convergence do: 

Set Q(°) = s' 

{For n = 0,1,... until convergence do: 

Solve J(Q("))6Q(n) = -T{Q^) 

Set Q(n+1) = Q(") + <SQ(") 

Update s'+1 = Q(n+1) 

(21) 

As pointed out by Kuffer 30, deciding when the Newton loop 

has to be stopped is not easy. A large residual decrease is not 

always required, which necessitates many inner iterations and 

then costs a lot of computational time. Except for unsteady 

flow computations for which equation (20) must be solved 

accurately, many authors usually limit the number of inner 

iterations to one (n = 0). The resulting descent direction is 

in fact usually accurate enough to decrease the residual satis- 
factorily. As the time step increases to infinity, the iterative 

time-marching scheme tends to a Newton-Raphson lineariza- 

tion of the steady state equations. Restricted to one inner loop 

iteration, the iterative process (21) becomes: 

{For / = 0,1,... until convergence do: 

Solve J(sl)Ss = -ft(s') 

Update s'+1 = s' + 6s 

7.2 Inexact Newton's method 

Most of the computational time required by a Newton algo- 

rithm is essentially devoted to the evaluation of the Jacobian 

go and to the solution of a linear system. The exact solution 
of that system is most of the case not justified when the iterate 

is far from the solution. It seems to be quite reasonable to 

solve it approximately by using an iterative solver, which of 

course saves a lot of CPU time with respect to direct methods. 

Such a method is referred to as an inexact Newton-method. As 
shown by Dembo et al. 31, the residual on the linear system 

must however verify the following rule in order to preserve 

the quadratic convergence: 

PWFÜ < In 

rin = min{c||JP(Q(n))||M} with 0 < z < 1 

(22) 

where r„ = J{Q^)SQ^ + T(Q^), \\.\\ denotes any 
arbitrary norm in Rn, c is a constant and T is supposed to be 

suitably scaled. In our code, we use c = 0.5 and z = 0.5. 

The choice of the iterative solver is obviously essential. These 
solvers can be grouped in two sets: stationary iterative meth- 

ods (Jacobi, Gauss-Seidel, SOR,... etc), and the non-stationary 

iterative methods (Krylov subspace algorithms, Chebychev 

iteration, ... etc). This last set differs from stationary meth- 

ods in that the computations involve information that change 
at each iteration. Iterative solvers such as Jacobi and Gauss- 

Seidel are attractive because they are simple and easy to vec- 

torize. But their main drawback is that their robustness and 

convergence are only ensured when the matrix exhibits large 

diagonal terms. Unfortunately, due to the stiff problems gener- 

ated by the Euler and Navier-Stokes equations, a large diagonal 

for the system Jacobian requires a important under-relaxation, 

which indeed destroys the Newton's quadratic convergence. 

On the contrary, Krylov subspace methods such as the con- 

jugate gradient are known to solve complex problems in a 

finite number of iterations. Many algorithms derived from the 

conjugate gradient have been developed to deal with a broad 

range of problems. Among others, the Generalized Minimum 
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Residual (GMRES) of Saad and Schultz 22 is designed to solve 

non-symmetric linear systems. 

7.3 The finite-difference GMRES algorithm 

The GMRES is a projection method for solving a linear system 

Ax = b (23) 

that seeks an approximate solution xm from an affine subspace 

Xo + ICm of dimension m by imposing the Petrov-Galerkin 

condition: 

b - Axm ± AKm (24) 

Xo represents an initial guess to the solution. JCm is the Krylov 

subspace of dimension m: 

ICm(A, r0) = span{r0, Ar0, A
2r0,..., A

m~lrü}   (25) 

with T*O = b — Axo- 

In other words, the GMRES process successively build an 

approximate solution xm at each iteration ra so that xm is 

orthogonal to the previous search directions in the metric of the 

matrix A, and minimizes the residual rm in L2 norm. More 

details about the implementation can be found in reference 32. 

In our code, a block variant of the basic algorithm with restart 

is used. The whole problem is indeed considered as a n X n 

system of 4 X 4 block matrices. 

Typically, a Krylov solver such as GMRES does not require 

the calculation of the Jacobian J(Q) but only necessitates the 

computation of a matrix vector product: 

J(Q)p (26) 

where p denotes any vector. 

For nonlinear equations, this action can be approximated by a 

finite-difference quotient of the form: 

J(Q)P- 
?(Q + eP) - T{Q) 

(27) 

An analysis of the convergence of what is referred to as the in- 

exact Newton/finite-difference projection methods is given by 

Brown 20. The interesting feature of equation (27) is that the 

calculation and the storage of the Jacobian are not required. 

Indeed, the computation of the jacobians of the advective and 

diffusive flux may be very complicated, and the exact jacobian 

of the Roe's flux difference splitting is very expensive to com- 

pute. Furthermore, the introduction of turbulence modelling in 

the frame of future developments will also lead to difficulties 

for deriving jacobians. The stencil of the quadratic reconstruc- 

tion usually involves an average of 9 to 13 cells. Therefore, 

the required storage should amount from 144 to 208 words per 

cell, which is quite expensive. 

A proper choice of the parameter e in (27) is given by the 

analysis of Dennis and Schnabel 33 : 

t\\p\\ = Vv (28) 

where rj is the machine zero and ||.|| represents the RMS norm. 

7.4 Preconditionning 

The convergence of Krylov solvers is very dependent on the 

eigenvalues of the matrix. To accelerate the convergence, the 

use of a preconditionner that clusters the eigenvalues to each 

other is strongly recommended. The preconditionner should be 

as close as possible to the inverse of the matrix. In practice, 

it should allow a fast linear system resolution. Precondition- 

ners based on stationary methods (diagonal preconditionner 

or Jacobi, Gauss Seidel, SOR) have been widely employed. 

A comparison of different preconditionning techniques can be 

found in Orkwis et al. 34, and Venkatakrishnan et al.14. We use 

the incomplete LU decomposition 32 (ILU) which has been 

demonstrated to be a very efficient preconditionning strategy. 

It is generally employed in its simpler version named ILU(0) 

for which no fill in is permitted during the LU decomposition. 

In other words, the non zero elements of the preconditionner 

are located at the same location as those of the initial matrix. 

This has the advantage of a fixed and minimum memory re- 

quirement. However, this decomposition can turn out to be 

too weak for stiff problems. We have developed and actually 

use a block version of the ILU(0). 

The choice between right or left preconditionning is of im- 

portance. The use of right preconditionning is beneficial. In- 

deed, when using left preconditionning, all the residual vectors 

and their norms correspond to preconditionned and thus scaled 

residuals. Hence, it could be difficult to know whether the 

algorithm needs to be stopped. On the contrary, right precon- 

ditionning allows the use of the actual residuals. 

Although the Jacobian matrix does not need to be formed in 

the GMRES algorithm, an approximate form of it is however 

still required for the preconditionning. The support stencil of 

the quadratic reconstruction is large, it is therefore prohibitive 

to take all the neighbors into account. As suggested by many 

authors, an approximate Jacobian may be computed by using 

a constant reconstruction which only depends on the edge- 

neighbors or distance-one neighbors. In order to minimize the 

bandwith and thus the fill-in of the decomposition, a reverse 

Cuthill-McKee ordering is performed in a preprocessing step . 

In most of the results presented in this paper, the Roe's flux 

difference splitting is employed. It is quite a complex and 
expensive task to derive analytically even an approximate form 
35 of the jacobian of the latter scheme. One alternative is to use 

the easily available jacobian of the Van Leer's scheme in the 

preconditionner, which costs 2 to 3 times less computational 

time than the Roe's scheme jacobian. A comparison between 

both preconditonners is addressed in the section devoted to the 

presentation of the results. 

It should be mentioned that up to now the contribution of the 

viscous flux jacobian is not introduced in the preconditionner. 

7.5 Time step increment control 

As explained in the previous section, the Newton's method is 

implemented in a time-stepping form. The evolution in time 

is monitored by the time step. During the time-marching, the 

time step is increased to infinity in order to ultimately achieve 

the Newton's quadratic convergence. Like many authors, this 
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is performed by employing an empirical formula in which the 

CFL number varies according to the inverse of a residual 

CFL,+1 = CFLQ (29) 

There indeed subsists two different parameters to tune in order 

to optimize the convergence rate : the initial CFL number 

and the exponent p. Typical values of the latter parameters 

are : CFL0 - 10 and p = 0.5. 

8. BOUNDARY CONDITIONS 

The treatment of the boundary conditions has a strong influ- 

ence on the convergence of an implicit scheme. For inviscid 

flow computations, we use a very convenient procedure, wich 

consists in imposing the boundary conditions in a weak manner 

via the modification of the advective flux through the bound- 

ary edges. Hence, according to the boundary type, some of 

the flow variables are imposed at the quadrature points of the 

edges, and others are computed from their values at interior 

nodes using extrapolation formulas similar to those used to 
evaluate left and right values at the quadrature points of in- 

ner edges. For viscous flow computations, inlet and outlet 

boundaries are treated in a similar way as inviscid boundary 

conditions. At the solid walls, the viscous flux is modified in 

order to impose the noslip boundary condition: 

0 

-/inV« 
-/in Vv 

qn 

(30) 

That method however turns out to be generally too weak to cor- 
rectly satisfy the no slip condition. Two additional procedures 

have been tested. The first corresponds to the introduction 

of dummy nodes in the stencil of the boundary cells. These 

dummy nodes are located at the mid-point of boundary edges. 

The flow variables at these nodes are extrapolated or imposed 

by the no slip boundary condition before each evaluation of 
the flow derivatives. That method has been implemented in a 

fully implicit manner and successfully used for the flat plate 

boundary layer computation. Unfortunately, the result is not so 

good for more complex flow computations. For these flows, 

we have tested another procedure. The boundary nodes are 

no longer located at the cell gravity center, but at the mid- 

boundary edge, and the noslip boundary condition is imposed 

in its strong form at each Newton iteration. 

Finally, notice that it is essential to include the contribution 

of the boundary conditions in the preconditionner. The ja- 

cobian of the modified boundary advective flux is calculated 

analytically for most of the boundary conditions except for 

the subsonic inlet. For the latter, it is derived from a finite 

difference formula similar to equation (27). 

9. MESH ADAPTATION 

The possibility of using a flexible local grid adaptation pro- 
cedure is a major advantage of unstructured meshes. The 
objective is to improve the resolution of the flow by succes- 

sive refinements and coarsenings together with minimizing the 

number of points involved in the mesh. The edge data struc- 

ture employed in the code and the relatively insensitivity of 

the accuracy of the numerical scheme to grid distortions al- 

low the use of very general polygonal cells, and as a result 

of somewhat distorted meshes. We developed a very general 

adaptation strategy based on mesh enrichment and coarsening. 

The method is based on an error indicator of the form (16). 

Cells whose error indicator lies above a preset threshold are 

candidates for refinement, while others whose error indicator 

lies under another preset value are to be possibly coarsened. 

The refinement strategy, which is implemented for any type 

of polygons is described in reference ( 9). In particular, trian- 

gles and quadrangles can be divided anisotropically depending 

on the value of an anisotropy sensor based on some standard 

deviations of the gradients of a flow parameter computed in 

the directions pointing to the different neighbors of the cell. 

Two types of coarsening procedures are considered. The first 

one is based on the refinement history. A tree containing the 

information between successive meshes is updated during the 

refinements. It is then rather easy to delete "son" cells and to 

recover the "parent". The second method is more general and 
coarsens the grid by deleting vertices and recombining others 

to build larger polygons. 

10. RESULTS 

10.1 Subsonic sine-bump 

The effect of the various reconstructions (quadratic - linear 

- constant) has first been tested by computing the inviscid 

subsonic flow (M^ = 0.5) in a channel perturbed by a sine 

bump with a mesh of 1294 cells (fig. 2a). The geometry is 

defined as follows: 

Lower wall: 

-0.7    < x <     0     : y = 0 
0 < x <     1     : y = 0.05[1 + sin(2nx - f)] 
1 < x <    1.7-_:.i/ = 0 

Upper wall: -0.7 < x < 1.7 : y = 0.7 

The Roe's scheme is employed as Riemann solver. The solu- 
tions have been computed for an infinite value of the CFL 

number and a maximum number of GMRES iterations equal to 

60 with a restart every 30 iterations. Figures 2c and 2d show 

the evolution of the Mach number and the total pressure on 

the lower wall. The quadratic reconstruction clearly appears 
to lead to the lowest spurious entropy generation (fig. 2d). 

Hence, it predicts the highest peak Mach number : 0.835. For 

the sake of comparison, the peak values respectively calculated 

with the linear and the constant reconstructions are equal to 

0.804 and 0.754. When compared to other reconstructions (re- 

sults not shown), the symmetry of the solution obtained with 

the quadratic scheme is almost perfect as can be seen from the 

iso-mach lines pattern (fig. 2b). 

Fig. 2e illustrates the dramatic convergence improvement ob- 

tained with the implicit scheme with respect to an explicit 

integration using a 3 steps Runge-Kutta algorithm. The pre- 

conditionner based on the approximate Roe flux difference 

splitting yields the fastest convergence in terms of CPU time 
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and number of Newton iterations (fig. 2f). The quadratic re- 

construction however takes about 25 % more CPU time than 

the linear reconstruction scheme to achieve the same residual 

decay. 

10.2 Subcritical NACA0012 airfoil 

The second test case again illustrates the accuracy gain ob- 

tained with the quadratic reconstruction scheme. The inviscid 

subsonic flow over the NACA0012 airfoil has been computed 

at a freestream Mach number of 0.63 and an incidence of 2 deg. 

The mesh contains 4537 cells (fig. 3a). The far-field bound- 

ary is located at a distance of 20 chords away from the airfoil. 

The starting solution corresponds to the uniform flow. The 

solutions computed with the various reconstructions behave 

similarly on the lower wall (fig. 3b). However, larger discrep- 

ancies occur at the upper wall due to the strong flow accelera- 

tion. The highest peak Mach number (0.981) is again obtained 

with the quadratic reconstruction and agrees very well with the 

value computed by Paillere (0.983) 3S on the same mesh with 

a fluctuation splitting scheme. Figure 3d shows the evolution 

of the total pressure along the wall. Notice that the level of 

spurious entropy generated by the quadratic reconstruction is 

very low. The lift coefficient Cl = 0.323 compares well 

with the value computed by Paillere 36 {Cl - 0.322), and 

the purely numerical pressure drag coefficient is found very 

low, Cd = 0.00034. The lift coefficient is however slightly 

lower than the exact one predicted by a full potential method 

(Cl = 0.334). That difference can be explained by the fact 

that no vortex correction is imposed at the far-field boundary 

condition 35. The error between the present value and the ex- 

act one is equal to 3.4 %. According to the work of Thomas 
and Salas 37, a computation with a mesh of about 20 chords 

and with no vortex correction should underpredict the lift co- 

efficient with a factor of 4 %. 

The influence of the exponent (p) of the CFL update formula 

(29) on the convergence has been tested (fig. 3e and 3f). The 

code diverges when the computation is initiated with an infinite 

CFL number. The convergence history obtained when the 

GMRES is replaced by an SOR iterative solver is provided 

in fig. 3f and 3e. Figure 3f clearly shows that the Newton's 

quadratic convergence is never reached with the SOR strategy. 

Nevertheless, this strategy turns out to be competitive in terms 

of the computational cost (fig. 3e). 

10.3 Transonic flow over a circular arc bump 

To test the accuracy and the performance of the scheme to 

calculate flows with shock waves, the code is applied to a 

classical test case: the inviscid transonic flow (Moo = 0.85) 

over a circular arc bump in a channel. The use of implicit 
Newton-Krylov techniques for flows with discontinuities re- 

mains difficult because of the modifications of the reconstruc- 

tion that are required to preserve the monotonicity of the so- 

lutions. As explained in section 5.3, the quadratic reconstruc- 

tion (18) modified by the discontinuity detector is employed to 

achieve monotone solutions. For this test case, the Van Leer's 

flux vector splitting is used. The computation is started from a 

solution previously computed with the constant reconstruction 

scheme. Indeed, one of the major reported disadvantages of 

implicit-Newton methods is the time required by the shocks to 

migrate to their right location. During that phase, the residual 

actually stagnates. That prevents the CFL number to increase 

to infinity, and therefore dramatically slows down the conver- 

gence. We actually use the two following remedies: the star- 

ting solution is obtained with a cheap low order scheme, and 

we use a grid sequencing strategy with mesh adaptation. The 

initial mesh contains 1420 rectangular cells (fig. 4a). After 

three adaptation, the final grid (fig. 4b) involves a lower num- 

ber of cells (1296), which are very general polygons. The total 

computational time (not shown here) amounts to 400 CPU sec. 

on a HP9000/730 workstation (infinite CFL number). Fig. 

4c shows the points where the detector automatically activates. 

In order to avoid endless switches of the latter, it is frozen after 

5 Newton's iterations. As can be shown of fig. 4d and 4e, a 

very crisp shock is captured. Different convergence histories 

for computations performed on the initial mesh are presented 

in fig. 4g and 4h. The fastest convergence is again obtained 

with an infinite CFL number. Those figures also show that 

an exponent p equal to 2 yields a similar convergence history. 

For the sake of comparison, the GMRES algorithm appears to 

be about 3 times faster than the SOR scheme in terms of the 

computational time. 

10.4 Inviscid hypersonic flow over a double-ellipse 

We now consider the inviscid flow over the double-ellipse test 

case proposed in the workshop of Antibes 38 at 30 deg. angle 

of attack and a Mach number of 8.15. The initial mesh of 

2412 triangles (fig. 5a) is adapted three times (9527 cells, 

fig. 5b). The iso-mach lines pattern is presented in fig. 5c. 

Nearby, the fig. 5d shows the nodes where discontinuities are 

automatically detected. Convergence histories are presented 
for the computation on the final adapted mesh. Notice in 

fig. 5e the dramatic convergence improvement obtained with 

implicit scheme with respect to a 4 steps explicit Runge-Kutta 

scheme. Fig. 5h, 5g and 5i respectively give the evolution 

of the Mach number, the pressure coefficient and the total 

pressure along the windward and leeward sides. Our results 

are compared with those obtained by Gustafsson et al. and 

Khalfallah et al. published in the workshop proceedings 38. 

The pressure coefficient and the Mach number agree with the 

results of the latter authors. Notice the fair agreement between 
the computed total pressure and the exact one which can be 

obtained from the normal shock theory (less than 0.02 % error 

on the leeward side). 

10.5 Supersonic flow around a NACA0012 airfoil 

The supersonic flow over the NACA0012 airfoil (Mach = 1.2, 
angle of incidence = 0 degree) illustrates the flexibility of the 

adaptation technique and the preservation of the accuracy of 

the scheme even on very distorted grids. The calculation is 

started on a triangular mesh shown in fig. 6a. Three adapta- 
tions are performed. The final mesh is made of polygons with 

a number of edges varying from 3 to 7 (fig. 6b and 6c). The 

detached shock and the oblique shocks attached to the trailing 

edge are well captured (fig. 6d). The distribution of the Mach 

number on the upstream and downstream parts of the x-axis 

as well as along the airfoil is presented in fig. 6e. The present 

calculation is computed with a 4 steps explicit Runge-Kutta 

scheme. Up to now, no attempt was made to use the implicit 

scheme for this test case. 
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10.6 Laminar viscous flow over a flat plate 

The accuracy of the Navier-Stokes code has been assessed 

by investigating the development of a laminar compressible 

boundary layer over an adiabatic flat plate. For that calcula- 

tion, the Mach and the Prandtl numbers are respectively taken 

equal to 0.5 and 1. The viscosity is proportional to the tem- 

perature (Crocco's viscosity law) in order to compare our re- 

sults with the exact solution predicted by the boundary layer 

theory. The computation is performed with a full quadratic 

reconstruction and the Roe's flux difference splitting. The 

initial CFL number is equal to 10 and the exponent p is 

0.5. We noticed quite an important numerical influence of the 

downstream boundary condition (inviscid subsonic outlet with 

pressure imposed), that forced us to locate that boundary quite 

far from the leading edge of the plate, i.e. at a Reynolds num- 

ber based on x equal to 10,000. The mesh contains rectangular 

cells. There is an average of 15 cells in the displacement thick- 

ness of the boundary layer. An excellent agreement is found 

between the computed and exact velocity and temperature pro- 

files (fig. 7c). Fig. 7b shows the evolution of the skin friction 

coefficient along the plate, which also agrees very well with 

the exact one. Notice also the good agreement, especially in 

outer part of the boundary layer, between the computed and 

exact shear stress (fig. 7d). Unfortunately, some deviation oc- 

curs near the wall. Our latest investigations show that it seems 

to be caused by a perturbation coming from the downstream 

boundary condition. The problem must be further studied. The 
convergence history is reported in fig. 7a. The relatively slow 

convergence is attributed on one hand to the fact that no con- 

tribution of the viscous terms jacobians is introduced in the 

preconditionner and on the other hand to the weakness of the 

ILU(0) decomposition. 

10.7 Laminar viscous flow over the NACA0012 airfoil 

In this final test case, we consider the laminar flow over a 

NACA0012 airfoil at 0 deg. incidence with a freestream Mach 

number of 0.5 and a Reynolds number of 5000. The wall 
is adiabatic. The Sutherland viscosity law is employed and 

the Prandtl number is equal to 0.72. The flexibility of the 

method is illustrated by employing a hybrid grid (fig. 8a). 

It consists in a structured C-type part around the airfoil and 

in the wake surrounded by a triangular mesh. The far-field 
boundary is located at a distance of 33 chords from the airfoil. 

The cell aspect ratio varies from 100 near the wall to 50,000 

in the wake. The iso-mach lines pattern presented in fig. 8b 

shows the development of the boundary layer and its separation 

near the trailing edge to form a small recirculation bubble. 

The pressure and skin friction coefficients are presented in 

fig. 8c and 8d. Accuracy estimates of the results may be 

carried out by comparing the location of the separation point 

(in percents of the chord) and the magnitudes of the pressure 

and viscous drag coefficients. We obtain xsep = 81.7%, 

Cdp = 0.0227, Cdv - 0.0320. These results agree with the 

reference values obtained by Swanson and Türkei 39 on a 518 

x 128 structured mesh (xsep = 81.4%, Cdp = 0.02235, 

Cdv = 0.03299). Notice however that the present mesh 

only involves 7709 cells and is relatively coarse in the leading 

edge region which is responsible for a slightly underprediction 
of the skin friction.   We obtain a maximum peak value of 

0.143 instead of the reference value 0.15. Moreover, the cell 

longitudinal dimension in the region of the separation point is 

also relatively large: about 1 % of the chord. 

11. CONCLUSION 

In this paper, an original quadratic reconstruction finite-volume 

scheme for solving the Euler and full Navier-Stokes equa- 

tions has been presented. The quadratic reconstruction is a 

higher-order extension of the robust Green-Gauss linear recon- 

struction. The accuracy of the resulting discretized advective 

derivatives is second-order, and is insensitive to grid distor- 

tions. The robustness and the high accuracy of the scheme 

have been demonstrated by various computations on very dis- 

torted meshes. The Newton-Krylov method based on the 

GMRES iterative solver has been successfully used to drama- 

tically improve the convergence to steady state with respect 

to explicit methods. The implicit scheme has been tested on 

fully subsonic, transonic, supersonic inviscid flows, and on 

laminar viscous flows computations. For transonic and su- 

personic flows, a discrete discontinuity detector is employed 
to switch the scheme to a monotone constant reconstruction. 

This alternative does not encounter the major problems of the 

classical multidimensional limiters to drive the convergence 

to machine accuracy. For inviscid flow test cases when the 

Roe's flux difference splitting is employed, the precondition- 

ner based on an approximate jacobian of the Roe's flux dif- 

ference splitting always lead to a faster convergence than a 

preconditionner based on the Van Leer's flux vector splitting 

although much cheaper to compute. For viscous flow com- 

putations, the ability of the scheme to deal with hybrid grids 

is a real advantage. The quadratic reconstruction has led to 

very accurate solutions. However, the proper imposition of 

the boundary conditions remains a problem. Two methods 

have been tested. The first one which modifies the stencil 

of the reconstruction for boundary cells to include the effect 

of the boundary conditions has been successfully applied for 
a flat plate boundary layer computation. But, another proce- 

dure was required for the computation of a laminar viscous 

flow around the NACA0012 airfoil. It consists in locating the 

boundary nodes on the boundary edges rather than at the cell 

gravity center and then to apply the boundary conditions in 
their strong form. This modified strategy, which is explicit, 
unfortunately artificially perturbs the convergence for nodes 

near solid walls. More efforts should also be devoted to the 

improvement of the preconditionner which seems to be too 

weak for viscous flow computations. 

12. ACKNOWLEDGMENTS 

The works of Ph. Geuzaine and P. Rogiest are presently sup- 

ported by fellowships awarded by the Fund for the Formation 

in Research in Industry and Agriculture (F.R.I.A.), and by the 

National Fund for Scientific Research (F.N.R.S.), respectively. 

The authors wish to thank Prof. H. Deconinck from Von Kar- 

man Institute (Belgium) for providing the mesh employed for 

the computation of the subsonic flow around the NACA0012 

airfoil. 



9-10 

REFERENCES 

1. T.J. Barth and P.O. Frederickson. "Higher Order Solu- 
tion of the Euler Equations on Unstructured Grids using 
Quadratic Reconstruction". AIAA paper 90-0013, 1990. 

2. P. Vankeirsbilck. "Algorithmic developments for the solu- 
tion of hyperbolic conservation laws on adaptive unstruc- 
tured grids (Applications to the Euler Equations)". PhD 
thesis, Katholiek Universiteit van Leuven (Belgium) and 
Von Karman Institute, 1993. 

3. R. Abgrall and F.C. Lafon. "ENO schemes on Unstruc- 
tured Meshes". VKI Lecture Series 1993-04, March 1993. 

4. A.G. Godfrey, C.R. Mitchell, and R.W. Walters. "Practi- 
cal Aspects of Spatially High Accurate Methods". AIAA 

paper 92-0054, 1992. 
5. T.J. Barth. "Recent Developments in High Order k-Exact 

Reconstruction on Unstructured Meshes". AIAA paper 

93-0668, 1993. 
6. J.A. Essers, M. Delanaye, and P. Rogiest. "An Upwind- 

Biased Finite-Volume Technique Solving Compressible 
Navier-Stokes Equations on Irregular Meshes. Appli- 
cations to Supersonic Blunt-Body Flows and Shock- 
Boundary Layer Interactions.". AIAA paper 93-3377, 

1993. 
7. J.A. Essers, M. Delanaye, and P. Rogiest. "An Upwind- 

Biased Finite-Volume Technique Solving Compressible 
Navier-Stokes Equations on Irregular Meshes.". AIAA 

Journal, 33(5), 1995. 
8. M. Delanaye and J.A. Essers. "Finite Volume with 

Quadratic Reconstruction on Unstructured Adaptive 
Meshes Applied to Turbomachinery Flows". 1995 AS ME 
IGTI Gas Turbine Conference, Houston, June 1995. 

9. M. Delanaye and J.A. Essers. "An Accurate Finite- 
Volume Scheme for Euler and Navier-Stokes Equations on 
Unstructured Grids ". AIAA paper 95-1710, 12th CFD 

Conference, San Diego, June 1995. 
10. M. Delanaye, J.A. Essers, and Geuzaine Ph. "Euler 

and Navier-Stokes Calculations with a Quadratic Recon- 
struction Finite Volume Scheme on Flexible Unstructured 
Grids". Sixth International Symposium on CFD, Lake 
Tahoe, Nevada, September 1995. 

11. T.J. Barth and D.C. Jespersen. "The Design and Ap- 
plication of Upwind Schemes on Unstructured Meshes". 
AIAA paper 89-0366, January 1989. 

12. D. De Zeeuw and K.G. Powell. "An Adaptively Refined 
Cartesian Mesh Solver for the Euler Equations". J. of 
Comp. Phys., 104:56-68, 1993. 

13. D.J. Mavriplis and A. Jameson. "Multigrid Solution of the 
Navier-Stokes Equations on Triangular Meshes". AIAA 
Journal, 28(8):1415-1425, 1990. 

14. V. Venkatakrishnan and D.J. Mavriplis. "Implicit Solvers 
for Unstructured Meshes". J. of Comp. Phys., (105):83- 
91, 1993. 

15. V. Venkatakrishnan and Barth T.J. "Application of Di- 
rect Solvers to Unstructured Meshes for the Euler and 
Navier-Stokes Equations Using Upwing Schemes". AIAA 
paper 89-0364, ^7th Aerospace Sciences Meeting, Reno, 

Nevada, 1989. 
16. Wigton L.B., N.J. Yu, and D.P. Young. "GMRES Accel- 

eration of Computational Fluid Dynamics Codes". AIAA 

paper 85-1494, 1985. 
17. Z. Johan, T.J.R. Hughes, and F. Shakib. "A Glob- 

ally Convergent Matrix-free Algorithm for Implicit Time- 
marching Schemes Arising in Finite Element Analysis in 
Fluids".  Comp. Meth. in App. Mec. and Eng., 87, 1991. 

18. D.L. Whitaker. "Three Dimensional Unstructured Grid 
Euler Computations Using a Fully-implicit, Upwind 
Methods". AIAA paper 93-3357, 11th CFD Conference, 

Orlando, 1993. 
19. P.N. Brown and Saad Y. "Hybrid Krylov Methods for 

Nonlinear Systems of Equations". SIAM J. Sei. Stat. 

Comp., 11(3), 1990. 
20. P.N. Brown. "A Local Convergence Theory for Combined 

Inexact-Newton /Finite-Difference Projection Methods". 
SIAM J. Num. Anal, 24(2), 1987. 

21. Y. Saad and M.H. Schultz. "GMRES: A generalized min- 
imal residual algorithm for solving non-symmetric linear 
systems". SIAM J. Sei. Stat. Comp., 7, 1986. 

22. Y. Saad. "Preconditioning techniques for nonsymmetric 
and indefinite linear systems". J. of Comp. and App. 
Math., 24, 1988. 

23. A. Harten. "High Resolution Schemes for Hyperbolic Con- 
servation Laws". J. of Comp. Phys., 49(3):357-393, 1983. 

24. S. Tatsumi, L. Martinelli, and A. Jameson. "Flux-Limited 
Schemes for the Compressible Navier-Stokes Equations". 
.4L4.4 Journal, 33(2):252-261, 1995. 

25. A. Harten and G. Zwas. "Self Adjusting Hybrid Schemes 
for Shock Computations". J. of Comp. Phys., 9(3):368- 

583, 1972. 
26. W.J. Coirier and K.G. Powell. "An Accuracy Assesment 

of Cartesian-Mesh Approaches for the Euler Equations". 
J. of Comp. Phys., 117:121-131, 1995. 

27. A. Harten and S.R. Chakravarthy. "Multidimensional 
ENO Schemes for General Geometries". Technical Re- 
port No. 91-76, ICASE, 1991. 

28. V. Venkatakrishnan. "On the Accuracy of Limiters and 
Convergence to Steady State Solutions". AIAA paper 93- 

0880, 1993. 
29. R. Löhner. "An Adaptive Finite Element Scheme for 

Transient Problems in CFD". Comput. Meth. Appl. and 
Mech. Engrg., 61:323-338, 1987. 

30. Jürg Küffer. "Fast Implicit Solvers for the Incompress- 
ible Navier-Stokes Equations". Proceedings of Computa- 
tional Fuild Dynamics '92 Conference , Brussels, 1:407- 

412, 1992. 
31. R.S. Dembo, S.C. Eisenstat, and T. Steihaug. "Inexact 

Newton method". SIAM J. Num. Anal, 19(2), April 

1982. 
32. Y. Saad. "Krylov Subspace Techniques, Conjugate Gradi- 

ents, Preconditionning and Sparse Matrix Solvers". VKI 

Lectures Series 1994-05, March 1994. 
33. J.E. Dennis and R.B. Schnabel. "Numerical Methods 

for Unconstrained Optimizations and Non Linear Equa- 

tions". Prentice-Hall, 1983. 
34. P.D. Orkwis and J.H. George. "A Comparison of CGS 

Preconditionning Methods for Newton's method solvers". 
AIAA paper 93-3327, 11th AIAA CFD Conference, Or- 

lando, 1993. 
35. T.J. Barth. "Analysis of Implicit Local Linearization 

Techniques for Upwind and TVD Algorithms". AIAA 

paper 87-0595, 1987. 
36. H. Paillere. "Multidimensional Upwind Residual Distri- 

bution Schemes for the Euler and Navier-Stokes Equa- 
tions on Unstructured Grids". PhD thesis, Universite Li- 
bre de Bruxelles (Belgium) and Von Karman Institute, 

1995. 
37. Thomas J.L. and M.D. Salas. "Far-Field Boundary Con- 

ditions for Transonic Lifting Solutions to the Euler Equa- 
tions". AIAA Journal, 24:1074-1080, 1986. 

38. J.-A. Desideri, R. Glowinski, and J. (Eds) Periaux. "Hy- 
personic Flows for Reentry Problems", volume 2. Springer 

Verlag, 1991. 
39. R.C. Swanson and E. Türkei. "Artificial Dissipation and 

Central Difference Schemes for the Euler and Navier- 
Stokes Equations". AIAA paper 87-1107, 1987. 



9-11 

i^£££££iis!££is£!£!!!i 
Z25>üSss>>S>>>^>>>>> ^SS>^SS>ssSs^>s>ss\,,7k zazsissssssssssssssssss iSSSSSSSSSSSSS^SSSS^\5>>R zaz^ssSipss^^sSssss^ i^SSS>^S>S>iSSS5SS^\/795K 
|lsN§§§ssss^s§S!|§« ̂ ^^Ha^ssassss'77?7l 

^&^^^"^i^l 
S3>>ssssss>^^>>e<s>it^ 
S2iSSSiSSSS^^S3>>^ 

Fig. 2a: Mesh (1294 cells) 
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Fig. 4a: Initial mesh (1420 cells) 
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Fig. 5a: Initial mesh 
(2412 cells) 

Fig. 5b: Adapted mesh 
(9527 cells) 

Fig. 5c: Iso-Mach lines 
(0-8.15.A0.2) 

Fig. 5d: Detector 
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Fig. 5e:   Convergence - CPU (DECalpha 250) Fig. 5f: Convergence - Newton iter. 
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Fig. 6a: Initial mesh (5242 cells) Fig. 6b: Final Mesh (10149 cells) 

Fig. 6c: Details of the final mesh 
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Fig. 6d: Iso-Mach lines 
(0-1.6.A0.066) 

Fig. 6f: Total pressure distribution 

NACA0012 airfoil, Mx = 1.2, angle of attack=0 deg. 
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Fig. 7a: Convergence - Newton iter. 
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Fig. 8a: Mesh (7709 cells) 
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Un Schema Cinetique d'Ordre 2 
Preservant les Positivites pour les 

Equations d'Euler Compressibles sur 
Maillages non Structures 

Auto-Adaptatifs 
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Abstract 

The aim of this contribution is to present the first nu- 
merical results, that we have obtained with a new sec- 
ond order kinetic theory based scheme. The main inter- 
est of our approach is that density and internal energy 
can be proved to remain non negative under a CFL like 
condition. It is well known that classical approximate 
Riemann solvers, even first order accurate, do not sat- 
isfy this property. Our first order scheme is the classical 
kinetic scheme, based on the Maxwellian velocity distri- 
bution. Our second order extension consists of adding to 
the first order numerical flux an antidiffusive correction 
which has to be limited such that the constraints of pos- 
itivity will be satisfied. It can be seen as a variant of the 
so-called corrected anti-diffusive flux approach. We have 
performed numerical computations for various two and 
three dimensionnal test cases on unstructured and self- 
adaptative meshes, in order to evaluate the accuracy and 
the robustness of this new method. Comparisons have 
been done with a second order extension of Roe's scheme 
(with MUSCL approach). 

Introduction 
Le but de cette contribution est de presenter les pre- 

miers resultats numeriques obtenus avec un nouveau 
schema d'ordre 2, base sur la theorie cinetique des gaz. 
Le principal interet de notre approche reside dans le fait 
qu'on peut prouver que la densite et la pression restent 
positives sous une condtion de type CFL. II est bien 
connu que les Schemas classiques, construits sur la base 
d'un solveur de Riemann approche, ne possedent pas 
cette propriete meme a l'ordre 1 [3]. C'est un serieux 
inconvenient lorsqu'on souhaite calculer des ecoulements 
pour lesquels la densite est tres faible ou pour lesquels 
l'energie interne est faible devant l'energie cinetique 
(Ecoulements hypersoniques, Problemes de detonique, 
...). Noter de plus que notre approche peut se generaliser 
sans difficulty aux ecoulements reactifs [12,16]. 

Au premier ordre, notre schema n'est autre que le 
schema cinetique classique base sur la distribution de 
vitesses Maxwellienne introduit par Pullin dans [19]. On 

peut montrer que ce schema preserve la positivite de la 
densite et de la pression sous une condition de type CFL 
[11]. Notre extension au second ordre consiste a ajouter 
au flux numerique du premier ordre une correction anti- 
diffusive qui doit etre limitee de sorte que les positivites 
soient preservees. Cette approche peut etre considered 
comme une Variante de la methode dite 'des flux mod- 
ifies'. 

Les maillages utilises sont structures ou non struc- 
tures; de plus une technique de raifinement automa- 
tique de maillage a ete implantee dans les codes 
2D et 3D. Nous avons realise de nombreuses simula- 
tions numeriques sur different« types de maillages, afin 
d'evaluer la robustesse et la precision de ce nouveau 
schema. Des comparaisons ont egalement ete faites avec 
le schema de Roe etendu au second ordre suivant la 
methode MUSCL de Van Leer. 

Le plan de Particle est le suivant. On commence 
tout d'abord par quelques generalites sur les Schemas 
cinetiques dont on rappelle les principles proprietes. 
Dans la seconde partie, on presente le principe de notre 
extension au second ordre. La troisieme partie est con- 
sacree a l'expose d'un critere de raffinement de maillage 
(base sur la production locale d'entropie du schema) et 
ä la description de la technique de raffinement de mail- 
lages que nous avons utilisee. Enfin dans la derniere 
partie, on presente de nombreux resultats numeriques et 
des comparaisons avec le schema de Roe. 

1    Generalites   sur   les   Schemas 
cinetiques 

Le premier schema cinetique pour les equations d'Euler 
a ete introduit par D. Pullin dans [19]. II a ensuite 
ete revisite et ameliore par S. Deshpande dans [4,5]. 
D'autres Schemas cinetiques, bases sur des distribu- 
tions d'equilibre differentes de la Maxwellienne, ont en- 
suite ete proposes par divers auteurs dont Kaniel et 
Perthame [7,8,9]. Le grand interet des travaux de 
B. Perthame est d'avoir les premiers mis en evidence 
les proprietes theoriques de certains Schemas cinetiques 
(ceux associes a des distributions d'equilibre ä sup- 
port compact)xonsistance avec Pinequation d'entropie, 
preservation des positivites,       Signalons enfin les 
travaux de Mazet et al concernant les liens entre les 
Schemas cinetiques et la symetrisation des equations 
d'Euler via les variables entropiques [1,12,11]. Nous re- 
viendrons sur cet aspect dans la troisieme partie de cet 
article. 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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1.1    Definition d'un schema cinetique 

Les schemas cinetiques sont des Schemas Volumes-Finis 
decentres pour lesquels la fonction Flux Numerique 
,F(u>,u/,n) est de type Flux-Splitting c'est-a-dire de la 
forme suivante: 

T(w, w',n) = T+(w,n) + T-(w',n) 

ou w et w' sont deux etats quelconques et n un vecteur 
unitaire de Rd (representant la normale a Pinterface en- 
tre deux cellules). Les fonctions .F+(u;,n) et T~(w,n) 
s'expriment sous la forme d'une integrale sur l'espace dit 
des 'phases' en Physique Statistique. Dans le cas d'un 
gaz mono-atomique, on a par exemple: 

T±[w,u) = f    (*.!»)*[        t        )/«(0«       (1) 
W V 1/2KI8 j 

ou /«,(£) designe la distribution d'equilibre des particules 
et satisfait par definition les relations: 

w = 
P 

PU /»«K 

La formule (1) peut s'interpreter en considerant que 
les particules traversant une interface sont constitutes 
de celles venant de gauche et se deplagant dans le sens 
de la normale (contribution ä F+) et de celles venant 
de droite et se deplac.ant en sens oppose ä la normale 
(contribution ä F~). 

O /o 
O (£ , 

i 

Differents choix sont possibles pour la fonction 
d'equilibre fw(£). Les deux plus courants sont la fonc- 
tion 'creneau' proposee par Perthame [7,8] 

/««) = 
1 r(^E#) Vol{Bd) (2rT)«»/2   v    ITT 

(ou Y est la fonction indicatrice de [0,1], Bd la boule 
unite de Rd) et la fonction 'Maxwellienne' proposee par 
Pullin [19] 

/-«) = (2irrT)d/2 

C'est cette derniere que nous avons choisie car c'est la 
mieux adaptee pour l'extension aux melanges de gaz 
reels [12] et c'est celle qui conduit aux formules les plus 
simples pour l'extension ä l'ordre 2 [14]. 

On peut bien sür expliciter la formule (1) dans le cas 
ou fw est une Maxwellienne. Dans le cas d'un gaz parfait 
d'equation p = prT avec e = f(T) (f fonction reguliere 
quelconque) on a: 

J*{w,n) = ±h(X) 

+Hl±9(X)) 

P 
PU 

^-p\U? + pe(T) + & 

pU.n \ 
pUU.n+pn 

Üp\U\2 + pe(T) + p)U.n J 

ou y/^f X = 

(2) 

U.n 
c 

figure 1: Flux de particules ä travers une interface 

g(X) = -j=Jo   exp(-«2)d«    h(X) = ^=exp(-X2) 

Pour une presentation plus complete des schemas 
cinetiques et en particulier pour la definition precise 
d'une distribution d'equilibre, on pourra se reporter par 
exemple a Particle de B. Perthame [7]. 

1.2    Quelques   proprietes   des   schemas 
cinetiques 

L'expression (1) des fonctions T+ et T~ permet 
de demontrer de nombreuses proprietes des schemas 
cinetiques. En particulier, en dimension 1 d'espace, 
lorsque le support de la distribution d'equilibre est un 
compact de la forme [—Zmax,£maz], on peut montrer [7] 
que les schemas cinetiques associes sont entropiques et 
preservent la positivite de la densite et de la temperature 
sous la condition CFL At < Ax/£max. 

Dans le cas d'une distribution Maxwellienne (support 
non borne), le probleme est plus delicat et, ä notre con- 
naissance, la consistance avec Pinequation d'entropie a 
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settlement ete prouvee de maniere formelle dans [5,11]. 
La question de la positivite du schema a par contre ete 
resolue dans [11,14]. On rappelle ci-dessous le principal 
resultat. 

Pour etre le plus general possible, on se place dans un 
cadre multidimensionnel (d designant le nombre de di- 
mensions d'espace) et le maillage, note Mh, est suppose 
quelconque. On note K un element quelconque de Mh, 
m(K) sa mesure de Lebesgue dans R*, Ke son voisin le 
long de la face e, njfe la normale ä la face e dirigee de 
K vers Ke et m(e) la mesure de Lebesgue de la face e 
dansR"*-1 (cf figure 2). 

figure 2: Vue partielle du maillage 

On montre dans [14] la proposition suivante: 

Proposition 1 Le schema Volumes-Finis 

At 
k+1=^-m^)     £  [^«.«*.<) 

ttdK 
+ ^"«.."K,«)]m(e) 

associe au flux numerique defini par les formules (2) 
(distribution Maxwellienne) preserve la positivite de p 
et de T sous la condition CFL 

sup 
KCMk 

m(dK)(\UZ\+^r-g) 
m(K) 

At<l (3) 

Remarque: En pratique cette condition est un peu 
plus restrictive que la condition CFL usuelle (eile cor- 
respond environ pour un gaz parfait avec 7 = 1.4 a 
CFL = 0.5). Toutefois c'est seulement une condition 
süffisante et, dans les applications, on n'a jamais con- 
state de difficulty en prenant CFL = 0.9. 

2    Extension a l'ordre 2 et posi- 
tivite 

2.1    Principe de 1'extension a l'ordre 2 

Pour etendre une methode de volumes finis a l'ordre 2 
en espace, il existe au moins deux approches classiques: 

• La premiere (sans doute la plus utilisee du fait de 
sa simplicite et de sa generalite) est la methode 
MUSCL de Van Leer. Elle consist« a decomposer 
un pas de temps en deux etapes: une premiere etape 
d 'interpolation affine de la solution approchee, une 
seconde etape ou l'on applique le schema volume fini 
aux valeurs interpolees de la solution approchee. Le 
point essentiel reside dans le fait que lore de l'etape 
d'interpolation, il est necessaire de limiter la valeur 
du gradient de la solution approchee afin d'eviter 
l'apparition d'oscillations. 

• La seconde designee dans la litterature anglo-saxone 
sous le non de 'corrected antidiffusive flux approach' 
(eile sera notee CAFA par la suite) consiste a ajouter 
au flux numerique du premier ordre une correction 
antidiffusive qui doit etre limitee pour des raisons 
de stabilite numerique. 

Ces deux methodes ont ete tres bien etudiees d'un 
point theorique dans le cas dans le cas d'une loi de con- 
servation scalaire (voir par exemple Goldveski-Raviart 
[6], Coquel-Lefloch [2], ...). En particulier, on sait 
dans ce cas donner des criteres precis sur la fa?on dont 
les pentes doivent etre limitees pour que la methode 
numerique soit stable au sens de la norme BV (schema 
TVB) ou de la norme L°°. 

Dans le cas des systemes generaux de lois de con- 
servation, en particulier celui des equations d'Euler, il 
n'existe actuellement aucune theorie. On se contente 
done en general de raisonner par analogie avec le cas 
scalaire, afin d'en deduire certains criteres empiriques de 
stabilite. De plus, dans le cas de la dynamique des gaz, 
vient se rajouter le fait que la solution w = (p, pU, pE) ne 
prend pas ses valeurs dans R?*2 tout entier mais seule- 
ment dans un sous ensemble de celui-ci, Wad, defini par 
des contraintes de positivite p > 0, pE — l/2pU2 > 0. 
Quelque soit Papproche adoptee, MUSCL ou CAFA, 
il est necessaire de joindre (ou eventuellement de sub- 
stituer) ä ces criteres empiriques de limitation de pente 
ou de flux, qui permettent de contröler les oscillations, 
une condition qui garantisse que le schema laisse invari- 
ant l'ensemble Wad (ce qui suppose bien sur que la pro- 
priete est dejä satisfaite par le schema d'ordre 1). II 
est interessant de remarquer que cette seule propriete 
d'invariance de l'ensemble Waa garantit la stabilite en 
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norme Ll du schema [9] et constitue done un critere de 
stabilite faible. 

Dans le cas de la methode MUSCL, une Variante 
a ete proposee par Perthame et Qiu qui garantit la 
preservation des positivites. Le prineipe est de constru- 
ire la solution interpolee a chaque pas de temps de sorte 
que l'on ait ä la fois conservation de p, pU, pE sur chaque 
cellule et positivite de p et T aux noeuds du maillage [10]. 
Cependant les resultats numeriques sont assez decevant 
du point de vue du gain en precision, et leur technique 
de reconstruction semble difficilement generalisable sur 
des maillages quelconques. 

L'approche que nous proposons dans cet article est 
plutöt une Variante de la methode 'CAFA'. Elle peut a- 
priori s'etendre ä tout schema de Flux-Splitting (cet as- 
pect est devellope dans [14]) mais les Schemas cinetiques 
possedent toutefois deux avantages essentiels: 

• La positivite peut etre prouvee dans le cas du 
schema d'ordre 1 ce qui n'est pas le cas par exem- 
ple pour les Schemas de Flux-Splitting de Steger et 
Warming ou de Van Leer. 

• II est possible, grace ä la representation integrale 
(1) du flux numerique, d'expliciter les limitations ä 
imposer sur les corrections antidiffusives pour que 
le schema preserve les positivites. 

Nous allons rappeler ici les grandes lignes de cette 
approche, en renvoyant ä [14] pour les details. L'idee 
generate est de remplacer sur chaeune des interfaces e 
du maillage T+(wK,nK,e) par ?+{wK, nKil.)+ATgt et 

T~(u>K., riK.e) par T-(wK., nK>e) + AJ^~e, oü les frac- 
tions T+ et T~ sont definies par les formules (2) (cor- 
respondant ä une distribution Maxwellienne) et AT+ 
et AT~ sont des corrections antidiffusives qui pour un 
gaz mono-atomique s'expriment sous la forme integrale 
suivante: 

AJTSr* «■JL«- 

ATI Tt~L V «|2 / 
(5) 

oü Afw(£) est une correction de la distribution 
d'equilibre, fonetion comme dans le developpement de 
Chapmann et Enskog [18] des gradients locaux de la so- 
lution. Dans le cas oü fw est une Maxwellienne, eile 
s'exprime sous la forme suivante (cf [14]): 

+ i/2(^..£y(F)en/.ft(0 

y(x) = l 8i |x|<^mflX,  0 St \x\>t„ 

-1 
(*«)&,. = —(*»)&•(*. "«*)■ 

1 kn 

(*^ä.. = >&W)U*. - *K) + ^WTKT 

(6T)nK,< = f(pT)n
K.(xe - xK) + i(?T)^y 

oü xe designe le centre de la face e, XK le centre de 
gravite de la cellule K, (ps)J-, (pU>)nK, et {pT)nK des 
estimations des gradients spatiaux respectifs de s,U} et 
T dans la cellule K ä Pinstant n et (qs)^, (qU')^, et 
(qT)x des estimations des derivees temporelles de «,t/; 

et T dans la cellule K a Pinstant n. Nous preciserons au 
paragraphe suivant les choix eflectues pour calculer ces 
quantites ainsi que la valeur de £m„ 

NB: Noter que 6s, 6U et 6T sont des quantites en 0(h) 
( h etant le pas du maillage) lorsque la solution est 
reguliere. 

Du point de vue cinetique, on peut interpreter les 
formules (4) et (5) en considerant que la distribution 
d'equilibre Maxwellienne /„,» (£) a ete remplacee par une 
distribution d'equilibre 'perturbee' /„,» (£) + A/«,« (|), 
tenant compte des gradients de la solution (ce point de 
vue est expose dans [15]). Cette idee etait deja presente 
dans les travaux de S. Deshpande [5]. L'introduction 
d'une fonetion creneau Y(x) dans la definition de Afw 

permet de garantir que la distribution modifiee /„,« (£) + 
AfW' (0 reste toujours positive (ä condition de choisir 

convenablement £mox). Cette propriete joue un role es- 
sentiel pour la positivite du schema d'ordre 2. 

On montre dans [14] le resultat suivant: 

Proposition 2 Si pour tout K £ MH et pour tout e G 
K: 
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fiM(««Ä,.l<i 
(«) Zmax = 

-KMQiU + )/(«0fr,.a + 4|(«0t,.Ki - 1(*«)S,.I) 
2>/3|(*m.| 

at/ec |(«7)fc,e| = . J^KWOSr^l2» /e *cAe'ma dicrit "" 

deaaus eat du second ordre en temps et en espace si Mh 
eat une grille cartdaienne et si les gradients sont estimees 
au second ordre. De plus, il priserve la positivite de p et 
de T aoua h condition CFL: 

sup 
KeMk m(K) 

At<l 

2m(Ä) .7?* 
(6) 

e€8K 

oü 9 designe une composante quelconque de w. Cette 
formule est d'ordre 2 en /» si la solution est reguliere et 
si le maillage est cartesien. 

Pour limiter les gradients obtenus nous avons utilise 
une generalisation multidimensionnelle du limiteur 'min- 
mod', qui consiste ä imposer que les valeurs Min et Max 
de la fonction q(x) = qk + Vg#.(x — Xjc) au centre 
des faces de l'element K (et non pas aux sommets de 
l'element K, ce qui serait plus contraignant) soient com- 
prises entre le Min et le Max des valeurs de q sur les 
elements voisins de K. En pratique on commence par 
calculer les valeurs Min et Max de q(x) sur l'element K 
(notees gm,-„ et qmaT) ainsi que les valeurs Min et Max 
de q sur les elements voisins (notees qmin et qmax)- On 
pose ensuite: 

Remarques: 

• On remarque qu'aucune limitation de type 'min- 
mod' n'est necessaire pour garantir la positivite du 
schema. On en donne une illustration numerique 
dans [14]. Toutefois les limitations (i) et (ii) 
ne sont pas süffisantes, pour controler totalement 
1'apparition d'oscillations spatial es. II est necessaire 
en pratique de les associer ä d'autres limitations plus 
classique de type 'min-mod' qui seront explicitees au 
paragraphe suivant. 

• La condition CFL ci-dessus est un peu trop restric- 
tive. Dans les applications, nous n'avons jamais con- 
state de difficulte en prenant CFL = 0.9. 

• Tous les re8ultats exposes ci-dessus se generalisent 
dans le cas d'un gaz parfait polyatomique de 7 
quelconque. II suffit d'augmenter la dimension de 
l'espace des phases pour prendre en compte les 
degres de liberte internes des molecules. La condi- 
tion de positivite fait cette fois intervenir une con- 
trainte supplementaire sur |W|. On renvoie ä [14,13] 
pour les details et les formules explicites permettant 
de calculer A7"+ et AF~. 

2.2    Principe du calcul et de la limitation 
des gradients de la solution discrete 

De nombreuses solutions sont proposees dans la 
litterature pour estimer les gradients de la solution 
discrete a partir de ses valeurs dans chacune des cel- 
lules du maillage. Par souci de simplicite et egalement 
pour des raisons liees ä notre structure de donnees, nous 
avons choisi la formule suivante: 

("max = Max ( 0, 
qmax 

qmax -qKj 

a   .   - Max I 0 g""""~^ ) "min — ividjt 1 u, I 
qmin — qK J 

a = Min(l,ami„,amar) 

On prend enfin: 

Vg£
m = aVqK 

L'estimation des derivees en temps de la solution 
discrete se fait ä partir de la forme non conservative 
des equations d'Euler. Sous forme non conservative, le 
Systeme de la dynamique des gaz peut en effet s'ecrire: 

dts = -J7.V« 

dtU = -U( 1VU - -Vp 
P 

dtT = -Ü.VT - (7 - l)TdivC/ 

On obtient les estimations souhaitees de dts, dtU et dtT 
en se servant de ces relations et des valeurs de V«, Vp, 
VT et VU, calculees selon la formule (6). 

3    Critere de raffinement et mail- 
lages auto-adaptatifs 

3.1    Description de la technique de raf- 
finement de maillages 

Afin d'ameliorer la precision des resultats pour le cal- 
cul d'ecoulements stationnaires, une procedure de raf- 
finement automatique de maillages a ete implantee dans 
les codes de calcul 2D et 3D. Le principe utilise est le 
suivant: 
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1. On commence par calculer une premiere solution 
stationnaire sur le maillage grossier de depart. 

2. On calcule alors sur chacun des elements du maillage 
la valeur du critere de raffinement et en fonction de 
ce critere certains elements sont raffines selon une 
procedure qui sera decrite ci-dessous. 

3. On calcule ensuite une nouvelle solution sur le mail- 
lage raffine en partant de la solution sur le maillage 
precedent. 

4. On reitere eventuellement le processus 

On utilise, dans notre code de calcul 2 types 
d'elements en dimension 2 (triangles et quadrangles) et 
3 en dimension 3 (tetraedres, pentaedres et hexaedres). 
La repartition de ces differents elements peut etre quel- 
conque au sein d'un meme maillage. En particulier il 
n'est pas necessaire d'assurer la coincidence nodale en- 
tre deux elements voisins comme l'illustre par exemple 
la figure 3. 

figure 4: Raffinement d'un triangle 

figure 3: Vue partielle d'un maillage non conforme 

Pour raffiner un element, le principe consiste dans tous 
les cas a le diviser en un certain nombre d'elements 
fils (4 en dimension 2, 8 en dimension 3) tous sem- 
blables ä 1'element de depart. Chaque element est bien 
sür raffine independamment de ses voisins, si bien qu'a 
Tissue d'une phase de raffinement le maillage obtenu est 
generalement non conforme (non coincidence nodale en- 
tre certains elements). On a schematise sur les figures 4 
et 5 le principe de raffinement d'un triangle et d'un quad- 
rangle. En dimension 3, on renvoie pour une description 
detaillee de la procedure de raffinement au travail de J. 
Delaire [20]. 

3.2 

figure 5: Raffinement d'un quadrangle 

Un critere de raffinement fonde sur 
la production locale d'entropie 

Nous allons maintenant decrire le critere de raffinement 
utilise. Ce critere a ete introduit par P. Mazet et al dans 
[1,11]. II repose sur les liens entre les Schemas cinetiques 
et la symetrisation, via les variables entropiques, des 
equations d'Euler. 

Commencpns par quelques rappels sur la 
symetrisation des equations d'Euler. Afin de simplifier 
les notations, on se restreint au cas d'un gaz parfait poly- 

Ti/(7-i) 
tropique.  Soit s = rlog( ) l'entropie massique 

T 
du gaz. II est bien connu que la fonction S(w) = — ps 
(oii w est le vecteur des variables conservatives) est une 
fonction strictement convexe en w et constitue une en- 
tropie de Lax pour les equations d'Euler, associee au 
flux d'entropie US(w). Les variables entropiques <j>a sont 
alors definies de la maniere suivante: 
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dS V2 

ds _u*   ._       „ 

_ as _   1 
(7) 

Les relations (7) definissent un changement de vari- 
ables bijectif w -> <f> de Wa<J sur *0(1 = Rd+1 x R+*. On 
definit alors sur $ad la transformee de Legendre S* de S 
par: 

S*(rf) = -S(»(rf)) + u;(».* 

De me me, on introduit une pseudo-transformee de 
Legendre du flux d'entropie dans la direction du vecteur 
n, notee E*(^,n), en posant: 

E*(*,n) = -CT.nS(i»(») + (F(w(tt>)).n).<l> 

ou F(u>).n = [pU.n,pUU.n+pn, (pE+p)U.n\* designe le 
flux dans la direction n. Cette fonction est appelee fonc- 
tion de symetrisation du Systeme des equations d'Euler 
car eile possede par construction la propriete suivante: 

F(u>(<£)).n = V,E*(^,n) (8) 

Le flux des equations d'Euler, exprime en variables 
entropiques, est done le gradient de la fonction de 
symetrisation E*(^, n). II en decoule immediatement, 
qu'ecrit en variables entropiques, le Systeme de la dy- 
namique des gaz est symetrique. D'autre part, d'apres 
(8) toute decomposition de la fonction E*(^,n) en la 
somme de deux fonctions E*+(^,n) et E*-(^,n) induit, 
en differenciant par rapport a <f>, une decomposition du 
flux F(w).n en la somme de deux fonctions F+(w,n) et 
F~(w,n). Si de plus, pour tout n, E*+(^,n) est con- 
vexe en <j> et E*~(^,n) concave, alors on peut montrer 
(voir [11]) que la jacobienne de F+(w,n) est diagonalis- 
able ä valeurs propres positives et que la jacobienne de 
F~(w,n) est diagonalisable ä valeurs propres negatives. 
La decomposition en partie convexe et concave d'une 
fonction de symetrisation fournit done un moyen naturel 
de construire des Schemas de Flux-Splitting correctement 
decentre. 

Le lien avec le formalisme cinetique provient du fait 
que la fonction E* peut s'ecrire, ä une constante multi- 
plicative pres, sous la forme integrale suivante (cas d'un 
gaz mono-atomique): 

E*(^,n) = /   (£.n)exp[(^ + <j>Pu4 + ^c4)/rK 

La fonction exp[(^„ + <j>,,vZ + tpE-^/r] n'est autre 
que la Maxwellienne. La fonction exp etant convexe sur 

R, on obtient une decomposition convexe-concave de la 
fonction E* en posant simplement: 

E**^,«) = /    it-")* exp[(*, + 4,u4 + <t>fE.\)lr]dt 

(10) 
En differenciant (10) par rapport ä ^ on voit facile- 

ment  que  les fonctions  F+(w,n) et F~(w,n)  ainsi 
obtenues ne sont autres que les fonctions T+(w,n) et 
T~(w,n) definies par (1). On peut done ecrire que: 

**(u>,n) = V,E*±(rf(w).n) (11) 

Nous allons maintenant utilise la propriete (11) et la 
concavite de la fonction E*~(^(u>),n) pour etablir une 
estimation de la production locale d'entropie du schema 
cinetique d'ordre 1, introduit a la section 1, loreque l'etat 
stationnaire est atteint. Par definition, lorsque l'etat sta- 
tionnaire est atteint , on a sur toutes les cellules K du 
maillage: 

Y,  [**(«*.»*,.) +r-(u>K.,nK,e)] m(e) = 0 
e£dK 

En se servant du fait que ^ F(u>jf).nK?em(e) = 0 (for- 
e€dK 

mule de Green), et en ajoutant cette quantite au premier 
membre de la precedente egalite on obtient: 

£  [r-(wK.,nKtt)-r-(wK,nKiej\m(e) = 0  (12) 
e£dK 

D'autre part, posons: 

E*(a>, n) = -^(^(w), n) + ^(u^M        (13) 

On deduit de la definition de E* que: 

•£+(w,n) + IT(w,n) = U.nS(w) 

Le couple [E+(u>,n),E~(u>,n)] constitue done une 
decomposition du flux d'entropie. En multipliant 
scalairement l'egalite (12) par 4>K — 4>(WK) et en se ser- 
vant de (13), (11) et de la formule de Green, on obtient: 

J2 [£+(u>K,njr,e) + E-(u»/f.,n,f,e)] m(e) - QK = 0 
e6 dK 

(14) 
avec: 

QK=YS m(e)['Sk~(,('K,nk,t)-^k~(<l>K.,nk,e) 
e€dK 

-V,E*~ (<j>K., f»fc,e) (<t>K ~ <t>K.)] 
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La fonction E*~(.,n) etant concave, le terme QK est 
negatif. D peut s'interpreter comme la production lo- 
cale d'entropie sur la cellule K, l'autre terme dans (14) 
etant simplement un terme de flux. C'est cette quantite 
que nous avons utilisee comme critere de raffinement, 
le calcul explicite de la fonction E*~ pouvant s'effectue 
facilement grace a la definition (10). 

4    Schema implicite 

Pour le calcul d'ecoulement stationnaire 3D, l'utilisation 
d'un schema explicite en temps s'est averee trop 
coüteuse, meme avec une technique de pas de temps lo- 
cal. Le schema decrit ä la section 2 a done ete implicite, 
suivant le principe classique qui consiste ä linearise par- 
tiellement le Systeme non lineaire que Ton doit resoudre 
ä chaque pas de temps. De ce point de vue, les Schemas 
cinetiques possedent une particularity interessanterles 
functions T~ et !F+ sont differentiables et homogenes 
de degre 1. Elle verifient done les relations suivantes: 

F+(w,n) = [Jac(F+)(w,n)].w 
T  (w,n) = [Jac(F )(w,n)].w 

(15) 

ce  qui  permet  de  simplifier  l'ecriture  de  la forme 
linearisee du schema implicite.     Celle-ci peut  done 
secrire: 

At Id+-Ti^ Ef<7ac(jr+)(^'n^)Me) m(K> .7?« 

+- At 
etdK 

.W 
,n+l 
K 

»       '  .CMC eedK 
At 

= "* ~ win £ (A^+ + A^Pm(e> 
^     'e€öK 

La correction du second ordre n'est pas implicitee, afin 
de simplifier l'expression de la matrice Jacobienne du 
flux numerique. On n'a pas rencontre pour autant de 
Probleme de stabilite. 

A chaque pas de temps, le Systeme lineaire ci-dessus 
est resolu par une methode iterative. On en a compare 
deux: la methode de Jacobi et la methode BICGstab 
[17]. Si on se contente d'une precision moyenne a chaque 
resolution (ce qui est süffisant en pratique), la methode 
de Jacobi est un peu plus performante en temps CPU. 
La tendance s'inverse si on souhaite une tres grande 
precision. L'utilisation d'un preconditionneur pour la 
methode BICGstab ameliore nettement la vitesse de 
convergence (d'un facteur 2 au moins) mais n'apporte 
pas un gain en temps CPU compte tenu du coüt du 
preconditionnement. 

5    Resultats numeriques 

Afin d'evaluer la precision et la robustesse de ce nou- 
veau schema, nous avons realise plusieurs experiences 
numeriques. 

Tout d'abord, afin d'illustrer numeriquement la 
preservation des positivites, nous avons calcule la so- 
lution du probleme de Riemann propose par Sjogreen 
dans [3], pour lequel la solution est tres proche du vide. 
Nous avons effectue les calculs sans utiliser de limiteur 
de pentes de type min-mod (cf figure 6) puis avec lim- 
iteur (cf figure 7). Les resultats obtenus sans limita- 
tion sont bons mais font apparaitre quelques oscillations, 
qui disparaissent avec l'utilisation du limiteur. Pour 
des cas test plus complexe (presence de discontinuites) 
l'utilisation d'un limiteur est necessaire. 

Sur les figures 8 et 9, on presente les resultats con- 
cernant le cas d'un ecoulement hypersonique 2D ä Mach 
25 et Incidence 30. Le maillage a ete ob tenu apres trois 
raffinements successife. La methode de Roe n'a pu etre 
utilisee qu'ä l'ordre 1 car ä l'ordre 2, meme avec de fortes 
limitations de pentes, des temperatures negatives appa- 
raissent ä l'arriere corps. Les resultats obtenus avec 
le schema cinetique d'ordre 2 sont tres bons et bien 
meilleurs que ceux obtenus avec le schema de Roe. En 
particulier, on peut constater l'absence d'oscillations sur 
les courbes du coefficient de pression ä la paroi (figure 
8), contrairement aux resultats obtenus avec le schema 
de Roe premier ordre (avec correction d'entropie). 

Sur les figures 10 ä 12, on presente les resultats con- 
cernant le calcul d'un ecoulement instationnaire entrant 
ä Mach 3 dans un tunel comportant une marche. Ce cas 
test est tres classique et bien documente. On compare les 
resultats obtenus avec la methode de Roe-MUSCL (avec 
correction entropique) et le schema cinetique. (sans cor- 
rection entropique). Les deux maillages utilises sont 
composes de triangles (le pas choisi est de l/40eme ce qui 
est assez grossier pour ce cas). Le second maillage a ete 
reaffine pres de la paroi afin d'eliminer l'influence de la 
couche limite numerique. On peut noter que, sur les deux 
maillage, la detente sonique est mieux capturee avec le 
schema cinetique qu'avec le schema de Roe. On con- 
state de plus la presences de nombreuses oscillations sur 
les courbes iso-densite obtenus avec le schema de Roe. 
(Celle8-ci disparaissent si on renforce les limitations de 
pentes). Par contre, avec le schema cinetique, la position 
de la ligne de choc apres la deuxieme reflexion n'est pas 
correcte. Ce defaut semble du ä la trop grande epaisseur 
de la couche limite numerique. II disparait lorsqu'on raf- 
fine le maillage pres de la paroi. Avec le schema de Roe, 
on constate que les oscillations numeriques presentes au 
niveau de la ligne de glissement sont amplifiees lorsqu'on 
raffine le maillage au niveau de la paroi. 
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Sur les figures 13 et 14, on presente le calcul d'un 
ecoulement stationnaire entrant ä Mach 2 dans un tunel 
comportant une rampe inclinee a 15 degres. Le mail- 
lage a ete obtenu apres trois raffinements successifs ä 
partir d'un maillage groesier comportant 2500 cellules. 
Le critere de raffinement utilise (cf section 4) a permis 
de detecter toutes les ondes presentes dans l'ecoulement; 
en particulier le maillage a ete raffine au niveau de la 
ligne de glissement emanant du point triple situe sur la 
paroi superieure (cf figure 11). On voit sur la figure 12 
que le raffinement du maillage a permis une amelioration 
sensible de la qualite des resultats. 

Enfin on presente sur les figures 15 ä 17 des resultats 
numeriques 3D concernant le calcul d'un ecoulement 
transonique (Mach: 0.84, Incidence: 3.06 degres) au- 
tour de la voilure M6 de l'ONERA. Ce cas test est tres 
bien documente dans [21]. Le maillage initial est con- 
stitue d'environ 60000 tetraedres, ce qui est assez grassier 
pour ce type de calculs. Le maillage final (figure 20) a 
ete obtenu apres 2 raffinements successife. Les resultats 
obtenus sont tout ä fait en accord avec ceux des differents 
contributeurs du workshop AGARD [21]. Le raffinement 
du maillage permet la encore d'ameliorer sensiblement la 
precision des resultats. 

6    Conclusion 

On a presente dans cet article un nouveau schema 
cinetique d'ordre 2 preservant la positivite de la masse 
volumique et de la temperature sous condition CFL. Les 
premier resultats numeriques obtenus sur maillages non 
structures sont tres bons et confirment les proprietes 
theoriques de robustesse du schema. De plus l'estimation 
d'entropie discrete associee au schema d'ordre 1 permet 
de degager, de maniere naturelle, un critere de raffine- 
ment de maillage fonde sur la production d'entropie lo- 
cale. Ce critere semble un excellent candidat pour la 
capture des discontinuites stationnaires. 

La suite de cette etude va consister a etendre ce 
schema au calcul d'ecoulements reactifs, pour lesquels 
la robustesse de la methode numerique est un critere es- 
sentiel. Ce travail est en cours. 
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figure 7: Sjogreen test case: with Min-Mod limitations 
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Kinetic Scheme Roe scheme 

figure 9: Hermes test case: Iso Mach Lines on the Reffined Mesh 

figure 10: Medium Mesh (9000 cells) and Reffined Mesh (14000 cells) 

Kinetic Scheme Roe scheme 

figure 11: Emery test case: Iso density Lines on the medium Mesh 
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Kinetic Scheme Roe scheme 

figure 12: Emery test case: Iso density Lines on the reffined Mesh 

figure 13: Coarse Mesh (2500 cells) and Reffined Mesh (9000 cells) 

Coarse mesh Reffined mesh 

figure 14: Iso density Lines 
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A meshless technique for computer analysis of high speed flows 

T. Fischer, E. Onate and S. Idelsohn 
International Center for Numerical 

Methods in Engineering 
Edificio C-l, Campus Norte UPC 

C/ Gran Capitan, s/n 
08034 Barcelona, Spain 

1. ABSTRACT 

This paper describes the results of the research car- 
ried out by the authors in the computer modelling 
of flow problems using an approximation based on 
"clouds of points" which does not require the defini- 
tion of a mesh. The so called Finite Point Method 
(FPM) [5] is presented showing some examples for 
the solution of the ID convection diffusion equation 
and 2D compressible inviscid flows. 

2. INTRODUCTION 

The finite element method (FEM) and the finite vol- 
ume method (FVM) are well established numerical 
techniques whose main advantage is their ability to 
deal with complicated domains in a simple manner 
while maintaining a local character in the approxi- 
mation. Both methods seek to divide the total do- 
main into a finite number of subdomains (or ele- 
ments) wherein a volume integration is performed. 
For these reasons the subdomains are limited by 
some regularity of geometrical conditions such as 
having a positive volume or a limited aspect ratio 
between elements, angles, etc. Although this poses 
no serious difficulties for 2D situations, the lack of 
efficient 3D mesh generators makes the solution of 
3D problems a difficult task. 

It is widely acknowledged that efficient 3D mesh gen- 
eration remains one of the big challenges in FE and 
FV computations. Thus, even the more complex 
problems in CFD, such as some 3D solutions of the 
Navier-Stokes equations, can be accurately tackled 
nowadays providing an acceptable 3D mesh is avail- 
able. However, the generation of 3D meshes, despite 
major recent advances is still a bottle neck and it can 
absorb far more time and effort than the numerical 
solution itself. 

Different authors have recently investigated the pos- 

sibility of deriving numerical methods without us- 
ing meshes. Nayroles et al [1] proposed a technique, 
calling it diffuse element method (DEM), where only 
some nodes and a boundary description is necessary 
to formulate the Galerkin equations. The intepo- 
lating functions are polinomials fitted to the nodel 
values by a least squares approximation. Although 
no finite element mesh is explicitly required in this 
method, still some kind of "auxiliary grid" is needed 
in order to compute numerically the integral expres- 
sions deriving from the Galerkin approach. This re- 
quirement may prelude the successful extension of 
the DEM to 3D problems. 

More recently, Belytschko et al [2] have proposed an 
extension of the DEM which they call the element- 
free Galerkin (EFG) method. In that work, gen- 
eralized moving least squares interpolants typically 
exploited in curve and surface fitting are used to de- 
fine the local approximation. This provides addi- 
tional terms in the derivatives of the unknowns field 
omitted by Nayroles et al [1]. In addition, a reg- 
ular cell structure is chosen as the "auxiliary grid" 
to compute the integrals by means of a higher order 
quadrature. Finally, Lagrange multipliers are used 
to enforce the essential boundary conditions. The 
same approach has been further generalized by Liu 
et al [3] by introducing concepts from wavelet theory. 

The use of "clouds of points" to define local approxi- 
mations is by no means new and it has enjoyed some 
popularity among finite difference (FD) practitioners 
to derive generalized FD schemes in arbitrary irreg- 
ular grids. Here typically the concept of a "star" of 
nodes is introduced to derive FD approximations by 
means of a local Taylor expansion using the infor- 
mation by the number and position of nodes con- 
tained in each star. These ideas have been success- 
fully applied in fluid mechanics under the name of 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 



11-2 

Smooth Particle Hydrodynamics Method. A recent 
extension of these concepts to the solution of high 
speed flow problems has recently been attempted by 
Batina [4]. 

In this paper a general methodology for the numer- 
ical solution of high speed flows using a finite set 
of arbitrary points is described. The approach pro- 
posed incorporates the main features of generalized 
finite difference schemes and other more recent point 
data based procedures such as the DEM and the 
EFG [5]. The theoretical basis of the method in the 
context of the solution of viscous and inviscid flows 
are described in some detail. The accuracy and ap- 
plicability of this method is shown in some examples 
of application in ID and 2D flow problems. 

3. METHODOLOGY 

3.1 The Finite Point method (FPM) 

From a polynomial expansion of order m a function 
u(x) can be approximated in a local interpolating 
domain Oj (sometimes also termed "clouds") 

u(x) ~ u(x) = ai + a2x +a3x2 + ... + amxm     = 

= PT(x)a (1) 

where the base functions pT = [1, x] for m = 2 and 
pT = [1, x, x2] for m = 3 in one dimension [5]. 

The above approximation can now be sampled at n 
points within ft; where the values of the unknown 
v£ = u(xi) are sought, i.e. 

u?  =   < >a Ca (2) 

where C is a nxm matrix. 

Z.l.lFinite element interpretation 

If n = m, a standard finite element interpolation is 
obtained by inverting eq. (2) and substituting into 
(l)as 

jT..h Ü(X)   =   p3^-1!!*    =    N'U (3) 

N being the standard finite element shape functions 

[7]- 

Z.1.2Least squares interpolation 

Increasing the number of nodes in 0* to n > m, we 
cannot directly invert C anymore. However, through 
least squares approximation a square matrix is ob- 
tained which can be inverted if C has a full rank, 
which is assumed in what follows. Hence, the fol- 
lowing sum of squares can be written using eq. (1) 

(4) 

h h 
U| Ul»2 • • 

•h 
Ui+i 

h /ih 
U|-j/ UM •/ 

Figure 1:   Nodal unknowns u and the interpolated 
function ü. 

Minimizing J with respect to a, |£ = 0, yields 

a=A"1Buh (5) 

with A   =   (CTC) and B   =   CT. The new shape 
functions are now obtained as 

N T   _ p^'A-^ (6) 

This means that an interpolated curve u(x) is gen- 
erated from some point values u£ in each cloud as 
shown in Figure 1. Note that the fitted curve does 
not necessarily pass through the nodal unknowns u£. 

Recently, Batina [4] has used a similar type of least 
squares fit for fluxes and stresses in compressible flow 
analysis. However, he avoids the direct inversion of 
matrix A by doing a QR decomposition. 

In the present approach the danger of A being singu- 
lar is avoided by appropriately selecting the points 
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in the interpolation domain ftj . This ieduces both 
computational cost and memory. 

3.1.3 Weighted Least Squares Approach 

A drawback of the interpolation procedure so far pre- 
sented is that equal weight is given to all the points 
in Oj. This can rapidly cause a deterioration of the 
approximation [6]. A remedy can be the introduc- 
tion of weighting functions, such as a Gauss function, 
which will be described next. 

Following the least squares approach from above, we 
can directly include the weighting functions W(XJ) in 
eq. (4): 

J = 2>(»i)(i$ -«(«,))' = 5>(*i)(i*} ~PTa)2 

(7) 

Again minimizing J with respect to a, we obtain 

a = A_1BuÄ 
(8) 

with A = w(xj)(CTC) and B = CTW. W is now 
a diagonal matrix containing the weights W(XJ) at 
each point in ftj. 

In [6], the authors demonstrate a strong sensitivity 
to the number of points chosen within each cloud ftj 
if no weighting functions are used. In an example, 
the shape function plots show a drastic deterioration 
for both linear and quadratic base functions p. 

3.2 The FPM in a one dimensional context 

Let us now apply the theoretical background to a 
typical test problem, the linear ID convection diffu- 
sion equation, and compare its results to known so- 
lutions from the FEM. Consider the ID convection- 
diffusion equation: 

du      Adu      d   (  du\      n    .   „ 

with u = u(t, x) in ft; u(t, 0) = UQ in To, u(t, L) — UL 

in TL and T - T0 U TL. 

At steady state (§j = 0) equation (9) becomes: 

AdX-8X-(
Kirx) = 0        w 

with u=u(x). 

Taking A and K constant, the analytical solution of 
this first order homogeneous differential equation is 
obtained as: 

u(x) = u0 + (uL - u0) 
1-e* 

1-el 
(11) 

With UQ = 1 and tt& = 0, equation (11) reduces to 

u(sc) = 1 - 
l-e*g 

1 — e« 
(12) 

A test for time marching schemes is solving equation 
(9) by iterating until steady state is reached to ap- 
proximate the exact result. This is usually done by 
expanding equation (9) in time using a Taylor series: 

„n+l _     ^ At* 0'u 
f-*  *!   dt* 

(13) 

A discretization in space must be performed next. 
First, known and proven finite element methods will 
be presented, and then the finite point method pro- 
posed will be described. 

3.2.1 Finite element solution 

It is well known that the exact solution to this prob- 
lem can be nodally reproduced by the finite element 
method using the following Petrov-Galerkin meth- 
ods for all ranges of the Peclet number Pe [7], This 
can be achieved by expanding equation (13) up to 
first order, replacing ^ with equation (9) and dis- 
cretizing in space using Petrov-Galerkin shape func- 
tions: 

„r     „     h       dN 
W = N+-aopt — (14) 

with the upwind parameter ctopt = coth(Pe) — j^ 
which is optimal for this equation. The so called 
Taylor-Galerkin approach can also be used to recover 
exact nodal values for this problem. In fact, if equa- 
tion (13) is expanded up to second order (omitting 
third order derivatives) and standard Galerkin linear 
shape functions are used, equivalence to the Petrov- 
Galerkin scheme can be proved [7] for 

At = Atopt = -rotopt 

and Pe — 
Ah 
2K 

(15) 

(16) 
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Figuie 2 shows the exact nodal values obtained using 
a Tayloi-Galerkin two-step scheme with Atopt and 
Pe = 1 [7,8]. 

1 
EXACT — 

Taybr-Galerkln ♦ 

0.8 • 

0.6 

, 
■ 

0.4 • 

0.2 

°0 
I. 

0:2 0.4 * o!s * 0.B 

Figure 3:  Exact solution to the convection diffusion 
equation using a Taylor-Galerkin scheme. 

3.2.2 The finite point method (FPM) 

Let us now analyze the finite point method in the 
context of the ID convection-diffusion equation. In- 
tegrating eq. (9) in time, performing a Taylor ex- 
pansion of eq. (13) up to second order leads to: 

„,,       „      A   du     At2 d2u „_. 

inserting eq. (9) into (17) and omitting third order 
derivatives, we obtain: 

..»+1 
„   A IV du    a, du.\ A3At d2u |2.,1 

2    8x2 

(18) 

The discretization of the computational domain is 
performed locally using arbitrary points, without the 
need for fixed connectivities in a conventional mesh. 
Performing a least squares approximation in the vi- 
cinity of a point using using n points, we obtain 
an estimation of the necessary spatial derivatives gj* 

and |j|. Substituting these derivatives into eq. (18) 
leads to a system of equationsfrom which the un- 
known point values u{j can be found for each time 
increment. The approach is equivalent to using a 
point collocation scheme [5]. 

As explained earlier, the unknown functions u(z) 
and its derivatives may be expanded as follows in 
a given cloud, for the linear case (in what follows we 
assume tx(x) = tx(z)): 

u(x) = 01 + C12X = p a 

du _ 
dx 

(19) 

and for the quadratic case: 

u(x) = cti + 0L2X + c«3Z2 = pTa 

du 
— = a2 + 2a3x 
dx 

(20) 

d2u   n 

dx^ = 2a3 

For the linear case, it is not possible to directly com- 
pute the necessary second order derivatives. This 
can be overcome by performing an accumulation of 
differences at the central point and the rest of the 
points j within the cloud. Hence, 

d2u _ Y~» (UJ - tii) 
dx1 ~ ^ 

i=i 
h2 (21) 

with point 1 being the central point. 

It can be shown that this scheme, for equally spaced 
points (n = 3 and m = 2,3), is equivalent to central- 
differences which in turn is equivalent to FEM with 
Galerkin shape functions [8]. 

Figure S: Equally spaced points and their domain of 
influence for n = 3. Note the derivative is 
equivalent to a central difference approxi- 
mation. 

The following shows this for the linear case (m=2). 
Consider three points (1,2,3) with the coordinates 
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{xi,X2,x3) and at equal distance h from each other 
as shown in Figure 3. Let their unknown values be 
t*ii «2> t*3i respectively. Then, A from equation (5) 
can be calculated as 

A = 
En 

En V"*n 2 
j=l xi     2-,jf=l xi . 

3 3zi 
3zx    3x1 + 2h* 

(22) 

Inversion of A leads to 

A"1  = 3 ^ 2h» 

2fc* 2h* 

(23) 

Eq. (5) gives the polynomial coefficients ai and 0:2 
as: 

[:]■ A^Bu (24) 

The first derivatives in the linear case are constant. 
Using eq. (19), (23) and (24) they become now: 

dz 2/i2      2/i2J l2/i2        2/i2 

, xi       xi + h U3-U2 
l2/i2        2/i2 2Ä 

(25) 

which is exactly a central difference approximation. 
The second differences |^£ are taken as accumulated 
differences at the central node 1, which leads to 

d2u       u2 — lil       U3 — Ui 

dx~*~      h2      +      >i2 
t*2 — 2ui + M3 

Ä2 (26) 

which also is a central difference approximation. By 
analogy, we can derive similar statements for the 
quadratic case (m = 3). 

Having shown the equivalence of FPM (n = 3, m = 
2,3) with FEM, it should be possible to recover no- 
dally excact values for n = 3 and m = 2,3 using the 
finite point method. Figure 4 demonstrates this for 
Pe=l. 

0.8 

EXACT — 
Linear poNnomials • 

Quadratic poNnomials » 

0.6 
■ 

0.4 
■ 

02 

°0 
I ■ 

02  " 0:4 
► •    ,*       »      * »       «       4 • •— 

0.6                  0.8 

Figure 4:   Exact nodal values obtained by FPM for 
Pe = 1, n = 3 andm = 2,3. 

However, if the number of points in the local inter- 
polating domain ft* increases (n > 3), the algorithm 
introduces excessive diffusion and the quality of the 
result deteriorates, especially near strong gradients. 

Figure 5:   Gauss weighting function; W(TJ) quickly 
decreases as TJ increases (for Xic =1). 

3.2.3Introduction of weighting functions 

It is now of interest to see if the results can be im- 
proved by the use of weighting functions Wj within 
Oj. The idea is to give additional weight to points 
close to the central point and reduce it for points far- 
ther away. Within each fij we define Wj as a function 
of the distance of each point j to the central point: 

w 'j = ™(ri). and Tj = \XJ - zx\ (27) 

A possible choice for weighting could be a Gauss 
distribution which was also used in all following cal- 
culations: 
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w(rj) = e _ .   (v£) (28) 

where A< is a characteristic length in each cloud fij. 
c and p are user defined constants to adjust the sen- 
sitivity of the weighting function. Usually, c = 1 and 
p = 2 are chosen. Figure 5 displays w(rj) graphically 
for AjC = 1. Further information on the FPM can 
be found in [5,6]. 
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0.6 • 

0.4 ■ 

0.2 • 

U( )                       0.'2   ' 
1 

■ O'.A '   '   ' o!6 '   '      o!e '   ' 

1 EXACT — 
WITHOUT weighting  . 

Using GAUSS weighting functions * 

0.8 

0.6 ■ 

0.4 ■ 

0.2 I ■ 

uc ^   ■   ' o!z •   ' 
1   oU   '     '      '   0?6                     0.8 

Figure 6: Convection diffusion equation using linear 
base functions and 3 points per cloud for 
a) Pe = 0.5, b) Pe = 1 and c) Pe = 2.5. 

4. NUMERICAL EXAMPLES 

4.1 ID Convection diffusion equation 

Let us test the solution of equation (18) using the 
FPM without weighting and with Gaussian weight- 
ing functions. 

EXACT — 
WITHOUT weighting . 

Uelng GAUSS weighting function« + 

EXACT — 
WITHOUT weighting • 

Using GAUSS weighting functions f 

0.6 0.8 

1 

0.8 

EXACT  
WITHOUT weighting • 

Uelng GAUSS weighting functions <f- 

0.6 ■ 

0.4 ■ 

0.2 

V • 

- 

uc -*■ 
-+- '  0l2   '     ■ 1   o'.4   '      '      '   o!6   '                 0.8 

Figure T: Convection diffusion equation using linear 
base functions and 4 nodes per cloud for 
a) Pe = 0.5, b) Pe = 1 and c) Pe = 2.5. 

Fig. 6 shows the FP solution using linear base func- 
tions (m = 2) and 3 points per cloud for three dif- 
ferent Peclet numbers: a) Pe = 0.5 b) Pe = 1.0 and 
c) Pe = 2.5. Observe that exact nodal values are 
obtained in all cases. 

However, as the number of nodes in the cloud is 
increased, a deterioration of the solution is visible 
when no weighting functions are employed. Figures 7 
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and 8 demonstrate this behavior for n = 4 and n = 5. 

Using Gaussian weighting functions, the improve- 
ment of the solution is impressive. With Aj = rmin, 
where rmin refers to the minimum distance of r in 
fij, practically exact nodal values are recovered for 
this ID test problem (see Figures 7 and 8). 

oscillations disappear if a weighting interpolation is 
used. 
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L 
Figure *: Convection diffusion equation using linear 

base functions and 5 nodes per cloud for 
a) Pe = 0.5, b) Pe = 1 and c) Pe = 2.5. 

The extension to quadratic base functions (m = 3) 
exhibits a more drastic need for using of weighting 
functions. Whereas with 3 noded clouds (n = 3) ex- 
act nodal values are computed (Figure 9), strong os- 
cillations occur as n is increased (Figure 10). These 
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Figure 9: Convection diffusion equation: quadratic 
base functions and 3 nodes per cloud for 
a) Pe = 0.5, b) Pe = 1 and c) Pe = 2.5. 

Additionally, we have also found that the quality of 
the results worsens as the Peclet number increases 
if no weighting functions are employed. Note that 
again nearly exact nodal solutions are recoverd by 
employing Gaussian weighted interpolation. 

4.2 Extension to the 2D Euler equations 

4.2.1 Governing equations 



The ideas from the one dimensional problem ate ex- 
tended to the solutions of the non linear two dimen- 
sional Euler equations: 

£♦£=• '=•■» (29) 

where 

u = •   and ffc  =  < 
pUkUi+pSa 
pUkU2+p83k 

.   (pe + p)uk   ) 

The different terms have the usual meaning [8]. 

•0.4 
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Figure 10: Convection diffusion equation using qua- 
dratic base functions and 5 points per 
cloud for Pe = 1. 

4.2.2 Time discretization 

A two-step scheme is employed in order to advance 
the solution in time towards steady state, i.e. 

n+1       n     At Öf* 
u"T» = u 

2 dxh 

un+l = un _ At^-^- ~ U» - Atj- (f*(u"+*)) 
dxk 

(30) 

4.2.3 Stability 

The two-step scheme leads to a conditionally stable 
explicit second order algorithm of with the following 
limit for At: 

At = 
Ch 

|v| + c 
and  C<\ (31) 

where C is the Courant number. 

A difficulty in a multidimensional context arises from 
the determination of h in a given cloud of points ft,-. 
In finite elements, using linear triangular elements, 
h is denned according to the minimum height within 
each element [8]. In meshless methods, a clear defi- 
nition has not been presented yet. In our work, h has 
been taken equal to Am<„, this being the minimum 
distance to the center point within each interpola- 
tion domain ft,-. 

4.2.4Balancing dissipation 

Since the hyperbolic Euler equations do not contain 
any diffusion terms, some balancing damping must 
be added to prevent unphysical oscillations. Follow- 
ing Jameson [9], 2nd and 4th order diffusion terms 
are added to the fluxes. These terms are constructed 
as follows in the FPM: 

li = -(|v| + c)J>;-*)=££— 
;=3 ^i=2 w> 

i=2 

(32) 

where Wj are the same weighting functions used in 
the interpolations of eq. (8) and the coefficients of 
eq. (32) are obtained as: 

ef> = a<J> 
E"=2bi-Pil 
E"=2 Pi + Pi 

Ej
4> = max(0,a<4>-ej2)) 

(33) 

c*(2) and a(4) are user defined constants. The sum- 
mation j extends accross the number of points in 
each cloud and is accumulated at both the central 
point i and the point j. In subcritical flows e) is 
generally switched off. 

4.2.5Selection of points 

In a multidimensional domain, the difficulty arises 
on how to define each local interpolating domain. 
Even though weighting functions are employed, it is 
still necessary to choose the most significant points 
for each ft<. For the results of this paper, the central 
point plus the n — 1 closest points are chosen. How- 
ever, a condition of quadrants is imposed such that 
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there must be at least one point in every quadrant 
of orthogonal axes. This leads to a minimum of 5 
points per cloud. 

At the boundary, the two points adjacent to the cen- 
tral point on the boundary plus the closest points are 
chosen. Another condition is that no boundary sec- 
tion is crossed so that points from the opposite side 
are not chosen. For instance, at the trailing edge of 
an airfoil, the closest points to a point on one side of 
the airfoil may lie accross the wall on the other side. 
Since there is a physical separation of these points, 
they are not included in the same interpolation do- 
main. 

4.3 2D Results 

4.3.1 Subsonic test case 

The first 2D test case considered is a NACA0012 
profile with a free stream Mach number of 0.5 and 0 
degrees angle of attack, analyzed by Zienkiewicz et 
al [10,11]. In order to compare solutions, a finite el- 
ement solution has been taken for comparison. The 
meshless grid of 2556 points is shown in Figure 11. 
The same points have been used for the FE solution 
on the equivalent unstructured triangular mesh ob- 
tained using a standard advancing front technique 
[7,8]. 

Figure 11:   Point distribution around a NACA0012 
profile 

Again, the idea is to compare the influence of the 
weighting functions in the finite point approxima- 
tion. In previous reports [5,6] we have shown re- 
sults proving the superiority of weighting functions 
in a 2D context, but without using weighting func- 
tions for the balancing diffusion terms (see eq. (32)). 
Here, the benefit of the weighted diffusion terms 
shall be presented. 

The results of the FPM were obtained by employing 
7 nodes in Q;, A = \min, c = 1 and linear base func- 
tions (m = 3). A global comparison of the meshless 
solution is shown in Figure 12. In a), b), c) and d) 
the mesh, the Taylor-Galerkin solution, a four-stage 
Runge-Kutta Galerkin result and the FPM solution 
for the density are presented, respectively. Quali- 
tatively, all results are very similar. In Figure 13 
close-up views in the stagnation area enhance the 
comparison of density contours of a) FPM without 
weighted diffusion, b) FPM with full Gauss weight- 
ing, c) RK-Galerkin and d) Taylor Galerkin. Note 
the improvement of solution b) with respect to a), 
not exhibiting any oscillations in the stagnation area 
through the use of weighted diffusion terms. 

In Figure 14, a) velocity contours and b) velocity 
vectors in the stagnation zone are displayed, respec- 
tively. 

4.3.2Supersonic test case 

The second 2D test case is a hypersonic inviscid flow 
of Mach 8.15 around a double ellipse, which is well 
documented by the proceedings of the workshop in 
Antibes, 1991 [12]. The flow enters at an angle of 30 
degrees. The solution is characterized by a strong 
primary bow shock and a weaker canopy shock. 

To solve this problem, a grid of approximately 11000 
points was generated using again the advancing front 
technique. Linear base functions (m=3) and 6 point 
clouds with Gaussian weighting were used. The re- 
siduals of the solution have been reduced to six or- 
ders of magnitude. Figures 15 a), b) and c) present 
the meshless grid, Mach number contours and den- 
sity lines, respectively. Note that the solution is very 
smooth and the location of the shock is well cap- 
tured. The numerical overshoot of about 3% in Mach 
number is within reasonable limits and it could be 
improved by increasing the balancing diffusion. The 
convergence of this solution was slow due to a low 
Courant number of 0.25 (avoiding neg. pressures). 

Figure 16 a) demonstrates the high quality of the so- 
lution in the vicinity of the stagnation area showing 
no oscillations. Figure 16 b) displays the pressure 
coefficient cp on the boundary of the double ellipse 
which compares well to other contributors [12]. 
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Figure IS:  NACA0012 profile: Close up density contours in the stagnation area for a) FPM without weighted balancing 
diffusion , b) FPM with weighted balancing diffusion, c) RK solution and d) TG solution. 

Figura 14:   NACA0012 profile: a) velocity contours and b) velocity vectors in the stagnation zone are shown for the FPM 
with Gaussian weighted balancing diffusion terms. 
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Figure 15:   Double ellipse: a) Meshless grid, b)Mach number contours and c) Density contours for a hypersonic inviscid 
flow around a double ellipse. 

Figure 16:   Double ellipse: a) Density contours in the stagnation zone and b) Pressure coefficient cp along the boundary 
of the body. 
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FLOWS ON STRUCTURED AND UNSTRUCTURED ADAPTIVE GRIDS 
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1. ABSTRACT 
Solution algorithms for solving the unsteady 2D Euler 
equations are presented. Cell-centered upwind control 
volume scheme are developed with utilize the two- 
dimensional monotone linear reconstruction 
procedures. The new adaptive grid procedure are 
proposed to cluster the grid points in regions where 
they are most needed. This procedure is generalized 
for unstructured grids. Numerical results in two- 
dimensional case are presented for linear and 
nonlinear convection problems. 

2. INTRODUCTION 
The numerical simulation of many gas dynamics 
processes, possessing applied significance, requires the 
solution unsteady two-dimensional Euler equations in 
the complex geometry region. The typical feature of 
inviscid gas flow about bodies, in channel of the 
complex form or in jets is presence interacted shock 
waves and other gas dynamics discontinuities [1-3]. 
For computation of such flows the high order schemes 
of TVD or ENO type are obtained wide spreading. 
These schemes have high order of accuracy in the 
region of the smooth solution, well capture 
discontinuities and preserve monotonicity of the 
solution. In the present paper for the solution of Euler 
equations high order version of Godunov's scheme 
[4,5] is used. 

To improve efficiency of codes based on TVD and 
ENO methods and to resolve local features of a flow 
the solution-adaptive grid algorithms can be used. The 
authors have developed an adaptive grid algorithm 
suitable for structured and unstructured grids. It is 
based on the algebraic minimal moments scheme by 
Connett, etal. [6,7] with cell-centered grid 
modifications. 
The proposed method belongs to the class of moving 
grid methods. Using these methods for structured 
grids, strongly skew cells can be obtained near large 
gradient regions. In this case, ID- procedure along 
gridlines can yield large error due to decreasing of 
order of approximation. So it is necessary to use 
essentially 2D reconstruction procedures. Note that 
only 2D reconstruction procedures on unstructured 
grids can be used. 

In present paper the linear reconstruction procedures 
are considered and one such procedure is developed. 
It is based on the well-known in Russia 2D algorithm 
by Tillyaeva [8] with modification which taking into 
account a more wide additional support (the set of 

cells needed to determine the coefficients of the 
polynomial). 

Numerical results are presented in Section 4 to 
illustrate the capability of the proposed algorithms. 

3. GOVERNING EQUATIONS 
The governing equations are the conservation form of 
the Euler equations for two-dimensional, unsteady, 
compressible flows of a calorically perfect gas 

(1) <?,+ F(q *+G(q)y = S 

where 

P pu pv 

Q = 
pu 

pv 
, F(q) = 

pu2 + p 

puv 
, G(q) = 

puv 

pv2 + p 

E (E + p)u _(£ + />)! 

(2) 

Here p, p and E are the density, pressure and total 
energy, respectively, and u and v are the Cartesian 
components of the velocity vector. S is the source 
term. The system (l)-(2) of four equations is closed 
with the polytropic equation of state 

p = (y-l)(E-p/2(u2+v2)), 

where y is the ratio of specific heats. 

(3) 

2. CLASS OF HIGH ORDER SCHEME FOR 
NUMERICAL SIMULATION GAS DYNAMIC 
FLOWS 

2.1 Finite volume formulation 
Let denote by S„ a rectangular partition of the x-y 
plane, where 

sij=\.xi-i/2>xi+i/^)<\yj-i/2>yj+i/^' 

with (xt,y) denoting centroid of each rectangle £„. 
With help of integral form of equation (1) for each 
control volume £„ following equation can be obtained 

<%(0 
As„ 

fi+l/2J (0 ~ fi-l/2,j (0 

+i,j+l/2(0-|,j-l/i(0], 

where Astj = A^A^. is area of Sy, and 

(4) 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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qj.(t) = —  j     jq(x,y,t)dxdy 
ij xt-i/2 yj-i/2 

(5) 

is the cell average^ of q over the control volume at 
time t. The fluxes / and g are given by 

yj+i/i 

yj-i/2 

xl+\/2 

gM/uV) =  jg(9(x,yj+i/2,t))dx. 

(6) 

(7) 
xl-l/2 

Equation (4) can be treated as a system of ordinary 
differential equations. Along any /=constant line, the 
right-hand side of (4) is a spatial operation in q, and 
we rewrite this equation in the abstract operator form 

-^qij(t) = (Lq(t))ij 
at 

(8) 

for the purpose of "separation" the spatial and 
temporal discretizations. 

2.1.1 Spatial discretization 
To achieve desired order of accuracy we replace the 
operator L with a discrete spatial operator L, which 
approximates L to r-\ order 

Lq(t) = Lq(t) + 0(hr). 

We define L explicitly by 

1 

(9) 

(Lq(t))„ = [fM/2,j(t) - fi-l/2,j(t) 
aij 

+ ä,y+i/2 (0 - Ü.y-i/2 (0]» (10) 

where / and g^ are approximations of corresponding 
order to fluxes / and g in (6) and (7). 

For approximation of integrals (6), (7) we can use 
"classical" Ä'-point Gaussian quadrature. Therefore, for 
fixed x and /, and sufficiently smooth / the 
approximation of the flux integral (6) by Gaussian 
quadrature satisfies 

Av- K 

fui/2 A*) = -^£Q/(<?(xi+1/2,A,/)) 

+ s(xi+1/2,T])h 1K+1 (ID 

where function s relates to the quadrature error and 

leiyj-wyj+i/i)- 

Let R be a spatial operator which reconstructs the set 
of cell average and yields a 2D, piecewise polynomial 
qh(x,y) of degree r-\ which approximates q(x,y,t), with 
a truncation error of 0(hr) 

qh(x,y) = R(x,y,q(t)). (12) 

Therefore, if we define "abstract" numerical flux f in 
(10) by 

Ay.   & 
fu\/2,j(.t) = -^-2lCkf(9l,(Xi+l/2,yk)), 

2    k=l 

(13) 

Analysis (11), (13) and the flux difference 
fi+mji*) ~ fi-mjW in (10) shows [9], that number of 
Gauss points K must satisfied condition r<2K. Then 
the error relation satisfies 

fi+l/2,j(t) ~ fi-i/2jv) 

= fM/2j(t)-f,-1/2,j(t) + OW+2). (14) 

Noting that the area As,-,- is 0{h?), than upon 
substitution of the numerical fluxes (13) into (10) we 
have thus designed the spatial operator L that satisfied 
(9). 

We now wish to modify the "abstract" numerical flux 
(13) such that conditions of approximation of desired 
order for scheme be satisfied in regions where the 
solution is smooth and, in addition, these fluxes will 
account for possible discontinuities in q. This 
modification follows naturally from the reconstruction 
procedure, by which the function qh(x,y), in (12), can 
discontinuous at cell interfaces, presentation of qh{x,y) 
within a cell Sy. In order to resolve these 
discontinuities, the flux integrands in (13) are replaced 
by 

/   (tig(xM/2,yk),quij(*/+i/2>yk)), 

g^ (%j (xk, yJ+y2) > %j+\ (xk, yj+i/i))» (15) 

where ify (*,>>) denote the local representation of 
qh(x,y) within a cell Sy and JRP(qpq2) denotes the flux, 
across x=0, associated with the solution to the 
Riemann problem whose initial states are qj and q2 

2.1.2 Temporal discretization 
Equation (4) is discretized by using a Runge-Kutta 
method (R-K) of Shu [10]: 

qf = 2>,4m) +ßimMLf\, i=i,2,.,P, 
m=0 

lif = {Lqp,  qP=qf,   qf = qf (16) 

The order of accuracy, as well as its TVD properties, 
is achieved by adequate sets of coefficients a/m, ßlm 

andp [10]. 

Also in our code method [11] is used. It is predictor- 
corrector type method of second order accuracy, in 
which on first stage the fluxes are calculated without 
solution of the Riemann problem and reconstruction 
procedure is performed only on first stage. 

2.1.3 Riemann solvers 
Using of the solution of the Riemann Problem (RP) 
for calculation of the fluxes over faces of a control 
volume (16) allows to take into account local 
directions of perturbation propagation. In general case 
it is necessary to use really two dimensional Riemann 
Solver for accurate calculation of 2D flows. But 
recently proposed 2D Riemann Solvers [12,13] are too 
complicated,    tedious    and    sometime    result    in 
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instability, even for the first order schemes. So in 
presented paper the solution of RP is determined by 
ID Riemann Solvers. According to common practice, 
which start from works of S.K. Godunov [5], the 
normal to face of a control volume is used as the 
direction, along which the ID RP is solved. It can 
result in dependence of the solution quality on 
numerical grid. 

In developed computer code [14] there is opportunity 
to choice of the ID Riemann Solver (for example 
exact solution [4] or approximate methods by Roe 
[15], Osher [16], Dukowicz [17], Davis [18] and 
others [19]) for the solution of the RP. 

2.1.4. Boundary conditions 
Correct setting of numerical boundary conditions is 
one of the most important items for the numerical 
simulation of unsteady gas dynamics flows. Numerical 
boundary conditions based on using of characteristic 
relations are most correct in physical sense and they 
are implemented in the present work. For the open 
boundaries the "non-reflecting" boundary conditions 
[20] are used. 

2.2. Two dimensional reconstruction algorithms 
Using solution-adaptive grid methods for structured 
grids, strongly skew cells can be obtained near large 
gradient regions. In this case, ID- procedure along 
gridlines can yield large error due to decreasing of 
order of approximation. So it is necessary to use 
essentially        2D reconstruction        procedures 
[8,9,21,22,25,26]. Most of these procedures are rather 
complicated and very costly. At present paper most 
simple linear reconstruction procedures are used 
[8,22]. They can efficiently realized on the structured 
grids. 

In the reconstruction procedure by Tillyaeva [8] 
(denoting below as TL) the five-point stencil is 
decomposed into triangles. The slopes of planes 
passing through function values at the vertices of each 
of the four triangles with a vertex at ij are 
determined. The derivatives with respect to x and y of 
linear reconstructed function are evaluated from 
corresponding slopes by minmod operator. As shown 
in [8] for case of structured quadrilateral grids only 
two opposite triangles with a vertex at ij can be used 
in the reconstruction procedure. Moreover, on 
rectangular grids the reconstruction became couple of 
the independed ID minmod limiters. 

As follow from numerical results TL reconstruction is 
too much diffusive. So we modify it by taking into 
account slopes of central plane, reconstructed with 
algorithm similar [21] over all points of the stencil. 
We denote this algorithm with MT. 

Last algorithm that studied in this paper is the linear 
reconstruction proposed in [22]. Initially the estimate 
of solution gradient in the cell are computed using the 
approximation of boundary integral for some path 
surrounding this cell. Then the obtained gradient 
estimation is restricted to satisfy the monotonicity 
principle. 

3. ADAPTATION PROCEDURE 
The adaptive grid algorithm presented here is based on 
the algebraic minimal moment method [6,7] with cell- 
centered grid modifications. For exact reconstruction 
of a linear function the centroid of control volume, 
where averaged function values are stored, has to 
coincide with the gravity center of this control 
volume. So in presented algorithm firstly vertices of 
control volumes are replaced and then coordinates of 
gravity centers of new control volumes are evaluated. 

An analytical expression for the movement of cell 
vertex P is given as 

AP = P,„ 
~M 

^mM.-P), (17) 

^ - means summation over all neighbour cells with 
a vertex at P. B is the vector location of the gravity 
center of corresponding cell. 

The "mass" of cell n is defined as 

(18) 

where j is index of adjusting with n cells, Asn is the 
cell area and 

nb 
(19) 

The first term within the parenthesis of equation (18) 
represents an estimate of the maximum gradient of an 
arbitrary function, f, on a grid cell. The adaptation will 
be sensitive to the gradient of this function. The 
constant c is the user specified constant which 
controls the adaptation strength. 

For boundary point adjustment two algorithms 
proposed in [6,23] are used. 

In the method of minimal moments [6,7] the nine- 
point stencil is decomposed into triangles. The gravity 
center for each of the four triangles with a vertex at ij 
is determined. A weighting function value is computed 
for these points. The new location of point ij is at 
common center of mass of these four triangles and is 
given by (18) with summation over these triangles. In 
the presented method "natural" information is mainly 
used: gravity centers and areas of computation cells, 
that are computed and stored for a flow field 
computation. In some cases an estimate of the 
maximum gradient in the weighting function (18) can 
be obtained as auxiliary result of a reconstruction 
procedure. It can be rather important for overall 
efficiency of flow solver with dynamic solution- 
adaptive grid techniques. 

The presented method can be easy generalized on 
unstructured cell centered grids. The illustrations in 
Fig. 1 were produced to show how presented 
algorithm can be used on structured quadrilateral and 
unstructured triangular grids. Fig. la presents surface 
plot     of     given     function     H(x,y)=tanh(3(x-y2)) 
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+tanh(3(x2+y2-l)). Figures lb and lc contain the 
solution-adaptive grids produced by our algorithm. 

4. NUMERICAL RESULTS 

4.1. Linear scalar 2D problems 
Numerical dissipation of explicit high resolution 
schemes with various "reconstruction" algorithm were 
compared by numerical results for the two 
dimensional advection equation [24] 

U[+(a(y)u)x+(ß(x)u)y = 0 

with   a{y) = -{y-yü)co, ß(y) = -{x-xü)w 

(20) 

(20) 

The exact solution of (20), (20) consist in the rotation 
of the initial values round (x0,j0) with angular velocity 
co. In this paper presented two series of calculations. 
As initial values was chosen a cut-out cylinder and a 
cone (fig. 2). We used the angular velocity m to be 0.1 
and xö=50, yö=50. The region of computation was 
[0,100] x [0,100]. The numerical calculation were done 
on three type of grids with 100 grid points in each 
direction. The first type is uniform rectangular grid, 
the second type is smooth curvilinear grid (Fig. 3.a) 
described by transformation 

„    50 .  . n, E        .. 

50 . * 
—sm(— 
4n      50 

where £■ = Ax(i -1),   Ax = 1, 

T?j=Ay(j-l),   Ay = l. 
And the third type is random grid (Fig. 3.b) 

= 6- ■svAx 

y,y = ij + (Oij^y 

where e„ and a>{- are uniformly distributed random 
numbers on (-0.4, 0.4). 

At time t=20n; the initial values have carried out one 
full rotation and returned to their initial position. The 
approximations of the initial values on uniform grid 
are shown in Fig. 2. To improve picture resolution in 
Figs. 2 and 4 we used only part of the computation 
region [50,100] x [25,75]. Size and initial position of the 
cut-out cylinder and the cone are same as in [24]. We 
perform long time calculations until t=l20x which 
corresponds to six full rotations of initial values. As 
mentioned in [24] these problems are well suited to 
benchmark the numerical properties of the schemes. 

In this paper three reconstruction procedures 
described in section 2.2 are compared. Numerical 
results obtained with these reconstructions on 
computational grids of three types are presented in 
Tab. 1 for the cone and in Tab. 2 for the cut-out 
cylinder. These tables contain numerical solution 
errors calculated with respect to the L2 norm and 
maximum values of obtained solutions. Fig. 4 shows 
numerical solutions computed using uniform 
rectangular grid. TL reconstruction results are shown 
in Figs. 4a and 4d, MT results - Figs. 4b and 4e and 

BJ results - Figs. 4c and 4f. As we expect the TL 
reconstruction procedure is most dissipative. MT and 
BJ results are rather close, but in MT case errors are a 
little smaller and maximum values are a little greater. 
These problems also shows that the MT 
reconstruction may not preserve the symmetry. We 
have some difficulties with implementation of the BJ 
reconstruction on the curvilinear grids. So results for 
this grid aren't presented in Tabs. 1 and 2. 

4.2. A channel with a 15° compression-expansion 
ramp 
The next case is the flow through a duct with 
compression-expansion ramp in the bottom wall. The 
conditions for this case are: M^=2, y=\A. The 
computational grid is equally spaced and contains 180 
cells in the streamwise direction and 60 cells in the 
cross flow direction. 

The computed Mach contours are presented in Fig. 4. 
Note that the induced and reflected shocks are quite 
thin and any unphysical oscillations are absent. All of 
characteristic features of the flow are well resolved on 
such fine grid without adaptation. 

4.3. A Oblique Shock-reflection problem 
One of the most popular problems for checking out 
various elements of numerical algorithm (such as 
reconstruction, adaptation etc.) is the regular 
reflection of an oblique shock wave by a flat plate. In 
Figs. 5 a-f, results are shown for a case with M^ =2.9 
and ß = 29", where ß is the angle made by incident 
shock wave and the flat plate Fig. 5a. First steady 
solution was obtained on the uniform 60x20 
rectangular grid. The corresponding pressure contours 
are presented in Fig. 5a. Then grid adaptation was 
performed by the proposed above method. The 
pressure was used as the adaptation function. After 
that new steady state was obtained. Figs. 5a and 5b 
depict the adapted grid and associated steady state 
flow solution. These figures shows that the pressure 
gradients become much better resolved. 

4.4. A underexpanded jet flow 
The next case is the unsteady underexpanded 
supersonic jet flow. The conditions for this case are: 
Mr\.5, n=p/Paa=\ TpT,» and ^=^=1.4. The 
computational grid is equally spaced and contains 180 
points in the streamwise direction and 80 points in the 
crossflow direction. Fig. 6 shows the computed Mach 
contours for most characteristic time moments. Note 
that the nonreflecting boundary conditions allow to 
calculate such rather complicated flow almost without 
unphysical reflection on the open boundaries. 

The steady state solution is shown in Fig. 7a. Fig. 7b 
shows the steady state solution obtained using coarse 
90x40 rectangular grid. For this solution the grid 
adaptation was performed using the Mach number 
gradients as the adaptation function. In Fig. 7c, the 
adaptive grid is presented and Fig. 7b shows the 
computed Mach contours. The solution computed 
using coarse adapted grid is mush close to the fine 
grid solution in Fig. 7a. But some flow features aren't 
succeeded to capture. The second Mach stem places 
somewhat farther from the nozzle cut than in Fig. 7a. 
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But the first Mach stem are resolved better than by 
using the fine grid. It is main deficiency of moving 
solution-adaptive grid algorithms. If there are large 
gradients of parameters in a flow region then grid 
points are too coarse in regions of middle and low 
gradients. 

4.5. Nozzle flow 
In the last example we present results of numerical 
simulation of the internal axisymmetric nozzle flow of 
the ideal gas with y=l.22. The nozzle consists from 
two parts. First part is a Laval nozzle and second one 
is cylindrical tube adjoining to the supersonic part of 
the Laval nozzle. 

Initially the steady state solution was obtained using 
130x40 simple grid (Fig. 8a). In Figs. 8a and 8b the 
top half of figures shows the computed Mach contours 
and the bottom half shows the computational grid. 
For the computed steady state solution the grid 
adaptation was performed using the Mach number 
gradients as the adaptation function. The new steady 
state solution and the adaptive grid are presented in 
Fig. 8b. 

5. CONCLUSIONS 
In present paper the upwind monotone numerical 
method for the solution of the Euler equations is 
presented. This method is based on the high order 
version of the Godunov's scheme. This method is 
realized using both the structured quadrilateral and the 
unstructured triangular grids. Essentially 2D 
reconstruction procedures make possible to perform 
calculations using the strongly skew grids. Some 
features of 2D reconstruction procedures are studied 
to solve the linear scalar problem. The new solution- 
adaptive grid algorithm is proposed. 

Presented numerical results illustrates the capability of 
the proposed algorithms. It can be see that the grid 
adaptation procedure make possible to obtain 
significantly more accurate results. 
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a) 

b) c) 

Fig. 1. Adaptive response of uniform grids to weighting function H(x,y)=tanh(3(x-y2)) + tanh(3(x2+y2-l)). 

a) weighting function; b) regular quadrilateral grid; c) unstructured triangular grid. 

a) b) 

Fig. 2. Initial values and exact solution after each full rotation, a) - cone, b) - cut-out cylinder. 



13-7 

- 

g- 

TTT7 
M) 2b Mb eb                  1Ü 

a) b) 

Fig. 3. Examples of curvilinear (a) and random (b) calculation grids (20x20). 

a) 

b) 

d) 

e) 

c) f) 

Fig. 4. Computed solutions on the uniform grid after six rotations. a)-c) - cone, d)-f) - cut-off cylinder. 
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Type of grid 

Reconstruction Uniform grid Curvilinear grid Random grid 

L, error Max value L, error Max value L, error Max value 

TL 0.0616481 1.48475 0.0675634 1.22261 0.0640970 1.43263 

MT 0.0216717 2.80456 0.0245567 2.45170 0.0257393 2.85844 

BJ 0.0246873 2.74293 - - 0.0261619 2.65865 

Table 1. Results of solution of the linear scalar problem for rotating cone. 

Type of grid 

Reconstruction Uniform grid Curvilinear grid Random grid 

L, error Max value L, error Max value L-, error Max value 

TL 0.198722 2.10699 0.188287 2.05245 0.195201 2.02538 

MT 0.206402 3.66130 0.201828 3.39611 0.208682 3.58780 

BJ 0.206362 3.18942 - - 0.203615 3.04373 

Table 2. Results of solution of the linear scalar problem for rotating cut-out cylinder. 

Fig. 5. Computed pressure contours for a 15° compression ramp (M-2). 
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b) 

c) 

Fig. 6. Pressure contours for oblique shock reflection problem (M=2.9, ß=29°). 

a) solution on uniform grid; b) solution on adaptive grid; c) solution-adaptive grid. 
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Fig. 7. Unsteady underexpanded (n=3) jet. 
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a) c) 

0 1 2 3 H 5 6 7 8 9 0 1' 2' 3' H' 5' 6' 7' 8' 9 

b) d) 

Fig. 8. Steady underexpanded jet. a) - fine grid solution; b) - coarse grid solution without adaptation; c) - 

adaptive grid; d) - adaptive coarse grid solution. 
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b) 
Fig. 9. Nozzle flow problem, a) solution and grid without adaptation; b) adaptive solution and grid. 
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TVD scheme on the Solution of a Viscous Flow Problem. 
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1. SUMMARY 
The goal of the present investigation is to discover the effects 
of certain parameters in a modern TVD scheme on the 
solution of a viscous flow problem. This report includes 
details of the TVD scheme used in this study. The scheme is 
an extension of the work of H. C. Yee [1], and uses an upwind 
weighted dissipation term, and central differencing to 
calculate the viscous terms. 

The entropy correction parameter and the choice of flux 
limiter when computing viscous flows are under investigation. 
The effectiveness of this TVD scheme in solving viscous flow 
problems has recently been questioned by Lin [2]. However, 
this investigation shows that by carefully selecting the limiter 
and the value of the entropy parameter, adequate viscous flow 
results can be obtained. 

Solutions to the Navier-Stokes equations for an 
underexpanded sonic jet on a flat plate with a supersonic 
crossflow are used to illustrate the method. The test 
conditions were M_=2.61, and Re=749,000, and the boundary 
layer was considered to be laminar everywhere. The 
numerical code has been evaluated for this test case using 
experimental data presented by Zukoski and Spaid [3]. 

The study includes a qualitative analysis of the amount of 
artificial viscosity added by the TVD algorithm compared to 
the real viscosity; an investigation of the effects of the 
artificial viscosity term on the solution, including changes in 
pressure and skin-friction distribution along the surface of the 
flat plate, and the change in the boundary layer separation 
point for different values of the entropy parameter. 

2. INTRODUCTION 
Over the past decade a vast range of Total Variation 
Diminishing (TVD) schemes have become available, and have 
been widely used. These schemes use some method of 
intelligent switching to put artificial dissipation into a problem 
where it is needed or to conversely remove artificial 
dissipation from areas of a problem where it is not. In this 
way the shock capturing capabilities of Euler solving 
numerical schemes has improved enormously. 

When the Navier-Stokes equations are being solved however, 
the interaction between the real viscosity and the artificial 
viscosity, provided by these modern schemes, must be 
considered and evaluated. 

A great deal of work has been done on various aspects of the 
artificial dissipation added in a scheme, and how it affects the 
solution.   Allmaras [4] has examined a boundary layer in a 

subsonic flow, and reports that upwind schemes using a matrix 
dissipation technique, are generally better than central 
difference schemes using a scalar dissipation formulation, for 
producing good boundary layer profiles. He also reports a 
slight velocity overshoot within the boundary layer, even 
using the upwind schemes. Tatsumi et al [5] have concluded 
that scalar switching schemes can produce good accuracy if a 
flux limiting technique is included. Tatsumi et al also 
suggests that anti-diffusive schemes will produce overshoots 
as described in [4] unless a flux limiter is included in the 
algorithm. Caughey and Varma [6] have used an integral 
technique to measure the effects of artificial dissipation on the 
flow calculations around a transonic aerofoil. They found that 
the dissipation errors and the total numerical errors were of a 
comparable magnitude, but in general the dissipation errors 
were larger than the total numerical errors. They also found 
that a Mach number scaling technique, for reducing the 
artificial dissipation being added, did reduce the dissipation 
related errors in most cases. Türkei and Vatsa [7] have 
compared a scalar artificial dissipation model with a matrix 
dissipation model on a 3D transonic aerofoil. They found that 
the matrix dissipation model improved the accuracy of the 
scheme. The accuracy was comparable to that produced by an 
upwind TVD scheme. It has also been reported that the matrix 
dissipation technique in a central difference scheme can 
produce high resolution results in a viscous flow, and that the 
matrix dissipation is essential for this behaviour, Swanson and 
Türkei [8]. 

In this work, a TVD artificial dissipation switching method 
which is similar to a matrix dissipation technique has been 
studied. This switch is controlled by two parameters, the 
choice of flux limiter, and the value of the entropy correction 
parameter, which has an indirect effect. 

In order to study the effects of these terms we have considered 
a complex viscous flow problem, as further irregularities 
caused by artificial dissipation may present themselves in such 
a problem. An underexpanded jet interaction with a 
supersonic crossflow has been chosen. This problem includes 
a separated boundary layer and regions of recirculation, see 
figure 1. The effect of the artificial dissipation terms on these 
flow phenomena have not been examined before. 

Jet injection into a crossflow is an important aerodynamic 
problem and has many uses in the aerospace industry. 
Reaction control systems on space vehicles and missiles are 
transverse jet problems. Jets for vortex control on the 
forebody are now being considered for high angle of attack 
control   systems   for   fighter   aircraft.      Fuel   injection   in 
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Figure 1. Diagram of a jet interaction with a supersonic crossflow. 

supersonic ramjets (scramjets) can also be considered as a jet 
in supersonic crossflow problem. 

The flowfield around a jet injection is shown in figure 1. An 
underexpanded jet transversely injected from the wall, into a 
supersonic main air flow, expands rapidly through the strong 
Prandtl-Meyer fans and forms a Mach disk. A bow shock 
wave is formed upstream of the injector due to the interaction 
between the main and injected flows while the main flow 
bends the injected flow parallel to the wall. A boundary layer 
separation occurs and a weak separation shock wave appears 
upstream near the injector due to an adverse pressure gradient 
caused by the injection in a boundary layer flow. Another 
weak shock appears downstream near the injector due to a 
reattachment of the injected flow with the wall. 

The objectives of this present study were to measure the effect 
of the artificial dissipation switching algorithm on the 
accuracy of the solutions produced for this test case. Also, a 
quantitative and qualitative examination of the amount of real 
viscosity compared with the artificial viscosity being added in 
the solution has been included. 

3.   NUMERICAL METHOD 

3.1   Governing Equations 
For a Cartesian coordinate system the Navier-Stokes equations 
can be written in a conservative form: 

where, 

3Ü    3F    3G_9FL   3GV 

3t     3x     3y      3x       3y 
(1) 

where the inviscid terms are, 

U = 
pu 

pv 
F = 

pu 

p + pu 

puv 

(e + p)u 

G = 

and the viscous terms are, 

Fv = G„ = 

'<P 

V§  J 

pv 

puv 

p+pv2 

(e + p)v 

(2) 

(3) 

T»=H 

T
W=M 

rA_ 3u    2 3v^ 

3 3x    3 3y 

3u    3v 

3y    3x 

3 3x + 3 3y 

f = UT„ + VT   +k 
3T 

3x 

3T 
^ut^ + vx^+k —; 

(4a) 

(4b) 

(4c) 

(4d) 

(4e) 

p is pressure, p is density, e is total internal energy, u and v 
are velocity components, |i is viscosity, T is temperature, and 
k is the heat transfer coefficient. 

For a general coordinate system the equations are transformed 
to the following: 

3U    3F    3G    3FV    3GV 

where, 

_     U     - 
U = y,   F = 

3t     3^    3TI      3^      3ri 

S,F+SyG    _    ilxF+riyG 
-,   G = - 

J       '   ~ J 

and similarly for the viscous terms, 

5,Fv+$yGv      ^      Ti,Fv+TiyGv 
F„=- -,   Gv 

(5) 

(6a) 

(6b) 
J J 

J is the Jacobian of the general coordinate system. 

In order to construct the total variation diminishing scheme, 
the Navier-Stokes equations must be put into the following 
form, 

3U       3U       3U    3FV    3GV 
 + A +B = —^- +  (7) 
3t        3^       3ri      3^      3TI 
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where, A and B are the Jacobian matrices for the 
transformation of F and G respectively. Therefore A and B 
can be described as 

3F 
A=—=R4AR; 

A       A       A 

3G 
B=—=RBABR; 

3U       D (8) 

where the columns of the matrices RA and RB are the right 
eigenvectors of the matrices A and B. AA and AB are 
vectors which are related to the eigenvalues of A and B, and 
can be found in reference [9]. 

3.2   Discretisation of the Equations 
The Navier-Stokes equations, in the form shown in equation 5, 
can be simply discretised into a two step scheme. The first 
step solves the flow in the ^-direction, and the second step 
solves in the ^-direction. This method of discretisation can 
lead to second order accuracy in time. 

(9a) 

where, 

\=%,>«*\=%v (9b) 

A global time step, At, is calculated with a CFL number of 
0.95. The numerical flux functions, F and G, in equation 9a, 
are calculated using a finite volume approach. 

■!.„-- ^ ^M,-n,<M l^-w^l 

^ n.. ^■..J+7    p.Htö
u-^!iW. J 

(10) 

Note that, the flux functions with a superscript * are calculated 
using U • In reference [1], Yee has offered several other 
methods of calculating the flux functions, but they are not 
covered here. 

Roe's averaging is applied to cell vertex points in order to 
calculate the flow variables at (i+l/2,j) and (i,j+l/2). 

The vectors, OA and <&B , in equation (10) contain the anti- 
diffusive terms that are under investigation in this report. They 
provide a second order upwind weighted dissipation term, see 
reference [1]. The equation for the components of the vector 
<J>A are shown here, a similar relation can be formulated for 
the vector OB . 

where 'a' denotes the eigenvalues of matrix A, and the 
components of the vector a can be obtained using, 

ai + ./2.i=lR, ♦JU^-U,, 

For the function y one finds, 

y =0(a. )fe,-g;,R2J <-*° 
Ti+V2,j °\ai+v2.jn        « «'....=o a;+1/2j=° 

(12) 

(13) 

The function o(z) is defined as, 

The function \|/(z) is calculated using, 

|z| 

(z2 + 52)/25 
vU) = « 

z>8 
z< 8 

(14) 

(15a) 

This function is introduced to prevent non-physical solutions 
such as expansion shocks, when one of the eigenvalues goes 
to zero. The function introduces a small amount of artificial 
viscosity. A relationship is provided in order that ' 5 ' is 
suitably scaled for highly skewed grids. This relation is, 

(15b) 8 = 8[ü + v+05c(^l[+^+jTlx+Tly 

where ü and v are the co-variant velocities. A study of the 
actual effects of varying the value of the constant, 8, in the 
solution, appears later in this report. This constant is referred 
to as the entropy parameter throughout this report. 

The term 'g', in equations (11) and (13), is the flux limiter. 
Five different limiters have been implemented and 
investigated, they are given in reference [1], and are: 

8;.,=i«U4i«M/! 

g!.j = minmod(a!_V2ij,ocj+V2ijJ (16a) 

-p,i+alp.i] (16b) 

«'4k-J)I«K^),+(°,^),+2e](16c) 

*i-l/2,jai+lß,j + ai-l/2,jai+l/2,j 

ll = minmodl2a1.V2iJ,2a1+V2iJ,7(a,.^ +ai+1/2J| (16d) 

axl 0,r hcfv1 

-H/2.j|-Za-ai-l/2.ij_|.(16e) 

S = sign(ai+l/2jj 

The minmod function of a list of arguments is equal to the 
smallest argument in absolute value if the list of arguments are 
of the same sign, or is equal to zero if any arguments are of 
opposite sign. 

In equation (16c) e is included to stop any division by zero, e 
is given a small value, usually of the order of 10"7. 

The accuracy and shock resolution of Euler solutions increases 
going from limiters (16a) to (16e). Throughout the rest of this 
report equations (16a) to (16e) are referred to as Limiters 1 to 
5, respectively. 

3.3   Grid Generation 
The grid used for this problem was calculated using a very 
simple analytical approach followed by a short smoothing 
operation. It is necessary to have a high concentration of 
points at the jet exit, where large changes in the flow will 
occur, and near the wall, in order to accurately capture the 
boundary layer. 

The grid generator introduces regions of highly concentrated 
points where specified. This leads to the production of a grid 
which is highly irregular. Rapid changes in grid point 
concentration can cause the numerical code to fail, or spurious 
glitches in the solution of the flow to occur. 
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Figure 2. Grid generated for the transverse jet case. 

A Laplacian smoothing operator is applied to the grid to solve 
these problems. Up to 15 smoothing iterations are performed 
on the grid. The number of iterations executed depends on the 
degree of irregularity of the grid, and the number of points in 
the regions where, there is a high concentration of points. The 
grid generated for this test case, using this method is shown in 
figure 2. 

4.    RESULTS AND DISCUSSION 
The test case for the investigation is a laminar boundary layer 
developing over a flat plate. A jet issues perpendicularly into 
the supersonic crossflow from x/L=l, where L=xjc„ the 
position of the jet. The inflow conditions for the flowfield are 
calculated for a Mach number of 2.61. The inflow conditions 
of the jet are as follows: the jet pressure ratio, P/P_=7.0; the 
temperature ratio, T/T_=1.0; and Mj=1.0. The Reynolds 
number of the flow; ReL=749,000; and the freestream 
temperature, T_=300K. These values were derived from the 
data provided in reference [3]. 

4.1   Comparison with Experiment 
Other than the results obtained to test the grid dependency of 
the solution, all of the numerical results produced were 
calculated on a 100x100 grid as shown in figure 2. The grid 
has 6 points in the jet, and contains between 30 and 35 points 
in the boundary layer region. Simple boundary conditions 
have been used everywhere. The flat plate is modelled using 
no-slip conditions and is considered to be adiabatic, the inflow 
condition is fixed at the initial condition, and all outflow 
conditions use a simple linear extrapolation technique. The jet 
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has a rectangular profile, the actual profile would be closer to 
a quadratic profile. The jet boundary conditions are fixed at 
initial conditions for the injected flow. 

The pressure distribution along the surface of the plate has 
been compared with experimental results pruduced by Zukoski 
et al [3], for the test case described above. The experiments 
have been done for a three dimensional case, and the jet 
injection hole was circular. The comparison is shown in 
figure 3. This numerical solution has been calculated using 
limiter 1, and with 8=0.001. 

Upstream of the jet, the results produced by the code compare 
well with experiment. Downstream of the jet there is a large 
discrepancy between experimental and numerical data. This 
discrepancy is probably due to three dimensional effects 
which are coming into play around the jet. Some of the flow 
will be passing around the jet, reducing the mass flow 
through, and just downstream of it. Another possibility can be 
attributed to a turbulent region forming just downstream of the 
jet. At this stage of the work, the numerical code does not 
include a turbulence model and this part of the flow can not be 
accurately represented. However, as an initial foray into this 
problem and for comparing the effects of changing different 
parameters, the resolution of the results especially near and 
upstream of the jet is adequate. 

4.2   The Entropy Parameter 
In order to examine the effects of the entropy parameter, 8, as 
defined in equation (15), numerical solutions for the test case 
were found for seven different values of 8, varying from 0.001 
to 1. All of the cases, in which the entropy parameter was 
being studied, were calculated using Limiter 1. This limiter is 
the most robust one, and was least likely to fail when the more 
extreme values of the entropy parameter were being tested. 

The skin friction and pressure distributions across the flat 
plate, for different values of 8, are presented in figures 4 and 
5, respectively. These plots show the effect of 8 on the 
numerical solution. The pressure plots show that as the 
entropy parameter is increased the shock wave becomes less 
well defined. For the highest values of the entropy parameter 
the shock wave has smeared all the way to the jet injection 
point. Also by increasing the entropy parameter the low 
pressure region after the jet, denoting a recirculation region, 
becomes damped out and the pressure plateau related to the 
separation region upstream of the jet reduces considerably. 
The Skin friction distributions show the change in the point of 
boundary layer separation, xscp (i.e. where the skin friction 

Figure 3. Pressure distribution along the surface of 
the flat plate. 

Figure 4. A graph comparing the effects of 
different values of 8 on the skin friction distribution 

across the'flat plate. 
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Figure 5. A graph comparing the effects of 
different values of 8 on the pressure distribution 

along the flat plate. 

Velocity, U/U„ 

Figure 6. Velocity profiles in the boundary layer 
for different values of 8. 

profile first crosses zero) with 8. As the entropy parameter 
increases the xscp moves closer to xjct. It can be clearly seen 
from both of these plots that the choice of 8 must be 
considered carefully. 

In essence, changing the value of 8 alters the minimum 
amount of artificial viscosity that is added to the solution. 
This has the undesirable effect of altering the shape of the 
boundary layer. Boundary layer profiles plotted for locations, 
x/L=0.319 and x/L=0.879 are presented in figures 6 and 7. It 
can be seen from figure 6, in which the boundary layer has not 
yet separated, that as 8 is increased, in general, the boundary 
layer becomes thicker. The variation is complex, such that the 
boundary layer thickness reaches a peek, and then it begins to 
decrease slightly. This is caused by the addition of artificial 
dissipation to the real viscosity, introduced by the Navier- 
Stokes equations, in the boundary layer. Figure 7 shows 
velocity profiles near the wall, after the boundary layer has 
separated. The change in the boundary layer separation point 
has a great effect on these profiles. The recirculation region 
increases and the separated boundary moves further from the 
flat plate as 8 decreases, until 8 reaches a value of 0.01. 
Further lowering of 8 moves the separated boundary layer 
slightly closer to the flat plate. However, it can be seen that, 
when values of 8 below 0.01 are used, the boundary layer 

profiles seem to become less sensitive to changes in 8, and 
have converged. . 

An examination of the amount of artificial dissipation and real 
dissipation added to the solution near the flat plate is shown in 
figures (8a) to (8c). These figures represent dissipation 
profiles in the boundary layer. The values plotted are the 
artificial and real second-order terms for the x- and y- 

momentum parts of G (see equation 10), respectively artificial 
G2, real G2, artificial G3 and real G3. These terms have been 
used because high gradients of variables are expected normal 
to the wall direction. All of the graphs show the amount of 
artificial dissipation added to the scheme compared to the real 
dissipation. Not surprisingly, the addition of the artificial 
dissipation seems to cause a considerable change in the real 
dissipation profile which also must have an effect on the 
boundary layer thickness. Figures 8a-1 to c-1 are plots for the • 
unseparated boundary layer. They show that even for small 
values of 8, the amount of artificial dissipation added to the y- 
momentum equation is considerable compared to the real 
viscosity.     For  the   x-momentum  equation   the   artificial 

0.2 0.4 0.6 

Velocity, U/U„ 

Figure 7. Velocity profiles in the boundary layer 
for different values of 8. 

dissipation is comparatively small for low values of 8, but it 
increases to an overwhelming amount for 8=1.0. Figures 8a-2 
to c-2 show the dissipation profiles for a separated boundary 
layer. These plots show that even for very low values of the 
entropy parameter, the artificial viscosity is still high enough 
to be interfering with the solution. Artificial dissipation has 
been introduced by the scheme to sharpen the definition of the 
boundary layer as if it was a shock wave. Obviously this isn't 
necessary in the case of the boundary layer. However, the 
effect of increasing 8 seems to be an increase in the thickness 
of the separated boundary layer. 

Many of the methods used to limit the introduction of the 
artificial dissipation in the boundary layer would not work in 
the separated region. Caughey and Varma [6] provide two 
methods of limiting the artificial dissipation added by the 
scheme. The first method simply sets the artificial dissipation 
on surfaces to zero. The other method scales the dissipation 
using a function of the local Mach number. Neither of these 
methods are likely to have a great effect on limiting the 
artificial dissipation term, as the artificial dissipation being 
added in the separated region is neither near the flat plate, nor 
in a relatively low velocity region. Also, for most values of 
the entropy parameter, the artificial dissipation added at the 
wall is relatively close to zero. 

Figures 9a to c give a more qualitative view of the artificial 
and real dissipation being added near the wall.  Contour plots 
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Figure 8.   A comparison of dissipation profiles, for different values of 8 and different limiters, 
through an unseparated (a-1 to e-1) and separated (a-2 to e-2) boundary layer. 
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Figure 9. Contour plots of real dissipation (a-1 to e-1) and artificial dissipation (a-2 to e-2) for the flowfield in the vicinity of the flat plate 

using several different limiters and values of   8. 
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Figure 10. Contour plots of pressure across the whole flowfield(a-1 to e-1) and Mach number near the flat plate(a-2 to e-2) 

using several different limiters and values of   8. 
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Figure 11. Pressure distribution along the flat plate for 
five different limiters. 
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Figure 12. Skin friction plots for the flat plate, for each 
limiter. 

of G2-real and G2-artificial for three values of 8 have been 
included. These plots can not be directly compared with each 
other as the variation of the contour lines is different for each 
case. They show general trends only. Of particular interest is 
the small region just upstream of the jet where both the 
artificial and real dissipations are being added in comparable 
amounts. 

Figures 10a-1 to c-1 show pressure contours for the whole 
flowfield. These plots illustrate the effects of increasing 8 on 
the whole solution. The separated shock wave becomes less 
well defined until it is not even clear that there is a 
Shockwave, and the shock wave caused by the reattachment of 
the boundary layer, downstream of the jet, also becomes less 
easy to recognise. 

Figures 10a-2 to c-2 are contour plots of Mach number for the 
flow near the wall. These plots illustrate the Mach disk, the 
separation and reattachment of the boundary layer, and 
regions of recirculation. The plots also show the slight 
increase in boundary layer thickness with increasing 8. The 
small pocket of recirculation just downstream of the jet is 
reduced in size when large values of 5 are used. 

In conclusion, when 5 is increased to a value of 0.5 and 
beyond, the solution becomes highly inaccurate. However, for 
values of the entropy parameter equal to and below 0.01, the 
solution seems to be less sensitive to changes in 8. This 
profile represents the solution where very little artificial 
dissipation is being added to the boundary layer and it is also 
the solution closest to the experimental pressure data. 

Other methods of modelling the entropy parameter, see 
equation (15b), have been defined by Müller [10,11] and Lin 
[2]. Müller has used an entropic function of the local spectral 
radii to model the entropy parameter. A brief examination of 
this technique showed that for 8=0.005, and using limiter 1, 
the results produced were very similar to the results produced 
using the method described by equation (15b). It is possible 
that Müller's entropy function will be more effective when 
used with other limiters, and this will be investigated in later 
work. 

Lin [2] states that the viscous flow results using the scheme 
described in this investigation are unacceptable if a value of 
8=0.25 is used. This agrees with the results presented here. 
Lin suggests using a form of the entropy function which is 

similar to that shown in equation (15b). Lin also uses 
different values of the entropy parameter for the linear and 
non-linear waves. This means a much smaller value for the 
entropy parameter can be used for the linear waves and hence 
the boundary layer will be less affected by the artificial 
dissipation term. An investigation of how effective this 
concept is, is underway. The results presented by Lin are 
encouraging. 

4.3   Comparing Limiters 
The choice of flux limiter is an important factor in TVD 
schemes. Five different limiters have been investigated here. 
Limiter 1 is the well known minmod limiter. Limiter 2 is the 
limiter formulated by Van Leer and limiter 5 is known in the 
literature as the "Roe's Superbee" and is highly compressive. 

It was found that the numerical scheme failed when limiter 5 
was used if the entropy parameter was set below a value of 
0.05. Therefore in order that the limiters could be compared, 
the computed solution was found for each limiter with the 
entropy parameter set at a value of 0.05. In all likelihood this 
means that the best possible results for limiters 2, 3 and 4 have 
not been found. 

Figures 11 and 12 show pressure and skin friction 
distributions along the flat plate for each of the limiters. The 
pressure distributions show that the major effect of using 
different limiters is to change the point of boundary layer 
separation. The shock definition on the surface of the flat 
plate, denoted by the pressure gradient of the shock wave, is 
not greatly improved by using a more compressive limiter. 

From figures 11 and 12 it can be seen that limiters 2, 3 and 4 
produce similar results. Also, these results compare well with 
the results obtained using limiter 1 with values of 5 below 
0.01, as shown in figures 6 and 7, but generally it seems 
limiters 2, 3 and 4 are better than limiter 1. 

From figure 12, one can see that limiter 5, the "Superbee," 
does not seem to be well conditioned for this problem, and is 
probably unacceptable for use when solving any viscous flow 
problem. The corresponding skin friction distribution is 
considerably different from those obtained by the other 
limiters, both upstream and downstream of the jet. 

Figures 13 and 14 present velocity profiles for each of the 
limiters.  The plots given in figure 13 are for the unseparated 
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Figure 13. Velocity profiles in the unseparated 
boundary layer for different limiters. 
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Figure 14. Velocity profiles for the separated boundary 
layer for different limiters. 

boundary layer. As expected, the data suggests that limiters 
with a more compressive nature reduce the thickness of the 
boundary layer. In the case of the scheme using limiter 5, the 
boundary layer thickness has been significantly reduced. 
Again, limiters 2, 3 and 4 produce similar profiles. Limiter 1 
produces a slightly thicker boundary layer than the others. 

The results in figure 14 are velocity profiles for the boundary 
layer after it has separated. Limiter 2, 3 and 4 produce similar 
profiles, however there is now a more significant degree of 
difference in the results being obtained. The variation in 
boundary layer thickness for different limiters, is reversed 
compared to the unseparated case. The more compressive 
limiters produce a thicker boundary layer. Primarily this is 
caused by the change in xscp for the different limiters. These 
results are similar to those obtained for low values of the 
entropy parameter using limiter 1, as shown in figure 7. 

Dissipation profiles for limiters 1, 3 and 5 shown in figures 
8b, d and e respectively, indicate that for the unseparated 
boundary layer the artificial dissipation introduced into the y- 
momentum equation is high for limiter 3, but low for the other 
two limiters. Limiter 5 introduces artificial dissipation of the 
opposite sign to the real dissipation, in the x-momentum 
equation. This result explains the decrease in the boundary 
layer thickness when using limiter 5. Also the amount of real 
dissipation being added when limiter 5 is being used is 
slightly higher than for the other limiters. 

The dissipation profiles for the separated boundary layer show 
a marked difference between each of the limiters used. The 
amount of real dissipation being added when limiter 5 is being 
used is much smaller than that added when the other limiters 
are used. The artificial dissipation being added to the x- 
momentum also seems to be reduced, although there is a 
region at the edge of the boundary layer where large amounts 
of dissipation of the opposite sign is being added. Each of the 
other limiters also add this opposing dissipation but not in 
such a comparably vast quantity. However the other limiters 
add more dissipation in other regions of the boundary layer, 
e.g. near the wall. Also in contrast to limiters land 3, the 
artificial dissipation added to the y-momentum equation by 
limiter 5 is of the opposite sign to the real dissipation being 
added. These graphs go some way towards explaining why 
the results from limiter 5 are so different to the results 
obtained from the'other limiters. 

The contour plots of dissipation for limiter 1, 3 and 5 are 
shown on figures 9b, d and e.  Two main conclusions can be 

drawn from these graphs. Firstly, on the real dissipation plots, 
the concentration of the contours uptstream of the jet are far 
higher than for the other limiters, and there is a small region of 
concentrated contours downstream of the jet for limiters 1 and 
3 which is not as prominent for limiter 5. Secondly, the 
artificial dissipation added by limiter 5 is quite different in 
pattern to the dissipaton added by the other limiters. 

The pressure contours shown in figure 10, show how the more 
compressive limiters produce better defined shocks waves and 
expansion fans. The movement of the separation shock wave 
further upstream of the jet, for limiter 5, is also clearly 
illustrated here. The Mach number contours show the change 
in the thickness of the boundary layer for different limiters. 
The plot for limiter 5, most clearly illustrates the reattachment 
of the boundary layer. The recirculation region downstream 
of the jet is much bigger for limiter 5, than for the other two 
limiters present. 

The results presented here show that limiter 5 is not a good 
choice of limiter for a viscous flow problem, because of its 
highly compressive nature. Limiter 1 produces acceptable 
results if the value of the entropy parameter is limited to 0.01 
for this test case. Limiters 2, 3 and 4, the mid-range limiters 
including the Van Leer limiter, produce similar results and are 
probably best suited for this problem. 

4.4   Effects of Grid Size 
In order to check the dependence of the solution on the 
available number of grid points, the numerical code was run 
on three different grids with different point concentrations. 
The grid sizes used for this study were, 50x50, 100x100 and 
200x200. These calculations were all done using Limiter 3 
and the entropy parameter, 8=0.05. 

A comparison of the pressure distribution along the flat plate 
for each grid is shown in figure 15. The plots show a severe 
degradation of results between the different meshes used. The 
most coarse grid does not define the shock wave well, and the 
pressure valley and plateau upstream of the jet do not reach 
the values produced by the other two grids. The main 
differences between the 200x200 and the 100x100 grid are the 
improved shock definition at the wall, and a slight increase in 
the pressure plateau for the higher grid concentration. 

The skin friction distribution comparison given on figure 16, 
show a marked difference in profile for each grid type. The 
skin friction given by the 200x200 grid is far higher than the 
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Figure 15 A graph showing the effects of grid size on 
the pressure distribution along a flat plate. 
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Figure 16 A graph showing the skin friction profile 
along the flat plate for different grids. 
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Figure 17. Velocity profiles for an unseparated 
boundary layer for different grids. 
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Figure 18. Velocity profiles for a separated boundary 
layer for different grids. 

other grids, and the recirculation region just downstream of 
the jet is much better defined when more points are used. The 
differences can be attributed to the fact that, for a higher point 
concentration the boundary layer is better defined. The 
location at which the boundary layer separates does not vary 
greatly over a change in grid point concentration. 

Boundary layer velocity profiles are provided on figures 17 
and 18 for each of the grids. The unseparated boundary layer 
profiles, presented in figure 17, show the simple improvement 
in boundary layer definition as more points are put near the 
wall. Table 1 gives the number of points in the boundary 
layer for each case. The grid used earlier in the report does 
not provide an accurately defined boundary layer, but it was of 
acceptable quality for the comparative study being performed. 

Figure 18 shows velocity profiles in the separated region for 
each of the grids. In the recirculation region near the wall, the 
100x100 and 200x200 grids produce similar results. The 
50x50 grid produces a solution with a larger amount of 
recirculation than the other two grids. 

Both sets of velocity profiles show that the grid concentration 
has a large effect on the calculation of the boundary layer, and 
hence the rest of the solution. 

Figures 19 and 20 show the artificial dissipation terms added 
to the x-momentum equation profiled through the unseparated 
and separated boundary layer, respectively. For the 
unseparated boundary layer, the 100x100 and 200x200 grid 
produce a similar profile, and near the wall the amount of 
artificial dissipation being added for each of these cases is 
quite close. The real differences in the profiles occur towards 
the edge of the boundary layer. The amount of dissipation 
provided by the scheme using the 50x50 grid is sometimes 
twice as much as that introduced when the other grids are 
being used. 

In the case of the separated boundary layer, the 50x50 grid 
seems to add less artificial dissipation than the other two grids. 
Although it is not clear from figure 20, the dissipation being 
added by the 100x100 and 200x200 grid is almost identical in 

GRID SIZE Points in the 
boundary layer 

50X50 23 

100X100 32 

200X200 43 

Table 1. Grid points in the boundary layer. 
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Figure 19 Dissipation profiles through an unseparated 
boundary layer for different grids. 
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Figure 20 Dissipation profiles through a separated 
boundary layer for different grids. 

the recirculation region. It is only when the edge of the 
separated boundary layer is reached that large differences 
become apparent. In the region of the separated boundary 
layer, the 100x100 grid seems to add far more dissipation in 
this region than the other two grids. It can be clearly seen that 
in this region the grid is becoming more coarse, and numerical 
truncation errors are becoming dominant. 

It is clear from this brief study, that grid point density has a 
great effect on the viscous regions of the solution, and the 
amount of artificial dissipation being added by the numerical 
scheme should not be analysed in isolation. 

5. CONCLUSIONS 
The numerical scheme described in this study has been used to 
model a transverse jet interacting with a supersonic flow. This 
test case differs from others that have been used to study 
artificial dissipation, as the problem includes a separated 
boundary layer, and reverse flow regions. 

This scheme can be used to produce adequate viscous 
supersonic flows. It has been shown here, that the choice of 
limiter and value for the entropy parameter is of great 
importance for producing good results. For the transverse jet 
test case, limiters 2, 3 and 4 produces good results, and limiter 
4 is probably best suited. Although the examination of the 
entropy parameter was not done for each limiter separately, 
when limiter 1 was used, it was found that the best results 
were produced when the entropy parameter was no greater 
than 0.01. It is reasonable to assume that this range of values 
will produce acceptable results with the other limiters. 
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1 SUMMARY 

In this contribution, we present a multi-dimensional 
upwind scheme. In contrast to the Flux-Vector or the 
Flux-Difference-Splitting method, where an upwind 
operator is used before the residual is calculated, this 
scheme uses an operator on the discrete flux 
integration or flux balance and assigns then filtered 
parts of the residuals to the vertices of a cell. 
The so called Flux-Filter operator, will be derived in a 
consequent manner on an one-dimensional basis with 
the purpose to allow a stable updating. The scheme is 
linearity preserving and should therefore lead to an 
improved accuracy. 
The Flux-Filter scheme has been successfully 
implemented on the Euler and Thin Layer Navier 
Stokes equations, for structured and unstructured 
grids. The unstructured grids are made of triangular 
and quadrilateral cells. 

List of Symbols 
A flux jacobian matrix 
DWD(4) artificial viscosity vector 
E energy 
F inviscid flux 
I identity matrix 
P pressure source vector 
R(P) flux residual with p order of integration 
S surface 
U conservative vector 
X eigenvector matrix 
a,b convection velocity 

P pressure 

q preferential factor 
t time 
u velocity 

<i scalar value on point ij at time level n 

9 flux-filter matrix 
O volume 
a coefficient 

8 kronecker delta 
X eigenvalue 

®x>®y CFL number in x und y direction 

a root of scheme 
CO root of spacial discretization 

2 INTRODUCTION 

Upwind Methods have become very popular over the 
last decade and can be categorized into two major 
methods, the Flux-Vector-Splitting and the Flux- 
Difference-Splitting method. 
The schemes of Steger&Warming [1] and Van Leer 
[2] are representative for the Flux-Vector-Splitting 
schemes. Here, the fluxes are splitted into two parts, a 
positive and negative part. The positive, respectively 
negative, fluxes have purely positive, respectively 
negative, eigenvalues and can therefore be 
differenciated with backward, respectively forward 
upwinding. 
The Flux-Difference-Splitting methods or Riemann 
solvers are another group of schemes. Here the 
conservative variables are taken to be piecewise 
constant between the cell faces. At the faces there is a 
fluid state on the left side and a different fluid state at 
the right side, which results in an interaction. This 
interaction, seen in one dimension, has a mathematical 
and physical exact solution. It is equivalent to the 
shock tube problem also known as the Riemann 
problem. The most popular approximated Riemann 
solvers are from Roe [3] and from Osher [4]. 
Those schemes solve the upwinding by treating each 
space dimension seperately along the gridlines or 
along the normals of the cell faces. This has a 
disadvantage that contact discontinuities which are not 
aligned with the grid are not properly solved. To 
overcome this problem, a new group of methods has 
emerged since the early 1990's, the so-called multi- 
dimensional upwinding scheme. Two distinct methods 
have been developed up to now; the Flux-Function 
methods [5] and the Flux-Fluctuation methods. The 
Flux-Function scheme will calculate the flux through a 
face in a Riemann manner but independently from the 
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grid. The variation in Flux-Function methods lays in 
the 'Riemann' directions chosen which mainly consist 
of the convection and pressure wave directions in 
contrast to the main grid directions. The Flux- 
Fluctuation methods are based on the flux integration 
upon a upwinding method distributes the residuals 
values to the cell's vertices. 
The Flux-Filter scheme is a variant of the Flux- 
Fluctuation methods. Similar approaches are 
developed by Rossow [6], Giles [7] etc., but this 
scheme differs in the way how the flux residual is 
calculated and distributed to the vertices. The 
distribution is based on the characteristical 
propagation directions along the grid lines. The Flux- 
Filter is an operator which selects those quantities of a 
flux residual that propagate towards the cell vertex of 
interest. This scheme can be applied to structured and 
unstructered grids and can solve the Euler and Navier 
Stokes equations. Stability analysis has shown that 
preferential direction flux integration and artificial 
viscosity is required. In case of the structured grids a 
combined second and fourth order viscosity is 
implemented, for the unstructured grid method only a 
second order artificial viscosity have been introduced. 
In the following section the basic idea of the Flux- 
Filter scheme is explained for the quasi one- 
dimensional Euler equations, followed by the 
extension to two dimensions. An analysis of the scalar 
model equations will highlight some problems 
associated with the trapezoidal flux integration. In the 
last section a number of results will be presented. 

3 ONE DIMENSIONAL FLUX 
FILTER SCHEME 

The discrete quasi 1-D Euler equations for a cell 
which is located between the grid points / and / -1 is 
given by 

ASU 

At 

Fi-F,_, 

Ax 
-P. 

1-1/2 

(1) 

where U is the conservative solution vector, F the flux 
vectors and S the cross sectional area. 

U = 
"p 
pW F = 

p« 
pu2+p p=dS_ "0~ 

P 
E (E + p)u dx 0 

(2) 

ASU, 

At 
■ + ?' 

F,-R. 
-Pi 1-1/2 

^1-^,      p ri+\l2 
. xi+l _ xi 

(3) 

= 0 

3.1 The Flux-Filter Operator 
The primary purpose of the Flux-Filter operator is to 
extract those elements of the residual which allow a 
stable updating [8]. The solution of a numerical flow 
problem is reached when the numerical process has 
converged, which can be seen as a numerical 
equilibrium state. On a local scale in CFD the changes 
imposed by the flux balance or residual must result in 
the reduction of the discrepancy in the flux balance. 
The flux balance for a cell i-l/2 (between grid 
points i -1 and / ) is given by 

At_ 

Ax 
{F,-F,_]) = -AU (4) 

and suppose the flux balance for cell   i + l/2   is 
satisfied, hence 

At_ 

Ax 
(^•+i-^) = o. (5) 

The equation which imposes the condition that the 
summing up of a filtered portion of the residual on 
grid point / reduces the discrepancy in flux balance is 

jL(F(U,+?(AU))-F(UI_])) = 

-(AC/ - aAU) 

The influence of ?{AU) on equation (5)is 

At 

(6) 

Ax 
(F(UM) - F(Ut + ?{AU))) = -aAU (7) 

The stability demands that for all grid points the 
discrepancies disappear, or at least remain bounded by 
AU . Hence the stability conditions are 

0<cx<2 

for equation (6) and 

-l<a<l 

(8) 

(9) 

The residual 
ASU 

needs to be distributed over the 
At 

grid points ;' and / -1. The question is what part of 
the residual must be imposed on the left and on the 
right grid-points. The distribution is obtained through 
an operator ? which must be linear preserving. 

Hence, the equation for a grid point i is given by 

for   equation   (7).   Both   conditions   lead   to   the 
requirement 

0<cc<l (10) 

The Euler equations have the property that 
F(U) = A(U)U where A = dF IdU. Rewriting 
equation (6) and assuming AU to be small leads to 
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j^{AU, )(Ui + ?(AU)) - F(UM)) (11} 

= -AU + aAU 

Subtracting equation (11) with equation (4) gives 

At 

Ax 
■A{ ?(AU)-aAU =0 (12) 

The Jacobian matrix A possesses a complete set of 
real eigenvectors, hence 

A = XAX' (13) 

where  X  is the eigenvector matrix and  Ais the 
eigenvalue matrix. The operator ? is now defined as 

? = xrx~ (14) 

where /   is a diagonal matrix with 0 or 1. Hence 

The introduction of the  P -vector should require a 
reformulation of the filter based upon the eigenvalues 

F 
and eigenvectors of — + P. The determination of 

Ax 
those eigenvalues and eigenvectors will lead to a 
severe   increase   in   the   numerical workload   and 
therefore the Flux-Filter will be based on the 
eigensystem of the flux. 

In order to assure the conservation of the scheme, the 
introduction of the filter operators may not lead to 
additional sources, hence 

r{ua) Fi-Ft-i 
AX,_y 

■Pi-H 

+?~(ub) 
Ft-F» 
Ax, 

M/2 

3-3-1 
Ax, 

1—1/2 

'3-1/2 

(19) 

—XAX'1 XIs X~l -al\AU = 0 
Ax ) 

The solution of this eigenvalue problem is 

<x,.=—A.,.5, 
Ax 

(15) 

(16) 

Imposing condition (10) on all eigenvalues gives 

(17) 0<— X,d,<l 
Ax 

Therefore, to obtain a stable scheme the 8, must be 

zero when X, is negative and —(A,8,)max -1- The 
Ax 

first condition defines the Flux Filter Operator: 

?±=XI±X~] (18) 

where I+ is a diagonal matrix where the elements are 
1 where the corresponding eigenvalue A,,- are positive, 

analogue for /" . The second constraint imposes the 
well-known CFL condition for an explicit scheme. 

3.2 Implementation of the Flux-Filter 
operator 
The previous section has defined an operator which 
will theoretical allow a stable iterations process. For its 
implementation three facts must be taken into account: 

1. The additional term P. 
2. The distribution of the residual may not 

lead to any sources or sinks. 
3. The filters may not block numerically the 

propagation of information. 

where the positive, respectively negative, Flux-Filter is 
set by a still undefined Ua, respectively Ub. This 

implies that 

?+(ua)+?-(ub)=i (20) 

which is always true when Ua is identical to Ub . The 

obvious choices are 

ua = ub = 
2 

(21) 

This leads to the Flux-Filter scheme for the quasi one 
dimesional Flux-Filter scheme: 

+5£i, 
Fi~Fi-\    p 

ri-V2 

3+1     Pj     p 
1+1/2 =0 

At 

+%r\l2 

where 

3-1/2 =*(tf ,-1/2 M^F^i-ltt )~ 

(22) 

with U. 1-1/2 

The trivial solution for steady state solution is 

F,-K. 

AX: 
— P 1-1/2 

■1/2 

(21) 

for all cells of the computational domain. Unlike the 
traditional methods, the Flux-Filter formulation leads 
to the solution of the original discrete quasi one 
dimensional Euler equations (Fig. 1). 
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4 TWO DIMENSIONAL FLUX- 
FILTER SCHEME 

In this section, the construction of the two- 
dimensional Flux-Filter [9] scheme will be outlined. 
The numerical equation for point ij of structured grid 
becomes: 

At 
T++ 

+ ?     Ri+V2,j+V2 + ?     ^i ■i—1/2,7+1/2 (22) 

+S7     Ri-\I2J-\I2 + ?     Ri+\l2,j-\ll - ® 

Where ?" is the two-dimensional Flux-Filter, which 
models the upwinding. The residual RM/2j+\n 's tne 

surface flux integration of the computational cell 
defined by the points 
(i,j),(i + lj),(i + lj + l),(i,j + l). Each cell, which 

belongs to point ij, contributes a filtered portion of its 
residual to the temporal change of point ij. The 
purpose of the Flux-Filter is to extract this portion of 
the residuals which allows a stable updating. 

4.1 Two-Dimensional Flux-Filter 
Operator 
The two-dimensional Flux Filter is based on the one 
dimensional operators defined in the last section. The 
following constructions have been tested: 

Analysis has lead to the following requirements for the 
two-dimensional Flux-Filter: 

• for conservation, the sum of all Flux-Filters for one 

cell must add up to the identity matrix: Y? = 7. 

Although that for a steady state solution all 
residuals should disappear, this seems to be an 
unnecessary requirement. However, at a shock the 
temporal change becomes zero with residuals 
which are non-zero. If this constraint is not applied 
the shock position and strength are incorrect. 

• if the cell has a supersonic velocity component 
pointing away from a grid point then the 
corresponding Flux-Filter must be the null-matrix. 
This reflects the perception that in the above case 
no information can propagate towards this point. 

This lead to the following scheme for quadrilateral 
cells (Fig 6.3): 

if <p- ± [0] and ^  *[0] then 

else 

(23) 

?-=[»] (24) 

where U is the averaged flow vector for the cell. This 
formulation reflects the region of dependency. Similar 

for ?"+,?++, and?+" 
The conservation requirement is imposed with 

Q = I-(?-+?~++?+++?+~) 

if ?"*[0] then 

(25) 

(26) 

where n is the number of non-null matrices. 

The formulation for a triangular cell is 

if y.~ *[o]and?ik~ *[O] then 

^=|(^-(c/,/fff) + ?-(C/,ntt)) (27) 

else 

?,=[0\ (28) 

where U is the averaged flow vector for the cell. 
Similar for ?y- and "?k . 

The conservation requirement is imposed with 

Q = I-(?, +?j+?k) (29) 

if ?. * [o] then 

9i==pi+Qln (30) 

where n is the number of non-null matrices. 

4.2 The Flux Residual 
The flux residual or flux balance is the flux integral 
over the cell's circumference. 

dt     Q- 
(31) 

where D. is the cell's surface. The first order discrete 
flux integration based on point /', j for a quadrilateral 
cell is 

•a!'+l/2,;+l/2 ' 

i r^/ 
0[%;)-("5U;+^^u)-K+lj,1/2 P2) 

AU^Sl+V2^+%M"Sl JJ+l/2 

The second order flux integration    or trapezoidal 
integration is given by 
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?(2) 
\>l/2,;+l/2 

F(f/,+1,;+1)(^),+1;+1+%;+1)(^);;+1] 

model equation. The model equation for the multi- 
dimensional scheme will be the two dimensional 
convection equation: 

du du , du „ 
— + a— + b—- = 0 
dt       dx      dy 

(39) 

Note the inclusion of the information attached to the 
vertex / +1, j +1. The first order integration violates 

the criteria which requires that the flux calculation of 
a cell's face is independent of the cell in consideration. 
The first order integration has the advantage that the 
resulting scheme is stable. The second order 
integration fulfills the latter criteria but it has a 
stability problem, which will be analyzed and clarified 
in detail. For those reasons, a blended first and second 
order integration will be used, and is called the 
preferential direction integration Given by 

R (?) 
i+l/2,/+l/2 pR i+l/2,;+l/2 

2) 
+ (l-Ä//2,;+, (34) 

where the calculations have shown that for accuracy 
and stability the optimum value of q is 0.25. 

For reason of stability, artificial viscosity must be 
introduced, which is of course an unwelcomed feature. 
The artificial viscosity is a second and fourth order 
damping given by 

D (2)_ d2(Ul-x,] ■2U
U

+U
MJ 

+UhH-2U,J+UiJ+]) 

and 

4? = *> 
(-[/,_2]J+4[/,_u-6[/,;.+4C/,+lj ■U, 

-UUj-2+AUUH 

i+2J 

■6Uu+AUiJ+t-UiJ+2] 

(36) 

(37) 

4.3 Thin Layer Navier Stokes 
The terms for the viscous fluxes are introduced on the 
right hand side of equation (22). Hence 

■ + ?-R, i+l/2,y+l/2 + ? + -R; 
AC/,,. 

At 
+7      -<Vi/2J-l/2 ^y      Ixi+]/2,j-\/2 

= _^L + Ö(2.)+£,W 

■i-l/2,;+l/2 

(38) 

In this equation a quantity u is convected with a 
velocity a in the x-direction and a velocity b in the y- 
direction. The theoretical solution preserves the initial 
function along the convection direction. The accuracy 
by which a numerical solution approaches this 
theoretical solution is fully dependent on the 
numerical scheme. 

Equation (39) represents the numerical model 
equation for a one-by-one dimensional first order 
upwind scheme and for the Flux-Filter scheme with 
the first order flux integration 

AxAy 

At 
(u^-u^)=-{aAy + bAx)uu 

+(aAy)ui_]J + (bAx)uiH 

(40) 

for positive values of a and b. The multi-dimensional 
upwinding scheme makes use of the trapezoidal 
integration of fluxes. Hence, the numerical model 
equation is given by 

«-<;) = 
AxAy 

At 
Ay    , Ax 

-I a— + b— 
2 2 

Av    , Ax 
-I a—-b— \u, 

\u,,.-i -a~Y+l Ax 
'i-U (41) 

'.;-i 

Ay       Ax 
-a-^-b— \u >-!,/-! 

The numerical behaviour of both methods are analyzed 
for convection directions of 0, 22.5 and 45 degrees for 
a delta function on the y-axis. Figure 2 presents the 
result of a 22.5 degree convection using the first-order 
integration and using the trapezoidal integration 
method. The diffusion is dominant for the convection 
direction of 45 degrees, while for a convection 
direction aligned with the x-axis the scheme produces 
the theoretical result. For the reason that the numerical 
scheme will produce considerable cross-diffusion when 
the convection direction is not aligned with the grid 
the first order integration scheme is highly grid 
dependent. 

To obtain a meaningfull viscous solution, the influence 
of the viscous term must exceed the influence of the 
artificial viscosity in the viscous dominant flow 
regions. 

5 SCALAR MODEL EQUATION 

In this section, we will analyze the accuracy and 
stability aspects of the Flux-Filter scheme based on the 

The second order approach leads to the solutions 
which matches the theoretical solution for convection 
directions of 0 and 45 degrees. The solution for the 
22.5 degree convection is dispersive. The accuracy 
levels of both methods are given in the next table 
where the error is the mean square deviation from the 
theoretical solution: 

Err0r=}-Y;(U'.J -"theory)2 (42) 
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Error first order second 
0 0.00 0.00 
22.5 0.16 0.12 
45 0.23 0.00 

Although the second order flux integration produces 
better results and is therefore less grid dependent, the 
transient phase can be extremely chaotic. The 
following case will clarify a peculiar problem. Setting 

«1,0 = 1 (43) 

with Qx = a At I Ax and Qy = bAt I Ay 

the values for all uhj can be determinated in function 

of a with a the second order integration scheme 

hence 

\J 

1-q 

1 + oc \j-\ 

1-aY 
1 + aJ 

(44) 

(45) 

For the case that a appraoches zero the scheme will 
produce an undamped oscillatory profile in the 
complete domain. This reduces the robustness of the 
Flux-Filter scheme where even a slight disturbance is 
immediately transmitted, in an unfavorable manner, 
throughout the numerical domain. In contrast, the 
profile for the first order integration scheme is 

(46) 
1 + cc 1 + a 

which does not have a oscillatory behaviour. The 
problem can be remedied with the addition of artificial 
viscosity and/or the use of a preferential integration 
direction. The preferential integration is a blended 
form between the trapezoidal integration and the first 
order integration (Eq.34). Hence the preferential 
integration is a first order integration: 

«#-«;:,=-(.5+?Xe*+e>hy 
-(-(.5+?)exH5-<7)ey)«,-,,, 
4(5-<?)e,-(.5+<?)ey)«,,,_, 

-(•5-<7)K-0^H-u-i 

(47) 

For the critical case that 0V = 0 the profile becomes 

•5-g 
5 + q 

(48) 

which means that for a positive value of q, Uj reduces 

exponentially. With this scheme the oscillatory 
behaviour is contained. The errors from the theoretical 
solution are given in the next table for the method 
with artificial viscosity and for the method with the 
preferential integration. 

Error artificial 
viscosity 

preferential 
integr. <7=0.25 

preferential 
+ a.v. 

0 0.069 0.000 0.038 

22.5 0.097 0.093 0.073 

45 0.081 0.115 0.095 

Hence, modifications, such as artificial viscosity and 
preferential flux integration, must be included to 
stabilize the scheme. The pure second order flux 
integration scheme will not work. 

5.1 Von Neumann Stability Analysis 

The results of a Von Neumann stability analysis [10] 
is presented in figure 5 where the maximum 
amplification factor is plotted in function of Qx,6y for 

q = 25 and a small amount of artificial viscosity. 

Stability is obtained when Qx,Qy <0.3 which is the 

upper limit for the CFL number. 

Each time discretization method has its own stability 
contour wherein the roots of the space discretization 
must lay. Figures 4 presents the spacial-roots for the 
Flux-Filter scheme for CFL numbers of 0.3, 0.5, 2.0, 
10.0. The conclusion is that the gain for using Runge 
Kutta is minor and that in theory large CFL numbers 
can be used with an implicit scheme. However, in 
practise, the implicit scheme worked for a maximum 
CFL number of 1.0. The gain of factor 3 is not 
sufficient to justify the use of an implicit scheme, due 
to the significant increase in workload. 

6 RESULTS 

The supersonic wedge 
The geometry is a two dimensional channel with a 15° 
wedge and followed by a 15° expansion corner (Fig 6). 
The inflow Mach number is set to 2. This 
configuration induces interactions between shock and 
expansion waves [11]. A shock wave is produced at 
the wedge and reflected at the upper boundary. The 
reflected shock wave is weakened by the expansion 
fan. The expansion fan is also reflected by the upper 
boundary. Dependent upon the length of the channel, 
the shock wave and expansion fan are reflected 
manifold. Analytical results predict a Mach number of 
1.454 behind the first shock wave. The maximum 
deflection for this Mach number is 10.5°, which 
implies that the first reflection will induce a subsonic 
flow with an entropy layer (or slip stream).  This 
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problem is a widely used standard test case [11]. The 
grids are a structured 180 by 60 grid, a unstructured 
grid with 1664 quadrilateral elements and an 
unstructured grid with 3633 triagular elements. Figure 
6 presents the mach number distribution for the 3 
grids. 

NACA0012 Transonic 
This standard AGARD test case [12] consists of a 
NACA0012 profile in a transonic flow. The angle of 
attack is 1.25° and the free stream Mach number is 
0.8. The main features are a strong shock located at 
x = 0.62 on the upper surface and a weak shock at 
x = 0.37 on the lower side. The Mach number 
distributions is given in figures 7. 
This problem is solved with a Runge-Kutta scheme on 
a 160 by 50 structured grid. The maximum CFL 
number was 0.4. After 3000 iteration steps, a pseudo 
convergence was obtained, where the upper shock 
position continued to move back and forward around 
one grid cell. 
The predicted Cl (0.3708) and Cd (0.0213) coefficients 
correspond well to those given by the AGARD 
test. [12] 

NACA0012 Mach 0.5 Reynolds 5000 
This test case [13] demonstrates the use of the Flux- 
Filter scheme on the Navier Stokes equation. The test 
case consists of a subcritical flow (Ma=0.5) over a 
NACA-0012 with a Reynolds number of 5000. The 
angle of attack is 0 degrees. The flow has a 
recirculation at the trailing edge. The predicted 
location of separation from references is at x=0.82 
This scheme predicts the flow separation to at x=0.92 
(Fig. 8), which indicates that the Flux-Filter scheme 
has an incorrect degree of dissipation. 

7 CONCLUSIONS 
The Flux Filter scheme has been applied to the Euler 
and Navier Stokes equations, on structured and 
unstructured grids, and with Euler stepping, Runge- 
Kutta and with an implicit time integration scheme. 
The results from the computations have demonstrated 
several features. First, it has been shown that the Flux- 
Filter method is capable of obtaining highly accurate 
solution on the basis of a truly multi-dimensional 
approach. Second, the stability analysis has shown that 
the scheme does not allow too large time steps. 

The integration, spatial and temporal, could be 
improved to allow much larger time step and 
convergence rates. This would be advantageous for the 
3-dimensional version. One way is the use of higher 
order flux integration or the use of flux limiters. The 
temporal integration can be improved by solving the 
implicit method more accurately or by implementing a 
multigrid scheme. The improve-ments should also be 
aimed at reducing the level of artificial viscosity or to 
eleminate its use. 

Extension to a 3-dimensional Flux-Filter scheme is in 
progress 
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Figure 1 Solution of a supersonic-subsonic flow in a diverging nozzle. 

Figure 2 Solution of the scalar model equation with first order, respectively second order flux integration. 
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Figure 3 Solution of the scalar model equation with preferential 
flux integration and artificial viscosity. 

RK Modified 

CFL = 0.3 

Euler Implicit 

RK 4 Order 

CFL =10.0 

Figure 4 Spacial roots of flux filter scheme vs stability contours of different time integration methods 
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Amplification Factor 
lm(o) 

Figure 5 Amplification factor and roots (CFL = 0.3) for the flux filter scheme. 

Structured Grid   180x60 
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Unstructured Grid 3633 Tri-Elements  1911 Nodes (Advancing Front Technique) 

Figure 6 Supersonic flow over a 15 degree wedge solved on different grid types. 
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NACA0012 Mach=0.8 a=1.25 

Cp : Isolines Entropy : Color 

Figure 7 Transonic flow over a NACA0012 profile 
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Figure 8 Navier Stokes solution around NACA0012 with a Reynolds number of 5000. 
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Implicit Multidimensional Upwind Residual Distribution 
Schemes on Adaptive Meshes 

H. Paillere, J.-C. Carette, E. Issman, E. van der Weide, H. Deconinck and G. Degrez 
von Karman Institute for Fluid Dynamics 

Chaussee de Waterloo 72, B-1640 Rhode-St-Genese, Belgium 

Abstract 

The paper reviews recent developments in multidimen- 
sional upwind schemes based on the residual decomposi- 
tion or fluctuation splitting approach. Unlike the stan- 
dard finite volume approach, the upwinding is based 
on multidimensional physics, e.g. convection of entropy 
and total enthalpy along the streamline and convection 
of acoustic Riemann invariants along the Mach lines in 
steady supersonic flow. The resulting schemes on trian- 
gles and quadrilaterals are very compact, with stencils 
consisting of nearest neighbours only and can be made 
monotonic and second order, like the TVD schemes in 
finite volumes. Numerical examples show the improved 
performances compared to state-of-the-art methods. The 
paper further describes the introduction of convergence 
acceleration techniques which exploit the compactness of 
the stencils and the implementation of solution adaptive 
error control. The latter is based on scalar finite element 
a posteriori error estimates which are applied to the Euler 
system in decoupled form thanks to the multidimensional 
residual decompositions. 

1     THE    CASE    FOR   MULTIDIMEN- 
SIONAL UPWINDING 

At the heart of present day upwind schemes for com- 
puting compressible flows is the solution of the one- 
dimensional Riemann problem : it describes the evolu- 
tion of the flow which results from bringing into contact 
two fluids at constant but different states. 
Conservative Finite Volume Methods use this building 
block as follows : writing the conservation law for a given 
cell, the cell-face fluxes in the spatial operator are evalu- 
ated by solving for each face in turn, the one-dimensional 
Riemann problem defined by the cell averages (or a recon- 
struction at the cell face) on either side, thereby assuming 
a series of one-dimensional problems in the direction of 
the cell-face normals. 
Although extremely successful, the question rises how 
truly multidimensional physics could be brought into this 
picture, and what benefits could be expected from doing 
so. 
Consider therefore the case of the steady Euler equations. 
Choosing entropy, total enthalpy and the components of 
velocity as the independent variables, the equations take 
the following familiar quasilinear form 

u ■ VS = 0 

"•^2 = ° 2 (1) 
(1 - fr)"* -ß?(uy + vx) + (1 - ±r)vy - 0 
<\i - «</ + aidnS + a2dnH — 0. 

The first two equations express that entropy 5 and to- 
tal enthalpy H are Riemann invariants along the stream- 
lines, which are the fieldlines of the velocity vector u with 

Cartesian components u and v. The third equation is the 
familiar compressible potential equation written in primi- 
tive variables u and v, with c the soundspeed. The fourth 
equation is the vorticity equation (Crocco's equation), 
which is coupled to entropy and total enthalpy through 
derivatives in the direction n normal to the streamline, 
dn = —~dx + -dy, where q = \/u2 + v2 is the norm of 
the velocity vector. The coefficients ot\ and a2 are given 
by 

ai = —, -T—, o2 =-, 2) 
(7 - i)pq i 

corresponding to the definition dS = dp — c2dp. For 
shock free flow with uniform homentropic and homen- 
thalpic inlet conditions, the first two equations have the 
trivial solution S(x,y) = C', H(x,y) = C', leading to 
the potential formulation for steady irrotational flow. 
At this stage of the analysis, it is instructive to recall that 
the first two equations are ordinary differential equations, 
which can be integrated by marching along the stream- 
line starting at the inlet boundary, commonly known as 
the method of characteristics. It is in fact remarkable 
that this idea of upwinding entropy and total enthalpy 
along the streamline is totally absent in the state-of-the- 
art conservative methods for solving the steady Euler 
equations. One of the key aims in multidimensional up- 
winding methods is precisely to re-introduce this idea in 
a conservative formulation. Note further that these two 
equations are equally valid in 3D. 
Turning our attention back to the two remaining equa- 
tions, the analysis simplifies by considering a streamline- 
aligned coordinate system with coordinates X in the 
streamline and Y in the normal direction. In the new 
axes, the velocities are denoted by U = q, V = 0, giving 
for the Euler equations (1): 

9x5 = 0 
dxH = 0 
dxU - —L 7dyV = 0 Af2-lv 

dxV - dYU + aidyS + a2dYH = 0. 

(3) 

For supersonic flow, the latter two equations can be ex- 
pressed as ordinary differential equations along the Mach 
lines r+ and T~, (see Figure 1), by introducing the acous- 
tic characteristic variables 

dC+ =aidS + a2dH - dU +    . '      dV 
,/M

2
-I 

aidS + a->dH - dU -    . l      dV dC (4) 

In these variables the Euler system for steady supersonic 
flow can be written as 

9x5 = 0 
dxH = 0 
9xC+ + 

dxC -  1_ 

dYC+ = 0 

,dyC~ = 0, 

(5) 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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' + 

Fig. 1 : Mach angles ±/J and streamline coordinate sys- 
tem (A', V) 

it is given by 

aw 
at 

+ 

or in Cartesian coordinates 

x»+ 
\v ~ 0 0 

\v X" + 0 0 ew 
0 0 1 0 ex 

0 0 0 1 
X. 
ß 
0 

0 0 0 " 

ß 0 0 ÖW 

0 0 0 0 av ~ 

0 0 0 0 

(8) 

aw    ,   aw , _  aw    n 
dt ox oy 

(9) 

where tau.  =      . '        defines the Mach angle ±p be- 

tween Machlines and streamline, see Figure 1. Again, 
the physics dictate a multidimensional upwinding dis- 
cretization of the acoustic equations by a space opera- 
tor upwinded along the Machlines, as in the method of 
characteristics. The point of deviation from the method 
of characteristics is to achieve this in a conservative for- 
mulation, such that shocks and contacts can be handled 
without any special treatment. This indeed is the hall- 
mark and basis of success of the state-of-the-art Finite 
Volume approach. The price paid in these methods, 
however, is that the upwinding is based on locally one- 
dimensional physics, by considering the states adjacent 
to each finite volume face as the initial data for a one- 
dimensional Riemann problem in the direction of the face 
normal. Such an approach precludes the use of Mach lines 
or the streamline as the upwinding directions. 

For subsonic flow, the two acoustic equations form an 
elliptic subset, and it is less clear what should be the 
optimal space discretization. 

To fix the ideas, consider again the Euler system in the 
form of eq. (3), but assume that the inlet conditions are 
such that the flow is irrotational, so that the third and 
fourth equations decouple from 5 and H : 

dxU - -^ 
dxV-dyU 

jdyV = 0 
0 (6) 

For subsonic flow, the eigenvalues of the system matrix 
(and hence the Mach angles) become complex (   , ±l     )■ 

V 1— M2 

For AI = 0 this is the set of Cauchy-Riemann equations 
governing incompressible potential flow. 

Different ways for discretizing such a system will be dis- 
cussed in section 2. All these methods are based on 
an unsteady version of eqn(5) or (6), whereby the un- 
steady terms are in general chosen not to be physical, 
but. such that the resulting system is hyperbolic in time 
and achieves fast convergence to the steady state. 

Such a choice [1] is given by the following system, both 
valid for subsonic and supersonic flow, and called the 
hyperbolic/elliptic splitting. Defining the characteristic 
variables 

aw = 
MßdC+ 
MßdC~ 

(?) 

are defined  as w^   =   —^-p  

and   \   alld   ß   are   given   by   ß 

,/max(e2,|M2-l|) and \ 

Here f+   and  u~ 
M2-\-JS_ V = ~2ßT' 

and 

To circumvent max(M,l) 
the singularity at the sonic point, e is different from zero 
and given a small value (typically 0.05). 
Clearly, the third and fourth characteristic equations de- 
couple for all flow regimes, implying as before that en- 
tropy and total enthalpy are conserved along streamlines 
in the steady state. Considering the first and second 
equations, u~ = 0 and i/+ = 1 for supersonic flow, and 
the equations are fully diagonal; the system is in fact 
identical to eqn(5), where the acoustic variables are made 
to propagate along the Mach lines. In the subsonic case, 
the system is no longer diagonal and the two acoustic 
equations become coupled and form a system which is 
elliptic at steady state. 
The  residual  in  conservative  variables   is  obtained   by 
transforming eqn(9), giving 

aF + ac=fl 
8x       dy 

A   aw    D   aw 
Aw —. 1- tfw —z— 

ox dy 
(10) 

pc(y- 
dS 

where R is to transformation matrix from characteristic 
to conservative variables. 

2    RESIDUAL DISTRIBUTION SPACE 
DISCRETIZATION 

The finite volume setting with its underlying discontinu- 
ous solution representation naturally leads to the defini- 
tion of ID Riemann problems at the discontinuous inter- 
faces, although some progress has been made in the so- 
lution of three-state two-dimensional Riemann problems 

[2]- 
Therefore, in this work, we concentrate on approaches 
based on a continuous representation of the solution over 
structured or unstructured meshes, with the solution 
stored at the vertices. Such a framework, which allows 
easy incorporation of upwinding concepts, is provided by 
the residual distribution approach : 

• in a first step, the conservative flux balance (cell 
residual) is evaluated over a cell- with unknowns lo- 
cated in the vertices by a simple contour integration 
(e.g trapezium or midpoint rule). 

• in a second step the cell residuals are distributed 
to the vertices to form the nodal space operator (or 
nodal residual) which becomes a weighted average 
of the adjacent cell residuals. 

The space discretization is consistent and conservative, 
which is easily shown by summing up the discrete equa- 
tion for all nodes and observing that the interior fluxes 



17-3 

vanish, leaving only the contributions from the bound- 
aries. 
Various residual distribution schemes have been pro- 
posed, such as the central scheme of Jameson [3] or the 
Lax-Wendroff schemes of Ni [4], Hall [5] and Morton [6]. 
In the present context the residual distribution frame- 
work has been used to formulate conservative multidi- 
mensional upwind advection schemes. At the scalar level, 
linear and non-linear advection schemes are obtained by 
distributing the cell residual to the downstream nodes 
only. In this way, properties such as positivity and sec- 
ond order accuracy (linearity preservation) [7, 8, 9] can 
be built-in. As long as the distributed parts sum up to 
the conservative cell residual, the schemes satisfy discrete 
conservation. 
The application to the Euler equations, e.g. for advec- 
tion of entropy, total enthalpy and acoustic variables, is 
straight forward, provided that a conservative lineariza- 
tion can be found which ensures that the flux balance over 
a cell can be written exactly in terms of the quasilinear 
equations discussed in section 2. 

2.1     Distribution schemes for scalar ad- 
vection 

The subject of multidimensional shock-capturing advec- 
tion schemes on triangles has been extensively treated in 
previous publications, and the reader is referred to [9, 10], 
as well as to the work of Roe and Sidilkover [8, 11] for de- 
tails. Only the most important aspects are recalled here, 
and the extension to quadrilaterals is briefly discussed. 

Consider the linear advection equation, with constant A: 

du 

Jt 
+ A ■ V« = 0 (11) 

The corresponding integral form of eqn(ll) is obtained by 
integrating over a control volume $7 (triangle or quadri- 
lateral). This leads to the definition of the cell residual 
or fluctuation, 

r/' = -  (I ^-dü =[[>>■ Vtwto = * u A • next dT, 

(12) 
where F is the boundary of the control volume fi. Be- 
cause the solution is stored in the vertices of the cell, the 
contour integral can be easily evaluated by the trapez- 
ium rule. In the fluctuation-splitting approach, fractions 
of o!! are sent to the cell vertices, which after assembling 
contributions from all cells leads to the nodal update. 
The semi-discretization at point t is then 

di 
n ft 

-fl(u;) 

(13) 

(14) 

the coefficients Cki are all non-negative for k ^ 
i. Stability and monotonicity preservation is then 
guaranteed under the CFL-like condition 

At, 

Si 

1 <   (16) 

Indeed, if u" is a local maximum, i.e. (u" — u") < 0 

Vfc, then ^- < 0. Consequently a local maximum 
cannot increase and similarly a local minimum can- 
not decrease. The condition(15) is called global pos- 
itivity and is difficult to impose for fluctuation split- 
ting schemes. Therefore a more restrictive property 
is introduced, namely local positivity, see [12]. This 
means that condition(15) is imposed for each con- 
tributing control volume in eqn(14), which is very 
easy to check. Positivity will in general be linked to 
some upwinding. In the fluctuation splitting context 
upwind biasing is obtained by limiting the distribu- 
tion of the cell residual to the downstream nodes. 

Linearity Preservation or Residual Property 
Second order truncation error in the steady state 
is obtained by demanding that no updates are sent 
to the vertices if the cell residual is zero. This is 
obtained when the distribution coefficients /3, are 
bounded, such that 

/3,V -> 0 when $"-+0 (1* 

It can be proven that only non-linear schemes (a scheme 
is called linear if the coefficients c-k, in eqn(15) are inde- 
pendent of Ufc) can satisfy both properties. 

2.1.1     Schemes on triangles 

Considering the triangle with inward normals n, shown 
in figure 2, the fluctuation <£n, eqn(12), can be written 
as 

y    k,u-       k, = -A • n, (18) 

The k, are convenient parameters in the design of upwind 

where 5, is the area of the median dual cell around node 
i. and the ßf1 are the the distribution coefficients which 
sum up to one for each cell. The way these coefficients 
are evaluated, determines the properties of the scheme. 
The most important of these are: 

•  Positivity 
A monot.onic scheme can be obtained by demanding 
positivity. Suppose that the numerical solution at 
mesh point i is u,. Then the positivity property 
requires that in the discrete form of eqn(ll) 

.." + ' 

At, 
-S, = ^P cfc,(u" (15) 

Fig. 2 : Triangle and inward normals 

schemes. Since the inward normals n; sum up to zero, one 
has also V~V k, = 0. Four important distribution schemes 
are: 

The N and PSI or limited N scheme 

Define fct
+ = max(0,/c.) and k~ = min(0, k,), then the 

distribution to the nodes for the N scheme are given by: 

ßUT=kt(u, U,r, (19) 
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where 

u,n ~ [Yl k'   )      Ylk< "' (20) 

This scheme is positive but not linearity preserving. How- 
ever, among the linear positive schemes, it has the lowest 
cross-diffusion. It is also the scheme with the narrowest 
stencil, hence the name N scheme. 
From this scheme the contributions for the non-linear PSI 
scheme can be constructed by limiting the N scheme dis- 
tribution as follows 

PSI iT 
ßi'4> 

max(0, ßf) 

XVmaxfO,/^) 
(21) 

This is identical to Sidilkovers general limiter for- 
mula [13] when the MinMod function, *(r) = j(l + 
sgn(r))min(r, 1), is chosen. This scheme is both positive 
and linearity preserving. 

The FV and limited FV scheme 

For the first order upwind finite volume (FV) scheme 
on the median dual mesh the normals of the dual grid 
are needed, see figure 3. In terms of these normals the 
fluctuation is given by 

0T - ka(m - in) + kb(u3 - u2) + kc(u2 - ui)      (22) 

Depending on the signs of the dot products of the ad- 

Fig. 3 : Normals for the triangle FV scheme 

vection vector with the normals of the dual grid, <f>    is 
distributed to the nodes according to the formula 

.ar<t>T 

ßP'd,7, = fc+(u3 - Ui) + k+{U3 ~ U2) 

ka {u3 — ui) + kc (u2 - «1) 
k~{ii3 - u2) + k+(u2 - ui) (23) 

Again this scheme is positive, but not linearity preserving 
and is more diffusive than the N-scheme. The limited sec- 
ond order version of this scheme is obtained by applying 
eqn(21) to the distribution coefficients ß, 

The LDA scheme 

For the linear LDA (Low Diffusion A) scheme, the con- 
tributions are given by: 

A'
D
V= x>n kt4> (24) 

This scheme is linearity preserving, however it is not pos- 
itive. 

The Lax-Wendroff scheme 

The   distribution   coefficients   for   the   classical   Lax- 
Wendroff scheme are 

flW.T       1   .   At k, (25) 

where ST is the area of the triangle, and At is the Lax- 
Wendroff dissipation coefficient with the dimension of a 
time. 

2.1.2     Schemes on quadrilaterals 

The extension of these schemes to quadrilaterals is rather 
straightforward. The inner scaled normals n, are given 
in  figure  4.     The  parameters  fc,   are  calculated   as  in 

Fig. 4 : Quadrilateral and inward normals n, 

eqn(18). The distribution coefficients of the LDA and 
Lax-Wendroff scheme are very similar to these on trian- 
gles and will therefore not be repeated. 

The quadrilateral N and PSI scheme 

The distribution coefficients for the quadrilateral N 
scheme are: 

ß^Q<t>9 = kt{ui-Ui„) (26) 

Compared with the scheme on triangles, eqn(19), every 
point has his own inflow state, given by 

ui,„ = us,,, = [-max(|/ci|, |A:2|)]- 

[(ki + \k2\)~ui + (k3 + \k>\)~U3 + k~u2 + k~ut] 

"4. =  — max (IM.IM)]- 

[(k2 + \ki\)-u2 + (k4 + \ki\)   114 +k1 in +k3 u3] 
(27) 

Again this scheme is positive but not linearity preserv- 
ing. The distribution coefficients for" the quadrilateral 
PSI scheme are obtained by applying the limiter func- 

tion eqn(21) to ßfQ 

The quadrilateral FV and limited FV scheme 

As on triangles the normals of the dual grid are needed, 
see figure 5. The fluctuation is 

<bQ     = ka(uA - Wl ) + ka(uz - u2) 
+fc(,(»2 - «i) + ki,{u3 - m). 

(28) 
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Fig. 5 : Normals for the quadrilateral FV scheme 

and the distribution to the nodes 

3^4fl = K(u4 - Ul) + K(u2 - «l) 

!i*VQ4fl = fc-(U3 - tl2) +fc+(llj - «,) 
ß?VQ4>Q = k+(u3 - u2) + fc+(us - u4) 
tff1'0^ = /c+(u4 - ui) + k-(u3 - u4) 

(29) 

The limited version of this scheme is obtained as before. 

2.2     System distribution schemes 
As explained in section 1 the two-dimensional supersonic 
Euler equations can be completely decoupled and the 
scalar schemes of the previous chapter can be applied. 
However for subsonic flow the two acoustic equations, 
egn(8). form an elliptic subset, which cannot be decou- 
pled. One way to treat such a system is to introduce the 
coupling terms as source terms and distribute them with 
the LDA or Lax-Wendroff scheme. By doing this the pos- 
itivity property will be lost and therefore positive system 
distribution schemes are to be preferred. Among the sys- 
tem distribution schemes we mention the Lax-Wendroff 
and SUPG distribution. Recently, positive system dis- 
tribution schemes have been explored, generalizing the 
scalar FV and N scheme discussed before. 
Consider the unsteady hyperbolic system of equations 
given bv 

5W       .    ÖW      D    3W 
—— + Aw—z h üw—z— 
at ox ay 

(30) 

Extending the ideas of the scalar schemes we define the 
matrices A', as 

• (Awni,x + SH"I.,: (31) 

Because the system is hyperbolic, A'; can be written as 

IÜ = RiAiLi (32) 

where the columns of /?, contain the right eigenvectors, 
A, is a diagonal matrix of the eigenvalues and L, = R~l ■ 
The matrices A'(   and K~ are given by 

A'+ = R.AtL,, K- = RiA~Li (33) 

Here Af contains the positive and A~ the negative eigen- 
values. 
With these definitions the system schemes on triangles 
can be obtained just by replacing the scalar k, by the 
matrix K, in the equations (19), (23), (24) and (25). On 
quadrilaterals the N-scheme in the form (26) does not 
generalize to systems and only system versions of the FV, 
LDA and Lax-Wendroff schemes can be obtained. 

3    CONSERVATIVE LINEARIZATION 

We now consider system (30) in conservative form 

:0,     or    ^H+VF = 0        (34) 
ÖU      OF      <9G 

dt       dx       dy 

To maintain discrete conservation, the cell residual has 
to be evaluated as the flux balance of the conservative 
variables over the cell, for a triangle : 

#J 

JdT 
F • dne (35) 

On the other hand, the positive advection distribution 
schemes require a quasi-linear form of the residual. A 
conservative linearization is defined such that the quasi- 
linear form integrated over the surface is identical to the 
flux integration over the boundaries obtained by a par- 
ticular integration rule. For the Euler equations on trian- 
gles, this is easily achieved by assuming that the Roe pa- 
rameter vector Z = yfp (1, u, v, H)T varies linearly over 
each element. Since U, F and G are quadratic in the 
components of Z, the Jacobian matrices 3U/9Z, 9F/9Z, 
and dG/dZ are linear in the components of Z, making 
the integration over a triangle trivial. Defining the aver- 

age state Z over the cell: 

Z = 
y/piUl + s/P2f2 + yfp3Uz 
y/PlVl  + y/p2V2 + v^Ji'3 

y/pTHi + y/p2-H2 + yTp7Hs. 
(36) 

the flux balance over element T may  be expressed  in 
quasilinear form as 

F(Z)dnj, - G(Z)dnx (37) 

=    SrlAUr + BUyl (38) 

where A and B are the analytical flux Jacobians evalu- 

ated at the average state Z: 

A 
KdVJz M§)r 

and 

Mf)8
z- u„ 

(az)zZy 

(39) 

(40) 

Because the exact Jacobians are used, one can transform 
(38) into any quasilinear form as long as the transforma- 

tion matrices are evaluated at the average state Z. 
On quadrilaterals it is more difficult and for the moment 
a linearization is used which is only exact for parallelo- 
grams. 
The global update for the system, analogous to the scalar 
case eqn(14), is then given by 

dJJ, 

dt lE^.n 
s, 

^£*? s, 

7 aw • - .aw   ,   , 
Aw~dx- + Bw-0y-    (41) 

-R(U,) (42) 

where D,   is the cell distribution matrix. 
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(a) Structured grid for the NACA-0012, 32  X 128 cells 

(b) Mach number isolines 
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(c) Entropy distribution on the airfoil 

Fig. 6 : Mesh, Mach number isolines and Entropy distri- 
bution on the airfoil for the subsonic NACA-0012 
(Mr^ = 0.63, a = 2°), for the hyperbolic/elliptic 
splitting. PSI on entropy and total enthalpy, 
Lax-Wendroff on acoustics. 

4    NUMERICAL    RESULTS    USING 
EXPLICIT TIME STEPPING 

Results of three inviscid computations are given. In fig- 
ure 6 the structured mesh, the Mach number isolines and 
the entropy distribution on the aiifoil are shown for the 
subcritical, Mx = 0.63, a = 2°, flow over a NACA-0012 
airfoil. The scalar quadrilateral PSI scheme is used for 
the convection of entropy and total enthalpy along the 
streamlines, while the system Lax-Wendroff scheme is 
used for the coupled acoustic subsystem. 
The unstructured mesh, Mach number isolines and the 
entropy distribution on the airfoil for the transonic 
NACA-0012, Moo = 0.85, a = 1°, can be found in fig- 
ure 7. The distribution scheme is the system PSI scheme, 
which allows monotonic capturing of the shock in one or 
two cells. 
The third testcase is the thoughest, namely the hyper- 
sonic (A/oo = 8.7), axisymmetric flow around a hyper- 
boloid flare. The mesh, a triangulated structured Navier- 
Stokes mesh with aspect, ratios over 100, and the Mach 
number isolines are given in figure 8. The solution is 
monotonic, the shock is captured very well and the car- 
buncle phenomenon, seen in Finite Volume solvers with 
Roe's approximate Riemann solver, is not present. Again 
the system PSI scheme was used. 

5    IMPLICIT ACCELERATION 

Explicit time-integration of the semi-discrete equations 
(42), although straightforward and robust, suffer from 
stability limits for some classes of problems, such as sub- 
sonic flows with stagnation regions and viscous flows. 
Implicit time-integration is in turn less limited by restric- 
tions over the time-step but requires on the other hand 
large non-linear systems of equations to be solved. 

5.1    Time-stepping strategy 

As we are only interested in the steady state solution, we 
restrict our attention to the linearized  backward Euler 
time-stepping scheme, which can be written as: 
LOOP OVER TIME: (for k = 0,1,...) until convergence: 

- Choose time increment At, 
- Compute increment Ak as the solution of: 

■&1 + MU*: AUk = -R(U (43) 

JF(uk) 

- UPDATE: Uk+l = Uk + AUk 

where JR(U) = ^§^- is the Jacobian of the residual 
R(U), a sparse and non-symmetric matrix, and where 
JF denotes the augmented Jacobian 1/Akt + JR. An 
overview of different approaches to solve the steady state 
equations can be found in [14]. 
At each time-step k. the main ingredients of the algo- 
rithm can be listed as: 

• computing a Jacobian matrix JR(U'), 

•• solving the linear system (43), 

• choosing a time increment A  t and a non-linear up- 
date strategy 

The three next subsections will be devoted to the descrip- 
tion of each of these tasks. 
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(a) Grid for the transonic NACA-0012, 2355 nodes (a) Triangulated structured grid. 2470 nodes 

(b) Mach number isolines 
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(b) Mach number isolines,  general view and zoom of leading edge 

Fig. 8 : Mesh and Mach number isolines for the hyper- 
sonic, axisymmetric hyperboloid flare, Moo = 
8.7. Hyperbolic/elliptic splitting with the system 
PSI scheme. 

5.2     Jacobian computation 

5.2.1     Differentiating the Residual 

As the spatial discretization stencil involves only 
distance-one neighbours, each individual component of 
the Jacobian can be computed at reasonable cost. Lim- 
iting the Taylor expansion of R,(U; -f elm), the nodal 
residual at node i with the m-th component of U at node 
j perturbed of a small quantity e, to the first order terms, 
one has: 

dR.-(U) R,(UJ+elm)-R,(U) 
(44) 

(c) Entropy distribution on the airfoil 

Fig. 7 : Mesh, Mach number isolines and Entropy distri- 
bution on the airfoil for the transonic NACA- 
0012 (Mco = 0.85,a = 1°), for the hyper- 
bolic/elliptic splitting. System PSI scheme. 

It shows how each entry of the Jacobian (JR),^, a 4 x 4 
matrix with m as the column index, can be computed 
by a first order finite difference. Because of the compac- 
ity of the scheme, this computation requires only twelve 
(twenty in 3D) additional explicit residual evaluations. 
Following the same steps of the explicit, solver (i.e. loop 
over the cells, in each cell compute fluctuation and dis- 
tribute contributions to be assembled at the nodes), the 
algorithm to compute the Jacobian is: 
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INITIALIZE R(U) = 0, JR(U) = 0, 
LOOP over triangles (T=l,2,..., nbr of cells): 

O Compute fluctuation and distribute contributions 
to the 3 nodes (t = 1, 2,3) : R, <- R, + tyf, 

O LOOP over the 3 nodes of the cell (j=l,2,3): 
O LOOP over the 4 components of U, (m=l,2,3,4): 

- Perturb m-th component of U_, <— U; +elm, 
- Compute new fluctuation, 
- Distribute the 3 contributions (i=l,2,3): 

aR,(u) 
au, 

Jm L J      -I » 
+ 

*r(UJ+£lm)-*f(U)]/e 

where ^ffUj + elm) denotes the residual contribution 
to node i when the m-th component of U at node j has 
been perturbed. 
A key issue to the numerical computation of the Jacobian 
as a finite-difference approximation is the proper choice 
of s, which can be determined here on a component-by- 
component basis. The question is treated by Schnabel[l5] 
who advocates: 

s = x/l?max[|UJ,m|,typ(UJ,m)]sign(UJ,m),        (45) 

with typ(Uj,m) a typical user-defined order of magnitude 
for the m-th component of U at node j and rj a lower 
bound on the inaccuracy in the residual R(U) evaluation 
(relative noise). This lower bound is at best the machine- 
epsilon of the computer and can be larger if R(U) is com- 
puted by a lengthy piece of code. Should r? be worse or if 
R(U) is not. differentiable everywhere, one might rather 
resort to the secant method, known for multidimensional 
problems as the Broyden's update. 

5.2.2     Broyden's method 

Broyden's update method is the multidimensional exten- 
sion of the secant method used for univariate problems, 
avoiding the need for computing any derivative. If the 
Ath Newton-Raphson step is denoted1 by: 

JR(Uk)AkU = -R(Uk), 

with AkU = Uk+1 — Uk, the generalization of the one- 
dimensional secant condition is that JR(Uk+1) satisfies: 

JR(Uk+l)AkU = AkR, (46) 

where AkR = R(Uk+l) - R(Uk). However, This does not 
determine JR(Uk+l) uniquely in more than one dimen- 
sion. In Broyden's update approach, JR{U + 1) is chosen 
by making the least change (see[15] for proper matrix 
norms) to JR(Uk), consistent with the condition (46). As 
such, the method suffers a major drawback as it entails a 
complete fill-in of the Jacobian matrix whereas the true 
Jacobian matrix is sparse. Alternatively, we can look for 
the solution to the same least change problem under the 
additional condition B 6 S(JR) where S(JR) represents 
the set of n x n matrices with the same sparsity pattern 
as JR. The resulting update is given by: 

JR(Uk+>) = JR(Uk) + 

Vs^D-1 [AkR-JR(Uk)AkU] AkU}, 

where 'Ps{jF<) 's tne matrix operator which maps any ma- 
trix onto the same matrix but restricted to the sparsity 

pattern of JR and D a n x n diagonal matrix which ac- 
counts for the sparsity structure of the Jacobian matrix: 

D,,=S,  S,   with  (6, )3 = |   (Af).   otherwise      (47) 

Broyden's method allows to update the Jacobian matrix 
without having to compute twelve residual evaluations. 
On the other hand, non-linear convergence will be at most 
linear and more iterations will be needed at the non-linear 
level. 

5.3     Solution of the linear system 
Following the linearization process, the linear system (43) 
is iteratively solved with left (or right) preconditioning: 

JF(Uky1JF(Uk)Ak = -JF(UkriR(UK (48) 

'The time-step has been eluded from the formulation. However, 
the argumentation which follows still holds, as backward Euler dis- 
crelization in time amounts to a classical Newton's method where 
the increment AkU has been under-relaxed for the update. 

with JF(Uk) obtained by some incomplete approximate 
factorization of JF(Uk). Block ILU factorization is used 
in our numerical experiments. Krylov subspace acceler- 
ation techniques have been considered to accelerate the 
convergence of the iterative solve. In the framework of 
this paper, we have favoured GMRES[16] among other 
solvers because of its optimality and since it does not 
represent a severe limitation for 2D medium size prob- 
lems on today's computers despite its storage require- 
ments. We refer to [17] for a description and assesment 
of alternate preconditioners and other Krylov subspace 
techniques, such as QMR and TFQMR[18]. A constant 
Krylov subspace dimension of 30 is used in the numerical 
experiments and the linear solver is stopped when the 
normalized linear residual drops below 10~5. This linear 
convergence criteria is easily met within the 30 Krylov 
subiterations in the early stages of the convergence pro- 
cess when the CFL number is not too large. 

5.4     Global convergence and fixed-point 
method 

The choice of an optimal time-step is a key issue to en- 
sure a fast and robust convergence. It seems logical to 
increase the time-step when approaching to the converged 
solution as the likelihood to be within the radius of con- 
vergence of the Newton method increases. Automatic 
time-increment control algorithms have been set up to 
relieve the user from explicitly monitoring the CFL num- 
ber following the convergence level. Some experiments 
with such algorithms can be found in [17]. We present 
now a technique which consists, after some approxima- 
tion, in accelerating a fixed-point method. The technique 
never reaches any Newton-like convergence, but shows, 
for a constant limited CFL number, a good global con- 
vergence behaviour. The technique consists in solving the 
steady-state Euler/Navier-Stokes equations with an infi- 
nite CFL number, i.e. full Newton time integration, but 
using a finite CFL number in the preconditioning matrix 
at each linearization: JF(Uk) = JR{Uk) and JF{Uk) ob- 
tained as some factorization of l/Akt+ JR. It should be 
pointed out that, since the Krylov subspace dimension is 
not increased, this results also in solving less accurately 
the linear system. 
The scheme, already used in [19], is building up the 
main features of the flow at the very early stages of 
the convergence process much faster than the classical 
backward Euler discretization in time. Asymptotically 
though, the method shows a monotonic linear conver- 
gence behaviour and never reaches the convergence rate, 
possibly quadratic, of backward Euler. The method ap- 
pears therefore as complementary to backward Euler as 
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it. can be used for the first non-linear iterations and pro- 
vide, so doing, a. well-featured initial guess for backward 
Euler. 
The scheme can be viewed as an accelerated fixed-point 
method. The basic implicit technique consists in a sim- 
ple relaxation procedure immediately followed by a non- 
linear update. The relaxation procedure is based on some 
approximation Jp{Uk) of the augmented Jacobian of the 
residual Jp{Uk) = l/Akt+JR(Uk), and the overall pro- 
cess reads: 

u fc+1 =    U* Jp\Uk)R(Uk) 

U(Uk). 

This formulation can be seen as a particular case of the 
linearized backward Euler time-stepping where only one 
single iteration is performed at the linear level, with 
jF(Uk) as the preconditioning matrix. Then, let us de- 
fine (?({/) - U - H(U) and apply Newton-GMRES to 
solve Q(U) = 0: 

Uk+l = U" + Ak with  Ja(Uk)AH = -G{Uk (49) 

If JG is approximated by JF' JR (which is only true at 
the non-linear convergence), one has: 

yfc+l = fjk + Afc with J-l JRA* = -J-l(Uk)R(Uk)t 

which is nothing else than full Newton iterations to solve 
R(U) = 0. where the system arising at each lineariza- 
tion has been left-preconditioned by Jp1. In practice, 
the technique amounts indeed to add l/Akt only in the 
preconditioning matrix. 
Numerical experiments have shown that the acceler- 
ated fixed-point method requires CFL numbers of order 
O(l).O(10). 

Fig. 9 : Subcritical flow over a NACA-0012: Iso-Mach 
contours 

5.5     Numerical results 
Numerical results are presented for subsonic and tran- 
sonic viscous computations. Tests were performed on a 
DEC Alpha AXP 3000/400 workstation. The subcritical 
flow around a NACA-0012 airfoil at free-stream Mach 
number Moo of 0.63 and 2° angle of attack is first con- 
sidered. The grid is made of 5249 cells with far-field 
boundary conditions located 50 chords away from the 
body. Iso-Mach contours are depicted in Fig. 9. The 
space discretisation used the hyperbolic/elliptic splitting 
model and a detailed view of the grid is shown in Fig.  7. 

Implicit time integration was performed by updating the 
Jacobian with Broyden's formula, with a maximum CFL 
number of 200. Convergence history is shown in Fig. 10 
and was achieved in about 750 CPU-seconds. In com- 
parison, about 40000 CPU sec were needed to reduce the 
residual to 10-8 using explicit Euler time-stepping. 

log(E) 

~i 1 r 
40. 80. 

N iterations 

Fig. 10 : Subcritical flow over a NACA-0012: Conver- 
gence history obtained with Broyden's up- 
date, 750 CPU sec 

The second test case is the viscous flow over the same 
airfoil with Moo is 2.0 and Re — 106, which belongs to 
the GAMM workshop on compressible viscous flow solver 
test suite ([20]). Fig. 11 shows the density contours of 
the solution computed with the hyperbolic/elliptic split- 
ting model and convergence history is depicted in Fig. 
12. Convergence starting from a uniform flow field with 
fixed point accelerated method for the two first iterations 
followed by backward Euler, is achieved within about 12 
iterations and 350 CPU-seconds. For backward Euler, 
the inital CFL number of 100 was increased at every it- 
eration by a factor C2 = 2.0 up to 106. GMRES with a 
Krylov subspace dimension of 50 was used for this test. 

Fig. 11 : NACA-0012 M« = 2.0, Re = 106:   Density 
isoline contours 
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Fig. 12 : NACA-0012 Moo = 2.0, Re = 106:  Conver- 
gence history, 350 CPU sec 

6    MESH ADAPTIVITY 

In [21], it was proposed to use the residual decomposition 
technique developed in the context of multidimensional 
upwind methods as a tool to extend the SUPG method 
to compressible flows. This idea was shown to lead to 
increased performances and robustness compared to the 
standard system extensions of SUPG [22, 23]. 
In the present section, we report the continuation of this 
work with focus on mesh adaptivity [24, 25] and we will 
show that, the use of the multidimensional residual de- 
compositions introduced to generalize the SUPG scheme 
to hyperbolic systems allows for the derivation of an er- 
ror estimation procedure for the Euler equations in a very 
natural and inexpensive way. 

6.1     SUPG a posteriori error estimate 
The main ingredient of the proposed error estimation is 
the a posteriori error estimate developed by Johnson and 
Eriksson [26, 27] for the SUPG scheme applied to the 
following convection-diffusion equation: 

A- Vu- V-(KVU) = / in ß,        (50) 

with Dirichlet boundary conditions on the boundary T 
of the computational domain U. If we assume that the 
advection vector A is constant, the a posteriori error esti- 
mate for the scalar shock capturing SUPG scheme applied 
to the stationary problem (50) can be written from [27] 

:|«-tf|U3(n) < C||min(l,Ä    A2)ß(tf)|U3(n)+maxÄ 1 

(51) 
where 

R[U)=\\-$U-f\+   max 
sesTcn 

dU 

dns 
/ h    on T e T , 

(52) 
with T a triangle of mesh T, & the artificial viscosity of 
the SUPG scheme and ns the normal to side S of T. Note 
that, for simplicity, the computed solution U is compared 
with the solution ü of a perturbed continuous advection- 
diffusioii problem obtained by replacing K by k(U) in eq. 
(50). In general, \\u — u\\ is expected to be dominated 
by C\\u — U\\, where C is a constant, so that control of 
|(fj. —"t/j| suffices. 

6.2    Extension of the error estimation to 
the Euler equations 

Once we are equipped with such a reliable and efficient 
error estimate, it is quite natural to apply this error esti- 
mate to each individual scalar equation resulting from a 
residual decomposition step as described in section 1. Let 
4>k be the scalar fluctuation corresponding to equation k 
and 4>X the contribution of triangle T to this fluctua- 
tion. We consider then the following adaptive algorithm: 
Given a tolerance TOL and an initial triangulation 7ö, de- 
termine successively triangulations 7> with Nj elements, 
mesh spacings h3 = h3(4>k) and corresponding approxi- 
mate solutions Uj, (j = 1,..., J), such that /;_, is maximal 
under the local condition, for k = 1,... 4: 

C/j>||min(l,ÄJi1/i*_1) T(t/,-i), TOL 

V7^ 
(53) 

on T € 7j_i until (on the final mesh) the global norm be 
such that: 

C||min(l,K;J
1fij) 

ST    ' 
L2(n) < TOL       (54) 

which is the stopping criterion. Notice that (53) seeks to 
equidistribute the contribution from each element to the 
global error bound. 
From the adaptivity criterion (53), one can isolate hj for 
each triangle T which provides us with a new "reference" 
size for each triangle. Then, it is easy to decide whether 
a given triangle has to be refined, coarsened or kept as it 
is. Of course, when dealing with the 2D Euler equations, 
one can compute four different required mesh sizes hj(4>k) 
for the next triangulation 7j. At that point, several op- 
tions can be taken. It could be decided for instance to 
control the error only on one of the 4 equations but this 
is risky because one could miss some of the flow features 
which are not "seen" by the corresponding variable. Our 
prefered choice therefore consists in taking the minimum 
of the four mesh sizes, 

h] 
fc=l,...4 

(55) 

which ensures an equation-by-equation control of the er- 
ror over the mesh under the required tolerance TOL. 

6.3     Adaptivity technique 
The adaptivity technique developed in the present re- 
search is inspired by the innovative work of Richter [28]. 
It consists in non-hierarchical /i-refinement/derefinement 
allowing efficient mesh optimization operations such as 
edge swapping and Laplacian smoothing. 
The refinement operation is achieved by the introduc- 
tion of an additional node for each edge of an element 
for which the calculated spacing is less than the element 
parameter /(. For interior edges, the additional node is 
placed at the mid-point of the edge and the solution at 
the new vertex is interpolated from the solution at the 
extremities, whereas for boundary edges, the geometrical 
location of the new node is determined through a spline 
interpolation involving the four closest existing points. 
For any edge that is subdivided in this manner, the two 
adjacent triangles associated to this edge both have to be 
divided in order to preserve the consistency of the final 
g"d. 
Our coarsening strategy is based on the use of a non- 
hierarchical data structure which enables the deletion of 
nodes of the initial grid and the use of the structural op- 
timization techniques described below.   The coarsening 
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is achieved in two steps. First, given the set of elements 
flagged to be deleted, a list of nodes to remove is con- 
structed. Then, the deletion of these nodes is performed 
simultaneously with the reconnection of the remaining 
nodes to obtain a conformal mesh. This is done by iden- 
tifying each element involved in the coarsening with one 
of the three possible derefinement cases: triangles with 
1,2 or 3 nodes to be deleted (see fig. 13). 

Typ« 3: Type 2: Typ«*: Typ«1: 

Fig. 13 : Possible coarsening configurations and their as- 
sociated treatments 

After the adaption step itself, a series of mesh optimiza- 
tion operations are performed in order to improve the 
quality of the grid. The first operation consists in a stan- 
dard Laplacian smoothing modified in order to reduce the 
clustering around nodes with degree lower than 6 and the 
dispersion of nodes around nodes with degree higher than 
6. The second operation is an edge swapping procedure 
which aims at minimizing the number of nodes with a 
high degree. This increases the number of nodes which 
have an optimal degree. The final operation consists in 
setting a. minimum value to the degree of the nodes by 
removing undesirable low degree configurations as shown 
in fig. 14. 

degree 3 case degree A case degree 5-5 case 

Fig. 14 : Three "pathological" low degree node configu- 
rations and their associated treatments 

For more details about the adaptivity technique we refer 
I lie reader to [24]. 

'^ÄÄ^&MWMMm 

mm 
vJPrJ^SX??I^Srai^i^^^^^^^^^^™^^^[^iBM 

\z 
(a) Final adapted mesh (5032 nodes) 

(b) Mach number isolines 

Fig. 15 : Mesh adaptivity for transonic NACA-0012 
(Moo — 0.85,a = 1°), Scalar shock-capturing 
SUPG scheme associated with the hyper- 
bolic/elliptic splitting, TOL=0.10 
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6.4     Numerical results 

The transonic flow around a NACA-0012 airfoil (Moo = 
0.85, a = 1°) is computed. The initial mesh is a coarse 
triangulation with 587 nodes and 1094 elements obtained 
with the frontal Delaunay method by Müller et al. [29]. 
The constant C appearing in (53) was chosen equal to 1, 
the tolerance level TOL was fixed at TOL = 0.10 and the 
error estimation was performed on all equations. Three 
adaption steps have been achieved before meeting the 
stopping criterion. Fig. 15 shows the final mesh as well as 
the Mach number isolines of the corresponding solution. 
The final mesh (fig. 15a) indicates clearly that all features 
of the flow, i.e. the stagnation zone and expansions near 
the leading edge, the two normal shocks and the slip line 
emanating from the trailing edge have been detected. 
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1. SUMMARY 
Genuinely multidimensional upwind dissipation models are 
developed for the 2D/3D Euler/Navier-Stokes equations using 
a cell-centered finite-volume approach on structured grids. 
The numerical flux is formulated using the artificial 
dissipation concept. An overview is given for 2D/3D compact 
upwind dissipation for stencils up to respectively 6 and 8 
points. A classification is set up for first and second order 
accurate schemes that have respectively minimum and zero 
cross diffusion. Second order monotone schemes are 
developed using the concept of non-linear limiter functions 
applied on multidimensional ratios of flux differences. A 
classification is presented for different families of 2D ratios. 
3D multidimensional limiters based on 3D ratios of flux 
differences are introduced. The scalar dissipation models are 
extended and applied to the Euler/Navier-Stokes equations 
based on a characteristic decomposition of the inviscid 
operator. The resulting characteristic compatibility equations 
consisting of convective and source terms are depending on a 
set of 3 propagation directions. An overview is given for 
different choices of directions. The multidimensional 
discretisation is considered for both the convective and source 
terms along its associated advective speed. 

2. INTRODUCTION 
In the last ten years extensive research has been ongoing 
towards the development of genuinely multidimensional 
upwind schemes. The main motivation is to reduce the mesh 
dependency appearing in classical dimensional-split schemes 
and as a result to capture the physics more accurately. Two 
main approaches are found in literature: the fluctuation 
splitting schemes and the finite volume schemes, for a review 
see ref. 19,23,30 

The fluctuation splitting schemes consist of an upwind 
distribution of a fluctuation (residual) over the nodes of a 
triangular or tetrahedral cell2.3"16'17-18'21-22 In the finite 
volume methods the numerical flux is determined using 
multidimensional extrapolation1'6-7'15'24'25. Application of 
both methods to the Euler/Navier-Stokes equations consists of 
two basic elements : (1) a suitable wave modelling3'17 or 
characteristic decomposition8'17,18'19 of the inviscid operator 
and, (2) a scalar convection scheme. 

The concept of artificial dissipation associated to central 
schemes, became a key element in Euler and Navier-Stokes 
calculations during the last 15 years. The family of upwind 
schemes, which can be considered as a rational way of 
defining dissipation in a numerical algorithm, has led to a 
matrix dissipation form, as opposed to scalar dissipation13,29. 
One of the essential elements of the upwind dissipation is the 
concept of non-linear limiters, leading to high resolution, 2nd 
order schemes, satisfying some condition of monotonicity. 

such as the one-dimensional concept of 'Total Variation 
Diminishing' TVD schemes. 

Very recently a more formal approach towards a general 
formulation of artificial dissipation terms, applicable to 
structured as well as unstructured meshes is developed, based 
on the concept of Local Extremum Diminishing (LED) 
schemes, by way of generalised limiters14. All these 
developments however still remain in the dimensional 
splitting approach. 

In this framework, 2D multidimensional upwind schemes have 
been reformulated as a way of defining dissipation terms, with 
the   requirements   of  positivity   and   classical   limiter 
concepts .9,31,33 In contrast to the dimensional-split models, the 
multi-D dissipation depends on the direction of the convection 
speed and on variations of the solution or fluxes in different 
mesh directions. The corresponding numerical flux for a cell 
face is determined by a multidimensional interpolation inside 
an upstream triangle. As a result the multi-D dissipation is 
more compact than the models with a one-dimensional 
interpolation along the mesh lines. Recently a comparison and 
unification was performed for the underlying scalar linear and 
non-linear positive convection schemes for both the finite 
volume and fluctuation methods' ''27'32. 

The idea of multidimensional limiters was first introduced for 
a 2D scalar convection problem25. Different classes of 2D 
limiters have been classified and applied to the 2D Euler 
/Navier Stokes equations9-l0-31-33. In the present paper an 
overview is given for compact 2D convection schemes for 
stencils up to 6 points. Different classes of 2D ratios are 
determined by the choice of i) a triangular interpolation 
domain and ii) variations along meshlines or diagonals. The 
analysis is extended for 3D convection schemes as basis for 
the development of dissipation models including 3D limiters 
and ratios. A classification is given concerning first and 
second order schemes with respectively minimum and zero 
cross diffusion for stencils up to 8 points. 

The scalar dissipation models are extended to the 
Euler/Navier-Stokes equations based on a characteristic 
decomposition5'8 of the inviscid operator. The resulting 
characteristic compatibility equations represent the convection 
of an entropy, a shear and 2 acoustic waves. They consist of 
convective and source terms that depend on a set of 3 
propagation directions. An overview is given of different 
strategies concerning the choice of the directions. The 
resulting equations are discretized using the scalar dissipation 
models. The multi-D dissipation models are considered for 
both the convective and source terms based on its associated 
advective speed. 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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3.   DIMENSIONAL-SPLIT UPWIND DISSIPATION 

3.1    Numerical flux formulation 
Consider a 3D scalar hyperbolic conservation law based on 
the fluxes f=(f,g,h). 

du       jt-t       du      -»   =t „ 
^- +   V.t   = ^ + a. Vu   =  0 
dl dt 

(1) 

with a=(a,b,c)=Of/3u,3g/3u,9h/3u) the convection speed. A 
cell-centered conservative finite-volume semi-discretization of 
(1) on a Cartesian mesh yields, 

dui,j,k      'i+l/2,j.k_ti-l/2.j,k 

dt Ax 

gj.j+l/2,k~ei.j-l/2,k x 
ni,j,k+l/2     hi,j,k-l/2_ Q 

Ay Az 
(2) 

where e.g. the numerical flux on cell face i+l/2,j,k is 
expressed by 

+ l/2.i.k - l( *i.i.k   +   ^-H.i.k )      d: i+l/2,j,k (3) 'i+l/2,j,k _ 2V   'J-k i+|j.k 

consisting of a central part being the average of the fluxes in 
the cell-centers left and right to the cell face. The numerical 
dissipation on cell face i+l/2j,k is represented by dj+i^jjc- 
All classical central and upwind dimensional-split dissipation 
models can be formulated as a function 

di+1/2.j,k = d (■■•'5ui-l/2,J.k'5ui+l/2,j.k'5ui+3/2,j,k'-^ (4) 

depending on 1D consecutive differences of the solution along 
the corresponding mesh line with e.g. Sui+|/2,j,k=ui-i-1 ,j,k - 
u j j k- For example consider the 1 st and 2nd order upwind Flux 
Difference Splitting schemes (FDS1,FDS2) where the 
dissipation (4) is specified by, for a > 0, 

(1: , „:,. = ~\ a 15u; .,„„.- L(5u       ,8uj+1/2. k) (5) tlfl.j.k      21 
i+l/2,j,k 

The first term in (5) is a diffusive contribution and 
corresponds to first order upwinding (FDS1, L=0). Function L 
represents an antidiffusive term that introduces higher order 
accuracy. 

L  =     7lal§Ui+l/2,j,k  *(ri+l/2.j,k) (6a) 

with flux limiter <t> depending on a ID ratio based on the sign 
of a as shown in figure 1, 

8u. , „ ., 
■ , 1-1/2,1,k ... 

with    r:, ,„,,,=  -? — (6b) 'i+l/2,j,k 5u i+l/2,j,k 

i-l/2,j,k i+l/2,j,k 

Figure   1   Second  order dimensional-split upwind 

dissipation (a>0). 

3.2    Monotonicity condition 
To prevent oscillations, L is limited by use of a non-linear 
limiter function <t>, in order to fulfil monotonicity conditions. 
It assures that local maxima can not increase and local minima 
can not decrease. The approach in ref. 28 is used and is 
recently defined as Local Extremum Diminishing (LED) 
condition14. Rewriting the residual of (2), 

du... 
_i±Ü=_Res...= 

dt '-J-k l.rn.n ^   i+l,j+m,k+n i.l.k7 

the positivity condition is defined by 

c, >      0       V    l,m,n 

(7) 

(8) 

For scheme (5)-(6) this is fulfilled if the flux limiter <t> 
satisfies 

1 O(r) 
0 < <t>(r) < min (2,2r),        O (- )  = ——        (9) 

Conditions (9) are valid for all classical TVD limiters. In ID 
the monotonicity concept is equivalent with the Total 
Variation Diminishing (TVD) approach. 

4.   MULTIDIMENSIONAL UPWIND DISSIPATION 

4.1  2D Scalar Upwind Dissipation 
In the following an overview is given for compact 2D scalar 
upwind schemes, including linear and non-linear classes 
having first and second order monotone schemes. This study is 
based on a theoretical analysis of 2D linear convection 
schemes of which the basic elements are in ref.6 It is a 
generalisation of the analysis of ref.24 where only first order 
optimum schemes are considered. This general study is set up 
for cell-centered molecules with a finite volume and structured 
approach. It is based on a general 9-point stencil that is 
derived in cartesian and streamline coordinates. Conditions 
concerning second order accuracy, cross diffusion, 
monotonicity and relations between some of these are 
investigated. 

In contrast to the classical dimensional-split dissipation, the 
multidimensional upwind dissipation is based on variations of 
the solution in different mesh directions and on the total 
convection speed (a,b). The domain of dependence of the 
multi-D upwind dissipation models is taken in an upstream 
direction to the convection speed. 

In the following, the linear form of (1) is considered on a 
uniform mesh with mesh spacing Ax=Ay=l. The fluxes are 
f=au and g=bu with constant convection speeds a,b>0. A 
general form of the multi-D upwind dissipation on face 
i+l/2,j, can be written as 

<Wj = llal8ui+./2.j    +   L(5ux,8uy) (10) 

The first term is the classical first order upwind dissipation 
from equation (5). The second term L represents the multi-D 
dissipation that is function of differences of the solution in 
both mesh directions. 

Two options have been investigated for the choice (8ux,öuv) 
in (10) leading to compact 2D upwind schemes,and are 
illustrated in figure 2. Both variations in x and y- direction 
determine a triangular domain of dependence for the multi-D 
artificial dissipation. 
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4.1.1  Linear 6-point upwind schemes 
For the  linear subclass of (10)  the numerical  flux  is 
determined by a linear interpolation in the corresponding 
triangles of figure 2, e.g. for configuration (1), 

c 

ij-l/2 

i+l/2.j 

1 
1 

o 

i+l/2,j-l 

(a) config. (I) (b) config. (II) 

Figure 2   Interpolation domain I and II for the scalar 
multi-D upwind dissipation (a,b>0) 

(11) fi+r?2,j = aui,j - "uui,j-l/2 T v "«i+i/2j-l 
Using the definition of the numerical flux (3), the multi-D 
upwind dissipation model is determined from (11), 

dfi)l/2,j=ial5ui+l/2J + cx5ui,j-l/2-ß5ui+l/2j-l   02) 

with positive interpolation coefficients a and ß depending on 
a and b. Similar formulas are valid for the fluxes on cell faces 
i,j±l/2 introducing analogue coefficients 8 and y. 

Interesting to notice is the sign of the multi-D contributions in 
(12). The term based on coefficient ß and defined in the same 
direction as the 1st order term reduces the dissipation as for 
classical higher order schemes. While the term depending on 
a in the other mesh direction increases the dissipation (12). 
This addition of dissipation is not a loss of accuracy, on the 
contrary it reduces the diffusion in the cross flow direction as 
shown in ref. 10 

Writing out the residual, the resulting 6-point families are 
determined by 3 parameters A=a+8, ß and Y- Figure 3 shows 
for both configurations the interpolation triangles for the four 
cell faces. 

I      < 
. 

|- a - 2 -^ 
L   a + b-A              ! 

ij 

i \                  ■ 

I     -A + ß + 7 A-l 

i                        ■ 

>-2ßi     ß   i 

Configuration (I) (figure 3a) consists of only 3 triangles 
because the interpolation domain for cell faces i-l/2,j and ij- 
l/2 are identical. Configuration (II) in figure 3b consists of 4 
triangles where the continuously shaded areas are referring to 
cell faces i±l/2,j. 

Both families of schemes (figure 3) have subclasses of 2nd 
order accurate schemes, illustrated in figure 4. The subclass of 
zero cross diffusion schemes or second order accurate 
schemes for the homogeneous convection equation, is a two 
parameter family for both options I and II. A comparative 
study performed between the fluctuation splitting unstructured 
multidimensional upwind schemes of Deconinck and co- 
workers, ref. 3 and the present dissipation models is performed 
in ref.32 It shows that the Low Diffusion schemes A and B 
(LDA and LDB) are 5-point zero cross diffusion schemes of 
the 6-point family of configuration (II) (figure 3b). 

The 5-point continuous interpolation scheme (config. I) 
in is ^^ mentioned in figure 4 is investigated in ref. «<1J>-'-' and is 

based on a continuous interpolation for the numerical flux 
inside the polygon formed by the 6 surrounding cell centers of 
the cell-face. 

A more severe constraint is the condition for general second 
order accuracy, in the classical sense, defining a unique 
member of the class of compact zero cross diffusion second 
order schemes for the non-homogeneous convection equation. 
Notice that for the configuration I the scheme is an upwind 
scheme while for configuration II the scheme is the classical 
central scheme 

4.1.2 Linear 4-point upwind schemes 
Both 6-point families have a subclass of 4-point stencils in 
common with the choice of ß=y=0 in (12) and figure 3, 
yielding the numerical dissipation for a,b>0 

with 

di+l/2,j = llal5ui+l/2,j 

L(5ui,H/2) 

+ L(8ui<H/2 

a 8u. j-1/2 

(13) 

The resulting 4-point schemes are actually a one-parameter 
(A=oc+8) family of schemes, although the parameters a and 8 
can be chosen independently. The general 4-point scheme is 
splitted in a central part and dissipation term: 

(a) config. (1) (b) config. (II) 

Figure 3 Six-point linear schemes, config. I and II 
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Res. i5 +b5 k;-D; (14) 

where the upwind dissipation is formulated as 

1 D.. i(a5:5; + b8;5- + 2A8;§-)uij (15) 

by use of 8, 8+and8- that represent respectively central, 
forward and backward differences. The first 2 terms in (15) 
represent the 1st order dimensional-split upwind dissipation. 
The additional mixed 2nd difference term represents the 
multidimensional dissipation. The parameter A, determines 
the amount of multidimensional upwind dissipation. 

Several interesting schemes are recovered by choosing a 
particular value of A as illustrated in figure 5. Concerning the 
subclass of 4-point monotone first order schemes, the lower 
limit (A=0) corresponds to the 1st order classical upwind 
scheme that has maximum cross diffusion (FDS1). The upper 
limit (A=min(a,b)) corresponds to the minimum cross 
diffusion scheme. This scheme has been investigated in 
different formulations, ref.2'7<20'24'25. The 4-point family 
has a unique non monotone zero cross-diffusion scheme 
being second order accurate for the homogeneous convection 
equation, refA2^. Since this scheme is a linear second order 
scheme it can not be monotone and shows oscillations near 
discontinuities. 

2D linear 6-point upwind 
schemes 

ß ,   Y 

2nd order 

homogeneous 
conuection 

2-parameter class 
zero cross diffusion 

(1.1) (i.ß) 
^2   a' 

config. I config. II 

e.g. 5-point schemes: 
continuous interpolation, 
Leuy, Powell and Han Leer 

C89), Hirsch and Dan 
Ransbeeck C94) 

e.g. 5-point linearitg 
preseruing schemes 

LOR,LOB, Strugs, 
Deconinck and Roe ('91) 

non-homogeneous 
conuection 

A =0,   ß = la,  Y= Jb 

config. I config. II 

b/2 
i 

...b 

N 

ill 
h 1 

7 
,.... s /, 

\ \ I   -a/2 all k 
(a+ j)/2 !    -a-b an ! -b n 

Figure 4 Overview 2nd order 6-point upwind schemes 

4-point upwind schemes 
(H) 

monotone 
(1st order) 

0 < A < min ( a , b) 

dimensional-split 
1st order upwind 

A = 0 

minimum cross diffusion 

A = min (a , b] 

Rice and Schnipke C85), 
Sidilkouer C89), Hirsch 

and Lacor('89), Roe C9B), 
Hirsch ('91) 

2nd order 

I 

homogeneous 
conuection 

1 
zero cross diffusion 

A -  a + b 
A -     2 

Sidilkouer ('89), 
Hirsch ('91) 

non-homogeneous 
conuection 

Sidilkouer ('89), 

Figure 5 2D 4-point upwind schemes 
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For more details about the 2D convection schemes and 
dissipation including 4-point,5-point and 6-point schemes, see 
e.g. ref.10-". 

In ref. '" monotonicity conditions on the coefficients in (17) 
are derived for the 4 classes. All 2D ratios found in literature 
e.g.25'26,27,32 fit in one of these classes. 

4.1.3  2D Multidimensional Limiters 
The idea of multidimensional limiters was first introduced by 
Sidilkover, ref. ^5 jn the framework of a scalar convection 
problem. Hirsch and Van Ransbeeck, ref.9.10,l 1,3 1 
considered various multidimensional dissipation formulations 
based on positivity and classical limiters. To illustrate the 
methodology the unique 4-point zero cross diffusion scheme 
(fig.5) is considered below. 

The definition of multidimensional limiters follows the ID 
methodology. Starting with a 1st order monotone scheme, 
limited antidiffusive terms are added. One of the main 
differences with the dimensional-split limiters is that as 1st 
order scheme the minimum cross diffusion scheme from fig.5 
is selected, having a higher accuracy than the classical 1st 
order scheme, e.g. ref.-3'. The 2nd order dissipation is 
rewritten as the first order dissipation plus anti-diffusive 
limited correction term, 

dPr» = e,,+ L(5ux,5u ) (16) 

with Ji+l/2,j Aa 6u. <P(i M/2.J' 

Aa = a (2). a(U = - (b - min(a.b)) 

where Aa represents the difference in interpolation coefficient 
between 2nd and 1st order scheme. Near discontinuities the 
limiler is switched off (<J>=0) and the 1st order multi-D 
dissipation is applied. In smooth regions <P =1 and then the 
linear 2nd order scheme is applied. 

The definition of the multi-D ratio in (16) and the 
corresponding variations 8ux and 8uy are related to the choice 
of triangular interpolation domains I or II from figure 2. The 
following definition of general 2D ratio is used. 

c, Sux + c2 5uy 

8u (17) 

and is related to the choice of a triangular interpolation. Two 
triangle configurations are shown in figure 6. For each 
configuration two options are considered when fixing 8uv and 
with the numerator of (17) taken as: a variation along x- 
direction or a variation along the diagonal. 

4.2 3D Scalar Upwind Dissipation 
In the following a brief overview is given of a theoretical 
analysis of 3D linear convection schemes of which the basic 
elements are in ref. ^2 and which will be discussed in more 
details elsewhere. This study is based on the extension of the 
2D analysis discussed in section 4.1. A general form of the 
multi-D upwind dissipation on face i+l/2,j,k, similar to (10) 
can be written as 

di+l/2,j,k = llal8ui+l/2,j,k + L(SV8uy'5uz)     (18) 

The first term is the classical first order upwind dissipation 
from equation (5). The second term L represents the multi-D 
dissipation that is function of differences of the solution in the 
three mesh directions. 

4.2.1 Linear 8-point upwind schemes 
In the following, the linear form of (1) is considered on a 
uniform mesh with mesh spacing Ax=Ay=Az=l. The fluxes 
are f=au, g=bu and h=cu with constant convection speeds 
a,b,c>0. The 8-point molecules, for a,b,c>0 are defined by the 
following extrapolation formula on e.g. face i+l/2,j,k, 

ClfljJc = aU0 - «xK - U2> - PxK - U
4) - ^U2 - U

6)   (l9) 

referring to figure 7 for the overall configuration of the 
scheme. Using the definition of the numerical flux (3), the 
multi-D upwind dissipation model (18) is determined from 
(19), 

d: 
1 

i+l/2,jk 

with 

a|8u i+l/2.jk 

+ L(6ui,j-l/2,k'5ui,j,k-l/2'6ui,j-!,k-l/2) (20) 

L = ax5Vl/2,k + ßx5\j,k-l/2 + %>i,H,k-l/2 

with interpolation coefficients ocx, ßx and yx depending on a, 
b and c. Similar formulas are valid for the fluxes on cell faces 
i,j±l/2,k and i,j,k±!/2 using respectively the sets (ocy, ßy.Ty) 
and (ocz, ßz,yz). 

0 0 

Ui ^ J+I.j 

i..i-i 
0 

y-i 

la (a) lb (b) lla (c) 

Figure 6 Four classes of 2D multi-d ratios 

lib (d) 
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Figure 7 3D upwind schemes for 8-point stencils 

It is important to observe that the resulting molecule actually 
represents a four-parameter family of schemes when the 
following set of parameters is chosen 

A  =   ocx +  ocy +  Yy 

B   =   ßy +   K 

C  =   ßx + yx +  a + \ 

D =   Yx + Yy + \ <21) 

Based on (19)-(21) the following general 8-point scheme is 
recovered which is splitted in a central part and dissipation 
term: 

Res...=-(a5 +b8 +c8k..-D... 
i.j.t     2 V      x y        ')  ■■'■ •■'■ 

where the upwind dissipation is formulated as 

(22) 

Diik   =   i(a5:5x + b5;5- + c5:5;)uijk 

+   (A5x6- + B5;5; + C5;6x-D5;6;5-)ui.k       (23) 

The first 3 terms in (23) represent the 1st order upwind 
dissipation. The additional terms represent the 
multidimensional dissipation which consists of mixed 2nd and 
3rd differences. The parameters A,B>C and D determine the 
amount of multidimensional upwind dissipation. Choosing a 
specific scheme corresponds to fixing the 4 parameters A,B,C 
and D. Since the cell face values are determined by 9 
interpolation coefficients, every scheme has 5 degrees of 
freedom in choosing the interpolation coefficients in (21). 

4.2.2 First order monotone schemes 
Figure 8 shows a classification for the 8-point family of 
upwind schemes including monotonicity and zero cross 
diffusion conditions. The lower limit of the monotonicity 
condition corresponds with the classical first order upwind 
scheme with a maximum amount of cross diffusion. The upper 
limit corresponds to the minimum cross diffusion scheme also 
identified in ret'.24. In the 2D case (e.g. c=0) this scheme 
reduces to the 2D minimum cross diffusion scheme of fig. 5 
investigated before in e.g. ref.6-24,25. Different interpolation 
strategies are investigated in ref. 32. 

4.2.3 Subclass of zero cross diffusion schemes 
Evaluating the zero cross diffusion condition in fig.8 one can 
notice that there is no condition on parameter D. As a result 
there is a one-parameter subclass of zero cross diffusion 
schemes. Different interpolation strategies in (20) lead to 
different values of D. The arithmetic average procedure 
corresponds with the scheme used by Roe and Sidilkover as 
starting point in their theoretical analysis for first order 

monotone 
(1st order) 

8-point upwind schemes 
(R,B,C,D) 

2nd order 
zero cross diffusion 

0 < A < min (a, b) 
0 < B < min(b,c) 
0 < C < min (a, c) 

max (0,A+B-b,A+C-a,B+C-c) < D < min(A,B,C) 

dimensional-split 
1st order upwind 

A = a + b B = b + c 
2     ' " 2 

C = ^±c     D free i 

minimum cross diffusion 
Roe and Sidilkouer ('92) 

A = B = C = D = 0 

arithmetic auerage : 
Roe and Sidilkouer ('92) 

n - a + b + c HU -       4 

A = min ( a , b) 
B = min(b ,c) 
C - min ( a , c) 
D = min( a , b , c) 

bilinear interpolation D = 
a2b2 + b2c2 + a2c2 

4abc 

related to min. cross 
diffusion : — D =min(a, b,c] 

Figure 8 Classification of 3D upwind schemes for 8-point stencils 
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optimum linear schemes in two and three dimensions in ref.24. 
In the present approach we choose the scheme that 
corresponds with the value of D which is identical with the 
value for the first order minimum cross diffusion scheme: 
D=min(a,b,c). 

4.2.4  3D Multidimensional Limiters 
In this section the 2D multidimensional limiters discussed 
before are extended for the 3D upwind schemes. The 2nd 
order zero cross diffusion scheme related to D=min(a,b,c) 
(fig.8) is rewritten as the first order minimum cross diffusion 
scheme plus anti-diffusive limited correction term. 

dii2.)/2,j,k = diW/2j,k 

<Aax 5ui,j-l/2,k + AK 5uij,k-l/2) °(ri+l/2j,k>   (M> 

with Aoc =otf2)-a(': = ^ (b - min(a,b)) 

Aßx = ß(
x
2)-ß( ,<!) (c-min(a,c)) 

Remark that only one limiter is applied in (24). An alternative 
possibility would be to add a different limiter/ratio to each 
component of the correction term. Near discontinuities the 
limiter is switched off (<D=0) and the 1st order multi-D 
dissipation is applied. In smooth regions * =1 and then the 
linear 2nd order scheme is applied. 

Notice that this definition of L is not the same as for the linear 
multi-D models (20) because the reference dissipation has 
been changed to the minimum cross diffusion scheme instead 
of the classical 1 st order upwind scheme. The definition of the 
3D ratio is based on the variations 8uv and 5uz in the 
correction term of (24) and some extra variation in the third 
direction. Thus for face i+l/2,j,k a variation 5ux is introduced 
in the 3D ratio, 

r. 
c. 8u 

i     > 
+ a, 8u   + a. 8u, 2       y 7>       /. 

i+l/2.j.k Aax8u + Aßx5uz 
(25) 

Equation (25) has the same form as the definiton of a 3D ratio 
in the formulation of a new fluctuation splitting scheme in 
ref.26 . Different possibilities can be considered for 8ux, as 
shown in ref.1^ where three different classes of 3D ratios are 
defined. Each definition corresponds with the variations in a 
tetrahedron constructed by the three variations along x-,y- and 
z-axis. For more details concerning monotonicity conditions 
see ref. .f 12 

5.   EXTENSION FOR THE EULER/NS EQUATIONS 
The conservative form of the 3D Navier-Stokes equations is 
written as: 

¥ + Jr^ + |(°-Gv)+ Jz-(H-Hv)=°    (26) 

with conservative variables U =(p,pu,pv,pw,pE)t' the inviscid 
fluxes (F,G,H) and the viscous fluxes (FV,GV,HV). The latter 
are appromimated by a central discretization and will not be 
considered below. Application of the multidimensional 
upwind dissipation models from section 4 to the inviscid 
fluxes consists of 3 consecutive steps: 

/)   Characteristic decomposition of the Euler system 
2) Multi-D discretisation of the characteristic equations 
3) Re-transformation to conservative numerical flux. 

5.1.   Characteristic Decomposition 

5.1.1   Characteristic variables/ compatibility equations 
The 2D Euler equations are expressed by 

äU   +  faJ    =  4P  +  A.^U = 0 dt dt (27) 

where A=(A,B) are the jacobian matrices. The eigenvalues of 

the matrix K = A.K associated to an arbitrary unit propagation 

direction S define for a large part the behaviour of the 
solutions to the Euler equations. Wave-like solutions exist if 
the eigenvalues of K are real and the corresponding 
eigenvectors linear independent . The latter define a similarity 
transformation which diagonalizes matrix K, 

P-'(A.*)P    =    A (28) 

with the left eigenvectors being the rows of P"1' the right 
eigenvectors being the columns of P and the diagonal matrix 
A consisting of the eigenvalues, 

\0)=\(2)= v\£ , X<3>= v.*+ c , XW= v.tf-c (29) 

Using the left eigenvectors, a set of characteristic variables 
can be constructed, 

6W = P-15U     or8U = P5W=   tSwWfW       (30) 
k = l 

or 8w(1) = 8p  - 8p/c2 

5w<2> = 1^.8v + u.(8p  - 8p/c2) 

8w <•" = it,.8v + 8p/pc 
(31) 

8w <4) = -it,.8v + 8p/pc 

with u. being a free parameter. Eq. (31) is not the only possible 
definition of characteristic variables-5, but the above choice is 
well appropriate for our purpose and is based on 3 arbitrary 
propagation directions, 

*i = (Kix'Kiy)= (cose.,sine,)  ,  ?j = (Kiy,-Kix)  fori=l,2,3 (32) 

In order to identify appropriate wave decompositions, the 
characteristic variables are defined by different propagation 
directions: wW,w(2' are related to Kj and w(3) and w™) are 
related to respectively K2,K3 . Multiplying eq. (27) by the 
matrix P"1 and introducing the characteristic variables (30> 
(31) leads to the characteristic compatibility equations : 

3W + P-'AP^W + p-iBP 3W 
^T + r'rtr"3x- T r'Dr"5y- 

or after working out (33) explicitly, 

3w0)       ... 
—■=;      +     V.VW(I) 

3t 

(33) 

= 0 

dw<2» 

3W(3) 

v.^w'2' + -l..Vp =0 
p ' 

(34) 

^-  +  (v+cicp.^w(3)   +cT2.(!2.^  =0 

^^  +  (v-cicp.^wW)   + c T3.(T3.tf)"0  =0 
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The corresponding 4-wave model consists of one entropy 
wave, one shear wave and two acoustic waves8. The first two 
terms in each equation of (34) represent the convection of the 
associated wave in the characteristic direction, 

td): 2<2' = v, i(3) = = v + cio. !(4). v - cict      (35)        the velocity 

The subscript c in (35) refers to the convective part. The third 
terms in (34) are the coupling or source terms, and their 
presence results from the fact that the jacobian matrices in 
(27) are not simultaneously diagonalizable by matrix P. Notice 
that the coupling terms show also an advective behaviour 
associated to the directions, 

l<2) = ,ap) = i!,   äW = i! (36) 

that are the the normal directions to the propagation directions 
ic^K^K^ . The subscript s refers to the source terms. 

5.1.2    Propagation directions 
The choice of the propagation directions KrK2,K3 with 
related normals ^,C,13 in (34) are still to be defined. A main 
constraint on these directions comes from the factor 
K^.(K^+iop that shows up in the denominator of P. To prevent 
an ill-defined transformation this factor should be maximized. 
Other conditions to impose on the design of the propagation 
directions are the continuity from subsonic to supersonic flow 
range and robustness. Different possibilities of propagation 
directions have been examined. 

•    Diagonalization approach 

The source terms in the system of compatibility equations (34) 
can be eliminated by the following set of propagation 

„8 directions 

1,.tfp 0 ,      tr (\rV) v = 0 U=L. (37) 

The first direction K is taken along the pressure gradient 
while ic^icj are taken equal and defined by the strain rate 
tensor. The use of this set of directions depending on gradients 
of the solution, shows a lack of robustness in Euler 
calculations'. 

•     Combination pressure gradient/velocity 

In non-uniform regions K^,K^ are taken along the pressure 
gradient. 

T,.fy = o i, = i. (38) 

In smooth regions a continuous switch between the pressure 
gradient (38) and the streamline direction is introduced. This 
model shows good accuracy in both subsonic and supersonic 
regime7'9,1°. A better convergence behaviour than with (37) 
is obtained especially in supersonic flow, in some cases (e.g. 
subsonic flows) convergence can only be obtained by freezing 
the directions after a certain residual drop of 1 or 2 orders9'10 

•    Streamline direction 

A much simpler choice is taking the directions along the 
streamline 

.v =  0 3 " 1,= 1, (39) 

This choice seems to have good convergence behaviour but 
has a poor accuracy especially in supersonic inviscid flows 
near discontinuities9. On the contrary very good results are 

obtained in a  laminar boundary  layer on  very coarse 
meshes'0. 

•     Convection of entropy and enthalpy 

The first characteristic direction K,   is taken perpendicular to 

v 
v|| 

(40) 

Using the definition of specific entropy and total enthalpy, 

8S=A*?-8p),   §H = 
ye2    8p   Sp 

P(Y-D 
-J-)  + v.8v       (41) 

the first two characteristic equations of (34) are rewritten as 

3wO 
3t 7CV 

-t-v.VS   =  0 

(42) 

aw<2> 
Ti^ 

C2 
ye (^«+*Y=T)^SI = ° 

Eq. (42) shows that in steady state the entropy and total 
enthalpy are constant along the streamline, see also 
ref 17,18,19 (Where u.=0). The 2nd equation of (42) can 
further be simplified by choosing the parameter u. as 
M-= -c2/p|v||(Y-l)   leading to 

aw'" 
at 

3wl2) +   i t$n 

-P-lfs   = 0 
Ycv 

0 (43) 

As a result the Euler system (34) is splitted in a hyperbolic 
part that represents the convection of entropy and enthalpy 
along the streamline in steady state (43) and a remaining 
acoustic subsystem with source terms, as in the 
hyperbolic/elliptic splitting in ref.16'18. 

•    Machangle splitting 

In the framework of the fluctuation splitting schemes 17>18'19 

a machangle splitting was developed. The first direction is 
taken perpendicular to the velocity and the 2nd and 3rd 
directions are respectively perpendicular to the positive and 
negative characteristics or machlines 

e.= e. + \i, - v (44) 

with 6 the flow angle and (i = arctan('/\/M2- 1) the 
machangle. A fully decouple system of characteristic 
equations is obtained in steady state, 

v.^S  = 0 v.^H  = 0 

(v + cic^R-1   =0    ,    (v-cit,).^R4  =0 

using the steady Riemann variables: 

5R3 = 8w<3> +      C^    (T2.5v) 
V+CK. 

8R4 = 8w<4> + 
V-CK, 

(l3.5v) 

(45) 

(46a) 

(46b) 
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•    Pseudo-Machangle splitting 

This model is an algebraic continuation of the supersonic 
machanglc decomposition in the subsonic range with 
continuity at M=l, developed in the fluctuation splitting 
approach'' •' °-' "• The corresponding directions are, 

e. ±n (47) 

with |i = arctanf l/\/| M 2- 11) defined as the pseudo- 
machangle. Notice the 2 sets of propagation directions leading 
to 2 splittings of the residual. For the final residual the average 
of both splittings is taken. 

Considerable research is still being performed to identify the 
most suitable directions, see for instance17-19 for a recent 
survey. 

5.2.   Numerical Flux Formulation 
The space operators in the characteristic compatibility 
equations (34),(43) and (45) discussed in section 5.1 are 
discretised. In the case that there is no source term, the space 
operator is expressed by 

no source term:      3<k).9wM     or    3«.^R<k> (48) 

where the gradient acts on the characteristic variable or a 
steady Riemann invariant. When a source term is present, the 
space operator can be written as. 

with source term: aw.^woo a^.VsW (49) 

where the convective and source terms are written as an 
advection of respectively a characteristic variable and a 
'source' variable along the associated directions (35) and (36). 
In both cases the source and convective terms have the same 
form and can be treated by the same multi-D scheme or 
dissipation model. 

In the formulation used in previous work10''^'-" '-*-' the 
scalar multi-D dissipation models were applied only to the 
convective terms while the source terms were discretised by a 
central approximation without artificial dissipation. In the 
present approach also the source terms can be treated with a 
multi-D scheme based on the associated speed (36). 

Discretising both convective and source terms leads to two 
numerical fluxes or dissipations for every scalar equation. 
Next the scalar multi-D discretisation is re-transformed to the 
conservative residual by use of the right eigenvectors. The 
resulting inviscid numerical flux on cell face i+l/2,j is defined 
by 

Fi*i/2j = i(Fu + Fi+ij) ~ kl, (d*> + d*>)?<")     (50) 

where dc and ds represent respectively the scalar multi-D 
dissipation of the convective and source part for each of the 4 
characteristic equations. The old formulation where the 
convective term is treated by a multi-D scheme and the source 
term by a central scheme without artificial dissipation is easily 
recovered by putting the dissipation for the source term in (50) 
to zero. 

6.   RESULTS 

6.1. 2D supersonic Laval nozzle 
The inviscid supersonic flow in a Laval nozzle is calculated at 
a Machnumber of 2.91 on an H-lype mesh with 128x32 cells. 
The first order minimum cross diffusion scheme (4MCD) and 
5-point continuous zero cross diffusion scheme (5ZCD) 
combined with minmod limiter and the ratio of subclass (la) is 
investigated. The multi-D schemes are compared with the 
classical 2nd order Flux Difference Splitting scheme (FDS2) 
with minmod limiter. The classical scheme is tested on a finer 
mesh of 256x64 cells, as reference solution. The extension to 
the Euler equations is based on the 2D characteristic 
decomposition (34) with the 3 characteristic directions 
K.,K,,K^ defined by the machangle splitting. Both the 
convective and source terms of (34) are discretised with the 
same scalar multi-D dissipation model. 

Figure 9 shows the isomachlines for the 4 solutions. The first 
order multi-D scheme performs well in comparison with the 
classical 2nd order scheme up to the 2nd reflection of the 
shock structure. The 2nd order multi-D scheme is superior to 
the classical scheme on the same mesh. It compares very well 
with the reference solution on the finer mesh. Figure 10 and 
11 show respectively the Machnumber and total temperature 
distribution along the symmetry-axis. The total temperature or 
total enthalpy should be constant in the whole field. The errors 
for the multi-D schemes are much smaller than for the 
classical results, even on the finer mesh. 

Figure 12 shows the convergence history. Both first and 
second order 2D results show a good convergence behaviour 
obtained with a 3 level multigrid acceleration combined with a 
5-stage Runge Kutta prodecure and residual smoothing with a 
CFL of respectively 10.0 and 8.0. 

6.2. 3D supersonic corner flow 
An inviscid supersonic corner flow4 (M=3.0) is considered, 
which is generated by two unswept compression ramps with 
9.5 deg. wedge angle as illustrated in figure 13. The first order 
3D minimum cross diffusion scheme is tested in comparison 
with classical first and second order (minmod limiter) upwind 
schemes on a uniform mesh with 32x32x32 cells. The 
accuracy of the 3D scheme is investigated for both 3D and 2D 
flow phenomena appearing in this testcase. The extension to 
the Euler equations is performed using the 3D extension of the 
characteristic variables (31) and equations (34), see ref. . 
The three characteristic directions Kj.K^K., are taken along 
the pressure gradient direction. When the pressure gradient 
goes to zero a blending is performed with the velocity 
direction. 

Figure 14 shows the convergence history. No freezing of the 
directions was needed to reach convergence with the 3D 
scheme. Convergence is obtained with the use of multigrid 
acceleration and residual smoothing with a 5 stage Runge 
Kutta procedure with CFL =10. 

Isomach lines are shown in figure 15. The classical first order 
scheme shows smeared out shocks and no contact 
discontinuities while the first order 3D result shows an 
accuracy comparable with classical 2nd order. From the 
isomachlines near the solid walls one can conclude that the 
multi-d result shows less entropy creation than the classical 
schemes. 
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7.   CONCLUSIONS 
Genuinely 3D/2D multidimensional upwind schemes are 
developed for the Euler/Navicr-Stokes equations. The 
schemes are formulated in the framework of dimensional-split 
central or upwind dissipation models, leading to a new 
concept of compact 3D/2D multidimensional upwind 

dissipation. 

A unification of 2D compact linear schemes is shown based 
on two classes of 6-point stencils. Each class has a two- 
parameter subclass of zero cross diffusion schemes and a 
unique second order scheme. Both families have a 4-point 
subclass in common that has a unique minimum cross 
diffusion scheme and a zero cross diffusion scheme. 

A class of 3D scalar convection schemes based on an 8-point 
compact stencil is derived that reduces to the 4-point subclass 
in 2D. It has a unique first order scheme with minimum cross 
diffusion and a one-parameter subclass of zero cross diffusion 
schemes being second order accurate for a homogeneous 

convection equation. 

Second order monotone schemes are explored. The dissipation 
is written as the 1st order minimum cross diffusion dissipation 
plus additional anti-diffusive terms. Three- and two- 

dimensional limilcrs. depending on ratios of flux differences 

in different mesh directions, are introduced. In 2D two 
families of ratios related to two types of triangles are defined. 
In each class two sub-families are considered related to 
variations along the mesh line or along a diagonal. 

Extensions to the Euler-Navier/Stokes equations are obtained 
through a characteristic decomposition using characteristic 
variables with 3 different propagation directions. A review is 
given of different choices for the directions. For supersonic- 
flow the combination of pressure gradient and velocity seems 
to be an accurate choice but the machangle splitting is more 
robust. Application of the 3D minimum cross diffusion 
scheme in combination with the pressure gradient approach to 
a 3D supersonic testcase shows comparable accuracy with a 
classical 2nd order dimensional-split upwind scheme. 

For subsonic and supersonic flow the streamline direction is 
not yet accurate enough and so research is still needed to 

identify more effective choices. 

A new formulation is introduced where both the convective 
and source terms can be discretised with a mulli-D scheme 
using its associated characteristic speed. Application of this 
new approach in combination with the machangle splitting 
directions to a 2D supersonic testcase shows belter accuracy 
with lower total temperature error than classical 2nd order 

dimensional-split upwind schemes. 
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FIGURES 

2nd order FDS + MINMOD - 128x32 2nd order FDS + MINMOD - 256x64 

Multi-D 1st order -128x32 Multi-D 2nd order + MINMOD + RATIO IA - 128x32 

Figure 9 Supersonic Laval nozzle (M=2.91), isomachlines,1.41<M<2.91, AM=0.02. 
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Figure 10 Supersonic Laval nozzle (M=2.91), Machnumber distribution along symmetry-axis. 

Figure 11 Supersonic Laval nozzle (M=2.91), Total temperature distribution along symmetry-axis. 
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A PCG/E-B-E ITERATION FOR HIGH ORDER AND FAST SOLUTION 
OF 3-D NAVIER-STOKES EQUATIONS 

A. Rüstern Asian, Ülgen Gülgat and Aydm Misirhoglu 
Faculty of Aeronautics and Astronautics 

ITU, 80626, Maslak, Istanbul, Turkey 

SUMMARY 

A second order accurate (both in time and 
space) an explicit/implicit scheme is imple- 
mented for the solution of three-dimensional 
incompressible Navier-Stokes equations involv- 
ing high Reynolds Number flows about complex 
configurations. A fourth order accurate artifi- 
cial dissipation term on the momentum equa- 
tions are used for stabilizing. Finite Element 
Method (FEM) with an explicit time marching 
scheme is used for the solution, and element by 
element (E-B-E) technique is employed in order 
to ease the memory requirements needed by the 
storage of the stiffness matrix of FEM. The cu- 
bic cavity problem, laminar flow past a sphere at 
a high Reynolds number and an incompressible 
viscous flow around the fuselage of a helicopter 
are succesfully solved using the first and the sec- 
ond order accurate schemes. Comparison of the 
results are also provided. 

1. INTRODUCTION 

Recent advances in iterative solution techniques 
enabled CFD researchers to solve large scale 
problems in acceptable computation times with 
the fast processors of 90's. The iterative solvers 
have become the CFD:s convenient tools which 
do not require excessive memories on comput- 
ers for either implicit time marching schemes 
or inversion of elliptic equations. For finite el- 
ement computations, element by element (E-B- 
E) iteration schemes demand the least amount of 
memory. The conjugate gradient (CG) method, 
which is the Krylov subspace technique applied 
on symmetric operators, becomes an efficient, 
indeed the fastest converging, iterative method 
when applied with preconditioning (PCG) to the 
discrete form of the equations. 

During the last two decades, solution of three- 

dimensional Navier-Stokes equations received 
considerable attention. However, for a numer- 
ical technique to fulfill the demands of 90's, the 
accuracy of the scheme must be at least second 
order for both in time and space discretizations. 

In this study, a second order accurate (both 
in time and space) an explicit/implicit scheme 
is implemented for the solution of three- 
dimensional incompressible Navier-Stokes equa- 
tions involving high Reynolds Number flows 
about complex configurations. To do so, a 
fourth order accurate artificial dissipation term 
on the momentum equations are used for stabi- 
lizing. Finite Element Method (FEM) with an 
explicit time marching scheme is used for the 
solution, and element by element (E-B-E) tech- 
nique is employed in order to ease the memory 
requirements needed by the storage of the stiff- 
ness matrix of FEM[1]. Since the scheme is time 
accurate, the transient nature of the flow field is 
properly resolved. 

For the calibration of the code the cubic cavity 
problem is solved using the first and the second 
order accurate schemes. The comparison with 
the existing literature[2] is satisfactory even for 
a coarse grid. The solution with the fourth order 
artificial viscosity adequately resolves the recir- 
culating region as opposed to the solution with 
the second order artificial viscosity. 

As the second study, laminar flow past a sphere 
at a high Reynolds number, Re = 162 000, is 
solved with the both schemes. Finally, in order 
to test the capabilities of the code, an incom- 
pressible viscous flow of Re=50 000, around the 
fuselage of a helicopter is studied. 

All the computations are performed on a per- 
sonal computer equipped with a i860 Number 
Smasher board with 32 Mbytes of memory. 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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2. FORMULATION 

2.1 Governing Equations 

The Navier-Stokes and the continuity equations 
for the unsteady, incompressible flow of a viscous 
fluid, in the absence of body forces are: 

DV        _ 1 „. 
Dt F     Re 

V-V = 0 

(1) 

(2) 

The equations are written in vector form (bold- 
face type symbols denote vector or matrix quan- 
tities). The variables are non-dimensionalized 
using a reference velocity and a characteristic 
length, as usual. Re is the Reynolds number, 
Re = Ul/v where U is the reference velocity, 
I is the characteristic length and v is the kine- 
matic viscosity of the fluid. V corresponds to 
the Cartesian velocity components u,v, and w. 
Pressure is symbolized with p and the time is 
with t. 

For a well posed problem, the governing equa- 
tions are complemented with the following ini- 
tial (t=0) 

V(x,0) = V°(x)    and    p(x,0) = p°(x)        (3) 

and boundary conditions which have to be spec- 
ified on related surfaces: 

V = G and -pn + — (VV)-n = F (4) 
Re 

where x is the position vector, G and F are pre- 
scribed boundary values, and n is the unit vector 
normal to the boundary. 

2.2 Numerical Methods 

The governing equations are integrated in time 
using both first and second order accurate 
schemes. The first order scheme follows that 
of [3] which constitutes a time marching scheme 
based on Helmholtz decomposition. A potential 
function with a single degree of freedom at each 
node is introduced and a Poisson equation for 
the potential is directly discretized. Eigth-node 
isoparametric brick elements and trilinear inter- 
polation functions for the velocity and the aux- 
iliary potential are used. The pressure is defined 
at the centroid of each element. In contrast to 

the potential and velocity, pressure values are in- 
terpolated using piecewise constant functions at 
each element. Application of the conventional 
Galerkin integral[4] to the equations and the 
boundary conditions gives integral finite element 
formulations for one brick element[3,5]. 

2.2.1 First order explicit formulation 

Let Vi and V2 denote following velocity differ- 
ences in vector form: 
Vi = Vm+2 - Vm 

v2 = Vm+1 - Vm+2 
Using a forward difference operator for the time 
derivative in equation (1) and letting Vm and 
pm be solutions at the known time level m, 
the first order explicit fractional step algorithm, 
over a single time step and in fully discrete ma- 
trix form, is given by in a direction as follows: 

M-im _ 
At V B0 + PeCa-   & + D   V 

A <t> = Ea VT* (6) 

M Vf = Ea <f> (7) 

„m+l =     m _ A 
re              re          A. (8) 

where 4> is the auxiliary potential function, M 
is the lumped element mass matrix, D is the 
advection matrix, A is the stiffness matrix, C 
is the coefficient matrix for pressure, B is the 
vector due to boundary conditions and E is the 
matrix which arises due to incompressibility. El- 
ement potential <f>t is defined as 

<f>e =—1—^ [   N% & dtte,     t = l,8     (9) 
vol(Qe) Jn 

where fi is the flow region to be solved, T is the 
boundary of 0, and Ni are the shape functions. 
Details of the formulation can be found in [5]. 

2.2.2 Second order explicit formulation 

The second order time accurate scheme is some- 
what similar to that of [6] wherein a new inter- 
mediate velocity field is introduced. Both ex- 
plicit and implicit versions of the algorithm are 
devised. The explicit formulation resembles the 
first order explicit scheme except that the frac- 
tional step velocities are calculated in two steps. 
Let V-!, V2 and V3 denote following velocity 



19-3 

vector differences: 
Vr - Vr 

V2 = V" - vm 

v3 = Vm+1 - V* 
the second order explicit fractional step algo- 
rithm, in fully discretised matrix form, over a 
single time step is defined by: 

2Mv<* — 
At  vl  ~ Ba + PeCQ - (& + D) Va 

m 
(10) 

M-ira _ 
At V 2  - p?ca + [BQ - (& + D) V« 

\A6 = EQV~ 
(11) 
(12) 

MVf = lEad                   (13) 

?r+1 (8) 

The factor \ appearing in (12) and (13) is used 
for second order accuracy in time. In the formu- 
lation given above, V* is a velocity vector which 
is not selonoidal. 

2.2.3 Second order implicit formulation 

The implicit fractional step formulation follows 
the same steps as does the explicit one. How- 
ever, the formulation is obtained by adopting a 
Crank-Nicolson representation for the diffusion 
terms, but otherwise retaining the explicit for- 
mulation as before. 
Using the same velocity diffrence formulas de- 
fined for the second order explicit formulation 
above, the second order implicit Galerkin frac- 
tional step algorithm, in fully discretised matrix 
form, over a single time step is defined by: 

I  At   + 2Re)  V1   - 

B„ + PeCa-(A + D)Va 

(14) 

M    ,   _A_"\ -ITa 
At "T  2Re I   V 2 (15) 

Ba + PeCQ - 4-eVaY ~ (D Va)m+* 

lA<ß = EQ V* 

+ 2Re 

P?+1 

v? 2At Ea <b 

P7- Ai 

(17) 

(8) 

For the implicit solutions of equations (14)-(17). 
Element By Element (E-B-E) techniquefl] is em- 
ployed in order to ease the memory requirements 
needed by the storage of the stiffness matrix 
of FEM. The iterative solution is fully vector- 
ized[7]. The right hand side values of these equa- 
tions are scaled with the square of the time step 
to increase accuracy. These scaling is found to 
reduce the number of iterations by almost 50%. 

2.3 Artificial Dissipation 

In the present study, a fourth order accurate ar- 
tificial dissipation term on the momentum equa- 
tions are used for stabilizing. The diffusion term 
is added explicitly to the right hand side of equa- 
tion (1). Formulation given in reference[8] is ex- 
tended to three-dimensions. The artificial vis- 
cosity term is computed in two steps at element 
level. First a second-order differencing is accom- 
plished: 

8 

i=i 

These values give the second-order distributions 
to cell corners (i) for the momentum equations. 
Then, fourth order distributions to cell corners 
are formed using the above values: 

D I> 8A2 

(16) 

These fourth order viscosity terms are multi- 
plied by a certain coefficient when added to the 
momentum equations. All the velocity com- 
ponents are multiplied by the same coefficient, 
c < 1/24. No dissipation term is added to the 
poisson equation for the potential. 

3. RESULTS AND DISCUSSION 

For the calibration of the code the cubic cavity 
problem is solved using the first and the second 
order accurate schemes. The grid used is fairly 
coarse, llxllxll. The first order scheme, with 
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second order artificial dissipation, gives low ve- 
locity gradients in the vicinity of the walls as 
seen in Fig.l a and b. The second order accurate 
scheme, on the other hand, predicts the velocity 
profiles, even with a coarse grid, in agreement 
with the results given with spectral methods[2]. 

Shown in Fig.l c and d is the symmetry plane ve- 
locity vectors obtained with the first and second 
order schemes respectively. The flow Reynolds 
number is 1000 and the dimensionless time level 
is 30, the steady state is practically reached. 
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Fig.l Cubic cavity velocity profiles for Re=1000 in comparison with the results of Ref[2] on the symmetry 
plane at steady state (a-b). Present solutions with fourth and second order artificial dissipations are 
shown. Flow velocity vectors on the symmetry plane(c-d). llxllxll stretched grid. 
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a) Full grid. b) Near body detail. 

Fig.2 Numerical grid on the symmetry plane of the sphere. 

As the second study, laminar flow past a sphere 
at a high Reynolds number, Re = 162 000, is 
solved with both the first and the second order 
schemes. The full grid around the sphere con- 
sists of 19127 points and 17640 brick elements 
as shown in Fig.2a. Fig.2b shows the details of 
the grid around the body. In Fig.3 a and b the 
velocity vectors at the symmetry plane at about 
time level of 4 is plotted. The length of the sepa- 
ration bubble predicted with the both approach 
is almost the same, however, the width differs 
significantly. The second order accurate scheme 
predicts the separation angle close to the value 
given in [9]. As seen in Fig.3 a and b, the flow 
is symmetric with respect to the mid plane and, 
at the upper half of the plane there is a ma- 
jor clockwise recirculating bubble. The details 
in the separation region, however, is predicted 
with the accurate scheme as seen in Fig. 3.b, 
wherein a smaller bubble with clockwise rotation 
is present at the upstream of the major one. The 
more detailed picture of right after the shoulder 
is given in Fig.4 b, where there is a very small 
counterclockwise rotating bubble in between the 
major and the minor clockwise rotating bubbles. 
All these details are smeared out with the first 
order method as seen in Fig.4 a. even with finer 
resolution in radial direction. 
The third problem solved is related to an insti- 
tutional project for developing a generic helicop- 

ter. The grid around the fuselage is shown in 
Fig.5, where 11280 brick elements with 12915 
nodes are used to resolve the symmetric half of 
the flow field. The flow Reynolds number, based 
on the height of the body taken as a characteris- 
tic length is 50 000. Shown in Fig.6 a and b is the 
symmetry plane velocity vector fields at about 
the steady state obtained with the first and sec- 
ond order schemes, respectively. The results of 
the second order scheme indicate a longer sep- 
aration region in the wake, Fig.6 b. A detailed 
picture of the wake is depicted in Fig.7 a and b, 
wherin the separation bubble obtained with sec- 
ond order scheme is twice longer than the buble 
obtained with the first order scheme. Also seen 
in Fig.6 b is a small separation region at the bot- 
tom of the fusalage where there is an unfavor- 
able pressure gradient. The first order scheme 
can not predict that separation region because 
of high artificial diffusion. The detailed picture 
of this unfavorable pressure region is provided 
in Fig.8 a and b for the first and second order 
schemes, respectively. 
The presssure distribution on the body surface 
at the symmetry plane is given in Fig.9. Ac- 
cording to this figure the pressure values follow, 
in general, the same trend for the both solu- 
tions, however the unfavorable pressure gradient 
region at the bottom surface indicate where the 
two solutions do not agree. 



19-6 

a) Second order dissipation 

b)Fourth order dissipation 

Fig.3 Velocity vectors on the symmetry plane of the sphere, Re=162 000. 
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a) Solution with second order dissipation. b) Solution with fourth order dissipation. 

Fig.4 Velocity vector details at the symmetry plane on the right shoulder of the sphere. 

a) Full grid. 

b) Near body detail. 

Fig.5 Numerical grid on the symmetry plane of the helicopter fuselage. 
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a) Solution with second order dissipation. 
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b) Solution with fourth order dissipation. 
Fig.6 Velocity vectors on the symmetry plane of the fuselage, Re=50 000. 

Shown in Table 1 is the drag coefficient values 
for the sphere compared with the experimen- 
tal data[9]. As seen from the values, the first 
order scheme over estimates the coefficient val- 
ues whereas the second order scheme under esti- 
mates them as compared to experimental values. 

The drag coefficient values evaluated for the 
helicopter fuselage with both schemes are also 
given in Table 1. 

CONCLUSION 
A computer code based on a second order accu- 
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a) Solution with second order dissipation, b) Solution with fourth order dissipation. 

Fig.7 Velocity vector details at the wake region of the fuselage, Re=50 000. 

^^ ^ 
a) Solution with second order dissipation, b) Solution with fourth order dissipation. 

Fig.8 Velocity vector details at the unfavorable pressure region of the fuselage. 
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Fig.9 Pressure coefficient (Cp) values on the body surface at the symmetry plane. 
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Geometry Re number Scheme cd 

Sphere 162 000 Experiment [9] 
First order 
Second order 

0.47 
0.52 
0.38 

Fuselage 50 000 First order 
Second order 

0.20 
0.11 

Table.1 Drag coefficient values for the sphere and the helicopter fuselage. 

rate scheme is developed and implemented for 
flows involving large separations and strong re- 
circulations about arbitrary shapes. 

The results obtained for various test case are in 
good agreement with the existing numerical and 
experimental data. 

The code is implemented satisfactorily to pre- 
dict the drag coefficient of a generic helicopter 
fuselage. 
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SUMMARY 

Chorin's method of artificial compressibility is extended to 
both compressible and incompressible fluids by using 
physical arguments to define artificial fluid properties that 
make up a local preconditioning matrix. In particular, 
perturbation expansions are used to provide appropriate 
temporal derivatives for the equations of motion at both 
low speeds and low Reynolds numbers. These limiting 
forms are then combined into a single function that 
smoothly merges into the physical time derivatives at high 
speeds so that the equations are left unchanged at transonic, 
high Reynolds number conditions. The effectiveness of 
the resulting preconditioning procedure for the Navier- 
Stokes equations is demonstrated for wide speed and 
Reynolds number ranges by means of stability results and 
computational solutions.   Nevertheless, the preconditioned 
equations sometimes fail to provide a solution for 
applications for which the non-preconditioned equations 
converge. Often this is because the reduced dissipation in 
the preconditioned equations results in an unsteady 
solution while the more dissipative non-preconditioned 
equations result in a steady state.  Problems of this type 
represent a computational challenge:   it is important to 
distinguish between non-convergence of algorithms, and 
the non-existence of steady state solutions. 

1       INTRODUCTION 

Time-marching techniques have proven to be very effective 
for the computation of high Reynolds number flows in the 
transonic, supersonic and hypersonic regimes.   These 
methods, however, become inefficient at low speed or low 
Reynolds number conditions including the near wall 
regions of high Reynolds number flows.  For this reason, 
incompressible and low speed computations were 
dominated by pressure-based procedures [1] for many years. 
Chorin's pseudo-compressibility method [2], which has 
become widely accepted for incompressible flows [3], 
opened one avenue for applying time-marching procedures 
to incompressible flows but there was little realization that 
this procedure could be broadened to enable computations 
at all speeds until recently. 

Extensions of time-marching methods to low Mach number 
compressible flows became possible with the realization 
that it was the stiffness of the eigenvalues that slowed 
convergence at low speeds. Low Mach number perturbation 
procedures were first used to remove these problems [4] and 
were used in pressure-based methods to compute low speed 
compressible solutions. The implementation of time- 
marching methods to the low Mach number perturbation 
equations were first reported by Gustafsson [5], followed by 
extensive applications by the present authors [6]. 
Perturbation expansion methods have also been extended 
to combustion problems [7].  Of these perturbation 
expansion methods, some (6, 7] used the more 
conventional expansion procedures based on the square of 

the Mach number, while others [5,8] expanded the 
equations in terms of the first power of the Mach number. 

In parallel with these perturbation procedures, local 
preconditioning methods in which the time derivatives of 
the equations of motion are multiplied by a matrix to 
control the eigenvalues have also been used to enhance 
convergence [8-16].   Unlike the perturbation equations, 
these preconditioned equations are valid at all speeds, and 
so have a potential for providing uniform convergence 
over all Reynolds and Mach number regimes. Two distinct 
philosophies have been followed in developing these 
preconditioning methods.   One uses the perturbation 
procedures described above and deals with the full Navier- 
Stokes equations and includes the Euler equations as a 
special case [11-14]. The intent of this approach is to 
improve convergence at low speeds and Reynolds numbers 
only, while leaving it unaltered at high Reynolds numbers 
and high speeds (transonic and above) where it is already 
quite efficient. This method has been applied extensively 
to a wide variety of practical applications. 

The second approach [15, 16] provides a rigorous method 
for developing a preconditioning matrix for the Euler 
equations, but equally rigorous extension to the Navier- 
Stokes equations appears doubtful.  This preconditioning 
procedure is intended to provide optimum convergence over 
the entire Mach number regime, but limited applications 
have thus far demonstrated convergence enhancement only 
in the low Mach number regime [16].  Even there, this 
second method is generally less effective than that 
provided by the perturbation-expansion-based methods. 
Further, the convergence enhancement to be had at 
transonic and supersonic speeds is very limited because 
time-marching methods are already efficient there so that 
substantial improvements are unlikely. 

The purpose of the present paper is to demonstrate how a 
viscous preconditioning procedure can be developed from 
the basic physics of the flow using low speed and low 
Reynolds number perturbation expansions.  As a part of 
this development, the link between our compressible 
preconditioning method and the artificial compressibility 
method of Chorin is shown.  Following some 
representative examples of convergence enhancement for a 
wide variety of problems, the paper closes by addressing 
the issue of the robustness of preconditioning methods. 
One specific example is given in which the preconditioned 
methods fail to provide convergence to a steady state. 
Detailed investigation shows that the physical problem is 
unsteady and a steady solution fails to exist. The reduced 
artificial dissipation in the preconditioned solution makes 
this unsteadiness more apparent.  The prospect of 
distinguishing non-convergence from the non-existence of 
steady state solutions is thus raised as a challenge facing 
CFD techniques. 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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2      THE EQUATIONS OF MOTION 

The equations of motion can be written in conservative 
form as: 

dQ     dE ^ 3F ^ dG       . lQ . 
df       dx      dy      dz 

(1) 

where the viscous terms are given by the operator Lv, and 
the vectors Q, Qv, and E are 

Q = 

(2) 

with an analogous definition for F and G. Here, p 
represents the density, p is the pressure, and u, v and w are 
the Cartesian velocity components in the x, y and z 
directions respectively.  The total energy, e, is the sum of 
the internal energy, e, and the kinetic energy. 

fp] fP] r Pu ^ 

p" u pw2+/> 

pv Qu    = t; £ = PU17 

pw w puw 

lc J w { Puh" ) 

e  =  pe + l(u2+v2+w2) (3) 

The enthalpy, h, is related to the internal energy and the 
pressure, 

pA  =  pe + p (4) 

and for a perfect gas can be expressed as a function of the 
temperature alone, A = h(T). The stagnation enthalpy  is 
defined as A0 = h + (u? + v2 + w^)f2 . The formulation is 
completed by the perfect gas equation of state which we 
write as. 

p  = p(p,T) = p/RT (5) 

to emphasize that the density depends on the temperature 
and pressure. This form makes it possible to include 
incompressible fluids and perfect gases in a single 
procedure. 

The "viscous" vector, Qv, that appears in Eqs. 1 and 2 
represents the dependent variables that appear naturally in 
the diffusion terms. Because the first cell of this variable 
(corresponding to the continuity equation) is null, we 
choose to fill it with the pressure, p. This choice makes Qv 

a unique function of the conservative variable Q . For 
convenience, we use this set of primitive variables as our 
primary dependent variable set, but we retain the 
conservative fluxes. 

The variables in the time derivative can easily be 
changed from Q to Qv by means of the chain rule, 

where dQ/dQv represents the Jacobian, 

dQ_ 
3Q„ 

Pp 0 0 0 Pr 
"Pp P 0 0 upi 

"Pp 0 p 0 vpT 

«"Pp 0 0 p U>Pf 

h°pp-l   pu   pv   pw   h0pT+phj<^ 

(7) 

where pp, p^and/ir are partial derivatives. For a perfect 

gas pT =-p/T; pp = URT, hj= YR/(y-l) where y is 
the ratio of specific heats. Note that hj is the specific heat 
at constant pressure. 

Other matrices of interest include the Jacobian, Av = 
dEldQy, 

4,= 

"Pp 

M2pp + 1 

UVpp 

uwpp 

[A0PP 

P 
2pu 

pv 

pw 

0 

0 

pu 

0 

0 

0 

0 

pu 

upT 

u2pT 

UVpf 

UU>PT 

P(A°+U
2
)  puy  puu;  u[h°pT+phrj 

(8) 

with analogous expressions for B„=dF 13Q„ and 

Cv=dGldQv. 

3      LOW MACH NUMBER SCALING 

The eigenvalues of (6) determine the convergence rate of 
the time-marching algorithm.  These eigenvalues are 
obtained from the roots of the fifth order polynomial: 

(IrH - • (9) 

which are readily found to be u,u,u,u ± c where the acoustic 
speed, c , is given by, 

c2   = P^r 
pT+ ppphj- 

(10) 

The speed of sound reduces to the familiar relation, cx = 
yRT, for a perfect gas, while, for an incompressible fluid 
where pp = Pr = 0, and the speed of sound becomes 
infinite causing the time derivatives in the continuity 
equation to vanish so that continuity reduces to V • V = 0. 

To ensure uniform, efficient convergence over all speed 
ranges, we replace the matrix (3ß/3ßv) in (9) by a 
preconditioning matrix, T„, and consider the solution of 

the modified equation, 

dQv    3E    dFdG_    ,0v 
(11) 

We define Tu in a form analogous to dQ/dQv, by replacing 

the fluid properties, pp, pT and hj, by the artificial 

quantities, p' , p'T and Ay respectively.  These quantities 

represent a three-parameter preconditioning system whose 
values can be chosen to ensure well-conditioned 
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eigenvalues at all speeds, thereby ensuring fast, efficient 
convergence. The definition of the three parameters in the 
preconditioning matrix, T„, will be obtained from 
perturbation analyses of the equations of motion at low 
speeds and low Reynolds numbers. Their presence 
introduces an artificial speed of sound, c\ that ensures that 
eigenvalue stiffness is avoided.  Additional restrictions on 
the preconditioning matrix have been given by Viviand [9] 
and Choi and Merkle [12]. 

To overcome the difficulties at low speeds, we expand Qv in 
the power series, 

Q„ = Q„o + eQui + (12) 

where e=Af .  Upon substituting this expression into (11), 
we obtain to order l/t,p0 = constant, which says that the 
thermodynamic pressure is externally imposed.  Scaling 
the temporal and spatial derivatives of pressure to order 
unity then causes the term, p\, to appear in the zeroeth 
order equations. To reflect this, we define the vector, Q^Q , 

Q'uO  = (Pi> "o> "o. ""o» To) (13) 

so that the equation system that is valid to order unity 
becomes (for simplicity here, we write only the one- 
dimensional equations), 

i>0" 
dQui vO 

to +A^ = LM0) 
dx 

(14) 

The corresponding matrices r„o and Avo are given by 

evaluating Tv and Av with the values ßv(). 

Requiring that the temporal pressure derivative be retained 
in the continuity equation in the low speed limit implies 
that  Pp must be of order one, or that p'p, is given by 

Pp = *P/v; (15) 

where kp is a constant of order unity and Vr is 
appropriate reference velocity. 

an 

To ensure that the energy equation is uncoupled from the 
continuity and momentum equations in the incompressible 
limit, we make the variable p'p proportional to pp , 

The quantity Af is, as yet, free. 

With the special values for p'p and p'T given in (15) and 

(16), two eigenvalues of T^A,, become equal to the 
particle speed «.. The third eigenvalue also equals «. if hj = 
hip or if the physical properties p „ and py are zero as in 

incompressible flow.  For these conditions, the full set of 

eigenvalues of 1*^ A„ is: 

Ap = diag\ u, u, u, u\a+V&), u\a - Vfcj I 

where the quantities a and b are given by, 

a = (^)[p(ppAT+PPÄT)+Pr+Pr] 

(18) 

(19a) 

+(Pr - PT)
2
 + 2p{[p'r(ppÄf - p'phr) 

-2p'p(prAf-prÄT)]+ {^PpipT^-pT^) 

-Pr(ppAf-PpAr))} 
(19b) 

Inspection of the generalized acoustic eigenvalues in (19) 
shows that the physical properties, pp and py that cause 

the speed of sound in incompressible flows to be infinite 
no longer appear in the denominator; only the artificial 
properties p'p and p'-p do.  Replacing these physical 

properties by properly defined artificial properties 
alleviates the decoupling between the pressure and 
momentum terms in incompressible flows, and makes time- 
marching practical for both incompressible and low speed 
compressible flow computations.   For incompressible 
flows, this approach leads to the artificial-compressibility 
method of Chorin as is shown below. 

Replacing p'p by kp/V? and p'T by kppT as suggested 

by the low-Mach number scaling provides eigenvalues that 
are well -conditioned for low speeds. For a perfect gas, the 
coefficients, a and b, become: 

PT  = kpPf (16) 

where hf is a quantity whose value is less than or equal to 
one. This replacement causes py to vanish when py goes 
to zero. Specific values for A^ are 0 or 1. 

Placing Eqs. 15 and 16 in r„, gives well conditioned 
eigenvalues in the limit of low Mach numbers, 

r >PM 
ukp/V* 
Vkp/V? 

MV wt 

hpPf 

hpupf 

kpVpf 

hpwprp 

h° kp/V? -1   pu   pv   pw   ArA°pr + pfcf 

(17) 
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V2 
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Wr2 hp^ 

«p    cp j 

:UrfJ 4Ayirf       CP i 
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1+hp 

T 

Wr2 ty 

V?   Cp) 

(20a) 

1-hr 

2c„k, 1ZE., 
V?T 

IMr2}* 

V*   CPJ 
(I-A;)+2 ^.kj. 

\   YMr2^ 

\CP V2 
r  J>. 

(20b) 

where Mr = VfJc is the reference Mach number. The 
behavior of this eigenvalue is difficult to determine from 
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the algebraic form, but it is seen that as the Mach number 
goes to zero, the eigenvalues approach a constant times the 
particle speed.  Numerical checks verify that this constant 
is of order unity and the eigenvalues are well-conditioned. 
Stability results for this condition are presented later. 

For incompressible flow, the coefficients a and b become: 

<i = l/2,   b=(vf/kpu2 + l/4) (21) 

which are clearly well-behaved. Choosing kp = 2 gives 
eigenvalues whose ratio is no worse than 2. This choice is 
identical to the artificial compressibility method of Chorin 
[2]. We also note that for incompressible flow, it is not 
necessary to set Aj* = Af to obtain simple algebraic 
eigenvalues, and the third "particle" eigenvalue becomes X 
= uhjlhtp, so the parameter h!p can be selected to control 
convergence in the energy equation if desired. 

4      LOW REYNOLDS NUMBER EQUATIONS 

Having obtained some understanding of the way the Euler 
equations scale, we now turn to the Navier-Stokes equations 
and consider their proper scaling in the limit of low 
Reynolds numbers. Here, we use a similar perturbation 
expansion, but we let the small parameter, E, be the 
Reynolds number, Re. We begin by premultiplying (11) 

by the matrix PJ , 

'    l 0     0     0 0^ 

-u 10     0 0 

P~l = -V 0     10 0 

-w 0     0      1 0 

{-»&* -u   -v   -w   1 

This multiplication gives the matrix 

(p'p ° 0   0    p^' 

0    p 0   0     0 

p_1r = 0    0 p   0     0 

0    0 0   p     0 

,-i o 0   0   pAf, 

(22) 

(23) 

and results in the convective terms, 

(dpu 
{a* 

du    dp        dw        dh       dp 
— ,pu— + -£,pu~r--,PU- U-f- 
ax dx    ox        ox        ox       ox 

(24) 

for the x-direction.  Multiplication by PJ-1 does not affect 
the viscous terms in the momentum equations, but the 
corresponding terms in the energy equation reduce to the 
conduction term plus the viscous dissipation. The modified 
energy equation becomes: 

,, 3P -h'p-^ + pfy — ' 
ar 
dt ox ox 

(25) 

where 4> is the viscous dissipation, and we have omitted 
convective terms in y and z. These equations can then be 

scaled for low Reynolds numbers to see how our three 
parameters p'„, p'x and Aj» must behave in the diffusion- 

dominated limit. 

For low Reynolds numbers, we scale the momentum 
equations such that the temporal derivatives and the 
pressure gradient remain of the same order as the viscous 
terms as the Reynolds number goes to zero. This defines 
the proper scaling for the pressure (pr - fir VflL) and the 

time (rr=prL
2 /]ir), but imposes no conditions on any 

of our three preconditioning parameters. 

Using this reference pressure and time and requiring that the 
temporal term in the continuity equation balance the 
convective terms at low Reynolds numbers, results in the 
condition on p'p. 

2 /v2 p'p = kpRe</V? (26) 

To prevent the temporal derivative of the temperature from 
appearing in the momentum equation, we also require, 

p'T = kfpPTRelTr (27) 

In these expressions, kp is a constant of order unity, while 

hp is less than or equal to one. 

Scaling the energy equation in a manner consistent with 
these definitions results in the requirement, 

hi = k'hcpr/Pr (28) 

where c„r is a reference specific heat, Pr is a reference 
Prandtl number, and k^ is another constant of order one. 

The resulting low Reynolds number equations in one- 
dimension then become: 

,,  dp dll dp        rn    dT      n 

du    dp _ d 4    du 
p"ä7+ä^_ a* 3^a* 

(29) 

,,dT 
kh-dT 

= v-*vr+<i> 

Note that in the energy equation, we have assumed that the 

quantity V? I cprTr is small. Retaining it adds a pressure 
gradient term to the energy equation, but does not affect the 
requirements placed upon our three parameters. Equations 
(30) are the creeping flow equations. 

5       SUMMARY OF PRECONDITIONING 
PROCEDURE 

The correct asymptotic form of the three parameters, p'p, 

p'f and Af, as determined from the low Mach number 
scaling and low Reynolds number scaling is summarized in 
Table I. Use of these values ensures that the equations are 
properly scaled in these two limits. To use these 
parameters for computations at other than the limiting 
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transitions smoothly between these limits while also 
approaching the non-preconditioned equations for high 
Reynolds number, transonic flows.  This functional form 
will be developed by combining these limiting values into 
a single continuous function and then verifying the results 
first by means of stability theory, then by simplified 
computational problems, and finally by practical 
applications at low speed, low Reynolds number and 
transonic conditions. 

Preconditioning the Euler equations is relatively easy, but 
preconditioning the Navier-Stokes equations is more 
difficult for several reasons. First of all, the appropriate 
Reynolds number must be determined. Stability results 
show that the cell Reynolds number, «Ax/v (where u 
represents the local velocity, Ax represents the grid 
spacing and v is the kinematic viscosity), is the 
appropriate viscous scale, and that diffusive effects become 
dominant at cell Reynolds numbers less than unity. The 
transition from inviscid- to viscous-dominated flows thus 
depends on both the flowfield and the grid. Viscous flows 
can switch from convection-dominated to diffusion- 
dominated because of increased grid resolution or 
stretching. The second reason for difficulty arises because 
the presence of boundary layers at high Reynolds numbers 
requires high aspect ratio grids with fine resolution normal 
to the walls.  Correspondingly, there are two cell Reynolds 
numbers of widely differing magnitude. The one based on 
the normal grid spacing is generally diffusion dominated, 
while the one based on the streamwise spacing is generally 
convection-dominated. The issue in viscous 
preconditioning is to deal with near-wall cells that are 
viscously-dominated in one direction and convectively- 
dominated in the other, while simultaneously treating 
convectively-dominated cells in regions away from the 
walls. 

We demonstrate two ways in which the limiting forms of 
the artificial properties in Table I can be combined into a 
single function that can be used over the full Reynolds- 
Mach number domain. The parameter p'p is the primary 
quantity in controlling eigenvalues, and we begin by 
considering this quantity.  The simplest procedure is to 
choose p'p as the minimum of the viscous and inviscid 

values, 

p'p=(kp/V?)Min{l,Re} (30) 

where we have used the same constant at both conditions. 
This is equivalent to using the smaller of an inviscid or 

Table I.   Preconditioning Parameters Dictated by 
Reynolds and Mach Number Scaling 

Term 
Low 

Mach 
Number 

Low 
Reynolds 
Number 

P'P hM k'pRe2/V? 

Pr kTpT kj< PJ< Re 

hfp khhj. K fh/Pr 

viscous time step and has proven effective in many 
problems [11].   Clearly, this corresponds to switching 
from the inviscid to the viscous value when the Reynolds 
number goes below unity. The most appropriate Reynolds 
number for this switch is the cell Reynolds number. 

The function in Eq. 30 can likewise be made to merge 
smoothly with the physical properties at transonic 

conditions by noting that at Mach one, Vr =c , so that if 

we choose kp = k'p = y. Eq. 30 degenerates to pp = Pp at 
Mach one. (In computations for incompressible flow we 
have generally chosen kp = k'p = 1.33). The remaining 
artificial properties can be made continuous by setting 
kp = Wp = 0, and by setting kfr = 1 and k'h = Pr. This 
latter choice does not precisely satisfy the viscous 
matching condition, but since the Prandtl number for most 
gases is near one, it is close enough to give good results. 
All the examples we give are based on mis combination of 
artificial properties. 

The second procedure is similar, but instead of using a 
function with a discontinuous slope for p'p we make both 

the function and its derivatives continuous. Here we define 
the three parameters as: 

P'P=^ 
Re2 

(31) 

1+Re2^ 

^    Prl,   1+Re   J 

These functions reach the proper limits at low Reynolds 
numbers, low Mach numbers, and at high Reynolds 
number, transonic conditions.  In particular, the function 
for hfp switches continuously from unity to 1/Pr as the cell 
Reynolds number goes through unity. When the Mach 
number approaches unity, Tv, approaches the physical 
Jacobian, 3ß/dßv> an^ me preconditioned equations 
become identically the physical equations.  Choosing kj- = 
0, as in the first example gives simpler pre-conditioned 
equations, but only causes the modified eigenvalues of the 
equations to approach the physical eigenvalues as the 
Mach number goes to unity. The equations remain distinct. 

In summary , we scale the time derivatives at high cell 
Reynolds numbers to keep the convective eigenvalues 
well-conditioned, whereas at low cell Reynolds numbers, 
we scale so that the equations reduce to simple diffusive 
equations. We also scale the dominant convective speed so 
that it is the same order as the diffusive time-scale. The low 
Reynolds number scaling causes the convective terms to 
become stiff, but because they are small, this doesn't slow 
convergence. To assess this scaling, we use Fourier 
stability theory for the full Navier-Stokes equations using 
Reynolds number and Mach number as parameters. 

6       STABILITY AND CONVERGENCE OF THE 
PRECONDITIONED EQUATIONS 

We begin by comparing the stability characteristics of the 
two-dimensional Euler equations with and without 
preconditioning at a Mach number of 0.01 and a flow angle 
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Figure 1:   Euler: 
tioning, CFL=5 

CD-ADI, M=0.01, No Precondi- 

of 45°.  Figure 1 shows results for the non-preconditioned 
case, while Fig. 2 is for the case with preconditioning. 
Both of these stability predictions are for central 
differencing in space and ADI approximate factorization in 
time.  The stability results without preconditioning 
indicate the amplification factor is nearly unity (0.9999) 
over the mid- and low-wave-number regions, thereby 
vividly demonstrating the stiffness that is encountered at 
low speeds. 

By contrast, the amplification factors in Fig. 2 for the 
preconditioned case are quite reasonable with damping rates 
of around 0.9 over most of the mid- and low-wave-number 
ranges with sharp fall-off along the axes (except at the 
corners) indicating that the preconditioned system will 
provide fast, efficient convergence at this low Mach 
number condition. We do note that the amplification factor 
goes to unity in all four corners, but these peaks are easily 
removed by a small amount of artificial dissipation. 
Companion stability results (not shown) indicate that this 
preconditioned stability result is independent of Mach 
number, and that it is nearly identical to that for the non- 

Figure 3: Euler: LGS-4, I/III, M=0.01, No Precon- 
ditioning, CFL=20 

preconditioned equations at a Mach number of 0.7, 
suggesting that convergence with the preconditioned 
system will be similar to the efficient convergence 
observed with the non-preconditioned system at high 
subsonic Mach numbers.  The non-preconditioned 
eigenvalues in Fig. 1, however, indicate that this case will 
converge very slowly, an indication that if verified by 
computations.  This demonstrates the ease with which the 
stiffness in the Euler equations can be removed. 

To further demonstrate the effectiveness of the 
preconditioning, we show stability results for similar 
conditions in Figs. 3 and 4, except that upwind 
differencing is used for the spatial discretization and line 
Gauss-Seidel approximate factorization is used for the 
solution procedure.  Figure 3 shows the non-preconditioned 
stability results for M = 0.01. These eigenvalues again 
contain an unacceptable stiffness in the low-wave-number 
region.  This stiffness is, however, removed by the 
preconditioning as shown in Fig. 4.   Again, this 
preconditioning renders the stability results essentially 

Figure 2: Euler: CD-ADI, M=0.01, With Precondi- 

tioning, CFL=5 

Figure 4:  Euler:  LGS-4, I/III, M=0.01, With Pre- 
conditioning, CFL=20 
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Figure 5: Effect of inviscid preconditioning on the 
number of iterations to converge to machine zero 
versus the Mach number. 

independent of Mach number, and gives uniform 
convergence at all Mach numbers. 

The significance of these stability results is easily shown 
by applying them to a simple flowfield consisting of 
inviscid flow in a straight duct. Figure 5 shows the 
convergence of the ADI system from an initial condition 
corresponding to a small perturbation from the exact 
(uniform flow) solution.   Although this problem appears 
trivial, the return to uniform flow at low Mach numbers 
takes thousands of iterations without preconditioning, but 
is independent of Mach number with preconditioning. The 
number of iterations required for convergence without 
preconditioning is inversely related to the square of Mach 
number, and at M - 10% some 1(P iterations are required 
to reach convergence to machine error. When 
preconditioning is used, the number of iterations required 
for convergence is independent of Mach number and is 
similar to the number required for the non-preconditioned 
case at transonic conditions. The actual convergence rates 
for some of these cases are shown in Fig. 6. Similar 
preconditioned and non-preconditioned results are observed 
for the line Gauss-Seidel, upwind system.  Applications to 
a wide range of practical problems have been demonstrated 
elsewhere [11-14], giving ample evidence that the Euler 
equation problem is well in hand. 

No pretonditiouing. M ~l) I 

iV<*n»»i iklil+^ikrt* 

 1 , ,  

400 600 

No. Iterations 

—T I  

800 1000 

Figure 6: Convergence of the inviscid straight duct 
case at various Mach numbers using the original 
equations and the preconditioned equations. 

Figure 7: Navier-Stokes Eqns.: CD-ADI, M=0.001, 
/<YA.,-0.1,     Viscous     Preconditioning,     CFL=5, 

VNN=5 

To complete the stability survey for the Euler equations, we 
note that the stability results for the artificial 
compressibility version of the incompressible equations 
are identical to the low Mach number results in Figs. 2 and 
4. These results clearly demonstrate the ability of the 
preconditioning method to apply equally well to 
compressible and incompressible solutions. 

Stability results for the preconditioned Navier-Stokes 
equations are given on Fig. 7. These results are for the 
central-differenced ADI system at a cell Reynolds number of 
0.1 and a Mach number of 0.01. (Note results for high cell 
Reynolds numbers are identical to the Euler results given in 
Fig. 2.) The viscous preconditioning is not quite as 
effective in controlling the stability eigenvalues as in the 
case of the Euler equations, but it still improves the 
stability map dramatically as compared to non- 
preconditioned results.  Eigenvalues over most of the 
domain are around 0.9 with some increase toward the higher 
wavenumbers that arises because of the absence of diffusion 
in the continuity equation. The addition of artificial 
diffusion in continuity eliminates this difficulty and 
provides good viscous convergence as is shown next. 
Comparison with stability results based on the non- 
preconditioned equations or preconditioning with p'p set 
to its inviscid value rather than its viscous value shows a 
substantial deterioration in eigenvalues for either case. 
Without preconditioning, the eigenvalues become very 
stiff, and while inviscid preconditioning changes the 
stability eigenvalues, it doesn't improve them.   Clearly, 
viscous preconditioning is needed as the cell Reynolds 
number decreases. 

Figure 8 demonstrates the effectiveness of the viscous 
preconditioning for the Navier Stokes equations for a second 
simple problem, that of fully developed flow in a pipe. 
Again, the initial condition corresponds to the exact 
solution plus a small perturbation. The figure shows the 
number of iterations required to converge to machine 
accuracy for cell Reynolds numbers ranging from 10"5 to 
10.   With viscous preconditioning, convergence is seen to 
be independent of cell Reynolds number over the entire 
spectrum.   Solutions with inviscid preconditioning show a 
dramatic slowdown in convergence at the smaller Reynolds 
numbers, while computations with no preconditioning were 
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Figure 8: Convergence of the viscous straight duct 
case at various Cell Reynolds numbers using inviscid 
preconditioning or viscous preconditioning. 

veiy irregular, and frequently did not converge. The flow 
Mach number for these calculations is taken as 10~-\ 

7       REPRESENTATIVE SOLUTIONS FOR 
PRACTICAL PROBLEMS 

Thus far we have shown how to transform the time 
derivatives so that the equations are well conditioned over 
the entire Reynolds-number / Mach-number regime. We 
have then used stability results for both the Euler and the 
Navier-Stokes equations to verify that these preconditioned 
equations provide effective damping factors. In addition, we 
have also shown that the preconditioning equations provide 
uniform convergence for simple problems at all Reynolds 
numbers and Mach numbers. The ultimate proof of 
convergence enhancement must, however, rest upon 
demonstration of effectiveness in practical problems.   Over 
the past several years we have applied these systems to a 
broad variety of applications including low speed 
compressible flows, combustion problems, incompressible 
flows, supercritical fluids and extrusion modeling.  Space 
does not permit a complete demonstration of all these 
examples, but we present some representative results to 
demonstrate the capabilities. 

Figure 9 shows results for laminar flow over a backstep at a 
Reynolds number of 200. The «-velocity contours are 
shown, along with the convergence rate with the 
preconditioned and non-preconditioned cases.  These 
computations are done with the line Gauss-Seidel algorithm. 
Clearly, viscous preconditioning provides a major 
enhancement to the convergence rate. 

As a second example, we consider the flow through a 
converging diverging, rocket nozzle.  The turbulent 
boundary layers in this nozzle are very thin because of the 
high Reynolds number, and strong wall cooling.  The 
corresponding strong grid stretching (aspect ratios larger 
than 10") required near the wall introduces important low 
Reynolds number effects in this otherwise high Reynolds 
number flow.  With standard algorithms, the solution 
converges at a reasonable rate for about four orders of 
magnitude (which would appear to be sufficient), and 
switches to a very slow rate of convergence. With 
preconditioning, the convergence continues to machine 
zero at a rate that is faster than the initial convergence of the 
non-preconditioned solution. The heat flux to the wall is 
shown in Fig. 10 as a function of axial distance for both 
calculations at several time steps. The lower plot shows 

that the preconditioned solution gives reasonable results 
after only 200 iterations, while after 400 iterations, the heat 
flux is indistinguishable from the machine-accuracy results. 
The standard algorithm produces very different results. After 
2000 iterations (which corresponds to three orders of 
magnitude reduction in the global residuals), the wall heat 
flux is only about half its final converged value, and it takes 
more than 20,000 time steps to come within plotting 
accuracy of the fully converged result When converged to 
machine accuracy, both the standard and the preconditioned 
algorithms give identical results. This shows that low 
Reynolds number cells near the wall (which determine the 
wall heat flux) can also totally control the overall 
convergence of the solution. 

As a final example, we present a simulation of the flow in a 
uni-element gaseous rocket. The flowfield is generated by 
two co-annular jets entering through the left end of a 
cylinder whose diameter is 50 mm. The gas in the inner 
stream is oxygen, while that in the outer stream is 
hydrogen. The outer diameter of the hydrogen jet is 12 mm, 
giving a 38 mm backstep past which the jets exapand. The 
diameter of the oxygen jet is 8.4 mm, the hydrogen annulus 
is 1 mm, and the two are separated by a sleeve of thicknces 
0.8 mm.  An overall picture of the flowfield is given in Fig. 
11. The back step generates a large recirculating region near 
the outer wall. The two gaseous streams begin to mix upon 
exiting the injector, but the finite thickness of the sleeve 
generates a small wake in which the hydrogen and oxygen 
first start to mix. This mixing region is very important to 
the computation because it acts as the primary flame- 
holding mechanism for the resulting diffusion flame 
(although the present results are for non-reacting flow). 

Initial attempts at computing this flowfield with 
preconditioning showed very poor convergence.   Although 

400 600 

No. Iterations 

1000 

Figure 9: Contours of velocity and convergence for 
the backward-facing step at a Reynolds number of 
100 using the four-sweep Line Gauss-Seidel scheme. 
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Figure 10: Temporal convergence of the heat flux 

along the nozzle wall for both the standard algo- 

rithm and the enhanced algorithm. 

the non-preconditioned system did not converge well, it did 
converge slightly better than the preconditioned one. 
Careful investigation revealed that the reason for the 
convergence difficulty was because a steady solution failed 
to exist. The resulting flowfield was oscillatory in nature as 
determined by experimental observations.  In addition, the 
computations showed the unsteadiness increased in strength 
as the grid was refined. The reason the preconditioned 
system showed poorer convergence was that it introduced a 
smaller amount of artificial dissipation than did the non- 
preconditioned system.  (All computations were run with 
upwind flux difference splitting.) The velocity contours in 
the resulting unsteady solution is presented  in Fig. 11 at 
three different instants of time. 

The source of the unsteadiness appears to originate in the 
recirculating zone in the wake of the finite thickness sleeve 
between the two inlet streams.  A close-up view of this 

0.010 

Figure 11:   Unsteady Velocity Field near Injector 

Post for Hydrogen/Oxygen at O/F = 4. 

region is given in Fig. 12. The details show that in this 
recirculating region, the heavier oxygen from the lower 
stream makes up the primary content of the recirculating 
region.  The hydrogen mixes with the oxygen only along 
the upper side of the recirculating region.  When the 
recirculation region sheds a vortex, it induces a substantial 
unsteadiness in the lighter hydrogen stream, which is then 
propagated into the recirculation region downstream of the 
backstep so that the entire flowfield oscillates in response 
to this narrow wake region. 

Plots of the time rate of change of the velocity at a particular 
point near the wake region are given on Fig. 13.  Even in 
the unsteady solution, the preconditioned Tesults show 
larger amplitudes than do the non-preconditioned solutions. 
This is again because of a diminished amount of artificial 
damping. The impacts of increased artificial dissipation are 
shown by the first-order upwind results which are nearly 
steady.   Comparisons with analytical solutions for simple 
shear layers indicate that the preconditioned results are more 
accurate. 

00100 00105 00110 00115 

Figure 12: Velocity Vector/Streamline Field near In- 

jector Post for Hydrogen/Oxygen Calculation 
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One issue with regard to preconditioned systems is then- 
impact on code robustness. We have encountered many 
experiences in which preconditioning improves robustness 
(i.e., cases where the non-preconditioned code fails to 
converge, while preconditioning makes convergence very 
reliable). It must, however, be recognized that 
preconditioning increases the local time step dramatically 
and this large time step may require some restriction at early 
stages of the computation (although the restricted time step 
may still be larger than the corresponding non- 
preconditioned time step).  The present example, however, 
demonstrates that there are some cases for which the 
preconditioning may not improve convergence because a 
steady solution does not exist.  In these cases, the 
preconditioned system proves its worth in an unsteady, 
iterative solution procedure. 

8       CONCLUSIONS 

The proper limiting forms of the equations of motion at 
low speeds and in diffusion-dominated regions have been 
obtained by perturbation expansions and used as the basis 
for defining a preconditioning matrix for convergence 
enhancement.  The expansion results show that pp  is the 

most important variable in controlling convergence while 
PT and hp are of secondary importance. Convergence 
control can be obtained by replacing these physical 
derivatives by artificial ones in the time derivatives, while 
retaining the physical quantities in the flux terms so the 
solutions are unchanged.   Appropriate replacement terms 
for these quantities obtained from the expansion procedures 
are then generalized so that they approach the physical 
quantities in the transonic and supersonic regimes. 

Following the development of a generalized preconditioner 
that ensures that the condition number of the Jacobian 
matrices of the equations of motion remain of order one at 
all Mach numbers, the resulting convergence characteristics 
are First checked by means of stability theory. The 
effectiveness of the methods is then verified by 
computations of a variety of problems, starting first with 
simple applications and then going to practical examples. 
Efficient, uniform convergence is demonstrated for a variety 
of applications covering a range of Reynolds and Mach 
number conditions.  Overall, it is demonstrated that 
convergence enhancement of the Euler equations at low 
speeds is quite easy and can be readily ensured. Extension to 
the Navier-Stokes equations requires more care, but the 

Time - ms 

Figure 13: Time History of Axial Velocity at one 
point in the Injector Flowfield for various differenc- 
ing schemes 

present procedure provides much improved convergence 
rates in some of the traditional problem areas for time- 
marching methods, while having no detrimental effects in 
regimes where the methods already work efficiendy. 
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Abstract 
Implementation issues associated with the applica- 
tion of Krylov subspace iterative methods, such as 
Newton-GMRES, are presented within the frame- 
work of practical CFD applications. This paper will 
categorize, evaluate and contrast the major ingre- 
dients (function evaluations, matrix-vector products 
and preconditioners) of Newton-GMRES Krylov sub- 
space methods in terms of their effect on the local 
linear and global nonlinear convergence, memory re- 
quirements, and accuracy, The discussion will focus 
on Newton-GMRES in both a structured multi-zone 
incompressible Navier-Stokes solver and an unstruc- 
tured mesh finite-volume Navier-Stokes solver. Ap- 
proximate vs. exact matrix-vector products, effective 
preconditioners and other pertinent issues will be ad- 
dressed. 

1    Introduction 
Interest in iterative methods in CFD has been mo- 
tivated not only by the requirement for better con- 
vergence and speed of numerical codes, but also by 
the availability of faster, larger memory serial and 
parallel machines. The coupling of Newton's method 
with iterative solvers is an effective approach for solv- 
ing the large systems of nonlinear equations which 
arise from discretized forms of the Euler and Navier- 
Stokes equations. One of the main motivations for 
the use of Newton's method is the possibility of su- 
perlinear (and in some cases quadratic) asymptotic 
convergence. References [7, 21] are examples of suc- 
cessful implementations of exact  Newton's method 

for two-dimensional Navier-Stokes codes. Most of the 
conventional implicit schemes used today are effec- 
tively approximate-Newton methods. The approxi- 
mations appear in the form of simplifications in the 
functional Jacobian or some form of under/over relax- 
ation strategy, see e.g. [11] or [15]. In practice these 
simplifications are employed for reasons such as effi- 
ciency, implementation ease, or non-analyticity of op- 
erators (e.g., discrete limiters in differencing schemes 
based on Riemann solvers). Over a wide range of 
numerical methods developed for the solution of the 
multidimensional Navier-Stokes equations, the rigor- 
ous application of Newton's method would require 
the inversion of a large block banded matrix, which 
even by today's standards, poses many obstacles in 
terms of memory requirements and speed. An alter- 
native to direct matrix inversion is the use of itera- 
tive matrix solution methods. In particular, the class 
of Krylov subspace methods known as GMRES [19] 
will be considered. Wigton [23] was the first to suc- 
cessfully implement GMRES for a two-dimensional 
Navier-Stokes code. 

The difficulties associated with iterative methods 
such as GMRES lie in the rapid expansion of mem- 
ory requirements inherent in the embedded Arnoldi 
process (storing the Krylov subspace vectors), the 
need to perform the matrix vector "Ap" products 
(which sometimes requires the storage of the matrix 
A), and the preconditioning of the system of equa- 
tions by some approximate inverse of A to improve 
the convergence of GMRES. 

The purpose of this paper is to focus on the im- 
plementation details and specific results from the 
application   of  Newton-GMRES   to   both   a  struc- 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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tured multi-zone incompressible Navier-Stokes code 
(INS2D, Rogers [17]) and an unstructured mesh 
Navier-Stokes code due to Barth [5]. We use these 
two codes as case studies, but the lessons learned, ap- 
proximations assumed, results obtained, and general 
conclusion, are applicable to most implementations 
of Newton-GMRES to systems of PDE's. 

2    General Formulation 

In a general form, we cast the discrete approximation 
to the steady multi-dimensional Navier-Stokes equa- 
tions as 

ft(Q)    =    K(---,Qj,k-uQj-i,k, 

Qj,k, Qj + l,k, Qj,k-1, ■ ■ •) = o,   (i) 

where we are representing the support of the oper- 
ator as involving neighboring points in a computa- 
tional mesh and Q is the solution variable (typically 
the conserved variables). Although this representa- 
tion appears in a structured mesh form and is rather 
compact (involving only three points in each compu- 
tational direction), we intend it to also represent an 
unstructured mesh template and possibly higher or- 
der - higher dimensional - more broadband support. 
We shall refer to this as the Function Evaluation 
step in the overall process. For fixed point solutions 
(steady-state) we require the solution of 7£(Q) = 0. 

A time accurate approach to the solution assumes 
the form of 

3Q 

~dt 
+ ft(Q) = 0 (2) 

which can 
either represent the artificial-compressibility scheme 
for the incompressible Navier-Stokes equations [17] or 
the full Navier-Stokes unstructured mesh scheme [5]. 
Applying implicit Euler time differencing with the 
usual Taylor series linearization in time we have 

D 

At 

dnioy 
<9Q 

AQ = K(Q)n 
(•'5) 

with AQ = Qn+1 - Q", ^jp" the Jacobian (A) 
of the Function Evaluation , fc(Q), and D a pos- 
itive diagonal matrix. For At —' oo this is exactly 
Newton's method and for finite At a relaxed form of 
Newton's method. In many applications of Newton- 
like methods to the Euler and Navier-Stokes equa- 
tions this time-like relaxation is used to start the so- 
lution process. A finite time step At is used initally 
to get past the rather violent nonlinear startup and 
then increased to At —> oo leading to rapid linear, 

super-linear or quadratic convergence depending on 
the characteristics of the Newton solver, e.g.[21] or 
[5]. It is convenient to recast Eq. 3 in the general 
form 

b-Ax = Q, (4) 

where b = 7£(Q), x = AQ and A is a matrix opera- 
tor. 

The numerical process involved in solving Eq' 3 will 
be referred to here as the Inner Iteration at a par- 
ticular step n. The overall iteration of the nonlinear 
system will be referred to as the Outer Iteration 
. There are a number of successful approaches to 
the Inner Iteration. In the case of structured mesh 
applications, A represents a sparse block banded ma- 
trix which can be solved with various methods such 
as point or line relaxation [17] or approximate fac- 
torization, e.g.[14]. In the unstructured mesh case, 
A may not have a simple underlying structure, but 
the Inner Iteration can be successfully solved with 
a wide variety of relaxation techniques [22], [5]. For 
the present discussion we shall focus on the GMRES 
Krylov projection technique for solving the Inner It- 
eration. 

The GMRES (Generalized Minimal RESidual) 
method was introduced by Saad and Schultz [19] 
for solving large sparse systems of linear equations. 
The GMRES algorithm is a Krylov subspace method 
where given a matrix A G $iNxN, a vector « £ 3?^ 
and an integer rn > 1, the Krylov subspace associated 
with A, v and rn is defined as 

Km(A,v) = span{v,Av,A2v,- ■ ■ ,Am~}v}.        (5) 

In the GMRES algorithm an initial guess xo to the 
solution of the linear system is given from which the 
initial residual is defined 

J-o = b — -4x(J (6) 

The GMRES method then attempts to find zm G 
Km(A, r()) such that the residual vector b — ^4(x0 + 
zm) is small . This is done so that at each iteration 
the residual norm is minimized. One important pa- 
rameter for the GMRES method is the size of the 
subspace rn. As rn increases, the memory increases 
linearly and the computation quadratically. The pa- 
rameter rn is usually chosen based on storage require- 
ments and effectiveness of the Inner Iteration. In 
the discussion below, we will have more specific things 
to say about this requirement and it's effect on the 
overall process. To avoid the increasing memory and 
computation requirements with increasing rn, a com- 
mon modification of GMRES is to apply restarts. An 
upper bound rnr on rn is chosen and if convergence is 
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not reached, the Krylov subspace process is restarted 
with the current residual rmr replacing TQ. In this 
case, the memory requirements are traded off against 
the convergence of the Inner Iteration process, and 
this will definitely affect the Outer Iteration . 

Numerical experience has shown that success or 
failure of GMRES hinges critically on adequate pre- 
conditioning of the linear systems to be solved. A 
preconditioning matrix M is usually applied in ei- 
ther a left-preconditioning M(b — .4x) = 0 or right- 
preconditioning b - AMy = 0 (with y = M_1x) 
fashion. Ideally M should be chosen to be an approx- 
imation to A-1. Although, the most successful and 
popular form of M appears to be ILU [13] (Incom- 
plete Lower-Upper Factorization), we will also con- 
sider alternate preconditioners in the next section. 

The important ingredients of the Newton-GMRES 
method which we will focus on in this paper are the 
Ap products required to form the Krylov subspace 
vectors Km(A,v), the choice of the preconditioner 
M, the size of the subspace m and restart size mr, 
and the storage requirement influenced by all these 
factors. We will attempt to put the various trade offs 
in terms of memory requirements, convergence and 
efficiency in perspective, (in particular for the two 
approaches discussed here, but also in general). 

3    Structured      Mesh     Incom- 
pressible Navier-Stokes 

Rogers [17] has implemented the Newton-GMRES 
algorithm into a two-dimensional incompressible 
Navier-Stokes code (INS2D) and has made some 
significant comparisons with the conventional tech- 
niques of implicit point and implicit Gauss-Seidel 
line relaxation. The INS2D flow code [18] solves 
the Reynolds-averaged incompressible Navier-Stokes 
equations using the method of artificial compressibil- 
ity, [9]. It is capable of handling multiple-zone struc- 
tured grids using either a patched multi-block (point- 
wise continuous) interface, or an overlaid (chimera) 
interface between zones. The boundary conditions 
at the physical boundaries and at zonal boundaries 
are applied in an implicit fashion during the solution 
process. A third-order, upwind-differencing scheme 
based on the method of Roe [16] is used to descritized 
the convective terms, and the viscous terms are dif- 
ferenced using second-order central differences. The 
system of equations is integrated in pseudo-time us- 
ing an implicit Euler time discretization. Typically, 
the time step is set to infinity (108) which results in a 
Newton's method approach where the implicit point 
or line relaxation schemes are used for the Inner It- 

eration or more specific to this paper, GMRES is 
used for the Inner Iteration. 

In the current implementation, the Jacobian A is 
formed based on a first-order differencing of the con- 
vective terms, whereas third-order differencing is used 
for 7£(Q). In addition, approximate Jacobians of 
the Roe flux differences from the upwind-differencing 
scheme are used in the definition of A, see [1] for more 
details. The first-order difference operator is used 
to reduce the bandwidth of the resulting A matrix, 
which has lower memory and computational require- 
ments for the solution of Eq. 3. However, this use of 
approximate Jacobians can also slow the convergence 
to a steady state, that is, the Outer Iteration non- 
linear Newton process is affected. 

The GMRES implementation is preconditioned us- 
ing block ILU(O) [13] and the matrix A is stored 
so that Ap products can be efficiently formed and 
the ILU process streamlined. For comparison, block 
point relaxation and block line relaxation are used 
as both the Inner Iteration solver and as precon- 
ditioners for the GMRES Inner Iteration process. 
Including a subspace size typically on the order of 
m = 10 leads to additional storage requirements as 
discussed below which are somewhat of a burden in 
two dimensions and would be a significant hindrance 
in three dimensions. The use of the approximate Ja- 
cobian (due to the first order form and the lineariza- 
tion errors associated with the Roe solver) produces 
an approximate Newton's method and therefore lin- 
ear convergence is realized as opposed to the potential 
for quadratic convergence. 

Rogers [17] examines a wide range of cases and 
options in his paper on the Newton-GMRES imple- 
mentation. Table 1 shows the characteristics of the 
cases presented and itemizes the costs of the vari- 
ous schemes for each case broken down by the fun- 
damental steps in the algorithm. Base memory (B 
MW) includes all overhead storage for the algorithm 
including memory for either L (line relaxation), P 
(point relaxation) or the Ap product in G (GMRES) 
(w 76 words/point). The additional memory (A 
MW) is composed of subspace size (ss 3 x (m + 4) 
words/point) and preconditioner (RS 9 words/point) 
contributions for GMRES. The timings are in ms/pt 
: milliseconds/point to convergence, (maximum di- 
vergence « 10-8). The standard approaches of point 
relaxation and line relaxation are compared directly 
with the Newton-GMRES scheme and are also as- 
sessed as preconditioners for Newton-GMRES. The 
first few cases are for a NACA 4412 airfoil an an- 
gle of attack a = 13.87° and a Reynolds number, 
Re — 1.5 x 106 and are computed on a set of refined 
grids. The multi-element case is a three element air- 
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foil at a = 8° and Re = 9 x 106, a schematic of the 
grid system is shown in Figure 1. 

Figures 2, 3, 4, 5 show comparisons for the above 
cases, where the symbols represent every 50 Outer 
Iteration . It seems obvious from these results that 
the GMRES-ILU combination is the more efficient in 
terms of computation time. On the other hand, the 
negative aspect of the GMRES-ILU combination is 
the memory requirements. By examining the trade 
offs between CPU time to convergence and memory 
requirements optimal choices can be made. 

For example, Figure 2 shows the effect on CPU 
time to convergence for various choices of m. A sub- 
space size m — 10 seems to be optimal in terms 
of computational costs, including reasonable added 
memory requirements. Also, note that for the con- 
verging cases of m = 10, 20,40, it required 50 Outer 
Iteration to reach the same level of convergence 
(CPU times are larger reflecting the added computa- 
tional costs of a larger subspace size). This is not sur- 
prising since the inexact Jacobian used in this scheme 
limits the Inner Iteration process to linear conver- 
gence. Therefore, after some point, it does not pay 
to converge the Inner Iteration past some toler- 
ance level without incurring additional cost in terms 
of CPU time and memory. 

Iteration tolerance level e thereby solving the GM- 
RES step more accurately. In this case, to reach 
a certain convergence criteria, e.g.Outer Iteration 
residual to 10~8, in the least number of iteration, re- 
quires decreasing e, e = 10-5 gets there in 50 Outer 
Iteration . On the other hand, the CPU time cost 
(shown in milliseconds/point) and average subspace 
size m (which leads to addition memory requirements 
proportional to m) indicate that a loose tolerance, 
say e ta 10"1 and small m produce the most efficient 
combination. This leads to m = 10 as the optimal 
choice both in terms of CPU efficiency and memory 
requirements. 

Memory estimates for the three-dimensional code 
INS3D include a base memory of 146 words/point, 
additional GMRES memory: 4 x (m + 4) words/point 
and preconditioner memory of 16 words/point. 
Thus for GMRES(10)+ILU(0) the total memory 
is 218 words/point. Examples include a simple 
wing: 0.2 million points (Mpoints): 43.6 MW, a 
wing+slat+flap: 1.6 Mpoints: 349 MW, and a C17 
Aircraft: 25 Mpoints: 5450 MW = 5.45 GW. These 
requirements are excessive in three-dimensions and 
need to be reduced if these codes are to be used in 
practice. 

Case Method B MW A MW ms/pt 

Airfoil L(5) 0.28 0.006 1.98 
Grid 1 P(20) 0.28 0.001 2.31 
119x31 G(10)+LR 0.28 0.161 3.17 

G(10)+PR 0.28 0.156 2.12 
G(10)+ILU 0.28 0.188 1.14 

Airfoil L(10) 1.10 0.011 3.68 
Grid 2 P(20) 1.10 0.002 5.13 
237x61 G(5)+L 1.10 0.618 3.77 

G(10)+P 1.10 0.609 4.48 
G(10)+ILU 1.10 0.737 1.45 

Airfoil L(10) 4.35 0.023 8.79 
Grid 3 P(40) 4.35 0.004 12.56 
473x121 G(10)+ILU 4.35 2.920 3.91 
Multi- L(10) 5.17 0.015 49.7 
Element P(20) 5.17 0.003 14.7 
68K pts G(10)+ILU 5.17 3.468 5.37 

Table 1: Cost comparisons of iterative methods for 
INS2D for various cases and schemes. L(n): Line 
Relaxation for n iterations, P(n): Point Relaxation 
for n iterations, G(m)+ X : GMRES with subspace 
size m using scheme X for preconditioner. 

Figure 1: Grid around a three-element airfoil. 

Figure 6 shows the effect of decreasing the Inner 
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4    Unstructured    Mesh    Com- 
pressible Navier-Stokes 

Barth [5] has implemented the Newton-GMRES al- 
gorithm into a two and three -dimensional unstruc- 
tured mesh Navier-Stokes approach. In this case the 
flow equations are solved using an edge-based un- 
structured mesh quadrature scheme characterized as 
an approximate and/or exact Roe Riemann solver 
based on piecewise polynomial reconstruction, this 
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Figure 5: Results for Multi-Element Airfoil Compar- 
ing Various Schemes. 

defines the Function Evaluation . Details of the 
flow algorithm can be found in Barth [6, 2, 3]. The 
details of the Newton-GMRES implementation in- 
clude exact Ap products for the second order dis- 
cretization with a first or second order approximate A 
used only to construct the ILU preconditioner. Barth 
presents three methods to compute Ap products, one 
in which the exact Jacobian is stored (requiring a 
significant increase in memory requirements), a nu- 
merical evaluation using Frechet derivatives [8] which 
is a matrix-free approach, and another matrix free 
approach using an exact product form where proper 
linearization of the Riemann solvers and the recon- 
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Figure 7: Multi-element airfoil triangulation, 22,000 
vertices. 

struction/quadrature mechanism of the residual vec- 
tor assembly are used to produce the Ap product. 
Since exact Ap products are used, quadratic conver- 
gence can be realized. The preconditioned Inner It- 
eration is also fairly efficient, employing a subspace 
size on the order of mr = 12 and a modest number of 
restarts. The resulting scheme can be mapped very 
successfully onto a parallel processor environment. 

Figures 7,8,9,10 show an example computation for 
viscous flow with turbulence about the multiple- 
element airfoil geometry. This geometry has been tri- 
angulated using the Steiner triangulation algorithm 
described in [4], see Figure 7. The mesh contains ap- 
proximately 22,000 vertices with cells near the airfoil 
surface attaining aspect ratios greater than 1000:1. 
This example provides a demanding test case for CFD 
algorithms. The experimental flow conditions are 
Moo = -20, a — 16°, and a Reynolds number of 9-6. 
Experimental results are given in [20] and computed 
results are shown in Figure 8. Even though the wake 
passing over the main element is not well resolved, the 
surface pressure coefficient shown in Figure 9 agrees 
quite well with experiment. 

The convergence history shown in Figure 10 is typ- 
ical for aerodynamic high lift computations. 

Some of the more practical aspects from Barth's [5] 
implementation of Newton-GMRES are discussed be- 
low. 

Figure 8: Multi-element airfoil solution isomach con- 
tours, Moo = 0.2, a = 16.0°, Re = 9.0 million. 

4.1    Storage Requirements 

In practice we will be solving systems of / coupled 
equations so that each nonzero entry of the matrix 
is actually a small / x / block. The schemes em- 
ployed require data from distance-one neighbors in 
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mental surface pressure coefficients. 

10°1 
-l 

10 H 

loi 
id3] 

10I 
-7 

10 H -K 
10 \ 

-% 
10  : 

-1<X 

10 1 
-1 

io i 
10 : 

-13. 
10 ! 

-14 
10 

13 

I 
CO 

Pi 

o 

0 10 20       30 40 50     60 

Newton Iteration 

Figure 10: Solution convergence history. 

the graph (mesh). In addition, the higher order accu- 
rate schemes require distance-two neighbors in build- 
ing the scheme, see Barth [5, 3, 6]. First consider the 
situation in which the scheme requires only distance- 
one neighbors. The number of nonzero entries in each 
row of the matrix is related to the number of edges in- 
cident to the vertex associated with that row. Equiv- 
alent^, each edge e(v,-, Vj) will guarantee nonzero en- 

tries in the z-th column and j-th row and similarly 
the j-th column and i-th row. In addition, nonzero 
entries will be placed on the diagonal of the matrix. 
From this counting argument we see that the number 
of nonzero block entries, nnz, in the matrix is exactly 
twice the number of edges plus the number of vertices, 
2E + N (approximately IN in 2D). Table 2 (based on 
a similar counting argument) shows approximate re- 
quirements for storing distance-one and distance-two 
neighboring information as a sparse matrix. 

Note that the entries of the sparse matrix asso- 
ciated with Newton's method (for solution of the 
Navier-Stokes equations and an associated 1 equa- 
tion turbulence model) are actually small 5x5 and 
6x6 blocks in two and three dimensions respectively. 
At first glance, this storage requirement appears pro- 
hibitively large. While this may be true to some ex- 
tent today, the memory capacity of computers is ex- 
panding at a rapid rate. It is quite reasonable to ex- 
pect that in the foreseeable future sufficient memory 
will be available for solving most problems of engi- 
neering interest. Even so, it is possible to reduce, and 
in some cases eliminate, the explicit storage of the 
Jacobian matrix without compromising the favorable 
convergence characteristics of Newton's method. 

Dim. nnz (Distance-1) nnz (Distance-2) 
2 IN 197V 

3 UN 55iV 

Table 2: Storage Estimates for Sparse Matrices. 

4.2    Calculating     Analytic     Jacobian 
Derivatives 

In this section we address the task of computing Jaco- 
bian derivatives for Newton's method. In the follow- 
ing section we consider the related task of multiplying 
an arbitrary vector by the Jacobian matrix. 

A major task in the overall calculation of the Ja- 
cobian derivatives for the finite-volume discretization 
is the linearization of the numerical flux vector with 
respect to the two solution states, e.g. given the Roe 
flux function [16] 

h(uß,uL;n)    =    ^(f(u*,n) + f(uV))       (7) 

-    ±\A(vLR,uL;n)\(uR-uL)(8) 

we require the Jacobian terms j^ and jjjr- Here, f 

is the flux function, n a geometric normal, A = |£, 
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the physical flux Jacobian, evaluated at some combi- 
nation of the right and left states of the flow variables, 
ufl,uL. Exact analytical expressions for these terms 
are available [1]. In constructing the Jacobian ma- 
trix for the entire scheme it is useful to conceptualize 
the finite-volume scheme in composition form: 

R(Q) = £i(£2(Q)), (9) 

with C\ representing the flux quadrature and accu- 
mulation step and £2 representing the data recon- 
struction step. In this form, each operator requires 
distance-1 information. The Jacobian matrix can 
then be written as 

dR      dC\ dC-2 

d~Q~ dC2 dQ 

with the critical observation that the Jacobian matrix 
can be calculated as the sparse product of two ma- 
trices. This could potentially be an expensive task, 
but because of the special form of C\ and £2, the 
resulting sparse product produces at most distance-2 
fill and can be computed at reasonable cost. 

4.3    Exact and Approximate Jacobian 
Matrix-Vector Products 

Consider the standard matrix equation b — Ax = 0. 
Iterative matrix solution algorithms for this problem 
requires the computation of matrix-vector products 
of the form Ap for some arbitrary p vector. In the 
approximate Newton algorithm 

D_ 

At 

dR 

dQ (11) 

where D is a positive diagonal matrix. In practice the 
diagonal entries are locally scaled as a exponential 
function of the norm of the residual 

At 

Cfli 

cfL 
cflmax = /(||R(Q)n||) 

so that when ||R(Q)|| -+ 0, cflmar -+ 00 and the 
scheme approaches Newton's method. It should be 
emphasized that by using this strategy, the scheme 
is technically an approximate Newton method which 
becomes exact only in the final few iterations of the 
computation. 

A major step in the matrix-vector product Ap is 
the computation of Jacobian derivatives in the direc- 
tion of p (a Frechet derivative) 

D        dR 
Ap = Ätp-dQP- 

(12) 

Several possible strategies exist for computing the 
needed Frechet derivatives: 

4.3.1     Sparse Matrix-Vector Multiply 

The most straightforward strategy is to analytically 
compute and store the Jacobian matrix using a com- 
pressed storage scheme designed for sparse matrices. 
This strategy has the added benefit that a copy of the 
matrix can also be used as a preconditioner for the 
iterative solver. In addition, the explicit storage also 
permits the formation of the transposed matrix prob- 
lem which is often encountered in optimization pro- 
cedures coupled with Newton's method. Obviously, 
a drawback of this approach is the large storage re- 
quirement. 

(10)    4.3.2    Approximate Frechet Derivatives 

An alternative to analytically calculating Frechet 
derivatives is to approximate them using finite differ- 
ences, [12] [8] [10]. The required Frechet derivative is 
a limiting form of the difference approximation 

R(Q) dR       ,.    R(Q + ep) 
—p = hm  
dQ        £-0 e 

The primary concern with this approach is the accu- 
racy of derivatives and the optimal choice for e. If 
derivatives are not computed accurately then meth- 
ods such as GMRES iteration may stall or fail. Using 
a forward difference approximation, e must be care- 
fully chosen. In general it is insufficient to choose e 
as a constant such as the square root of machine pre- 
cision. Johan [12] also mentions this fact and gives 
some analysis for choosing e but this analysis assumes 
that R(Q) is well scaled. A common choice for e is 
given by 

'lQH (13) e = 60 + 61 - 
IPII 

with suitably chosen constants SQ and 61. An alter- 
native to forward differencing is to use higher order 
accurate formula such as central differencing at dou- 
ble the computational cost. 

The clear attraction of this approach is the low 
memory requirement. On the other hand, the nu- 
merical computation of Frechet derivatives does not 
produce a matrix approximation which can be used 
to precondition the system. 

4.3.3    Exact Product Forms 

In this section we will present a technique for con- 
structing matrix-vector products which is an exact 
calculation of the Frechet derivative. Extension to 
systems and the inclusion of diffusion terms are also 
handled using this technique. 
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Let G(E, V) denote the triangulation in 2D or 3D 
with n vertices and m edges. Next we define the 
incidence matrix 

Cn = 
— 1    if Vi is the origin of edge / 
1       if Vi is the destination of edge / 
0       otherwise 

(14) 
Let h = h(uL, uR; n) denote the numerical flux func- 
tion as defined by Equation 8. For a system of / cou- 
pled differential equations, the Jacobian matrix en- 
tries are actually small / x / blocks. For ease of expo- 
sition, we tacitly treat these small blocks as scalar en- 
tries. Under these simplifications, the desired matrix- 
vector product is given by 

dR 

dQ 
P = C* 

[ dh ' 
duL 

duL' 
du 

+ " dh ' 
duR 

[du«]' 
du P (15) 

where [jjjj] € 3Jmxm with nonzero diagonal elements, 

and Mjjj- £ 3Jmxn- If we do not incorporate mono- 

tonicity enforcement into the reconstruction proce- 
dure then a considerable simplification occurs in the 
calculation of matrix-vector products. The main idea 
is given in the following almost trivial lemma. 

Lemma: Let v = TZ(U) = Tl(ui,u2,..., un) denote 
an arbitrary order reconstruction operator. If 11 de- 
pends linearly on w,- then 

dv       „, . 
TuP = n(P). 

Proof: Linearity implies that 

n 

V = 7J(«i, «2, ...,«„) = ^ ajUj 
1=1 

so that -p- = oti. The desired result follows immedi- 
aUi 

ately 

»=i 
du 

»=i 
dui 

This lemma suggests the following procedure for cal- 
culation of matrix-vector products, from Eq. 15. 

Finally, the linearized fluxes are assembled using the 
same procedure as the residual vector assembly. In 
actual calculations, the conservative flow variables 
are not reconstructed, thereby necessitating that a 
change of variable transformation be embedded in the 
formulation. This is not a serious complication. 

4.4    Matrix Preconditioning 

In the present applications, we consider a precondi- 
tioning matrix based on the incomplete lower-upper 
(ILU) factorization of the matrix A. ILU precondi- 
tioning is a popular and robust preconditioning pro- 
cedure for use in iterative matrix solvers. ILU fac- 
torization is a modification to the standard Gaussian 
elimination for which the nonzero fill pattern is ei- 
ther preimposed or determined dynamically based on 
the size or location of fill elements. In this way the 
amount of storage required can be specified and in 
some instances minimized. Technical aspects of ILU 
factorization such as existence and spectral properties 
have been proven for M-matrices, but the general ap- 
plicability is much broader and well documented in 
the literature. The triangular solves required in the 
application of ILU preconditioning generally give the 
method global support. This is usually considered a 
favorable characteristic of the method. 

The finite-volume scheme with high order data re- 
construction suggests two possible matrices suitable 
for incomplete factorization. 

1. Distance-1 matrix preconditioning. Construct 
the preconditioning matrix from the Jacobian 
matrix associated with the lower (first) order ac- 
curate discretization of the flow equations. This 
matrix involves distance-1 neighbors in the trian- 
gulation. Matrix-vector products are computed 
"exactly" using the Jacobian matrix associated 
with the full second order accurate scheme. 

2. Distance-2 matrix preconditioning. Use the Ja- 
cobian matrix of the entire second order accurate 
scheme for both matrix-vector products and pre- 
conditioning. 

dR 

dQl = CT dh 

duL KL(p) + 
dh 

duR tt*(p) (16)   4.5    Performance of GMRES 

This amounts to a reconstruction of the vectors 
pL and pR from p using the same reconstruction op- 
erator used in the residual computation. Next, the 
linearized form of the flux function is computed: 

dh    R 
h;,„ = 

dh    , 

du«1 

The viscous multi-element test problem given above 
provides representative matrices for evaluating the 
GMRES algorithm. We construct approximate New- 
ton matrices corresponding to flow CFL numbers of 
103 and 108. In addition, distance-1 and distance-2 
preconditioning matrices are used to accelerate the 
algorithms. 
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Figures 11-12 graph the convergence histories for 
the GMRES algorithm and the two choices of pre- 
conditioner. Since the matrix-vector products and 
preconditioning solves dominate the iterative calcu- 
lation, convergence histories are plotted against the 
number of matrix-vector products required. Each 
GMRES iteration requires one matrix-vector prod- 
uct. The GMRES algorithm is clearly adversely af- 
fected by the distance-1 preconditioning. For this 
case the distance-1 preconditioned system requires 
roughly twice as many iterations as the distance-2 
preconditioned system. In fact for CFL = 108, the 
convergence is unacceptably slow. In general we find 
that when using the distance-1 preconditioning ma- 
trix, an optimal CFL number exists for convergence 
and efficiency, which is large but not infinite. 
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Figure 11: Viscous Flow matrix solution conver- 
gence histories for the GMRES(3Q) algorithm at 
CFL — 103 using ILU(O) distance-1 and distance-2 
preconditioning matrices. 
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Figure 12: Viscous Flow matrix solution conver- 
gence histories for the GMRES(Z0) algorithm at 
CFL = 108 using ILU(O) distance-1 and distance-2 
preconditioning matrices. 

the best strategy appears to be an inexact Jacobian 
(a first order accurate approximation to the third 
order accurate Function Evaluation ) for the Ap 
products, a consistent ILU(O) preconditioner, a small 
subspace size and fairly loose tolerances for Inner 
Iteration convergence. In the unstructured mesh 
approach, exact Ap products are successfully cou- 
pled with a first order approximate ILU(0) precondi- 
tioner and tighter tolerances levels for Inner Itera- 
tion convergence. In both cases, an optimal strategy 
is found producing enhanced efficiencies. Although 
these conclusions are not universal, they do provide 
guidelines and practical suggestions for general im- 
plementations. 
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HEXAHEDRON BASED GRID ADAPTATION FOR FUTURE LARGE EDDY SIMULATION 

J.J.W. van der Vegt and H. van der Ven 
National Aerospace Laboratory NLR 

P.O. Box 90502,1006BM Amsterdam, The Netherlands 

SUMMARY 
This paper discusses a new numerical method which enables the 
future application of Large Eddy Simulation to high Reynolds 

number aerodynamic flows. The new numerical method uses 

local grid refinement of hexahedral cells and the discontinuous 

Galerkin finite element method. This method offers maximum 

flexibility in grid adaptation and maintains accuracy on highly 

irregular grids. The method is demonstrated with calculations of 

in viscid transonic flow on a generic delta wing. The calculations 

are done on two parallel shared memory computers and the 

performance results are used to give estimates of the computing 

time and memory requirements for a Large Eddy Simulation of 
a clean wing on a NEC SX-4 supercomputer. 
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INTRODUCTION 
Computational Fluid Dynamics (CFD) is used for increasingly 

complicated problems. Many advanced applications of CFD, 

such as Large Eddy Simulation (LES), can only be done with 

sophisticated grid adaptation algorithms and require significant 

computer resources. The aim of this paper is to demonstrate a 

new grid adaptation algorithm for future application to Large 

Eddy Simulation. With LES the filtered Navier-Stokes equa- 

tions are solved which represent the part of the turbulent flow 

field that can be resolved on the grid. The turbulent length scales 

which can not be resolved have to be modeled with subgrid scale 

turbulence models. This approach is quite successful in most 

parts of the flow field, but as already mentioned by Chapman 

[3], fails in the near wall region which is critical for LES. Chap- 

man proposed to use successively finer grids close to the wall 

to capture the viscous sublayer. This reduces the need to model 

the near wall region where the basic assumption of LES, namely 

the separation of the flow field in large and small scales, is not 

valid. 

Despite the significant progress made in LES since Chapman's 

paper the proper solution of the near wall flow field is still one 

of the key elements preventing LES to be applied to more gen- 

eral problems in aerospace, Moin and Jimenez [10]. The use 

of successively finer grids can only be done efficiently with so- 

phisticated grid adaptation techniques and requires a numerical 

scheme which is accurate on highly irregular grids. In this paper 

a new algorithm is presented, using a combination of local grid 

refinement and the discontinuous Galerkin (DG) finite element 

method. This method is capable of efficiently resolving local 

phenomena such as shear layers and shocks and has the potential 

to be applied to LES of wall bounded turbulent flows by properly 

resolving the near wall region. Hexahedron cells are used as ba- 

sic elements because they suffer less from loss of accuracy due 

to successive refinements than the more commonly used tetra- 

hedron cells and are more suited to viscous flows. This paper, 

however, will be limited to inviscid flow in order to demonstrate 

the basic algorithm. 

The discontinuous Galerkin method with Runge-Kutta time in- 

tegration (RKDG) was originally proposed by Cockburn and 

Shu [4, 6, 5] for hyperbolic conservation laws. They proved 
that the RKDG method is TVB stable and satisfies a maximum 

principle for multi-dimensional scalar hyperbolic conservation 

laws. This work was mainly theoretical and limited to one and 

two-dimensional flow fields. The extension to three dimensions 

was recently presented by van der Vegt [14]. The discontinuous 

Galerkin method uses a local polynomial expansion in each cell 

which results in a discontinuity at each cell face. This disconti- 

nuity can be represented as a Riemann problem which provides a 

natural way to introduce upwinding into a finite elementmethod. 

The DG method can therefore be considered as a mixture of an 

upwind finite volume method and a finite element method. 

A key feature of the DG method is that also equations for the 

moments of the flow field are solved. In this way a completely 

local higher order accurate spatial discretization can be obtained 

without the need to use neighboring cells in the discretization. 

An alternative to obtain the flow field gradients is to use Gauss' 

identity, but this method requires grid regularity to be accurate. 

The use of the moment equations is extremely useful in com- 

bination with local grid refinement because no problems with 

hanging nodes occur and the scheme maintains it's accuracy on 

highly irregular grids, which generally occur after several grid 

refinement steps. In this paper the spatial accuracy is limited 

to second order and the moments represent the flow field gra- 

dients. A disadvantage of using the moment equations is that 

more memory is needed to store the additional moments of the 

flow field. For future LES applications in wall bounded flows 

these disadvantages are, however, more than compensated by 

the increased computational efficiency of the adapted grid. 

The DG method makes it easy to mix different types of ele- 

ments. As basic elements hexahedrons are used, but whenever 

necessary due to topological degeneracies, prisms, tetrahedrons 

and other degenerated hexahedrons are used. The initial coarse 

grid is obtained from a multi-block structured grid, generated 

with the NLR ENFLOW system. This grid is transformed into 

an unstructured grid using a face-based data structure, van der 

Vegt [14]. This data structure is more suited to anisotropic local 

grid refinement than the commonly used octree data structure. 

Anisotropic grid refinement is important because many flow 

phenomena are locally pseudo two-dimensional, eg. shocks and 

shear layers, and can not be efficiently captured with isotropic 

grid refinement. 

The DG method combined with the face based data structure 

is extremely local in nature and makes it a good candidate for 

parallel computing. Parallel computers offer the possibility to 

overcome the physical limits on single processor speed, but 

require a significant effort to optimize numerical schemes and 

coding. LES requires significant computer resources and the 

performance of the DG method on two different types of parallel 

shared memory computers, namely a two processor NEC SX-3 

and a four processor SGI Power Challenge, will be discussed in 

this paper. The choice for parallel shared memory computers is 

made initially to limit the effort in modifying codes. 

The outline of the paper is as follows. After a brief description 

of the governing equations, the DG method will be discussed 
followed by a description of the grid adaptation algorithm. The 

algorithm will be demonstrated on the flow field around a generic 

delta wing. Next, several aspects of using parallel shared mem- 

ory computers will be discussed and performance results will 

be presented. These data will be used to give an estimate of the 

computational complexity of a LES of a clean wing. The papers 

finishes with concluding remarks. 

GOVERNING EQUATIONS 

The Euler equations for inviscid gas dynamics in conservation 

form can be expressed in the flow domain Q as: 

fu^ + ^u^o, 
Here x and t represent the coordinate vector, with com- 

ponents x,,i = {1,2,3}, in the Cartesian directions, and 

time, respectively. The Euler equations are supplemented with 

initial condition U(x,0) = U0(x) and boundary condition 

U(x, t)\aa = ß(U, U„); where B denotes the boundary op- 

erator and Uw the prescribed boundary data. The vectors with 

conserved flow variables U and fluxes FJ, j = {1, 2,3}, are 
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defined as: 

(    P    \ ( P"3 \ 
U= I    pu,    I ;     FJ = I    pu.Uj +p(5,j    I , 

\ PE ) \   u3(PE+p)   ) 

where p, p and E denote the density, pressure and specific 

total energy and u; the velocity in the Cartesian coordinate 

directions a;;, i — {1, 2,3} and Sij the Kronecker delta symbol. 

The summation convention is used on repeated indices. This 

set of equations is completed with the equation of state: p = 

(7 — l)p(E — ^UiUi), with 7 the ratio of specific heats. 

DISCONTINUOUS GALERKIN APPROXIMATION 
The flow domain Q, which is assumed to be a polyhedron, is 

covered with a triangulation Th = {K} of hexahedrons, which 

are related to the master element K through the mapping FK '■ 
8 

FK:x{t,ri, 0 = ^x^,(^,0 
1=1 

with *i>i{£, rj, C) the standard linear finite element shape func- 
tions and x'K the coordinates of the vertices of the hexahedron 

K. 

Define on the master element K = [— 1,1J3 the space of poly- 

nomials: Pk(K) — span{$j(£, ri, (),j = 0, • • •, M] and the 

related space Pk(K) as the space of functions whose images 

under FA- are functions in Pk(K): Pk{K) = span{0>(x) = 

4>, o FR ,j = 0, • • •, M}. In this paper k = 1, which yields 

a second order accurate spatial discretization with polynomials 

£e{l,*,f7,C}withAf = 3. 

/. 
VW£(x)^(Uft)dQ, (2) 

with T = F3, j = {1,2,3}, and eK C 8K\dQ. and 

fcji- C dK n dQ, the faces of element K in the interior and 

at the boundary of the domain Q, respectively. The vector nT 

represents the transposed unit outward normal vector at dK. 

The flux at the faces en, namely nTJ"(U) = F(U), is not 

clearly defined, because the flow field U^ is discontinuous at 

the cell faces. The flux is therefore replaced with a mono- 

tone flux function h(UJl
nt^ ', XJe

h )> which is consistent, 
h(U,U) = F(U). Here \J'ntW and \Jea:t^ denote the 

value of U at dK taken as the limit from the interior and ex- 

terior of K. More details can be found in Cockburn et al. [5]. 

The use of the monotone Lipschitz flux h introduces upwinding 

into the Galerkin method by solving the (approximate) Rie- 

mann problem given by (U^ , Ue
h ). Suitable fluxes 

are those from Godunov, Roe, Lax-Friedrichs and Osher. In 

this paper the Osher approximate Riemann solver [11] is used, 

because of it's good shock capturing capabilities, and the pos- 

sibility to easily modify the Riemann problem to account for 

boundary conditions. An important additional reason for the 

use of the Osher scheme is that it gives an exact solution for 

a steady contact discontinuity, and therefore it has a very low 

numerical dissipation in boundary layers, [13], which is impor- 

tant for future extension of the algorithm to the Navier-Stokes 

equations. The Osher approximate Riemann solver is defined 

Define V[(A')   =   {P(A')   -*   Rs\Pi   €   Pl{K)},  then       h(Uint(A'), \Jext(K)) 
U(x, t) \K can be approximated by U/,(x,t) € ~Vl

h(K) ® 

C'fO.TJas: 

Uh(x, t) = ^2 ÜmW» 

£ /  \dF\dT), 

(1) 

The expansion of U is local in each element and there is no con- 
tinuity across element boundaries, which is a major difference 

with node based Galerkin finite element methods. The element 

based expansion has as important benefit that hanging nodes, 

which frequently appear after local grid refinement, do not give 

any complications. Degenerated hexahedrons, such as prisms 

and tetrahedrons, which are necessary to deal with topological 

degeneracies in the grid, are allowed without further complica- 

tions because the degenerated surfaces do not contribute to the 

flux balance. 

The discontinuous Galerkin finite element formulation of the 

Euler equations is given by: 

Find Uh G V[(A') ® Cl[0,T], such that Uh(x,0) = 

Uo(x)|A- e Vi(K), andforVW* € Y[
h(K): 

f w[(x)u»(x, t)da = 
J K 

- j   W£(x) (nT(x)T(Vh)) dS 
JeK 

- j   WZ(x)(nT(x)T(B(Uh,Vw)))dS 
Jbp- 

where UarQ is a path in phase space between U^n ' ' and 
jjex ( i; Details of the calculation of this path integral in multi- 

dimensions can be found in [11]. At the boundary surface the 

path ra must be modified to account for boundary conditions. 

In this way a Riemann initial-boundary value problem is solved 

instead of an initial value problem, [11], and a completely unified 

and consistenttreatment of the flux calculations is obtained, both 
at interior and exterior faces. 

The first order accurate discontinuous Galerkin method with an 

(approximate) Riemann solver yields monotone results, but sec- 

ond and higher order discretizations need a slope limiter to pre- 

vent numerical oscillations around discontinuities and in regions 

with steep gradients. Cockburn et al. [5] derived a local pro- 

jection limiter on B-triangulations for multi-dimensional scalar 

conservation laws, which gives a second order accurate scheme 

and satisfies a maximum principle when combined with a TVD 

Runge-Kutta time integration method [12]. The extension to 

quadrilaterals is presented by Bey and Oden [2], but turned out 

to be very dissipative. 

In this paper a different approach is followed. The second order 

discontinuous Galerkin method strongly resembles a MUSCL 

upwind scheme, with as main difference the procedure to de- 
termine the flow gradient. In the DG-method the gradient 

is determined by solving equations for the moments Üm, 

m = {1, 2, 3}, whereas the MUSCL scheme determines the 
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gradient using data from surrounding cells. The same limit- 

ing procedure can, however, be followed. In this paper the 

multi-dimensional limiter from Barth and Jesperson [1], with 

the modifications proposed by Venkatakrishnan [15], is used. 

The limiter from Barth and Jespersen has as benefit that it is a 

truly multi-dimensional limiter and yields a positive scheme. 

The limiter from Barth and Jespersen can, however, seriously 

degrade convergence to steady state. This was analysed by 

Venkatakrishnan [15] and the two main causes for this phe- 

nomenon are the non-smoothness of the limiter, which uses 

min- and max-functions, and the fact that the limiter is active in 

smooth parts of the flow, eg. in the far field. 

The limiter according to Venkatakrishnan [15] is directly applied 

to the conservative variables, which saves the considerable ex- 

pense of computing the local characteristic decomposition. 

Define for each component Ü'K of the cell average Ujf = 

messtK) JK v    ' 

U'K 
VA'SW(A) 

max    (U'K,Ü'K,), 
VK'£N(K) 

with N(K) the set of neighboring cells which connect to cell 

K. In order to maintain monotonicity the approximate flow field 

Ufc must satisfy U„(x) g [U£in, VK
ax], Vx g K, which is 

accomplished with the limiter function Q>K defined as: 

®W= < 

if U'K. -0'K >o 

\   UK>-ÜK   ) 
if U'K. -O'K <0 

1 if U'K. -irK = 0 

Here U'K. are the components of U^ at the Gauss quadrature 

points in R, used to evaluate the integrals in equation (2). The 

function <f>L(y) replaces min(l,!/) in the original Barth and 

Jesperson limiter and is defined as: 

h(y) 
y2 + 2y 

y2 + y + 2 

Defining A = U'K* Ü'K, A+ = U'K UK and A_ 

U'Knin — U'K andreplacing A± with A± + e a smoother limiter 

is obtained: 

«V A*_+£2  +2AA_ 

1 

if    A>0 

if 

if 

A<0 

A = 0 

The coefficient CR- is set equal to CK = (CASK)
3
, with ASK 

the minimum distance between the cell face centers of two op- 
posite faces of element K. The constant C determines the 

balance between limiting and no limiting and thereby influences 

the convergence to steady state. If C = 0 the original Barth and 

Jespersen limiter is obtained. In this paper C — 1 is used. 

The limiter <J>A" is applied independently to each component of 

the flow field: #4 = G^ÜL m = {1,2,3}. This is slightly 

less robust then using 5>A = mini &'K> but gives significantly 

less numerical dissipation. The coefficients Um,m = {1,2,3} 

in equation (1) represent the gradient of the flow field with 

respect to the local coordinates in R. This modification of the 

local gradient would violate conservation of U in K, which can 

be corrected by modifying the coefficient Uo: 

meas(Äf) ^       JK 
771=1 

This     relation     is     obtained     from     the     condition 

—L^T f   ÜJxWQ = Üif.  The limited flow field in cell 
meas(A) JK v    ' 
K is then equal to: 

3 

Üh(X, t) = Y2 Üro(t)<£m(x). 

The final discontinuous Galerkin finite element discretization 
is now obtained by evaluating the integrals over the element 

K and it's boundary dK in equation (2). This is done using 

the transformation FK, between K and the master element f<. 

The integrals JW^UhdO., are calculated analytically, which 

requires quite some algebra, whereas the other integrals are 

calculated with Gauss quadrature rules. Cockburn et al. [5] 

proved that if the quadrature rules for the surface integrals in 

equation (2) are exact for polynomials of degree (2k + 1) and 

exact for polynomials of degree 2k for the volume integrals 

then the spatial accuracy of the DG method is k + 1. In order 

to preserve uniform flow it is necessary to use quadrature rules 

which are exact for polynomials of order 3. For k = 1 the 

surface integrals are calculated with four point Gauss quadrature 

rules. The volume integrals require six point Gauss quadrature 

rules. 

The use of four and six point Gauss quadrature rules is, however, 

unnecessarily expensive. The number of flux calculations in the 
approximation of the surface integrals can be reduced from four 

to one using the following approximation, which is second order 

accurate in the mean: 

/  </»n(x)nT7'(U)dn   =     /  $n(x.)nTf(U)JedCl 
Jaa Jda 

£    ^(U)|e /  <£„(x)n 
Jali 

JedQ. 

with T(XJ)\c calculated at the cell face center and Je the Ja- 

cobian of the transformation of the cell face du. to do. on the 

master element R. The integrals fd^$n(x)nT JedCl are pre- 

calculated with four point Gauss quadrature rules, which are 

exact using elements defined with linear shape functions, and 

therefore free stream consistency is preserved with this approx- 

imation. A similar approximation can be made for the volume 

integral fK VWj(x)f(Ut)dn, with T(V) calculated in the 

center of R and the geometrical part of the volume integral pre- 

calculated with a six point Gauss quadrature rule. This formula- 

tion requires aboutfour times less computing time than using the 

more accurate evaluation of the flux integrals and yields similar 
results. The discretization using four and six Gauss quadrature 

points for the surface and volume integrals yields, however, a 

slightly more robust scheme on coarse grids. This is mainly due 

to the fact that the cross-coupling terms in the moment equations 

are retained in this case. 

For each element K a system of ordinary differential equations 

is now obtained: 

[MA-] J^ÜJC = RA- 
ot 
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with \JK a vector with the moments of the flow field in each 

element, Üm, m = {0, • • •, 3}, and RK the right-hand side of 

equation (2). The equations for ^Uic are integrated in time 

using the third order TVD Runge-Kutta scheme from Shu [12]. 

For steady state calculations convergence is accelerated using 

local time stepping. 

A significant difference with node based FEM is that the mass 

matrix [MK] is uncoupled for each element K and can be easily 

inverted. 

DIRECTIONAL GRID ADAPTATION 

The use of increasingly finer grids in LES in the near wall re- 

gion, as proposed by Chapman [3], and in other regions with 

strong shear layers or shocks can be most efficiently done using 

local grid refinement. The grid is locally enriched by subdi- 

viding cells, independently in each of the three local grid di- 

rections, £, r/ or £, of K. This anisotropic grid refinement is 

more efficient in capturing local flow phenomena than isotropic 

refinement, because many flow features are frequently pseudo 

two-dimensional. A coarse initial grid is used, which is gener- 

ated with a multi-block structured grid generator, and transferred 

into an unstructured hexahedron grid. If necessary degenerated 

hexahedrons, such as prisms and tetrahedrons, are allowed to 

deal with topological degeneracies. After calculating the flow 

field, the grid cells are split in the local £-direction if: 

*K 

.fit 
> tolerance 

with the sensor function R\. for the cell K defined as: 

Rl 
•6{1, 

max (VfV 
•,5},VJs.''6AT«(A') 

V£.)2A& (3) 

Here A£K is the length of cell K in the local ^-direction, 

V = (p,u,v,w,p)T the vector with primitive variables and 

N((K) the indices of the neighboring cells of cell K in the 

£-direction. Equivalent expressions are used for the r\ and C 

directions. This sensor is based on an equidistribution principle, 

see for instance Marchant et al. [9]. An important advantage 

of this sensor is that it prevents regions with discontinuities 

from constantly dominating the local grid refinement. After 

several refinements the relative contribution of regions with 

discontinuities reduces, because A£j<- in equation 3 becomes 
progressively smaller. 

DATA STRUCTURE 

The discontinuous Galerkin method with local grid refinement 

of hexahedrons requires a significantly different data structure 

than the frequently used edge based data structure. The edge 

based data structure is very efficient for unstructured vertex 

based schemes using tetrahedrons. The discontinuous Galerkin 

method is a cell based algorithm and the primary calculations 

are the evaluation of fluxes through cell faces. This can be done 

efficiently using a face based data structure. A face based data 

structure also has as important benefit that there are no limita- 

tions on the number of cells which can connect to one cell face 

and is crucial for local grid refinement. The alternative would be 

an octree data structure, but this data structure does not combine 

well with anisotropic grid refinement. In van der Vegt [14] an 

algorithm is presented to determine all face to cell connections 
efficiently. The main element in this algorithm is that cell faces 

are split into smaller subfaces until each face connects only to 

Adaptation Step Cells Grid Points Faces 

0 19152 20790 59594 

1 33094 38277 132038 

2 49088 63357 203400 

3 73091 104435 307783 

4 124030 197424 538109 

5 211578 357752 933616 

6 322708 592441 1447763 

Table 1:   Number of cells, grid points and faces after each 

adaptation step 

one cell on each side. There are no limits on the number of 

neighboring cells and using advanced searching algorithms a 

very efficient scheme is obtained, which can establish all face to 

cell connections in 0(Nlog2(N)) operations with N the num- 

ber of faces. The fluxes are calculated in one loop over all the 

faces, which can be fully vectorized using a coloring scheme. 

The face based data structure does not put any limitations on 

the number of neighboring cells, but if the number of cells con- 

necting to one face becomes too large then the number of colors 

significantly increases. This reduces the efficiency on vector 

and parallel computers and will be a topic of future research. In 

the grid adaptation process cells are added and deleted which is 

done efficiently using AVL-trees, for more details see van der 

Vegt [14] 

DISCUSSION AND RESULTS 
The grid adaptation algorithm has been tested on the flow around 

a generic delta wing. The geometry is a cropped-delta wing with 

a 65-degree sweep angle and a sharp leading edge. A constant 

airfoil section in the streamwise direction is used (modified 

NACA 64A005 profile; straight line aft of 75% chord) with 5% 

relative thickness, no twist and camber. More information about 

the geometry and experimental results can be found in Elsenaar 

et al. [7]. A transonic flow test case is used with angle of attack 

a = 20° and free stream Mach number Moo = 0.85. The initial 
grid consisted of 19152 cells and 20790 grid points. The grid is 

adapted six times, independently in all three directions and the 

final grid consists of 322708 cells and 592441 grid points, see 

Table 1. During each adaptation step approximately 15 % of 

the cells is deleted, after which the number of cells is increased 

between 70 % and 90%. The removal of grid cells is important, 

because initially on the coarse grid the refinement sensor is less 

accurate and some unnecessary refinement takes place. Local 

time stepping is used and significantly improves convergence to 

steady state, see Figure 1. The sharp peaks in the convergence 

plot are caused by the grid adaptation, except for the first peak, 

which results from freezing the slope limiter after 750 time 

steps to improve converge. Freezing of the slope limiter is not 

necessary after grid adaptation. 

Figure 3 shows the pressure field and grid lines on the leeward 

side of the delta wing. The flow field is dominated by a strong 

primary vortex which starts at the apex and moves downstream 

under an angle of 20 degrees with the streamwise direction. 

Vorticity is generated at the sharp leading edge in a thin vortex 

sheet and rolls-up into the primary vortex. The velocity under 

this vortex, just above the upper surface, becomes very large 

and a strong shock develops between the primary vortex and 
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Figure 1: Maximum residual in flow field. 

the upper surface, see also Figures 4 and 6. The benefits of 

anisotropic grid refinement are very clear in Figure 3, where the 

grid is strongly adapted along the primary vortex in the first 85% 

of the delta wing, where the flow field is approximately conical. 

At a chord length of 85%, where the sharp leading edge connects 

to the tip, the primary vortex and related shock have a sharp kink, 

see Figures 3 and 6. Two shocks develop in the primary vortex. 

One normal to the leading edge and connected to the kink in 

the shock structure under the primary vortex and another one 

from the same location on the leading edge and connected more 

upstream to the shock under the primary vortex. A similar shock 
structure, although slightly more downstream, was observed by 

Hoeijmakers et al. [8] using a much finer structured grid. This 

shock structure has a strong influence on the primary vortex, 

which completely blows up behind it, see Figure 5, and is very 

well captured by the grid adaptation. Also visible in Figure 5 is 

that the grid is adapted to the trailing edge vortex. The primary 

vortex significantly grows after 85% chord and merges with the 

tip vortex, see Figure 4. Also visible is the start of roll-up of the 

wake, which develops into a mushroom type vortex structure. In 

addition to the shock structures in and around the primary vortex 

there is also a shock starting at about 75% downstream at the 

center line and connected to the trailing edge at approximately 

mid span. A better view of this shock can be obtained in Figure 6 

which gives a perspective view of the delta wing and the grid and 

flow field at approximately 70% chord. Figure 5 clearly shows 

the strong primary vortex and the shock between the vortex and 

body. Also visible is the significant refinement in this region 

and the vortex layer starting at the sharp leading edge. 

PARALLELIZATION 
The above described algorithm has been implemented in the 

program Hexadap, which is parallelized on shared memory ma- 

chines, namely: 
• A two processor NEC SX-3/22 with a peak performance of 

2 x 2.75 GFlop/s, a main memory unit (MMU) of 1 GByte 

and 4 GByte Extended Memory Unit (XMU) of which 1.2 

GByte can be efficiently used to store run-time data, 

Table 2: Problem sizes 

• A four processor SGI Power Challenge with a peak perfor- 

mance of 4 x 350 MFlop/s, main memory of 256 MByte and 

16 KByte primary and 4 MByte secondary cache. 

The parallelization uses microtasking, adding parallelization 

compiler directives, for both machines, and macrotasking, ex- 

plicitly assigning tasks to different processors. (Implementation 

on the SGI Power Challenge is done with the CONCURRENT 

CALL assertion). The advantage of microtasking is that the 

code remains portable. The advantage of macrotaking is that 
large tasks can be assigned, even if the tasks have no do-loop 

structure, and memory can be used more efficiently. 

The above described algorithm consists of two parts, namely 

grid adaptation and flow computation. The grid adaptation part, 

which consists predominantly of scalar operations, requires a 

domain decomposition for parallelization and is not considered 

in this paper. The flow computation has as most important com- 

ponent the calculation of cell face fluxes and consists of loops 

over the cell faces. The result is added to the residual in the 

two cells connected to each cell face. The loops use indirect ad- 

dressing and in order to vectorize these loops a coloring scheme 

has been applied. 

The initial flow field and the flow field after three and six adapta- 
tions is used to test the parallel performance of the flow solution 

algorithm, see Table 1. These cases are denoted Small, Medium 

and Large. The average vector length and number of iterations 

are presented in Table 2, which shows that the average vector 

length decreases with problem size. This is caused by the in- 

creasing number of colors after grid adaptation. A reduction 

in the number of colors is possible by limiting the number of 

neighboring cells connected to each cell face. In order to inves- 

tigate the dependence of the performance results on the vector 

length a special case, labeled Long, is also tested, see Table 2. 

NEC SX-3 
The two computationally most intensive parts of the flow solu- 

tion algorithm are the routines Limit and Flux. Limit applies 

a slope limiter to ensure monotonicity and Flux computes the 

fluxes through cell faces. The suffixes IG and 4G in Tables 3 

and 4 refer to the number of Gauss quadrature points used in 

the evaluation of the flux integrals. The two routines constitute 

90% of the total computing time. They have roughly the same 

structure: a nested loop, first over all colors and then over all 

faces of one color. 

MFlop rates on a single processor NEC SX-3 are reported in 

Table 3. The rates are based on flop counts and elapsed times. 

The decrease in overall performance for the Medium and Large 

problems is caused by the larger number of colors after grid 
adaptation which results in a reduced vector length. The case 

Long does not suffer from this reduction in performance. Also 

indicated in Table 2 is if the grid is adapted. 
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Flux Limit Total 

Small(4G) 474 392 426 

Medium(lG) 406 258 232 

Large(lG) 371 241 265 

Long(4G) 484 445 452 

Long(lG) 463 318 314 

Table 3: Mega flop rates on single processor NEC SX-3 (based 

on elapsed times) 

Two parallelization strategies have been tested. The first strat- 

egy executes the loops over the colors in parallel and vectorizes 

the inner loop over the faces. Part of the inner loop over the 

faces consists of an update of the residuals at the cell centers. 

Within one color all faces connect to cells with different cell ad- 

dresses, but this is not assured between different colors, causing 

a data dependency. Hence, in the above parallelization strategy, 

the residual updates have to be performed in a critical section, 

where only one processor is active at a time. The second strat- 

egy divides the loop over the faces within one color over the 

available processors. The main problem with this approach is 

that sufficient vector length should remain after loop division. 

The MFlop rates and speedup results are presented in Table 4. 
The timings and speedups are influenced by the use of the ex- 
ternal memory unit XMU of the SX-3. The XMU allows for 

fast access to data which cannot be placed in core memory. Se- 

quentially, the use of the XMU instead of core memory hardly 

decreases performance. During parallel execution, however, 

locks applied during I/O seriously deterioriate the performance. 

If we compensate for the time spent during I/O to the XMU 

speedups increase, the corrected speedups are labeled Corr in 

Table 4. The MFlop rates in Table 4 are based on the corrected 

speedups. 

The results for the first parallelization strategy, namely parallel 

execution of loops over the colors, are obtained using micro 

tasking and are labeled 'C in Table 4. The speedups are with 

respect to elapsed times. It is clear from the results that the effi- 

ciency of the parallelization is rather low. This has two reasons. 

First, the critical section consumes 20% of the computing time, 

and second, the parallel system overhead is about 10%. This 

large sequential part limits the maximum attainable speedup on 
more processors to 5. 

The second parallelization strategy, namely parallel execution 

of loops over the faces within one color, does not suffer from a 

critical section. At first the code was parallelized using micro- 

tasking. The program structure is such that the flux computation 

is split into many different loops in different functional subrou- 

tines. Therefore the computational load per loop is low, less than 

1.5 msec. It turned out that this load is too low to be efficient on 

the NEC SX-3: the parallel overhead was as large as, or even 

larger than the parallel gain and no speedup was obtained. 

Using macrotasking the parallel overhead could be reduced sig- 

nificantly. Instead of parallelizing each loop separately, the work 

is divided into two tasks in the subroutines Flux and Limit, each 

task doing the same job as the subroutines, but on only half the 

loop. This not only reduced the parallel system overhead, but 

also reduced memory use. In microtasking local data is copied 

Flux Corr Limit Total Corr MFlop/s 

SX-3 

Small(4G) 

C 

F 

1.5 1.6 

1.6 1.6 

1.6 

1.7 

1.4     1.5 

1.3     1.3 

624 

566 

SX-3 

Medium(lG) 

C 

F 

1.5     1.8 

1.3     1.6 

1.2 

1.4 

1.5     1.6 

1.5     1.6 

364 

376 

SX-3 

Large(lG) 

C 

F 

1.4     1.8 

1.1     1.4 

1.2 

1.2 

1.2     1.3 

1.1     1.2 

356 

322 

SX-3 

Long(4G) 

C 

F 

1.5     1.5 

1.7     1.7 

1.4 

1.6 

1.3     1.4 

1.5     1.6 

614 

701 

SX-3 

Long(lG) 

C 

F 

1.5 1.8 

1.6 1.9 

1.3 

1.6 

1.3     1.4 

1.5     1.6 

440 

495 

SGI 

Small(4G) 

LL 

F 

2.9      - 

3.7      - 

3.3 

2.9 

2.1 

2.3 

85 

94 

SGI 

Medium(lG) 

LL 

F 

1.5 

2.9      - 

2.0 

2.3 

1.5 

2.0 

37 

51 

Table 4: Speedups relative to single processor performance 

(based on elapsed times); SX-3 two processors; SGI four pro- 

cessors; C: parallel loop over colors (microtasking); F: parallel 

loop over faces within one color (macrotasking); LL: Low level 

microtasking 

for each processor, in macrotasking the local data can be defined 
per task, and thus approximately halved with respect to the se- 

quential program. Memory use for the medium sized problem 

is 498 MByte for the sequential program, 540 MByte for the 

microtasked program and 515 MByte for the macrotasked pro- 

gram. Speedups for the macrotasked program are presented in 
Table 4 and labeled'F'. 

The decrease in parallel performance with increased problem 

size can be attributed to the reduced vector length. This is 

clearly demonstrated by the results of test case Long, which 

has an average vector length of 120000 in the loops over the 

cell faces. This problem reaches the highest parallel perfor- 

mance, with a speed-up of 1.9 in routine Flux. Another factor 

which significantly reduces the performance of the flow solu- 

tion algorithm on a NEC SX-3 computer is the limited memory 

bandwidth. This is especially important for the large number 

of indirectly addressed loops and a main reason for the big gap 

between sustained and peak performance. The memory band- 
width limitations are the most evident in Limit, where the ratio 

between computations and load/stores is rather low. 

SGI Power Challenge 
The SGI Power Challenge has scalar processors and therefore 

no problems with data dependencies within a processor. The 

code was therefore parallelized using the second parallelization 

strategy, namely parallel execution of the loops over the cell 

faces. Only the Small and Medium problems were tested, since 

the other problems did not fit in memory. 

Two implementations are made, one by parallelizing each loop 

separately (low-level), and one using the same macrotasking 

structure as described in the previous section. Parallelization is 

straightforward using the parallel code of the SX-3. Directives 

are changed to SGI directives. The macrotasking is accom- 

plished using the CONCURRENT CALL assertion. 

Results of speedups and MFlop rates are presented in Table 4. 

The low-level parallelization is labeled 'LL' and the macrotask- 
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10000 

Figure 2:  Cache dependency of speedups on the SGI Power 
Challenge in routine Flux(4G) (— Small Medium) 

ing results are labeled 'F'. Since the SGI has no XMU there 
is no correction for the speedups: the entire program is run in 
core memory. The speedups for macrotasking are better than 
for the low level parallelization. The performance in MFlops of 
the SGI four processor Power Challenge, as listed in Table 4, is 
between 10% and 17% of the two processor SX-3 performance 
and not sufficient for large scale computing. The percentage 
of peak performance is between 3% and 7% on the SGI Power 
Challenge and between 6% and 13% on the two processor NEC 
SX-3. 

Results of the SGI Power Challenge are rather sensitive to cache 
misses. A parameter in the flow solution algorithm determines 
the number of cell faces in the flux calculation processed at one 
time. Varying this parameter changes the amount of the data 
being processed, and can be used to optimize the cache use of 
the program. Significant differences can occur, and the optimal 
value of the parameter depends on the problem at hand, (see 
Figure 2). The speedups of Table 4 are computed using the 
optimal timing results. 

Estimate of the computing time for a LES of a clean wing on 
a NEC SX-4/16 computer 
The parallel performance on the NLR NEC SX-3/22 has been 
used to estimate the problem size of a Large Eddy Simulation 
of a clean wing on a 16 processor NEC SX-4, which will be 
delivered to NLR in 1996. The NLR NEC SX-4/16 is expected 
to have a peak performance of 32 Gflop/s, a main memory of 
4 GByte and 8 GByte XMU. With respect to the SX-3/22 its 
architecture is more suited for indirect addressing and a single 
processor speedup of 2 is expected for programs using indirect 
addressing. 

The size of the LES is primarily determined by the available 
memory. Let N be the number of grid points, and n the number 
of flow variables. For a Large Eddy Simulation with a one- 
equation turbulence model we have n = 6. The memory use 

of Hexadap is 8(12n + 40)AT + 2 • 108 Byte. With an avail- 
able memory of 8 Gbyte and 8 bytes per variable the maximum 
number of grid points N = 9 • 106. Using the estimates given 
by Chapman [3], this number allows for a LES with sublayer 
resolution around a clean wing at a Reynolds number of approx- 
imately 106. 

The computing time for one time step is estimated from the 
relation: 

n-N     ffs_i_J_fl^-'i-l-fF 
tcpu 

SA- Sc    V rs \rs        "316   \ TF 

with: 5,4 a factor to account for grid adaptation, SA — 0.9, 
Sc the single processor speedup of the NEC SX-4 compared to 
the SX-3, Sc = 2. The suffixes S, F, L and R refer to the 
following parts of the algorithm: S, serial part, F, subroutine 
Flux(lG), L, subroutine Limit, and R the remaining part of the 
flow solution algorithm which is parallelizable. The variables 
/» denote flop counts in the respective parts of the algorithm 
to advance one flow variable one time step in one grid point. 
The measured values are: fs = 90, JF = 1570, /L = 880 
and /ä = 180. The variables r» denote the measured flop 
rates in the respective parts of the algorithm and are equal to: 
rs = TR = 350 • 106, rF = 463 • 106 and rL = 350 ■ 106 flop/s. 
The flop count in routine Flux is increased with 10% for the 
viscous contribution and 30% for a one-equation subgrid model 
using the Germano approach. The parallel speedup, denoted by 
5i6 on a 16 processor NEC SX-4 is estimated as twelve. The 
computing time required to advance one time step on a grid with 
9 • 106 grid points is then approximately 28 seconds. 

The time scale of the smallest eddies in the flow field will be 
approximately 100 times larger than the CFL limit for an explicit 
scheme. The CFL time step limitation can be removed with an 
implicit, time accurate temporal discretization using multigrid 
acceleration. With these assumptions a Large Eddy Simulation 
of a clean wing at a Reynolds number 106 on a mesh with 
9 • 106 grid points which evolves 6500 time steps, which should 
be sufficient to obtain a reasonable statistical sample, would 
require 50 hours on a 16 processor NEC SX-4. 

Conclusions of the parallelization 
Provided that the vector length is sufficient, the most efficient 
parallelization strategy for the present flow solution algorithm is 
a high level parallelization of loops over faces of one color using 
macrotasking. Macrotasking reduces parallel system overhead 
and memory use. Correcting for the XMU a maximum speedup 
of 1.9 is reached on a two processor SX-3. 

There are three causes for the not perfect overall performance 
on the NEC SX-3: 
• I/O between Main Memory and XMU in parallel processing 

takes significantly more time, 
• Vector length decreases, and hence single processor speed, 
• Parallel system overhead. 
Concerning the latter cause, the balance between the two pro- 
cessors is, when corrected for the I/O between MMU and XMU, 
as predicted by the size of the parallel part of the algorithm. 
Hence, the computational load is well balanced, and the remain- 
ing performance loss can only be explained by parallel system 
overhead. Since the NEC SX-3 is not primarily suited for par- 
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allel use, the relatively high parallel system overhead is not too 

surprising. It is expected that the NEC SX-4 has significantly 

less overhead. 

Low-level do-loop parallelization on the NEC SX-3 turns out 

to be only sufficient for loops with a computational load greater 

than 1.5 msec. 

The parallel efficiency on the SGI Power Challenge is simi- 

lar, the percentage of peak performance is relatively low, even 

compared with the NEC SX-3. Moreover, the cache sensitivity 

makes the optimization problem dependent. 

The present parallelization on the NEC SX-3 will not be suf- 

ficiently efficient on the 16 processor SX-4. The parallel ex- 

ecution of the loops over the cell faces is inefficient since the 

loop length will be too short to be divided over 16 processors. 

This problem can be solved by limiting the number of neigh- 

boring cells connected to one cell face to at most four, which 

significantly reduces the number of colors and thereby increases 

vector length. The parallel execution of the loop over the colors 

contains a sequential part of 20%, and hence has a maximum 

speedup of 5. This sequential part can be eliminated using a do- 
main decomposition of the grid, which also has as main benefit 
that the grid adaptation part can be executed in parallel. 

CONCLUDING REMARKS 
The discontinuous Galerkin finite element method with lo- 

cal grid enrichment has been demonstrated on the three- 

dimensional, inviscid flow field around a delta wing at tran- 

sonic speed. The use of anisotropic grid refinement of hexa- 

hedron type cells is effective in capturing the shock structure 

and primary vortex on the leeward side of the delta wing. The 

discontinuous Galerkin method works well on highly irregular 

grids and is therefore a good candidate for Large Eddy Sim- 

ulations, because it offers the opportunity to capture viscous 

sublayers with successively finer grids through local grid refine- 

ment. An estimate of the required computational resources for 

such a simulation is presented. The use of a face based data 

structure works well in combination with local grid refinement 

and allows efficient vectorization and parallelization of the code. 

On the NEC SX-3 the possible speedup through parallelization 

strongly depends on the vector length. A maximum speed-up of 

1.9 on the two processor NEC SX-3 is obtained when sufficient 

vector length was available. A good parallel performance, with 

a speed-up of 3.7, is obtained on the four processor SGI Power 

Challenge, but the results are sensitive to cache misses. 

From the present results it is estimated that for future LES ap- 

plications in wall bounded flows, the gain from the increased 

computational efficiency obtained from highly adapted grids 

more than compensates the increased number of operations and 

memory use. A LES of a clean wing at a Reynolds number 

of 106 will become feasible on a 16 processor NEC SX-4 in 

a turnaround time of one weekend. Significant further devel- 

opments, such as the addition of the viscous contribution and 

implicit time-accurate temporal discretization using multigrid 

acceleration (in progress), will, however, be needed to reach 

this goal. 
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Figure 3. Pressure field and adapted grid on upper surface of delta wing. (Moo = 0.85, a = 20°,) 

ilsfe 
mm* 

Figure4. Vortex structure on leeward side of deltawing, visualized as total pressure loss. (Af«, = 0.85,a = 20°) 
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Figure 5. Total pressure loss and adapted grid in cross-section through primary vortex core. (Moo = 0.85,0" = 20°,) 

Figure 6. Total pressure loss and adapted grid in cross-section at 70% chord. (Moo = 0.85, a = 20°,) 
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Abstract 

We indicate that the use of higher order accurate 
spatial discretization is necessary to obtain suffi- 
ciently accurate DNS for the validation of subgrid 
models in LES. Furthermore, we pay attention to 
the efficiency of the implementation of these dis- 
cretizations on several parallel platforms. In order 
to illustrate this, we consider compressible flow over 
a flat plate. We give a priori test results for LES of 
this flow. 

1     Introduction 

One of the most challenging problems in Com- 
putational Fluid Dynamics (CFD) is the accurate 
and efficient simulation of turbulent flows for rel- 
evant industrial applications. The behaviour of 
these flows is governed by the Navier-Stokes equa- 
tions. However, because these applications usu- 
ally involve complex geometries and flow-fields, the 
computational resources required for directly solv- 
ing the Navier-Stokes equations are far beyond the 
resources which will be available in the foreseable 
future. In this paper we will focus on turbulent 
compressible flow-problems in simple geometries. 
In order to tackle these problems with presently 
available computers, three different aspects must 
be considered: the modelling of turbulent flows, 
the numerical methods used to perform calculations 
with these models, and the implementation of these 
methods on suitable computer platforms. 

As remarked above, direct solution of the Navier- 
Stokes equations (DNS) is impossible for relevant 
industrial applications, due to the high computa- 
tional requirements. Therefore, one might use in- 
stead the Reynolds averaged Navier-Stokes (RaNS) 
equations in which only the statistically stationary 
flow is calculated and the effects of turbulence are 
modelled by a so-called turbulence model. How- 
ever, this leads in general to quite inaccurate results 

since the presently available turbulence models are 
inadequate for more complicated flow phenomena 
like shock-boundary layer interaction and massive 
separation. A solution to this problem could be 
provided by Large Eddy Simulation (LES). In LES 
only the large eddies are calculated, while the effects 
of the smaller eddies, which are thought to be uni- 
versal and not geometry-dependent, are described 
by a subgrid model. 

However, before LES can be used as a tool in flow 
simulation, the subgrid model has to be systemat- 
ically validated. This validation is usually carried 
out by comparing LES results with filtered DNS re- 
sults for simple geometries and fairly low Reynolds 
numbers. In Section 2 we present a priori test re- 
sults for LES of compressible flow over a flat plate 
for various subgrid models, including eddy-viscosity 
models, the similarity model and dynamic models. 
In the future also a posteriori tests will be carried 
out fot this flow, as has been done e.g. by Vreman 
et al. [1] for the compressible mixing layer. 

The numerical methods to perform the DNS are 
discussed in Section 3. The a priori test results are 
based on DNS performed using a second-order fi- 
nite volume spatial discretization. It is indicated 
that the use of higher order spatial discretizations 
makes it possible to obtain more accurate DNS re- 
sults. However, the use of higher order central dif- 
ferencing discretizations, without numerical dissi- 
pation, is not without trouble. Besides the occur- 
rence of stability problems, higher order discretiza- 
tions lead to wide stencils, which, in combination 
with a domain-decomposition strategy, seriously af- 
fects the parallel efficiency of the resulting algo- 
rithm. 

In Section 4 the parallel efficiency will be il- 
lustrated using some implementations of the DNS 
solver on various parallel platforms, including dis- 
tributed as well as shared memory systems, and a 
mixture of these types. Since many parallel plat- 
forms use cache-based processors, we consider some 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
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23-2 

aspects of implementation of the flow-solver on 
these processors. We show that careful use of cache 
in the implementation of our type of discretizations 
can lead to considerable performance gain. 

2    Modelling of turbulent flow 

The equations describing compressible flow are the 
well known Navier-Stokes equations, which repre- 
sent conservation of mass, momentum and energy: 

dtP + dj(puj) = 0 

dt(pUi) + dj(puiUj) + dip - djTij = 0 (1) 

dte + dj((e + p)uj) - djinjUi - qj) = 0 

Here the symbols dt and dj are abbreviations of 
the partial differential operators d/dt and d/dxj 
respectively. The components of the velocity vector 
are denoted by u», while p is the density and p the 
pressure which is related to the total energy density 
e by: 

P = (7 - !){e - -j^pUiUi) (2) 

in which 7 denotes the adiabatic gas constant. The 
viscous stress tensor r^- is a function of temperature 
T and velocity vector u 

Tij{T,u) = ^-(djUi + d%Uj - \Sijdkuk)     (3) 

where /x(T) is the dynamic viscosity for which we 
either use Sutherland's law for air or treat it as a 
constant. In addition qj represents the viscous heat 
flux vector, given by 

qj(T) 
MCO 

(7 - l)RePrM2 djT (4) 

where Pr is the Prandtl number. Finally, the tem- 
perature T is related to the density and the pressure 
by the ideal gas law 

T = 7M2- 
P 

(5) 

These governing equations have been made dimen- 
sionless by introducing a reference length Lo, ve- 
locity uo, density po, temperature To and viscos- 
ity ßo- The values of the Reynolds number Re = 
(poUoLo)/fio and the Mach number M = uo/ao, 
where ao is a reference value for the speed of sound, 
are given separately. 

A Direct Numerical Simulation (DNS) is based on 
a discretisation of (1) whereas the governing equa- 
tions for large eddy simulation (LES) are obtained 

by applying a spatial filter to these equations. A 
filter operation extracts the large scale part / from 
a quantity /: 

/»= /GA(x,o/(eR 
Jn 

(6) 

where Q is the flow domain and A denotes the fil- 
ter width of the kernel G which is assumed to be 
normalized, i.e. the integral of G over Q, equals 1 
independent of x. For compressible flow Favre [2] 
introduced a related filter operation / = pf/p. 

The filtered Navier-Stokes equations contain so- 
called subgrid-terms, which cannot be expressed in 
the filtered flow variables, and have to be modelled 
with subgrid-models. In this paper we will mainly 
focus on the modelling of the subgrid-terms in the 
momentum equations, which can be expressed in 
the turbulent stress tensor, defined as 

pTij = pUiUj - pÜjßÜj/p = p(u^Uj - ÜiÜj),       (7) 

where ü is the filtered velocity vector. This tur- 
bulent stress tensor has several algebraic properties 
which can be used in the construction and qualifi- 
cation of subgrid-models [3, 4]. Expressions for the 
subgrid-terms in the energy equation can be found 
in ref. [5]. They can be neglected in simulations 
at low Mach numbers, but have to be modelled at 
high Mach numbers. 

In total six models for the turbulent stress ten- 
sor Tij as it appears in the subgrid-terms in the 
momentum equations will be investigated and com- 
pared in this paper. The first subgrid-model is the 
Smagorinsky model 

P^ = -pClA2|5|4-, (8) 

where S2 = \S^ with Sij the compressible strain 
rate, based on the Favre-filtered velocity. Cs is the 
Smagorinsky constant, which we choose equal to 
0.17 as suggested in literature. A denotes the filter 
width, which separates the resolved and subgrid- 
scales. The major short-coming of the Smagorinsky 
model is its excessive dissipation in regions where 
the flow is laminar [6]. The similarity model, formu- 
lated by Bardina et al. [7], is based on a similarity 
assumption. Application of the definition of pr^ to 
the filtered variables p and püj yields the similarity 
model [7]: 

_   (2)          
pr-j   = PUiUj püipüj/p. (9) 

The gradient model is derived with use of Taylor 
expansions of the filtered velocity [8].  The lowest 
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order term in A in this expansion can be proposed 
as subgrid-model: 

-   (3) 
f"i3     = 

-A2 

12 pA2(V«i)(Vüj)- (10) 

The similarity and gradient model correlate much 
better with the turbulent stress tensor than the 
Smagorinsky model (see [9] and section 2.1). How- 
ever, while the Smagorinsky model is too dissipative 
in transitional regions, the similarity and gradient 
model are not sufficiently dissipative in turbulent 
regions. 

The dynamic procedure overcomes the excessive 
dissipation of the Smagorinsky model and adds suf- 
ficient dissipation to the similarity and gradient 
models. We consider three dynamic models. The 
dynamic eddy-viscosity model [3] is obtained when 
the model constant Cs in the Smagorinsky model is 
replaced by a coefficient which is dynamically ob- 
tained and depends on the local structure of the 
flow. In order to calculate the dynamic coefficient 
r;„- is substituted in the Germano identity, which 
is a relation between the turbulent stress tensor 
for different filter widths [3]. The second dynamic 
model is the dynamic mixed model, in which a 
relatively accurate representation of the turbulent 
stress by the similarity model and a proper dissipa- 
tion provided by the dynamic eddy-viscosity con- 
cept are combined [10]. The dynamic model coeffi- 
cient is obtained by substitution of the base mixed 
model, Ty + T\, , in the Germano identity. An- 
other dynamic model is the dynamic Clark model 
[11]. In this case the base model is the Clark model, 
rl- +T1- , and the model coefficient Cs is obtained 
by substitution of this model in the Germano iden- 
tity. 

2.1    Results 
We consider flat plat flow at Re = 1000 based on the 
initial displacement thickness <5* and the other ref- 
erence scales are equal to the initial far-field values. 
We choose M = 0.5 and consider a temporal simu- 
lation in a cubic domain of size 30. A forcing term 
corresponding to the compressible similarity solu- 
tion of the boundary layer equations is added. The 
mean initial field also equals this similarity solution, 
to which the dominant 2D mode and a pair of equal 
and oblique 3D modes are added with amplitude 
10~3 and amplitude-ratios (1/2,1/4,1/4) respec- 
tively. For validation purposes the linear growth 
rates of the instabilities were recovered with a rela- 
tive error well within 1 percent on a grid with 1283 

cells, uniform in the stream- and spanwise direc- 
tions and clustered near the isothermal, no-slip wall 
in the normal direction. A second order accurate fi- 
nite volume method was used. 

Figure 1: Modes of kinetic energy (a) [(l,0):solid, 
(2,0): dashed, (1,1): dotted, (2,2): dash-dotted] and 
shape-factor (solid), skin-friction (dashed) versus time 
t(b) 

Results from a DNS on 1283 cells are shown in 
Figure 1. The persisting symmetry in the span- 
wise direction was exploited in order to reduce the 
computational effort. The evolution of the ampli- 
tude of some modes of the kinetic energy (Fig. 1) 
clearly displays the initial linear regime with an 
exponential growth of the instabilities. The corre- 
sponding large-scale structures which emerge sub- 
sequently interact in the nonlinear regime and give 
rise to a rapid transition in which many modes be- 
come simultaneously important. A broad spectrum 
is generated and a developed turbulent flow results 
in which the individual modes display an erratic 
time-dependence.   To represent this scenario in a 
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different way, the shape-factor and the skin-friction 
are shown in Figure 1. The resolution is adequate 
in the linear and transitional stages with a fall off 
of 10 decades or more in the spectrum of the kinetic 
energy. However, at the onset of turbulent flow and 
in the developed stages a fall off of no more than 6-7 
decades was observed. Hence, the results in the tur- 
bulent regime are expected to be only qualitatively 
correct and further grid refinement is needed. 

Figure 2: Dynamic coefficients : Germano (solid), 
dynamic mixed (dashed) and dynamic Clark (dash- 
dotted). 

In order to obtain a first impression of the quality 
of the various subgrid models for this flow we focus 
on the correlation between pr^i and the correspond- 
ing modelled component of the turbulent stress ten- 
sor. We use a filter-width equal to four grid-cells 
and a special filtering near the wall which prevents 
the filter to extend inside the wall. The models are 
tested both in the transitional and in the turbulent 
regime. The similarity- and gradient model as well 
as the dynamic mixed and dynamic Clark model 
show a high correlation of about 0.9. The Smagorin- 
sky and dynamic eddy-viscosity models show a poor 
correlation of about 0.3. The eddy-viscosity contri- 
bution in the dynamic mixed and dynamic Clark 
model does not destroy the high correlation. In 
Figure 2 we compare the dynamic coefficients for 
the three dynamic models at t = 2700. The coef- 
ficients are averaged over the homogeneous direc- 
tions. We observe that the Germano coefficient is 
larger than the coefficient associated with the other 
two dynamic models. Moreover, all coefficients drop 
to zero in the near-wall region which is appropriate 
for wall-bounded shear layers. 

3    Numerical method 

As has been remarked in the previous section, the 
DNS results in the turbulent regime are expected 
to be only qualitatively correct, and further grid 
refinement is needed. However, the number of grid- 
cells used is already fairly large for presently avail- 
able computer resources. Instead of refinement, we 
presently consider the use of higher order discretiza- 
tion methods. The aim is to obtain a more accurate 
DNS with a moderate number of points. However, 
this is not without problems. One drawback is that 
high order methods lead to wide stencils, which de- 
creases the parallel efficiency of the resulting code, 
as we will see in the next section. Another problem 
associated with these methods is that the discreti- 
sation of the convective and the viscous flux must 
be carefully constructed in order to avoid instabili- 
ties. This is especially present in central differenc- 
ing methods, and is not only related to the occur- 
rence of 7r-modes, but also to adequate damping of 
aliasing errors. 

3.1    Spatial discretization 
Consider an orthogonal grid with points xitj^, 
which is uniform in x and z direction. We use the 
following central differencing discretization of the 
^-operator: 

£ w diff 
0-i+n,j,ki 

where 

O-ijk —      2_^/     Wj,n,mJi,j+n,k+r, 

(11) 

(12) 
n,m=—c 

Here the weights wdiff are derivative weights, 
and wav are average weights. Due to the unifor- 
mity in x and z direction they only depend on j. 
The quantities a represent the average of the func- 
tion / over a stencil in j - k direction. For the con- 
vective flux we use a stencil with Ac points, and the 
weights wav are constructed such that ir modes in 
the j and k direction are filtered out, and moreover 
that polynomials up to degree Nc — 1 are invari- 
ant under the averaging. The derivative weights 
yjdiff are such that polynomials up to degree Nc 

are exactly differentiated. The resulting discretiza- 
tion has order Ac on uniform grids. The 7r-modes 
in i-direction are damped by the viscous derivative. 
The viscous flux is discretized using repeated dif- 
ferentiation. The inner derivative is calculated on a 
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staggered grid. Both the inner and the outer deriva- 
tives are discretized analogously as in the connec- 
tive flux, on Nv points, except that now 7r-modes 
are not filtered out. Both derivatives are then of 
order Nv - 1, but due to symmetry, on a uniform 
grid, the viscous flux is discretized up to order Nv. 

Due to the nonlinearity in the convective flux, 
high frequency modes arise from a low-frequency 
initial state. In physical reality, these are damped 
by the viscous effects in the fluid. In the numeri- 
cal simulation, however, two difficulties arise. The 
first is that both the convective and the viscous flux 
are calculated inaccurately In our central differ- 
encing discretisations, on relatively coarse grids, a 
situation may arise in which the numerical viscous 
terms do not have enough dissipation to damp the 
numerical convective terms, giving rise to instabil- 
ities. The second difficulty is that due to the fi- 
nite grid-spacing, there is a maximum wavenumber 
which can be represented on the grid. Modes with a 
higher wavenumber appear as low-frequency modes 
on the grid. Therefore, numerically, the effective 
energy contained in the low-frequency modes can 
be increased during the onset of turbulence. One 
remedy could be to take a grid that is sufficiently 
fine to represent the highest mode which due to 
physics would emerge in the simulation. Another 
possibility is to use upwind-biased discretizations 
of the convective flux, as has been done by Rai and 
Moin [12]. We have used a discretisation of the 
viscous flux with a wider stencil than necessary to 
achieve the desired order of accuracy. In this way 
we constructed a better approximation of the vis- 
cous flux. As an example, we were able to calculate 
a full transition to turbulence on 963 points using 
a fourth order method on a 53-points stencil for 
the convective flux, and repeated application of a 
fourth order method on 63 points for the viscous 
flux, resulting in an ll3-points stencil, whereas re- 
peated application of a 43 points operator for the 
viscous flux on this grid failed. At this moment, 
further investigation is needed to understand this 
phenomenon more clearly. 

The DNS mentioned in the previous section has 
been calculated at Mach number 0.5. In the future 
we intend to perform DNS at higher Mach num- 
bers. For that purpose we need to be able to capture 
shocks. This can be done by switching to upwind 
discretizations in the presence of a shock, which has 
been applied succesfully to the supersonic compress- 
ible mixing layer, cf. ref. [13]. In that application 
a fourth order central difference operator has been 
used for the convective term, which was replaced by 

-15- 

Figure 3:   Shock-capturing in 3D turbulent mixing- 
layer. 

a third order accurate upwind scheme in the pres- 
ence of a shock. See Figure 3. In this way it is possi- 
ble to capture time-dependent shocks which appear 
spontaneously after the transition to turbulence. 

3.2    Time integration 

For the time integration of the resulting discretized 
equations we use an explicit 4-stage Runge Kutta 
method. We also studied the use of a second-order 
accurate implicit method. The system of equa- 
tions resulting from the implicit discretization is 
solved by means of pseudo-time stepping and ac- 
celerated by local pseudo-time stepping and a non- 
linear multigrid technique. Since we use central 
spatial discretizations and no artificial dissipation 
is added to the equations, the smoothing method is 
less effective than in the traditional use of multigrid 
in steady-state calculations. In the laminar regime 
and in the first stages of turbulence the implicit 
method provides a speed-up of a factor of 2 rela- 
tive to the explicit method on a relatively coarse 
grid (643). At increased resolution this speed-up is 
enhanced correspondingly. See [14]. 
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4    Parallel implementation of 
the explicit solver 

In this section we consider some implementational 
aspects of the explicit solver. We use a simple 
domain-decomposition technique to obtain an im- 
plementation on a parallel computer. This is ex- 
plained in the first subsection. In the next sub- 
section we discuss how the parallel efficiency of the 
resulting code depends on the spatial discretization. 
We distinguish between the intrinsic efficiency of an 
algorithm, and the hardware efficiency. The former 
is related to the algorithm only, whereas the lat- 
ter tells us how good a certain algorithm performs 
on certain hardware. The quantity which is usually 
called the efficiency is the product of these efficien- 
cies. We show that the intrinsic efficiency of the 
algorithm decreases as the order of the spatial dis- 
cretization increases. We illustrate these concepts 
by some performance results obtained from imple- 
mentations on 3 different parallel machines, viz. the 
Cray T3d, the Intel Paragon and the SGI Power 
Challenge array. Closely related to the concept of 
efficiency is the scalability. We discuss the scalabil- 
ity in the sense of Amdahl and Gustafsson (see e.g. 
ref. [15]). 

4.1    Domain decomposition 

Suppose our computational domain consists of Nx x 
Ny x Nz gridpoints. This domain is divided into 
Bx x By x Bz blocks. For a distributed memory 
computer, we assume that each block is allocated 
on a separate processor. If the total size of the 
stencil used for the discretisation is (2d +1)3 (recall 
that we use central differences, cf. (11),(12)), then a 
point which has a distance less than d+l grid-points 
from the boundary of a block not coinciding with 
the boundary of the physical domain, is called an in- 
terior boundary point. This definition can easily be 
extended to other discretisation methods. For the 
computation of the fluxes for the interior boundary 
points, some values of the flow-quantities which re- 
side on processors dealing with neighbouring blocks 
are needed. To store these quantities, each block 
is dressed with d dummy-layers. In order to retain 
the second-order accuracy of the time-integration 
method, at each stage in the Runge-Kutta time- 
integration, these dummy-layers have to be trans- 
ferred between the various processors. It may be 
clear that the amount of communication increases 
with the size of the stencil. 

Not only the amount of communication is affected 

by the size of the stencil, but also the number of 
floating point operations increases with increasing 
stencil-size. To see why, recall the general form of 
the ^-operator, eq. (11)—(12). This derivative is 
computed as a one-dimensional derivative acting on 
two-dimensional averages over y and z. For the 
derivative in an internal boundary point these aver- 
ages have to be computed for points in the dummy- 
layers as well. But these averages are also com- 
puted by the processors dealing with the neighbour- 
ing block in order to contribute to the ^ derivative 
of some points in that block. For a discretization on 
a stencil with NxxNyx Nz points, careful counting 
reveals that the number of floating-point operations 
for the computation of one derivative is 

{3NxNyNz + 4dNyNz + 2dNxNz + 4d2Nz)(2d - 1). 

Note that this expression is not symmetric in 
Nx,Ny,Nz. For the other derivatives the discrete 
averaging and differentiation operators can be ap- 
plied in such an order that the same expression is 
valid. In the case Nx = Ny = Nz = N, this reduces 
to 

(3N3 + W2d + 4d2N)(2d-l). (13) 

Now consider e.g. a given partition of the computa- 
tional domain into B3 equal blocks, each containing 
(N/B)3 points. Then the total number of floating- 
point operations to compute a ^ for all grid-points 
is 

3((f)3 + 6(^)2rf + 4d2|)(2d-l)53, 

which is obviously greater than (13). 

4.2    Parallel efficiency 

To quantify the considerations of the previous para- 
graph, we define the concept of intrinsic efficiency. 
Consider a given partition of the computational do- 
main into Bx x By x Bz blocks. Denote the to- 
tal number of floating point operations for a given 
number of timesteps by f(Bx,By,Bz). Then the 
intrinsic efficiency crjn^r is given by 

0"i 
/(1,1,1) 

intr f(Bx By, Bz) 
(14) 

Note that, on a shared memory machine, if we use 
fine-grained parallellism (on do-loop level), we could 
define cr-in^r = 1. 

We can estimate the dependence of the intrinsic 
efficiency on the size of the stencil just by counting 
the number of floating-point operations for various 
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block-sizes (by using expressions like (13)). In Fig- 
ure 4 this has been done for several central differenc- 
ing discretizations, using equal shapes and sizes for 
all blocks. From the pictures it can be seen that the 
efficiency decreases rapidly if the stencil-size grows. 
Due to the wider stencil, application of higher-order 
discretizations results in more floating-point oper- 
ations, but this performance penalty is even more 
severe on distributed memory systems, where also 
a decrease of parallel performance occurs. As an 
example, consider a central differencing second or- 
der -ß- operator on a 3-point stencil as compared 
to a central differencing fourth order J^ operator 
on a 5-point stencil. To compute the former deriva- 
tive on a single-cpu machine costs approximately 
5/9 « 0.56 times of the time to compute the latter, 
whereas on e.g. a 64 x 64 x 32 grid and 128 proces- 
sors on a distributed memory machine this ratio is 
approximately 0.33. 

algorithmic efficiency for various discretizations 

Figure 4:   Intrinsic efficiency for various spatial dis- 
cretizations 

The intrinsic efficiency deals with the paralleliz- 
ability of a given algorithm, regardless of any ma- 
chine. In fact it gives the maximum speed-up that 
can be achieved for the algorithm. In a real im- 
plementation the speed-up will be less, due to e.g. 
the finite bandwidth of the machine. To quantify 
this, we now define the hardware efficiency c^w- 

Suppose the CPU time to perform a certain num- 
ber of timesteps on one processor using one block 
is T(l,l,l). Then, using BxByBz processors, the 
CPU time cannot be shorter than 

r(i,i,i)  

In general, due to the finite communications band- 
width of the machine, the simulation will last 
longer, say T(Bx,By,Bz) seconds. Then the 
hardware-efficiency cr^w *s 

= r(i,i,i)  
CThw     T(BX, By, Bz)BxByBzaintr(Bx,By, Bz)' 

(15) 
The traditional (total) efficiency a is the product 

a = CThwCTintr- (16) 

Note that, in general, these efficiencies not only de- 
pend on the number of blocks in each direction, but 
also on the number of points per block in each di- 
rection, i.e. on the actual shape of the blocks. This 
is not only due to the ratio of interior boundary 
points as compared to the interior points of each 
block, but also because many processors perform 
better on long inner loops in the code, due to vec- 
torisation or pipelining. 

The efficiency a is related to scalability in the 
sense of Amdahl, meaning that a problem which 
is solved on one processor in T\ seconds is solved 
on P processors in T\jPa seconds. We define one 
notion of efficiency related to scalability in the sense 
of Gustafson. Suppose we solve a problem with N 
gridpoints on one processor in T\ seconds, and a 
problem with PN gridpoints in Tp seconds. Then 
the efficiency ac is 

<*G = 7?r (17) 

BxByBza-mfa(Bx, By, Bz 

These concepts are illustrated in Figure 5. Here 
we performed 5 timesteps on a 64 x 64 x 32 grid, 
with a 5 point central differencing discretization of 
the convective flux, and a repeated application of a 
four-point central differencing for the viscous flux, 
resulting in a total stencil containing 7x7x7 points. 
Plotted are the intrinsic efficiency and the total ef- 
ficiency. Because it was not possible to execute the 
program on 1 or 2 CPUs on the Paragon, the effi- 
ciencies are based on the timings for the 4-processor 
run. We used 2 different distributed memory ma- 
chines, viz. the Cray T3d and the Intel Paragon. 
On these machines, explicit message-passing has 
been employed. The actual CPU-times for the runs 
are tabulated in Table 1. A dash indicates that it 
had not been possible to perform the run on the 
indicated number of processors, either because the 
processors do not have enough memory (in the case 
of 1 and 2 processors on the Paragon) or because 
the indicated number of processors was not avail- 
able on that machine. The CPU times are depen- 
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# proc. T3d Paragon 
1 207.5 - 
2 109.6 - 
4 58.3 90.6 
6 42.7 65.2 
8 33.4 50.3 
12 23.8 36.8 
16 17.1 27.4 
24 13.5 20.4 
32 9.9 15.7 
48 7.5 11.7 
64 6.0 11.1 
96 4.8 7.6 
128 3.8 - 

Table 1: CPU times in seconds (averaged over several 
block-divisions). 

dent on the actual shape of the blocks. Therefore 
in Table 1 we averaged over some block-divisions 
which give roughly the same (approximately best) 
CPU-time. This dependency is illustrated in Table 
2 for the case of 8 blocks. All timings are accurate 
to about 5 %. It can be seen that subdivisions with 
an equal number of blocks in all directions are op- 
timal. In general, better subdivisions are obtained 
by using fewer blocks in x-direction. This is partly 
due to the algorithm, since an asymmetry is intro- 
duced by the sequence of averaging-operators in the 
derivative-calculations, and partly due to software- 
pipelining in the processors, which is reflected in 
the megaflop-rates (between parentheses). 

BT x B,, x B v T3d Paragon 
1x1x8 
1x8x1 
8x1x8 

34.9 (77) 
34.3 (82) 
39.2 (77) 

58.0 ( 47) 335 
54.4 ( 52) 353 
67.3 ( 45)     378 

1x2x4 32.4 (80 ) 50.9 (52) 323 
1x4x2 31.6 (83 ) 50.0 (53) 328 
2x1x4 33.0 (79 ) 52.9 (50) 327 
2x4x1 31.7 (84 ) 51.5 (53) 335 
4x2x1 32.9 (80 ) 54.6 (50) 327 
4x1x2 32.9 (82 ) 55.4 (49) 339 
2x2x2 31.1 (84 )     50.3 (53)     325 

Table 2: CPU times for various subdivisions into 8 
blocks. Between parentheses the Mflop-rates. The 
last column is the number of millions of floating point- 
operations to be performed for each block. 

From the pictures it can be seen that on the T3d 
and the Paragon, the machine efficiency is some- 
what lower than the algorithmic efficiency.   This 

Figure 5: Efficiency for the T3d (dashed) and the 
Paragon (dotted). The solid line is the intrinsic effi- 
ciency. 

means that increasing the algorithmic efficiency by 
e.g. exchanging information between the processors 
after every calculation of averages will not result in 
a substantially faster execution of the code. Fur- 
ther, all efficiencies eventually approach zero as the 
number of processors approaches infinity. It can be 
shown (using expressions like (13)) that the intrin- 
sic efficiency drops as B~2^3, where B is the to- 
tal number of blocks. However, GG remains nearly 
constant, as is shown in Table 3. Here each block 
contains 32 x 16 x 16 points. From this table it 
follows that, using this algorithm, doubling the size 
of the problem and the number of processors re- 
sults in equal computation times. This can also be 
shown if in (17) the times Tp and 7\ are calculated 
as ideal, i.e. assuming no communications delays. 
Then GG — 1. 

BxxByx Bz T3d Paragon 
1x2x1 
1x4x1 
1x4x2 
2x4x2 
2x8x2 
2x8x4 
2x8x6 
4x8x4 

16.2 (21.1 ) 
16.3 (42.1 ) 
16.4 (83.6) 
16.5 (166) 
16.5 (332) 
16.6 (661) 
16.6 (991) 
16.6 (1322 ) 

26.9 (12.7) 
27.0 (25.4) 
27.3 (50.2) 
27.6 (99.4) 
27.4 (200) 
27.7 (396) 
27.8 (592) 

Table 3: CPU times and Megaflop-rates (between 
parentheses) for increasing domain-sizes illustrating 
that GG remains approximately constant. 

From the above results it can be concluded that 
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the T3d and the Paragon show comparable efficien- 
cies for this algorithm, the T3d being about 40 % 
faster. 

Besides the implementation on the T3d and the 
Paragon, we have made a preliminary implemen- 
tation on the SGI Power Challenge Array. This 
machine consists of 4 nodes each comprised of a 16- 
CPU shared memory parallel machine. We used 
explicit message-passing between the nodes. On 
each node, fine-grained parallelism has been em- 
ployed using the vendor-supplied parallelizing com- 
piler. The combination of fine-grained parallelism 
and explicit message passing is not entirely triv- 
ial. On the one hand, using fine-grained paral- 
lelism results in an algorithmic efficiency of 1, since 
no additional floating-point operations are intro- 
duced. Therefore, this form of parallelism seems to 
be promising at first sight. On the other hand, how- 
ever, parallelizing a do-loop containing only a few 
iterations (in the order of magnitude of the num- 
ber of grid-points in one directions) causes much 
system-overhead, and seriously affects pipelining ef- 
ficiency. Moreover, suboptimal speedup can arise 
due to the cache-coherency mechanism. The use 
of explicit message-passing has two disadvantages, 
namely an algorithmic efficiency less than one, and 
usually a slow data-transfer. The advantage of ex- 
plicit message-passing as compared to fine-grained 
parallelism is that parallelization takes place on a 
(much) higher level, leading to less system over- 
head. 

As an example, consider a problem with 64 x 64 x 
32 grid-points (the same as discussed above). With 
4 processors on one node working on one block, this 
yields an execution time of 23 seconds for 5 Runge- 
Kutta timesteps, whereas on 4 nodes with 4 blocks 
(1x2x2) and one processor per node the execution 
time is 18 seconds. As another example, we com- 
pare the subdivision into 1x2x2 and 2x4x2 
blocks, both running on 4 nodes. In the first case, 
each node deals with 1 block, and in the second case 
each node does the computations for 4 blocks, and 
uses 2 processors for each block. So in that case the 
distributed memory model is adopted also within 
each single node. It appears that the latter case 
has a shorter execution time. It may be clear that 
some restructuring of the code is necessary in order 
to obtain reasonable performance. This will be the 
subject of another paper [16]. 

4.3    Optimization for cache-machines 

In many parallel machines the processors use a hi- 
erarchical memory structure, consisting of a small 
amount of memory with a short access time (the 
cache) and a large amount of main memory with 
much longer access time. This long access time is 
the main reason why the performance of these ma- 
chines is way below their (often impressive) peak. 
In the implementation of a numerical algorithm, it 
is essential to use the cache efficiently. Therefore, 
the number of load and store operations should be 
kept to a minimum, and quantities which are loaded 
from main memory should be reused as much as 
possible before being restored. Further, since el- 
ements from main memory are loaded into cache 
in chunks of a few consecutive elements, do-loops 
should be arranged such that main memory is tra- 
versed linearly (as is also necessary for efficient use 
of traditional vector-processors). Moreover, it will 
enable software-pipelining on RISC-processors, re- 
sulting in substantially faster execution. 

To illustrate this, we compare two different ways 
to calculate the viscous flux. In the first method 
(method A) the various derivatives of the velocity 
fields and the temperature are calculated consec- 
utively, and the viscous stress tensor and viscous 
heat flux are assembled and stored. Then the outer 
derivatives of the viscous flux are calculated, again 
consecutively. The resulting code is very well vec- 
torizable and consists of very simple do-loops. In 
the second method (method B), we use the follow- 
ing observation. In the calculation of the deriva- 
tives, some averages can be used to contribute to 
various derivatives. Moreover, for all derivatives, 
the averaging weights in one direction are equal. 
Therefore we calculate all inner derivatives simul- 
taneously, which also has the advantage that e.g. a 
vector u\ needs to be loaded only once for the calcu- 
lation of all its derivatives. An analogous fact holds 
for the weights. Further, the derivatives are not 
stored, but directly used to assemble the stress ten- 
sor and the heat flux. After that, all outer deriva- 
tives are calculated simultaneously. This results in 
about 30% less floating point operations, and sub- 
stantially less load and store operations, resulting 
in better memory-performance. The drawback is 
the occurrence of (much) more complicated do-loop 
bodies, which puts a severe demand on the compiler 
in order to obtain suitable pipelining. It appears 
that on the T3d and the Paragon there is hardly 
any performance gain, and the performance is only 
about 20 % of peak.   On one R8000 processor in 
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the SGI Power Challenge (coupled to 4 MBytes of 
cache), the CPU-time of method B is half that of 
method A, with a performance of about 37 % of 
peak (110 Mflops). More details are to be found in 
ref. [17]. 
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1. ABSTRACT 
A versatile and effective numerical code for direct and 
large-eddy simulations of compressible flows is described. 
It is based on robust explicit finite-difference methods 
which are second-order accurate in time and fourth-order 
accurate in space (Gottlieb & Türkei, 1976). An industrial 
application is presented, with comparison to a more fun- 
damental case, tackled with spectral and compact schemes. 

2. INTRODUCTION 
Traditionally, the algorithmic concern in CFD has been 
the (fast) convergence of steady calculations of flows over 
complex objects. Unsteadiness in the CFD context is ge- 
nerally associated to changes of angle of attack or geo- 
metry (in the case of store separation, for example), but 
scarcely to the Tollmien-Schlichting waves or the hair- 
pin vortices which develop within the boundary layers 
around these objects. Such events are generally conside- 
red as "turbulent fluctuations" and are either ignored or 
expected to be accounted for through one-point-closure 
turbulence models. This might yield acceptable predic- 
tion of the overall drag over an aircraft, but fails at pre- 
dicting, for example, the length of the transitional region 
in a boundary layer subjected to a given level of per- 
turbations. The reason for this is that the physical me- 
chanisms (of transition, turbulence or separation) are not 
understood at a fundamental level. There is therefore a 
great need for numerical simulations of transitional, tur- 
bulent or separated flows. Considering the computational 
resources currently available, two strategies are possible: 

- Direct Numerical Simulations, in which all turbulent 
scales are simulated explicitely, in three dimensions of 
space, down to the Kolmogorov scale r) (or nearly so). 
This implies high-order unsteady schemes, small time- 
steps, very fine 3D grids and, in practice, low Reynolds 
numbers. We would like to stress that it is not because 
a given scheme solves the complete Navier-Stokes equa- 
tions in three dimensions that its solutions automatically 
deserve the DNS label. If the mesh size in a turbulent 
region is larger than, say, IO77, we cannot speak of DNS. 
Some use the expression "pseudo-DNS". The problem in 
this case is that the amount of dissipation brought about 
by the grid being too coarse is not controlled. 

- Large-Eddy Simulations, a half-way house (Leschziner, 
1995) between DNS and one-point closures. It consists 
of simulating explicitely and in three dimensions all mo- 
tion larger than a certain cut-off scale, accounting for the 
contribution of the smaller scales through a simple alge- 
braic model. This presupposes that the large scales are 
more important than the small ones, which is certainly 
true for turbulence but is more doubtful for combustion, 
for example. In any case, from the point of view of al- 
gorithmics, the numerical methods used for LES are the 
same as for DNS, except that the subgrid-scale turbulence 
model induces non-linearities in the dissipative terms (in 
addition to those which come from the dependence of mo- 
lecular viscosity with respect to local temperature). 

One controversial question (within the scope of this pa- 
nel) is the role that can play numerical dissipation in the 
turbulence-modelling process, either through the nature 
of the scheme or the mesh size. In our LES, the solu- 
tions to the equations solved do contain a certain level 
of kinetic energy in the smallest resolved scales. This is 
sometimes criticized on the ground that all numerical me- 
thods behave badly in the small scales (even the spectral 
methods blur the phase information at the highest wave- 
number). Validation then has to be performed on physi- 
cal grounds, through comparison with experimental data, 
predictions of stability theories or numerical results ob- 
tained with different methods. Note that Leonard (1974), 
who coined the expression Large-Eddy Simulation, pro- 
posed a formalism thanks to which no energy would be 
left in the smallest resolved scales.1 To the other extreme, 
some claim that numerical dissipation can play the role of 
a subgrid-scale turbulence model, and sometimes that of 
the molecular viscous terms too (approaches refered to as 
Monotonically Integrated LES, Built-in LES, and so on) 

Before giving our point of view, we will briefly recall the 
very classical numerical methods we use for the simula- 
tion of compressible flows which do not develop strong 

'Institut National Polytechniquede Grenoble (INPG), Uni- 
versite Joseph Fourier (UJF) et Centre National de la Re- 
cherche Scientifique (CNRS). 

'The Navier-Stokes equations are first convolved through 
a continuous low-pass filter which commutes with the time 
and space derivatives. The resulting equations are then closed 
thanks to a subgrid-scale turbulence model. This closed system 
of equations is eventually discretized onto a grid which is finer 
than the cut-off scale of the filter, so that the result can be 
checked to be independent of the mesh size (but of course not 
of the filter's cut-off scale). 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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shocks. The subgrid-scale turbulence models that we cur- 
rently used are briefly presented in section 4, although 
they will be presented in more details in Lesieur k, Me- 
tais (1996). The soundest of these models is then applied 
to the LES of an incompressible mixing layer performed 
with spectral-like methods renowned for their low nume- 
rical dissipation and dispersion. The same model is finally 
applied to a more industrial mixing layer simulated with 
the code described below. 

3. NUMERICAL SCHEME 
In cartesian co-ordinates, the compressible LES equations 
can be cast, after several crude simplifications discussed 
in Comte et al. (1994), in the conservation-like form 

one can then re-write (1) as 

dU_     9f\      8F2      dF3 =Q 

8t       8x\       dx2       9x3 
(1) 

with 
U=     (p,pu,pv,pw,pe)    , (2) 

in which pe stands for the resolved total energy defined, 
for an ideal gas (air), by 

pe — p cv T+ \p{u\ +«2 + «*!)    . (3) 

The fluxes F, read, \/i £ {1,2,3}, 

Ft 

puim + pRTSu - (ß + pvt)ru 
pu,ti2 + pRT8i2 — {ß + pvt)rX2 
putu3 + pRTSi3 —(p + pvt)r,3 
p(e + RT)m — ßnjUj — (k + pCpKt 

8T 

dxi 

(4) 

with R = %f = 287.06 Jkg^K"1 and 

duj      dm 
dxi      dxj 

l(V.u)StJ (5) 

the deviatoric part of the resolved strain-rate tensor. Mo- 
lecular viscosity is prescribed through Sutherland's law 

ß(T) = /*(273.15) 
T        1+5/273.15 

273.15        1 + S/T 
VT> 120 

(6a) 

with /x(273.15) = 1.711 10_5P/ and S = 110.4, and its 
extension to temperatures lower than 120 K : 

ß(T) = /i(120) r/120    V T < 120 (6b) 

/t(120) being given by eq. (6a). The molecular conducti- 
vity k(T) derives from the constant-Prandtl-number as- 
sumption Pr - cpß(T)/k(T) = 0.7. To be closed, this set 
of equations requires the definition of vt and Kt, eddy- 
viscosity and eddy-diffusivity coefficients provided by the 
SGS model used. This will be done in the next section. 

The adaptation to curvilinear co-ordonates was done by 
David (1993), following Viviand (1974) (see also the com- 
plete development in Fletcher, 1988), keeping the span- 
wise co-ordinate 13 cartesian. The chain rule gives 

9 d   96 
dx 
 + J_dii 
96 dxi      96 dxi (?) 

for any regular co-ordinate transformation (xi, 12, £3) 
(6.6.6 = X3). Introducing the Jacobian 

J = det 

96 
dxi 

96 
8X2 

96 
dxi 

96 
8x2 

0 0 

(8) 

8U__     8F_     8G_     8H 

dt      96      96      9z3 

with 

>: *[(£)* + (£) 
MKSMSH 
H = 1F3 

(9) 

(10a) 

(10b) 

(10c) 

(lOd) 

using the chain rule (7) for the derivatives arising in the 
fluxes F, G and H. Vector U is still a function of the 
cartesian co-ordinates x, and time t. In the limit of zero 
viscosity and conductivity (Euler equations without SGS 
model), the fluxes F, - still defined by (3) - would be 
functions of U only. 

For a given 2D geometry nearly-orthogonal curvilinear 

grid 6(^1) xi)\ 6(Eii xi) is generated by Ryskin method, 
in such a way that each boundary of the domain corres- 

ponds either to a line at constant 6 or at constant 6- 
This grid is then made 3D by spanwise translation. The 
system (9) is solved on this grid by means of a (2,4) ex- 
tension of the fully-explicit McCormack scheme devised 
by Gottlieb and Türkei (1976), in the form 

At    f      7 / pn pn      \ 
ÄTTI.      6 \ri-H,J,k - ri,J,k) 

1   At   T     T(c<n nn     \ 
U

ltJ,k  - Ui,J,k-JiJ,k  \ 

+ 
A13 

'6 \G?,j + 2,k - G?,j + l,k) J 
7 / fin frn      \ 
6\ni,3,k + l        ni,3,k) 

~6\,Hi,j,k + 2 ~ Hr,],k+l) j 
(11a) 

rrii+1  _      1_   frr(l)      ,   Tjn 
U',3,k  —     2   \Ui,j,k + U',3 

1 T(C) 
2 Ji,3,k 

At 
\r*,3,k        ri-l,3,kJ 

_lf£-(l) -p(1) )] 6 I ri-l,3,k        L i-2,3,kJ J 

At   r     7_(M1) A(l) \ 
"A{2  L     6 \yi,3,k        '-'i.j-l.kj 

1 (MV MV \ 1 
— 6 1 U,,3-l,k  ~ Ui,3-2,k) J 

,   At r   71 Mi)       Mi)      \ 
+ Äi7L     6 \ai,J,k -U,,j,k-l) 

-I(H(1)       -H(l)      \\ 
(lib) 

As mentioned in Thompson et al. (1985) and recalled 
in Fletcher (1988), the metrics 8£i/8xj arising in the 
fluxes and Jacobians above have to be discretized in such 
a way that unwanted cross-terms cancel out, otherwise 
the scheme is not consistent. First of all, they have to be 
expressed as analytic functions of the metrics 8xt/8£m of 
the inverse transform, in order to eliminate all derivatives 
with respect to x\ and 12 in (9) and (10). These inverse 
metrics are discretized in the following manner: 
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dxi 

~ I/6 xt,+2,i.k + 8/6 xti+1,j,k - 7/6 xitti. 

in the predictor step (11a), and 

V6 XjiM xti-i,.i,k + V6 xe<-2,i,i 
A6 

in the corrector step (lib) 
(12a) 

and 

dxt 

36 

~ V6  Xtj,j+2,k + 8/6  Xti,i + l,k  ~ 7/6 x(,,i,k 
A& 

in the predictor step (11a), and 

A6 
.  in the corrector step (lib) 

(12b) 
This is only first-order accurate, which is justified by the 
fact that the grids we use are not very distorted, except 
very locally. Therefore dxi/d£m remains almost everyw- 
here close to 8{m. 

In the same way, the chain rule (7) has to be applied to 
eliminate all derivatives with respect to ii and 12 from 
the fluxes Fi. This introduces metrics to be evaluated 
as said above, together with derivatives of velocity and 
temperature with respect to £1 and £2- Consistency then 
determines the way these derivatives, and also d/d£3 = 
9/3x3, should be discretized. 

The boundary conditions are based on a decomposition 
into characteristics, in the spirit of Thompson (1987, 1990) 
and Poinsot and Lele (1992). The Riemann invariants 
of outgoing characteritics are extrapolated, whereas the 
incoming ones are either prescribed (e.g. at the inflow 
boundary) or set to zero (non-reflective or open boun- 
dary condition). For example, going back to cartesian 
co-ordinates for the sake of simplicity, in the case of a 
boundary perpendicular to the direction xi, the Euler 
equations are recast in their quasi-linear form 

(p,pui,pu2,pu3,p) 
dV A dV „ . . T, 
-xr + A — =0, with V 
at ox 1 

(13) 
The matrix A is, as per usual, diagonalized in the form 
A = L~l AL. Assuming L to be locally constant and in- 
troducing the vector W = LV, system (13) decouples into 
5 equations of the form 

dw      .   dw 
at ax\ 

0 (14) 

to be solved at the boundary point N through the semi- 
implicit scheme 

At 
XN + \XN\ WN            WN-1 

2 An 

^JV — I-^JVI 
r     n+1             n+11 

WN+1 ~ WN 

2 Aii 
= 0 

(15) 
For the outgoing characteristics (X^ > 0), the values of 
w^1 are obtained from that of A-y, w^ and w^^i, which 

are supposed to be known. For the incoming characteris- 
tics (A^r < 0), it is necessary to prescribe w7^r,l in order 

to pull out u>jv+1 - This is done by considering the nature 
of the boundary condition (adherence, free slip, perio- 
dicity, prescribed flow rate, non-reflectivity, inter-block 
matching. ..). V^+1 is finally deduced from Wj!J+1 assu- 
ming simply i^+1 rn 

J-/KT. 

3. RAPID OVERVIEW OF OUR SGS MODELS 
AND THEIR RECENT EVOLUTIONS 
Assuming spectra E(k) oc k~m for all k, Metais & Lesieur 
(1992) proposed models defined in the spectral space, rea- 
ding in a simplified form 

ut(k,t)=   0.31 
5 — m 

m+ 1 V3^  C£3/2 (16a) 

"f(*/*c) J^%1^form<3, 

and 

with 

vt(k,t) = 0 for m > 3, (16b) 

Kt(k,t) = vt(k,t)IPrt        with    Prt = 0.6    .      (16c) 

CK denotes Kolmogorov's constant, and v* = 1 for k/kc <- 
0.3. It rises for higher k/kc, a good fit of it is (in the case 
m = 5/3 at least), 

v*(k/kc) = 1 + 34.5exp[-3.03 kc/k] (17) 

Until now, this model has been used with a fixed va- 
lue m = 5/3, giving satisfactory results, not only in the 
case of isotropic turbulence but also stratified and/or ro- 
tating homogeneous turbulence and temporally-growing 
free shear flows (mixing layers, wakes). For streamwise- 
and-spanwise-periodic wall-bounded flows, the easiest way 
of accomodating grid refinement at the wall is to work 
on xz planes, normal to the wall, over which 2D spec- 
tra E2D(k2D,y,t) can be computed. Assuming again iso- 
tropy with E(k) oc k~m, one can relate E2D to E and 
express eddy viscosity and conductivity vt(k2D, y, t) and 
Kt(k2D,y,t) from (16a). One of us (E.L.) did it in the case 
of a plane turbulent channel flow. With m = 5/3, results 
are qualitatively correct, but the wall shear stress TW are 
underestimated by about 20% (Fig. 1, top). This is be- 
cause the model is too dissipative near the wall, where 
experimental measurements show spectra steeper than 
k~5^3. Much better statistics are obtained with a variable 
m(y,t) estimated at each timestep from E2o(k2D,y,t) 
through a least-square fit between k2Dc/2 and fc2Z>c, the 
cut-off wavenumber (Fig. 1, bottom). 

These results correspond to simulations at R = UClamh/v = 
5000, in which h denotes the channel's half height and 
UClam the centerline velocity of a laminar Poiseuille flow of 
same flow rate (usual convention). This should yield RT = 
uThjv ss 200, which is the case for the top plot of Fig. 1 
(instead of « 180 for the bottom one). Both calculations 
are performed by means of de-aliased pseudo-spectral me- 
thods oniz planes and 6th order compact schemes in the 
y direction (details will be provided in Lamballais et al., 
in preparation). The resolution is 64 x 65 x 32, for a do- 
main of size 2wh x 2h x xh, so that the cut-off wavenum- 
bers along x and z are the same. Extension to non-square 
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FlG. 1 - Urms (solid), vTms (dotted) and wrms (dashed) 
obtained from 2 LES differing only in the determination of m: 
set to 5/3 in the top plot and evaluated from E2D(k2D<y<i)i 
which turned the model off in the viscous sublayer (bottom 
plot). In both plots, the symbols correspond to LES by Pio- 
melli (1993) with Germano-Lilly's dynamic model, which are 
very close to experimental measurements. 

meshes is in progress; in particular, the procedure propo- 
sed in Scotti et al. (1993) is being tested. 

When spectral methods cannot be used, we strive to de- 
termine eddy-viscosities out of a measure of the kinetic 
energy at the smallest resolved scale A = ir/kc. One of 
these local spectra is F2A(X, t), the second-order structure 
function of the resolved velocity field, evaluated by avera- 
ging over the closest neighbours of point x, either in all 3 
directions of space (6-neighbour formulation) or on planes 
normal to the wall or mean shear (4-neighbour formula- 
tion). In the case of infinite Kolmogorov spectra, energy- 
conservation arguments (Leslie & Quarini, 1979) yield the 
structure-function model (Metais & Lesieur, 1992), defi- 
ned by 

vfF{x,t) = 0.105 C-3/2 A x/i^OM)    , (18) 

consistent with the spectral model (16a). 

This SF-model appears to be slightly less dissipative than 
the Smagorinsky model with the constant 0.18 given by 
the same assumptions (infinite Kolmogorov cascade, see 
e.g. Comte et al., 1994). As it involves velocity incre- 
ments instead of derivatives, it also has the advantage 
of being defined independently of the numerical scheme 
used. It is nevertheless not much better for transition 
than the Smagorinsky model: low-wavenumber velocity 
fluctuations corresponding to unstable modes yield ft's 
large enough to affect the growth rate of weak unstabili- 
ties like Tollmien-Schlichting waves. So far, we have found 
two ways of remedying this: 

- apply a high-pass filter onto the resolved velocity field 
before computing its structure function. With a triply- 
iterated second-order finite-difference Laplacian filter de- 
noted ~ , one finds E(k)/E(k) « 403 (k/kc)

9 for all k, 
almost independently of the velocity field and resolution. 
With the same arguments as for the structure-function 
model, this yields the filtered structure-function model, 
defined by (Ducros et al, 1995) 

Kt   ^ (x,t) = 0.0014 C\ 
-3/2 

/ AjF2A(x,t) (19) 

This model enabled Ducros to perform the LES of a spa- 
tially-growing boundary layer (at Mach 0.5) between Rex = 
3.3 10s and 1.14 106, which widely encompasses the tran- 
sition region, for a cost of about 80 hours of Cray 2. With 
the first mesh line at j/+ « 3 (i.e. with just one point in 
the viscous sublayer) and only 32 points along y, statistics 
were found to be within 20% agreement with experimen- 
tal data, as in Fig. 1 top. 

- switch the original structure-function model off when 
the flow is not three-dimensional enough in the small 
scales (David, 1993). In practice, an average vorticity vec- 
tor w(x, t) is computed over x and its (4 or 6) closest 
neighbours. The structure-function model is applied only 
if the magnitude of the angle a = (uj(x,t),uj(x,t)) exceeds 
a certain threshold «o- Simulations2 of incompressible iso- 
tropic turbulence at resolutions ranging between 32 and 
643 gave pdf's of |a| peaking around 20°. Having found 
the choice of ao not critical between 10 and 45°, we fi- 
nally retained ao = 20°. The model's constant was finally 
set to 1.56 times that of the SF model, a least-square fit 
between our test simulations yielding the same average 
dissipation as the SF-model. Dispersion was found small 
enough to justify this in first approximation, but a lot 
of work has yet to be done to reduce the arbitrariness 
in this model. In any case, the most surprising conclusion 
about the filtered and selective structure-function models 
(hereafter FSF and SSF, respectively) is that they can 
be interchanged without much difference in the results 
(Comte et al., 1994). This comes from the fact that they 
both considerably shrink the support of vt (with respect 
to that of the original SF model), and that both supports 
are almost the same (Fig. 2, middle and bottom plots). 
In any case, they do not react to A-vortices, whereas the 
SF model does (Fig. 2 top). 

FlG. 2 - From top to bottom: isosurfaces vt = 2/3 v given 
by the SF, FSF and SFS models, respectively, in the transi- 
tional portion of a spatially-growing boundary layer at Mach 
0.5 simulated with the FSF model (Ducros and Ducros et al., 
1995, or Comte et al., 1994). The same velocity field was used 
for the three plots (a priori test). 

2 LES with the original structure-function model 
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4. A REFERENCE CASE: THE INCOMPRES- 
SIBLE MIXING LAYER SIMULATED WITH 
SPECTRAL-LIKE METHODS 
The scheme described above is deliberately dissipative, in 
order to make it robust: as an example, we will show in 
the next section an application of it in the case of a solid- 
propellant booster. Let us also mention the flow over a 
compression ramp at Mach 2.5 or the boundary layer at 
Mach 4.5 that we briefly presented at the 74th AGARD 
FDP (see Comte & David, 1995 and Ducros et al. 1993 
for more details). The price to pay for this robustness is a 
certain numerical dissipation (let alone the numerical dis- 
persion), which is difficult to measure. In the absence of 
really-conclusive analytical arguments, one way around 
is perform comparisons with results obtained from nu- 
merical methods famous for their precision, such as the 
spectral or collocation methods. 

In Comte et al (1992), we presented a comparison between 
two pseudo-spectral DNS of incompressible mixing layers 
at Reynolds number3 100 differing only by the nature of 
the initial perturbations. In one case, these were made of 
a mixture between 2D fluctuations (energy 10_4(/2) and 
3D fluctuations of energy 10_5f/2. The result was the 
formation of quasi-2D Kelvin-Helmholtz vortices under- 
going pairings and stretching weak hairpin vortices bet- 
ween one another. The spectra measured were in « k~ 
or fc-4, even after the second pairing, and vorticity re- 
mained bounded by its maximal initial value w;. In the 
other case (same 3D fluctuations as before, but of energy 
10_4?72 and without 2D perturbulations) helical pairing 
were observed, with more energy in the small scales (spec- 
tra in fc~5/3), and all components of vorticity reaching 
about 3 uii. 

These simulations were repeated in LES without mole- 
cular viscosity (Silvestrini, 1993). In both case, we ob- 
served the same large-scale vortex pattern as in DNS, 
but with more numerous and intense small-scale vortices 
(maxaj^ « 6a;;). The difference in the statistics between 
the two cases was smaller than in DNS, although the case 
with 3D perturbations only remained more turbulent. 

We now present the same kind of comparison in a spatially- 
growing configuration, for a velocity ratio A = {U\ — 
U2)I{U\+U2) = 1/2. Sixth-order accurate compact schemes 
are used along x with radiative outflow boundary condi- 
tions, and pseudo-spectral methods on yz planes assu- 
ming periodicity along z (spanwise) and free-slip along y 
(code written by Gonze, 1993, and recently parallelized 
on Cray T3D by means of slab *-+ pencil transpositions 
under PVM). In all cases the computational grid is uni- 
form with cubic meshes. Fig. 3 corresponds to a DNS in 
a domain of size Lx = 140Ä;, Ly — 285,, Lz = 145; for a 
resolution 480 x 96 x 48. The upstream Reynolds num- 
ber is 100, as in Comte et al (1992), which corresponds 
approximately to the maximal value permitted at this re- 
solution. The upstream forcing is a mixture between 2D 
noise on the plane x = 0 and noise in the transverse direc- 
tion y only, of respective energies E2DU and SIDU with 
E2D = 10~4 and £ID = 10~3, that is, 3% in turbulent 
intensity. 

FlG. 3 -    Surface ||c3|| = 1/3 w;, in DNS k Re = 100. Peak 
vorticity recorded here is 2 u>;. 

Repeated at zero molecular viscosity with the FSF mo- 
del in its 6-neighbour formulation, transition is obtained 
farther upstream than before, even with weaker forcing: 
Fig. 4 is obtained with £20 — 10-6 and E\B = 10-4, in a 
shorter domain than before (Lx = 112 £;, with only 384 
points to keep the meshes cubic), other dimensions and 
number of collocation points being unchanged. The thre- 
shold is twice as large as before. Vorticity magnitude now 
peaks at 4 Ui, which is compatible with the high-Reynolds 
number experiments of Huang & Ho (1990). This maxi- 
mum is reached where streamwise vortices wrap around 
the primary billows. 

FlG. 4 -    Time evolution of the surface ||c3|| = 2/3 u;, in a 
LES at v = 0, with e2£> = 10-5 and E^D 10- 

3based upon U =  (U\ — U2)/2 and <5;, half the velocity 
difference and the initial vorticity thickness, respectively 
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FlG. 4 -   (cont'd) - Note the good behaviour of the outflow 
boundary conditions. 

Investigating sensitivity to the nature of the upstream 
perturbations would not be pertinent in such a narrow 
domain4. We thus doubled Lz and its corresponding num- 
ber of collocation points. This should not change things 
much in the quasi-2D case (£2D,SID) = (10~5,10-4). Ho- 
wever, with (£2D,£ID) = (10_4,0), helical pairings are 
observed in the wider domain (Fig. 5). The interested 
readers are refered to Silvestrini et al. (1995) for more 
details 

FlG.  5 -    Surface ||c3|| = 
£225 = 10~4 and EID = 0. 

2/3 uji, in LES at v - 0, with 

4 "Spanwise correlation lengths are of the order of 3 — 5 Sw 

(bw is the local vorticity thickness). However, the large vortices 
typically have lengths of order 20 6W when the irregularities 
along the span are ignored" (quoted from Browand & Troutt, 
1985). 

5. AN INDUSTRIAL APPLICATION : THE VOR- 
TEX SHEDDING INSIDE A SOLID ROCKET 
ENGINE 

We are participating in an operation set up by CNES and 
ONERA concerning the control of the vibrations induced 
by vortex shedding within the solid-propellant boosters 
of the future launcher ARIANE V. We show below pre- 
liminary simulations performed with the code described 
above, in a simplified planar test case, with the grid shown 
below (Fig. 6). 

FlG. 6 -   Grid of the Cl test case (length L = 0.47m, radius 
H = 0.045m, resolution 318 X 31 points 

The step is made of burning propellant, at a flame tem- 
perature of 3387 K and a mass flow rate, normal to 
the walls, of 21.2 kg/m2/s. Pressure p = 4.66 bar is 
prescribed at the upstream end. The outlet is a nozzle 
and the outflow boundary conditions are supersonic. The 
burnt gases are characterized by the following parame- 
ters: 7 = 1.14, 
et Pr = 1. 

R = 299.53 J/kg/K, ßmoi = 9. 10~5 PI 

With such values, 2D simulations are not possible without 
flux limiters or artificial viscosities. With a viscosity 8 
times as large, they become possible without such limi- 
ters, and Figure 7 shows the resulting vortices, in time 
evolution. In such a case, the code gives approximately 
the same results as the second-order Mc Cormack code 
SIERRA of ONERA (Lupoglazoff & Vuillot, 1992). 

In 3D at the true viscosity and with the filtered struc- 
ture function model described above, the advantages of 
the (2,4) scheme become evident. The following figures 
correspond to a LES at a spanwise resolution of 90 points 
equally spaced over the span Lz = T H RJ 0.141 m, 
with periodic boundary conditions. The initial condition 
consists of the 2D flow shown above, taken at a given ins- 
tant of the steady regime, with low-amplitude white noise 
(of amplitude 10-4 the speed of sound at the surface of 
the propellant) on all the components of U. Without this 
perturbation, the flow would have remained 2D, which 
proves that the code is not "noisy". After having reached 
the steady regime, which took 50 hours of Cray 90 at 
450 Mflops (corresponding to 8ms of real time), time se- 

FlG. 7 -    Contour maps of entropy at 5 equally spaced ins- 
tants. 
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FIG. 8 -   Streamwise vortices in a quasi-industrial 

configuration 

ries are recorded for 5ms. Figure 8 shows an animation 
of an isosurface of the magnitude of the vorticity vec- 
tor. Streamwise vortices are not only visible inbetween 
the large Kelvin-Helmholz billows, as in the previous sec- 
tion, but also at the wall of the nozzle. These are likely 
to result from a Dean-Görtler instability of the detached 
boundary layer, which re-attaches in the convergent part 
of the nozzle (Fig. 9). 

The statistics are in global agreement with the experi- 
mental data. In particular, we found kinetic energy and 
pressure spectra which exhibit a fundamental peak around 
2500Hz, and its successive harmonics. More precisely, Fi- 
gure 10 shows a comparison between the present LES and 
the 2D calculation just above. In the 3D case, the fun- 
damental frequency is lower (2300Hz versus 2670) and 
the spectra are more developed, in particular in the low 
frequency. This is of crucial importance for the design 

of the anti-vibration protections of the rocket's control 
systems, and illustrates the importance of taking three- 
dimensionality into account, even when the largest vor- 
tices are expected to be two-dimensional. 

FlG. 9 - Maps of the entropy field. The top view shows a cross 
section of the Görtier vortices, the bottom one the streamwise 
vortices which connect the KH billows. 

f (hz) 

FlG. 10 - Temporal kinetic energy spectra recorded in the 
middle of the booster. The solid line corresponds to the LES 
and the dashed line to the 2D DNS. 

6. CONCLUSION 

A progress report of our efforts towards the industriali- 
zation of Large-Eddy Simulations has been presented. In 
particular, it is shown that such simple algorithms as 5- 
point extensions of fully-explicit McCormack schemes can 
be very effective, and compete with spectral methods as 
far as the description of fine vortical structures is concer- 
ned. The importance of longitudinal Görtier-type vortices 
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has been shown in the case of the flow within a simplified 
booster of Ariane V, in addition to the more dramatic 
case of HERMES' body flap which was presented orally. 
The academic simulation of incompressible mixing layers 
has proved the sensitivity of LES to the nature of the 
disturbances superimposed onto the basic flow, showing 
that LES could be a good tool for receptivity studies in 
aircraft and aerospace research. The next step of our de- 
velopments in this direction will deal with the adapta- 
tion of our subgrid-scale turbulence models to complex 
geometries, following the footsteps of the Center for Tur- 
bulence Research in Stanford (see e.g. Ghosal & Moin, 
1995). Finally, our opinion about the role that numeri- 
cal dissipation should play in the turbulence-modelling 
process is the following: the role of numerical dissipation 
should be minimized, unless we have a way of controlling 
it on physical grounds. Algorithms with non-linear dis- 
sipation are available: for example, the PPM scheme of 
Collela & Woodward (1984) is capable of satisfying the 
second principle of thermodynamics and the positivity of 
the thermodynamical variables with an amount of nume- 
rical dissipation close to the minimum wherever it is not 
needed. We disagree with the claim that Euler-PPM cal- 
culations are LES (either MILES or BILES), because the 
physics of turbulence has not been incorporated yet. Ho- 
wever, we think that this should be possible. Firstly, in 
subsonic regions at least, its dissipation should be made 
as little dependent on the grid orientation as possible. 
Then, we should try to force this dissipation to equal the 
value prescribed by a given subgrid-scale turbulence mo- 
del. Thus, explicit eddy-viscosity models might become 
redundant one day. However, we think that the molecu- 
lar viscous terms should be kept in all simulations of wall- 
bounded flows. 

7. ACKNOWLEDGEMENTS 
Most of the computational time used for the 3D calcula- 
tions presented here has been freely allocated by IDRIS, 
the CNRS computing center. The study of the vortex 
shedding in the boosters of Ariane V is under the CNES/ 
ONERA contract n° 22.492/DA/A1.CC1. The discussion 
about the role of numerical dissipation has greatly be- 
nefitted from the lectures given by Prof. Ferziger, from 
Stanford University, during his stay in Grenoble last year. 

8. REFERENCES 

COLLELA, P. & WOODWARD, P.R. 1984 The piecewise para- 
bolic method (PPM) for gas-dynamical simulations. J. 
Comp. Phys., 54, 174-201. 

COMTE, P & DAVID, E., 1995, Large-Eddy Simulation of 
Görtier vortices in a Curved Compression Ramp. Proc. 
of the Second French Russian workshop on experimenta- 
tion, modelization, computation in flow turbulence and 
combustion, INRIA/GAMNI-SMAI, eds: B.N. Chetve- 
rushkin, A. Desideri, Yur A. Kuznetsov, J. Periaux & B. 
Stoufflet, John Wiley & sons Publishers (sous presse). 

COMTE, P. , DUCROS, F., SILVESTRINI, J., DAVID, E., LAM- 
BALLAIS, E., METAIS, O. & LESIEUR, M., 1994, "Simula- 
tion des grandes echelles d'ecoulements transitionnels", 
AGARD 74th Fluid Dynamics Panel Meeting and Sym- 
posium on "Application of direct and large eddy simula- 
tion to transition and turbulence", Chania, Crete, Grece, 
18-21 Avril, 14.1-14.12. 

DAVID, E. 1993 Modelisation des ecoulements compressibles 
et hypersoniqv.es : une approche instationnaire. These INPG. 

DUCROS F. 1995 Simulations numeriques directes et des grandes 
echelles de couches limites compressibles. These INPG. 

DUCROS, F., COMTE, P. & LESIEUR, M., 1995, "Large-eddy 
simulations of transition to turbulence in a weakly-com- 
pressible boundary layer over a flat plate", submitted to 
J. Fluid Mech.. 

FLETCHER, C.A.J. 1988 Computational techniques for fluid 
dynamics 2", Springer series in Computational Physics", 
pp. 484. 

GHOSAL, S., LUND, T.S. & MOIN, P. 1992 A local dynamic 
model for large eddy simulation. Annual Research Briefs, 
1992, Center for Turbulence Research, Ames Research 
Center and Stanford University, pp. 3-25. 

GHOSAL, S. & MOIN, P. 1995 The basic equations for the 
large-eddy simulation of turbulent flows in complex geo- 
metry. J. Comp. Phys., 118, 24-37. 

GONZE, M.A. 1993 Simulation numerique des sillages en 
transistion ä la turbulence. These INPG. 

GOTTLIEB, D., & TURKEL, E. 1976 Dissipative two-four me- 
thods for time-dependent problems. Math. Comp., 30 
(136), 703-723. 

HUANG, L. &; Ho, C. 1990 Small-scale transition in a plane 
mixing layer, J. Fluid Mech., 210, 475-500. 

LEONARD, A. 1974 Energy cascade in large-eddy simulations 
of turbulent flows, Adv. Geophys., 18A, 237-248. 

LELE, S. 1990 Compact finite difference schemes with spectra- 
like resolution, J. Comp. Phys., 103, 16-42. 

LESCHZINER, M. 1995 SMAI-CNRS course on Numerical Me- 
thods for Turbulence, Orsay, France, June 7-9, 1995. 

LESIEUR, M., METAIS, O. 1996 New trends in large-eddy si- 
mulations of turbulence, Ann. Rev. Fluid Mech., 28 (to 
appear). 

LESLIE, D.C., QUARINI, G.L. 1979 The application of tur- 
bulence theory to the formulation of subgrid modelling 
procedures. J. Fluid Mech., 91, pp. 65—91. 

LUPOGLAZOFP, N. & VuiLLOT, F. 1992 Numerical simulation 
of vortex shedding phenomenon in 2D test case solid ro- 
cket motors. AIAA Paper92-0776, 30th AIAA Aerospace 
Sciences Meeting Reno, USA 

MOIN, P. & KlM, J. 1985: The structure of the vorticity field 
in turbulent channel flow. Part 1. Analysis of instanta- 
neous fields and statistical correlations J. fluid Mech., 
155, pp. 441-464. 

POINSOT, T.J. & LELE, S.K. 1992 Boundary conditions for 
direct simulations of compressible viscous reacting flows, 
J. Comp. Phys. 101, 104-129. 

ScoTTI A., MENEVEAU C, LILLY D.K. 1993 GeneralizedSma- 
gorinsky model for anisotropic grids. Phys. Fluids A. 5, 
(9), pp. 2306-2308. 

SILVEIRA-NETO, A., GRAND, D., METAIS, O., LESIEUR, M. 
1993 A numerical investigation of the coherent vortices 
in turbulence behind a backward-facing step. J. Fluid 
Mech., 256, pp. 1-25. 

SILVESTRINI, J. 1993 Sensibilite aux conditions initiales des 
structures coherentes dans une couche de melange tem- 
porelle. DEA de l'INPG. 

THOMPSON, J.F., WARSI, Z.U.A & MASTIN 1985 Numeri- 
cal grid generation, foundations and applications, North- 
Holland, Amsterdam. 

THOMPSON, K.W. 1987 Time-dependant boundary conditions 
for hyperbolic systems, J. Comp. Phys. 68, 1-24. 

THOMPSON, K.W. 1990 Time-dependant boundary conditions 
for hyperbolic systems II, J. Comp. Phys. 89, 439-461. 

SILVESTRINI, J.H., COMTE, P. & LESIEUR, M., 1995, DNS and 
LES of incompressible mixing layers developing spatially 
Proceedings of Turbulent Shear Flows 10, Pennsylvania 

VlVIAND, H. 1974 Formes conservatives des equations de la 
dynamique des gaz, Rech. Aeros., 1, 65-68. 



25-1 

APPLICATIONS OF LATTICE BOLTZMANN METHODS TO 
FLUID DYNAMICS 

S.A. Orszag 
Fluid Dynamics Research Center, Forrestal Campus, 

Princeton University, NJ 08544-0710, USA 

Y. H. Qian 
Department of Applied Physics, 

Columbia University, New York, NY 10027, USA 

S. Succi 
IBM European Center for Scientific and Engineering Computing, 

171 P.le Giulio Pastore, Roma, 1-00144, Italy 

SUMMARY ing the motion of a fluid, it may prove convenient 

to use a population of microvariables ("particles") 

In this paper, we present recent developments in whose microdynamics can be freely adjusted to 

the theory and application of lattice Boltzmann match the Navier-Stokes equations on a macro- 

techniques and related lattice BGK models. Lat-    scopic scale [5]. 

tice based methods allow the study of complicated T-r»n      ü.   J .. i      .!•                 u           *. J The LBE method takes this approach one step- 

systems with simple, efficiently computable phys- ,                       .          u   r        *t. J                          r   '               J         r            r forward towards the macroscopic world, Irom the 

ical models.    Here we will report some progress ,.      .    .      .   , ,    .        , c molecular to the kinetic level, by replacing the 

with these methods and give an overview of their .       , .    .       ...        ...   ,,   . 
boolean microdynamical variables with their cor- 

basic ingredients. Applications to various types of ... ,        „,. 0 rr responding floating point expectation values, ihis 

turbulent flows are described. , ., ,,     ,      ,.,    . , 
move, while preserving the locality in space and 

time of the evolution rules, which are key to the 

1       INTRODUCTION amenability  to parallel computing,   offers  three 

main advantages: a better amenability to present- 

The Lattice Boltzmann Equation (LBE) is a direct day computing architectures (increasingly faster 

method to solve the Navier-Stokes equations on a on the floatinS Point side)5 a wider de§ree of lati" 

digital computer. LBE is rooted in boolean lat- tude in choosing the details of the evolution rule5 

tice gas techniques, a sort of "minimal" molecular a reduction of the separation in scale between the 

dynamics scheme based on the observation that micro-world and the macro-world (i.e. the aver- 

the large-scale dynamics of fluid flow is largely in- agin6 °P«ation on a suitable region of the micro- 

dependent of the details of the underlying micro- dynamical lattice needed in boolan simulations to 

dynamics. This suggests that in order to numer- remove statistical noise is no longer necessary), 

ically integrate the differential equations describ- 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms' 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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The   Lattice   Boltzmann   equation   was   intro- lence. 

duced in the late 80's to cope with the two major 

drawbacks of the Lattice Gas Cellular Automata n      T attlCP Gas dvnamiCS 

(LGCA) technique: statistical noise and exponen- 

tial complexity of the evolution rule with the num- The development of the lattice Boltzmann equa- 

ber of degrees of freedom per lattice site. üon ^LBE) is intimately related to lattice gas cel- 

Ever since, the method has gone from strength lular automata (LGCA). Interest in LGCA origi- 

to strength up to the point where it can be put nated with the seminal paper of Frisch, Hasslacher 

on a par with most advanced computational fluid & Pomeau (1986) in which it is shown that a sim- 

dynamics  (CFD) techniques for a large variety pie automaton living on a 2D hexagonal lattice 

of problems, ranging from fully-developed homo- can provide, in the limit of large scale motion, a 

geneus incompressible turbulence, to multiphase faithful representation of 2D fluid dynamics [5]. 

flows in porous media. ^ contrast to the 2D case, no 3D Bravais lattice 

exists with enough symmetries to lead to 3D fluid 
Besides its amenability to parallel computing, 

dynamics. A clever way out of this problem was 
the method is appreciated for the ease of imple- 

found by d'Humieres, Lallemand & Frisch (1986) 
mentation of grossly irregular geometries as well 

who pointed out that a suitable four dimensional 
as for the flexibility of the evolution rule which 

lattice, the face-centered hypercubic (FCHC) lat- 
allows to model complex physics by minor modi- 

tice, leads to the proper symmetries. To obtain 
fications of the basic collisional scheme. 

three (two) dimensional hydrodynamics, periodic 

Despite these brilliant features, LBE.has not yet    boundary conditions are imposed along the xA di- 

penetrated the CFD engineering community, the    rection and the flow is projected into 3D (2D) [3]. 

primary hurdle being its inability to deal with non- 
The path leading from LGCA to the Navier- 

uniform, irregular mesh distributions. 
Stokes equations is based on a standard procedure 

This problem has been partially alleviated in 0f statistical mechanics: (1) to get from the parti- 

the recent past by importing finite-volume tech- de level to the Liouvine \eve\: an ergodic assump- 

niques within LBE so as to produce a finite-volume tion is used; (2) to get from the Liouville level 

LBE capable of dealing with non-uniform (struc- tQ the Boitzmann kinetic level, the assumptions 

tured) grids. tkat C0Uisi0ns are instantaneous and localized in 

This paper is organized as follows:   first we space are involved; (3) to get from the Boltzmann 

present a cursory view of the LGCA nd LBE tech- level to the Navier-Stokes continuum level, the as- 

niques respectively. Subsequently we describe two sumption that the particle mean-free-path is much 

applications of LBE to the area of fluid turbu- smaller than any macroscopic variation length is 

lence: three-dimensional Rayleigh-Benard convec- made.   The formal procedure to achieve the hy- 

tion and three-dimensional channel flow turbu- drodynamic description of LGCA is based on a 

multiscale formalism using the Knudsen number 
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as a small parameter. 

The main advantages of LGCA are as follows: 

• Round-off error-freedom 

• Regular data structures, ideal for vector pro- 

cessing 

• Local interaction model, ideal for parallel pro- 

cessing 

• Ease of implementation of extremely irregular 

geometries and boundary conditions 

The price to be paid for these advantages re- 

flects in the following disadvantages: 

• Statistical noise 

• Exponential complexity of the collision oper- 

ator with increasing number of states/site 

• Relatively high-viscosity and therefore low ef- 

fective Reynolds numbers 

The issue of statistical noise is a common fea- 

ture of all particle models; substantial space/time 

averaging is required to extract reasonably smooth 

hydrodynamic signals out of the LGCA micrody- 

namics. The issue of exponential complexity is 

also typical of finite-state algorithms. 

3    Lattice Boltzmann dynamics 

Lattice Boltzmann techniques provide a way out 

of both of these problems. With the assumption 

of molecular chaos, it is possible to write the fol- 

lowing kinetic equation: 

Ni(x + ci,t + l)-Nl{x,t) = &i(N)   t= 1,6 (1) 

Here Ni(x,t) is the ensemble averaged number 

density of particles of type i lying at the lattice 

point at x, t and propagating along the direction 

identified by the discrete speed c\. Also, A{(N) 

is obtained from the boolean collision term by 

simply replacing the stochastic boolean popula- 

tion n, with the ensemble averaged population 

N{. The problem of noise in equation (1) is ab- 

sent because Ni is a real variable and no aver- 

age at all is needed to recover the macroscopic 

fields. McNamara & Zanetti (1988) proposed to 

use Eq. (1) directly for hydrodynamic simula- 

tions with the Ai arising from the corresponding 

boolean models. In particular, they studied the 

model defined by the FHP-III rules by simulating 

the decay of shear and sound waves of finite wave- 

lengthi [10]. The comparison between the numer- 

ical values and the Chapman-Enskog multiscale 

predictions shows that the hydrodynamic value is 

accurate to better than 5% even for a lattice as 

small as 4. Also the behavior of sound waves is 

satisfactory. 

The McNamara-Zanetti approach, while fixing 

the problem of statistical noise, is still left with 

the intractable complexity of the collision oper- 

ator because all b-body interactions included in 

the boolean collision term are still present. This 

makes their approach unviable in more than two 

dimensions. 

Higuera k Jimenez (1989) [6] noticed that the 

Lattice Boltzmann equation can be further sim- 

plified without losing any generality in terms of 

hydrodynamic fidelity. The reason is that macro- 

dynamic equations in LGCA formally arise in the 

double limit of small Knudsen numbers and small 
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Mach numbers.  It is then convenient to consider    bound to the Reynolds number attainable since 

the expansion of the collision term on the right    the LBE viscosity is exactly the same that results 

side of (1) corresponding to these conditions.  To   from the corresponding LGCA. Given the fact that 

do this, let us write N% as one is ultimately interested just in the large-scale, 

hydrodynamic features of the flow, at this point, 

this appears as an unnecessary restriction. 
Ni = N?(p,Ü) + Nr(Vp,Vu), (2) 

One is therefore naturally led to regard the 

and further decompose N*q as Lgg as a self-standing model of the Navier-Stokes 

„, ,„s „ equations, regardless of any underlying LGCA dy- 
Nl" = Nl0) + N?> + N\Z) + 0(M3)       (3) 

namics (Higuera, Succi, Benzi (1989)) [7]. 

where the upper index refers to the order in the The starting point in the definition of the 'self- 

Mach number M.  This expansion permits to ex- standing' lattice Boltzmann equation is again the 

press the collision operator in terms of a simple linearized kinetic equation (4). The change in per- 

2-body scattering matrix spective « however substantial: the choice of the 

quantities Aij and N*9 in (4) is no longer dictated 

by an underlying boolean microdynamics but is 
Ai(N) ~ AijiNj - N?). (4) 3 rather adjusted to the macroscopic equations to be 

«A-     ,     ,   .    ...       i   •          i reproduced. With this broader view, the attention 
where Ald = ffi, the derivatives being calcu- v 

A A    \              ,    .,     Ar        ,         /A is shifted on the scattering matrix and notably on 
lated m the state of zero velocity Ni = d = p/o. 

m,                     .          x   i   ^         4.*.   ■          *.   v> its leading non-zero eigenvalue, the one control- 
The element At] controls the scattering rate be- 6                     & 

,.       .         •       ,   •        j   Äreg •    4.1,    i      i ling the viscosity of the LBE flow. This eigenvalue 
tween directions t and j, and Nf is the local 6                    J 

....   .                  ,  j ,.             j     j can be tuned at the outset so as to achieve the de- 
maxwellian equilibrium expanded to second order 

in the local flow field. 
sired flow viscosity in a fairly handy fashion. 

Despite its apparent linearity, the expression (4) 

accounts for second order terms in the expansion 4      Lattice BGK models 

of the collision operator. 

The Higuera-Jimenez LBE marks an important In a similar vein, Bhatnagar, Gross & Krook 

breakthrough as it opens the way to practical (1954) used a relaxation approximation to model 

three-dimensional simulations of fluid flows; as the effect of complicated collisions [2]. The ba- 

a matter of fact it turns a 2b complex problem sic formulation of lattice BGK models can then 

(where 6 is the number of bits at each lattice site) be described as a simplified Boltzmann equation 

into a b2 complex one! The quasilinear LBE in- starting from time evolution equation as 

troduced by Higuera & Jimenez is still in a one- 

to-one correspondence with its underlying LGCA Nt(x + ci,t + 1) = Ni(x,t) + u[Nf(x,t) - Ni(x,t)] 

microdynamics. This sets a relatively strict upper (5) 
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where w is a relaxation parameter (collision fre-       where \S\ is the amplitude of the strain tensor 

quency in kinetic theory).    The key point here    and C\ is a constant. 

is the choice of the equilibrium state Nf so that .. ,      .TTT.T-I-.LI_.LXI_     _.    •   _. ^ * A nice property ot LBt, is that the strain tensor 

it leads to the exact Navier-Stokes equation at    „ -1.1.1. •  _.    r 
baß is available locally as an appropriate linear 

hydrodynamic space and time scales.   The right . . t,. ,. , ... ,-   „ ,, J J r combination of the particle populations Ni Other 

eddy viscosity models may be implemented in a 

JV? = ptp[i + C-12^L + ^^(CtaCt/3 _ clsaß)] similar way. The inclusion of standard wall condi- 

tions for the eddy viscosity is equally straightfor- 

where cs is the speed of sound, and tv are weights , 
^ ward. 

depending on the square amplitude of the velocity 

p (since particles are either at rest or move one grid 

site per timestep, p is an index from 0-2 in 2D, 0- 

3 in 3D, which labels particles at rest, in motion 

along or in motion diagonal to the grid). Require- 

ments of isotropy and Galilean invariance impose 

constraints on the weights tp which are model de- 

pendent (Qian and Orszag (1993) [11]). 

From a numerical point of view the LBE is basi- 

cally an explicit finite-difference scheme working 

at the edge of the Courant-Friedrichs-Lewy con- 

dition cAt = Ax and bearing a significant resem- 

blance with the Dufort-Frankel scheme. It is char- 

acterized by a favorable computation/calculation 

ratio which is key to its amenability to parallel 

implementations across virtually the whole spec- 

A two-scale analysis in time leads to the effec- . , ,, , , an.... A. J trum of present-day parallel computers.   Ihis fa- 

tive hydrodynamic equations at second order of , .       ...       , .      ,       ,, f „„„.„ J        J n vorable ratio is achieved at the expense 01 some 

the Knudsen number (the ratio of mean free path , ^.TITT        1.    J ft-x.       ™i- ,. ~t v extra-memory and CPU overhead (the number 01 

°    '" discrete populations exceeds the number of signif- 

Q p A. Q (pu ) — 0 icant hydrodynamic fields) as compared to stan- 

(6) 
+isdß[p(dßua + dauß)} 

where cs is the sound speed and v the shear vis- 

cosity is given by 

_ ,       .      ~ , . ^ .  9  \ dard explicit CFD schemes 
dt{pua) + Oß{puaUß) =    -da(c'sp) 

5    Applications 

r*   2 
^=-(--1) 

2   10 Many applications of lattice BGK methods to di- 

Also, the incorporation of an eddy viscosity model verse fluid flows have and are being made; for a 

is quite straightforwardly accomplished through recent review see (Qian, Succi and Orszag, 1995 

the introduction of a space- and time-dependent [12]). 

relaxation parameter to.    The Smagorinsky for- ^ we ^ ^^^ ^.^ ^ recent app]i. 

mula for the eddy viscosity, for example, becomes ^.^ three.dimer.sionai Rayleigh-Benard ther- 

P^                          n_ .   .      , mal   convection   and   three-dimensional  channel 

2c2 flow turbulence. 
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5.1     Three-dimensional thermal convec- where Sp(r) is defined as: 

tion 

Recently, the LBE formalism has been extended in S
P(

T
) 

=< N1 + r) " U(X)\P > 

such a way as to handle thermal convection by in- , . J angular brackets denoting ensemble-averaging. 

eluding the dynamics of a temperature field within 
,,„.,„       A/r       - ,.   c      -   n      •   MOOQWBI According to the standard K41 Kolmogorov the- 
the fluid flow, Massaioh, Succi, Benzi, (1993) |8j. 

ory, in the scaling regime (Reynolds number going 

The thermal LBE code has been extensively ex- tQ .^.^ ^ 3rd ^ structure function ^ 

ploited to gain new insights into a number of issues ^^ & ^^ ^.^ Q{ ^ space separation 

related to thermal turbulence, such as the shape ^ ^.^ .g ^ ^^ .g commonly probed by log. 

of the probability distribution function of veloc- ^.^ ^ gtructure functions Sp versus r. The 

ity and temperature fluctuations and the related ^^ ^ ^ procedure ig that the Reynoids 

implications on the scaling properties of thermal ^^ achievaWe by direct simulation of the 

turbulence. Navier-Stokes equations on present-day comput- 

Perhaps, the most valuable outcome of these ers are not high enough to attain a fully-developed 

simulations is a clue on the nature of turbulent scaling regime. The result is that a clearcut mea- 

flows which goes now by the name of "extended surement of the scaling exponents is hampered by 

Self Similarity"   (ESS).   ESS   represents  a  kind statistical inaccuracies. 

of generalized scale invariance which apparently ^ ^.^ Q{ ESg .g ^ ^ eq   (?) holds eyen 

holds also in the limit of low Reynolds numbers, for moderately low Reynolds number for which 

i.e when dissipation still plays a non-negligible role ^ Kolmogorov relation g^ „ r does not   ap_ 

on the flow dynamics (Benzi, Ciliberto, Massaioli, ^ ^^ the denomination of »extended" self- 

Tripiccione and Succi, 1993) [4]. .   .,    . 

The basic statement of ESS is that scaling prop- ^ ^.^ implication is that  scaling ex. 

erties of a turbulent flow are most conveniently ^^   ^   then   be   ^.^   measured   out 

highlighted by inspecting the structure functions rf moderate.Reynolds number simulations,  well 

one versus another rather than as a function of the ^^  ^^  ^ present.day  computational  ca- 

space separation r, as suggested by the common ^.^.^ ^ ^ ^.^ being perfectly ade 

practice. 
quate). 

In particular the scaling exponents ap can be ^ ^.^ Q{ ^ ^ assumption is currentiy 

derived by measuring the p-th order distribution ^.^ ^^ for & ^.^ Q£ different ^^ in_ 

function Sp(r) in terms of S3(r) according to the ^.^ Rayleigh.Benard turbulencei magnetohy- 

following relation: ,     ,          .          ,    ,, 0 drodynamics and others. 

In the specific instance of Rayleigh-Benard con- 

Sp(r) - {Sz(r))ar                     (7) vection, ESS has permitted to gather a wide body 
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of numerical evidence in favor of 'buoyancy-driven'    [9]. 

Bolgiano scaling , i.e. energy spectrum scaling like 

E(k) ~ k~u'5, as opposed to 'non-thermal' Kol- 

mogorov decay E(k) ~ A;-5/3 [8]. 

The idea is to reproduce the well-known loga- 

rithmic law-of-the wall of the mean flow profile: 

5.2     Three-dimensional turbulent chan- 
nel flow 

As mentioned in the introduction, the LBE has 

been recently merged with the finite volume 

method to produce a variant of LBE (FVLBE 

hereafter) able to deal with non-uniform grids. 

• ux(z) = z-£\   0 < z < 6 

• ux{z) = ^log (%) + v.d;   z>6 

where x — 0.4 is the Von Karman constant, 

v* a typical turbulent velocity, d is a calibration 

constant, and 8 = v/v* is the thickness of the 

"viscous sublayer". 

The average velocity profiles drawn from the nu- 

merical simulation are checked against the above 

expressions to produce best fit values of vn,v™,dn 

where the superscript n denotes 'numerical simu- 

lation' (see Figure 1). 

The actual values of i/n,v™,dn are derived from 

the slope of the linear plot ux vs z {vl/v), the 

slope of the plot ux vs log(z) ( v*/x ) and the 

dtFitc + $;,c = Al|C (8)   value of log(ux) at z = 1 (u„/x • log(v*/v) + dv+). 

The idea is to take the differential form of 

LB dynamics and apply a finite-volume procedure 

based upon integration of eq. (1) on each cell of a 

control grid of (almost) arbitrary shape. 

By straigthforward use of Gauss theorem, we 

obtain 

where Fi}C is the mean population of the macro- 

cell c, $ic the corresponding flux across the 

boundaries of c, and A;|C is the rate of change 

if Ft|C due to collisions occourring within the cell 

c. Clearly, the actual computaion of surface fluxes 

involve an interpolation technique. For the case 

in point, piece-wise linear interpolation is used so 

that locality is preserved to a good extent in the       Data samples have been collected every 53 steps 

The main outcome of these simulations is that 

turbulence is supported during the entire life span 

of the simulation, that is 2.4 X 105 time steps, cor- 

responding to about 90 longitudinal transit times. 

This is due to the fact that the channel is long 

enough to support streamwise rolls feeding cross 

channel turbulence. 

numerical scheme. in the interval [100,000,240,000], thus yielding 

about 2600 profiles for statistical data analysis. 
This scheme has been validated for the case of 

three dimensional turbulent channel flow simula- 

tion on a moderate resolution grid (64 x 64 X 128) 

spanning a physical channel of heigth H = 192, 

length Lx = 960, and width Ly = 512, i.e. pretty       First, we remark that the measured viscosity 

The numerical best-fit values deduced from the 

simulation are as follows: vn = 0.013 ± 0.002 , 

v? = 0.013 ± 0.001 , cP = 6.5 ± 0.7. 

close to the one examined by Moin and coworkers   is about twice higher than the theoretical input 
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value v = 0.05. This is attributed to localized 

peaks of numerical viscosity occurring there where 

the lattice pitch is changing due to the mesh non- 

uniformity (a sharp 1-2-1 mesh distribution along 

z has been adopted). 

Second, we note that dn is within the error 

bars provided by the literature, although some- 

what on the upper side. Finally, since turbulence 

is sustained for a significant time-span, wall stress- 

tensor statistics is also available for the purpose of 

internal consistency checks This yields: 

v* = V< uxuz >|z=o ~ 0.012 (9) 

in a pretty good match with the values deduced 

by the velocity profiles (Figure 2). 

To sum up, these moderate resolution runs sug- 

gest that the FVLBE scheme provides results well 

within the error bars of current CFD at quite a 

comparable computational cost (10 [is per grid- 

point per step on a IBM RS 6000 mod. 580 work- 

station). 

Further work is needed to judge upon its com- 

petitiveness on a more quantitative ground. 

6    Conclusions 

In summary, Lattice Boltzmann methods pro- 

vide a complementary numerical approach to tra- 

ditional numerical methods for complex nonlin- 

ear systems. Benchmark problems have validated 

the approach as a flexible and efficient numerical 

method. Fruitful applications are being made to 

multiphase flow simulations, subgrid modeling of 

turbulence and non-uniform lattice applications. 

References 

[1] G. Amati, S. Succi and R. Benzi, Fluid Dyn. 

Res., in press 

[2] P. Bhatnagar, E.P. Gross, and M.K. Krook, 

Phys. Rev., 94:511, 1954. 

[3] D. d'Humieres, P. Lallemand, and U. Frisch, 

Europhys. Lett, 2:291, 1986. 

[4] R. Benzi, S. Ciliberto, F. Baudet, F. Mas- 

saioli, S. Succi and R. Tripiccione, Phys. Rev. 

E, R29, , 48, n.l, 1993 

[5] U. Frisch, B. Hasslacher, and Y. Pomeau, 

Phys. Rev. Lett, 56:1505, 1986. 

[6] F.J. Higuera and J. Jimenez, Europhys. Lett, 

9(7):663-668, 1989. 

[7] F. Higuera, S. Succi, R. Benzi Europhys. 

Lett, 9-4, 1989. 

[8] F. Massaioli, R. Benzi, S. Succi and R. Tripic- 

cione, Eur. J. Mech. B/Fluids, 14, n.l, 67-74, 

1995 

[9] P. Moin, J. Jimenez, J. Fluid Mech., 225, 213 

1991 

[10] G. McNamara and G. Zanetti, Phys. Rev. 

Lett, 61:2332, 1988. 

[11] Y. H. Qian and S. Orszag, Europhys. Lett, 

21-3, 1993. 

[12] Y. H. Qian , S. Succi and S. Orszag, Annal 

Review of Comput Physics, vol. 5, 1995, in 

press 



25-9 

0.300- 

0.250- 

x 0.200- 
Z3 

O _o 
o > 
c 
D e 

0.150- 

0.100- 

0.050- 

0.000- 
 \\'<?...- 

I 
1E+00 1E+01 

Axis Z 
1E+02 

Figure.1 , Mean velocity profile for a turbulent channel flow using moderate 

resolution, with a 1 — 2 — 1 lattice; the dotted lines represent the maximum 

and the minimum value of the theoretical velocity profile, computed with the 

viscosity derived by the numerical experiment: Reynolds number R zz 3000, 

viscosity v = 0.013 ± 0.002 . typical velocity w. = 0.014 ± 0.001 . 
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Figure 2, Stress tensor rxz =< uxuz > vs. z, for the same conditions as 

Fig. 1 As a consistency check, we compute v. = (r//7)'/2|2=o and we obtain 

v. = 0.012 in good agreement with the value deduced from the velocity 

profile. 
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TRANSITION IN THE CASE OF LOW FREE STREAM TURBULENCE 

V.T. Grinchenko and V.S. Chelyshkov 

Institute of Hydromechanics, NAS of Ukraine, 
8/4, Zhelyabov st., Kiev, 252057, Ukraine 

INTRODUCTION 

It is well known that two types of transition are possible in the boundary layer: natu- 
ral and 'bypass' transition (see review of A.M. Savill [14]). First type of transition is 
observed in the artificial case of low free stream turbulence, 'bypass' transition usually 
takes place in real technical equipment: aircraft, turbine engine etc. Theoretical inves- 
tigations of both type of transition excite such difficult questions as problem of model 
construction, problems of accurate and effective space and time resolution. 

Known models can be divided onto two parts: semi-empirical models (for instance, 
Savill-Launder-Younis model [15] (1995)) and models based on reduction of initial-value 
and boundary problem for Navier-Stokes equations (adding of artificial term of mass 
force adopted by Laurien E. k Kleiser L. [11] (1989), Parabolised Stability Equations 
model, which was designed by Bertolotty F.P., Herbert Th. & Spalart P.R. [1] (1992), 
'fringe' model suggested by P.R. Spalart [17] (1993)). We describe now one model of 
second type, namely, the Slow and Fast disturbances interaction Model (SFM) designed 
by V.S.Chelyshkov [6] (1993). The model is based on the assumption that slow and 
fast disturbances interaction in longitudinal coordinate is possible in such weakly non- 
parallel flows as non-gradient and gradient boundary layers, jets and wakes. This idea 
was developed last years in the papers [4, 5, 6, 8] (see also review by V.T. Grinchenko 
& V.S. Chelyshkov [9]). The approach is valid for 3-D flows, but we shall regard for 
simplicity 2-D boundary layer near semi-infinite fiat plate. 

THE MODEL OF DISTURBANCE INTERACTION 

It is known that two scales of flow in longitudinal coordinate (slow and fast) are possible 
near a flat plate. Blasius flow is slow (weekly non-parallel) flow. Two dimensional 
perturbances of Blasius flow are divided into two types: slow undamping perturbances, 
which control the boundary layer thickness [12] and fast non-stationary perturbances 
[16]. Both types of perturbances must depend on slow longitudinal coordinate, but 
experimental and theoretical investigations show, that we can neglect this dependence for 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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second ones [16]. Fast disturbances self-interaction results in fast and slow disturbances. 
The last ones make the contribution to weekly non-parallel flow compound. So the way of 
SFM construction is following. Let / be the distance from leading edge to a fixed point on 
a flat plate, U^ - a velocity of run flow, p - the fluid density, v - the kinematic viscosity 
coefficient. Cartesian coordinates (x',y') are introduced to describe 2D non-stationary 
flow, which depends on time t'. These coordinates beginning coincides with leading 
edge, and z'-axis directs along the plate. The velocity vector components are designated 
as u', v' in this coordinate system, p' is the pressure. We choose the non-dimensional 
variables using the formulae: 

x' = lX0,    y' = 8*y,    t' = lU^T,    u' = U^u,    v^U^Xv, 

p' = pulPl     6* = KyfilJÜZ,     K = 1.72078766,     A = 6*/l. 

Then the velocity vector field and the pressure 

F = {u,v,p}(X0,y,T) 

is described by Navier-Stokes and continuity equations 

dTu + udXou + vdyU = -dXop + — (dyy + >?dx0x0)u, 
K 

A2 

\2{dTv + udXov + vdyv) = -dyp + —{dyy + \2dXox0)v, (1) 
AC 

dx0u + dyv = 0. 

Equations (1) need suitable initial-value and boundary conditions in the flow domain, 
which is not defined for the present. Boundary conditions 

U   |y=0=   V   \y=0=   0, U   \y^00=   1, V   |j,-00=   0 (2) 

are set on a flat plate and far from the wall. Poisson equation for pressure 

- (dyy + X2dXoXo)P = 2A2((Öx0n)2 + dyudXov) (3) 

is the result of equations (1). 
Parameter A is small far from the leading edge and Cartesian coordinates (X0,y) is 

stretched out of transverse coordinate. When A—>0 Blasius solution 

F = FB,     FB = {uB,vB
:P

B}(Xo,y),     uB = {uB,vB}, 

satisfies Prandtl equations and the boundary conditions 

uB \y=o= vB \y=0= 0,     wB|1/_oo=l,     vB\y^<oo. (4) 

Thus physical condition of damping v when y-^oo is substituted for limitness condition. 
We define 

X0 = 1 + X,     X = Xx,     T = At,     Re = K
2
/X. (5) 
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The disturbed flow field is considered in half-band 

V = {—7r/a < x < n/a,   0 < y < oo}, 

where a ~ 0(1) is a parameter.   Now we define the solution F of the problem under 

consideration in the following way 

F = FB + Fs + F^ 

Fs = {us,vs,ps}(X0,y,t),     us = {us,vs} (6) 

Ff = {uf,vf/\,pf}{x,y,t),     uf = {uf,vf} 

Here F5 and F^ are the vector fields describing slow and fast disturbances. We introduce 

the x-average in V 

F = —   /   Fdx 
2TT   J 

—■K/OI 

and shall suppose that F = 0. Substituting (6) to initial problem (1) - (3) and throwing 
away, as for laminar flow description, addends of the order of 0(A2), a system of equations 
and boundary conditions are obtained. We add to nonlinear equations and subtract from 
them x-average of the convective addends, which contain fast disturbances. Now we can 
separate in the convenient way all addends of each equation into two parts. Then we 
break these two parts of addends and equate to zero each of them. The problem is 
obtained: 

dtus + ^-(dXou
Bus + (uB + us)dXou

s + dyu
Bvs + (vB + vs)dyu

s)- 
Ke 

1   -      .5 -—dyyu
b + Nu(uB,us,uf) = 0, (7) 

dXou
s + dyv

s = 0, 

US   \y=0=   VS   |y=0=   0, US   \y^oO=   0, VS   \y^oo<   OO, (8) 

-dyyp* = Np(u
B,us,uf), (9) 

PS   \y->oO=   9yp
S    |y-»0O=   0, (10) 

1 
dtu

f + Nu(u
B, u5, uf) + dxP

f - --Auf - Nu{u
B, us, uf) = 0, 

xve 

dxu
f + dyv

f = 0, (11) 
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Here 

-Apf = Np(u
B, us, u>) - Np(uB, u«, u/), 

«'  |t/=0= ^  |y=0= 0, 

Uf 1^00= 1>' |y-oo = V  U«^ 0. (12) 

JVw(u
B,u5X) = (uB + us)dxuf + ^e(dx0u

B + 3Xou
s)W'+ (13) 

+ ^(t,B + vS)dyUi + (dyu
B + dyu

s)vf + u'&u' + ü^X, 
Re 

JVp(u
B, u5, u') = 4^(Öxo«ß + &„«s)&«'+ (14) 

+2(d^ß + dyu
s)dxv

f + 2((3ay )2 + dyu
fdxv

f). 

In our opinion the SFM (7) - (14) describes near-wall flow in both cases of low and 
high free stream turbulence. The equations have no the second y-derivative of vs. That 
is why the physical condition of damping vs uv from the wall is replaced here, like in 
(4), by limitness condition, and the solution of problem (7) - (14) will not be uniformly 
applicable. Relationship 

dtv
s ~ O(A) 

is the condition of the model validity. This relationship cannot be established a priory, 
but seems to be acceptable due to week dependence on time of F5. The natural conditions 
of disturbances damping far from the wall, like in (2), have to be carried out for "fast 
part" of flow field. Substitution of one of Navier-Stokes equations for Poisson equation 
allows us to construct time discretization schemes without the need for fractional step. 
This way also gives the possibility to extend the solution algorithm to 3D-problem. 

The values of velocity vector components are unknown at the boundaries orthogonal 
to the wall. We cannot introduce periodicity conditions at these boundaries because the 
flow is weakly non-parallel. Following the idea of boundary layer coherent structures [2], 
we shall suppose that the flow is close to periodic in longitudinal direction and 

(Fs + F') U_w/a= (F5 + F') U/Q +0(1/Re) 

To vanish slight arbitrariness in these boundary conditions we shall construct the solu- 
tions, depending on both longitudinal coordinates in some special way. 
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SPACE AND TIME DISCRETIZATION 

Direct methods are applied for discretization of the problem (7) —(14). The known forms 
of perturbances dependence on longitudinal coordinate are used for trial functions choice: 

i=o j=o 

Ps = Ps(y,t),   v = y/Vx~o, (is) 

{M
/
, vf, pf}{x, y,t)=     E    iuki vk, Pk){y, t) exp{iakx). (16) 

\k\<K,k?0 

In (15) v0 = 0, and power indexes v- (j > 0) are selected on the basis of vorticity 
exponential damping far from the wall, such as vx = 1, u2 = 1.887, u3 = 2.867, u4 — 
3.8,.... Now we can expand first two terms in (6) into Taylor series in X, substitute the 
result to (7) —(14) and throw away addends of the order of o(\x) in (11). Using (15), 
(16) and expanding variable \x into Fourier series in (11) we can separate longitudinal 
coordinate by projection equations under consideration into two systems of test functions: 
Xk, k = 0,1,..., and exp(zamx), m/0. 

Sequences X0 
J and Xk are not orthogonal to each other in the interval of their 

changing. This leads to numerical difficulties for slow part of solution, when N is large, 
due to necessity to inverse matrix of Hubert's type. 

The next stage of approximation is the solution representation in coordinate orthog- 
onal to the wall in the interval [0, oo). The asymptotics of the velocity and the pressure 
field coefficients of fast disturbances far from the wall have the form exp(-aky) for 
near-wall modes, where k > 0 is Fourier harmonic number. Therefore in the problem 
class at issue for solution approximation in coordinate y it is convenient to use exponen- 
tial polynomials (EP) orthogonal on semi-axis by weight of unity. Some computational 

and/or algorithmic advantage can present EP £n,k{y) = exP(~ky)P^_£. '(1 — 2exp(—y)) 
obtained by orthogonalization of exponential sequence in inverse order, starting from 
some number n [3]. Here P^'1^ are Jacobi polynomials. These polynomials are used for 
solution representation in coordinate orthogonal to wall, and sequence Sn^ is filled up by 
unity for approximation of vertical velocity vector component of slow disturbances. Final 
projection into phase space is carried out by Bubnov-Galerkin method, that allows one 
to use the 'boundary functions' [13] to satisfy the boundary conditions at the wall. For 
precise numerical integration Gauss quadrature formulae derived in terms of properties 
of EP is applied, so 3n/2 points are used in the algorithm. 

The described way of spatial approximation results in triangular matrix as discrete 
analog of Laplacian that allows one to employ explicit schemes in time. So variant of 
Runge-Kutta method was adopted for time resolution. 

The following stage of discretization is stated in details in [4]. Collocation method is 
more preferable for 3-D flow modelling. Variant of collocation method, namely, combined 
direct method is suggested in [7] for near-wall flow simulation. 
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NUMERICAL RESULTS OF NATURAL TRANSITION SIMULATION 

Level of flow vorticity far from the wall y = 0 and inflow boundary conditions define the 
influence of free stream turbulence in D-domain. Really, recent experiments [19] show, 
that high free stream vorticity before a flat plate changes Blasius profile and excites fast 
oscillations near the nose part of the plate. So both time-undamping slow perturbances 
and fast disturbances are developed due to changing of inflow conditions at the boundary 

of V-domain. 
We shall consider here more simple case of exponentially small free stream turbulence. 

In this case we shall suppose that influence of time-undamping slow perturbances is 
small for natural transition and slow part of disturbed flow is one-dimensional in the 
boundary layer coordinates (T],XQ), SO N - 0 in (15). We omit the terms of the order of 
0{X) in equations (11), so periodicity conditions are valid at the orthogonal to the wall 

boundaries for fast disturbances. Such simplifications lead to initial-value and boundary 

problem, which has no functional arbitrariness in space. We also shall suppose that 

modes of continuous spectrum are not excited and our algorithm is constructed in such 

a way that disturbed flow damps far from the wall in accordance with asimptotics of 

uear-wall modes. 
Physical parameters Re = 520 and a - 0.308 set 2-D flow domain. Simulation 

parameters are K = 7, n = 32. The parameter values yield dynamic system, which 
has 409 degrees of freedom. The simulation was performed for interval 0 < t < 20000. 
Initial values of amplitudes were determined from the solution of Orr — Sommerfield 
eigenvalue problem. The values correspond to initiation of Tollmein — Schlichting wave 
with phase velocity equal to 0.396. The disturbance development picture is divided into 
the two parts. At first (Z is less than ~ 10000) the travelling wave regime with increasing 
amplitude arises. When the oscillation energy reaches some value the single-wave regime 
is reconstructed and the regime close to oscillations with many frequencies is excited. 
Let us TW is disturbed skin friction and 

r   = TS + rf. w w    '      w 

rW 

For steady flow regime the amplitudes TW at x - 0 and r^ are shown in Fig. 1 and Fig. 3. 
Power spectrum of rw is shown in Fig. 2, where integers are the  numbers of ar-Fourier 
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harmonics, which have oscillations with frequencies according to the picks. One can see 
that apart from main travelling wave, which has phase velocity equal to 0.566, other 
oscillations exist. Among these oscillations the largest energy has the oscillation with 
convective speed equal to 0,809 U^, which is excited by the second x-Fourier harmonic. 
It is of interest that each space scale has own number of oscillation frequencies. It also 
appears, that near-wall travelling wave phase velocity practically coincides with near- 
wall propagation velocity of perturbations in channel [10]. In contrast with the result 
of work [13] we have found that phase velocities of both pressure and friction equal to 

each other near the wall. The skin friction x-Fourier harmonics fw(ak) decay rate is 
shown in Fig. 4 for simulation time t ~ 20000.  One can see that the decay is enough 

'w 
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Q rjn       ..I...J. .x_.i—J.. .■ -■— i—•—I—J—i—•—> I- -I-..I-J- 
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lig.3 

rapid, so the seventh harmonic is about 200 times less than the first. 
Direct numerical simulation experience leads to the conclusion that non-dimensional 

time, which is necessary to obtain fully developed flow, usually is very long. Curiously, 
the according physical time is enough short. Let us r is the dimensional time, so 

If Uoo = Im/s and the fluid is water, then the physical simulation time is 10,4 5 in 
examining case. This time greatly differs from the computer time, which is necessary 
for 2-D;modelling. Simulation of 3-D boundary layer is more difficult problem and the 
statistically steady solution have not been obtained up to now in this case (see, for in- 

stance, [18]). 

CONCLUSION 

1. The new mathematical model based on Navier-Stokes equations has been devel- 
oped. The model can be effective for quantitative description of a class of weakly non- 
homogeneous flows. The model was tested by consideration'the flow stability problem 

near a flat plate. 
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2. To verify our model approach and discretization algorithms we have carried out 
long-time DNS of disturbed Blasius flow for various but moderate numbers of degrees of 

freedom. 
3. We have found that balance between the numbers of taken in orthogonal directions 

functions have to be observed. If K is the number of taken Fourier harmonics in lon- 
gitudinal direction and n is the number of taken exponential polynomials in orthogonal 
to the wall direction then n = n(K) for successful execution of our algorithms. It is 

essential to notice that increasing of K leads to n-increasing. 
4. Our experience of near-wall flow modelling leads to the conclusion, that numerical 

solution breakdown, the so-called 'turbulence arising' does not correspond to the real 

physical phenomena in the boundary layer. 
5. In our opinion we have found statistically steady state of flow near a flat plate. This 

flow is time-organized structure, which has the background of quasi-periodic oscillations 

with incommensurable frequencies. 
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1 SUMMARY 

Structured sub-block refinement is a means to refine a 
mesh at certain areas within the flow region, in order 
to enhance the local resolution of the flow equations or 
flow solution without going to costly global mesh refine- 
ment. By the use of appropriate sensors, the regions of 
refinement can be defined during the running flow solving 
process so that the adaptation becomes automatic. And 
the use of structured refinement, i.e. refinement by block- 
like areas, does only require minor changes to the overall 
multi-grid iteration scheme. Strategies for the selection 
of sub-blocks and first results for 2D and 3D Euler- and 
Navier-Stokes test cases are given. The drawbacks and 
the potential of the method are discussed. 

2 LIST OF SYMBOLS 

A continuous Navier-Stokes operator 
« continuous solution to Navier-Stokes system 
/ right hand side of Navier-Stokes system 
I, II transfer operators between meshes 
T local truncation error 
/, J, K indices of points in computational space 

Subscripts and superscripts 
h 
2ft 

h 

discrete form referring to mesh h 
discrete form referring to mesh 2ft. 
from mesh ft to mesh 2h or 
mesh ft relative to mesh 2ft 
approximation to • 

3    INTRODUCTION 

The process of discretization of the flow equations causes 
differences between the continuous solution of the Navier- 
Stokes system of differential equations and the solution 
of the system put onto the computer. This error is called 
local truncation error, and it plays the major role con- 
cerning solution deficiencies. Discretization errors, their 
magnitude and distribution about the flow region, are in- 
fluenced by geometrical mesh properties as well as prop- 
erties of the flow solution. Both types have to be encoun- 
tered when selecting appropriate sensors that shall drive 
adaptative flow solving algorithms. 
All types or combinations of sensors result in single point- 
wise quantities which have to be scanned.    A certain 

threshold determines whether a point or local region is al- 
ready o.k. with respect to the expected error or whether 
it is a candidate for mesh adaptation. 
In principle, mesh adaptation distinguishes between 
mesh enrichment and mesh movement. Mesh movement 
tries to improve the solution by shifting the existing mesh 
points to more appropriate positions. Mesh enrichment 
means to refine the mesh which leads to an increased 
number of mesh points. Eventually, a coarsening of the 
mesh is also possible in regions where the quality mea- 
sure is already good. Both approaches have their specific 
problems, best may be to combine them. 
Within this paper, we try to describe adaptive mesh en- 
richment strategies within a structured multi-block con- 
text. The principle structure of the flow solver shall not 
be affected by the local refinement. This means that re- 
finement zones have to be of structured type, i.e. they 
must be regular mesh blocks. We use a concept of sub- 
blocks which has been developed within the Euromesh 
project of BRITE/EURAM and the ECARP project of 
IMT Aera 3 of CEC research. This concept allows to 
treat sub-blocks as additional levels of refinement in the 
usual multi-grid sequence of the MELINA flow solver 
(Fig. 1) [RilBec92]. 
Structured mesh enrichment of the form described above 
has its drawbacks when tracing features of the flow which 
run diagonally through the mesh. Unless there are lim- 
iters for the size of the sub-blocks, quite large refinement 
zones must be expected. So, we are aware that this spe- 
cial type of mesh enrichment will not be the ultimate but 
a first and practicable solution to mesh adaptation. 

4    SUB-BLOCK APPROACH 

The idea of structured sub-block refinement is to simply 
patch locally refined mesh blocks onto the existing mesh 
and connect the additional fine sub-blocks with the origi- 
nal mesh via a multigrid technique. Thereby, a sub-block 
has to lie completely in a grid block of the existing mesh, 
which includes touching the block boundary. But a grid 
block may have various sub-blocks and a sub-block may 
have several sub-blocks itself (see Fig. 2). 
The sub-block approach can be viewed as a compromize 
between structured an unstructured meshes, combining 
the benefit of high computational efficiency on structured 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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Figure 1: Multigrid sequence with local refinement. 

meshes and of clustering grid points in a "quasi unstruc- 
tured" way by scattering sub-blocks and even further re- 
fined blocks in regions of discretization errors. It is en- 
visaged to use this method for solution adaptive mesh 
refinement if the regions of sub-block refinement are de- 
termined automatically during the iteration by suitable 
sensor functions. 

4.1     Surface and Interior Point Definition 

When a sub-block is created, between each two mesh 
points on a coarse grid line an intermediate fine grid point 
has to be introduced. 
On any component's surface, this new point has to lie on 
the surface. This means that the new point has to be con- 
structed using the original surface definition. However, 
this causes severe problems if the surfaces are defined 
by external CAD means, for example. Therefore, most 
often special interpolation procedures are used which cre- 
ate local surface approximations from the existing coarse 
mesh points. The single approaches differ by the quality 
of surface representation. For aerodynamics, the criteria 
of absolut distances to the real CAD surface and wavy- 
ness of the interpolated surface play the major role. For 
the moment, we don't want to stress this problem: we 
simply use Coons' local patches. 
The definition of interior fine mesh points is not that con- 
strained. As long as Euler meshes are considered, those 
mesh points can be constructed using simple trilinear in- 
terpolation of the coarse cells in the field. 
For the very dense Navier-Stokes meshes, in the vicinity 
of a curved surface intersections of field mesh lines with 
the true boundary are very likely to occur with trilinear 
interpolation. Therefore the filling algorithm has been 
changed to the use of Coons' representation for each mesh 
plane parallel to the surface, not only the surface planes. 
This guarantees smooth behaviour of the mesh in the 
whole sub-block, especially in the boundary layer mesh. 
Additionally, it avoids any intersection of mesh lines or 
planes with fixed surfaces. Because this approach is that 

robust, fast and easy, we adopted it also for the Euler 

meshes. 

4.2     Communication   between   Sub-blocks   and 
Coarse Blocks 

In general, sub-blocks cover only part of the computa- 
tional domain. Boundary conditions on their outer block 
boundaries must be defined such that there is no algo- 
rithmic influence on the overall flow solution. Within the 
multigrid context, flow variables are interpolated from 
the coarse mesh. If the sub-block boundary touches 
the coarse block boundary, the same boundary condi- 
tion is applied. Wall, symmetry or similar conditions are 
thus treated correctly. Special things have to be done 
if the sub-block boundary lies inside the coarse block. 
Boundary values of the sub-block cannot be set as fixed 
Dirichlet type conditions because this conflicts with the 
mixed type nature of the flow equations. The interpo- 
lated values serve only as initial guess and the values 
are updated using the original flow equations themselves 
on the fine mesh. Therefort at least one row of guard 
cells has to be created around the sub-block which con- 
tains the flux integral information needed for the applica- 
tion of the cell vertex discretization at the real sub-block 
boundary. This procedure is quite the same as is applied 
between two adjacent blocks of the original non-refined 
mesh. In addition to this, co iservativeness has to be en- 
sured across the sub-block boundaries. In our code, this 
is achieved by replacing the flux integrals along coarse 
cell faces at the sub-block boundary location: the coarse 
mesh integral is replaced by the sum of the participating 
fine mesh integrals. 
This type of communication between sub-blocks and 
blocks is managed with the help of the face group con- 
cept. Each block has at least one face group. This group 
of six faces consists of the minimum/maximum index 
planes (boundaries of the computational domain) of the 
block. For each sub-block that is added to the coarse 
block, a new. face group is defined. It contains those 
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Figure 2:   Sub-blocks within a mesh block - schematic 
view. 

Sub-Block 2 

segments of coarse mesh planes that coincide with the 
block boundaries of the respective local sub-block. So 
this face group is the hull of the sub-block inside the 
coarse block. The respective topological description data 
are used to drive the communication of flow variables and 
other relevant data within the flow solver. 
If two sub-blocks within a coarse block or across the 
boundaries of two coarse blocks are adjacent to each 
other, then communication should be allowed directly 
between those sub-blocks. The simplest way is to trans- 
fer data from a sub-block to the respective face group 
of the coarse block and from there to the neighbouring 
sub-block. However, this path of communication con- 
tains interpolation errors and should thus be replaced by 
the immediate transfer of data, from one sub-block to its 
neighbour. Within the topological description data, this 
problem could be easily solved because sub-blocks are 
treated in the same way as usual blocks. 
If a new sub-block is constructed, the topological data are 
updated automatically. Boundary conditions and con- 
nections to adjacent sub-blocks are detected and included 
in the description. This makes the fully adaptive incor- 
poration of new sub-blocks into an existing multi-block 
mesh relatively easy once the respective coarse mesh face 
group boundaries are known. One major technical dif- 
ficulty is the generality of sub-block to sub-block con- 
nections. Up to now, two sub-blocks of a coarse block 
are only allowed to touch each other if it is with one full 
face. Touching only with part of a face would require 
new segmentation of the respective faces and can easily 
result in very complex face segmentations. On the other 
hand, the above restriction hinders an effective treatment 
of diagonal refinement. For the moment the drawback of 
full face touching has to be overcome by resizing respec- 
tive sub-blocks. However, part-of-face touching is under 
development. 
Several topologically different sub-block configurations 
have been tested. Because the sensor evaluator may sug- 
gest quite general addition of sub-blocks, it might be nec- 
essary to have such arrangements run quite robust. 

For example, if we have a four block finest mesh, in a first 
adaptation step sub-blocks might be suggested only for 
three blocks. This leads to different finest levels on dif- 
ferent blocks within the multi-grid cycles. Additionally, 
consecutive sub-blocking during subsequent adaptation 
loops has to be allowed which means that sub-sub-sub- 
...blocks can occur. Such and similar conditions have 
been investigated concerning the convergence behaviour 
and the quality of solution, especially at the junction of 
refined and non-refined regions. No specific problem has 
been detected with the Euler flow solver. However, with 
the Navier-Stokes solver it turned out that the imple- 
mentation of the turbulence model has a great impact. 
In practice, the Baldwin-Lomax model used requires wall 
distance information. This information is very difficult to 
obtain in general multi-block meshes if it is not evaluated 
in a preprocessing step. 

5    SENSOR EVALUATION 

The evaluation of any sensor field always means scanning 
the field for a pre-specified range of values that are con- 
sidered to indicate deficiencies of solution accuracy. We 
can distinguish between sensors that depend on the flow 
solution itself and sensors that are defined by purely geo- 
metrical quantities. Mathematical analysis of discretiza- 
tion leads to certain guidelines concerning the mesh. One 
of those rules is that one should use smooth and orthog- 
onal meshes. Measures of those quantities can thus be 
used to determine "bad" regions within an existing grid. 
On the other hand, the flow itself shall drive the mesh 
in order to properly resolve special features like shocks, 
stagnation regions, boundary layers or shear layers. The 
analysis of respective sensors leads to suggestions for en- 
hanced grid density regions. 

5.1     Flow Independent Sensors 

Within the BRITE/EURAM Euromesh project, a palette 
of geometrical quality measures has been developed. Now 
we use these measures for a priori qualification of meshes, 
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Figure 3: Local truncation error estimate for a 
NACA0012 Euler case - computational space and phys- 
ical space - left: r(continuity equation), right: T(2nd 
momentum equation). 

mainly. Within the DA mesh generation system IN- 
GRID, the following 3D measures are implemented: or- 
thogonality, skewness, aspect ratio and expansion rate 
for 3 index directions. Neither of them leads to an ab- 
solute criteria for mesh quality. Orthogonality, for ex- 
ample, cannot be achieved in the whole mesh if there 
appear angles other than 90 degrees on the surface. Re- 
spectation of those angles is necessary for high quality 
surface representation, but clearly violates the principle 
of orthogonality. Similar statements can be made for the 
other quantities. Nevertheless, those quantities should 
be taken into account when creating base meshes. 

5.2     Flow Dependent Sensors 

The first and most likely reason for deficiencies in solution 
accuracy is a too high level of local truncation error. This 
error describes in principle how good the nonlinear op- 
erators of the Navier-Stokes equations are approximated 
by the discrete differentiation and integration rules on a 
specific mesh. It must be reminded that there is no lo- 
cality in the relation between this error and the global 
truncation error of the solution itself, i.e. the solution 
error can occur at quite different locations than the local 
truncation error [Klim95]. This is especially due to the 
transport character of the equations. 

Truncation error estimates can be extracted directly 
from the multi-grid cycles: Specific differences between 
medium and coarse mesh residuals in a three level com- 
putation yield an estimate of the local truncation error 
T [Bra77]. This estimate for all equations of the Euler or 
Navier-Stokes system is used to define the locally refined 
(fine) mesh level. 

In detail, if the continuous equation 

Au = f (1) 

is discretised on a mesh with typical mesh size h 

Ahuh — fh (2) 

where «/, is the discrete solution, then the local trunca- 
tion error Th is defined by 

Th = Ah.u — Au (3) 

If we further add and subtract the discrete operator Ah. 
applied to an approximation fi/,of the discrete solution 
Uh, 

Ahuh = fh - Ahüh + Ahüh, (4) 

and represent this equation on the next coarser grid with 
mesh size 2h, then we end up with the multigrid coarse 
grid correction equation 

A2hu-2h - Hhh(fh - Ahüh) + A2hlh UH, (5) 

which contains the local truncation error estimate on 
mesh 2h relative to mesh h: 

Th     = A2hlh   Uh - i-i-h   AhUh- (6) 

Under the assumptions Ah ~ A and Uh ~ u this yields 

rlh « A-ihU - Au, (7) 

which is the local truncation error r2h on mesh 2h. Fig. 
3 gives an impression on the distribution and the levels 
of local truncation error for a 2D transonic test case. 
During the studies it has been found very useful to have 
presentations of the estimate in physical as well as in 
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Figure 4:   Suggestions for new sub-blocks 
DIUS=5, right: RADIUS=2. 

computational domain. Interestingly, the errors for the 
single equations seem to be complementary to each other. 
Near the nose of the airfoil, r(continuity — equation) 
suggests refinement in other parts of the flow field than 
r(momentum — equations), for example. For our inves- 
tigations, the Ll-norm over all equations was taken to 
drive the refinement. More detailed studies can be found 
in [Lau95]. 

5.3     Sub-block Definition 

In the context of structured sub-block refinement, a strat- 
egy has to be developed by which the location and ex- 
tension of local sub-blocks can be determined. The eval- 
uation of any sensor defines a set of "bad" points or cells 
that appear as clouds in the index space of each struc- 
tured block. On the one hand, the sub-blocks have to 
cover those clouds. On the other hand, the size of the 
sub-blocks corresponds to the numerical effort and thus 
has to be as small as possible. The strategy to define 
reasonable sub-blocks is as follows: 

• Find a first bad point (I,J,K). 

• Set IMIN=IMAX=I-index of bad point; same with 
J and K indices. 

• Trace the surroundings 
(IMIN-RADIUS, IMAX+RADIUS; ...) of the cur- 
rent (IMIN.IMAX; JMIN.JMAX; KMIN.KMAX) 
area for more bad points. 

• If any more bad point has been identified, en- 
large the respective MIN/MAX values and restart 
search. 

• If no more bad point can be found, define the sub- 
block from the current MIN/MAX values. 

The user-given tolerance value RADIUS has a strong in- 
fluence on the size of the sub-blocks. It also defines the 
minimum distance between two sub-blocks within one 
block. In order to avoid that very large sub-blocks are 
suggested which more look like a global mesh refinement 
the maximum size of sub-blocks must be bounded. Also, 
it may happen that many small sub-blocks are created if 
any singular bad point is taken into account. This can be 
hindered by a minimum bound for the number of points 
within a sub-block. 
Fig. 4 shows the index cube representation of suggestions 
for sub-blocks within coarse block. In the first case, a 
RADIUS of 5 was chosen whereas in the second case the 
RADIUS value was 2, resulting in one more sub-block of 
smaller size. 

5.4    Adaptation Cycle 

Mesh enrichment via sub-blocks should run automati- 
cally within the flow solution process. However, for the 
development of such a method it is reasonable to com- 
bine the single elements of code in a more loose form. 
The adaptation cycle has been splitted into 4 steps: 

• Start calculation on a reasonably fine mesh and 
store the results (mesh, flow solution, local trun- 
cation error), 

• Run the sub-block suggestion code and store 
MIN/MAX indices for each coarse block, 

• Generate the enriched mesh which contains the 
previous mesh and the new sub-blocks, 

• Restart the flow solver using interpolated values as 
starting solution for the new sub-blocks. 



27-6 

Figure  5:    Pressure  distribution   RAE2822  for meshes 
(Nl),..,(N4) - comparison with experiment. 

This cycle can be run until the maximum number of re- 
finement levels has been reached. It is assumed that each 
time only the relatively finest level can be refined. 

6    NUMERICAL RESULTS 

The sub-block concept described above has been imple- 
mented in 3D. However, for cost reasons and for first 
validation purposes it is reasonable to begin with 2D 
Euler and Navier-Stokes flows. The basis of 3D Euler 
and Navier-Stokes investigations on local refinement and 
adaptation was a wing/body combination. 

6.1     2D Test Cases 

Local mesh refinement has been tested in 2D, first: 
RAE2822 test case 9 with a free stream Mach number 
of 0.734, angle of attack of 2.54 degrees and Reynolds 
number of 6.5 million. The Navier-Stokes calculation 
should serve as a preliminary test to show the effect and 
effectiveness of local refinement. Refinement was done 
by hand using sub-blocks which covered the whole up- 
per surface including the supersonic region and extended 
slightly on the lower surface near the nose of the air- 
foil. Fig. 5 shows the resulting pressure distributions for 
different meshes and the experimental values. We have 
chosen four different meshes as there were 

(Nl) standard fine C-mesh with 241 x 77 mesh points, 
about 30 points normal to the wall in the boundary 

layer, 

(N2) mesh (Nl) coarsened once by omitting every sec- 
ond point, with 121 x 39 mesh points, 

(N3)  mesh (N2) with sub-blocks and 

(N4)  mesh (Nl) with sub-blocks. 

The RAE2822 test case 9 has often been used for valida- 
tion purposes. Always problems with the suction peak 
on the upper wing nose have been reported as it is the 
case with the present results. Current computations have 
been made for fully turbulent flow. 
If (Nl) is assumed to be a mesh of usual fineness, the 
(Nl) result should be the target for adaptation. Results 
produced with the coarser mesh (N2) obviously show up 
high level numerical errors. If (N2) is refined locally as 
described above, which is (N3), the result is already very 
close to the target (Nl). However, the computing time 
is only about 40 p.c. of the (Nl) computation, as can be 
seen from Fig. 6. Additional local refinement for (Nl), 
which is (N4), yields again a solution which is more close 
to the experiment both near the nose and for the pres- 
sure gradient in front of the shock. For cost reasons, a 
target computation for a globally refined (Nl) mesh has 
not been performed. The experiment has been used, in- 
stead. In the (N4) case, convergence of the lift coefficient 
is reached at only minor additional expense compared to 

(Nl). 
Fig. 6 shows the convergence behaviour of the method 
for the different meshes. The residuals for all cases drop 
down with CPU time very quickly. There are no spe- 
cific observations in the case of embedded sub-blocks be- 
ing present. However, the current implementation of the 
Baldwin Lomax turbulence model in the MELINA flow 
solver may cause problems if the sub-block cuts the mesh 
within the boundary layer. If such a sub-block does not 
extend down to the wall surface, then the wall distance 
needed for the turbulence model has not the right values 
and may thus lead to bad results or even non-convergence 
of the overall algorithm. This state of the flow solver 
hinders automatic adaptation in any complex case at the 

moment. 

6.2     3D Wing/Body Test Case 

The application of the sensor analysis implemented in 
the ADAPTOR code [LauMau95] to the F4 wing/body 
Navier-Stokes test case showed up nice properties. As can 
be seen from Figs. 7,8, with the current base mesh the r- 
error is concentrated in the vicinity of the configuration. 

It clearly detects 

• the body nose region as being not properly re- 
solved, 

• the wing nose region as spurious entropy produc- 
tion region, 

• the shock region as being insufficiently resolved for 
steep gradients, 

• the sonic line as being sensitive to numerical errors, 

• the trailing edge and wake region as being sensi- 
tive because of rapidly changing flow including free 

shear layers and 

• the boundary layer near the wall where pre- 
adaptation of the mesh to the boundary layer pro- 
files is only possible up to a certain extent. 

This makes us hope that automatic recognition of defi- 
ciencies in discretization is possible, and adaptation will 
reduce the overall local truncation error. 
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Figure 6: Convergence behaviour for meshes (N1),..,(N4) - residual and lift coefficient against CPU time. 

Figure 7: F4 wing/body configuration - continuity equation truncation error estimate for surface and symmetry plane. 

Figure 8: F4 wing/body configuration - truncation error estimate of x-momentum equation for spanwise mesh plane. 
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Figure 9: F4 wing/body configuration - Mach contours and sub-blocks at spanwise mesh plane. 
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The ADAPTOR run with the medium grid truncation 
error estimate of all 5 flow equations leads to multiple 
sub-blocks. It mainly suggests a block in the vicinity of 
the surface along the whole span of the wing, starting 
somewhere below and behind the wing and extending 
over the upper surface again behind the trailing edge. 
A second block covers the off-surface region around the 
wing nose and extends about the supersonic region. Parts 
of the sub-blocks can be seen in Fig. 9, where a spanwise 
cut with local Mach contours is shown. The pressure 
distribution at two mid-wing cuts show quite a good im- 
provement compared to the coarse mesh solution (Fig. 
10). The suction peak as well as the pressure roof top 
gradient and the shock position are in a good agreement 
compared to the fine mesh reference solution. And the 
locally refined mesh has only about 40 p.c. of the points 
of the global fine mesh. 

7 CONCLUSIONS 

Mesh enrichment based on a structured sub-block ap- 
proach has been considered as an effective way to im- 
prove numerical solution of flow equations. Tools have 
been defined and strategic provisions have been made to 
test this approach under industrial constraints. Up to 
now, the main procedures have been set up. Results for 
locally refined meshes have been calculated for 2D and 
3D Euler- and Navier-Stokes test cases. Next step will 
be the full integration of the adaptation into the flow 
solver and the validation and improvement of the overall 
process. 
Because of the problems with turbulence model imple- 
mentation in Navier-Stokes we'll first try to sort out the 
automatic adaptation problems, sensor analysis, etc. on 
the basis of the Euler equations. More general sub-block 
- to - sub-block connections are under development which 
allow a more cost-effective resolution of diagonal flow fea- 
tures. 
A lot of tests have been run with the ADAPTOR code, 
and a lot of changes of the evaluating strategy have been 
necessary in order to find a reasonable suggestion for sub- 
blocks. The expense of more than 50 p.c. cost saving 
which we have achieved with the current examples is al- 
ready quite good under industrial conditions. Ongoing 
work will be concentrated on making adaptation fully 
automatic, robust and efficient. 
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SUMMARY 

Specific    algorithms    have   been   developed    for 
numerical   solution  of Euler equations  on multi- 
block structured  grids of general topology;  these 
algorithms   involve   determination    of convective 
and dissipative    fluxes,    residual   collection   from 
fine grid levels during multigrid   cycles and time 
step evaluation.   They must be properly integra- 
ted with   residual   and flow   variable   averaging 
when the internal boundary  condition is introdu- 
ced. 
The   influence     of   block    subdivision     on   the 
bow-shock    in  front   of a blunt-nosed    body   is 
analysed  with different   multiblock   algorithms;   a 
structured   and  a locally   unstructured    topology 
are also compared. 
Results show that no additional   error is introdu- 
ced   in   multiblock     solutions    if   internal    block 
boundary   conditions   are applied   at each stage 
and edge/corner    boundary   cell contributions    to 
flow quantities   are properly  taken in account. 

LIST OF SYMBOLS 

a 
Cd 

speed of sound 
drag coefficient 

CFL Courant number 

D 
E 
H 

stagnation   pressure coefficient 
dissipative   flux 
specific   energy 
specific   enthalpy 

P 
Q 

pressure 
convective   flux 

<7 
R 

flow quantity   vector 
residual 

s cell face area vector 
u,v,w 
V 

velocity   components 
cell volume 

vni control volume 

x,y,z Cartesian   coordinates 
Y specific   heat ratio 
At time step 
e numerical   viscosity   coefficient 
A spectral radius 
V pressure  sensor 
«,T1,C curvilinear    coordinates 
P density 

1. INTRODUCTION 

Multiblock   methods consist in the decomposition 
of complex   computational    domains  into simpler 
subdomains,    which   can be more easily   handled 
in the management   of the simulation   and in the 
subdivision    of the computational    task on diffe- 
rent processors. 
Structured  grid blocks can be generated  in these 
subdomains,   in order to combine   the efficiency 
and simplicity   of CFD algorithms   developed  for 
single-block    structured  grids with the geometric 
flexibility      needed    to    describe    topologically 
complex  regions. 
The main difficulty in multiblock methods lies 
in the correct treatment of block interfaces, 
which are located in the flow region and repre- 
sent a numerical boundary condition with no 
reference to the physical problem: their presence 
can introduce errors in the solution which can 
either prevent complete convergence to the exact 
solution or impose constraints on the grid gene- 
ration. 
IBM has developed  a parallel multiblock   frame- 
work   called  PARAGRID   [1,2]   which   supports 
suitable   data structure   for  the management    of 
data communication    between  adjacent  blocks. 
The computation   is performed   in parallel  mode 
at  block   level,    thus   allowing    exploitation     of 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
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workstation      clusters     and/or     multi-processor 
systems. 
A structured   multiblock   Euler solver  had been 
previously   implemented   within   this framework 
[3]; its results were generally  good as long as the 
overall  solution  quality  and global aerodynamic 
coefficient   evaluation  were concerned.  Problems 
were  nevertheless    detected   in the convergence 
rate and in the solution   quality   at the interfaces 
between   adjacent   blocks;  moreover,   only "stru- 
ctured" block topologies were solved consistently 
with   original   structured   algorithm:   this means, 
for example,   that only internal  edges shared by 
four  blocks   or corners   shared  by  eight  blocks 
were   allowed;   for   all  other   block   topologies, 
approximate   corrections   were introduced. 
Some solution   algorithms   were therefore   modi- 
fied   in  order   to account   for   the  presence   of 
locally unstructured   topologies  at block bounda- 
ries; these algorithms   were designed for applica- 
tion in a parallel  environment,    minimizing    the 
number    of   data   exchanges    between    adjacent 
blocks,   and therefore   the communications    be- 
tween computational   nodes. 

and are solved through a cell-vertex finite 
volume space discretization [4]: flow quantity 
values located at cell corners represent average 
values of flow quantities in the control volume 
made of all the cells (e.g. 8 for an internal node 
of a structured grid) sharing that node. 
Convective fluxes through the control volume 
surface, which are represented by the second 
term in the left hand side of (3), are computed as 
sum of the contributions of all the cell faces 
which form the control volume surface itself; 
face values are taken as the average of the values 
at the corners of the face. 
Such   scheme   is  equivalent    to  a second-order 
accurate  central  difference    on a Cartesian  grid; 
such discretization   leads to odd-even  decoupling, 
allowing   numerical   oscillations,   and provides  no 
intrinsic    numerical    dissipation    to  damp   these 
oscillations   and other non-linear   instabilities.    A 
dissipative   term, based on first-   and third-order 
differences    of the flux   variables   and scaled on 
the local spectral  radii of the flux  Jacobians,   is 
introduced  in the form of an added flux term [5]. 
For a control volume  centered  on the grid point 
i,j,k  equation (3) takes the semi-discretized    form 

2. NUMERICAL    SCHEME 

2.1 Finite volume  formulation 

The three-dimensional     Euler equations 

m+—f(q)+—g(q)+—h(q)=0   (1) 
dt    dx dy dz 

where 

dt 
(Vcv^j,k) + Qi,j,k+Dij,k-0 (4) 

In equation  (4) Qiik is the discretizcd   convective 
flux 

NF, 

OlJ.k =   £  (fn-SXn 
+ 9n-Syn + hn-SZn)       (5) 

n=1 

p p u 
pu pu  +P 
pv ; /= puv I 

pW puw 
[pE\ [  puH \ 

pv plV 
puv puw 

pv2+p ; h= pvw 
pvw pw2 +p 

[  pv H \ . p» vH 

are written  in integral  form 

(2) 

dtJJJv IHyl-W + IL (fdSx + 9dSy + h.dSz)-0 

(3) 

where NFrti is the number  of cell faces forming 
the surface   of the control   volume   centered   on 
node i,j,k   and having   area vector  s; the form of 
the dissipative   flux £>ijk is discussed in section 4. 
Equation    (4)   is   solved   in   time   by   a  5-stage 
Runge-Kutta    scheme  [6] whose coefficients    are 
chosen   in  order   to  allow   high   stability    limits 
(CFL = 4 on the linear  convection    equation)   and 
large margins for numerical  dissipation.   Stability 
limits  can be increased  by- two or three times if 
residuals are smoothed by application   of a suita- 
ble implicit   operator  at the end of each inter- 
mediate  Runge-Kutta     stage.  Finally,    multigrid 
method   for   the   reduction    of   low   frequency 
errors [4] accelerates convergence   to steady state. 

22. Domain  decomposition 

The computational   domain is divided   into smal- 
ler  hexahedral    structured    blocks;   each  of  the 
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faces   of  a block   is  either   part  of  a physical 
boundary   or it is an interface    to an adjacent 
block. An enlarged computational   block is built, 
adding   to the  original   core  a two-layer     halo 
extending   in all the blocks  sharing   a boundary 
face, edge or corner with the original subdomain. 
Updated   flow   values   are available   in the halo 
regions when  data exchange   is performed. 
Although  made up of structured  parts, the enlar- 
ged  subdomain    can  show  locally   unstructured 
regions  at core edges or corners (figure   1). 
Equation (5) for the determination   of the conve- 
ctive flux  depends only on the determination   of 
the number NF of cell faces that form the con- 
trol    volume      surface;     it    can    be    applied 
straightforwardly      to  structured    as well   as  to 
unstructured    topologies.   If updated   values   are 
available    in   all   the   enlarged    copmpuational 
blocks,   identical   values  of QK are computed  for 
the different   replicas of node K. 

23. Local time step computation 

Local time step must be computed from available 
data in each stuctured   and unstructured   control 
volume  in a minimum   number  of computational 
steps   in  order   to reduce   the  number   of  data 
exchanges.    At  the  end  of  each  step,   updated 
flowfield   quantities  are available  only in the core 
region of the block.  Cell spectral radii are com- 
puted   as  sum   of   contributions     in   each  grid- 
coordinate  direction:   for £ -direction   one obtains 

II = A • V = •rcj + TCn
+7ti (9) 

is derived   instead   of (7). Data exchange   of II 
values is performed   at this point): having   built II 
as a cell   quantity    instead   of  a nodal   one,   no 
averaging    step  is  required   and  computational 
overhead  is minimum. 
Being the time step in the control volume  relati- 
ve to a node 

At CFL       CFL 
ycv NC 

/J=1 

(10) 

where NC is the number  of cells which build up 
the control  volume   CV,   a convenient   modified 
time step is obtained   from  (9): 

CFL       CFL 
n, CV 

NC 

n=1 (11) 

CFL 

^-cv' *cv 

At 

'cv 

X^ = \u-Zx+v-iy+w-l2 + a {1} +V+«i 

(6) 
where the average  spectral radius in the control 
volume 

and similar  expressions   for r\- and C-directions, 
which  sum up into the local spectral radius 

1 
NC 

^v-TT-HhK 02) 
VCV   /J=1 

;Wxc (7) 

To minimize   data exchange   needs in the compu- 
tation  of spectral  radii  at block  interfaces,    the 
product   of  cell   contributions     (6)  and   of  cell 
volumes 

TTj   =   X^V =   P-S  + Y£-|S|        (8) 

has been introduced,   and II values  are available 
in the whole extended   domain. 
Modified   time   step  (11)  is directly   introduced 
into the time-discretized     form of (4) 

At, n+1 n 1,1,k ir\n     , n"   \ 

V, cv (13) 

Qij,k + ^ij,k(Qij,k + Dij,k) 

is computed  in each core region,  and from which updated values of flow quantities  are 
obtained. 
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2.4. Multigrid  residual driving 

In multigrid methods, the residual of numerical 
solution of (4) on the fine grid is used to "drive" 
the residual evaluation on the coarser ones, i.e. 
coarse grid steps are used to determine corre- 
ctions to fine grid residuals rather than comple- 
tely new residual values. 
A simple algorithm   has been used to collect fine 
grid nodal residuals  to coarse grid nodal "driver 
residuals"   with   small computational    effort   and 
validity    on structured   as well  as unstructured 
topological   entities. 
A fine grid cell residual  is computed   as 

, 1 

/+1  /+1   Ar+1 

£££ 
?=/ i=; f=Ar 

"{,11,C (14) 

where nijk is the number of cells sharing fine 
grid node i,j,k (figure 2-a). After cell data 
exchange, coarse grid nodal "driver residual" 
values are obtained by sum of the contributions 
of the fine grid cells which share the coarse grid 
node: 

NC, ^UK 
MI,J,K ~  Is   Un 

(15) 
n=1 

Fine   grid   cell   values    (14)   contribute    to   one 
coarse grid node only and the algorithm   guaran- 
tees  correct   evaluation    of  driver   residuals   on 
unstructured   nodes automatically    (figure   2-b). 

3. BLOCK  INTERFACE    CONDITION 

3.1. Data exchange   strategies 

Contiguous  blocks share nodes on boundary faces 
and/or  edges and/or  vertices,   while  cells belong 
to a single block only; in a cell-vertex    formula- 
tion, where flow variables   are defined  at nodes, 
different   values may be computed  in replicas of 
the  same  boundary    node  owned   by  different 
blocks. The PARAGRID framework   ensures that 
the same average   value   is assigned   to all such 
replicas   of a boundary   node at the end of each 
block update step, when data exchange   between 
blocks  is performed. 
Three  different    implementations     of the multi- 
grid  algorithm   have  been  studied.   In the first 
implementation    the block update step includes  a 
full multi-grid     cycle,   with  frozen  halo data. In 
the second implementation   the block update step 

includes  the five-stage     Runge-Kutta     cycle   on a 
grid   level   and  the  restriction/prolongation       of 
solution    and   residuals    to  the   successive    grid 
level.    In   the   third   implementation     the   block 
update step only includes   a single  Runge-Kutta 
stage  on the current  grid level. 
The first  strategy  has minimum   memory  requi- 
rements   and  maximum    parallel   efficiency    but 
leads to an inconsistency    in the computation   of 
the flow field at internal boundaries.   In this case, 
the  averaging    process   is  applied   to  the flow 
quantities   associated with all replicas of a boun- 
dary node. 
In principle,    the third  strategy   ensures  identity 
of  values   assigned   to  different    replicas   of  a 
boundary   node  at the price   of larger  memory 
requirements    and   overheads    due  to  the   more 
frequent    exchange    of  halo   data.   In  practice, 
small   discrepancies    in boundary   node replicas 
still   occur,   due  to  the  implicit    nature   of  the 
residual   smoothing   phase which   is confined   to 
work   at the  block   level.   With  this   choice   the 
averaging    process   is  applied   to  the  residuals 
rather than the flow quantities. 
The   second   choice   represents    a  compromise 
between  the previous   two: halo flow values  are 
still frozen during the time integration,   but more 
frequent   data exchange   between  blocks reduces 
strongly   the generation   of interface    errors;   on 
the other  hand,   solution   is faster   and requires 
less CPU memory   than the exact solution. 

3.2. Numerical   experiments 

Numerical experiments show that numerical 
errors introduced by the first interface condition 
reduce local stability margins and put severe 
restrictions on the block subdivision of the grid: 
block interfaces falling in the middle of strong 
gradient regions can often lead to divergence of 
the computation. 
A simple   geometry,    consisting   in a cylindrical 
body ending with  a spherical  cap of unit radius, 
has been chosen to investigate   the limits   of the 
examined   strategies. 
Figure  3 shows  different    topologies   used in the 
analysis    of  the  blunt-nosed     body   at  a Mach 
number    of  2  and   zero   incidence.    The   block 
interface    in grid   "A"  crosses  intentionally    the 
bow  shock  close  to the symmetry    axis,   where 
shock   intensity    is  higher;   in   the  grid   "B"  the 
division   surface  has been moved upstream. 
Single-block   solutions  are compared with multi- 
block solutions obtained by application   of diffe- 
rent interface   treatments;   all computations   have 
been run for 100 multigrid   steps with 3-level   W- 
cycle,    after   50 + 50 initialization     steps   on  two 
coarser grid levels. They have all been performed 
in single  precision. 
Single-block    computations    (figure   4-a)   show a 
bow-shock    located   in front   of the  nose,   at a 
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distance   of approx.   0.35  nose radii;   maximum 
pressure  coefficient    at stagnation   is Cpsi   =1.63 
and drag coefficient    is Cd =0.7756  with  refe- 
rence to the cross section area. 
Figure 4-b shows the flow pattern resulting from 
all the converged   computations   on the 4-block 
grid "A": the block interface   passes at (r = -1.35, 
v = 0),  i.e.   where    the   bow-shock     intensity    is 
maximum,    but the position   of the bow shock is 
identical,   Cpst   =1.63 and Cd =0.7756. 
Flow variable  exchange  and averaging   at the end 
of the multigrid   cycle  (figure  5) leads to diver- 
gence on the 4-block   grid "A" at a CFL number 
of 8 and forces either a reduction  of CFL num- 
ber to 6 or the adoption of the modified  grid "B". 
Figure 6 shows that, at CFL=8, data exchange   at 
the  end  of each  Runge-Kutta     cycle   leads  to 
convergence   in 50 %more steps than exchange  at 
each  intermediate    stage.   Figure   7 shows   that 
single and multiblock   computations   are equiva- 
lent  in  the  latter   case,   and  that  the  interface 
boundary condition becomes completely transpa- 
rent to the computation. 
A simulation of the transonic vortical flow 
around a wing-body-canard sharp leading edge 
configuration, at a Mach number of 0.85 and an 
incidence of 10°, has been obtained from a 
multiblock computation with data exchange at 
each Runge-Kutta stage, and compared with 
single-block    results [7]. 
Pressure plots in the cross flow (figure 8-a) and 
on the wing surface (figure 8-b) at 0.6 wing 
chords show that block decomposition has slight 
influence on position or intensity of the vortices, 
although block interfaces cross both the wing 
leading  edge and the canard vortex. 

4. NUMERICAL    DISSIPATION 

The dissipative flux Du_k in equation (4) is based 
on a background term, dependent on the third 
order difference of the flow variables scaled on 
the local spectral radii of the flux Jacobians. A 
sensor based on the local pressure gradient 
switches a first order difference term in presence 
of flow discontinuities. 
On a structured   grid the dissipative   flux is 

2 2 

■«^Vi.Ait^M./.*-3^/.**3^./.*-^./.*) 

(17) 

scaled on local spectral radii components (6); nu- 
merical viscosity coefficients are based on the 
pressure sensor 

'/,/,*' 
Ph-\,j,k~2Pl,j,k + Pl-l,l,k 

(18) 

v/*I,M = max(vU*lVM./*) 
2 

and take the form 

e®       = V<® min(-1,7,1 4'-*i** 

e(4l     = max 4./.* [ (0, l/<4> 

(19) 

h\,i,k 

The above formulation cannot be consistently 
applied to the nodes of block edges and corners 
where the block topology is locally unstructured: 
the dissipation computed for different replicas 
of such boundary nodes on the basis of equation 
(16) would span different sets of neighbouring 
nodes, thus leading to an inconsistency. 

An unstructured formulation derived from the 
work of Mavriplis [8] has been tested to evaluate 
improvements in the analysis of flows in these 
regions. 
An approximation    to the Laplacian  at the boun- 
dary node K=(i,j,k)  is constructed   as 

DuM = d,-{,i,k-di,\,],k+d,.j-\,k-d,.h\.^ 

*diJ.*\'dU.*\ 

(16) 

and each mixed first- and third-order difference 
term [4,6] based on local curvilinear coordinate 
system is 

n n 

dqK = £ ( QJ-QK) = £ <fj - nciK (2°) 
l/=1 J=1 

where  the summation   in (20) is performed   over 
all the n nodes connected  by a cell edge to node 
K. 
In this case the dissipative   flux becomes the sum 
of a Laplacian   and a biharmonic   operator 
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n 

0U* = DK=T,(dQj-dqK) 
efAJ + e^AK 

n +E(^-^) 
e?AjVj + e{j(>AKvK 

(21) 

where A is the spectral radius in the control 
volume relative to node K=(i,j,k), the pressure 
sensor is 

E (PJ-PK) 
J=1  
n 

E {PJ+PK) 
IM 

(22) 

and the nodal numerical viscosity  coefficients,    as 
in (19), are 

€(2) = i/<2) mm fl.v] 

e<4> = max(0,lA4>-e<2>) 

(23) 

Coefficients V® and 1^4) can be set in both 
formulations to obtain desired properties of 
convergence and damping. Optimal convergence 
was obtained in this case with values V® = 1 and 
W = 1/32 in the structured formulation, V® = 1/2 
and 04' = 15/1024 in the unstructured formula- 
tion. 

A different    grid  around   the blunt-nosed    body 
has been generated:   a 7-block   grid showing   an 
unstructured   edge, shared by five  neighbouring 
blocks,  in the vicinity   of the bow shock wave. 
Figure  9 shows the block decomposition   and the 
flow   pattern   at Mach  2 and zero incidence;    a 
slight  deflection   of the shock wave is present at 
the unstructured   edge, but it should be ascribed 
to the unsuitable   cell distribution   in the zone. 
Computations   have  been carried  out with  both 
dissipation    schemes;   plots  ox the logarithm   of 
density   residual  in the unstructured   edge nodes 
are compared  in figure   10, showing   that errors 
due to inconsistent    computation    of dissipative 
fluxes   (17) prevent  from complete convergence, 
even if variable   averaging   is performed   at each 
Runge-Kutta     stage;   unstructured    formulation 

(21) leads to complete, although slower, conver- 
gence. 

5. TIME AND   MEMORY   REQUIREMENTS 

CPU time requirements have been measured by 
serial runs of the blunt-nosed body test case on 
an IBM Rise 6000 550. These measure, together 
with data relative to memory occupation, is 
obviously dependent on the code FL067P-2 [9] 
and on the PARAGRID framework: they are 
presented here mostly as qualitative comparison 
between the multiblock algorithms previously 
discussed. 
Table 1 shows  CPU times and RAM occupation 
needed by for  the various   proposed  strategies; 
times are expressed  as CPU seconds per node per 
iteration,    memory    occupation    is  expressed    as 
Mbytes  per thousand  nodes. 
Exchange  at multigrid   level needs 20 % less time 
than exchange   at each Runge-Kutta     stage; this 
partly   compensates    for   the  reduction    in  CFL 
number.  On the other hand, it needs less than 50 
% memory.   Memory  occupation   can in all cases 
be reduced by .08 Mbyte/knode   if metric coeffi- 
cients  are recomputed   at the beginning   of each 
block   update   step,   at the price   of higher   time 
requirements. 

6. CONCLUSIONS 

The determination of the most convenient multi- 
block solution strategy among the examined 
algorithms   is not immediate. 
Numerical experiments of section 3.2 and 4 show 
that, if data exchange is performed at each 
intermediate stage, interface condition has no 
impact on stability limits and convergence rate; 
other conditions generate a reduction of conver- 
gence rate and, in the case of exchange only at 
the end of the multigrid cycle, of stability limits. 
On the other hand, approximate solutions at 
block interfaces yield a reduction in time and 
mostly  in memory   needs. 
Exchanging   halo data at Runge-Kutta    level is a 
compromise     solution    which     retains    stability 
bounds   of the  exact   description   with   reduced 
time and memory  requirements   at the price of a 
slower  convergence. 
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data exchange 
at each 

numerical 
dissipation 

CPU time 
s pntsA if1 

RAM 
Mbyte   kpntsA 

Multigrid   cycle structured 4.47 10-4 0.195 

Runge-Kutta    cycle structured 4.75 10-» 0.276 

Runge-Kutta    stage structured 5.55 lO"4 0.404 

Runge-Kutta    stage unstructured 5.19 10"4 0.462 

Table 1        Time and memory  requirements   for the examined   multiblock   algorithms. 

core 

halo 

Figure  1      Example  of unstructured   local topology  in a multiblock   structured   grid: edge shared by 
five blocks. 
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Figure 2 Algorithm for multigrid "driver residual" computation: a) contribution of fine grid nodes 
to fine grid cell values (14); b) contribution of fine grid cell values to coarse grid nodal 
"driver  residuals". 

1-block 4-blocks 4-blocks 

25        33 17 41 

Figure 3      Blunt nosed body flow at Mach 2: Flow features  and grid topologies. 
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Figure 4      Iso-pressure   plot of the flow around a blunt nosed body (Mach = 2, a=0):a) single-block 
computation;   b) multiblock   computation   on grid "A". 
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Figure 5 Convergence history of maximum density residual for multiblock solution of the flow 
around a blunt nosed body (Mach = 2, <x=0):data exchange performed at the end of each 
multigrid   cycle. 
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Figure 6 Convergence history of maximum density residual for multiblock solution of the flow 
around a blunt nosed body (Mach = 2, a = 0): behaviour of different strategies for data 
exchange   between  grid blocks at CFL = 8. 
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Figure 7 Convergence history of maximum density residual for multiblock solution of the flow 
around a blunt nosed body (Mach = 2, a = 0): comparison between single-block and 
multiblock   computations   at CFL = 6. 
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Figure  8      Flow around a wing-body-canard      configuration    (Mach = 0.85, a = 10°):a) iso-pressure   plot 
on wing and canard; b) iso-pressure   plot at 0.6 wing chords from a single-block    solution 
[7]; c) iso-pressure   plot at 0.6 wing  chords from a solution  on a 32-block   decomposition 
of the single-block    grid; d) pressure coefficient    on wing  surface  at 0.6 wing  chords. 



28-11 

350   4 

-300 -250 -200 

Figure  9      Iso-pressure    plot of the flow   around   a blunt   nosed body   (Mach = 2, a =0):multiblock 
solution  on a 7-block   grid with locally unstructured   topology. 
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Figure 10 Convergence history of density residual on the locally unstructured edge of the 7-block 
grid around a blunt nosed body for solution of the flow at Mach = 2 and a - O:behaviour 
of different   artificial   dissipation   models. 
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AMELIORATIONS RECENTES DU CODE DE CALCUL 
D'ECOULEMENTS COMPRESSIBLES FLU3M 

L.Cambier,D.Darracq1,M.Gazaix,Ph.Guillen,Ch.Jouet, L.Le Toullec 

ONERA, B.P 72, 92322 Chätillon Cedex, France. 

Abstract 
We present three developments which have been intro- 
duced in the code FLU3M. 
A numerical method for solving the unsteady Euler 
equations with time-varying rigid grids is first studied; 
it uses the van Leer scheme together with a second or- 
der in time implicit algorithm. 
A bidimensional nozzle and an afterbody shape have 
been calculated with the Jones-Launder k-e model, the 
implementation of which in the code is described for 
one and two species gases. 
Then a new implicit algorithm is shown; precisely the 
DDLU factorization enables a reduction both in CPU 
time and in cost memory against the ADI factoriza- 
tion. 

Resume 
Trois developpements effectues dans le code FLU3M 
sont presentes. Une methode de resolution des equa- 
tions d'Euler instationnaires pour des mouvements de 
solide est d'abord etudiee; eile utilise le schema de van 
Leer, ainsi qu'une approche implicite d'ordre deux en 
temps permettant de reduire les temps de calcul. 
Une tuyere bidimensionnelle ainsi qu'un arriere-corps 
ont ete calcules avec le modele de turbulence k-e de 
Jones-Launder, dont on decrit Pimplantation dans le 
code pour un ecoulement monoespece ou biespece. Des 
comparaisons avec l'experience sont effectuees. 
Puis un nouvel algorithme de resolution implicite a 
ete etudie; la factorisation DDLU permet des gains en 
temps de calcul et place memoire par rapport ä une 
factorisation ADI. 

1. Introduction 

Depuis 1987, un code de calculs aerodynamiques 
(FLU3M), multidomaines, multiespeces, est developpe 
ä la division de PAerodynamique Theorique 1, 
de l'ONERA. 
En 1989, les principaux choix numeriques et la struc- 
ture informatique du code sont publies au seminaire 
international de Boston [1]. Des calculs numeriques 
Euler gaz parfait et gaz reel ä l'equilibre y sont presen- 
tes sur des configurations multidomaines telles que la 
navette Hermes; les ecoulements etant supersoniques, 
des techniques de marche en espace sont mises en 

^octorant sous convention CIFRE SNECMA 

ceuvre. La possibility de calculs en gaz biespece est 
illustree par un calcul de jet chaud. 
Depuis, FLU3M a fourni la base de nombreux 
developpements, autant dans le domaine des mod- 
elisations physiques, que dans celui des techniques 
numeriques ameliorant la precision et la rapidite des 
calculs. 
Ainsi, les equations de Navier-Stokes, en regime 1am- 
inaire, sont maintenant resolues numeriquement. Le 
code a ete eprouve sur plusieurs cas de validation: 
par exemple, une rampe hypersonique 3D presentee 
au Workshop d'Antibes [2], ou encore une configura- 
tion ogive-cylindre avec ecoulement tourbillonnaire [3]. 
Pour les ecoulements hypersoniques, un nouveau dia- 
gramme de Mollier a ete etudie [4]; en plus des pro- 
prietes thermodynamiques de l'air ä l'equilibre, il four- 
nit les viscosites et conductivites en vue de calculs 
Navier-Stokes. 
De nouvelles possibilites de discretisation en espace ont 
ete explorees et en particulier les techniques de mail- 
lages chimeres. Des calculs complexes (separation de 
missile) peuvent etre ainsi plus facilement realises [5]. 
Nous presentons ici plus en detail trois axes de 
developpement. Ces developpements, realises dans un 
code unique, sont facilites par la grande modularity du 
code et par la clarte de la structure arborescente. 
Un axe de developpement est lie ä l'etude des 
phenomenes d'aeroelasticite. La mise en ceuvre des 
equations d'Euler instationnaires en maillage mobile 
est presentee, ainsi que differentes approches d'ordre 2 
en temps permettant de reduire les coüts de calcul. 
Dans le cadre des activites sur les modeles de tur- 
bulence, nous decrivons l'introduction d'un modele ä 
deux equations de transport de type k-e, pour un gaz 
parfait monoespece ou un gaz biespece. 
Pour terminer, un nouvel algorithme de resolution 
du Systeme implicite est presente. Nous etudions la 
factorisation DDLU reduisant l'espace memoire et le 
temps de calcul par rapport ä une factorisation ADI. 

2. Calculs instationnaires en maillage mobile 

Dans le cadre des etudes d'aeroelasticite pour les 
lanceurs de type Ariane, une methode numerique Eu- 
ler instationnaire a ete developpee dans FLU3M. Apres 
la formulation des equations instationnaires, les dif- 
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ferents choix numeriques sont exposes, puis le cal- 
cul d'un profil NACA en mouvement de tangage est 
presente, ainsi que celui d'un sphere-cone 3D en oscil- 
lation autour de son centre de gravite. 

2.1 Equations instationnaires 
Considerons un profil 7 en mouvement de tangage, 
muni d'un maillage fi(i). Dans le cadre de cette etude, 
ce domaine n(£), suppose non deformable, est en mou- 
vement par rapport ä un repere absolu IZo ■ 

Sur Q(t), les equations d'Euler s'ecrivent, sous forme 
de lois de conservation : 

-/     W{t,t).dT+ [      F(W,l?).dS=~0     (1) 
dt Jn(t) Jdn{t) 

avec W = (p,p!?,pE), variables conservatives (p :< 

densite, U* : vitesse absolue, E : energie totale) ( 

et 

oüF(W;n) = 

pvr. n 

pU>.(v^.~n) + p~n 

pE(v?.^n) + p!?.~n 

(2) 

v? est la vitesse d'entrainement, v? la vitesse rel- 
ative. A la difference d'autres approches utilisant les 
vitesses relatives, les variables de calcul sont les vari- 
ables absolues, c'est-a-dire les vitesses absolues ex- 
primees dans le repere absolu TZo- C'est une approche 
classique qui, par rapport aux equations en maillage 
fixe, demande une modification des flux numeriques 
qui font intervenir la vitesse d'entrainement ~v e, ainsi 
qu'un calcul de metrique variable au cours du temps. 
Pour discretiser les flux, nous utilisons les methodes de 
decentrement; Vinokur en donne une analyse detaillee 
dans [7]. 

2.2 Discretisation des flux 
On pourra verifier que le jacobien des flux a pour ex- 
pression : 

P 

/, -vt.~n 

!,n (7 - l)v2.~n - vn.~v* 

fpE (7 - l)v2vn - Hvn 

p~v pE 
n 0 

-(7 - l)"n g> v 

+V (g>n+ (vn - vtn)I 

(7-1)1? 

Hn - (7 — l)vnv yVn - Ven 

avec vn v .n et v. vl.~n. Les valeurs propres 

du jacobien des flux sont les suivantes : 

A = ~~vT.~n   (ordre 3) 
X = ~v*T.li + c  (ordre 1) (3) 

A = ~vr. n* - c  (ordre 1) 

Les vecteurs propres du jacobien des flux sont exacte- 
ment les memes que dans le cas des equations en mail- 
lage fixe. 
Pour discretiser les flux, la decomposition de van Leer 
peut etre etendue aux equations d'Euler instation- 
naires. Van Leer decompose le flux sous la forme suiv- 
ante : 
/=/++/", ou f+(resp.f~) a des valeurs propres 
positives (resp. negatives). 
En introduisant le nombre de  Mach  relatif normal 

Mrn = 
Vr'c

n   , nous avons : 

Si Mrn > 1, /+ = / 

Si Mrn < -1, /" = / 

Pour I Mrn |< 1, /+ a pour expression : 

f+^    =    ft [(7 " iHn + 2c]/7. T? + /+( W? + ^) 

fU    =    /e+[(7-lKn+2c]2/[2(72-l)] 
+f+[(-y-l)vTn+2c}/l.Ven 

Le flux de van Leer s'ecrit alors : 

/««» Leer(Wg> Wd) = f+(Wg) + f~(Wd) 

Pour l'utilisation de methodes implicites, ce flux doit 
etre linearise. 

2.3 Metrique instationnaire 
Au cours du mouvement du profil, le maillage est mo- 
bile et, par consequent, les normales aux interfaces 
doivent etre calculees ä chaque instant. Par hypothese, 
le maillage ne se deforme pas, les volumes ne changent 
done pas. Ils sont calcules une fois pour toutes ä 
1'instant initial to- 
ll faut evaluer la moyenne de n*, sur un pas de temps 
At,  ce que l'on fait en  considerant  1'instant tn+i. 

Nous avons alors : "n(tn+i) = R(tn+k)■ n (t0), ou 
R est la matrice de rotation du mouvement prise a 
1'instant n+§. Le calcul des flux necessite egale- 
ment la connaissance, ä 1'instant £n+i, de la vitesse 
d'entrainement aux interfaces des mailies de calcul. 
Connaissant les coordonnees ä 1'instant t=0 du centre 
I d'une interface, la vitesse d'entrainement est donnee 
par : 

i£i(tn+i) = «3(*„+i) + 5(fn+i).H 

(4) 
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oü G> est le tenseur de vitesse de rotation du solide, 
A un point du solide. 
Ceci complete et definit les donnees necessaires ä un 
calcul instationnaire, en maillage rigide. 

2.4 Conditions aux limites instationnaires 
Considerons l'exemple d'un profil muni d'un maillage 
en C, en mouvement par rapport ä 7<V Un ecoulement 
uniforme est impose a l'amont du profil. 

Deux conditions aux limites sont ä envisager: d'une 
part, aux frontieres a l'infini, pour imposer un ecoule- 
ment tout en evitant les reflexions d'ondes; d'autre 
part, ä la paroi oü une condition de glissement doit 
etre imposee. 

1. Conditions ä la limite ä la paroi. 

D'apres la condition de glissement, vT . n = 0, oü 
Vr est la vitesse relative. Le flux ä la paroi devient : 

F(W; 

oü p est la pression ä l'interface, calculee par une ex- 
trapolation, eventuellement corrigee par une relation 
caracteristique. 

2. Conditions ä la limite d'entree-sortie. 

Nous adoptons la formulation proposee par Coller- 
candy [9]. Elle est etendue aux equations en maillage 
mobile. 

Cinq caracteristiques de pentes A, 
A   G   {i)rn, vTn + c, vTn — c}  arrivent   a  l'interface  ä 
l'instant n+1.  Suivant le signe de la pente A, la vari- 
able caracteristique associee sera calculee avec un etat 
exterieur ou Interieur. 
Plus precisement, le calcul des valeurs propres est ef- 
fectue ä l'aide d'un etat moyen: 
Wm — \{WirlteTieuT + WexterieuT), ce qui permet de 
calculer les valeurs propres et de connaitre leur signe. 
On calcule ensuite les variables caracteristiques asso- 
ciees ä ces valeurs propres, avec les etats interieur et 
exterieur . 
Si A est negative, c'est la variable caracteristique ex- 
terieure qui sera choisie; sinon, on prendra la variable 
caracteristique Interieure. 

2.5 Discretisation en temps 
La precision en temps des Schemas utilises en instation- 
aire est un point important. Plusieurs Schemas d'ordre 
un ou deux en temps sont decrits et leurs proprietes 
de stabilite sont brievement rappelees. L'equation ä 
discretiser en temps est la suivante: 

2.5.1 Schemas precis ä l'ordre 1 
Le schema explicite   : Wn+1 — Wn + Atgn est precis 
ä l'ordre 1. II est stable sous la condition cfl ^ 1, ce 
qui, en pratique impose des pas de temps tres petits. 
En effet, pour calculer avec un maillage assez fin un 
profil NACA64A010 osculant avec un mouvement de 
battement ä une frequence de 100 Hz, 40 000 pas de 
temps explicites sont necessaires pour effectuer un 
cycle. 

Le schema implicite   : Wn+1 = Wn + Atgn+1 est 
precis ä l'ordre 1. La fonction gn+l est linearisee en : 
gn+! = gn + AtAn(Wn+1 - Wn) ce qui conduit au 
schema : (/ - (At)2An)(Wn+1 - Wn) = gnAt. Ce 
schema est inconditionnellement stable. Pour obtenir 
la meme precision qu'un calcul explicite, sur des 
grandeurs telles que la portance et le moment, des cfl 
de l'ordre de 100 peuvent etre utilises pour les profils 
oscillants. 
2.5.2 Schemas precis ä l'ordre 2 
Schema Runge-Kutta implicite de Iannelli-Baker 
C'est un schema Runge-Kutta ä deux etapes 
implicites [10]. 

(I - a(At)2An)AWl = g(Wn)At 

(I-a(At)2An)AW2 = g(Wn  + ßAWl)At 

et   Wn+1   =  Wn  + -nAWl  + j2AW2 

2-Vz„ ,    r avec a   -    ^—, ß  =   2(3V2 - 4), 

7l 
6--v/2 

-,72 
6 + \^ 

8 

(6) 

(7) 
(8) 

(9) 

(10) 

Ce schema est inconditionnellement stable, avec des 
cfl beaucoup plus grands que ceux utilises avec un 
schema implicite d'ordre 1, de l'ordre de 400, toujours 
pour obtenir des resultats de precision equivalente a 
celle d'un calcul explicite. 

2.6 Cas de validation 
2.6.1 Profil NACA64A010 
Le profil choisi est un NACA64A010, correspondant 
aux conditions experimentales suivantes (Fig.l): 

M 0.796 

P'oo 203321 Pa 

do 1.01° 

f 34.4 Hz 
,   _  wLr.f 0.404 

LTcf 
0.25 

La loi du mouvement du profil de l'aile est donnee 
par: 

dW 
g(w) (5) «(*) Qo * sin(k.r) 
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Le profil a ete defini dans un rapport AGARD [11] 
et calcule par de nombreux auteurs [8]. 

Pour chaque essai instationnaire, on presente 
revolution de la portance et le moment. Les calculs 
des differentes approches en temps sont compares ä 
l'experience et ä un calcul explicite de reference ä cfl 
=0,8. 
Sur les figures 2 et 3, les calculs des approches d'ordre 
1 et d'ordre 2 en temps, pour un cfl de 400, sont 
represented. Si nous considerons le calcul du moment, 
l'approche d'ordre 1 ne donne pas le meme resultat que 
le calcul de reference explicite, alors que l'approche 
d'ordre 2 donne un resultat identique. 
A cfl = 100, pour la methode d'ordre 1, le coüt de 
calcul est divise par 17 par rapport ä une methode ex- 
plicite a. cfl = 1 (400 pas de temps/cycle contre 40 000 
en explicite). Le coüt de la methode Runge-Kutta im- 
plicite d'ordre 2 est pratiquement identique ä celui de 
la methode d'ordre 1, puisque la matrice implicite est 
la meme dans les deux pas de calcul. 
En conclusion, la methode implicite d'ordre 2 en temps 
est la plus indiquee pour des calculs instationnaires. 

2.6.2 Sphere-cone Aerospatiale 
Un corps sphero-conique 3D a egalement ete calcule 
(Fig.4); ce corps est en oscillation autour de son cen- 
tre de gravite G. Le nombre de Mach a l'infini est de 
7. L'angle de tangage maximum est a0 = 1° La loi du 
mouvement est donnee par: 

a(t) QO * sin(k.T) 

avec k = S^- = 0, 386. Un calcul instationnaire ä cfl 
v™' ,. . -  , 

= 100, avec la methode Runge-Kutta implicite a ete 
realise (Fig.4).   Une comparaison a ete faite avec un 
autre calcul effectue par Aerospatiale [?]. Un ecart de 
8% est observe sur Cma, alors que Cma. + Cmg est 
identique dans les deux calculs (Fig.5). 

3. Modelisation de la turbulence 

3.1 Modele ä deux equations de transport 
Le modele de turbulence (k,e) de Jones-Launder [13] 
est implante dans le code de calcul FLU3M. Les deux 
equations de transport pour pk et pe s'ecrivent: 

dtpk + div{pkv) = Tfl : W+ div((p, + — )Vk) 

-pe + Dk (11) 

dtpe + div(pev) = C6l JTR : Vv + div((p, + — )Ve) 
k QE 

-CeJ2-pe + D( 

Le coefficient de viscosite turbulente p,t a pour expres 
sion: 

-r fpk 

Le choix suivant a ete considere pour les coefficients du 
modele: Ctl = 1.57, Ce2 = 2.: ak = 1., ae = 1.3, CM = 
0.09 . Les termes Dk et De designent des termes addi- 
tionnels lies ä la formulation bas-Reynolds et destines ä 
representer l'amortissement de la turbulence au voisi- 
nage des parois. Dans Particle de Jones et Launder 
[13], l'expression de ces termes est donnee en repere 
de couche limite. Dans le cadre de la resolution des 
equations de Navier-Stokes, nous avons considere les 
expressions suivantes pour Dk et De: 

Dk -2/i||vV*|| 
2/x/x 

ii(roiti')||'' 

(14) 

(15) 

Les quantites /2 et f^ sont aussi liees ä l'amortissement 
de la turbulence pres des parois. Elles sont fonctions 
du nombre de Reynolds turbulent Ret: 

Ret =   
p,e 

/a = 1 - 0.3exp(-Re2
t] 

U = exp(~ 1 + Re, 
50 

(16) 

(17) 

(18) 

Ce choix de fonctions d'amortissement ne faisant inter- 
venir ni la distance a. la paroi, ni le frottement parietal, 
permet de realiser une programmation du modele de 
turbulence independante de l'application consideree, 
ce qui constitue un avantage important pour un code 
traitant des applications multidomaines complexes, tel 
que le code FLU3M. 
Le modele de turbulence (k, e) qui vient d'etre decrit 
peut etre associe dans le code FLU3M, soit a, une for- 
mulation monoespece, soit ä une formulation biespece. 
Dans cette derniere formulation, on se place alors dans 
le cadre de l'ecoulement compressible turbulent d'un 
melange non reactif de deux especes, chaque espece 
etant supposee etre un gaz parfait ä chaleurs spe- 
cifiques constantes. La discretisation des equations 
s'effectue de maniere analogue pour le Systeme "mono- 
espece ( k,e )" et pour le Systeme "biespece ( k , e )". 
Les flux convectifs sont discretises a. Paide d'extensions 
du solveur de Riemann de Roe aux systemes d' equa- 
tions couplees. Les valeurs propres de la matrice Jaco- 
bienne ont pour expression: X1 = u (ordre: neq — 2), 
A2 = u + c (ordre: 1), A3 = it - c (ordre: 1), ou neq 
designe le nombre total d'equations (7 en monoespece 
et 8 en biespece). La quantite c est une vitesse du son 
modifiee donnee par : 

(12) ,2=7(^ + k (19) 

(13) 

Le rapport des.chaleurs specifiques 7 est suppose con- 
stant dans la formulation monoespece, alors qu'en 
biespece,   il  depend   des   densites   partielles   et   des 
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chaleurs specifiques des deux especes,  de la maniere 
suivante: 

_ 1 _ PiCvij-Yi - 1) + p2Cv2(j2 - 1)  ,2Q, 
PiCvi + p2Cv2 

Le flux numerique de Roe s'ecrit: 

FR(UL,UR)=1-(F(UL) + F(UR)) 

-\PR\\KR\\PR-\UR-UL)   (21) 

ou AR designe la matrice diagonale des valeurs propres, 
et PR et PR designent les matrices de passage. La 
notation R en indice superieur indique que les quan- 
tites sont calculees ä l'aide de moyennes de Roe. 
La precision du second ordre en espace est obtenue 
grace a Fapproche MUSCL appliquee sur les variables 
primitives. Les flux visqueux sont evalues ä l'aide 
d'une discretisation centree en espace. Dans le cas 
de la formulation biespece, on tient compte de la dif- 
fusion entre les especes par l'intermediaire d'un nom- 
bre de Lewis Le et d'un nombre de Lewis turbulent 
Let • Une acceleration de convergence est realisee ä 
l'aide d'une phase implicite et de la technique du pas 
de temps local. La phase implicite s'appuie sur une 
linearisation des flux de van Leer pour les flux con- 
vectifs, une linearisation similaire a celle de Coakley 
pour les flux visqueux, une linearisation simplifiee de 
la partie negative des termes source et une inversion 
ADI de la matrice implicite. 
A titre d'exemples, on presente ici les resultats 
obtenus dans le cadre de la formulation "monoespece 
(k,e)" , sur une configuration d'interaction onde de 
choc/couche limite dans un canal bidimensionnel, puis 
sur une configuration d'arriere-corps axisymetrique. 
La premiere configuration correspond ä une experience 
[14] realisee a l'ONERA dans une tuyere symetrique. 
Le nombre de Mach en amont de l'interaction est egal 
ä 1.45. Sur la figure 6 qui represente les courbes iso- 
nombre de Mach calculees, on peut voir la structure 
classique de choc en A dans la region d'interaction et 
l'important epaississement de la couche limite resul- 
tant de l'interaction avec le choc. La figure 7 presente 
une comparaison avec l'experience portant sur la dis- 
tribution de pression parietale. Le plateau de pression 
obtenu par le calcul dans la region d'interaction est 
plus petit que dans l'experience, ce qui correspond ä 
une legere sous-estimation de la taille de la region de- 
collee. Le resultat obtenu est sur ce point comparable 
ä des resultats obtenus anterieurement avec d'autres 
codes de calcul mettant en oeuvre le modele (k, e), sur 
la meme configuration. 
La deuxieme configuration traitee correspond ä un 
arriere-corps axisymetrique muni d'une tuyere. Les 
conditions de l'ecoulement externe sont les suivantes: 
nombre de Mach egal ä 4.18, temperature et pression 

generatrices respectivement egales ä 325 Kelvins et 10 
bars. La pression generatrice du jet est plus elevee et 
egale ä 42.3 bars. Le nombre de Reynolds calcule ä 
partir des grandeurs critiques associees au jet et du 
rayon du culot est egal ä 1.15 10 . Le domaine de cal- 
cul est divise en trois sous-domaines: un sous-domaine 
Di correspondant ä l'ecoulement externe, un sous- 
domaine D3 correspondant ä la sortie de la tuyere et au 
jet, et un sous-domaine intermediaire D2 comprenant 
la region du culot. Le nombre total de points de mail- 
lage est egal ä 13,879. Des raffinements importants 
sont introduits pres des parois. Par exemple, la taille 
de maille pres de la paroi externe de Parriere-corps 
est egale ä 10~4Ä. Sur la frontiere amont du sous- 
domaine externe Di, on impose des profils issus des 
donnees experimentales pour la vitesse et les grandeurs 
turbulentes, alors que, sur la frontiere amont du sous- 
domaine I?3, les profils imposes sont issus d'un calcul 
preliminaire de l'ecoulement dans la tuyere. 
La figure 8 qui represente la solution sous forme de 
courbes iso-nombre de Mach, montre la forme clas- 
sique en tonneau du jet, ainsi que l'onde de choc situee 
dans le jet. Une comparaison avec l'experience [15] 
est represented sur les figures 9 et 10, sous forme de 
profils d'energie cinetique de turbulence et de pression 
pitot dans deux sections situees en aval du culot ä des 
distances egales ä 0.59Ä et ä 6 R. Les points experi- 
mentaux ont ete obtenus par velocimetrie laser et par 
un tube de Pitot. Bien que les donnees experimentales 
pour l'energie cinetique de turbulence ne soient rela- 
tives qu'ä la partie externe de l'ecoulement, l'accord 
apparait comme satisfaisant. 

4. Factorisation DDLU 
4.1 Description de l'algorithme 

L'analyse de stabilite lineaire de von Neumann de 
la factorisation approchee ADI revele une instabilite 
inconditionnelle en 3D (Cf. Ying [21]). Meme si 
les termes non lineaires jouent un role stabilisateur 
comme tendent ä le prouver les codes de calcul util- 
isant une teile approche, la factorisation triple ADI 
reste penalisee par un nombre d'operations important 
et surtout une severe restriction de cfi due a l'erreur 
de factorisation en At3. Une factorisation de type 
DDLU a done ete developpee pour ameliorer l'efficacite 
de l'algorithme implicite. Les premieres methodes de 
decomposition DDLU de la matrice implicite ont ete 
proposees simultanement par Jameson et Türkei [17] 
et Steger et Warming [20] en 1981. Alors que les tech- 
niques de directions alternees consistent ä substituer 
ä l'operateur implicite un Operateur factorise suivant 
les directions du maillage, la methode LU le decom- 
pose en deux matrices triangulaires superieure et In- 
terieure. Jameson et Türkei montrent qu'un tel Sys- 
teme est bien conditionne si les matrices sont ä diago- 
nales dominantes. Aussi ont-ils propose une decompo- 
sition des matrices jacobiennes de la matrice implicite 
augmentant la diagonale.  Dans le schema original, le 
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Systeme implicite est mis sous la forme : 

LU.AQ = -At R (22) 

Dans le cas d'une discretisation decentree, il vient : 

L = I + At(8^Ä+ + d-§+ + a^d+) 

U = I + At{d+Ä~ + d+B~ + ö+C") 
(23) 

oü Ä+,Ä~,B+, B~, C+,C~ sont les matrices jacobi- 
ennes des flux et £, 77, ( les coordonnees curvilignes. Ce 
schema reste peu utilise sous cette forme. 
Jameson et Türkei [17] ayant montre que la condition 
de dominance diagonale permet d'assurer le bon con- 
ditionnement des facteurs L et U, Jameson et Yoon 
[18] ont developpe une Variante (que l'on appellera ici 
DDLU par analogie avec le DDADI), renforcant la di- 
agonale pour les equations d'Euler, puis Yoon et Jame- 
son [22] pour les equations de Navier-Stokes, Shuen et 
Yoon [19] pour les ecoulements reactifs, enfin Darracq 
(1995) [16] pour le modele k-e . Avec ce formalisme, 
il vient: 

LD^U.AQ = -AtR (24) 

avec : 

{L= 1+ At(d~Ä+ + d^B+ + 8-C+ -A- -B- - C-) 

D = I+ At(Ä+-Ä- +B+-B- +C+-C-) (25) 
u = i + At(a^Ä+ + a-S+ + a~c+ -Ä-+ -B+ - c+) 

Les matrices jacobiennes A+, B+ et C+ (respective- 
ment A~, B~ et C~) sont construites de fagon ä ce 
qu'elles ne possedent que des valeurs propres positives 
(respectivement negatives), c'est-ä-dire : 

Ä+ = Tß^Tf1 

B+ = T.A+T^-1 

C+ TCA+'. 

B- = Tnl~T- (26) 

2*AC- T7X 

On peut ecrire de fagon generale la decomposition des 
matrices jacobiennes sous la forme : 

lr- 
Atrh( = niAe,v,<±'r(Ae,v,<)] (27) 

avec   A-£,T),(   matrice   diagonale   des   valeurs   propres 

La fonction 7 decrit le caractere du decentrement. 

Dans la decomposition classique, on definit 7 par: 

=    diagdA^^I) (28) 

Dans la decomposition de Jameson et Türkei [17] 2,on 
vise ä augmenter la dominance diagonale : 

7(Af,,,c)=^.max(|A£lI,I<|)J (29) 

avec ß > 1. Les relations (26) et (26) permettent 
d'ecrire avec (27) : 

D=I+ A*PVY(A{ JTj-1 + Tnifayr-1 + Tf 7(A,)Tf"
1]   (30) 

La diagonale D possede une structure bloc dans le cas 
de la decomposition (28) mais devient scalaire quand 
on utilise (29) : 

D = I + A</3[max(|Ae|) + max(|A„ |) + max(|A(; \)}I (31) 

Remarquons que cette propriete de reduction de la di- 
agonale bloc ä une diagonale scalaire est verifiee pour 
les factorisations de type DDLU, DDADI et meme 
ADI. A l'oppose, la factorisation LU de base (23), ä 
cause de sa nature dissymetrique, ne peut beneficier 
de cette diagonalisation. Les matrices jacobiennes aux 
interfaces sont evaluees ä partir de la moyenne de Roe 
afin de preserver une consistance avec le schema ex- 
plicite. 

Balayage plan oblique 
Le balayage du domaine de calcul suivant les direc- 
tions diagonales (i-fj+k constant) dans le sens crois- 
sant (Operateur L) puis decroissant (Operateur U) per- 
met ae vectoriser completement l'inversion des matri- 
ces L et U en evitant les recurrences non vectorisables. 
La recurrence entre points de la factorisation ADI de- 
vient une recurrence entre plans lors de la factorisation 
DDLU. 
En outre, le balayage diagonal fait intervenir, autour 
du point courant, des points dont la mise ä jour a 
ete effectuee ä l'etape precedente. On peut ainsi les 
ajouter au membre de droite : il n'y a done aueun 
bloc ä inverser. 

Fig. 12 : Balayage oblique en 3D 
A titre de comparaison, on a implante un algorithme 
du type SSOR avec les choix de decomposition (29) 
conduisant ä la diagonale scalaire (33). II s'agit d'une 

2 Cette decomposition doit etre distinguee de la technique du 
rayon spectral appliquee aux Schemas decentres [20] : 

Ä± =max(|A±|)/ 
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approche iterative de sur-relaxation symetrique avec 
balayage oblique : 

FIACRE  Mach   4.5 

(D + wU)AQk+l     = 

-uAtR + (1 - w)DQk - u>UQk 

-wAtR + (1 - w)DQk+ 3 - uLQk 

4.2 Application 
On presente ici l'application de l'algorithme DDLU 
dans sa version fluide parfait sur le cas test d'un fuse- 
lage lenticulaire avec retreint. Le nombre de Mach 
vaut 4,5 et l'incidence est de 10°, Le maillage est com- 
pose de 42 x 27 x 44 points. La figure 11 represente la 
solution obtenue ä partir du schema DDLU. La solu- 
tion donnee par le schema ADI est identique. La figure 
13 represente l'histoire de la convergence des residus 
implicites de la densite. La montee en CFL est effec- 
tuee jusqu'ä une valeur de 500 pour les formulations 
DDLU et SSOR et jusqu'ä 100 pour la formulation 
ADI. La vitesse de convergence de Pimplicite DDLU 
est meilleure que celle de 1'implicite ADI. L'algorithme 
SSOR permet une convergence plus rapide que celle de 
l'algorithme DDLU. Mais le nombre d'iterations in- 
ternes, une douzaine, augmente les temps de calcul 
qui deviennent comparables ä ceux du schema ADI. 
Le tableau 1 donne le temps de calcul par point et par 
iteration et le nombre de tableaux 3D necessaires pour 
le stockage de la matrice implicite, pour les decompo- 
sitions ADI et DDLU. 
La version DDLU est 2,3 fois plus rapide que la version 
ADI, et, d'autre part, le schema LU requiert pres de 1,5 
fois moins de place memoire pour le stockage des ma- 
trices implicites. En effet, on ne stocke en chaque point 
courant qu'un seul vecteur Dijk alors que la factorisa- 
tion ADI demande la reservation memoire en chaque 
point de trois blocs D^-f., DVi-k et -D^.-j.. De plus, 
la factorisation ADI fait appel a des tableaux tempo- 
raires lors de l'inversion. 

(32) 

200  400  600  800  1000 
Iterations 

Algorithme Temps CPU (ps) Memoire 

ADI Euler 3D 49 225 
DDLU Euler 3D 21 155 

Fig.13:   Comparaison des vitesses de conver- 
gence des algorithmes 

5.  Conclusion 

Trois developpements recents dans le code FLU3M ont 
ete presentes. 
Les equations d'Euler instationnaires (en maillage non 
deformable mobile) ont ete discretisees avec un schema 
Runge-Kutta implicite d'ordre 2 en temps associe aux 
flux de van Leer. Les cas de validation presentes, 2D 
et 3D, montrent la precision et la rapidite de la meth- 
ode, aussi precise qu'un calcul explicite, mais 70 fois 
plus rapide. 
L'implementation du modele k-e de Jones- Launder, 
y compris pour un gaz biespece, a ensuite ete decrite. 
Nous utilisons le solveur de Roe pour resoudre le Sys- 
teme complet des equations de Navier-Stokes couplees 
avec les equations de transport pour k et e. Si des re- 
sultats satisfaisants ont ete obtenus, notamment sur un 
cas d'arriere-corps, des etudes concernant l'application 
du modele restent ä effectuer; en particulier, le champ 
initial des variables k et e doit etre determine pour 
commencer le calcul; de plus, des phenomenes de re- 
laminarisation peuvent apparaitre. Pour terminer, 
l'algorithme implicite de decomposition DDLU per- 
met de reduire les coüts memoire et temps de calcul a. 
chaque iteration. Cet algorithme peut etre etendu aux 
equations avec modele k-e. 
Remerciements: Les developpements relatifs au 
modele k-e, ainsi que ceux relatifs ä 1'instationnaire, 
ont ete soutenus par Aerospatiale Espace et Defense 
et par le CNES. Les travaux sur l'algorithme DDLU 
ont ete effectue dans le cadre de la these de D. Darracq, 
stagiaire CIFRE ONERA-SNECMA. 

Tableau 1: Comparaison des temps de calcul 
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Summary 
With the high costs associated with 
flight and wind tunnel testing, the 
computation of aircraft store 
trajectories is becoming more 
important to the military- 
establishment. In Canada, the 
Department of National Defence (DND) 
requested IAR to acquire/ develop 
the necessary tools to carry out the 
prediction of stores on release from 
aircraft - particularly the DND's 
CF-18 aircraft. After debate whether 
to use structured Chimera schemes or 
unstructured schemes, IAR decided to 
use the latter techniques as there 
was already a development program 
underway in that field of research. 
IAR had already demonstrated that 
hybrid (structured/ unstructured) 
grids had produced successful 
results and decided to pursue this 
approach for the unsteady 3-D 
computations. To this end, a study 
has been made in the 2-D case of a 
'store' moving from the parent 
'body'. Grid generation is underway 
for the full CF-18 aircraft using a 
commercial code and several simpler 
cases have been gridded and 
computations made in a steady 3-D 
environment. 

1. Introduction 
Accurate prediction of the 
trajectory of a store released from 
an aircraft is critical in assessing 
whether the store can be released 
safely. The trajectory of stores 
released in aircraft flowfields has 
always been difficult to predict. A 
typical wind-tunnel/ flight test 
program intended to ensure that the 
store will release properly is 
lengthy and costly. It may involve 
20 flight tests, one or two wind 
tunnel entries, and extend over a 
period of several years. In the 
event of an improper trajectory, 
pylon and/or attachment point 
modifications may have to be made 

resulting in more flight and wind- 
tunnel testing (Ref 1). 

However, with the advancement of 
computational fluid dynamics (CFD) 
techniques, a much faster prediction 
of carriage and trajectory data is 
believed to be possible. In 
particular, a sufficiently reliable 
computed flowfield data could reduce 
the test matrix and supplement the 
measured data such that the 
additional testing could be reduced 
or eliminated. Further, it is 
anticipated that computed flowfields 
could serve as a diagnostic aid in 
deciding among possible solutions to 
design problems. Both multiblock 
structured overlapping (Chimera - 
see for example [2,3]), and 
unstructured grid methods (for 
example [4] and [5]) have been used 
to solve multi-component and moving- 
body systems. 

Both Chimera and unstructured 
methods have their advantages and 
disadvantages and after careful 
consideration IAR decided to take 
the unstructured grid route for its 
main thrust at tackling the problem, 
one of the main reasons being 
availability of codes. Also with 
multiblock techniques the grid cells 
tend to stay small and very 
stretched in some areas remote from 
the aircraft making the method less 
efficient. Several commercial codes 
were at first considered as possible 
contenders for predicting store 
release. Most of them were rejected 
after an initial survey and only the 
two codes RAMPANT [6] and FASTRAN 
[7] finally were on the 'short 
list'. Several test cases were run 
on the short listed codes. 

After in-house evaluation of these 
codes it was found that neither was 
fully satisfactory and attention was 
turned to acquiring only a suitable 
grid generation program. Thus IAR 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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evaluated the packages I-DEAS [8], 
FLITE3D [9](also contains a solver) 
and ICEM [10] and eventually came to 
the conclusion that ICEM was the 
best package. IAR then decided to 
develop its own 3-D Euler solver 
from the existing 2-D solver which 
turned out to be not too time 
consuming. Validation of this 3-D 
code, called FJ3SOLV, is covered in 
the paper below and it will be seen 
that promising results are obtained. 
Eventually the aim is to develop 
this 3-D solver into a fully time 
dependent code with moving store and 
grid but in the meantime a study in 
2-D has been underway and is 
reported in the last section below. 
This 2-D study will be beneficial in 
the 3-D development as various 
efficiencies will be transferred to 
the 3-D code. 

In the first section some background 
material on the unstructured grid 
developments at IAR is reviewed. 
Then the 3-D grid generation and 
solver code acquisitions/ 
developments and their validations 
are described. Finally the unsteady 
2-D code development is covered. 

2. 2-D Steady State Code 
Developments 
A fully unstructured Delaunay grid 
generation code was developed 
several years ago and is reported in 
Refs 11 and 12. It uses the standard 
Delaunay triangulation technique 
[13] with new points added 
continually at the centroids of 
existing triangles until a criterion 
of required grid density is 
fulfilled. 
The Euler equations are solved using 
a cell centred finite volume 
technique with explicit artificial 
viscosity as in Ref 14 . Standard 
acceleration techniques such as 
local time stepping, enthalpy 
damping and implicit residual 
smoothing are used. Solutions of the 
Euler equations using these grids 
were obtained for several airfoils 
and showed good accuracy compared to 
standard AGARD test cases [15]. On 
advancing to Navier-Stokes solutions 
and trying to get cells very close 
to the surface within the boundary 
layer it was found that the grids 
became of poor quality even for wall 
function type of grids, for example 
Fig la. Thus it was decided that a 
more satisfactory grid could be 

obtained by using structured layers 
of grid near the surface followed by 
an unstructured grid outside these 
layers. The structured grid layers 
were generated using advancing 
normals with some averaging to avoid 
clashing of the normals, in some 
cases, as they advanced from the 
surface. An example of such grids is 
shown in Fig lb for the RAE 2822 
airfoil. Having generated these 
grids for Navier-Stokes 
computations, the same grids were 
then used for Euler results. These 
solutions also appeared to be very 
accurate as shown in Fig 2a for the 
RAE 2822 airfoil for a medium grid 
of 60 points on each of the upper 
and lower surfaces. Similarly a 
Navier-Stokes solution is shown in 
Fig 2b and further results were 
presented at the ETMA workshop in 
Ref 16. 

Thus this hybrid approach was one 
which was desirable to use for 
stores release since accurate 
solutions had been obtained in the 
2-D steady version of the code as 
mentioned above. It will be shown 
later that the 2-D unsteady version 
demonstrates good results. Although 
it is hoped to eventually use a 3-D 
hybrid grid generator, none has yet 
been acquired. 

3. Review of 3-D Commercial 
Unstructured Codes. 
Initially it was planned to acquire 
a commercial code for both the grid 
generation and the 3-D solver. 
Several possible codes were rejected 
after a preliminary evaluation made 
by calling users of these codes. 
Codes that only had a grid 
generation capability were rejected 
as we wanted the whole package 
including the solver and post 
processing. Finally the codes 
RAMPANT and FASTRAN were selected 
for in-house evaluation and a report 
on these codes has been made in Ref 
17. In summary, it was found that 
FASTRAN could not deliver good 
Navier-Stokes solutions for RAE 2822 
and that RAMPANT, although 
reasonable results were obtained in 
some cases, was not robust and was 
very slow even in the Euler mode of 
operation. Later the FLITE3D codes 
[9] were evaluated but these were 
found to be lacking in terms of pre- 
and post-processing and user 
support. 
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Having reached the point of not 
finding a complete package for grid 
generation and solver, we then had 
to decide whether to develop our own 
codes. The idea of developing a 3-D 
grid generator was not relished 
whereas the code to carry out an 
unstructured grid Euler solver (and 
later Navier-Stokes) appeared to be 
quite feasible. Thus IAR, with a 
view to first acquiring a grid 
generation package, contacted 
vendors and evaluated several 
unstructured grid generators 
including I-DEAS [8] (mainly used 
for structural analysis) and GFEM 
[18]. These codes were eventually 
rejected as they were either very 
cumbersome to use or were very slow 
in generating fairly simple grids. 

Finally, the code ICEM [10] was 
evaluated and was found to be quite 
promising. A copy of this software 
was also obtained for evaluation. It 
has a good user interface, 
preprocessing and postprocessing. 
Its CAD software can build 
complicated wire frame surface 
models efficiently, and can take 
point data in PLOT3D format, and 
IGES files from other CAD systems. 
This grid generation package 
supports the point, line and volume 
sources for density control and can 
generate 3D unstructured meshes 
efficiently. The Octree method is 
used, which refines the grid by 
subdividing the tetrahedron into 
eight smaller tetrahedra until a 
satisfactory grid density has been 
reached. Some examples of these 
grids are shown later. 

The idea of generating structured 
layers of tetrahedra near the 
surface will be pursued with the 
vendor ICEM, or IAR may develop its 
own capability using advancing 
normals as was done for 2-D. In the 
meantime it will be used solely in 
its unstructured form which may be 
acceptable for Euler solutions. 

4. Development of a 3-D Euler 
Solver and Validation 
Rather than trying to acquire a 
commercial 3-D solver, IAR decided 
it was more suitable to develop a 3- 
D Euler solver from our existing 2-D 
solver especially since the code 
would eventually have to be made 
into an unsteady version. To make 
the existing 2-D code, FJSOLV, into 

a 3-D version FJ3SOLV was relatively 
easy as in the 2-D code the logic is 
set up so that it is driven by edges 
of a triangle with the flux across 
the edge being computed once and 
added/subtracted to the total flux 
balance for the triangles on each 
side of the edge. The same principle 
was used for 3-D but now the edge is 
a 'face' of a tetrahedron. In the 
far field there is no vortex 
correction as in 2-D and the Riemann 
invariants alone are used. 

To validate the new Euler code 
FJ3SOLV, we first considered the RAE 
2822 airfoil spread out as a 
straight wing between two solid 
walls. A boundary condition of no 
normal flow was imposed at the walls 
so that the flow should be two- 
dimensional with no variation across 
the span. The ICEM grid generation 
package was used to generate a grid 
and two views are shown on Fig 3a. 
This grid was then used to generate 
a solution shown in Fig 3b. Note 
that the grid was not refined about 
the shock wave at about 70% chord on 
the upper surface and so produced a 
result that was quite smeared out 
around the shock wave. On refinement 
of the grid around the shock, shown 
on Fig 4a, a much improved shock was 
obtained and good two dimensionality 
was shown with little spanwise 
variation in the pressure. The 
accuracy for the airfoil pressure 
distribution is demonstrated in Fig 
4b where the solution at one 
spanwise station (FJICEM), obtained 
by interpolation from nearby values, 
is compared to a completely 2-D 
solution. The latter solution was 
obtained with the 2-D solver FJSOLV 
with 30 points on each of the upper 
and lower surfaces (called FJDJ30 on 
the figure); it was also run without 
a vortex correction and with roughly 
the same far field distance as in 
the 3-D case.  The solution using 
FJ3SOLV took 8 hours on the SGI 
Power Challenge computer and used 
about 299,000 grid cells. 

Having achieved success with the '3- 
D' airfoil a more challenging case 
of some practical interest was next 
considered. The M-100 wing-body 
configuration (ref 19) had been used 
when checking the RAMPANT code. It 
is a good case as the experimental 
data is quite reliable and it has 
been used as a test case by Grumman 



30-4 

for a Navier-Stokes code evaluation 
[20]. It was also considered to be a 
more realistic case for the ICEM 
grid generator as it has to cope 
with the intersecting surfaces of 
the wing and body. Grids obtained 
using ICEM are shown in Fig 5a. 
Results at various spanwise 
locations are shown on Fig 5b. Here 
several grids/codes are compared: 
FJ3SOLV using the ICEM grid 
(designated Fjicem on the figure), 
FJ3SOLV using the grid generated by 
RAMPANT software (Fjrampant) and 
lastly, the RAMPANT grid with the 
RAMPANT solution (Rampant).  It can 
be seen that there is good agreement 
to the experimental data with the 
differences being typical of a non- 
viscous 'Euler' result compared to 
experiment. Also note that the 
present results as compared to 
RAMPANT results give a slight 
improvement while the computer time 
is down from 30 hours to 6 hours. 
The RAMPANT grid had 240,000 
tetrahedra while the ICEM grid had 
250,000 tetrahedra. 

5. Unsteady 2-D Code 
Development and Validation 
The existing steady state 2-D 
unstructured grid code FJSOLV was 
developed into an unsteady version 
so that moving stores could be 
simulated in 2-D and some of the 
problems investigated in 2-D before 
proceeding, at some later date, to a 
moving body 3-D code. Thus we can 
investigate such items as using a 
'window' around the store to keep 
the grid fixed there relative to the 
'store', moving the grid only within 
a second 'window' so that not all 
the grid is moved, grid refinements 
and grid interpolation. 

For moving grids, the geometric 
conservation law (GCL) must be 
satisfied in order to be consistent. 
This law, which establishes the 
relations for the conservation of 
surfaces and volumes of the control 
cells, plays a key role in this flow 
simulation. If this law is violated, 
a misrepresentation of the 
convective velocities is encountered 
[21]. For domains bounded by moving 
boundaries, the mesh must follow the 
computational domain geometries. 
Usually points initially on the 
boundaries stay attached to those 
boundaries at the same relative 
locations, as is done here. For 

inside point movement two approaches 
are used, the first uses spring 
analogies [22] while the second 
computes velocities at the nodes by 
some kind of diffusive process and 
then evaluates the  displacements as 
the product of velocities and time 
step. It has been demonstrated that 
the first approach is not failure 
proof [23]. The second approach 
seems more promising and is used 
here. The velocity of an inside 
point is computed as the average of 
the velocities of the surrounding 
points with the velocities of the 
boundaries points as limit 
conditions. At the first time step, 
the inside velocities are 
initialized to zero. They are then 
successively updated by a series of 
Jacobi iterations. This process 
gives a velocity distribution 
similar to that obtained by a 
diffusive operator. For motions of 
big amplitude, since the velocities 
of the inside points are smaller 
than the ones on the boundaries, the 
faster moving nodes will overlap the 
slower ones, which will require 
local remeshing. 

The new code was first tested on a 
standard case [24] for the 
oscillating NACA0012 airfoil with 
M=0.755, aQ=2.51, a=0.16o and 
reduced frequency 0.0814. The grid 
generated for this case contained 
four layers of structured grid as 
described earlier. Some very small 
cells just aft of the structured 
zone were removed using interactive 
software [25] to improve grid 
quality. Results for this standard 
test case are shown in Figs 6a and 
6b where CN, Cm and several Cp plots 
are presented. The results are 
consistent compared to other 
theories which use Euler methods 
(for example Ref 26) and are in fair 
agreement with the experimental 
data. It was quickly realized that 
the fourth order time marching 
scheme, as used in [26], was 
superior to the first order scheme 
that several authors are still 
using, both in terms of speed and 
also smoothness of solution. The CPU 
time for this case was about 36 
hours on the SGI Power Challenge 
computer; this is quite slow mainly 
due to some of the cells being very 
small. This computation was done 
with a window, similar to that used 
in [27], around the store located at 
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a distance of 0.03 (chord=l) from 
the airfoil. Within this window the 
grid was fixed relative to the 
airfoil and movement of the grid was 
only allowed outside of the window. 

Next the code was tested on a 
NACA0012 falling in free air with 
M=0.8, a=0 and a downward velocity 
of 0.08 (relative to unit 
freestream). The trend in CN with 
increasing time was compared to the 
actual steady state result for the 
equivalent angle of attack. This 
grid was completely unstructured and 
the window was now fixed at about 
1.4 units from the body. Fig 7a 
shows the initial grid and also the 
grid after a plunge of about 1.6 
units (for a chord length of 1). 
This CN development is shown in Fig 
7b where it can be seen that the 
result looks quite accurate as the 
normal force CN is tending 
asymptotically to the true steady 
state value. 

The next computation was for a more 
realistic (store) type of body such 
as an ogive-cylinder-ogive as shown 
in Fig 8a with an airfoil/pylon as 
the parent body. For a freestream 
Mach number of 0.4, a reduced 
frequency of 0.8 and a maximum 
velocity of 0.064, this 'store' was 
moved down and up, in a cyclic 
manner, a distance of 0.16 units 
(based on an airfoil/pylon chord 
length of 1) to check physical 
consistency of the results. Figs 8b 
and 8c show the CN and Cm 
developments with time for three 
cycles. The results look quite 
physical as the lift first increases 
as it moves downward (seeing an 
upwash from the fluid), then as the 
gap increases the lift decreases as 
the 'channel' effect above the body 
is becoming less noticeable. When 
the body returns upward, the lift at 
first decreases as the body sees a 
downwash from the fluid but finally 
increases as the channel effect is 
stronger. The first window in this 
case was set at a distance of 0.03 
from the body which basically 
covered only the structured layers 
of the grid. A second window for 
fixing the grid was also set around 
the wing/pylon. This enables good 
grids to be maintained near the 
bodies where it is felt to be 
necessary to achieve an accurate 
solution. Shown in Fig 8a is the 

initial grid before the store starts 
to move, the grid at the bottom of 
the store's cycle and the grid after 
one complete cycle. A third window 
was also used in this case so that 
the grid was only allowed to move 
within a distance of 4 units from 
the centre of the airfoil/pylon. The 
grid was fixed outside this window 
allowing for greater efficiency in 
grid movement. The CPU time for this 
case on the Power Challenge was 
about 5 hours. 

This is the current status of the 
unsteady development of the program. 
Several more tests will be performed 
to check accuracy and then different 
schemes for moving the grid and for 
integrating in time will be studied. 
Implicit time marching schemes will 
be investigated so that larger time 
steps can be taken. These 
enhancements will be very useful in 
the future development of the 3-D 
version of the code. 

6. Conclusions 
All the pieces are now in place to 
complete the development of an 
unsteady calculation applied to the 
prediction of the store trajectory 
after release from the aircraft. A 
suitable 3-D grid generator has been 
identified in ICEM and a 3-D Euler 
solver has been developed in-house. 
To optimize the development of the 
3-D unsteady version of the final 
code a 2-D version has first been 
developed and presented here. 
Lessons learned from this 
development will be incorporated 
into the 3-D version at a later 
date. The six degrees of freedom 
(6DOF) equations defining the 
motion, given the aerodynamic forces 
as computed from the Euler code, 
will be incorporated into the 
package to provide a complete 
trajectory. Another future 
development will be to move from the 
Euler formulation to a Navier-Stokes 
one, where structured grid layers 
near the surface will be especially 
beneficial. 
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Fig la. Unstructured Delaunay Grid obtained for RAE 2822- 
Showing poor quality of grid. 

Fig lb. Hybrid (Structured/Unstructured) Grid for RAE 2822 
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Solution of the Euler- and Navier-Stokes Equations 
on Hybrid Grids 

Martin Galle 
DLR Institute of Design Aerodynamics 

Lilienthalplatz 7 
38108 Braunschweig 

Germany 

1. SUMMARY 
A three dimensional finite volume scheme is presented. The 
scheme is based on the employment of hybrid grids, containing 
tetrahedral as well as prismatic cells. 

The application of hybrid grids offers the possibility to combine 
the flexibility of tetrahedral meshes with the accuracy of regular 
grids. An algorithm to compute an auxiliary grid of control vol- 
umes for the entire computational domain was formulated. The 
dual mesh technique guarantees conservation in the entire flow 
field even at interfaces between prismatic and tetrahedral do- 
mains and enables the employment of an accurate upwind flow 
solver. Convergence to the steady state can be accelerated by a 
multigrid algorithm based on the agglomeration of control vol- 
umes. The formulation of such an algorithm is presented. 

The code is tested on several viscous and inviscid cases for tran- 
sonic and subsonic flows. 

action. Though much effort has been spent in the last years to 
develop powerful tools, the generation of appropriate structured 
grids for complex geometries appears to be much more time con- 
suming than the flow simulation. 

A possibility to circumvent this bottleneck is the unstructured 
approach [3,4]. The flow simulation is performed on a grid con- 
sisting of tetrahedral cells instead of hexahedra. As tetrahedral 
cells offer a high flexibility the discretization of complex three 
dimensional domains can be done almost automatically [5], with 
less user interaction as required for generating structured grids. 
The weak point of the unstructured approach is the generation 
of grids for high Reynolds number flows. The efficient simula- 
tion of such flows requires extremely stretched cells. The edges 
of tetrahedral cells of high aspect ratio are connected under very 
acute angles. This may cause numerical errors when the fluxes 
for corner nodes of such cells are evaluated. Hence, convergence 
and even solution accuracy can be deteriorated. 

2. INTRODUCTION 
The calculation of stationary flow fields around aircrafts can be 
regarded as one of the major tasks of CFD. Due to the progress 
made in the development of high performance computers, the 
simulation of flows even around quite complex configurations 
has become feasible. Therefore CFD methods nowadays have 
got a considerable impact on the aerodynamic design of air- 
planes. 

One of the first requirements to be met by the applied numeri- 
cal method is related to the problem turn around time. To make 
a scheme usable in the design process, it has to fit into indus- 
trial time scaling. Including the generation of appropriate com- 
putational grids, the solution for a certain problem should be ob- 
tained within a few days or less. 

The accurate resolution of the flow field in the vicinity of solid 
walls has a considerable impact on the correct prediction of aero- 
dynamic forces on the configuration. Strong solution gradients 
normal to the surface occur. A simulation of such flow phenom- 
ena requires a high point density in gradient direction. As for ef- 
ficiency reasons usually a lower point density in the directions 
tangential to the wall is utilized, high aspect ratio cells are most 
suited for the flow resolution in those regions. 

One class of schemes widely employed in practical use is based 
on structured grids, consisting of blocks of hexahedral cells [1]. 
As it is feasible to stretch hexahedral cells in one or two direc- 
tions without losing grid quality, structured grids are appropriate 
for the simulation of high Reynolds number flows. The major 
drawback of structured schemes is related to the generation of 
suited grid for complex geometries. Grid generation normally is 
an iterative process [2] that requires a high level of user inter- 

A compromise between structured and unstructured schemes is 
the application of hybrid schemes [6]. Hybrid grids consist of 
regular cells with edges exclusively normal and tangential to 
the surface of the geometry. In some distance from the surface, 
where the viscous impact on the flow has almost vanished, tetra- 
hedral cells are employed to discretize the physical space be- 
tween the regular domains and the outer boundaries. Consider- 
ing the shape of the cells in the regular part there are several 
possibilities. The surface discretization with quadrilateral ele- 
ments leads to hexahedral cells, while a surface triangulation re- 
sults in prismatic cells. Due to the higher flexibility of triangles 
compared to quadrilaterals, a higher level of automization can 
be achieved when using prismatic cells. 

The aim of this work is to develop of a numerical scheme that 
offers the possibility to employ pure tetrahedral and prismatic 
grids as well as hybrid grids consisting of prismatic cells in the 
vicinity of solid walls and of tetrahedral cells in the rest of the 
flow domain. 

3. GOVERNING EQUATIONS 
The Navier Stokes equations for the three dimensional case can 
be written in conservative form as 

*!!!*«=-W 
where 

WdV=-       F-ndS 

v dv 

(   P   ^ pw 

W=       pv 
pw 

\PE ) 

(1) 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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is the vector of the conserved quantities. V denotes an arbitrary 
control volume with the boundary dV and the outer normal n. 

The flux tensor F is composed of the flux vectors in the three 
coordinate directions: 

F = P-ex + G-ey + H-ez 

with ex, ev and ez being unit vectors in the coordinate directions. 
The flux vectors F, G and H may be divided into its convective 
and viscous parts as 

Gc + G\ H = HC + HV 

with 

Hc 

F = FC + F\ G-- 

( P" 
P«Z + P 
puv 
puw 

\ pHu 

fPV \ puv 
pv2 + p 
pvw 

V PHV 

( ?w 

puw 
pvw 
pw2 + p 

\ pHw       ) 

f°. 
Fv=- 

V VX + K% ) 

Gc = 
Xr 

Gv = - 

\ 

Ov 

V     Vy + K%     ) 

f0. 
Hv-- XV7 

V Vt + K% ) 

where 

Vx = uöxx + vxyx + wxu 

Vy  —  UlXy + VOyy + WXZy 

Vz = uxxz + vxyz + wazz 

The normal and tangential stresses depend on the derivatives of 
the velocity and on the dynamic viscosity \i: 

du     2    {du     dv     dw 
ax   =   211- — --^— + ^- + ^- 

dx     3    \dx     dy      dz 

Gv   =   2|J.- 
dy 

az   =   2n-^-^ 

2 (du dv dw 
l,^\dlcJrdy + 'dz~ 

du dv dw 
dx      9y      dz 

(2) 

(du     dv 
T"   =   »{Ty + dx 

(du     dw x- = ^U+¥ 
(dv     dw 

*   =   »{Tz+dy- 
The viscosity |i can be calculated employing the Sutherland's 

law: \+S "1.5     1+°c >i = m.-r (3) 
T + Sc 

where Sc is a constant depending on the free stream temperature 
7L: 

110,4K 

The pressure is calculated by the equation of state 

p = (K-\)p(E- 
u   + V1 + WL 

(4) 

From equation (1) the temporal change of the conservative vari- 
ables W can be derived as: 

dt 
W: 

ffF-ndS 
dv  

"  IlJdV 
(5) 

The change of the flow conditions in a certain control volume V 
is given by the flux over the control volume boundary dV related 
to the size of V. For a control volume fixed in time and space, 
equation (5) can be written as: 

dt V  ^ 
(6) 

with Q representing the fluxes over the boundaries of the control 
volume. If the boundary is divided into n faces, Q is given by 

e=iß, 
i=i 

li&i + Qi 
i=i 

where ß- and Q] denote the inviscid and the viscous flux over 
the respective face. 

4. DATA STRUCTURE 
The dual mesh technique is perfectly suited to be utilized in 
a scheme that is based on hybrid grids. From the initial grid 
an auxiliary grid of control volumes is generated. For a vertex 
based scheme, where the flow variables are stored in the nodes of 
the initial grid, each node is surrounded by a control volume. The 
boundaries of the control volumes are determined by the mid- 
points of cells, cell faces and edges of the initial grid. This strat- 
egy results in non overlapping auxiliary cells that fill the phys- 
ical space without gaps. Figure 1 depicts such an auxiliary grid 
(dashed lines) for an initial hybrid grid (solid line). As it can be 
seen from the figure, the auxiliary grid is defined even at inter- 
faces between the different cell types. Hence, focusing on the 
fluxes crossing the boundaries of the control volumes, conser- 
vativity can be guaranteed in the entire flow domain. 

Fig. 1: Mesh of control volumes for a two di- 
mensional hybrid grid 

For each initial cell contributions to the auxiliary grid have to 
be determined. As this can be done cell by cell without infor- 
mations about neighboring cells, the auxiliary grid can be eval- 
uated within one loop running over all cells. Therefore, the eval- 
uation of the auxiliary grid is quite cheap in terms of computa- 
tional time. 
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The control volumes are composed of several faces. Each edge 
connecting two initial nodes is related to one face of the auxil- 
iary grid. While in two dimensions the edges are shared by two 
cells, in three dimensions the number of cells sharing one edge 
is not constant. In figure 2 an edge connecting the nodes P0 and 
P\ is shown. It is surrounded by four tetrahedral cells. For each 
cell two triangles form one part of the face, so it is composed of 
eight triangles. As the size and the orientation of triangles can 
be described by normal vectors the sum of the normal vectors 
describes the size and the orientation of the entire face. The re- 
sulting vector is also related to the respective edge. 

with 

Fig. 2: Face of a three dimensional control vol- 
ume 

The fluxes along an edge between two nodes can be interpreted 
as fluxes crossing the auxiliary grid face related to the edge. The 
fluxes between the grid points are computed within one sweep 
over all edges. Informations that are required to compute the 
fluxes and to adjoin them to the respective nodes are: 

• Geometrical coordinates of the grid nodes 

• Edge to node pointer 

• Components of the face vectors 

Hence, both the description of the grid and the computation of 
the grid fluxes are based on the edges. Informations the initial 
grid cells are not required any more. This strategy leads to a very 
efficient memory allocation of less than 100 real variables per 
node and a good vectorization of the flow solver. 

The preprocessing, including the determination of the control 
volumes of the auxiliary grid as well as the components of the 
face vectors, has to be executed before the flow calculation 
starts. 

5. SPATIAL DISCRETIZATION 
5.2 Calculation of convective Terms 
The edge based data structure described in section 4 forms 
the basis for the employment of the accurate AUSM upwind 
scheme, as presented by Liou and Steffen in [7]. Considering an 
edge connecting two nodes Pn and Pi, as illustrated in figure 3, 
the inviscid flux Qc

m over Face F can be interpreted as a sum of 
a Mach number weighted average of the left (L) and the right 
(P) state at a face F and a scalar dissipative term: 

ßoi = M 2MFU?R- ®FU7R)+P (7) 

Ü&-- 

pa pa 
pau pau 
pav + pav 
paw paw 
paH L paH  _ 

JLR ■ 

pa pa 
pa« pau 
pav - pav 
paw paw 
paH L paH 

and 
0 

Sx-PF 

sy ■ PF 

Sz-PF 
0 

Fig.   3:  Control  volumes  around   neighboring 
nodes PQ and P] 

The speed of sound a can be obtained from the relation 

P 

Mf denotes the advection Mach number at the cell face: 

MF = M>l+M"fl 

where the split Mach numbers Mplm are defined as 

(8) 

(9) 

W 

Mm    = 

M 

\{M+\f 
0 

0 

if M > 

if \M\ < 
if    M     <    - 

if     M     > 
-i(M-l)2    if    \M\    < 
M if    M     < 

Herein M denotes the Mach number of the flow normal to the 
cell face. 

The pressure pp at the cell face is calculated in a similar way as 

PF = P'L+P% no) 

where p!'/m denote the split pressure 

p if     M     > 
\p{M+\)2{2-M)      if    \M\    < 
0 if    M     < 

0 
\p{M-\y{2 + M)   if 

if     M     > 
< 

if     M     < 
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The coefficient <t>/r controls the dissipation of the scheme. In the 
original scheme of Liou, <t>p is set to 

<pF = \Mf\ (11) 

For small Mach numbers the dissipative character vanishes since 
also <S>F becomes small. In order to prevent the disappearance 
of the dissipation for small Mach numbers <S>F is determined as 
proposed by Kroll and Radespiel in [8]. 

The values left and right of the face F are taken directly from 
P0 and P\ for first order calculations. For second order accurate 
calculations the independent flow variables are linearly recon- 
structed on the control volumes around PQ and P\. For the con- 
trol volume of node PQ it reads: 

uL = u0 + Vü0- — Vb,i (12) 

The gradient Vw0 of a variable u is obtained by employing a 

Green-Gaußformula: 

V«o = pr- • X Ö ' ("0 + "/) • s0,i fi0  £\ 2 
(13) 

5.3 Calculation of Viscous Terms 
The determination of the viscous terms is also performed edge- 
wise. The obtained fluxes are related to the nodes associated 
with the respective edge. For an edge connecting the nodes PQ 

and P\ with the face vector ,§0,1 (figure 3) one obtains: 

(i 
Ö01 

0 

txy 
Oy 

Tv7 

0 

TV7 ■^0,1 

with Vx, Vy and Vz as described in section 5.1. 

The derivatives of a flow variable u have already been ob- 
tained for the second order discretization as described in sec- 
tion 5.2. They are the components of the gradient vectors Vw = 
(uX)Uy,uz)

T. The face values are determined by an arithmetic 
averaging of the respective values in the nodes PQ and P\. 

6. TEMPORAL DISCRETIZATION 
The temporal variation of the flow quantities can be written in 

general form for a node PQ as: 

where fio is the volume of the dual cell around N0 and SQJ is the 
normal vector of the dual mesh face F as shown in figure 4. 

Fig. 4: Face of a three dimensional control vol- 
ume 

Near shocks the values on the edges have to be limited to avoid 
overshoots. The limiting is done by an minimum/maximum clip- 
ping like it is proposed by Barth in [9]. If a reconstructed value 
at any face of the control volume exceeds the minimum (or max- 
imum) of the values given by node PQ and the surrounding nodes 
P\ 6 (figure 4), the gradient ViJ0 is scaled by a factor 0O, so the 
reconstructed value becomes equal to the minimum (or maxi- 

mum) of the nodes PQ .6: 

V«o, lim ■ :VMO-©0 (14) 

with 

where 

0o = min(l,0i...e„) 

0, 

»   — »n     jf 

,.mrtr_ 

UjL < UQ 

if     uii > u0 

if     uiL = u0 

(15) 

Herein umax and umm denote the maximum/minimum of the val- 
ues of« at the nodes P0 6 and un denote the reconstructed value 
at the faces of the control volume between />o and Pi- The values 
at the faces are reconstructed as described in equation (12). 

dt 
W0+/?o = 0 

A comparison with equation (6) gives for the residual R0: 

Ro=7T-Qo 

(16) 

(17) 

The integration in time is performed utilizing an explicit Runge- 
Kutta scheme, as described by Jameson in [10]: 

W(°) =    W(n) 

W(n+\)    =    Wl") 

(18) 

Within the framework of this paper a three step scheme is em- 
ployed with the coefficients 

0^=0.15,   0:2 = 0-4 and 03 = 1.0   . 

For the control volume surrounding node P0 in figure 4 the con- 
vective time step Arg and the viscous time step A?Q have to be 
determined. The resulting time step can be written as: 

At0 = CFL 
Atf + Atf 

(19) 
"0 0 

with CFL being the Courant number. The convective time step 
Afg can be calculated as: 

Atf 

where XQ denotes the maximum eigenvalue of the flux Jacobian. 
It can be determined as a integration over the surface of the con- 
trol volume: 

^0= Zl?OixSo,/l+aorßo,/l (20) 

with SQJ representing the face vectors of the control volume face 
for the /th neighbor of P0 and v0l- the face velocity vector. 
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Following [ 11 ] the viscous time step A;Q has to be scaled with a 
factor Kv = 0.25: 

„   V0 

Employing an integration around the control volume, the vis- 
cous eigenvalue XJj can be written as: 

«-(^'H-iiS-fc c    |2 (21) 

7. MULTIGRID ALGORITHM 
7.1 Multigrid Strategies for Unstructured Grids 
The acceleration of the convergence is necessary for the sim- 
ulation of high Reynolds number flows. A very powerful tool 
that can be utilized with an explicit time-stepping scheme is the 
multigrid method. 

Focusing on unstructured grids, there are several approaches 
for the formulation of a multigrid algorithm. The differences 
between these approaches lay in the strategy of generating the 
coarser grids. 

One frequently utilized method employs independent grids. A 
set of successively coarser grids are generated around the re- 
spective geometry independently from each other [12, 13]. As 
the grids are not nested, expensive search algorithms are re- 
quired to determine the operators needed to transfer the flow 
variables and the residuals between the different grids. Another 
drawback is the limitation of the cell size. It should not exceed 
the size of details of the geometry, since otherwise the correct 
representation of the surface can not be guaranteed. 

The same holds for a different strategy, the use of telescoping 
points. In this case certain points are selected to remain in the 
coarser grids. These points are then reconnected using some tri- 
angulation algorithms [14]. The preprocessing described above 
has to be performed for each level again. Since one has to select 
existing points of the fine grid to become coarse grid points the 
quality of the coarse grids is worse than the quality of indepen- 
dently generated coarse grids. For hybrid grids this approach is 
not suited as different algorithms would have to be used to select 
and reconnectthe points in the prismatic and tetrahedral regions. 

The agglomeration of control volumes, as described e.g. by 
Lallemand et al. in [15] or Venkatakrishnan and Mavriplis in 
[16], can be regarded as a special case of the second approach. 
Certain points of the fine grid remain in the coarse grid as well, 
but the control volumes of the fine grid nodes are fused together 
in order to form the coarse grid control volumes. Since the focus 
is on the control volumes, the surface representation is guaran- 
teed by definition. For a hybrid scheme using the dual mesh tech- 
nique this approach is perfectly suited. As in the solution process 
the shape of the initial grid cells is not important in the agglomer- 
ation procedure either. One problem that may occur is the quality 
of the coarser grids, as one has to deal with points that exist also 
in the finest grid. 

7.2 Agglomeration Process 
The agglomeration process starts with the choice of a start node, 
that will remain in the coarser grid. The control volume of the 
start node is fused with control volumes of neighboring nodes. 
After having agglomerated the control volumes, the process 
starts again with the choice of a new start node. So agglomera- 
tion of control volumes is a greedy process, that is not expensive 
in terms of calculation time. 

The selection of the start node and some strategy, which of the 
neighboring control volumes are to be fused with the control vol- 
ume of the start node, is the only possibility to control the qual- 
ity of the coarse grid. It appears that the best grid quality can 
be obtained when the agglomeration is marching along coars- 
ening fronts throughout the grid. Furthermore, nodes lying on 
solid walls should be preferred to remain in the coarse grid. So 
the highest priority to become the next start node will be given 
wall nodes lying on the coarsening front. 

A simple and perfectly working strategy is to fuse all control vol- 
umes of neighboring nodes that are not agglomerated yet with 
the control volume of the start node. Anyway, one can think 
about some more sophisticated algorithms, as to fuse only the 
n nearest neighbors, with n « 8, or, as Venkatakrishnan and 
Mavriplis propose in [17], to maximize the ratio of volume and 
surface of the coarse grid control volumes, what results in a kind 
of semi coarsening for Navier-Stokes grids. 

Fig. 5: Coarse grid obtained by ag 

of control volumes 

Jomeration 

As depicted in figure 5 the coarse grid consists, as the fine grid, 
of a set of nodes surrounded by control volumes and connected 
by edges. Each edge is related to one face of the auxiliary grid 
of control volumes. The only difference to the fine initial grid is 
that the edges do not have to form any specially shaped cells any 
more. The informations needed to describe the coarser grid are 
determined directly from the fine auxiliary grid. 

Fig. 6: Agglomeration of control volumes 

Figure 6 illustrates the agglomeration of several fine control vol- 
umes to a coarse control volume around node PQ. The size of the 
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new control volume is 

/=o 

ith Vj jt_ i being the size of control volume i in the grid k-\. 

children have to be summed up. The contributions are weighted 
with respect to the size of the children cells: 

\k = F- ■ I Vi (fy-i) ■ ^*-i -*<U«)    •    (25) fr(°h 
'ges 

In this equation VÄe.v denotes the sum of the volumes of the chil- 
dren of P0k. According to equation (22) Vs„ equals the coarse 
grid control volume Vok around P0k, so equation (25) also be 
written as: 

roi: 
v
o,k 

>(«) u/(°h I V-.«',) ■ V/,t_, - Rojc W) ■ V0M, 
i=i 

As stated in equation (17) the product of residual R for any node 
P and the volume V of the control volume equals the fluxes Q 
crossing the boundary of the control volume. Therefore one can 
write: 

Fig. 7: Determination of coarse grid face vectors 

As presented in figure 7, the normal vector ^01it of the auxiliary 
grid face related to the edge between node Pok and node P9k in 
the coarse grid is the sum of all face vectors related to edges be- 
tween children of P0 and P9, in this case: 

S(0,9),k = S(2,U),k-) + 5(2,12),*-1+5(4,11),*-1 

The obtained coarse grid has got the same properties as the fine 
grid. Hence, the governing equations can be discretized on the 
coarse grid employing identical algorithms as on the fine grid. 
Furthermore, the coarse grid control volumes can be agglomer- 
ated again using the same strategies as for the agglomeration of 
the fine grid control volumes. In this way a set of grids can be 
created easily based on the fine grid. 

p0,k - 
Vb,* 

IÖ«,t-lTO)-ßo,t(W; (0)> 

i=l 

As the fluxes between two fine grid control volumes that are 
fused together cancel each other, the sum term in this equation 
denotes the flux over the coarse grid control volume achieved by 
a fine grid discretization. The forcing function can be interpreted 
as the difference between the fluxes obtained by a fine grid dis- 
cretization and the fluxes achieved by a coarse grid discretiza- 
tion for a coarse grid control volume. 

The temporal discretization is performed as described injection 
6, while the residuals Rk are replaced by the expression #<• + Pk. 
Equation (18) then reads: 

W (1) wP - a, AffoOff >) + />*) 

7.3 Transfer of Flow Variables 
The multigrid iteration starts with the performance of one time- 
step on the finest grid. The time step on a fine grid k - 1 gives 
the solution V^"', .This solution is transferred to the next coarser 
grid k with a suited transfer operator /£_, k: 

tf/M W, wr-acMRk(w
{

k
a ])) + rk) Ty(°) . 

yk + Pk 

W^ as the basis for the next coarser grid k + 1: 

W, (°)   -ft(°) k+\ 

flf=#_ l,£   ,t-l 

As the physical position of coarse grid nodes is identical to the 
position of the nodes in the grid k - 1, the transfer of flow vari- 
ables from the fine grid to the coarser grid is just an injection of 
the respective values: 

W :W \,k-\ (23) 

7.4 Evaluation of Restriction Operator 
Following [10] the Forcing-Function Pk can be formulated as: 

4-iA-lÄl -Rk(wk
{0]) (24) 

7.5 Determination of Prolongation Operator 
After having determined the solution Wf'm for all grids, correc- 
tions coming from the coarse grids k + 1... m are transferred to 
the grid k employing suited transfer operators. For this grid one 

obtains the corrected solution W> ' as: 

*f) 
- w(") -i- F      (w^ - W^ N 
- Wk    +'k+l,k(vyk+\      Wk+\' 

while for the coarsest grid m one can write: 

jfrCO _ w(") '*m     —  *'m 

(26) 

(27) 

with Rk{Wk) being the residuals obtained respectively to equa- 
tion (17) for the solution Wk. 

The restriction operator /[_, k depends on the relations between 
the grids k - 1 and k. As the physical space of the coarse grid 
control volume around node P0,<: m figure 6 is identical to the 
space of the children of Pok in the finer grid, the residuals of all 

Figure 8 shows a fine auxiliary grid k and a coarser grid k+\. 
The nodes Pj and P5...10 are coarse grid nodes. The corrections 
for node P\ the correction coming from grid k + 1 are computed 
as: 

Q 0,(*+l,*) ■W[h] 

o,*+i ■W{0) 

0.M-1 (28) 
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Flg. 8: Evaluation of coarse grid corrections 

where Wfi ^+i is the corrected value for grid k+l. Since the po- 
sition of node PQ is identical on both grids k and k+l, one can 
write: 

W^ - W(h] n
0,k ~ ^O.M-l 

what leads, together with equation (23), to: 

(29) 

W (*) 0,k 
:H"k+Co,(k+\,k) 

For fine grid nodes which are also existing in the coarser grid, 
the corrections directly added. 

The node P2 in figure 8 does not exist in the coarser grid k+l. 
The control volume of this node has been agglomerated with the 
control volume around PQ. If the corrections are assumed to be 
constant over the coarse grid control volume, one can write: 

ybW _ifr(«),/* 
2,k 2,k TC0,(*+1,A) 

A higher accuracy can be obtained if the corrections are recon- 
structed linearly over the coarse grid control volumes. The re- 
construction is similar to the reconstruction of flow variables 
as described in section 5.2. Using the values in the neighboring 
control volumes, a correction gradient VQwt+] M can be deter- 
mined for the control volume of Pok+\'- 

1 
v0,k+i ,'=5 

X5(l,/),M-l ' ?(C0,{k+\,k)+Ci,{k+l,k)) VCo,[k+\,k) 
'U,K+I  ,=5 

(30) 
with Si J * k+1 representing the normal vector related to the edge 
between node PQ and Pj. The correction in node Pi can then be 
obtained as: 

C2,(k+l,k) =C0,{k+\,k) + ^C0,[k+\,k) ' ^0,2     • 

where VQ,2 denotes the vector from PQ to P2. 

When the solution also on the finest grid is corrected, the next 
iteration n starts with: 

Wf](n) = w\h){n-l) 

8. NUMERICAL RESULTS 
8.1 Laminar Flow over a Flat Plate 
The simulation of a laminar flow over a flat plate was used to val- 
idate the formulation of the viscous term evaluation. Figure 9 de- 
picts boundary planes of the three dimensional hybrid grid. The 
grid consist of three layers with 60x40 points each. The points 

are connected to form prismatic cells in the lower part of the grid 
and tetrahedral cells in the upper part. 

The flow is coming from the left side parallel to the boundary 
planes. In rear part of the lower plane a no slip plate is located. 
As it can be seen from the pressure distribution on the boundary 
planes in figure 9 the beginning of the plate is characterized by 
a flow stagnation. 

Fig. 9: Hybrid grid for flat plate and isobars 

In order to create a tetrahedral grid the prismatic cells are sub- 
divided. Hence, the point distribution is identical in both grids. 
Figure 10 presents the tetrahedral grid and the respective solu- 
tion. 

Fig. 10: Tetrahedral grid for flat plate and iso- 
bars 

In figure 11 the convergence history is presented. For the calcu- 
lation on the hybrid grid a convergence of 2.5 orders of magni- 
tude is obtained after about 1600 iterations. The calculation was 
performed in the single grid mode in order to make it compara- 
ble to the results obtained on a pure tetrahedral grid. As one can 
see from figure 11 the convergence is worse for the tetrahedral 
case. This may be due to the disturbance of the solution caused 
by the diagonal edges near the wall. Furthermore, because of the 
higher number of edges more computational work is required for 
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Hybrid Grid 
Tetrah. Grid 

500 1000       1500      2000      2500 
Iterations 

Fig. 11: Convergence history for flat plate 

each time step than in the hybrid case. 

Figure 12 depicts a comparison at different points between 
the Blasius solution and the computed solution for a subsonic 
(Ma«, = 0.5) laminar flow with a Reynolds Number of 5000. The 
solution is almost identical for both the tetrahedral and the hy- 
hrid case. 

12 

»o 
810 

II    8 

D Re„ = 1330 
A Re„ = 2810 
o Re„ = 4290 
o Re, = 5770 
v Rex = 7250 

— Blasius Solution 

Fig. 12: Comparison of the computed solution 
with analytic solution 

8.2 Inviscid Flow around ONERA M6 Wing 
A three dimensional test case for the scheme is the inviscid flow 

around an ONERA M6 Wing. The prismatic part of the grid, as it 
can be seen from figure 13, has got an O-Topology. It consists of 
seven layers of prismatic cells. The triangular cell faces are lo- 
cated on the wing surface, while on the symmetry plane quadri- 
lateral faces are visible. Outside the prismatic region the space 
is discretized with tetrahedral cells. 

Figure 14 depicts the solution obtained on the hybrid grid for an 
incidence of 3.06° and an Mach number of 0.84. The character- 
istic ^.-shock that is visible on the upper wing surface is captured 
within two or three cells. No oscillations occur at the interface 
between the prismatic and the tetrahedral domains. 

Fig. 14: Isobars of transonic flow around 
ONERA M6 wing 

On the same grid also a subsonic flow with the free stream Mach 
number of Ma«, = 0.5 and an incidence of a = 3.0° is simulated. 
In figure 15 the respective solution is presented. 

Fig. 13: Hybrid grid around ONERA M6 wing 

Fig. 15: Isobars of subsonic flow around 
ONERA Mowing 

The effect of the convergence acceleration of the multigrid algo- 
rithm is presented in figure 16. For the multigrid calculation con- 
vergence of five orders of magnitude is obtained after about 890 
seconds of computational time, while on the single grid the so- 
lution has converged less than two orders of magnitude in 1500 
seconds. 
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Multigrid 
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500 1000 1500 
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Fig. 16: Convergence history for the simulation 

of subsonic flow around ONERA M6 wing 

9. CONCLUSIONS 
A finite volume scheme based on hybrid grids is presented. The 
employed grids consist of prismatic cells near body surfaces and 
tetrahedral cells connecting the prismatic domains and the outer 
boundaries. The use of prismatic cells offers the possibility to 
resolve viscous dominated flows such as boundary layers effi- 
ciently and accurately by applying high aspect ratio cells in the 
respective areas. Due to the use of tetrahedral cells, grids be- 
come quite flexible and the generation of grids, even for com- 
plex configurations, is relieved considerably compared to struc- 
tured approaches. 

In the preprocessing an auxiliary mesh of control volumes is 
computed from the initial grid. The auxiliary mesh covers the 
entire computational domain and can be used in both the tetra- 
hedral and the prismatic domains. In the flow solver part of the 
scheme an edge based data structure is utilized, so the cell struc- 
ture given by the initial grid becomes unnecessary. The feasibil- 
ity of employing hybrid grids even for three dimensional flow 
calculations are presented. 

The multigrid algorithm based on the agglomeration of control 
volumes is a natural extension of the dual mesh technique. It fits 
perfectly to the edge based data structure and results in a small 
memory requirement. 

The calculation of inviscid fluxes are demonstrated to be effi- 
cient and accurate. Shocks are captured nicely by the employed 
upwind flow solver. Also the formulation to calculate the vis- 
cous fluxes has proved its accuracy. At the interface between the 
prismatic and the tetrahedral region in some cases wiggles in the 
flow solution occur. Those wiggles will be subject to more de- 
tailed investigations. 

Though the multigrid formulation works nicely for the case pre- 
sented here, it still have to be improved, as the gain for cases with 
high aspect ratio cells is less than one would expect. In order to 
enable the simulation of viscous flows also around three dimen- 
sional geometries the next step will be the implementation of a 
suited turbulence model. With the improvement of the multigrid 
algorithm even the simulation of high Reynolds number flows 
are expected to become feasible for complex geometries, like 
flapped wings or complete aircraft configurations. 

Finally a grid adaption algorithm, either based on local refine- 

ment by cell division or on global remeshing will be formulated. 
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SIMULATION DU MOUVEMENT RELATIF DE CORPS SOUMIS 
A UN ECOULEMENT INSTATIONNAIRE 

PAR UNE METHODE DE CHEVAUCHEMENT DE MAILLAGES 

P. Brenner 
A6rospatiale Espace & DeTense 

BP2 78133 Les Mureaux CEDEX, France 

RESUME 

Nous pr£sentons une m&hode adaptee ä la simulation 
numenque des largages d'etages de fusee en 
presence de contraintes ae>odynamiques. 
Une technique de chevauchement de maillage 
conservative est utilisee pour simuler le deplacement 
des differentes parties en mouvement du aux efforts 
a6rodynamiques et propulsifs. 
Les equations d' Euler en multi-gaz compressible 
sont r6solues au moyen d'une discr6tisation du type 
Volumes Finis non structured (t6traedres, prismes et 
hexaedres). Les caracteristiques de l'ecoulement sont 
localises au centre de gravite" de chaque maille. Le 
schema num6rique en espace est dScentre et du 
second ordre de precision sur les flux. II est bas6 sur 
l'algorithme de Godounov. 
La mlthode d'integration temporelle adaptative 
mise en oeuvre permet de simuler des ecoulements 
fortement instationnaires avec deplacement de chocs 
forts tout en limitant le coüt des calculs puisque les 
largages peuvent durer plusieurs secondes. 
Le choix des algorithmes utilisös confere au code 
robustesse et precision bien que la discretisation 
spatio-temporelle soit non reguliere (puisque le pas de 
temps est diff6rent pour chaque maille, que les 
maillages sont non structures et qu'ils se 
chevauchent). 

ABSTRACT 

A computational method for the simulation of rocket 
stages   separations  under  aerodynamical  and 
propulsive loads is presented. 
To simulate the motion of bodies, a conservative 
overlapping grid technique is used. 
The flow solver is based on a cell centred Finite 
Volume formulation on unstructured grids (made 
of tetraedra, prisms and hexaedra). 
The Euler equations with mixing gases are solved 
through a second order upwind scheme using the 
Godunov algorithm to compute the numerical fluxes. 
To integrate equations in time, a temporal adaptive 
algorithm is used since the real duration of the 
simulated phenomena is long. It saves computer time 
and leads to accurate simulations of unsteady 
phenomena   like   acoustic   waves   and   shocks 
displacements. 

Despite the unregular spatio-temporal discretisation 
(since time steps are different in each cell, since 
meshes are unstructured...), the algorithms used 
associate accuracy with robustness. 

INTRODUCTION 

Les möthodes de calcul d'ecoulements instationnaires 
autour de corps mobiles sont d'un interet certain pour 
simuler le largage d'6tages de fusees vides. 
En effet, les moyens d'essais susceptibles de permettre 
de telles simulations sont tres difficiles ä mettre en 
oeuvre: 
- l'ecoulement externe est fortement supersonique 
done la taille de la veine de soufflerie sera faible, 
- les moteurs continuent ä ejecter des gaz dont la 
pression statique est grande par rapport ä la pression 
externe, ce qui conduit ä des 6clatements de jet 
importants capables de provoquer le blocage de la 
veine, 
- les gaz propulsifs sont thermodynamiquement tres 
diff6rents de l'air done il faut simuler aussi cette 
difference de compositions, 
- enfin, il faut assujettir le mouvement des corps aux 
forces exerc6es en temps reel, ce qui suppose un 
Systeme complexe permettant de peser correctement 
ces efforts puis de les interpreter pour modifier la 
position des mobiles. 
Ce dernier point semble tres contraignant car la taille 
de la veine est limitee. Ainsi, il ne faut pas que le 
Systeme en question soit trop encombrant et son temps 
de reponse doit etre tres bref car la dur6e de 
fonctionnement simulee est proportionnelle ä l'echelle 
mise en oeuvre (e'est ä dire qu'un largage durant une 
seconde en realite durera cinq centiemes de seconde 
pour un moyen d'essai ä l'echelle un vingtieme). 
Lorsque les phenomenes 6tudi6s sont reellement 
instationnaires, il semble done plus realisable 
d'utiliser une approche essentiellement num6rique 
comme nous l'avons fait avec le code FLUSEPA (r£f. 
7 et 8). 
Le choix des formulations, des Schemas numeriques et 
des algorithmes utilises sont consdeutifs aux 
contraintes rencontrees pour ce type de simulations: 
1- la gdometrie des ötages peut etre complexe mais 
surtout, la geometrie de l'inter 6tage est toujours 
complexe (presence d'equipements, de systemes de 
separation...), 
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2- l'ecoulement varie tres brutalement du haut 
supersonique au bas subsonique et le rapport de 
pression rencontre dans les chocs forts peut atteindre 
plusieurs milliers, 
3- le mouvement relatif des differents corps est 
totalement quelconque (rotation complexe, translation 
importante...), 
4- l'ecoulement comme la position des Stages peut etre 
rapidement evolutif et les phenomenes acoustiques ou 
de propagation de chocs sont souvent prepond6rants 
quant ä Involution du champ adrodynamique. 
La premiere contrainte nous a amen6 ä utiliser une 
formulation non structuree qui präsente une grande 
souplesse d'un point de vue ergonomique pour la 
definition des maillages. 
La seconde nous a conduit au choix d'une methode de 
volumes finis du type Godounov (d'ordre deux) qui 
est tres robuste et precise. Notons ,que dans la 
formulation utilisfie, les caract6ristiques de 
l'ecoulement sont localisees au centre de gravid des 
mailles. 
La troisieme eiimine toute technique utilisant les 
ddformations de maillage. En effet, lorsque les 
mouvements sont importants et quelconques, le 
r£sultat d'une deformation peut conduire ä une 
modification locale des cellules de contröle tellement 
forte que le vrillage peut retourner les mailles jusqu'ä 
l'obtention de volumes negatifs. 
Quant aux m£thodes utilisant des remaillages 
adaptatifs, elles nous ont sembie trop lourdes et 
contraignantes d'un point de vue instationnaire, 
lorsque l'on desire assurer la conservativite d'un 
Systeme (ou raccroissement entropique par exemple). 
Nous avons done opt£ pour une technique de 
recouvrement de maillage conservative. Pour tenir 
compte du mouvement relatif des maillages associes 
aux corps mobiles, nous utilisons une formulation des 
flux Euler-Lagrange mixles (A-L-E) qui simplifie la 
methode et surtout assure la conservativite du 
Systeme. En effet, bien que les maillages soient 
rigides, cette technique permet de travailler dans un 
seul referentiel contrairement aux formulations 
Euleriennes pures qui necessitent l'emploi d'un 
referentiel par maillage puis l'introduction de forces 
d'entratnement qui sont traitees comme des termes 
source nuisant ä la conservativite globale. 
Notons que pour une methode decentree de calcul des 
flux, 1'A-L-E ne modifie que d'une facon mineure 
l'algorithme car il suffit de prendre en compte la 
vitesse des faces lors du decentrage. Enfin, l'interface 
existant entre maillages est traitee comme les faces 
d'une quelconque maille sans faire intervenir de 
changement de referentiel. 
Quant ä la derniere contrainte, eile nous a conduit ä 
eiiminer les m&hodes d'integration implicites qui 
etouffent une grande partie de l'acoustique et, au 
mieux, etalent les chocs qui se propagenL Nous avons 
done mis au point une methode explicite d'integration 
permettant toutefois de tenir compte des caracteres 
sp6cifiques de l'ecoulement local: lorsque les 
phenomenes sont rapides dans une maille, le nombre 

d'iterations sur cette meme maille est important, 
sinon, il est faible. II s'agit d'une methode 
d'integration temporelle adaptative qui peut etre 
considered comme une technique consistante et 
conservative de pas de temps locaux. 
Dans la description qui suit, nous insisterons sur les 
problemes de conservativite, de consistance et de 
stabilite qui ont conditionne le choix des algorithmes 
utilises. 

METHODE NÜMERIOUE 

La meüiode des volumes finis (F.V.) repose sur la 
resolution des equations sous forme integrale, e'est ä 
dire que l'on fait un bilan des valeurs conservatives 
sur un element de contröle. Notons que, en toute 
rigueur, le bilan doit etre verifie quel que soit 
reiement de contröle consider appartenant au 
domaine etudie. 

1- EQUATIONS GENERALES 

Les equations dTEuler sous forme integrale en multi- 
gaz compressibles pour les ecoulements 
tridimensionnels et lorsque l'eiement de contröle est 
mobile, peuvent se mettre sous la forme suivante: 
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Oü, 8Q est la frontiere qui entoure l'eiement de 
contröle Q, p est la masse volumique, V est la vitesse 
du fluide dans le referentiel Galiieön de calcul, U est 
la vitesse de la frontiere 8Q, Et est l'energie totale 
specifique, Cv la chaleur sperifique ä volume constant 
et N, le nombre de moles par unite de masse. 
La premiere equation est relative ä la variation du 
volume de contröle. Puisque les maillages sont 
rigides, eile n'est utile qu'au niveau de rinterface entre 
maillages comme nous le montrerons par la suite. 
Les deux equations sur Cv et N sont prises en compte 
pour simuler le melange de gaz supposes parfaits et 
thermodynamiquement parfaits. Cette modeiisation 
tres simple n'est correcte que si le milieu est non 
reactif. 

2- SOLVEUR AERODYNAMIQUE 

Bien qu'il soit difficile de decoupler la discretisation 
spatiale de la discretisation temporelle, nous allons 
proceder ainsi afin de mettre en lumiere le 
cheminement que nous avons suivi. 
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2.1- Discretisation spatiak 

Talmi des flux 
Approximons l'enveloppe 8Qj de l'616ment i par un 
polyedre ä N faces planes notees Sjj orientees de i 
versses voisinsj. 
La discretisation la plus naturelle provient de 
Godounov (R6f. 1): il s'agit de considerer des etats 
constants par morceaux sur chaque maille, alors, la 
methode de calcul des flux numeriques sur chaque 
interface consiste ä rösoudre le probleme de Riemann 
ainsi pose. 
Plusieurs techniques pour le resoudre d'une facon 
approchee ont 6t6 proposees. 
A notre avis, les problemes qu'elles suscitent tant du 
point de vue du manque de fiabilite (flux de Roe, 
d'Osher...) que de la viscosite" numörique importante 
(flux de Van Leer...) les rendent peu ättrayantes en 
comparaison de la methode exacte de Godounov (R6f. 
n°2). Bien qu'elle ait la reputation d'etre coüteuse 
puisque iterative, notre experience montre que, pour 
un niveau comparable d'optimisation sur calculateur 
vectoriel (CRAY), l'algorithme de Godounov n'est au 
plus que de 20% plus eher que celui de Osher. 
Pour toutes ces raisons. nous avons optd pour 
l'algorithme original de Godounov. 

Notons que nous avons eiimine les m6thodes dites 
centrees car elles necessitent l'introduction d'un terme 
de viscosity artificielle parametrable et done ne sont 
gdneralement pas utilisables en "boite noire". 

Etudions la precision des approximations F.V.: 

a 
p 

(5) — ffF.aö = div(FG) + e(h2) + e(h 
& 4L 

n-l> 

soit (2)   F = (Ü — V)    continue derivable pv 
pEt 
pCv 

.PN. 

alors (3)  JJ F. 30 = Jjjdiv(F)dT 

da        n 

soit (4) F(M) = F(M) + 6(hn ) une approximation 
du flux exact ä l'ordre n en M, h etant une dimension 
caractenstique de Q dont le volume est egal ä co. 

Comme F est une fonction lisse on peut Studier la 
precision de la discretisation au centre de gravity G de 
Q lorsque Ton utilise les flux d'ordre n. 
Tous calculs fails: 

an 

Notons que, sous certaines conditions d'approximation 
et de configurations geometriques particuliferes, le 
second terme de troncature gagne un ordre de 
precision et que, en dehors du point G, le premier 
terme chute ä l'ordre 1. 

Nous voyons done que le schema que nous utilisons, 
d'ordre 1 pour les flux est en general d'ordre zero done 
inconsistent au sens des differences finies sur les 
maillages quelconques et en particulier en non 
structure. 

Passage a l'ordre 2 en espace 
Afin d'assurer la consistance du schema, il faut done 
que les etats de part et d'autre des interfaces Sy soient 
au moins calcuies ä l'ordre 2. 
Pour ce faire, nous utilisons l'approche M.U^.CX. 
(Ref. 3): eile consiste ä reconstruire lineairement les 
variables p, pV, P ,Cv et N sur chaque cellule. 
Alors les etats necessaires ä la resolution du probleme 
de Riemann sont du second ordre done les flux 
calcuies sont bien d'ordre 2. 
Notre schema d'integration contient un point par 
face, il faut done, pour preserver l'ordre de 
precision, que ce point soit imperativement situe 
au centre de gravite de la face. 
Quant aux calculs des gradients, nous utilisons une 
methode de moindres carr^s dont le support 
repose sur les voisins principaux (e'est ä dire ceux 
qui ont une face en commun avec I'eiement 
consider^). De cette facon, nous obtenons des 
gradients "centres" dont la precision est au moins 
du premier ordre (sur les maillages reguliers ou 
non), ainsi la reconstruction est bien du second 
ordre. 

Nous utilisons pour plus de souplesse des maillages 
non structures constitues de tetraedres, de prismes, de 
pyramides et d'hexaedres: ce dernier type d'eiements 
permet, lorsque les maillages sont reguliers, 
d'obtenir une precision d'ordre 2 dans les zones 
"importantes", les autres types servent ä faire du 
"remplissage". De ce fait, lorsque les faces 
quadrangulaires (des hexaedres par exemple) ne sont 
plus planes, il faudrait deux points ^integration par 
face pour assurer la consistance. Nous envisageons 
cette modification uu schema ä court terme. 

Limitation des gradients 
L'approximation spatiale precedente est consistante 
malheureusement, son integration en temps pose 
quelques difficultes: 
1 - pour un schema d'integration Euler explicite, 
l'analyse  de  Fourier  monodimensionnelle  (de 
l'equation     de  transport  linearisee)  demontre 
l'instabilite de la methode pour les grandes longueurs 
d'onde (Ref. 4). 
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2 - quel que soit le schema d'integration, la methode 
est fortement oscillante ä proximM des zones de 
discontinuite' (chocs, variations importantes de taille 
de mailies...)- 

La solution la plus simple au premier probleme 
consiste ä mettre en oeuvre un schema temporel plus 
61abor6 (schema de Heun explicite, Euler implicite...). 

Pour r6soudre le second point dur, par contre, la 
solution que nous utilisons est apparentee ä celle de 
Van Leer qui consiste ä limiter les pentes comme suit: 

Considerons pour simplifier, le cas d'une öquation de 
convection lineaire multidimensionnelle ä la vitesse 

C (constante) de la variable scalaire a. 

r)fX      - 
soit (6)  —- + C. Grad(a) = 0 

9t 

que Ton integre en temps sur la maille i, par une 
mSthode ä un pas, apres discretisation du type 
volumes finis, sous la forme: 

Ou At repr&ente la duree comprise entre les instants n 
et n+1 et ÖL.. la valeur de a qui determine le flux au 

centre de gravit6 de la face Sjj entre n et n+1. 

On d6sire creer un sch6ma localement ä variation 
bornee c'est ä dire v6rifiant la contrainte suivante: 

(8)   ocmin = min(a") < a"+1 < max(a") = am j      J        i j      J 

Nous remarquerons qu'un tel sch6ma est positif, et 
apres quelques manipulations, on en deduit les 
conditions süffisantes mais non necessaires: 

(9a)  (a^-afX^-l)^^-^^.) 

(9b)  (aP-a^X^-D^maxCa^J-a? 

(9c)   a^ä^a^Vj 
Avec 

^.      1 At v- 
(9d) CFL = -—X 

2c0   J 

C.S.. 

de Godounov, en multidimensionnelle pour des 
maillages de parallelepipedes reguliere. 

Grace ä ces conditions, nous retrouvons facilement les 
resultats dtablis en monodimensionnel pour des 
maillages reguliere, lorsque Ton integre par un Euler 
explicite: 
- la m6thode de Godounov du premier ordre est stable 
ä CFL egale 1, 
- le limiteur minmod est stable ä CFL egale 2/3, 
- le premier limiteur de Van Leer, qui correspond ä la 
condition (9c) est stable ä CFL egale 1/2... 

Bien que le raisonnement pröcedent soit issu de la 
linearisation d'une Equation scalaire, l'int6ret 
primordial de cet ensemble de contraintes provient du 
fait que: 
1- il est utilisable en multidimensionnel, 
2- il est applicable ä de nombreux schömas en temps, 
3- il n'est pas M au type de reconstruction, 
4- il est local, done il autorise l'eüide de la stabilitd 
des m6thodes ä pas de temps locaux. 

Dans   notre   code,   nous   utilisons   le   limiteur 
correspondant ä CFL e>al 1/2 en limitant 
glohalement le gradient (sur chaque 616ment et pour 
chaque variable) en le multipliant par un coefficient 
qui permet de satisfaire (9a). (9b) et (9c). 

Nous noterons au passage que l'emploi d'un tel 
limiteur peut parfois (rarement si le maillage est 
regulier) faire chuter la precision des flux ä l'ordre 1. 
Par exemple pour le limiteur correspondant ä CFL 
egal 1/2, l'ordre 2 n'est effectif que lorsque le polyedre 
maximal ayant pour sommet les centres des voisins j 
de i contient ä la fois les centres de gravitd des faces 
Sji et leur symdtriques par rapport au centre de gravity 
G de l'element i considdre. 
Le cas bidimensionnel ci-dessous permet d'illustrer 
cette condition: le polygone maximal est mat6rialis6 
par le triangle (1,2,3), le centre de gravili de la face 
SGI et son symetrique le point (a) sont bien contenus 
dans ce polygone, par contre, bien que le centre de 
gravity de SQ3 verifie la condition, son sym6trique, le 
point (c) ne la venfie pas et pour SQ2. c'est le 
contraire, seul le sym6trique (b) est dans le triangle 
(1,2,3). Cette configuration de maillage peut done 
rendre le schema numerique inconsistant du fait de la 
limitation globale. 

Cette formulation du CFL coincide bien avec la 
formulation usuelle monodimensionnelle et avec celle 
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Nous n'en ferons pas la demonstration mais, nous 
pouvons dire que cette condition est süffisante sans 
etre toujours necessaire: eile depend du champ 
aerodynamique etudie. 

Enfin, la limitation que nous utilisons ne garantit pas 
la monotonie du sch6ma en monodimensionnel. 
Lorsque Ton 6tudie par exemple le cas d'une detente 
dans le vide, cette caracteristique peut devenir 
penalisante: il est alors difficile sans passer ä l'ordre 1 
de conserver des CFL corrects. Pour pallier ce 
probleme, nous avons mis au point une procedure 
"monotonisante" qui consiste ä prendre la valeur la 
plus proche de cq parmi (X.. et ä.. (done la valeur la 

plus proche du premier ordre) et nous proc6dons de 
meme du cot£ j. Nous voyons bien que de cette facon, 
la reconstruction devient monotone et de plus, sur un 
maillage regulier, cette correction n'est que du 
troisieme ordre pour les flux done le resultat global 
reste du second ordre lorsque le limiteur global n'est 
pas effeenf. 

2.2- Discretisation temporelle 

Schema d'integration en pas de temps global 
Nous avons preeödemment souligne" le fait que le 
schema du second ordre non limite est instable 
lorsque Ton integre en temps par une möthode de 
Euler explicite. Pour rem6dier ä cet inconvönient et 
afin d'augmenter la stabilitö du sch6ma limite" (done 
travailler avec un CFL supörieur ä 1/2), nous avons 
implementd un schema d'int6gration explicite du 
second ordre. 
En effet, l'etude de la stability lineaire par 1'analyse 
de Fourier montre que les Schemas classiques 
d'integration du second ordre sont stables pour un 
CFL egal ä 1, lorsque Ton utilise une discretisation 
spatiale decentree du second ordre avec pente 
centree. 
Pour obtenir un schema relativement bon marche, il 
faut tenir compte du coQt informatique des differents 
algorithmes intervenant lors de la discretisation 
spatiale. Ainsi, approximativement, la rösolution du 
probleme de Riemann represente 15% du cout total, le 
calcul des gradients 30%, la limitation globale environ 
30% et la limitation locale environ 5%, le reste 6tant 
difficilement repertoriable 
Nous voyons done qu'il faut eviter si possible de 
recalculer les gradients et de les relimiter 
globalement. Par contre, il est acceptable de refaire 
une limitation locale et de recalculer les flux. 
II faut, d'autre part, prendre en consideration le fait 
que les equations ä resoudre ne sont pas lineaires: tous 
les Schemas linearises sont equivalents pour 1'analyse 
de Fourier. II faut mettre en oeuvre le schema dont le 
comportement non lineaire est le meilleur. 
Nous avons done choisi le schema de Heun mais 
avec un seul calcul de gradient. Concernant la 
limitation globale, une procedure simplifiee permet un 

regroupement avec la limitation locale sans perte de 
rendement. 
Nous rappelons que le schema de Heun consiste ä 
calculer les flux (et les gradients) ä l'instant n, puis 
grace ä cette approximation, on calcule l'6tat ä 
l'instant n+1 done les flux ä l'instant n+1. Alors, la 
variation entre l'instant n et n+1 correspond ä la demie 
somme des flux prec&lemment calculös en n et n+1. 
Ce schema est tres stable pour les phenomenes non 
lineaires. 

Schema d'integration temporel adaptatif 
Le sch6ma de Heun possede de nombreuses qualitds 
numeriques, malheureusement, comme tout schema 
explicite, il est pratiquement inutilisable lorsque la 
duree ä simuler est importante. 
Si Ton analyse les phenomenes intervenant lors d'une 
separation d'6tages, on remarque immödiatement 
qu'ils sont quasi-stationnaires sur presque tout le 
champ de calcul. Seules, quelques regions sont 
balayees par des courants fondamentalement 
instationnaires. Done, il est int6ressant, dans ces 
zones, d'utiliser de petits pas de temps, par contre, 
ailleurs, de grands pas de temps sont suffisants. 
Nous avons done mis au point une technique de pas 
de temps local qui est conservative, consistante et 
stable: l'integration temporelle adaptative (R6f. 5 et 
8). 
Dans chaque maille, on travaille en utilisant le pas de 
temps le plus proche possible du pas de temps 
explicite maximum admissible. 
Soit Atmin le plus petit pas de temps sur tout le 
domaine, pour simplifier la gestion des diff6rentes 
classes temporelles, on ordonne les pas de temps en 
puissance de 2, proportionnellement ä Atmin.. 
C'est ä dire que si le pas de temps admissible dans la 
maille i vaut Dtj alors on le transformera en: 
(10) Ati = Atmin.2Li 

ou Li represente le niveau temporel de la cellule i tel 
que: 

(11) Atmin .2Li < Dtj< Atmin .2Li+1 

Entre deux mailles, on posera comme principe que 
l'interface est du niveau temporaire le plus fort. 
Pour que la m&hode soit conservative, il faut que les 
int6grales de flux de part et d'autre de l'interface Sjj 
soient identiques. Done, il suffit de deTmir en tout 
instant le flux de facon univoque sur Sjj. Ensuite, si 
par exemple Li=Lj+l alors, dans la maille j on fera 
deux iterations pour une seule dans i. Ainsi dans j 
l'integrale de flux vaudra: 

t+2.Al- t+2.At- 

(12)    fF.S..3t+    fF.S..8t=    fF.S..3t 

et dans i: 
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t+At; 1+2. Atj 

(13)    JF.S^ = -   jF.S..dt 

Ce qui prouve la conservativitd du Systeme. 
Soit ä resoudre: 

qui, sur les solutions lisses, equivaut k 

(15) ^ + div(F) = 0 
dt 

Supposons maintenant une approximation du flux 
teile que: 
(16) F(g, t) = F(g, t) + 8(Atm ) + 6(hn ) + G( Atp. h) 

ou g represente le centre de gravity des faces Sjj. 
Alors, si Ton integre ce flux sur la bordure de 
l'dlement i en consid6rant que les troncatures spatio- 
temporelles sont independantes pour toutes les faces, 
on peut Studier la precision de l'approximation ä 
l'instant Tm (milieu des deux bornes temporelles 
d'integration) et en G (centre de gravid de Q): 

,m 
(17) 

^ifll + div(Fjm) = e(hn_1) + 6(^) + 6(Atp) 

+6(h2) + 6(At2) 

Pour que le schema reste consistant, il faut que m soit 
sup6rieur ä 1 Hnnr 1? srMma doit etre au minimum 
d'ordre 2 en temps sur les flux (et s'il n'est que d'ordre 
2, une condition du type At/h born6 est n&essaire) 
Le terme en AtP correspond ä l'approximation 
temporelle des gradients: dans le schema de Heun que 
nous utilisons, nous calculons les gradients une seule 
fois, au d6but de chaque iteration, done p egale 1 et le 
schema est globalement du premier ordre en temps 
(resultat dejä acquis puisque m egale 2). 
Quant ä la condition At/h borne\ eile est 
automatiquement remplie par celle de CFL. 

L'etude de stability des Schemas temporeis adaptatifs 
est relativement difficile puisque l'analyse de Fourier 
n'est plus utilisable. On peut par contre Studier la 
diffusivitö du schema pour l'equation la plus simple 
sur un maillage regulier: 

3a   8a    „ (,8)   ä+*"° 
Si le schema est diffusif, il possede des chances d'etre 
stable, sinon, il est instable. 

Pour un sch6ma de Heun du premier ordre en espace, 
la condition de positivite de la diffusion numeiique 
est simple puisqu'il suffit que le plus grand pas de 
temps verifie la condition de CFL. Malheureusement, 
pour un schema d'ordre 2 en espace, la condition 

dopend de la m&hode mise en oeuvre pour gerer 
l'cnscmble des maillcs. 
Une approche plus facile consiste ä utiliser les 
contraintes permettant au schema d'etre ä variation 
bornee. 
Commencons   par limiter le pas de temps sur le 
voisinage tel que 
(19) Li = min(Lj) 

J 
puis, r6duisons le saut de pas de temps entre mailles 
tel que: 
(20) |Li-Lj|<l,V(i,j) 
Cette derniere operation necessite Lmax-1 iterations 
Lmax eta"1 le niveau temporel maximum. 
Nous obtenons ainsi le type de configuration suivante 

n° de maille 

en monodimensionnel. 
Ainsi la maille i+4 fera une iteration pour seize 
iterations de la maille i. 
Un raisonnement simple nous montre que le schema 
reste localement ä variation born6e lorsque l'on limite 
les gradients au d£but de l'iteiation ouis ä la fin en 
conservant le (Xmin et lg-Oinay ralcnlS au d£hut de 
»'iteration. De plus, si la condition   Li = min(Lj) 
n'est plus respectee. le schema n'est plus ä variation 
bom6e. 
En pratique, nous avons remarquö que la mdthode est 
stable pour un CFL egal ä 1 alors que le limiteur ne 
garantit la stability que pour un CFL de 1/2. 
Require le saut de niveau temporaire est a priori 
inutile du point de vue de la stability mais cette 
procedure simplifie enormement la gestion des 
rr»>Ules (en particulier lors du calcul des gradients). 

Concernant I'efficacitß de la m6thode (qui est deTmie 
comme 6tant le rapport coüt du calcul en pas de 
temps global sur coüt de calcul en temporel adaptatif), 
on peut l'evaluer simplement lorsque l'on connait la 
fonction de repartition des pas de temps. Dans la 
pratique, cette fonction depend du maillage et des 
phenomenes locaux. Elle est done variable. Le tableau 
ci dessous determine les limites de cette efficacitS 
ainsi   qu'une  valeur  moyenne  et  une   valeur 
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expeiimentale (la valeur moyenne correspond ä une 
repartition equiprobable des pas de temps) 

Atmax 

Atmin 

2 4 8 16 32 64 

Efmax 1,6 3,2 6,4 12,8 25,6 51,2 

Efmoy 1,25 2,05 3,5 6,05 10,65 19,1 

E^exp 11,2 20 

Notons que ces valeurs sont intimement liees ä 
l'algorithmique utilisl, et que les formulations non 
structurees sont bien adaptees ä ce type de technique. 

3- CHEVAUCHEMENTDE MAILLAGES 

L'idee de base est tres simple (R6f. 6 et 7): 
considerons qu'un maillage Ml se comporte comme 
un masque qui se deplace et recouvre partiellement un 
autre maillage M2. L'interface entre maillages est 
cr6ee naturellement: il s'agit de la surface 
d'intersection formee par l'evidement dans le second 
maillage M2 du volume occupS par le masque Ml. 
Les mailies de Ml ne subissent done aucune 
modification. Par contre, dans M2, il y a pr&ence de 
trois types de mailles (cf. figure 1): 
1- les mailles totalement couvertes, 
2- les mailles partiellement couvertes, 
3- les mailles totalement decouvertes. 
Les mailles de la seconde categorie sont done 
modifiees car une partie des faces qui les constituent 
est couverte et de nouvelles faces correspondant ä la 
limite externe du masque sont erSees. Ces nouvelles 
faces forment l'interface entre mailles de M2 
(coupees) et mailles de Ml (non modifiees). 

3.1- Calcul des intersections 

Pour simplifier le probleme geonrtetrique nous avons 
considere que toutes les faces des elements sont 
planes. Les faces quadrangulaires sont done traitees 
comme deux faces triangulaires. Nous n'avons done 
plus qu'un seul type de facette: le triangle. 
L'algorithme de calcul d'intersection se limite ä deux 
etapes: 
1- d6terminer le niveau de couverture de chaque face 
du maillage par le masque, 
2- determiner la partie de la limite externe du masque 
qui ferme chacune des mailles de M2 coupees. 
Les deux 6tapes sont en fait identiques d'un point de 
vue algorithmique lorsqu'on les reformule comme 
suit: 

1- Pour chaque face de M2, döterminer la partie 
comprise dans chacune des mailles de Ml. La somme 
de ces parties determine la couverture des faces. 
2- Pour chaque face formant la frontiere de Ml, 
ddterminer la partie comprise dans chacune des 
mailles coupees (une maille 6tant considered comme 
coupee si 1 une de ses faces est partiellement ou 
totalement couverte ei si au moins une de ses faces 
n'est pas totalement couverte). 
Nous voyons done qu'il s'agit bien du meme 
algorithme de base: determiner la surface d'un triangle 
contenue dans un polyedre. 
Pour r6soudre ce probleme, le plus simple est de 
travailler dans le plan de la face triangulaire. On 
determine alors la trace polygonale du polyedre dans 
ce plan (chose simple puisque le polyedre est fornte 
de triangles) puis la partie commune au triangle et ä 
ce polygone. Cette derniere operation necessite juste 
la connaissance des segments Orientes qui constituent 
la trace. II faut eviter tout algorithme qui determine le 
chainage des segments entre eux: e'est inutile et 
excessivement coüteux. 
Calculer la surface couverte n'est pas süffisant, il faut 
aussi determiner son centre de gravite. On determine 
alors le centre de gravity des interfaces coupees de M2 
et celui des morceaux de la bordure de Ml qui 
ferment les mailles coupees. 
Les volumes et les centres de gravite" des mailles 
coupees de Ml sont alors calcules en utilisant les 
formules suivantes (Green): 

(21)    ©.=-YOM...S.. 
i   3r    y »J 

j 

(22)   OG = —YOg..(OM...S..) 
4co. Y     1J       1J   1J 

i J 
ou: 
- Mjj est un point quelconque de la face plane Sy 
orientee vers l'exterieur de i, 
- j est soit un voisin "naturel" (done une autre maille 
de M2), soit recouvrant (done une maille de Ml qui 
est voisine par l'interface M1-M2), 
- G etant le centre de gravite de i et gjj, le centre de 
gravite de Sjj. 

32- Optimisation du nombre d'opirations 

Pour que la ntethode soit utilisable, il faut que le 
temps de calcul des intersections soit au plus du 
meme ordre de grandeur que le t<"nps de calcul d'une 
iteration de solveur aerodynamique. 
Soit N le nombre de mailles, alors, le nombre de 
facettes ä la bordure de Ml est de l'ordre de N^/3 et le 
nombre de cellules coupees est du meme ordre. 
Pour determiner la surface de la bordure qui ferme 
chaque cellule coupee, il faudra, par cellule, environ 
N^/3 operations. 
Pour toutes les cellules, il faudra done de l'ordre de 
N^/3 operations. Le solveur a6rodynamique necessite 
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de l'ordre de N operations par iteration. II faut done 
optimiser le calcul des intersections. 
La solution que nous avons retenue consiste ä 
determiner, sur une grille cartesienne (i j,k) contenant 
N mailies, l'appartenance des difförentes facettes 
formant la bordure de Ml. Ensuite, pour chaque 
cellule coupee, on d6termine sa position dans la grille 
et done quelles facettes peuvent la fermer. Le 
preconditionnement des facettes necessite environ N 
operation, et le calcul par cellule coupee est de l'ordre 
de une operation soit, pour toutes les cellules environ 
N^/3 operations. 
Le coüt global est de N operations (le 
preconditionnement est plus eher que le calcul 
d'intersection !) done compatible avec 
l'aörodynamique. 

3.3- Priority de maillages 

L'utilisation  d'un masque et d'un maillage masqu6 
manque de souplesse. En effet, les mailles du maillage 
masque' sont par exemple mieux adaptees au calcul 
d'une couche limite autour du corps li6 ä ce maillage 
que les mailles du masque. 
II est done interessant de deTmir des zones prioritaires 
que le masque ne peut couvrir mais qui au contraire, 
couvrent le masque. 
La figure 2 nous montre le rSsultat d'une teile 
Strategie. Sa mise en oeuvre ne pose pas de probleme 
particulier. 

3.4- Calcul des flux ä lafrontiere et assemblage 

Les flux ä la frontiere sont calcules de la meme facon 
que les flux entre deux mailles appartenant au meme 
maillage: puisque nous travaillons en non structure, la 
topologie importe peu done une interface entre 
mailles sera traitee toujours de la meme facon, que ces 
mailles appartiennent ou non au meme maillage. 
Quant ä la premiere equation du Systeme (1) 
concernant la variation de volume, eile permet, 
lorsque les mouvements sont lents, d'eviter de 
recalculer les intersections apres chaque iteration 
aerodynamiquef 
- pour chaque maille coupee i, on evalue l'increment 
de volume Acoj du au mouvement relatif des 
maillages, 
- on determine l'increment relatif maximum sur toutes 
ces mailles 

(23) AImax = max( Aco. /(Di) 

oü    (Oi designe le volume initial, 
- lorsque AImax est faible, on fait le bilan 
volumique pour tenir compte des deplacements sans 
remettre ä jour les caracteristiques des interfaces, 
- lorsque AImax est grand (ou bien lorsque la 

somme des AImax calcules depuis la derniere 
remise ä jour des intersections est grande), on 

recalcule toutes les intersections (ainsi, le bilan 
volumique est exaetement v6rifi6 sans utiliser A(ö0. 
Cette technique permet de diviser le coüt des calculs 
d'intersections par un facteur tres important (de l'ordre 
de cent). 

Finalement, il reste ä traiter le probleme des mailles 
fortement couvertes. 
En effet, lorsque le recouvrement d'une maille par le 
"masque" conduit ä des volumes tres faibles, la 
condition de CFL (9d) devient trop penalisante 
puisque le pas de temps doit tendre vers zero. La 
solution consiste ä assembler ces mailles avec des 
mailles voisines suffisamment decouvertes. De cette 
facon, l'ensemble form6 d'une maille suffisamment 
döcouverte et de ses associes constitue une "macro- 
maille" dont le volume est assez grand pour ne plus 
p6naliser le pas de temps. 
Nous utilisons comme critere le taux de couverture: 
une maille doit etre assemblee lorsque sont volume est 
couvert ä plus de 70%. D'autre part eile sera 
assembled avec le voisin qui possede avec eile en 
commun l'interface la plus grande et qui est decouvert 
ä plus de 30% en volume. 
Lorsque l'assemblage n'est pas possible directement, 
une procedure iterative est mise en oeuvre: on 
assemblera alors par l'interm&liaire d'une cellule qui 
eile meme est assemblee (...). 
Lorsque l'assemblage n'est pas possible du tout, on 
evince du calcul les mailles incriminees. 

APPLICATIONS 

Nous presenterons ici des cas de calcul illustrant les 
possibility de la m6thode. 
Les figures 3 et 4 montrent le type d'applications 
traitees grace au code de calcul FLUSEPA. II s'agit de 
simulations tridimensionnelles. Le Mach externe est 
compris entre 5 et 6. 
Pour la separation d'etage de missile sous incidence 
(figure n° 3), la periode simulee est d'environ 150 ms 
et la duree du calcul est de 12 heures en pas de temps 
global. Notons que ce type de simulation necessite 
aussi bien le calcul de l'ecoulement externe que de 
l'ecoulement inter 6tage puisque ils interagissent tres 
fortement entre eux. D'autre part, dans l'inter 6tage, 
les pressions peuvent devenir importantes (lorsque la 
section de passage vers l'exterieur est faible). De ce 
fait, l'ecoulement dans la tuyere peut etre fortement 
decolte: il faut done imperativement le calculer aussi. 
Pour le largage d'accelerateurs (figure n° 4), la 
periode simulee est d'environ 1,1 seconde. Les 
maillages component environ 100 000 mailles et la 
duree du calcul est d'environ 40 heures en temporel 
adaptatif (sur Cray YMP). Le gain de temps par 
rapport ä un schema ä pas de temps global est 
d'environ un facteur 20. Afin de souligner la 
robustesse de la methode, nous precisons que les 
phenomenes rencontres lors de cette simulation sont 
fortement instationnaires (acoustique...) et que dans 
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les zones de chocs forts, les rapports de pression sont 
del'ordrede4 000. 

Notons pour finir que des etudes de validation (aussi 
bien bidimensionnelles que tridimensionnelles) 
comprenant des comparaisons avec des mesures 
expenmentales ont 6t6 menees avec succes. 
Afin de require notre exposö, nous ne les presenterons 
pas ici. 

CONCLUSIONS 

Les demarches theoriques que nous avons men6es 
nous prouvent aussi bien la consistance que la stability 
lineaire de la m6thode sur des maillages 
multidimensionnels non r6guliers en espace et en 
temps. L'expenmentation numenque nous a d6montr6 
le bon comportement des schdmas lors de la 
resolution de systemes non lineaires. 
Quant ä la precision de la m6thode, eile est d'ordre 2 
en espace et en temps sur les maillages d'hexaedres 
structures röguliers et d'ordre 1 au moins ailleurs. 
Nous noterons finalement que le potentiel devolution 
du code est important puisque, par exemple, il est 
envisageable d'adapter le maillage par d6formation 
(6tant donn£e notre formulation A-L-E.), par 
enrichissement (nous travaillons en non structure) ou 
grace au chevauchement d'un maillage localement 
adaptd ä l'ecoulement... 
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figure 1: chevauchement de maillage 

figure 2: priorite locale de recouvrement 
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figure 3: separation sous incidence par allumage direct 

figure 4: largage d'accelerateurs par fusses d'eloignement 
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1. SUMMARY 

Recent progress in flux vector splitting is reviewed with 
the aim to obtain high resolution and robustness for hy- 
personic reacting flow simulations. The numerical be- 
havior of promising AUSM und CUSP discretization 
variants is reported and compared. These schemes can 
be combined with explicit multistage time stepping and 
multigrid. Large chemical source terms introduce stiff- 
ness into the system of equations which is removed by 
point implicit treatment. The present results demonstrate 
that efficient 3D simulations of viscous reacting flows 
with large contrast generated by strong shocks are now 
feasible. 

2. INTRODUCTION 

Accurate computations of 3D complex flow fields will 
play a key role in the aerothermal design of high speed 
vehicles such as reentry configurations. Not only can 
flow simulations shorten design cycles and save cost but 
they reduce uncertainty margins in heat loads and aero- 
dynamic forces. A prominent example is the US-Orbiter 
vehicle, whose thermal protection system is heavy due 
to heat transfer uncertainties. Moreover, the space shut- 
tle experienced an unexpected hypersonic pitch up 
which had not been predicted by conventional cold hy- 
personic wind tunnel testing. 

The extensive use of 3D flow simulations for complex 
configurations within the aerodynamic design cycles has 
been precluded until recently by several reasons. 
Among these are long computation times of the codes 
simulating viscous flow or nonequilibrium chemistry. 
Also, many codes are not sufficiently robust in flow re- 
gions with strong shocks and flow expansions. Other 
codes are robust but they fail to resolve contact disconti- 
nuities such as boundary layers. 

As a result of various attempts to solve complex hyper- 
sonic reacting flows numerically we can formulate some 
key requirements for the underlying solution algorithm. 
These are 
-    Capturing of strong shocks without oscillations of 

the dependent flow variables 

- Robustness in regions of strong flow expansion 
- Capturing of grid-aligned slip lines without numeri- 

cal smearing 
- Provision of an adaptive dissipative term in order to 

achieve sufficient numerical damping under adverse 
grid or flow conditions 

The first requirement addresses the ability of the scheme 
to resolve complex 3D shock interactions with a limited 
amount of grid points. Moreover, oscillations at shocks 
may prevent convergence of the overall methods to the 
desired steady state solutions. The second point relates 
to the failure of various prominent discretization 
schemes when applied to rapid flow expansions into 
near vacuum conditions. Additionally, the scheme 
should resolve viscous shear layers with minimum nu- 
merical smearing in order to keep the number of grid 
points reasonably small. The fourth requirement results 
from the experience that one can usually not avoid ad- 
verse grid situations in 3D, particularly high values of 
cell aspect ratio. However, the available convergence 
acceleration techniques such as residual smoothing and 
multigrid rely on the damping of transient high fre- 
quency modes in the solution for which controlled artifi- 
cial dissipation is necessary. 

3. SHOCK CAPTURING, HIGH-ORDER 
SCHEME AND ADAPTIVE DISSIPATION 

Progress in flux vector splitting has recently demon- 
strated that the aforementioned requirements can be ful- 
filled without characteristic decomposition of the invis- 
cid flux and the corresponding matrix operations. The 
present paper covers two promising approaches into this 
direction which were initiated by Liou [1,2] and Jame- 
son [3,4]. Other related pieces of work on the subject are 
found in Refs. [5-7]. The principal idea of flux vector 
splitting is shown by application to the ID Euler equa- 
tion 

at   ax   u' 

p pu 

pu F = pu2 + p 
IPEJ PuH. 

(1) 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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Assume that the computational domain is discretized in 
intervals with the centers denoted by i-1, i, i+1,... and 
the cell faces by i-1/2, i+1/2, .... Then, the numerical 
flux at the interface i+1/2 can be approximated accord- 
ing to Liou [1,2] 

/      r-       -, r-       -,     \ 

= 2ML/R 

"5|ML/R| 
P 

pu 

[PHI 

P 
pu 

[pH 

R> 

+ c 
P 

pu 

IPH 
-i   A 

P 
pu 

IPH] LJ 

U 

p        m 
+ PL + PR 

(2) 

where L and R denote the right and left states at the cell 
face, ML/R is the upwind weighted Mach number at the 
cell face and pP, pm are Mach number weighted contri- 
butions of the left and the right pressure values. Upwind 
weighting is accomplished by proper polynomials of the 
local Mach number [2], by which the scheme is made 
purely upwind for supersonic flow whereas central dif- 
ferencing is obtained for M -»0. This scheme is called 
AUSM.* 

The alternate approach followed by Jameson [3] is to 
take a central average and subtract a diffusive term 

F
i + r^ + Fi + l)-d

1 + 

di + i = ^xc(WR-WL)+iß(FR-FL) 
(3) 

with W = (p, pu, pH) . Now, the diffusion coeffi- 
cients a and ß must be chosen such that upwinding is 
obtained in the supersonic range and d -> 0 for M -> 0. 
This scheme is called HCUSP. 
Both approaches use scalar dissipation functions so that 
the computational expense of the overall method is pro- 
portional to N where N is the number of flow equations 
to be computed. Note, that there is particular motivation 
to use the equation (3) rather than (2) if the discretiza- 
tion is combined with explicit multistage time stepping. 
Then, very effective hybrid multistage schemes are at 
hand [8] for which the dissipation terms are only evalu- 
ated at m out of totally n stages. 
The conceptual differences between both flux vector 
split schemes show up for the problem of resolving a 
stationary shock wave. Fig. 1 sketches the situation en- 
countered in the analysis of AUSM. It is assumed that 
the states (L) and (R) fulfill the jump conditions. 

^e extension to multidimensions on structured grids 
is standard and may be found in Ref. [5] 

Equilibrium of the state (L) is obtained if the flux in be- 
tween (L) and (R) is obtained by full upwinding. Also, 
the state (R) is in equilibrium if an upwind flux is used 
for the interface. This requirements can be fulfilled by 
defining the speed of sound at the shock 

CL = CR = UROT cL = cR= — (4) 

for upwinding the flux where c* is the critical speed of 
sound. Hence, the state (R) is made supersonic and it is 
fully cancelled by the flux formulation (2). Generaliza- 
tion of equ. (4) for arbitrary flow direction and speed is 
given in Ref. [2]. This scheme is called AUSM\ 

Another way to shock resolution with AUSM was ob- 
tained by the observation that the highly dissipative flux 
of Van Leer [9] differs from AUSM by a dissipative 
term. 

*Van Leer — ^i AUSM -I(MR-1)2 

' 
p P 

s 

c pu -c pu 

< H R H L, 

forO<M<l 
(5) 

in subsonic flow and it is identical in the supersonic re- 
gion [5]. Smoothly captured shocks may then be ob- 
tained by defining 

FHybrid = (1 - ß>) FVan Leer + ®FAUSM 

and a) depends on the second difference of the pressure 
in order to detect shocks. This scheme is called hybrid 
AUSM. 
With HCUSP, on the other hand, the shock structure is 
analyzed according to Refs. [3,4] for a shock with a sin- 
gle interior zone shown in Fig. 2. Again, the states (L) 
and (R) satisfy the jump conditions and (L) is super- 
sonic. Equilibrium of the shock is obtained if fluxes 

fL/A = fL ^ fA/R = fR 

Then the flux balance for points L, A, R is zero. The 
condition at the entrance to the shock is fulfilled if the 
flow is supersonic at (L/A). The condition at the shock 
exit leads to a Hugoniot equation for a moving shock 

fR-fA+iTp(wR-wA) =0 

This equation can be solved by Roe linearization [10] 
and yields the relation 

ox = (1 + ß) (c-u)   forO<M<1. (6) 

between the dissipation coefficients. 

Jameson [3] has used equ. (6) in or^«- to derive a suit- 
able form of dissipating coefficients a and ß, i.e. 
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ac = |M| - ßo 
( 

ß = max 0, 
u + X 

u-AT 

,   0<M<1 

by which central differencing is again approached for 
M-»0. We note that equ. (6) is not respected for M<0.5 
so that one can expect problems with shock capturing if 
the Mach number at interface (A/R) is less than 0.5. 

The spatial accuracy of the flux vector split schemes de- 
pends on the determination of the left and right states at 
the cell interfaces. For a first-order scheme the flow 
quantities at the left and right states are given by their 
values at the neighboring mesh points, i.e. i, and i+i, re- 
spectively. In the present work higher order accuracy is 
obtained with the MUSCL approach by which the flow 
quantities are extrapolated to yield left and right states. 
The extrapolation function is designed such that the ac- 
curacy is limited to first order at discontinuities in order 
to guarantee shock capturing without spurious oscilla- 
tions. Unfortunately, we find that the two flux vector 
split approaches described above should not be com- 
bined with the same extrapolation functions. 
The AUSM scheme works well with the van Albada 
limiter function 

"L =U.+IK+£MA2+£K 
Ul ^1 .1        . 2      . 

AJ + A
2
 + 2E 

(7) 

where   A+ = ui + 1-Uj  , A. = Uj-U;_j 

We extrapolate the primitive variables and the total en- 
thalpy using equ. (7). Extrapolation of the latter quantity 
is needed in the energy flux in order to allow steady 
state solutions with constant energy. Also, the parameter 
E is made large if the contravariant velocity is smaller 
than a certain fraction of the speed of sound. Doing this, 
clipping within boundary layers and false interpolation 
values of the contravariant velocity components are 
avoided. Typical results of limiter applications for high 
Reynolds number viscous flows are shown in Fig. 3. 
The pressure contours at the rear part of RAE 2822 air- 
foil at transonic flow conditions shows oscillations near 
the edge of the turbulent boundary layer if limiting of 
the cartesian velocity components is applied in the tradi- 
tional manner. These oscillations disappear if the limit- 
ing operator is switched off for small values of the Mach 
number in the contravariant coordinate direction. More 
technical details of the limiter can be found in Ref. [5]. 

Unfortunately, we find that the application of the van 
Albada limiter with the HCUSP scheme yields some 
preshock oscillations. Hence, we use the limiting func- 
tion described in [4] for the HCUSP scheme. That func- 
tion has also been extended to avoid limiting in low 
Mach number regions, by which the accuracy of the re- 

sults is generally improved. 

Finally, it is necessary to add controlled artificial dissi- 
pation in flow regions where the damping characteristics 
of the basic scheme are too bad in order to allow proper 
convergence to the steady state solutions. Fig. 4 shows 
the situation of a cell with high aspect ratio in two di- 
mensions. In this case transient modes in the direction of 
the short cell edge will be well damped by an explicit 
time integration method whereas modes along the long 
side of the cell remain almost undamped. This problem 
can be solved by a modification of the advection func- 
tion (AUSM scheme). 

Fc = 1|S| 
/ 

M, L/R 
sum 

advection 
* diff 

advection 

where <I> is a function [5] of the spectral radii, X, in the 
coordinate directions i and j so that 

* = I
M

L/R|   
for *i » *j 

<& = 8 for Aj« Xj 

Typical values of 8 used in the present work are 8=1/4. 
This adaptive dissipation formulation makes sure that 
boundary layers are not numerically smeared but there 
is sufficient damping of modes in the direction of long 
cell sides. A similar formulation has been implemented 
into the HCUSP scheme. 

The capabilities of the present discretization schemes 
for perfect gas flows with shocks and shear layers are 
assessed by computations of transonic and hypersonic 
two-dimensional flows. Fig. 5 compares distributions of 
pressure coefficient, total pressure loss and grid conver- 
gence of the aerodynamic coefficients for transonic in- 
viscid flow over NACA 0012 airfoil. AUSM+ and 
HCUSP yield comparable shock resolution whereas the 
hybrid AUSM appears to be more dissipative at the 
shock. The HCUSP scheme generates more entropy at 
the leading edge and lift and drag values converge 
somewhat slower with grid density as compared to 
AUSM. On the other hand HCUSP is more rapid with 
respect to the residual convergence as compared to 
AUSM. Typical convergence rates of the multigrid 
method described below are 0.90 for HCUSP and 0.94 
for AUSM. 

The resolution of very strong shocks and hypersonic 
shear layers is shown in Fig. 6. The Mach number con- 
tours obtained for inviscid flow around a blunted wedge 
demonstrate almost perfect shock capturing within one 
cell for AUSM+ and HCUSP whereas hybrid AUSM 
needs one interior point for this case. The resolution of 
the thermal boundary layer which is displayed on the 
right part of Fig. 6 is similar for HCUSP and AUSM. 
We note that both schemes give much better results 
compared to a conventional central-difference scheme 
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with a single scalar viscosity (not shown here). 

4. OPERATOR SPLITTING AND IMPLICIT 
TREATMENT OF THE CHEMICAL SOURCE 
TERMS 

For flows with nonequilibrium chemistry additional 
conservation equations with chemical source terms oc- 
cur, which render the system of equation stiff if the time 
scale of the chemical reactions is significantly smaller 
than the fluid mechanics time scale. A simplified form 
of the conservation equation is given by 

4-W = -F + S 
3t 

W = (p, pu, pv, pw, pE, p2, ...pn)T 

S= (0,0,0, 0, 0, S2, ...Sn)T  , F=discr. flux 

The full set of equations used for reacting flow is given 
in Refs. [11,12]. In order to overcome the time step lim- 
itations due to small chemical time scales we employ 
implicit discretization of the source terms, 

AW 
At 

= -Fn + Sn + 1 

Using a linearization of the source term at time level (n) 
one obtains a point-implicit update of the solution vec- 
tor W for the time level (n+1), 

AW 
At 

1-At.^L 
aw 

[-F+Sn] (8) 

The Jacobian matrix has no entries in the first five rows 
because these equations have no source terms. Hence, 
the update of equ. (8) can be broken up into a fully ex- 
plicit update forW1 = (p, pu, pv, pw, pE) followed 
by a point-implicit update for W2 = (p 2... p n) which 
involves solution of (n-1) linear system for each grid 
point. 
The evaluations of the explicit source vector, Sn, the ele- 
ments of the flux jacobian, 3S/3W|n, and the solution 
of the linear system usually take much more computer 
time than the remaining elements of the solution algo- 
rithm. For multistage time stepping schemes the linear- 
ization of the source vector around the old time level is 
appropriate [13] and hence, the derivatives 3S/3W can 
be held constant during all stages. 

5. MULTIGRID METHOD FOR HIGH SPEED 
FLOWS 

Explicit multistage time-stepping schemes are used for 
advancing the solution in time. Choosing the number of 
stages and the stage coefficients allows an optimization 
of the high-frequency damping properties of the scheme 
at relatively high Courant numbers.  Hence,  these 

schemes can be combined with multigrid algorithms in 
order to accelerate convergence to steady-state, accord- 
ing to Ref. [8]. 

Coarse meshes for the multigrid are obtained eliminat- 
ing alternate points in each coordinate direction. Both 
the solution and the residuals are restricted from fine to 
coarse meshes. A forcing function is constructed so that 
the solution on a coarse mesh is driven by residuals col- 
lected on the next finer mesh. The corrections obtained 
on the coarse mesh are interpolated back to the fine 
mesh. This multigrid scheme is now widely used in the 
CFD community and it works quite well for a wide 
range of subsonic and transonic flow problems. 

However, a number of modest modifications of the orig- 
inal multigrid scheme are necessary for high Mach num- 
ber flows with strong shocks and strong variations of 
viscosity and conductivity coefficients. We employ a 
special set of Runge-Kutta coefficients which are opti- 
mized for damping with upwind discretization and re- 
sidual smoothing [14]. Courant numbers of about 5 are 
used in the present work which is about twice the ex- 
plicit stability limit. Strong variations of viscosity and 
conductivity occur in hypersonic viscous flows. Typical 
time scales of the viscous diffusion process may be 
much smaller than the convection time scale which puts 
a severe restriction on the time step if purely explicit 
time integration is sought. This problem may be circum- 
vented by locally adjusting the coefficient of the implicit 
residual smoothing scheme [15], such that the original 
time step based upon the inviscid flux vector is recov- 
ered, 

At = CFLM + N + I*d 
where ta denotes the spectral radius of the inviscid flux 
Jacobian in the ^-coordinate direction and V is the cell 
volume. At strong shocks large Courant numbers ob- 
tained with the help of residual smoothing will result in 
solution divergence. Therefore an adaptive time step is 
employed such that the Courant number is reduced to 
about 1 at strong shocks [14]. 
The multigrid scheme involves restriction and prolonga- 
tion operators which are both modified for hypersonic 
flows. At strong shocks the restriction of residuals from 
coarse to fine meshes is damped by using the second dif- 
ference of the pressure as a sensor in order to reduce the 
coarse-mesh corrections in that region. 

We have also observed that the coarse meshes can pro- 
mote upstream propagation of transient modes if central 
interpolation is used for prolongation of the corrections. 
This problem is resolved by using an upwind biased in- 
terpolation of the corrections where the Mach number in 
the contravariant coordinate direction is used to define 
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the bias [16]. 

6. NUMERICAL RESULTS FOR HYPERSONIC 
REACTING FLOWS 

Comparisons between the different flux vector splitting 
variants have been presented for 2D calorically perfect 
gas flows within Chapter 2. Our experiences for reacting 
flows and for complex 3D flows are based upon the hy- 
brid AUSM scheme, until now. The hybrid AUSM spa- 
tial discretization described in Chapter 2, the implicit 
source treatment given in Chapter 3, and the multigrid 
elements of Chapter 4 are implemented into the 3D 
DLR multiblock code CEVCATS [17, 5]. The imple- 
mentation of the thermodynamic model, the chemical 
reactions and the viscous terms are general such that any 
chemistry model can be employed without modifica- 
tions in the source code. Moreover, the code runs effec- 
tively on vector computer by vectorization over all grid 
points within a block of the computational domain. In- 
ner loops containing the number of species or the num- 
ber of reactions are unrolled by compiler directives [12]. 
Hence, we have obtained a computational speed of 
about 1500 MFLOP/s on a single processor of NEC- 
SX3 computer. This corresponds to 50 jxs computing 
time for the update of a single grid point by one multi- 
grid cycle and assuming a reacting gas mixture of five 
species with 17 chemical reactions. The use of point im- 
plicit operators and multigrid for reacting flows was also 
investigated with the help of a quasi ID code for nozzle 
flows which contains the algorithmic elements pre- 
sented in the previous chapters. 

The capabilities of the multigrid method for reacting 
flows with large contrast are investigated by applica- 
tions for one-, two- and three-dimensional flows. At 
first, we have chosen inviscid transonic reacting flow in 
a diverging nozzle in order to demonstrate the effects of 
point-implicit time stepping and multigrid acceleration 
separately. Fig. 7 displays the distributions of tempera- 
ture and the concentrations of the three species present 
in the flow. The dissociation reaction rate coefficients 
for oxygen have been chosen such that strong reactions 
take place for temperatures above 1000 K. Hence, the 
flow simulation represents shock induced dissociation at 
reentry flow conditions. The dissociation time scale is 
small enough so that explicit time stepping alone does 
not yield a converged flow solution within several thou- 
sand time steps. With point-implicit time stepping the 
code converges slowly to the steady state. Convergence 
is noticeably accelerated by application of 4-level multi- 
grid, by which a convergence rate per multigrid cycle of 
about 0.95 is realized. 

The second application is the viscous reacting flow over 
a 2D cylinder which is displayed in Fig. 8. This case has 

been used to check the accuracy of reacting gas chemis- 
try and thermodynamics into the 3D code CEVCATS by 
grid convergence studies and comparisons with other 
available codes (not shown here). It is found that both 
shock layer and wall heat fluxes are well predicted with 
relatively small numbers of grid points. The conver- 
gence histories plotted in Fig. 9 indicate again that mul- 
tigrid is effective for reacting flow problems. 

Finally, we present numerical results for a complex 3D 
case in Figs. 10-14. The configuration is called HALIS 
and it represents the windward side of the US-Orbiter 
vehicle. Extensive numerical and experimental data is 
available for this configuration. A first set of computa- 
tions has been executed for wind tunnel conditions at 
Mach=10. These computations include the forebody, de- 
flected body flaps and the base flow behind the rear of 
the vehicle. The computations were done on a mesh 
with 2.6 million grid points. Additionally, local grid re- 
finement was investigated in the separation region 
around the deflected body flap. The numerical solutions 
have been extensively studied with respect to grid con- 
vergence and the solutions compare very well with wind 
tunnel measurements. The computation is a significant 
accomplishment because of the large regions with flow 
separation present. 
The second computation was done for a flight trajectory 
point at Mach=24, 72 km altitude and assuming air in 
chemical nonequilibrium (see Figs. 12, 13). Until now, 
numerical results are obtained for the forebody of HA- 
LIS only. The grid convergence studies and the compar- 
ison with existing numerical data [18] indicates that the 
solution resolves the relevant flow phenomena properly. 
The residual convergence is displayed in Fig. 14 for 
both the nonreacting and the reacting flow cases. It is 
seen that the rate of convergence is approximately the 
same for both conditions. The computation of 400 mul- 
tigrid cycles for HALIS forebody with 1.3 million grid 
points took 6 hours on NEC-SX3 computer. Hence, it is 
concluded that converged flow solutions for reacting 
flows over complex configurations are now feasible. 
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Abstract 

The purpose of this paper is to present an hybrid up- 
wind splitting method fully adapted to viscous chem- 
ical and thermal nonequilibrium flows. Such flows are 
the site of strong viscous-inviscid interactions and are 
dominated by real gas effects due to dissociation and 
internal mode excitation. Furthermore, the hyper- 
velocities along the reentry trajectory induce a large 
degree of thermo-chemical nonequilibrium. ONERA 
has developed a code for simulating such flows: the 
code CELHYO. Detailed works concerning the physi- 
cal modeling having already been presented in previ- 
ous papers [4] [12], emphasis is put here on the nu- 
merical method, and particularly on the extension of 
hybrid upwind splitting methods to nonequilibrium 
flows. The hybrid upwinding is achieved by combining 
the basically distinct Flux Vector and Flux Difference 
Splitting approaches in retaining their own interesting 
features. The hybrid method implemented in the code 
CELHYO has been obtained by hybridizing the Osher 
approach with the van Leer scheme. In order to illus- 
trate the numerical method, internal and external flow 
configurations are presented. 

Resume 

On presente ici des methodes numeriques adaptees 
ä la prediction d'ecoulements visqueux en desequili- 
bre thermodynamique et chimique. Cet article con- 
cerne en particulier le developpement de Schemas 
decentres bien adaptes ä Papproximation des flux 
de fluide parfait dans le contexte des problemes 
d'ecoulements visqueux hyperenthalpiques. Initiale- 
ment, l'algorithme de traitement des flux de fluide 
parfait etait devolu a la methode de Roe. Du fait 
de la mise en osuvre delicate de cette methode dans le 
cadre des ecoulements visqueux, une nouvelle approche 
pour le decentrement est proposee [8]. Elle combine 
les deux approches classiques, l'approche de decompo- 

sition de flux et l'approche de type Godunov. Nous 
soulignerons les principales etapes qui la composent et 
nous ne decrirons dans le present papier qu'une tech- 
nique d'hybridation particuliere basee sur la methode 
d'Osher et la methode de van Leer. Afin d'illustrer 
la methode numerique utilisee, des resultats de calculs 
pour des configurations d'ecoulements externes et in- 
ternes sont presentees. 

1. Introduction 

Nous nous interessons a la resolution du Systeme 
gouvernant les ecoulements de gaz en desequilibre ther- 
mique et chimique. De tels ecoulements se produisent 
lors de la rentree dans l'atmosphere d'un corps ou d'un 
vehicule hypersonique. A ces vitesses, l'ecoulement 
atteint de tres hautes temperatures pres du vehicule. 
Ces temperatures sont suffisamment importantes pour 
induire des effets de gaz reels complexes comme la 
dissociation de l'air, la relaxation vibrationnelle et 
eventuellement l'ionisation. L' ONERA a developpe 
un code de calcul simulant numeriquement de tels 
ecoulements: le code CELHYO. Des etudes detail- 
lees relatives ä la modelisation physique ayant dejä 
fait l'objet de plusieurs articles [4] [12], nous nous 
attachons ici aux travaux effectues dans le domaine 
numerique, et plus particulierement a l'extension des 
Schemas hybrides au cas d'ecoulements en desequilibre. 
La motivation de l'utilisation de tels Schemas repond 
au souci de porter le code a un niveau de robustesse 
mais egalement de precision necessaire a la simulation 
d'ecoulements plus complexes correspondant par ex- 
emple aux ecoulements ionises. 
Initialement, l'algorithme de traitement des flux de flu- 
ide parfait etait devolu a la methode de Roe. Du fait 
de la mise en ceuvre delicate de cette methode dans 
le cadre des ecoulements visqueux, une nouvelle ap- 
proche pour le decentrement est proposee [8]. Elle 
combine les deux approches classiques, l'approche de 
decomposition de flux et l'approche de type Godunov. 
L'approche de decomposition de flux conduit a pro- 
poser des approximations simples se revelant etre tres 
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robustes dans la pratique mais presentant le principal 
defaut d'ignorer la structure de la solution relaxee, en 
particulier les ondes lineaires (discontinuity de con- 
tact) qui la composent. Le respect des ondes lineaires 
est crucial dans le cadre des ecoulements visqueux 
et sa violation rend les methodes de decomposition 
de flux inappropriees ä leur simulation. L'approche 
de type Godunov permet de satisfaire cette exigence 
moyennant une complexite accrue de l'approximation. 
Mais eile trouve un avantage decisif sur l'approche 
de decomposition de flux dans le cadre des problemes 
visqueux. Toutefois, ces methodes peuvent presenter 
divers defauts de stabilite dans la capture des ondes 
non-lineaires (ondes de choc et de detente). 

L'approche du decentrement par hybridation (meth- 
odes HUS "Hybrid Upwind Splitting") combine les 
deux approches precedemment citees de maniere ä n'en 
retenir que les proprietes jugees idoines pour la sim- 
ulation des ecoulements visqueux hyperenthalpiques. 
Dans le code de calcul, c'est le schema decentre resul- 
tant de P hybridation du schema d'Osher et de celui 
de van Leer qui a ete implante. D'autre part ont egale- 
ment ete implantees dans le code la methode d'Osher 
et une methode de type van Leer. 

2. Modelisation et equations de bilan 

Dans cette etude, nous considerons un melange ideal 
de gaz parfaits constitue de ns especes dont nm especes 
moleculaires. Dans le cas de l'air, les cinq especes prin- 
cipales N2, 02, NO, N et O seront prises en compte. 
Les modes de translation et de rotation, et le mode 
electronique sont toujours considered ä l'equilibre et 
sont done caracterises par une temperature unique T 
alors que les modes de vibration peuvent s'ecarter de 
l'equilibre. Nous supposons que parmi les nm es- 
peces moleculaires, nv, nv < nm, d'entre elles ont 
leurs modes de vibration en desequilibre (N2, 02 et 
eventuellement NO pour l'air). Nous nous interessons 
aux evolutions bidimensionnelles de ce melange. Ces 
evolutions sont gouvernees par le Systeme de lois de 
conservation suivant: 

dtu + div(f (u) - D(u)gradu) = Jl. (1) 

f designe les flux de fluide parfait. Les phenomenes 
dissipatifs sont ici modelises par le tenseur V. Le 
terme source fi traduit la presence des phenomenes 
de desequilibre. Dans la suite, U ouvert de W avec 
p = ns + nv + 3 designe l'espace des etats.L'inconnue 
u : 72+ x 7Z2 —♦ U a pour expression: 

ou E est Penergie totale du melange par unite de masse 
et v = {vi,v2) la vitesse barycentrique du melange. 
ev-ß designe P energie de vibration par unite de masse 
de Pespece moleculaire ß. 
La pression du gaz est donnee par la loi de Dalton: 

= ££* ■SP T, (3) 

ou Rgp designe la constante universelle des gaz parfaits 
et Ma est la masse atomique de Pespece a. 
A ce Systeme est associee une relation de fermeture 
thermodynamique generale teile que la pression du 
melange verifie: 

i = Ktr (E - -pv2 - ^T Pßt«;ß 
ß 

-^2pa(h°a+ea(T))) (4) 

UT =  ( (Pa)l<a<m,   PVl,   pv3,   pE,   {Pßev;ß)l<ß<, 0. 
(2) 

oü Kjr = 7tr - 1. eQ et h°a designent respectivement 
P energie des modes internes ä l'equilibre avec la tem- 
perature de translation et la chaleur de formation de 
Pespece a par unite de masse. 

Les expressions detaillees des termes source et du 
tenseur des phenomenes dissipatifs peuvent etre trou- 
vees dans de precedents articles [4], [12]. Nous 
rappellerons seulement que le modele de chimie' 
choisi est celui de Gardiner [9]. II met en ceuvre 
17 reactions comprenant quinze reactions de dis- 
sociation et deux reactions d'echange. Les equa- 
tions pour les energies de vibration peuvent inclure 
les echanges d'energie Translation-Vibration (T-V), 
Vibration-Vibration (V-V) ou Vibration-Dissociation 
(V-D). Le taux d'echange d'energie T-V est modelise 
par un modele de Landau-Teller, les temps de re- 
laxation entre especes etant donnes par la loi semi- 
empirique de Millikan et White [14]. 
Le tenseur des contraintes visqueuses utilise pour la 
viscosite du melange le modele d'Armaly et Sutton 
[2], la viscosite de chaque espece etant determinee par 
la relation de Blottner [3]. La vitesse de diffusion des 
especes verifie une loi de Fick et un coefficient de dif- 
fusion binaire. Les flux de chaleur du melange et de 
vibration sont supposes suivre des lois de Fourier. Le 
detail des expressions des coefficients de conductivity 
thermique est donne dans [4]. 

3. Methode numerique 

Les solutions du Systeme convectif-dissipatif (1) sont 
approchees par une methode de volumes finis implicite 
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ecrite pour des maillages curvilignes. Cette methode 
est decrite ci-dessous, tout d'abord dans sa formulation 
semi-discrete en espace puis dans sa formulation im- 
plicite en temps. Seules seront discutees ici les meth- 
odes numeriques ayant trait a l'approximation du Sys- 
teme Euler extrait. La discretisation de Poperateur 
du second ordre traduisant les phenomenes dissipat- 
ifs s'appuit sur une methode centree, dejä presentee ä 
l'occasion d'une precedente contribution a. l'AGARD 
[12]. Les methodes associees au Systeme Euler et im- 
plantees dans le code CELHYO, font appel ä diverses 
techniques de decentrement. Elles relevent respec- 
tivement du decentrement par resolution approchee 
du probleme de Riemann, du decentrement par de- 
composition de flux et enfin d'une technique origi- 
nale qualifiee de decentrement par hybridation champ 
par champ. Cette derniere technique resulte d'une 
recherche menee en collaboration entre l'ONERA et 
la NASA [8]. Nous decrivons ci-apres trois des Sche- 
mas decentres utilises dans le code: le solveur de Rie- 
mann approche d'Osher-Solomon, la decomposition de 
flux de van Leer et enfin le schema HUS resultant de 
l'hybridation des deux precedentes methodes. Le code 
CELHYO dispose egalement d'autres schemas, en par- 
ticulier ceux de Roe, de Godunov et de Collela-Glaz, 
que nous ne rapporterons pas ici. 

3.1 Methodes de volumes finis bidimensionnels 
L'approximation numerique de l'inconnue u du Sys- 
teme est obtenue ä l'aide d'une methode de volumes 
finis dont la formulation continue en temps s'ecrit, en 
omettant les termes source et les phenomenes dissipat- 
ifs, pour une cellule K de frontiere 8K: 

(uK)t  + 
1 

W\ J2  /(ujr,ujc.;njc.)|e|  = 0,     (5) 
eedK. 

ou UJC (respectivement UK.) designe la valeur con- 
stante de la solution approchee sur la cellule K (re- 
spectivement Ke). Par definition, la cellule voisine 
Ke possede l'arete commune e; IIK,I est la normale 
unitaire ä e exterieure a 1'element K. L'application 
/ : U x U x V? —* TV designe un flux numerique bidi- 
mensionnel astreint aux conditions de conservativite et 
de consistance usuelles. En vertu de l'invariance par 
rotation des equations d'Euler, devaluation des flux 
numeriques bidimensionnels est deduite de devaluation 
d'un flux numerique consistant avec un probleme de 
Riemann monodimensionnel ou le flux exact s'ecrit: 

fn =     ( {pan)i<a<n„ P»\   +P, PVlV2, 

pHvi,{pßev.ßv{)i<ß<nv), (6) 

avec T\ le premier vecteur de la base canonique de722. 

Considerons /(ujf, \iK.\r\) un Aux numerique consis- 
tant avec le flux exact fTl. En introduisant la rotation 
envoyant le vecteur de base ii sur la normale njfi£, 
nous definissons l'operateur de rotation TK,I qui nous 
permet d'obtenir un flux numerique bidimensionnel en 
posant: 

f(uK,UK.;nK,e)  =  TKie-
1f{TK,tUK,TK}euK.;T1). 

(7) 
Dans la suite, nous remplacerons abusivement fTl par 
f, ceci afin d'alleger les notations. 

3.2 Principales proprietes du Systeme 
Sous des hypotheses thermodynamiques generales, le 
Systeme est hyperbolique. La matrice jacobienne as- 
sociee, notee Vf(u), est diagonalisable et possede p 
valeurs propres Ajt, 1 < k < p dont deux valeurs pro- 
pres simples Ai = vi — c, Ap = vx + c et une valeur 

propre multiple Ai = v\, 2 < k < p — 1. Ici, c = .M 

designe la vitesse du son. 
Dans le cas d'une thermodynamique generale, les in- 
variants de Riemann associes aux 1 et p-champs vrai- 
ment nonlineaires ne sont pas explicitement connus. Ils 
sont donnes par les equations differentielles suivantes: 

dYa  =  0 1 < a < ns — 1 (8) 
d ev.ß   —  0 1 < a < nv (9) 

dp dp T  -f  =  0 (10) 

d v 
dv ±  —  =  0 (11) cp 

Lorsque la relation de fermeture thermodynamique 
n'est pas une fonction lineaire de la temperature de 
translation, 7 depend de la temperature et les equa- 
tions (10) et (11) ne peuvent etre facilement integrees. 
Dans ce travail, nous proposons d'integrer de maniere 
approchee les relations (10) et (11) en negligeant la 
dependance en temperature de 7 pour obtenir les in- 
variants suivants: 

(^a)l<o<n«i«l ± 
2c 

(7-l)V 
1 v2, (Yßev.ß)i<ß<T 

 (12) 
Concernant les k-champs lineairement degeneres, les 
invariants sont v\ et p. 

3.3 Methode d'Osher-Solomon 
Cette methode repose sur la resolution approchee 

du probleme de Riemann obtenue en assimilant chaque 
onde simple ä une onde de detente-compression. Elle 
est ainsi definie par la construction d'un chemin dans 
l'espace des etats reliant u^ ä ujj et obtenu en suiv- 
ant dans le plan vitesse-pression les parties admissible 
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et non admissible des courbes de detentes issues de 
ces deux etats. L'ordre de parcours des courbes de 

detente retenu dans ce travail correspond ä l'ordre na- 

turel (v - c, v, v + c). Un tel chemin, note $(uL, UR) 

dans la suite, existe sous des conditions thermody- 

namiques generates tant qu'il n'y a pas cavitation. II 

est compose de deux sous-chemins de type vraiment 

nonlineaire (VNL) notes $1 et $3 et d'un sous chemin, 

$2) de type lineairement degenere (LD) associe ä la 

discontinuity de contact. Ce chemin une fois construit 

permet de definir completemen' ■ flux numerique as- 

•■■■ rie au schema d'Osher-c 'oro  .. seion : 

/05(ui)uÄ) = i(f(uL) + f(uÄ) 

- / |Vuf(u)|du).    (13) 
Ji{UL,UR) 

Nous renvoyons ä [5] pour l'ecriture detaillee de ce flux. 
Nous nous consacrons ici ä l'expose de l'algorithme 

de construction du chemin $(UL,UR) que nous avons 

associe au melange de gaz qui nous interesse. Nous 

renvoyons ä Abgrall et Coll. [1] pour un autre procede. 

Designons par uL et u^ les etats separes par la dis- 

continuite de contact se propageant ä la vitesse v*. 

Ces etats sont construits en resolvant le probleme suiv- 

ant, exprimant la conservation des invariants de Rie- 

mann et la continuite de la pression et de la vitesse a 

la traversee de la discontinuite de contact. 

Ya\% — Ya\L,      Ya\R — Ya\ji, 

P*     _    PL P*     _    PR 

PV   ~ PL 

V* + 

7fc P*R1R       PR 1R 

7L-1 
2 

VL +  7CL> 

2 

(14) 

(15) 

(16) 

V -c% = VR -cR,        (17) 
7fi - 1 7K - 1 

Yßev,ß\*L = YpeVtß\L,     Yßev> ß\*R = YßeVy ß\R.  (18) 

II est aise de voir que la resolution du precedent prob- 

leme peut etre ramenee ä la recherche de v*, solution 

de 1'equation 

PR(V) ~ Pl(v) = 0, (19) 

traduisant la continuite de la pression et de la vitesse 

ä la discontinuite de contact. Ce probleme une fois 

resolu conduit a la determination des autres quantites. 

Ici, nous avons : 

PU*)=PL(1- 

2 cR 

7i - 11; - VL   -?1 

CL 
)T*-11    v>vL. 

L'application pR(v) - p*L{y) est strictement croissante 
et admet au plus une racine, notee v*. Ann de calculer 

cette racine, il est utile d'introduire v\ et V'R definies 

par 

VL 
,71-1 

VL H ^—C
L, VR = VR 

1R - 1 
-CR, 

et de remarquer [5] que v* s'exprime comme combinai- 

son convexe de ces deux vitesses particulieres. II existe 

done un reel z* £ [0,1] tel que 

V* = z*vL + (1 - Z*)VR. (20) 

Notons que v~i — V~R > 0 sauf precisement lorsqu'il 

y a cavitation. En utilisant (20), le probleme de la 
recherche de la racine de l'equation (19) peut alors 

etre reformule en ces termes. Trouver le reel z* € [0,1] 

solution de l'equation : 

011 nous avons pose 

PR (2^/(7*-!))^ 

■   3T« ±Lh- 
Z)TR-1    - ^TI,-!    =   0, (21) 

CL,R 
PL (2^/(7^-1))^ 

{VL-VR)"'*-1   ""--'■ 

Lorsque 71, ^ fR, l'equation precedente n'admet pas 
de racine explicite, sa determination necessite la mise 

en oeuvre d'une procedure iterative de type Newton. 
Afin d'en optimiser la vitesse de convergence, nous pro- 
posons de substituer a la resolution du probleme (21) 

celle du probleme equivalent suivant, present ant un 
tres bon conditionnement. Trouver le reel z* £ [0,1] 

solution de l'equation g(z) = 0 ou: 

ff(«) = ' 

,T«(-U.-') 
CL,R   i1 ~ z)^R-1) -z,     si z < 

i*=± TI,(T«-0 
CL,RR  (l ~ Z) ~ *T

*
(TX'_1)i      smon 

(22) 

Afin d'initialiser l'algorithme de Newton, nous definis- 

sons 

Z\ 
_       ^LtR 

i+cLy 

^L,R  z2 = ^rr 

1 + CLÜ* 

(23) 

II est possible de verifier que la plus proche valeur de 

la racine z* est donnee par 

Zinit — 

'max(Zl,22),     si^gar|l<l, 

L min(zi,i2),    sinon 

(24) 

valeur qui sera utilisee comme valeur d'initialisation. 

Remarquons que dans le cas 7^ =7«, Zinn = z\ — 22 
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coincide avec la racine z* de l'equation consideree. 
L'algorithme (22)-(24) converge generalement en au 
plus 3 iterations pour un test d'arret de 10-6 portant 

sur l'erreur relative ||£ — 1|. 

3.4 Methode de decomposition de van Leer 
L'extension de la methode de van Leer aux equa- 

tions d'Euler multi-especes et multi-temperatures a 
fait Pobjet de quelques travaux (voir en particulier 
[11]). Les extensions proposees conduisent a une 
famille de Schemas ä un degre de liberte parametrant 
la decomposition de flux d'energie. Le choix d'une 
decomposition de flux particuliere doit etre opere de 
maniere a assurer que les matrices jacobiennes des flux 
decomposes ±V/±(u) n'admettent que des valeurs 
propres reelles positives ou nulles. Toutefois, il ressort 
de ces travaux qu'une teile propriete est difficile ä 
garantir pour tout u de l'espace des etats dans le cadre 
d'une thermodynamique non lineaire en T. Nous avons 
privilegie dans le code CELHYO le representant de 
la famille consideree permettant de preserver la con- 
stance de l'enthalpie totale a la traversee d'un choc 
stationnaire. Ce schema, brievement decrit ci-dessous, 
s'est revele entierement satisfaisant dans les applica- 
tions pratiques. 

En introduisant le nombre de Mach M — v/c, les 
flux decomposes se reduisent a /+ (u) = f (u), /~ (u) = 
0 lorsque M > 1 et symetriquement a /+(u) = 
0, /-(u) = f(u) lorsque M < -1. Pour \M\ < 1, 
ces flux sont definis par les expressions suivantes : 

/± =±-(M±l)2
Pac,    l<a<ns, (25) 

f%i = {{l±
l-)M+2-)cft, (26) 

f%, = V2f±, (27) 

ffE = Hff, (28) 

ft^,ß=Pß^,ßfh     l</9<»™. (29) 

ou nous avons pose 

ff= £ f, (30) 
Ka<ns 

Bien que fort eloigne de la methode decentree d'Osher- 
Solomon, le schema de van Leer peut neanmoins re- 
cevoir une formulation analogue en terme de chemin. 
II est ainsi possible de verifier que celui-ci peut s'ecrire 

/VL(uLluÄ)=|(f(ux) + f(uÄ) 

-/ (V/+(u)-V/-(u))du),    (31) 

et ce pour n'importe quel chemin <£ connectant ii£ 
et UR dans l'espace des etats. Cette propriete est ä 
la base de la technique d'hybridation des methodes 
d'Osher-Solomon et de van Leer [7] dont nous pro- 
posons l'extension ci-dessous au cadre des melanges 
de gaz en desequilibre chimique et thermique. 

3.5 Methode de decentrement par hybridation 
champ par champ 
L'introduction du decentrement par hybridation a ete 
motivee par l'analyse des avantages et des defauts re- 
spectifs aux Schemas d'Osher-Solomon et de van Leer. 
Ainsi si la methode de van Leer se revele etre tres ro- 
buste dans la capture des ondes non lineaires (choc 
et detente), eile est en revanche tres peu precise dans 
la resolution des ondes lineaires (discontinuite de con- 
tact). Ce manque de precision la rend inappropriee 
dans le contexte d'equations de fluides visqueux qui est 
le nötre. A l'oppose, la methode d'Osher-Solomon au- 
torise par construction la resolution exacte des discon- 
tinuites de contact stationnaires. Toutefois associe a. 
cet avantage, cette derniere souffre d'un manque de ro- 
bustesse dans la capture d'ondes nonlineaires intenses. 
Les avantages et les defauts inherents aux deux meth- 
odes se revelent done disjoints et complementaires. 

La technique d'hybridation se propose de tirer parti 
d'une teile complementarite avec pour but d'associer 
la robustesse de la methode de van Leer dans la re- 
solution des ondes non lineaires et la precision du 
schema d'Osher-Solomon dans la resolution des ondes 
lineaires. C'est ainsi que chaeun des trois sous chemins 
composant le chemin d'Osher-Solomon est associe soit 
avec la methode de van Leer soit avec la methode 
d'Osher suivant la nature nonlineaire du sous chemin 
considere. Dans la suite, nous notons VNL($) = 
$i U $3 et LZ?($) = $2- Le flux numerique resultant 
de l'operation d'hybridation trouve alors l'expression 
suivante 

fHUS(uL,UR)     =      i(f(ux;)+f(uÄ) 

|Vf(u)|du 
"/. 

I, (V/+(u)-V/-(u))du). 
/VJVL(*(Ui,Uj,)) J 

Notons que par construction, le flux hybride coincide 
avec le flux d'Osher en presence d'une discontinuite 
de contact seule et inversement se reduit au flux de 
van Leer lorsque seules n'interviennent que des ondes 
nonlineaires dans la decomposition en ondes approchee 
d'Osher-Solomon. En reprenant les notations du para- 
graphe 3.3, la relation precedente peut etre explicitee 



34-6 

en 

fHUS, UL.UR) - fVL(uL,uR) 

j -(/-K) -/-«))- Bi «* > o, 

l+(/+(^)- f+M))- «noil 
(32) 

Soulignons la reelle simplicite du flux hybride en com- 
paraison a. la methode d'Osher originale. En partic- 
ulier, les points soniques n'interviennent pas. De plus, 
l'unique test rentrant dans la formulation du flux hy- 
bride peut etre automatiquement pris en compte en 
utilisant les proprietes d» —metrie du flux de van Leer 
par rapport au nombre de Mach. Nous avons ainsi 

flus=flL + (tf.H*XI) -/£H*JD). (33) 
f%v=f™+(/X(-I^AI) - /;,3(-i^D),(34) 
&s=&+{fU-\M*R\) - fu-m\j)> (35) 
f"V=flL, + (ft ,(-MKI) - ftj-mmv 

et 

cHUS _   rVL 

5i<7n(V*)(/+i(-|M^|)-/+1(-|M£|)).    (37) 

Notons qu'a l'instar du schema d'Osher-Solomon, le 
flux hybride ne permet pas de satisfaire ä un principe 
du maximum sur les fractions massiques et les ener- 
gies de vibration massique. La correction proposee par 
Larrouturou [10] peut lui etre appliquee sans degrader 
ni la robustesse ni la precision. Soulignons enfin qu'il 
est possible de donner a la technique d'hybridation un 
cadre beaucoup plus general que celui expose ici [8]. 

3.6 Methode du deuxieme ordre explicite 
La procedure d'extension de la methode de volumes 

finis au second ordre d'approximation en espace est la 
methode classique MUSCL de van Leer qui, a chaque 
pas de temps, repose sur une reconstruction affine par 
morceaux de la solution approchee. L'extension de 
la methode MUSCL que nous utilisons au cas d'un 
melange de gaz permet de respecter la conservation des 
especes elementaires et egalement d'assurer la positiv- 
ite des fractions massiques et des energies de vibration 
massiques sous certaines conditions de type CFL dans 
le cas d'un schema explicite [13]. Dans le contexte des 
maillages curvilignes qui est le notre, la methode est 
appliquee direction curviligne par direction curviligne. 
La methode utilise les variables suivantes: 

( (Ya)l<a<n„  P,  vu  v3, p,  (l>eV;p)i<ß<nv),     (38) 

en inhibant la procedure de reconstruction sur les frac- 
tions massiques. Cette Strategie permet de garantir la 

conservation des especes elementaires qui autrement 
serait generalement perdue ä cause des nonlinearites 
inherentes ä la procedure de reconstruction. La fonc- 
tion limitrice considered est la fonction proposee par 
van Albada ou la fonction minmod. 

4. Methode implicite 

La construction du schema implicite est obtenue par 
une linearisation des flux numeriques et des termes 
source. L'implicitation des termes de flux de fluide 
parfait est basee sur la methode de Flux Vector Split- 
ting de van Leer, et ce independamment du flux ex- 
plicite utilise. La robustesse obtenue est a priori peu 
sensible ä la nature du schema explicite. Le terme 
source est traite de maniere centree. Les termes de 
derivees croisees sont negliges dans l'etape de lineari- 
sation des flux de fluide visqueux. Un bon traitement 
implicite des conditions aux limites conditionnant la 
qualite d'acceleration de la convergence vers l'etat sta- 
tionnaire, une attention particuliere y a ete apportee. 
L'Operateur implicite ainsi obtenu est lineaire et est 
resolu par une methode iterative. Une teile methode 
presente l'avantage d'etre bien moins sensible au choix 
du pas de temps que ne le sont les methodes par fac- 
torisation approchees. Elles evitent egalement la de- 
composition parfois inadequate de la matrice jacobi- 
enne des termes source. La methode iterative mise 
en ceuvre est basee sur une Strategie de minimisation 
des residus teile que la methode GMRES. La methode 
iterative convergeant d'autant mieux que le Systeme 
est bien conditionne, une factorisation ILU est util- 
isee. 

5. Resultats numeriques 

Afin d'illustrer les capacites de la methode pour cal- 
culer des ecoulements en desequilibre dans des con- 
figurations variees, des calculs d'ecoulements externes 
autour d'une configuration d'hyperboloide plus volet 
et d'ecoulements internes dans une tuyere qui equipe 
la soufflerie hyperenthalpique F4 de l'ONERA ont ete 
realises. 

5.1 Ecoulement dans une tuyere de la soufflerie 
F4 
La soufflerie ONERA F4 peut etre equipee de qua- 
tre tuyeres differentes correspondant chacune a des 
regimes d'ecoulements differents. Les conditions des 
calculs que nous presentons ici correspondent au cas 
test numero 1 du "Fourth European High Velocity 
Database Workshop" (qui s'est tenu le 24-25 Novembre 
1994 a Noordwijk). La geometrie est celle correspon- 
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dant a, la tuyere n°2.Sa longueur totale est de 3.42 
m et le rayon du col est de 0.005m. Les conditions 
dans la chambre correspondent ä une enthalpie totale 
reduite R

Hl
T de 260 et une pression de 430 bar. La 

temperature de la paroi est de 300 K. Elle est supposee 
totalement catalytique jusqu'a une distance de 0.5 m 
en aval du col, puis noncatalytique apres. 

Le domaine de calcul a ete divise en huit parties. 
Dans le premier domaine, l'ecoulement dans le conver- 
gent et dans la region proche du col est calcule. Ces 
resultats servent ensuite pour determiner la solution 
dans les zones suivantes de l'ecoulement hypersonique. 
Chaque domaine comprend 89x85 points. 

Un calcul laminaire et un calcul turbulent, respec- 
tivement notes (1) et (2) ont ete realises. Pour le cas 
turbulent, le modele de turbulence utilise est le mod- 
ele algebrique de Baldwin-Lomax et le point de tran- 
sition est situe a, 0.5 m en aval du col. Les resultats 
presentes ont ete obtenus apres 6000 iterations dans 
le premier domaine. Pour les autres domaines, 600 
a. 200 iterations environ suivant le domaine considere 
ont ete necessaires. Le nombre de Courant peut at- 
teindre une valeur de 500 (pas de temps global) dans 
les derniers domaines du divergent. Dans tous les cas, 
les residus maxima decroissent au moins de 10 ordres 
de grandeur. 

La figure 1 montre l'ensemble du maillage utilise pour 
la tuyere. Les resultats pour les calculs laminaire et 
turbulent sont presentes sur les figures 2 a 6. Le champ 
des nombres de Mach est visualise sur la figure 2 dans 
le cas de l'ecoulement laminaire et montre une onde 
venant perturber l'ecoulement proche de l'axe de la 
tuyere. La naissance de cette onde correspond ä un 
point d'inflexion de la geometric Sur la figure suiv- 
ante sont portees les distributions de temperatures le 
long de l'axe dans le cas laminaire ou turbulent, aucun 
effet notable de la prise en compte de la turbulence sur 
ces distributions ne pouvant etre observe. Les distri- 
butions transversales de nombres de Mach pour le cas 
laminaire et le cas turbulent sont montrees sur la figure 
4 en sortie de tuyere. On observe une bonne uniformite 
du nombre de Mach dans le noyau de l'ecoulement. 

5.2 Calculs d'ecoulements externes 
Deux series de calculs ont ete realisees autour 
d'une configuration d'hyperboloide plus volet. Cette 
geometrie a ete proposee pour le cas test numero 4 du 
Workshop. La longueur totale de la maquette est de 
0.1114 m et 1'angle entre le volet et l'axe est de 43.6 
degres. Le premier calcul correspond aux conditions 
de l'ecoulement dans la tuyere n° 2 de la soufflerie F4, 
l'enthalpie totale reduite etant egale a 122 et la pres- 

sion generatrice etant de 441 bar (soit les conditions 
du cas test numero 4): 
Too=187 K; 
T„,jv2=4078 K; T„)02=2485 K; 
pDO=1.557 l0-3Kg/m3; Uoo=3934 m/s; T„=300 K; 
Cjv2=0.7254; CO2=0.1354; Cjvo=0.0895; Ctf=10-20; 
Co=0.0497. 
La paroi est supposee totalement catalytique. 
Le deuxieme calcul correspond ä des conditions en vol 
sur une geometrie homothetique de la precedente dans 
un rapport 1.4: 
Too =268 K; 
Poo=2.608 10-3Kg/m3; Uoo=5083 m/s; T^ = 1000 K; 
Poo=201.5 Pa. 
La paroi est egalement supposee totalement cataly- 
tique. 

Le meme maillage est utilise pour les deux calculs 
qui tiennent compte de la difference d'echelle. II con- 
tient au total 401x110 points. Trois sous-domaines ont 
ete utilises afin de diminuer les temps de calcul et la 
taille necessaire de la memoire. Les domaines se re- 
couvrent sur quatre points. Ces domaines (nez, region 
intermediaire et region du volet) comprennent respec- 
tivement 80x110, 123x110 et 206x110 points. Pour le 
nez et la region intermediaire, on obtient une decrois- 
sance des residus quadratiques explicites de 8 ordres de 
grandeur apres 2000 iterations. Le nombre de Courant 
atteint 10 pour le nez et 70 pour la deuxieme zone. 
Dans la region du volet, une decroissance de 5 ordres 
de grandeur des residus est obtenue apres 20000 itera- 
tions et un nombre de Courant de 10. Notons que 
les residus n'atteignent pas de plateau et continuent 
de decroitre lorsque les calculs sont poursuivis. Cette 
convergence lente est due ä la presence d'une impor- 
tante zone de recirculation dans la region de volet. 

Les resultats sont presentes sur les figures 5 a 17. Les 
figures 5 a 9 montrent des courbes d'isovaleurs du nom- 
bre de Mach et de la pression pour les deux calculs. 
Dans la region du volet, la zone de separation est bien 
definie pour les deux calculs (figures 5 a 7). La fig- 
ure 6 montre un agrandissment de cette zone pour le 
cas du vol. Les effets visqueux sont importants du fait 
du faible rayon du nez. Des oscillations legeres sur les 
courbes d'isopression sont visibles et correspondent ä 
des sauts de mailles dans la region du choc. La pres- 
sion atteint la valeur maximale de 22432 Pa pour le 
cas en soufflerie et 63073 Pa pour le cas du vol. 

L'ecoulement est relativement fige derriere le choc, 
comme le montrent les profils de temperature obtenus 
pour le premier calcul (figure 10). La distance du choc 
est dans ce cas egale a 3.7 10-4 m. Les figures suivantes 
montrent des valeurs a la paroi pour les deux calculs. 
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Le nombre de Stanton le long du corps est presente 
sur la figure 11 pour le calcul en soufflerie. La valeur 
maximale (0.284) correspond ä un flux de chaleur egal 
ä 1.43 107 W/m2. Les quatre figures suivantes mon- 
trent, dans la region du volet, les nombres de Stanton 
et les coefficients de frottement pour les deux calculs. 
La zone de separation mesure environ 1.1 10_ m pour 
le cas de la soufflerie et 2 10~2 m pour le cas du vol. 
Un tourbillon secondaire peut etre observe dans le cas 
du vol sur ligne charniere avec le volet. Enfin. nous 
montrons les courbes de convergence dans la region in- 
termediate et dans celle du volet (figures 16 et 17). 

6. Conclusion 

Nous avons presente les methodes numeriques util- 
isees dans le code CELHYO pour le calculs des ecoule- 
ments en desequilibre thermique et chimique. Ce code 
permet d'utiliser les Schemas de Roe, d'Osher, de van 
Leer et leur hybridation. L'accent a ete mis sur la tech- 
nique de decentrement par hybridation. Cette tech- 
nique de decentrement combine les deux approches 
classiques de maniere ä n'en retenir que les pro- 
prietes jugees favorables pour la simulation numerique 
d'ecoulements ou coexistent d'importants phenomenes 
non lineaires et lineaires. C'est en particulier le cas 
des ecoulements visqueux hyperenthalpiques presen- 
ted. L'operateur implicite est construit sur les flux 
de van Leer et est inverse par une methode iterative 
de type GMRES. Ce code permet de calculer des con- 
figurations variees bidimensionnelles et axisymetriques 
d'ecoulements hyperenthalpiques, et ce en utilisant des 
Schemas numeriques precis et en obtenant une bonne 
convergence. 
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Fig. 1 - Maillage de la tuyere 
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Fig. 4 - Distributions des nombres de Mach. 
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Fig. 12 - Distribution des nombres de Stanton 
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Fig. 13 - Distribution des nombres de Stanton 
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A PROJECTION METHODOLOGY FOR THE SIMULATION OF UNSTEADY INCOMPRESSIBLE VISCOUS 
FLOWS USING THE APPROXIMATE FACTORIZATION TECHNIQUE 
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S. Tsangaris 

Laboratory of Aerodynamics, National Technical University of Athens 
PO Box 64070, 15710 Zografou, Athens, Greece 

SUMMARY 

In this paper, an implicit projection 
methodology for the solution of the two- 
dimensional, time dependent, incompressi- 
ble Navier - Stokes equations is pre- 
sented. The basic principle of this method 
is that the evaluation of the time evolu- 
tion is split into intermediate steps. The 
computational method is based on the ap- 
proximate factorization technique. The 
coupled approach is used to link the equa- 
tions of motion and the turbulence model 
equations. The standard k-e turbulence 
model is used. The current methodology, 
which  has been tested extensively for 
steady problems, is now applied for the 
numerical simulation of unsteady flows. 
Several cases  were tested, such as plane 
or axisymmetric channels, a backward fac- 
ing step and a flow behind a square cylin- 
der . 

1. INTRODUCTION 

The numerical prediction of unsteady in- 
compressible flowfields has always been 
one of the most challenging areas of fluid 
dynamics. The primary difficulty is in 
finding a satisfactory way to link changes 
in the velocity fields to changes in the 
pressure field. This interaction must be 
accomplished in such a manner as to ensure 
that the divergence of the velocity van- 
ishes at each level of physical time. The 
most common solution to this problem is 
the use of an artificial compressibility 
methodology or a projection methodology. 

The projection method for the solution of 
the time-dependent Navier-Stokes equations 
was introduced independently by Chorin 
(Ref 1) and Temam (Ref 2). Subsequently, 
an explicit version of the method was pre- 
sented by Fortin et al (Ref 3). The pro- 
jection method is an interpretation of a 
fractional-step method as adapted to the 
unsteady Navier-Stokes equations (Ref 4). 

The procedure of the physical time level 
increment is split into two steps. Follow- 
ing the decomposition of Chorin (Ref 1), a 
tentative velocity field is first calcu- 
lated by the discretized momentum equa- 
tions without the pressure gradient. At 
the second step, the velocity components 
at the new time level are evaluated by 
correcting the tentative solution in order 
to satisfy the incompressibility con- 
straint . 

The solution algorithm we use in the pres- 
ent study, is the approximate factoriza- 
tion technique. This is an implicit algo- 

rithm which was initially developed by 
Beam and Warming (Ref 5) for compressible 
flows but has successfully used for incom- 
pressible steady flows as well (Ref 6, 7). 
Regarding the mathematical model, a pro- 
jection method is developed, which uses a 
Poisson equation for the explicit pressure 
derivation, while the numerical algorithm 
involves only the momentum equations. 

Concerning the turbulence model there are 
plenty of options. The standard k-s model 
with the wall functions equations (Ref 8) 
was selected because it is well tested and 
widely used, in spite of its disadvan- 
tages. In addition, small values of the y- 
plus are not required, so coarse grids can 
be used near the walls and thus large time 
steps are possible. It is expected, that 
this turbulence model will sometimes per- 
form poorly, especially in the recircula- 
tion zones. 

The objective of this paper is to describe 
a new projection methodology developed for 
collocated grids and to present predic- 
tions for several test cases where the un- 
steadiness is either forced or inherent. 

2. THE GOVERNING EQUATIONS 

The full form of the momentum equations is 
used, where all variables are in non- 
dimensional form. Concerning the turbulent 
flows the high-Reynolds number (Ref 8) 
form of the k-e model is used. 

This formulation requires the use of the 
wall functions to bridge the viscous and 
boundary layers in proximity to the solid 
wall. This approach is strictly  valid 
only for attached shear layers and may 
perform poorly in the recirculation zones. 
In addition this model is valid under the 
hypothesis of equilibrium and may not sat- 
isfactory perform in unsteady flows. 

On the other hand, exp 
tions showed that the 
the boundary layer and 
the turbulence are not 
fected by the unsteadi 
(Ref 9, 10, 11). From 
it is well founded to 
potheses used in calcu 
the steady case are st 
unsteady case. 

erimental observa- 
general behaviour of 
the structure of 
fundamentally af- 

ness of the flow 
these observations 
suppose that the hy- 
lations methods for 
ill valid for the 

The reference quantities are some refer- 
ence velocity uref, a reference length Lref, 
a reference density pref and a reference 
kinematic viscosity vref. The reference 
value for the time is defined as tref= 
Lref/uref and for the pressure is the prod- 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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uct pref=Pref
u ref • The reference quantity 

for the turbulent kinetic energy is u ref 
and for the dissipation rate u ref/Lref. 

Performing a generalised coordinates' 
transformation from the physical (x,y,t) 
to the computational (?,T|,T) domain, the 
following non-dimensional form of the 
equations is obtained (Ref 12): 

do + d.F + d„G +  aE + K = S,V + d„W + aC + D 

where is a=0 for the two dimensional equa- 
tions, a=l for the axisymmetric equations 
and the subscripts x,y,^,Ti,T denote deri- 
vation. For convenience we express the 
above equation in the following form: 

d,Q +  K = [p(u, v)] 

where 

(1) 

is a matrix that contains the pressure de- 
rivatives of the momentum equations. 

In the expressions above, ^,T| are the cur- 
vilinear coordinates, connected to the 
cartesian ones x,y through the generalised 
coordinates' transformation: 

% =  £(x, Y, t) , T] = T](x, y, t) , T = t 

and  J   is   the   Jacobian   of   the   transforma- 
tion: 

J =  Z,J\y ~ ^ 

In addition, U,    V are the contravariant 
velocities along the ^,r\  directions re- 
spectively, given by the following rela- 
tions : 

u = St + S,u + Syv \   + T\*u + TlyV 

[f(u, V)] 5?V + dnW + aC + D - d%F - dnG aE 

In equation (1), Q is the vector of the 
conservative variables: 

Re is the Reynolds number and G is the ki- 

netic energy production term: 

G = 2[(uJ2 + (vy)
2] + (uy + vx)

2 

Q = - [u, v, k, sj 
J The   stresses   are: 

F,G,E   are   the   convective   fluxes: 

F  = 

G  = 

2 2 
u U+ - ^k, v U+ - ^yk, ^U,zU 

2 2 
u V+ - Ti k, v V+ - -n k, k V, e V 

3 '' 3    y 

E = — [u, v, k, e]T 

Jy 

V,W,C are the viscous fluxes: 

Sx uxx    T  Sy lxy 

Sx^xy    +  Sy* 
V  = 

J Re M^X     +SyX 
w 1 

J Re 

Vxx    +  Vxy 
*I,V     +   llytyy 

rk(riA + V> 

c = 
J Re y 

Tkky  + 2vt 

s v 
re£y + 2vtc1 - — 

k   y , 

D is a vector that contains the source 
terms of the k and e equations: 

1 
D =  — 

J 
0,0, C„ — G -   8, ac.kG - C, — 

and,   finally 

K = 

o 
o 

\ f€ 
-s 

0 

J <   o   J 

tx*   =  2veffux    ,   xyy   =  2veffvy    ,   TW   =  2veffv / y 

*xy  = Tyx  = Veff(Uy + V.) 

where veff is the effective viscosity. 
Finally, for the turbulence model equa- 
tions are: 

rk = v, + -^    ,    rc = Vj + -^ 

where v^ is the kinematic viscosity and vt 
is the turbulent viscosity, which is given 
by the relation: 

vt = Re  C(l — 

The   constants   are: 

C^   = 0.09, Ct   = 1.44, C2   = 1.92, ak   = 1.0, crE  = 1.3 

For the above model the concept of wall 
functions has been employed. The central 
idea is that the flow in the region near 
the wall can be assumed to behave as an 
one-dimensional Couette flow. This is a 
reasonable assumption except for regions 
of high pressure gradient, separation or 
reattachment. Once this assumption is 
made, it is rather easy to arrive at exact 
or semi-empirical relations (Ref 8, 14), 
which link the shear stresses and the 
other variables at the wall to the values 
of velocity, turbulence energy, etc. at 
the outer edge of the Couette layer, where 
the first interior grid point is located. 

3. NUMERICAL ALGORITHM 

The time marching scheme 

For the solution of the system of equation 
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(1) the implicit, factored, finite differ- 
ence scheme of Beam and Warming (Ref 5) is 
used. The temporal derivative in equation 
(1) is approximated via a generalized time 
differencing: 

i (I + C)A -; V „ 0» _ — i 11 2 Q"  + 0 
Wx   Ax   1 + 9 A 

?]A- C, ysx +  AT' 

which takes the form: 

1 - AQn 6 

Ax 1 + C 

C      AQ-1 

+ 1 + C    AT 

a,Qn 

+ 0 

i + C 
5tQ

n 

e --C|AT + AT
2 (2) 

where A and V are the forward and back- 
ward differencing operators, respectively, 
the superscript n denotes the time instant 
and 0  denotes the order of the truncation 
error. 

After substituting (1) into (2) and per- 
forming calculations the following rela- 
tion is derived: 

e 
AT 

i+C i+C 
K" + 

1 + C AT 

+ 0 H> ,T + AT 
Using a fractional step method similar to 
that described by Anderson and Kristoffer- 
sen (Ref 13) the above relation is split 
in two parts: 

Q   - Q 

Ax - = YTl ^u' v)l* + T+l ^U'v)'" 
AQn 

1+C 

and 

AT 
+ 0 - - C |AT + Ax2 (3) 

Ax 

1 + C 

1 + C 
_ 1-9 

i + C 

[*tu,v)r 
i + C 

ftu,v)]* 

Kn 

where Q is an intermediate, or tentative, 
flowfield. Using equation (1) the above 
relation is written in the form: 

- Q 6 
Ax 

1+C 

1+C 
i - e 
i + C 

5,Qn 

i + C 
3,Q' 

Kn 

and after some simple calculations and as- 
suming K 

Q"*1 - Q' 

AT 

=K is obtained: 

"i+C-eK    " 1 + C 
Kn (4) 

Equation (4) imposes the condition 1+?- 
6*0.   Thus we use 9=1 and ^=0.5 which leads 
to the second order three point backward 

scheme. Equation (3) is actually the same 
with (2), except that it contains equation 
(1) without the pressure gradients, and is 

AQ"=Q*-Q" 

A non-linear expression, eq. (3), occurs 
for the time increment of the conserva- 
tives variables' vector AQn  (Ref 12, 14). 
In order to derive a linear algebraic sys- 
tem of equations, a linearization of vis- 
cous and inviscid fluxes must be per- 
formed. The inviscid fluxes, which are 
functions of Q, are linearized using a 
Taylor series expansion, for example: 

AFn A" ■ AQ" + O(AT2) 

where An=9Fn/9Qn is the Jacobian matrix of 
the vector F°. 

The above linearization of the inviscid 
fluxes ensures the second order time accu- 
racy of the scheme. In order that this ac- 
curacy is retained in the corresponding 
linearization of the viscous fluxes, it 
must be taken into account that the latter 
are functions of all Q,Q;,Q„, for example: 

Vn(Q,Q!,Qn)=V1"(Q,Q;)+V2" (Q,Q„) 

The linearization of matrix v" leads to 

the following relation: 

AV" = -(-Pn + R\) AQ" + (R" AQn) + O(AT2) 

while the matrix V2" is treated in a ex- 

plicit way: 

AV2" = AV.T
1 + O(AT2) 

where Pn and Rn are the Jacobian matrices. 
A detailed description for all the line- 
arizations is given in Ref 14. 

The substitution of the linear expressions 
of the flux vectors into the original non- 
linear equation for AQ", leads to a 
strongly coupled system of equations in 
both spatial directions. This coupled sys- 
tem is solved by the Approximate Factori- 
zation Technique (Ref 5, 14), which leads 
to the following two tridiagonal systems, 
one for each of the two directions ?,Ti: 

i1+irr WA
 "p+R

«) " 9
«

R
 ■aNi+®*Hr 

• AQ"   = R. H. S. (5a) 

{i + ~f^ K(B - Y + S„) - d„„S - O(N2 + N, - T) + ©bH]° 

AQ" = AQ" (5b) 

where A,B,P,Y,R,S,N1,N2,N3,T and H are Ja- 
cobian matrices (Ref 14), and 

Q* = Q" + J- AQ" 

R. H. S. = 

(5c) 
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Ax 
  fs.(-F + V)° + 3n(-G + W)" + a(C - E)° + D"l 
1 + C, l ; n J 

i + C 
AQ" + D. + 0 CAT2 + AT3 (5d) 

where  Q = JQ  is the vector of conserva- 

tive variables in the physical domain, De 
is the artificial dissipation terms (Ref 
14), and ®a, ®b are weighting functions 
(Ref 15) used to add the Jacobian matrix H 
in both the sweeps. 

The Poisson equation 

Equation (4) leads to the following rela- 
tions (9=1) : 

(6a) 

(6b) 

(6c) 

Assuming that the continuity equation is 
satisfied at the n+1 time instant: 

the first two of (6) are combined to give 
the Poisson equation: 

u       =  u a'l-K- e 
vn+1   =   V* -»fr e 
k"+1  = k", £D+1  = e* 

i + Q - e 

AT 
9 AT • 5, 

6AT 

n+l 

V • c 

+ SAT • a. (7) 

oscillations from the solution are re- 
moved. In the present work only explicit 
terms De are used in (5). These terms are 
a blended second and fourth order non- 
linear model which is widely used in com- 
pressible flows (Ref 16, 17, 18, 19) and 
was used for the first time in incom- 
pressible flows by Pentaris et al (Ref 
14), where is proved that the existence of 
the second order dissipation terms do not 
affect the spatial accuracy of the method. 

The definition of the time step 

Although the solution method is implicit, 
the actual stability of the scheme is not 
independent of the time step used. In this 
work small time steps are used which help 
the fast convergence of the Poisson equa- 
tion. When a problem with oscillating flow 
rate is to be simulated, the Navier-Stokes 
equations must be integrated for as many 
cycles as are needed to reach a periodic 
steady state, if such a state exists. In 
the periodic steady state, of period T, 
the solutions at time instants t and t+T 
must reach a specified convergence crite- 

rion, which in the present work is 1x10 . 
With the present method this criterion is 
reached at the second period, because 
10000 time intervals are used per period. 
Using less time intervals per period, more 
iterations are needed for the convergence 
of the Poisson equation. In addition more 
periods are necessary to reach the above 
criterion and thus the total computational 
cost is increased. 

When a problem with steady upstream condi- 
tions is solved, where the Poisson equa- 
tion is rapidly converged, the time step 
is essential to be as large as possible. 
Then the time step is defined as: 

where 2 = (u, v) is the velocity vector. 

The procedure that is used is the follow- 
ing. First the  time-marching scheme of 
(5) is solved to provide the tentative ve- 
locity components u , v and the turbulent 
variables k,c. Next the Poisson equation 
(7) is solved using the classic ADI method 
and the pressure field is obtained. Fi- 
nally the velocity components at the new 
time level are evaluated by correcting the 
tentative velocity field using (6a) and 
(6b). It is essential, for unsteady flows, 
to fully converge the Poisson equation at 
each time step in order the mass conserva- 
tion to be satisfied. 

The artificial dissipation terms 

The spatial derivatives in the above sys- 
tem of equations are approximated by three 
point central second order differencing 
expressions. So the solution of the system 
of equations (5) requires the inversion of 
two block tridiagonal systems, one in each 
direction. On the other hand, the use of 
central differences on collocated grids 
leads to the necessity of adding external 
artificial dissipation terms, so that the 
stability is retained and high frequency 

dt 
CFL 

1 + JJ„ 

where Jmax is the maximum of all the Jaco- 
bians in the computational domain and CFL 
is the Courant number. 

4. BOUNDARY CONDITIONS 

The use of a collocated grid allows the 
impose of the suitable boundary conditions 
in convenient form. Throughout the compu- 
tations, explicit boundary conditions are 
used. For the Poisson equation these con- 
ditions are derived by integrating equa- 
tion (7) over the solution domain and ap- 
plying the Gauss's theorem (Ref 20): 

n   dA 
1 + C - 6 

0AT 
Pc n   dA 

where the last part of equation (7) vanish 
for unsteady flows because is Ar=const in 
the entire domain. In the equation above, 
n  is the outward unit vector normal to the 

boundary A which encloses the solution do- 
main . 

Concerning the other variables, the veloc- 
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ity profiles uln are specified in the in- 
let boundary , while the kinetic energy 
kln and dissipation rate cln are given by 
the following relations: 

= 0.00 3 ut 
C. k' 

£;. = (8) 
0.005 D, 

where Dln is the inlet span. 

On the outlet boundary all variables are 
calculated by extrapolation from the inte- 
rior. At the symmetry axis the first de- 
rivatives of all variables are set equal 
to zero, except the v-component of the ve- 
locity which is set equal to zero. On the 
solid surface the non-slip condition is 
applied for the velocity components. The 
kinetic energy and the dissipation rate 
are defined at the first grid point above 
the solid surface with the use of the wall 
functions (Ref 14). 

Finally, as initial conditions, the u ve- 
locity component is set equal to unity, 
while the v velocity component and the 
pressure vanish. The initial data for the 
turbulence model variables are given by 
equations (8). 

5. RESULTS AND VALIDATION 

Some representative results of several 
test cases are shown in this section. It 
must be mentioned that all the quantities 
used are dimensionless. The dimensionless 
numbers Reynolds, Strouhal and Womersley 
are defined as: 

Re = 
u . L ref   r 

Str = 
»ref L„f 

W = L. ^Str • Re 

respectively, where uref is the reference 
cyclic frequency. 

Finally it must be noted that all the re- 
sults have been tested for various grids 
and are independent from the grid density. 

One-dimensional oscillatory flow 

In order to check the reliability of the 
present method it was initially developed 
for one-dimensional flows and it was 
tested to an oscillatory channel flow (Ref 
21). In this problem the back pressure of 
the channel is oscillating according to: 

P„(t) po + pesin| (str • t) 

An analytic solution to this problem can 
only be obtained if the pressure perturba- 
tion pe is small compared to the mean back 
pressure p0. In this work these parameters 
are pe=0.1 and p0=l. The Strouhal number, 
based on the time mean inflow velocity u0 
and the channel length 1,   Str=corefi/u0 is 
chosen to be equal to 10. 

The analytic solution for the velocity and 

for the pressure are given in Ref 21. 
These solutions show that the velocity is 

a function of time only. This is a direct 
reflection of the incompressible continu- 
ity equation in a constant area tube. The 
pressure fluctuation is a linear function 

of x that vanishes at x=l to meet the 
downstream boundary condition. Some com- 
parisons between numerical results and the 
analytic solution are shown in Fig 1. The 
calculated dimensionless velocity as a 
function of time, and the dimensionless 
pressure at three longitudinal positions 
of the tube are compared to the analytic 
solution. Both the numerical results are 
in excellent agreement with the analytic 
solution, demonstrating the reliability of 
the present method for unsteady flows. 

Two-dimensional periodic flow between par- 
allel plates 

The oscillatory flow between two parallel 
plates with a span of 2b is the second 
test case we present. The Reynolds number 
is based on the half distance b between 
the two plates and the maximum inflow ve- 
locity u0. At x=0 the imposed inflow uni- 
form velocity is given by: 

u(t)=l-sin(Str-t) v(t)=0 

The analytic solution for the velocity and 
the pressure gradient for the developed 
part of the channel, is given by Moore 
(Ref 22). The Strouhal number is equal to 
10 and the Reynolds number is equal to 
1.6. 

A 75x29 grid is used for the current test 
case, with 4b length  and lb height. The 
lower boundary is a solid wall and the up- 
per one is a symmetry axis. 

One cycle of the inflow velocity oscilla- 
tion is split in 10000 time intervals and 
the dimensionless time step obtained is: 

dt 
2% 

Str • 10000 
= 2% • 10- 

In Fig 2 the developed velocity profiles 
at different physical time instants are 
presented. As can be seen the numerical 
results coincide with the analytic solu- 
tion. In Fig 3 the velocity as a function 
of time at three different distances from 
the wall, and the pressure gradient in the 
developed part as a function of time are 
presented. The agreement is excellent com- 
paring the numerical results with the ana- 
lytic solution. It is clear that the un- 
steady motion is predicted well after the 
one fourth of the first period, and this 
is one reason for the use of small time 
steps. 

Periodic flow in axisymmetric channel 

The third test case under consideration is 
the periodic Stokes flow in a circular 
tube, extensively presented and analysed 
by many researchers (Ref 23, 24, 25, 26). 
In the present paper the Reynolds number, 
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based on the radius a of the tube and the 
maximum inflow velocity uof is considered 
to be equal to 0.1, in order to approxi- 
mate the Stokes flow. At x=0 the imposed 

velocity profile is (Ref 26): 

u(t)=u(y)-cos(Str-t) , v(t)=0 

where u(y) is equal to unity except the 
near the wall region were parabolically 

approaches zero. For the present case we 
select the typical Womersley number of 

W=cW(uref/vref)= V30 and the Strouhal number 
becomes Str=auref/uo=300 . The time step 

used is 2.094-10"6. 

A 45x40 grid is used, with 1.2a length 
and la height. The lower boundary is a 
solid wall and the upper one is a symmetry 
axis. Solution for the above relations are 
given by Goldberg et al (Ref 26), in their 

Table I. 

In Fig 4 the comparisons between the semi- 
analytic solution and the numerical re- 
sults provided by the current method are 
given, for the u-velocity component, at 
four instants of the physical time. The 
agreement of the current numerical results 
with the semi-analytic solution is very 
good at all the time instants. The dis- 
crepancies that occur at centreline veloc- 
ity at ut=0 and ut=n due to the semi- 
analytic solution (Ref 26). 

The main reason that this test case is ex- 
amined, is that the results provided by 
the analytic solution concern the entire 
flowfield along the tube, in contrast to 
the flow between the two parallel plates 
where results only for the developed part 
of the flow were available. In addition 
the Strouhal number is much larger than it 
was in the previous test case. 

Unsteady flow behind a square cylinder 

The unsteady flow behind a square cylinder 
is presented in this paragraph. The objec- 
tive is to examine the reliability of the 
methodology when the unsteadiness of the 
flow is due to the viscosity of the flow 
and not to an external cause. 

The Reynolds numbers examined, based on 
the inflow uniform velocity u0 and the 
square side a, are 100, 250, 500 and 750. 
Three different grids were used with 

100x56, 200x110 and 145x111 points. The 

200x110 grid is shown in Fig 5. The points 
inside the square are blocked. The posi- 
tion of the cylinder and of all the 
boundaries are those shown in Fig 5, and 
are the same for all the grids. The upper 
and lower boundaries are considered to be 

symmetry axes. 

Indicative experimental studies concerning 
this flow are those of Purtell and Kle- 
banoff (Ref 27) and Okajima (Ref 28). 
Typical numerical studies are those of 
Davis and Moore (Ref 29), Franke et al 
(Ref 30) and Kelkar and Patankar (Ref 31). 

In Fig 6 the Strouhal numbers Str=fa/u0 
predicted for all the grids and for sev- 
eral time steps are shown. Comparisons are 
made to other experimental data and nu- 
merical results. The agreement is very 
good. It can be seen that the results are 
slightly affected by the grid density or 
the time step used. On the other hand, the 
disagreement between the experimental data 
presented in Fig 6 show the uncertainty 

and the sensitivity of the flow. 

In Fig 7 the vorticity isolines are pre- 
sented for Reynolds numbers 100 and 250. 

In Fig 8 the time history of the v- 
velocity behind the cylinder and the cor- 
responding power spectrum are presented. 
It must be mentioned that for Reynolds 
numbers 100 and 250 the flow is periodic. 
For larger Reynolds numbers the flow be- 
comes transitional or turbulent, and the 
time histories of the velocity and the 
pressure show a chaotic behaviour. 

Unsteady turbulent flow behind a backward- 

facing step 

In the present paper a numerical investi- 
gation of the coherent vortices in turbu- 
lence behind a backward-facing (Ref 32) 
step is presented. The ratio of the chan- 
nel height W to the step height H is 2.5. 
The geometry and the inflow velocity pro- 
file U(y) are the same as in the experi- 
ments of Eaton and Johnston (Ref 33). A 

250x50 grid is used, a detail of which is 
shown in Fig 9. The total length of the 
channel is 50 step heights. Both the lower 
and the upper boundaries are solid sur- 
faces. The Reynolds number based upon the 
step height H and the maximum inflow ve- 
locity U0 is 38000. The time step used is 

0.0075. 

In the first run the original k-s model 
was used. The flow that occurred was 
steady. The recirculation length was 7.1H. 
The main reason that a steady flow was 
predicted, is the overestimate of the tur- 
bulent viscosity, which indirectly reduces 
the Reynolds number. Thus a second run was 
performed using a modified relation for 

the turbulent viscosity: 

k^ 

E 

where 

f,   = 4+(l-*;){l-exP[-(y
+ -y+

0)/A
+]}2 

is a function proposed by Miner et al(Ref 
34) in order to reduce the turbulent vis- 
cosity near the wall. The constants are 
fo   = 0.04 , y* = 8 and A+=26. 

Using the above modification the flow be- 
comes unsteady.  The pressure contours and 
the vorticity contours are shown in Fig 
10. The presence of a mixing layer behind 
the step is clear. The recirculation 
length (temporal mean) is overestimated 
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and is 8.1H, versus the experimental re- 
sult of 7.8H and the other numerical re- 
sult of Silveira Neto et al (Ref 32) of 
6.8H. The eddies which impinge on the 
lower wall, and are transported down- 
stream, are shed with a frequency f that 
corresponds to a Strouhal number Str=fH/U0 
=0.068. This is in excellent agreement 
with the experimental data, where 

Str=0.07. 

In Fig 11 the time mean velocity profiles 
at two different positions are shown, in 
comparison to the experimental data of Ea- 
ton and Johnston and the numerical results 
of Silveira Neto et al. The agreement of 
the results provided with the experimental 
data is very good. At Fig 12 the time mean 
kinetic energy profiles are compared to 
the experimental data. The agreement is 
very good. In both the Fig 11 and 12 the 
results of the steady case are also shown. 
In Fig 13 the temporal evolution of the 
longitudinal velocity component at 
x/H=7.59, y/H=0.1 and the corresponding 
spectrum analysis are shown. 

An interesting phenomenon, that can be ob- 
served in Fig 10 is the separation of the 
boundary layer from the upper wall; it 
generates a second street of coherent vor- 
tices which are transported toward the 
outlet of the channel with a Strouhal num- 
ber Str=0.068. This phenomenon has also 
been observed in experiments performed by 

Armaly et al (Ref 35) with Str=0.07. 

6. CONCLUSIONS 

An implicit projection methodology for the 
solution of the unsteady Navier-Stokes 
equations in collocated grids is presented 
in this paper. The computational method is 
based on the approximate factorization 
technique and the incompressibility con- 
straint is satisfied by a Poisson equa- 
tion. Extended comparisons with analytic 
solutions, experimental data and numerical 
results provided by other researchers lead 
to the conclusion that the present method- 
ology is a reliable tool for solving a 
large range of unsteady problems. 
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flow. Comparison with analytic solution. 
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mental data and numerical results. 
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Figure 7. Vorticity isolines for Reynolds numbers 100 (up) and 250 (down). Grid 
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Figure 8. Time history of the v component of the velocity behind the square cylin- 
der (left) and the corresponding power spectrum analysis (right). 
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Figure 9. A view of the 250x50 grid used for the solution of the unsteady turbulent 
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Figure 11. Time mean longitudinal velocity profiles versus experimental data and other 
numerical results. 
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Abstract 

A solution-adaptive structured grid technique is de- 
scribed for the computation of steady and unsteady 
Euler flows past aerofoils. Transfinite interpolation 
is used to generate the grids as this is well-suited 
to unsteady flows, since grid speeds required in the 
flux terms are available directly from the algebraic 
mapping. A novel approach to grid adaption is de- 
scribed. Adaption is performed by adapting the in- 
terpolation parameters, instead of the physical grid 
positions, so the adapted grid positions are available 
algebraically. Hence, the grid speeds required for un- 
steady computations are also available algebraically. 
For unsteady flows grid adaption is performed by im- 
posing an 'adaption velocity' on grid points, thereby 
applying the adaption gradually over several time 
steps and avoiding the interpolation of the solution 
from one grid to another, associated with instanta- 
neous adaption. Steady and unsteady aerofoil flows 
are considered. In both cases the adaptive grid tech- 
nique is shown to produce sharper shock resolution 
for a very small increase in CPU requirements. 

1 INTRODUCTION 

Increases in computer power have meant that com- 
putational methods for unsteady flows have become 
commonplace. However, the CPU requirements of 
these methods can still be large. Moving grids are of- 
ten used, and so repeated grid generation is required, 
and a large numerical integration time may be neces- 
sary to reach a periodic solution. Grid adaptivity is 
therefore desirable to improve solution resolution, in 
regions of high flow gradients, without significantly 
increasing the CPU requirements. There has been 
much recent discussion about whether structured or 
unstructured grids are best. Unstructured grids ap- 
pear to have the advantage of lending themselves 
more naturally to grid adaption or enrichment, but 
the computational cost can be large, due to the grid 
connectivity data required. It has been shown [1] 
that for steady computations a solution computed 

using an unstructured grid requires 2 to 5 times the 
CPU time ofthat on a structured grid with the same 
number of nodes. The situation is likely to be worse 
for unsteady computations, where the grid must be 
recomputed at least once per time step. 

This paper describes a solution-adaptive grid tech- 
nique for steady and unsteady Euler flows using 
structured grids computed by the transfinite inter- 
polation technique. Transfinite interpolation is well- 
suited to unsteady computations [2] since the grid 
speeds are available directly from the interpolation 
equation. The grid generation is remarkably sim- 
ple, grid positions are obtained by interpolation of 
boundary positions and grid speeds by interpolation 
of boundary speeds, the interpolation being the same 
in each case. 

Structured grid adaption is often achieved by solving 
a set of partial differential equations for the complete 
domain, for example Catherall [3] solves a combina- 
tion of Laplace, Poisson, and equidistribution equa- 
tions with source terms added to control grid stretch- 
ing, spacing, and orthogonality. Pericleous et al [4] 
solve an equidistribution equation, based on solution 
gradients, along each grid line in each coordinate di- 
rection, then solve a Laplace equation for the result- 
ing grid positions to ensure orthogonality. Although 
these approaches are suitable for steady flows, they 
are less suitable for unsteady flows. When consider- 
ing moving grids the grid speeds are required in the 
flux evaluation, and neither approach leads to an ob- 
vious method of evaluating these speeds. 

A different approach is presented here, wherein a 
new interpolation technique is developed and grid 
adaption is performed by adapting the interpolation 
parameters instead of the physical grid positions. In 
this way it is possible to determine the adapted grid 
positions algebraically. This represents a significant 
advantage when considering unsteady computations 
on moving grids. The resulting grid position equa- 
tion can simply be differentiated with respect to time 
to yield the grid speeds algebraically. 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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However, there is a further problem encountered 
when adapting the grid during an unsteady com- 
putation. The conventional steady technique is to 
adapt the grid instantaneously and interpolate the 
solution to the new grid. This is less suitable for un- 
steady flows since many adaptions are required over 
several periods of motion, and repeated interpola- 
tion may result in a gradual loss of accuracy. Un- 
structured adaptive grids have been developed for 
unsteady flows, see for example [5, 6], and regions of 
high gradients are simply enriched with extra points. 
However, an interpolation step is still required, and 
this has been shown to lead to a conservation loss, 
even for unstructured grids, [5]. 

The adaption for unsteady flows is carried out here 
by imposing an 'adaption velocity' onto each grid 
point, thereby moving the grid points from one 
adapted grid position to the next over several time 
steps. This avoids the instantaneous adaption ap- 
proach and so interpolation is not required. It also 
requires no extra grid generation. 

2 UPWIND DIFFERENCE SCHEME 

A finite-volume upwind scheme is used to solve the 
two-dimensional unsteady Euler equations in inte- 
gral form, for the domain Q with boundary dQ. 

I- / / \Jdxdy+ [   (Fdy-Gdx) 
ot J Jn Jen 

0. (1) 

The vector of conserved variables U and convective 
fluxes F and G, for moving grids, are; 

U    =    [p,pu,pv,Ef, (2) 

F    =    [pU, puU+P,pvU,(E+P)U + xtP]T,{3) 

G    =    [pV,puV,pvV + P,{E+P)V + ytP]T,(4) 

and 
U = u — xt, V yt (5) 

where xt and yt are the inertial grid speeds in the x 
and y directions respectively. 

The cartesian velocity components normal and tan- 
gential to each computational cell face, and the con- 
travariant velocity normal to the cell face, are then 

u = u 
Ay 

As 

Ax Ax 
lÄ7 V7T<       6) As 

U = (u-xt) 
Ay 

As 
(v 

.Ax 
yt)As- 

(7) 

Here Ax and Ay are the cell face components and 
As is the face length. The general flux function in 
the direction normal to the cell face is then 

and the flux across the face simply FAs. This gen- 

eral flux vector is split into a forward part F as- 
sociated with positive moving waves only, i.e.    all 

eigenvalues of ^4y > 0, and a backward part F as- 
sociated with negative moving waves only, all eigen- 

values of ^Kj- < 0. At each cell face a pair of states 
are thus defined and a single numerical flux derived 
from this pair. The split flux components are, see 
Van-Leer [7] and Parpia [8], 

F± = < 

(   f* J mass 

f± \(-Ü±2a)       - 

f± V J mass 'u 

v    J energy 

where 

f±     = f± J energy        J mas 

fLss=±H
T(M±l) 

'[(7-l)[7±2a]2 

(9) 

(10) 

2 

2(T2 - 1) 

U       üz + v 

T+      2 

+ Ay 
As As 

Ax\ (~U±2 ,} 
(11) 

F = [pU,pUu + P, pUv, EU + Pü] (8) 

and_M the Mach number normal to the cell face 
= —, and a is the local acoustic speed.   The above 

a '   r 

splitting is only valid for |M| < 1. Else 

F^" = F,      F~ = 0,   if  M > 1, (12) 

1^=0,   F"=F,   ifM<-l. (13) 

The general flux vector is split by 

F = F+(U+) + F~(lT). (14) 

A third-order spatial interpolation is used to eval- 
uate U+ and U~ at each cell face, along with the 
continuously differentiable flux limiter due to An- 
derson ei al [9]. 

Once F has been split into its components the re- 
sulting flux must be rotated back to our original co- 
ordinate system. This is achieved by 

FAy-GAa: = JR-1[F+(U+) + F_(U-)]As   (15) 

where R is the rotation matrix. 

An explicit three-stage Runge-Kutta scheme is used 
to integrate the equations forward in time. Local 
time-stepping is used for steady flows. 

3 GRID GENERATION 

Unsteady flows using structured moving grids will be 
considered. As the grid positions and speeds must be 
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repeatedly calculated during an unsteady computa- 
tion, we require a method of grid generation which 
is simple, and which gives the speeds algebraically 
rather than having to evaluate numerical differences 
between grid positions on successive time levels. It 
was thus decided to use the transfmite interpolation 
method originally described by Gordon and Hall [10]. 
For the vector function 

nv,0=[x(r,,0ty(l,0] (16) 

which is known only on certain lines of the region 

T]I    <    77    <    T}2 

6   <   £   <   6 
(17) 

transfmite interpolation gives the interpolated func- 
tion f(?7, £) throughout the region by a direct al- 
gebraic mapping. The general transfmite interpo- 
lation method results in a recursive algorithm, see 
Eriksson [11]. However, for a C-grid the inner and 
outer boundaries are lines of constant £ where 77 is 
known. Defining one normal derivative only at the 
inner boundary, the algorithm reduces to £ direction 
interpolation only, 

(18) 
Here t/i0,1'2 are the blending functions in the £ di- 
rection. The function f actually represents a trans- 
formation from (77, £) space to (x, y) space. The grid 
points are indexed by i and j in the 77 and £ directions 
respectively, and then each i and j line are defined 
as constant 77 and £ lines respectively. The variables 
are normalised such that 

0<»7,^0'll2<l. (19) 

The boundaries f (77, 0) and f (77,1) are known at imax 
discrete points, i.e. fj(0) and f,-(1). The value of £ 
at each constant £ line is then defined as j/jmax. 
The blending functions V>° and if)7 control the spac- 
ing in the £ direction, and V'1 controls how far the 
normal direction affects the line direction. The most 
effective blending functions have been found to be 

i 

J 

ti 

*} 

*1 

jmax 

l-£ 
e-2 

= yfi- 

= I 

l-£ 
e-2 

(20) 

(21) 

(22) 

(23) 

(24) 

where st is a stretching exponent. The imax x jmax 
grid positions then come from 

fij = ^fi(O) + i^fi(O) + t/>Jf,(l). (25) 

Figure 1(a) shows the grid near a NACA0012 aero- 
foil, resulting from the above interpolation, using 
imax = 129, (99 points on the aerofoil surface, 15 
in the wake either side), jmax = 30, st — 1.2, 
and the outer boundary is 20 chords away. Figure 
1(b) shows the corresponding variation of 77,- and tpj. 
(Grid points i = 13 — 117, j =1 — 13 are shown). 

By differentiating (25) with respect to time the grid 
speeds can be obtained analytically, (blending func- 
tions assumed constant, and outer boundary fixed) 

5«J = *f>> + *}s{£«°>}-      <»> 
Hence, grid positions are calculated by interpolation 
of the boundary positions, and grid speeds by inter- 
polation of boundary speeds, the interpolation being 
the same in each case. 

4 GRID ADAPTION 

The grid is to be adapted, according to the solution, 
so that grid points are clustered in regions of high 
gradients. Adaption is normally performed in (x,y) 
space. However, while this gives suitable grids for 
steady computations, the grid positions, and hence 
more importantly grid speeds, would not be available 
algebraically for unsteady computations. Only nu- 
merical values of dx/dt and dy/dt could be evaluated 
between different adapted grids during an unsteady 
computation, and these could cause problems of grid 
distortion and crossover when grid points move along 
highly curved lines. 

Adaption is achieved here by writing the interpo- 
lation function in a more general form and adapting 
the interpolation parameters instead of the physical 
coordinates, such that grid positions are available al- 
gebraically. 

Since each i line is a constant 77 line, we can move 
points along an i line by simply varying £ (or tp) 
along that line. The line remains unchanged, only 
the distribution of points along it is altered. Adap- 
tion in the £ direction is thus achieved by letting the 
blending functions be variant in 77 as well as £, and 
so we have, 

Uj = V-fjfi(O) + 4>h ^fi(O) + tfjW).       (27) 

Figure 2(a) shows the near aerofoil grid resulting 
from varying st from 1.1 to 1.3 depending on the 
77 spacing, i.e. clustering points near the leading 
and trailing edges, and figure 2(b) the corresponding 
rji, 4'i j variation. To adapt in the other direction, we 
must now change the interpolation so that each i line 
is no longer constrained to be a line of constant 77. 
Along each j line 77 is now varied to give the required 
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distribution in this direction (previously r\{ was the 
same on every j line). The inner and outer bound- 
aries, f(r],0) and f(r), 1) are determined in terms of 
77, so that they are known at any point, not just the 
specified points f;(0). The interpolation is then 

fk,i =<jf(^;,0) + ^^(0) + ^/(r/i,i,l)- (28) 

By adapting 77 and tp2 instead of x and y the grid 
positions are still available algebraically. This means 
that the grid speeds are also available algebraically, 
which is essential for efficient unsteady adaption. 

4.1 Adaption in Each Direction 

Instead of computing a completely new grid due to 
adaption, it is desirable to simply change only a small 
region of the grid where adaption is required. 

Adaption in the j direction is achieved by varying 
ip2 along each i line. For adaption in the i direction 
77 is changed along each j line to give the required 
distribution. 

where 2.0 < fn,fr2 < 5.0, and Ar)0, A£0, AS,,0, 

and As{0 are the initial spacings. 

Consider, for example, the variation of 77 along the 
aerofoil surface, T/>

2
 = 0. An intermediate variable, £, 

is defined so that rj — 77(C) where clearly 0 < C < 1- 
A uniform distribution of ( is used, and then 77(C) 
is defined to give the required distribution of points. 
Figure 3(a), shows the initial distribution of 77 along 
the aerofoil for 99 points on the aerofoil. This is the 
unadapted distribution of points on the aerofoil. 

For a solution where adaption is required in the 77 
direction, if for example a normal shock is present, 
A77 is defined at that point using equation (34) and 
then use a cosine variation in 77 to get back to the 
unadapted distribution of 77 in as few points as pos- 
sible. Figure 3(b) shows the variation of 77 along the 
aerofoil surface for the flow considered in the next 
section, when normal shocks are present at approx- 
imately 0.64 chord on the upper surface and 0.32 
chord on the lower. This simple sampling and adap- 
tion procedure is performed for each line in each di- 
rection. 

Adaption is required in regions where flow quantity 
gradients are high, and the local Mach number gra- 
dient is used as a sensor. At each point the Mach 
number gradient in each direction is evaluated, 

dM 
dsn 

= 
Mij - Mi- 

As„ 
ij (29) 

dM   Mitj - Mij -1 (30) 
ds^ As? 

\Xitj       Xi — ij)    + (l/ij -Vi- -i,;)2     (3D 

fhere 

Asf = y(xi,j ~ ^i,i-i)2 + (Vi,j - ViJ-i)2-     (32) 

The gradients at each point are normalised by the 
largest value over the domain. If this gradient 
is greater than a threshold value then adaption is 
deemed to be required at that point. There will usu- 
ally be regions of points where adaption is required, 
i.e. 2/3 points around a shock and 5 to 10 points 
around a stagnation point, and so in each region the 
point with the largest Mach number gradient is iden- 
tified. At each adaption point the spacing of grid 
points is controlled by defining two spacing factors, 
fr\ for stagnation points, and fr2 for other adaption 
points. Since parallel lines in (77, V'2) space may not 
be parallel in (x,y) space, the spacing at adaption 
points must be scaled thus, 

AV>2 

A77 = 

Ml A*go 

fn Asc 

A?7o As^0 

or   AT/'' 

or  A77 = 

= AV»g AaCo 

fr2   As£ 

A770 Asr,0 

fr2  As„ ' 

(33) 

(34) 

5 STEADY FLOW RESULTS 

The steady flow over a NACA0012 aerofoil at 1.25" 
incidence, in a flow of freestream Mach number 0.8 is 
considered. The initial grid is similar to that shown 
in Figure 2, i.e. 129 x 30 C-grid, with st varying 
between 1.1 and 1.3 (clustering near the leading and 
trailing edges). 

Figure 4(a) shows the pressure coefficient over the 
aerofoil computed on the non-adaptive grid, the 
dashed line is the reference AGARD solution [12]. 

The grid was then adapted by applying the Mach 
number gradient check along each line (in x, y space) 
and simply clustering points (in 77, il>2 space) where 
this is greater than the threshold level. Figure 5 
shows the resulting near-aerofoil variation of 77 and 
V»2, and the corresponding grid. The variation in 
the i>2 direction is unchanged, since where the Mach 
number gradient is above the threshold level the grid 
spacing is at the minimum value already. Clearly 
the grid needs to be smoothed. This is often done 
by solving a Laplace equation for the grid point co- 
ordinates (see for example [4]). However, that is not 
required here. As the grid was initially smooth a 
smoothing can be applied to the whole grid in each 
direction and the unadapted regions of the grid will 
be unaffected. A simple three-point smoothing is 
applied 

iH,i    =    K'hj-iiVijiVij+i) (35) 

tij    =   /W-ij.^j-.V&i,,-). (36) 
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Figure 6 shows the smoothed variation of 77 and t\r, 
and the corresponding grid. Figure 4(b) shows the 
surface pressure coefficient computed on the adapted 
grid. The improved shock capturing is clear. 

In many steady flow adaption procedures the grid is 
allowed to adapt gradually by effectively progressing 
with the solution, until a time-asymptotic grid and 
solution are reached. The grid adaption here is only 
applied once, as this will be the case when an un- 
steady solution is periodically sampled as in section 
7. The adaption only has one 'chance' to compute a 
suitable grid at each adaption point. 

6 UNSTEADY EULER METHOD 

The explicit time-stepping scheme used for steady 
flows can be made time-accurate by using a global 
time-step, and applied to unsteady motion on a mov- 
ing mesh by incorporating the cell area changes at 
each stage in the time-stepping scheme [13]. How- 
ever for a typical unsteady computation, with the 
grid size above, as many as 15000 time-steps, and 
two CPU hours, per period may be required. It is 
more efficient to solve the unsteady problem as a se- 
ries of pseudo-steady problems. The implicit form of 
the differential equation for each computational cell 
is 

<9(yT+1Un+1) 

~~      dt 
+ R(Un+1) = 0 (37) 

where A is the cell area and R is the upwinded flux 
integral. The implicit temporal derivative is then ap- 
proximated by a second-order backward difference, 
following Jameson [14], giving 

_l_[yln + lU" + 1]-A[^U»] + 

1 

2At 
^n-ljjn-lj  +R(U" + 1) = 0. (38) 

A new residual R*(U) is defined as 

R*(U)=^[^+1U]-^[,TU»] + 

1 
2Ä7 

[/-'U""1] +R(U) (39) 

and then a new differential equation can be written 
in terms of a fictitious time r, 

A»»*?. + R*(U) = 0. (40) 

This is simply time-marched to convergence in the 
fictitious time r, for each real time-step. There is 
now no limit to the size of the real time step, At, 
that can be taken and this leads to a large reduction 
in CPU times. The time step is now limited by ac- 
curacy rather than stability. For each real time step 
equations (40) are solved to convergence using an im- 
plicit form of the three stage time-stepping scheme 

with local time-stepping that is used for steady com- 
putations. This approach also means that the grid 
generation routine only needs to be called once ev- 
ery real time-step, to calculate the grid positions and 
speeds at the next time level. 

6.1 Consideration of Cell Area Changes 

If the cell areas at each time level or stage are simply 
calculated using the instantaneous physical coordi- 
nates of the cell faces a numerical error is introduced 
which will increase with time. The cell areas must 
therefore satisfy a geometric conservation law of the 
same integral form as the mass conservation law [15], 

dtj Jn 
dxdy —   I    (xtdy 

JdCl 
Vtdx)        (41) 

and this must be solved using the same numerical 
scheme as for the flow quantities. The cell areas at 
the next real time level are thus calculated by 

,„.,      AAn    A"-1    2Ats^l A     in+i 
An+1 = — ^- + —-^ {x4tAy, - ytkAxk}

n+1 

3 
ib = l 

(42) 
where k = 1,2,3,4 represents the four cell faces. 

7 UNSTEADY GRID ADAPTION 

The normal steady flow adaption procedure is to 
compute the solution, sample it, and change the grid 
instantaneously. However, whether using structured 
grids, where a fixed number of grid points are redis- 
tributed to be clustered in regions of high gradient, 
or unstructured grids, where extra points are simply 
added in regions of high gradient, adaption results 
in grid points where the solution is not known. This 
then requires the interpolation of the solution from 
the old grid to the new. The repeated adaption and 
interpolation required over several periods in an un- 
steady computation can result in a gradual degener- 
ation of the solution [5]. 

Also, the implicit scheme implemented here uses val- 
ues of conserved variables and cell areas from previ- 
ous time levels, which do not exist once the grid has 
been adapted, so instantaneous adaption cannot be 
applied to the unsteady solver used here. 

To avoid this the grid adaption is spread over sev- 
eral (real) time steps and the motion of each point 
described in terms of an 'adaption velocity'. The pe- 
riodic nature of the unsteady solution is exploited by 
sampling the solution over one period and adapting 
the grid accordingly over the next period. Therefore 
over one unsteady period the solution is sampled ev- 
ery nsainp real time steps, and the resulting adapted 
(7?, V'2) distribution stored. When calculating the so- 
lution on the next period, over each set of nsamp 
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time steps the velocity of each point required for that 
point to reach its position at the next adapted grid 
is imposed on each point, and the grid moves grad- 
ually between each adapted state. 

If k is the adaption index (k = 0, ..,nadapt, where 
nadapt = nt/nsamp and nt is the number of real 

time steps per period), then ViJ^ij is tne grid 
point distribution at adaption k. To move the grid 
points from one distribution to the next over nsarn.p 
time steps we calculate the speed of each point, in 
(7?, ip2) space 

dr)j,j     _ 
dt 

dt 

nsampAt 
,2(fc + l) ,2(fc) 

nsampAt 

(43) 

(44) 

The grid speeds are obtained by differentiating equa- 
tion 28 with respect to time, 

dt dt dt 

+<4f(wj,o)+<4 {^m}+^7t{{^'1]- 
(45) 

Then superimposing the adaption speeds onto the 
unsteady motion speeds, and replacing Jj by -^-^- 

where required, we obtain (the outer boundary is 
fixed in time so j-%i(n, 1) = 0 due to motion) 

drjij d   ( d 

^T5W+i{^ 
+ *h 

drjij  d_ 

dt   di] 
f(vijA) (46) 

where the superscript M represents speeds due to 
the aerofoil motion. The implicit code is run with 
the unadapted grid for two periods, the adaptive grid 
data being stored during the nadapt samples of the 
second period, and then two periods of adaptive grid 
computations are performed. 

8 UNSTEADY RESULTS 

The scheme was applied to the Mach 0.755 flow 
about a NACA0012 aerofoil pitching about quarter 
chord. The aerofoil motion is defined by 

0 = 0.016°+ 2.51°sm(wf) (47) 

The reduced frequency parameter, k =   ^f-, was 
0.0814 where c is the aerofoil chord, and Uoo is the 

undisturbed flow speed. The scheme was run at a 
CFL number, based on r of 1.4, and local time step- 
ping was used to accelerate convergence within each 
real time step. There were 180 real time steps per pe- 
riod and the same grid data was used as previously, 
129 x 30 points, with 99 points on the aerofoil. In the 
adaptive computation nsamp was 10 and so nadapt 

was 18. 

Figure 7 shows normal force and moment (about 
\ chord) coefficient loops obtained by the implicit 
method, adaptive and non-adaptive, and from exper- 
iment [16]. The coefficient loops are quite similar, 
but the adaptive Cn loop is slightly narrower, and 
the Cm loop has larger 'steps', than the standard so- 
lution. The instantaneous pressure distributions are 
shown in figure 8. The improved shock capturing 
with the adaptive grid is clear. Figure 9 shows the 
near aerofoil adaptive grid at each of the incidences 
considered in figure 8. 

The non-adaptive scheme required 19 CPU minutes 
per period on a Stardent 3000 machine, and the 
adaptive grid solution approximately 22 CPU min- 
utes. An explicit time-stepping scheme required ap- 
proximately 15000 time-steps and two CPU hours 
per period [13]. Thus the implicit method requires 
only one-fifth of the CPU time of an explicit scheme, 
even with an adaptive grid. 

9 CONCLUSIONS 

Steady and unsteady solutions have been computed 
using non-adaptive and adaptive grids generated 
by a new transfinite interpolation technique. Grid 
adaption is performed by adapting the interpolation 
parameters, instead of the physical grid positions, so 
that the adapted grid positions are still available al- 
gebraically. This interpolation has been shown to be 
ideal for generating structured moving grids, since 
it is very simple, thus requires little CPU time, and 
since the grid speeds, even for adapted grids, are 
available directly from the interpolation equations. 
The simplicity of the interpolation results in great 
flexibility, and we can adapt the grid during an un- 
steady computation by imposing an 'adaption veloc- 
ity' onto each grid point, thus performing adaption 
gradually. This avoids the interpolation of the so- 
lution from the old grid to the new associated with 
instantaneous adaption. 

An upwind Euler scheme is used to compute the solu- 
tions. This is implemented using a dual-time implicit 
method for unsteady flows which is very efficient, re- 
quiring only I the CPU time of the explicit scheme. 

For steady and unsteady aerofoil computations, the 
adaptive grid method produces sharper solutions for 
very little increase in CPU requirements. 
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Currently, only a fairly crude grid redistribution 
technique is employed. Future work will include de- 
veloping a more sophisticated method, along with 
extending the adaptive technique into three dimen- 
sions. The method should be equally simple, the 
only difficulty arising from the third dimension being 
that the boundary definition will involve determin- 
ing spline equations for surfaces rather than lines. 
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Fig.l. Near Aerofoil Grid (a) (x,y) and (b) (77, V'" 
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Fig.2. Near Aerofoil Grid (a) (x,y) and (b) (T), V2). 
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Fig.5. Near Aerofoil Adapted Grid (a) {r),4>2) and (b) (x,y). 
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Fig.6. Near Aerofoil Smoothed Ada-pied Grid (a) (??, V'2) and (b) (x, y). 
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1    Abstract 

The features and abilities of the DLR-r-code, a finite 
volume approximation of box type for the Navier- 
Stokes equations governing viscous, compressible flu- 
id flow, are described in detail. The code is able to 
compute flow in moving reference frames and is build 
upon dynamically adaptive concepts to allow for grid 
refinement in the framework of non-stationary aero- 
dynamics. Implicit as well as explicit time-stepping 
schemes can be used depending on the kind of ap- 
plication. 

2     Introduction 

The DLR-7-Code is a finite volume approximation of 
the Navier-Stokes equations governing compressible, 
viscous flow. The method uses a box-type discretisa- 
tion and works on general conforming triangulations. 
The discretisation of the convective fluxes is accom- 
plished by means of an approximate Riemann solver 
while the diffusive fluxes are discretised in a central 
manner. 
To achieve high resolution recovery techniques of 
ENO-type are applied. New recovery techniques are 
presented which are based on radial basis functions. 
Although their use is restricted by now to small 
problems, it can be shown that they obey a certain 
optimality condition. 
Explicit time stepping through TVD-Runge-Kutta 
methods is used in a parallelized version of the code. 
This parallelized version includes an intelligent load 
balancer for performance-controlled domain decom- 
position and can handle arbitrary message passing 
libraries like PVM or P4. 
To effectively deal with unsteady flow problems such 
as pitching airfoils and moving bodies in general, the 
implementation of implicit time stepping schemes 
is also.considered. The development of an implicit 
method on unstructured grids leads to an linear sys- 
tem of equations with a large sparse and badly condi- 
tioned matrix. In this case, the fundamental mathe- 
matical assignment is the discreption of a fast solver 
for such linear systems of equations. Extensive in- 
vestigations with several possible algorithms indi- 
cated the superiority of a pre-conditioned GMRES 
algorithm. The preconditioner is a simple incom- 
plete LU-factorization which dramatically improves 
the convergence properties of GMRES in the case of 

the Euler equations. Experience gained by numeri- 
cal investigations has shown that even fast unsteady 
flow phenomena like moving shocks in channels can 
be effectively treated by this combination of algo- 
rithms. 
The r-Code employes dynamically adaptive strate- 
gies based on insertion and removing of grid points. 
Conservative interpolation avoids mass errors during 
the process of adaptation. One of the main design 
goals was the use of reliable error indicators instead 
of refinement indicators based on gradients of flow 
variables. The indicators we consider are based on 
the finite element residual of the Euler equations. 

3     Governing equations 

We consider the Navier-Stokes equations in a mov- 
ing reference frame. In this context the governing 
equations are given in the form 

dt 
/     udx = — 2_\ /       fc(u)n.j ds 

■MO j = lJda(t)-J 

(1) 

Integration is performed on time-dependent control 
volumes <r(<) C R3 with outer unit normal vector n. 
Here, u = (p, pvi, pv2, pvs, pE)T denotes the vector 
of conserved variables, fc and fv. are the convective 

' —j -i . 
and viscous fluxes, respectively, given by 

/;(«) 

/;(«) := 

/     pyi .   \ 
pviVj +8[p 

pvoVj + Sip 
pv3Vj +6J

3p 
\ pHVj+pv^ 

0 

T2j 

The quantity e denotes internal energy which is giv- 
en by e = E - \{v\ + v\ + v|) and the enthalpy H 
is defined as H :— E + p/p. Pressure is given by the 
equation of state p = (j—l)p (E — };{v\ + v\ + *>§)), 
7 being the ratio of specific heats. The temperature 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 



37-2 

is given by T = 7(7 — l)Ma^e and the elements of 
the shear stress tensor are TJJ = fi(dXjVi + dXiVj) + 

S\\{dXlv\ + dX2i>2), with the viscosity assumed to 
follow the Sutherland law fi = TL5(1 + S)/{T + S), 
where S = 110°K/Tco. Moreover, the connection 
between the termal conductivity and the viscosity is 
denned by Stokes' hypothesis to be A = -§/-<■• 
The velocity 2Vrid is tne velocity of the moving ref- 

erence frame and Vj 

travariant velocity. 
"grid,. denotes the con- 

4    The DLR-T-code 

In order to simplify notation we describe the details 
of our numerical method in two space dimensions. 
The extension to three space dimensions follows by 
straightforward considerations based on the 2-d case. 

4.1    Finite volume approximation 

We consider conforming triangulations Th consisting 
of tetrahedra (triangles in two-d) in the sense of Cia- 
rlet [5] and define a discrete control volume <r,-(2) as 
the volume of the barycentric subdivision of 7/, en- 
closing the node x{ - (xiii,xio)T and bounded by 
the straight line segments lfjtk = 1,2, connecting 
the midpoint of the edge with the point xs. The 
geometry of the control volumes is shown in figure 
1. Figure 2 shows the boundary of a control volume 

Figure 1: Control volumes in 2-d 

and serves to define our notations. The point xs is 
denned by 

•Us  :=        / _,       am^-mi 

with 

£   IkH, m'     2(|/!-| + |/J-|+|/A-|)^ 

in order to account for highly stretched meshes in 
boundary layer regions. 
Utilizing our  notion of control volumes and de- 
noting   the   cell   average   on   er,-(t)   by   u,-(f)    := 

Figure 2: Boundary of a control volume in 2-d 

T-i-r f ,t,u(x,t)dx, the Navier-Stokes equations (1) 

can be re-written in the form 

d     . , 

where N(i) := {j \ dffj D da{ ^ 0} is the set of 
indexes of nodes neighbouring node x,-. Since the 
line integrals are not defined if u is discontinuous 
two numerical flux functions are introduced, name- 
ly K,G : R4 x R4 x R2 ->• R4, approximating the 
convective and viscous fluxes, respectively, and sat- 
isfying the fundamental consistency conditions 

2 2 

K(u,u;,n) = Y,tM>i>   fiU.a;i») = X^/,"(«)"«• • 
•=1 i = l 

In our implementation the combined Riemann solver 
AUSMDV following Liou and Wad a [33] is used for 
the numerical flux H_, which includes Hänel's scheme 
[10] and was extended in [18] for the use in an implic- 
it formulation considering moving grids. Several oth- 
er choices, like Roe's or Osher's Riemann solver, are 
easily implemented in the current framework. The 
viscous fluxes are discretised by the central differ- 

ence 

t=i    v        ' 

Applying the midpoint rule to the integral along ltj 

results in 

dt ±i(t) = 

lff'"l;-ejv(,-)k=i L     TO 
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where the first error term is due to the quadrature 
rule while the second error term depends on the func- 
tions u. Using cell average values, i.e. u,: = w,;, results 
in a first order approximation, i.e. q—\, due to the 
weak approximation property of the cell average op- 
erator, see [22], [23]. To increase the approximation 
order a recovery function w,: is sought on a, which 
approximates u at least with order 0(h2). It is eas- 
ily seen that linear polynomials recover u up to this 
order. 

4.2    Recovery algorithms 

If x*b denotes the barycentre of the control volume 
<7; then a linear polynomial 

*i) (2) 

has to be recovered on <r,;(tf) such that it satisfies the 
recovery condition 

Wi(t)\ <7,-(0 

ut dx ■■ 

Recovery in box-type methods is best described in 
terms of a meta-triangulation T/1 which is defined 
to be the triangulation of the barycentres of control 
volume Oi and the surrounding boxes a^ if x\ is con- 
nected with each of the surrounding x?b

k, see figure 

3. If E{i) := {f £ f/>} denotes the set of the meta- 

Figure 3: Meta-triangulation of the barycentres 

triangles surrounding x\ then a linear polynomial n_f 

can be computed on each of the T. 
In a TVD-like approach, compare [24], the gradient 
(a!

10, a'01)
T of the recovery polynomial (2) can be ob- 

tained from the linear interpolants in a completely 
isotropic manner, namely 

GllOi^oi) 
T ._ -y[ ' 

Then, defining a[l0 :- w,;, the polynomial (2) will 
certainly satisfy the recovery condition. However, 
the isotropic recovery of the gradients does not take 
care of shocks in the solution and will thus lead to 
instabilities. According to the TVD methodology a 
slope limiter $,■ hast to be introduced such that the 
recovery polynomial is written in the form 

Üi(x,t) = ILi + $i(a\0, 4i)T • (x ~ d)- 

We have good experience in using the limiter de- 
scribed by Barth and Jesperson in [4], but conver- 
gence to steady state is enhanced if one adds a mod- 
ification as suggested by Venkatakrishnan in [31]. 
A simple ENO-type recovery can also be described 
in terms of the linear interpolants jr_f. The linear re- 
covery polynomial u,- on the box c^ is then chosen to 
be the one linear polynomial nf. on the surrounding 
meta-triangles for which the modulus of the gradient 
is minimal, i.e. for which 

IVlTf. min W< T,i 

Viif dx. 

is valid where ViVf. i denotes the i-th component. 
Experience with this type of recovery is reported in 
[22] and [25]. 
In order to further increase the spatial accuracy of 
the DLR-r-code we are currently working on the ex- 
tension towards a third order scheme by recovering 
quadratic polynomials close to the ideas of Abgrall, 
see [1], [2]. In [3] an algorithm based on Mühlbach 
expansions was developed which allows the efficient 
and stable computation of quadratic recovery poly- 
nomials in a step-by-step manner. Preliminary nu- 
merical results concerning a third-order r-code are 
given in [15]. 

4.3    Optimal recovery 

Although polynomial recovery functions seem to be 
attractive at first glance for their simplicity, their 
main drawback lies in the enormous widening of the 
stencil if higher order recoveries are sought. On the 
other hand, even locally defined polynomials of high 
degree exhibit weak properties concerning their os- 
cillatory behaviour. Additionally, as can be seen 
from application of the theory of Optimal Recovery 
as reviewed in [22], polynomials do not exhibit any 
optimality condition with respect to their recovery 
properties. We do want to recover a function w,- on 
er,- for which the difference 

\üi(y,t) - a(y,t)\ 

between the recovery function and the true solu- 
tion at the Gauss points y is smallest. Functions 
minimizing semi-norms in their associated function 
spaces (i.e. Splines) are exactly those functions for 
which the above quantity is minimal. In multiple 
space dimensions splines are found in the class of 
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radial basis functions, for example the well-known 
thin-plate spline. First experiments with this kind 
of recovery functions in [22], [23] showed impressive 
increase in accuracy. Although recovery of radial 
basis functions is much too expensive as compared 
to polynomial recovery the techniques developed in 
[3] could very well provide a framework in which 
these more complicated functions could be competi- 
tive with polynomial algorithms. 
In recovery with radial basis functions a recovery 
function of the form 

N-l M 

UiAx,t) = V \jA(ai)
y-^(k-y\,t) + J2ßkMx,t) 

j=o k = i 

is sought for the /-th component, where A(<r,:)^/ := 
TK / f(y) dy denotes the cell average operator. 

The radial function $ is assumed to satisfy the fun- 
damental condition of being conditionally positive 
definite and irk, k = 1,..., N, denote a basis of the 
space of polynomials of a certain degree, which de- 
pends on the radial function $ chosen. The number 
of nodes TV in the recovery stencil is another quan- 
tity which has to be choosen. Numerical experience 
gained so far has indicated that polynomial-based 
ENO stencil selection criteria work well also in the 
case of radial basis functions. 
Using the well known thin plate spline 

N-l 

;'=o 

a<2 

which, by construction, is able to reproduce linear 
polynomials, amounts to use at least four control 
volumes in the stencil. In an ENO-like manner one 
can think of the stencil selection according to fig- 
ure 4, where the control volumes were chosen to be 
triangles. 

Figure 4: The construction of four node sets out of 
a certain neighbourhood 

If on each of the four stencil sets a radial basis recov- 
ery function is computed the one with the smallest 
total variation norm is selected and assigned to the 

control volume. First results of this procedure are 
reported in section G. 
Meanwhile, radial basis functions with compact sup- 
port are being constructed. We mention the class of 
Wu functions as designed in [36] and the very re- 
cent developments of Wendland [34]. These func- 
tions are unconditionally positive definite and thus 
do not need the polynomial augmentation as the thin 
plate spline. Furthermore, their compact support 
makes them very attractive for practical purposes. 
Whether these functions can be competitive in run- 
time to polynomial-based recovery algorithms is the 
contents of future research on ENO approximations. 

4.4    Time stepping schemes and par- 
allelism 

The DLR-r-code was originally supplied with an 
explicit Runge-Kutta time stepping algorithm de- 
signed by Shu and Osher in [21] which respects the 
TVD-properties of the spatial discretisation, see [24]. 
However, these schemes are limited in CFL num- 
ber by 1 which is a dramatic upper bound for ap- 
plication in an adaptive framework where grid cells 
can be very small. In the meantime other Runge- 
Kutta schemes with up to five stages are in use and 
show satisfying behaviour especially when used in 
a multigrid environment for steady problems. For 
the computation of unsteady flows, as pitching air- 
foils, the restrictions due to the CFL condition are 
still too strong. One way to overcome the limita- 
tions of explicit time stepping schemes is the use of 
parallel computers which is easy in the case of finite 
volume approximations because domain decomposi- 
tion is natural. A grid partitioner was developed in 
connection with an intelligent load balancing algo- 
rithm to re-divide and re-distribute grid patches de- 
pending on the load of the processors used. In that 
framework a parallel computation is easily done in 
an environment consisting of a cluster of worksta- 
tions running PVM or P4 while the machines are 
still occupied by other users. 
In figure 5 the grid of a channel with forward facing 
step is shown. The grid partitioner has divided the 
grid into 59 patches which contain nearly the same 
number of nodes. The possible speedup is document- 

Figure 5: Grid partitioning 

ed in the diagram of figure 6 where speedup vs. num- 
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ber of processors is shown for an Intel PARAGON. 
The flow is the supersonic test case by Woodward 
and Colella [35] as discussed also in section 6.1. 
As can be seen from figure 6 the present approach 

/.■ 
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/<■ -"' 

■ sF.'' 
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^+S*                    '"'' 

j&*'''                  +                  1089 gridpoinls ^~ 
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jfj.**-""*'                                             16449 gridpoints m- 
fr*                                                        65153 gridpoints ■•-• 

4 8          16                      32                                                64 

Figure 6: Speedup on an Intel PARAGON 

towards parallelism through domain decompostion 
leads to a very efficient method. 
For use on conventional machines an implicit time 
stepping scheme according to 

du 

Hi 
n + \\      _ 

=   g\{n,<i>) 

+0 ((tn+1 

where n = *°_^1" and 

u(tn+1) -u(tn) 

tn+1 -tn 

u(tn) - u(tn-1) 
tn _^n-l 

%"-%'■ 

92{il,<t>)    = 

2+a 
1+17 

1 
1 

v+v2 

0 

if <j> = 1 

if tf = 0 

if   <f> = 1 
if   0 = 0 

was designed. 
The numerical flux functions are evaluated at the 
time 'n + V whereby a linearisation is necessary 
which leads to a linear system of equations in the 
form 

A..Au?+   y   B..Au" = b{   ,   t = 1 J   , 
j6Ar(0 

where Äu" = u"+1 - u? and A..,B.. € R4x4. Con- 

sequently, for each time step a linear system 

Ay = b_ (3) 

has to be solved, where A is a large sparse non- 
symmetric matrix. For the solution of the system 
(3) the GMRES algorithm developed by Saad and 
Schulz [19], [20] is used. Therefore, the system is 
transformed into an equivalent minimisation prob- 
lem.   First, we define the function / : Rn —► Rj 

by f(y) = ||6 —^.yllo and choose an arbitrary ini- 
tial vector j/o- Starting with m = 0 the resid- 
ual  rm   =   min»=s/0+£      f(y)  is  computed,   where 

I<m(A,ro) := span {ro, A.ro,A?ro,.. .,^m_1ro} de- 
notes the jTi-th Krylov subspace and r0 = b — Ayo- 
Now we increase m until fm is below a given tol- 
erance. Then we compute the optimal approximate 
solution y    = arg   min   f(y). Considering the fact 

that the expense to calculate the residual increases 
with the Krylov subspace dimension it is efficient to 
limit this dimension. If this limit is reached before 
that of the tolerance the approximation y has to 
be calculated and used as the initial value during a 
repetition. This technique is called "GMRES with 
restart". 
Since the convergence rate of an iterative method 
depends on the condition number of the matrix A, 
an incomplete LU-factorisation is used as a precon- 
ditioner in order to decrease the condition number. 
Hereby the incomplete LU-factorisation is a pair of 
a lower left (^) and a upper right (U) matrix satis- 
fying the following three conditions: 

1. U.. presents the unit matrix for all i, 
2. L.. = U.. = A.., if A., is a null matrix, 

=ij        ==*3        ==&] =*J 

3. (LU).. = A.., if A.. is not a null matrix 

and the linear system is transformed into 

AurlLrly = b U-lL~ y- 

A detailed description of these preconditioned GM- 
RES algorithm in comparison with other implicit 
and explicit finite volume schemes is presented in 
[17]. 

5    Adaptive concepts 

5.1    Refinement algorithms 

Over the years experience was gained with several 
different refinement/coarsening strategies for trian- 
gulations. This work is documented in [26], [27], [11] 
and [13]. Numerical experience indicated that, at 
least for reliable Euler grids, a version of the isotrop- 
ic red-green refinement as described in [14] gives su- 
perior grids. In this refinement strategy triangles 
which have to be refined are red-refined according 
to figure 7. Remaining triangles with two hanging 
nodes are also red-refined before green refinement 
turns the triangulation again into a conforming one. 
Note that at the beginning of each refinement cycle 
the previous green refinements are removed in or- 
der to keep the triangulations stable, i.e. in order to 
avoid too small angles occuring after several adap- 
tation cycles. 
In a corresponding re-coarsening strategy several 
topological configurations can be identified in which 
points can be removed from the grid.    It can be 
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shown, see [14]. that a refined mesh can always be 
completely coarsened up to its initial state. 
Note that in order to keep the process of coarsening 
conservative it is necessary to use interpolation pro- 
cedures respecting conservation. Examples of such 
procedures are given in [14]. 

is much easier to implement this is the error indica- 
tor of our choice. 
The additional problem occuring with the Navier- 
Stokes equations lies in the second derivatives inher- 
ent in the diffusive fluxes. Although we are currently 
not able to prove error bounds it seems possible to 
approximate the second derivatives in the compu- 
tation of the residual in a measure-theoretic way by 
sampling the jumps of the first derivatives across the 
edges in normal direction. This type of error indi- 
cators was inspired by the work of C. Johnson et al. 
on the adaptive streamline diffusion finite element 
method, see [7], [12], and developed by Göhner and 
Warnecke [9]. We are currently investigating this 
type of indicators for compressible flow [29]. 

Figure 7: Red (left) and green refinement of a trian- 

gle 

5.2    Error indicators 

In contrast to classical approaches in CFD the 
DLR-r-Code relies on residual-based error indica- 
tors which were developed in subsequent papers [26], 
[27], [11], [28]. This type of indicators was devel- 
oped for use in codes for the Euler equations but 
we are currently working on extensions towards the 
Navier-Stokes equations. If Cu = 0 denotes the ab- 
stract form of the Euler equations in which C is 
the corresponding differential operator of first order 
and 7TT denote the linear interpolants of the flow 
variables on triangle T, then the local error of the 
numerical method under consideration is defined by 

6    Numerical results 

6.1    Unsteady flow in a channel 

To show the ability of the code to adaptively re- 
solve the flow features we consider the test case of 
Maco = 3 flow through a channel with forward facing 
step. This case was used by Woodward and Colel- 
la [35] for extensive comparison of finite difference 
schemes. In figure 8 four grids at consecutive times 
are shown together with the corresponding density 
distributions. As can be seen the adaptive algorithm 
has not only resolved all of the flow features but al- 
so succeeded in coarsening those part of the meshes 
which were previously refined. The computation was 
done with the parallel r-Code on a cluster of work- 
stations using PVM. 

Orp u. If the numerical approximation 7TT is       ß.2     Pitching airfoil 
inserted into the differential equation the deviation 
from the zero vector is a measure of closeness to the 
exact solution. The quantity 

4 CjT_T 

is therefore called the residual. It was shown in [28] 
that a two-sided error bound of the form 

C^Wo-iT) < llerlb(T) < C2\\LT\\D>(T) 

can be proved where || • \\D'(T) denotes the dual 
graph-norm. First numerical results were present- 
ed in [28] which indicated that the use of the dual 
graph-norm leads to similar results as the use of the 
weighted L2-norm 

h denoting the length of the longest edge of T, 
which was used for heuristic reasons before, see [11], 
[26], [27]. In [30] Siili was able to prove that the 
dual graph-norm is indeed essentially equivalent to 

Figures 9 and 10 show the results of a calculation 
of an unsteady inviscid flow about the NACA0012 
airfoil in comparison with experimental data. In 
this case the airfoil is pitching harmonically about 
the quarter chord point with a reduced frequency 
of k = 0.1628 and an amplitude of a = 2.51°. 
The freestream Mach number is Maoo = 0.755 and 
the angle of attack initially is 0.016°. Consequent- 
ly, the time-dependent angle of attack is a(t) = 
0.016° + 2.51° sin(0.1628-1). 
Figure 9 shows the obtained instantaneous pressure 
distribution in comparison with the experimental da- 
ta for several times during the third cycle of motion. 
Figure 10 shows the comparison of the lift coefficient 
and the moment coefficent vs. the time-dependent 
angle of attack. The computational data are very 
close to the experimental ones. Note, that no diffu- 
sive effects were included in this calculation. 

\m\LHT) and since this locally weighted L2-norm 
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Figure 9: Comparison of the instantaneous pressure 
distribution between the numerical computation (in- 
viscid) and experimental data 

6.3    Viscous flow about a NACA0012 
airfoil 

The next case was chosen to test the method and 
the adaptation algorithm for viscous flow computa- 

Figure 10: Comparison of lift and momentum coeffi- 
cient vs. time-dependent angle of attack between the 
numerical computation (inviscid) and experimental 
data 

tions. We consider the steady laminar flow about a 
NACA0012 airfoil with a Reynolds number of 500, 
a Prandtl number of 0.72, a reference temperature 
of 273 degree Kelvin, a freestream Mach number of 
0.85 and an angle of attack of 0°. The obtained 
Mach number distribution is shown in figure 11 and 
figure 12 presents the adapted grid. The adaptation 
indicator used is based on the finite element residual 
of the Navier-Stokes equations. 

6.4    3-D transonic wing 

As a three dimensional testcase the inviscid flow 
about an Onera M6 wing with Maoo   =  0.84 and 
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Figure 11: NACA0012 airfoil- Mach number distri- 

bution. 

Figure 12: NACA0012 airfoil - Adapted grid. 

an angle of attack of 3.06° is considered. Figure 13 
shows isolines of the Mach number distribution on a 
coarse hybrid grid with less than 40,000 gridpoints. 
Figure 14 shows the distribution of the computed 
L2-norm of the finite element residual for the same 
solution. It can be seen that the much too coarse 
resolved leading and trailing edge, the tip region as 
well as the shock were picked up. Thus, also in three 
space dimensions the finite element residual of the 
Euler equations can be used as an adaptation indi- 
cator. 
To accelerate convergence to steady state agglom- 
eration multigrid as described by Venkatakrishnan 
and Mavriplis [32] is used. The coarse grid discreti- 

sation is done like described in [8]. In figures 15 
and 16 the advantage of the multigrid solver over 
the single grid solver is shown. As one can see in 
figure 16, the lift coefficient in the single grid com- 
putation is oscillating with about 5 to 10 percent 
after 2500 timesteps while the lift coefficient of the 
multigrid computation is converged already after a 
CPU time' that corresponds to one hundred single 
grid timesteps. 

Figure 13: Isolines of the Mach number distribution. 

Figure 14: L2-Norm of the residual displayed on the 
surface. Darker regions indicate heigher L^-norm. 
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M6 wing 
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■• multigrid 
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Figure 15: Lo-Normof the density residual vs. CPU- 
time. 

M6 wing 
singlegrid 
multigrid 
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Figure 16: Lift coefficient vs. CPU-time. 

6.5    Radial recovery functions 

The accuracy of recovery algorithms based on radial 
basis functions can be seen in an application to a 
simple model problem. Consider the linear partial 
differential equation 

dtu + a ■ Vx_u    =    0 

w(2L)0)    =    uo(x),    i£R2 

with 
ai 

0.2 

l 
2  " X2 

_  1 
2 

and 

u0(x) = \   0"o.oiÄ+1 Ä<0.01 
else. 

where R := {xi - |)2 + (x2 - \f ■ The initial func- 
tion is a cone of unit height which is rotated around 
the origin under the action of the differential equa- 
tion.    Measuring the remaining cone height after 

180° of rotation gives a reliable criterion concern- 
ing the accuracy of the recovery.     In figure 17 the 

Figure 17: Grid and solution without recovery 

Figure 18: Solutions with linear polynomial (left) 
and thin plate spline recovery 

grid used in shown with a numerical solution of a 
finite volume approximation without recovery. The 
remaining cone height is a disappointing 0.382 and 
the shape of the cone is dramatically corrupted. Us- 
ing a linear polynomial recovery algorithm following 
Durlofsky, Engquist, Osher [6] results in the solution 
shown in the left part of figure 18. The cone height 
now is 0.635 but the shape of the cone is still lacking 
regularity. Using the thin plate spline recovery as 
described in 4.3 results in a cone with proper shape 
and height 0.886. This solution is shown in the right 
part of figure 18. 
Experiments with radial basis functions with com- 
pact support have indicated even better numeri- 
cal results than those obtained with the thin plate 
spline. Additionally, methods for the fast construc- 
tion of recovery functions are currently being devel- 
oped [3] so that there is hope that these functions 
can be implemented in the DLR-r-Code in the near 
future. 
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PARAMETRIC STUDIES OF A TIME-ACCURATE FINITE-VOLUME 
EULER CODE IN THE NWT PARALLEL COMPUTER 
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SUMMARY 
A code to calculate unsteady aerodynamic 
loads on non-uniformly moving 3-D 
isolated wings has been prepared. The 
Euler equations are solved by means of 
a time-accurate Finite-Volume method 
with second order central spatial 
discretization and Runge-Kutta time 
integration. The code has been 
implemented in a parallel supercomputer. 
The numerical scheme used together with 
some representative results are 
presented. 

LIST OF SYMBOLS 
c = local chord 
c0 = reference length 
C-L = section lift coefficient= lift/q^cc^ 
cp = pressure coefficient = (p-pj /qA 
d = dissipative flux 
D = dissipative operator 
E = specific total energy 
F,G,H = components of Euler flux vector 
k = reduced frequency = wc/2V„ 
k(2),k(4) = artificial viscosity constants 
L = scaling factor 
M„ = free-stream Mach number 
n = surface normal unit vector 
p = static pressure 
Q = convective operator 
q„ = free-stream dynamic pressure 
R = residual 
R* = averaged residual 
S = cell face area 
t = time 
t* = dimensionless time = tV„/c0 
U = vector of conservative variables 
u,v,w = components of flow velocity 
V„ = free stream velocity 
VE = mesh velocity 
a0  =  mean angle of attack 
a-L = pitching motion amplitude 
ß  =  Runge-Kutta coefficients 
L  =  cell boundary 
e = residual averaging parameter 
e(2,,€(4)= artificial viscosity parameters 
\,H,a =  spectral radius of flux Jacobian 
matrices in £, f], and f directions 
p  =  air density 
£,77, f = curvilinear coordinates 
v   = shock wave sensor 
Q = cell volume 
cj = frequency of oscillation 

Subscripts 
i = cell column 

3 
k 

cell row 
cell plane 

n = cell face 
q = Runge-Kutta stage 

1.  INTRODUCTION 
Aeroelastic problems appear to be of 
increasing importance in the design of 
aircraft. The size of the structures and 
its elastic behavior, the aerodynamic 
interference of different components, 
transonic effects, structural and 
control nonlinearities, etc, are 
becoming a severe limiting factor. There 
is thus a strong need to apply 
sophisticated and reliable aeroelastic 
simulation tools already in the early 
design stage of a new development. These 
tools have to couple highly accurate, 
robust and user friendly CFD codes with 
Structural Dynamics software. Whereas 
the latter is already well established, 
the former still need development before 
a generally recognized standard code is 
available. 

To clear a configuration of aeroelastic 
problems, a very large number of cases 
have to be run. Time accurate CFD codes 
are generally considered to be 
computationally too expensive for 
industrial application. Potential theory 
is mainly used, whereas the next level 
of approximation, i.e. Euler Equations 
with or without boundary layer coupling 
is only now slowly starting to find its 
way in the design offices despite the 
better approximation they provide. The 
application of high performance parallel 
computers to this kind of problems is 
obviously extremely interesting, not 
only because it allows to tackle larger 
problems in a shorter time but also 
because it opens the possibility to 
perform parametric studies in a 
reasonable time. 

A time-accurate Euler code has been 
prepared to calculate inviscid transonic 
flow around oscillating 3-D wings. The 
code has been implemented in the NWT 
(Numerical Wind Tunnel) parallel 
supercomputer of the National Aerospace 
Laboratory in Japan. The objective of 
the present work has been to study the 
influence on the unsteady results of the 
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different parameters that control the 
calculation. 

The following presents a brief 
description of the scheme and its 
parallel implementation, together with 
some results. 

2. NUMERICAL SCHEME 
Among the different schemes which have 
been developed to solve the unsteady 3-D 
Euler equations [1-10] , the very popular 
one of Jameson [10] has been selected 
for this study. In the following a brief 
description of the implementation made 
here is given. More details can be found 
in [11] . 

2.1 Governing Equations 
The flow is assumed to be governed by 
the three-dimensional time-dependent 
Euler equations, which for a moving 
domain Q with boundary £ may be written 
in integral form as: 

7T {!!!u'dQ ] +II[ {F'GiH) ~^'u ] R'ds=° 
Ü 2 

(1) 
where U is the vector of conservative 
flow variables; (F, G, H) are the three 
components of the Euler flux vector; vE 

is the velocity of the moving boundary; 
and n is the unit exterior normal vector 
to the domain. 

U = { 

Q 
QU 
pv • F = ■ 

QU 

QU2 +p 
QVU 

QW QWU 
QEU+pU 

Q 
Q 

QV 

Q 
QEV 

V 
IV 
l+p 
f/V 
+pv 

H = - 

QW 
QUW 
QVW 

QW2 +p 
QEw+pw 

(2) 

Here p, p, (u, v, w) and E respectively 
denote the density, pressure, cartesian 
velocity components of the flow, and 
specific total energy. 

In order to close the system of 
equations (1) a sixth equation is needed 
which is obtained from the thermodynamic 
relationships for a perfect gas 

p = (y-1) p [E - ±(u2 + v2 + w2) ] (3) 

2.2 Spatial Discretization 
The domain around the wing is divided 
into an O-H mesh of hexahedral cells, 
for which the body-fitted curvilinear 
coordinates £ , -q , f respectively wrap 
around the wing profile (clockwise), 
normal and away from it, and along the 
span. Figure 1 shows an example. 
Individual cells are denoted by the 
subscripts    i,j,k   respectively 

corresponding to each of the axis in the 
transformed plane £,7],f. 

The integral equation (1) is applied 
separately to each cell. Assuming that: 
the independent variables are known at 
the center of each cell; calculating the 
flux vector as the average of the values 
in the cells on either side of the face; 
and taking the mesh velocities as the 
average of the velocities of the four 
nodes defining the corresponding face, 
the following system of ordinary 
differential equations (one per cell) 
results: 

dt ^i.j.tPi.i.J+iQi.j.t -Di,j.k) 
(4) 

where  the  convective  operator Qiijilc 

0i,jlk = £ ^Fn.Gn,Hn)-VKUn]-Sn 

(5) 

is function   of   U. 
i, j+l,k' u. 

i, j,k' Ui+l, j.k u. i-1, j,k' 

i, j-l,k' 
Ui>:j,k+1 and Ui,.,,*.!. Schemes 

constructed in this manner reduce to 
central difference schemes on cartesian 
meshes, and are second order accurate if 
the mesh is sufficiently smooth. 

This formulation is inherently non- 
dissipative (ignoring the effect of 
numerical boundary conditions), so that 
dissipative fluxes Diijik have been added 

D •i.j.k ,j,k 
i . , + d. . 

— ,j,k 1,3* 

di.,-\.*+ d±.i,H <^.H 
(6) 

The well known model of Jameson [12] is 
used. The idea of this adaptive scheme 
is to add 4th order viscous terms 
throughout the domain to provide a base 
level of dissipation sufficient to 
prevent non-linear instabilities, but 
not sufficient to prevent oscillations 
in the neighborhood of shock waves. In 
order to capture shock waves additional 
2nd order viscosity terms are added 
locally by a sensor designed to detect 
discontinuities in pressure. To avoid 
overshoots near the shock waves produced 
by the combined presence of the 2nd and 
4th order terms, the latter are cut off 
in that area by an appropriate switch. 

For the dissipative flux across the face 
separating cells i,j,k and i+l,j,k we 
have (for the other faces similar 
expressions apply): 

i + TT ,J,X 2     J 

+ 3^.J-.jc-^i-i,J-,jc) 

(7) 



38-3 

The dissipation coefficient £(2) and £(4) 

are calculated as 

Ei + i i k=  ^ maX^t)i+2,j,A'Ui+l,j',Jc'  (o\ 
2 

vi,j,k' vi-l,j,k> 

= max(0 , kw -el2\   . )  (9) K ■   l -i 
1+-2'J'* 

where L1+M/j is a scaling factor which 
depends on the spectral radius of the 
flux Jacobian matrix in £ direction Xijk 

;,j,k 
_    "■i,j,k+^i*l,j,l 

and with 

Ji,j,k 
Pj*l,j,k    ^Pi,j,k+Pj-X,j,k 

Pi.i,j,k + 2Pi,j,k+Pi-i,j,k 

(10) 

(11) 

as a sensor of the presence of a shock 
wave. 

2.3 Time Integration 
The system of ODEs in (4) is solved by- 
means of an explicit 5 stage Runge-Kutta 
scheme with two evaluations of the 
dissipation terms. 

r(o) (n) T{n) 
i,j,kui,j,k- "i,j,kui,j,k 

r<D In) r(n) 
"i,j,kl-li,j,k- *li,j,kui,j,k 

At (0) 
[Oi.j 

-,(0)      •, 

n(2)      „(2)     _nM      rr(n) ilt,rnll) n(l)     I 
*ii,j,kui,j,k-*ii,j,ktJi,j,k    —T-\.Ui,j,k    ui,3,k\ 

r><3>      ;T<
3

>     -n<"'      rr<n' 
*ii,j,kui,j,k-*'ii,j,kui,j,k 

3At (1) [#3.*-^,*] 

, (n) r(n) At ,(3) ,(1) ui,j,kui,j,k-lii,j,kui,j,k    —^-lUi.j.k    ui,j,k± 

Q(5)    „(5)    _o(n)    rr<n>    -Afrn(4)    -n(1)   1 
"i,j,*:<-'i, j,ie-".i, j,kUi,j,k    aülUi,j,k    L)i,j,k\ 

(5) r<5) Qin+x) „in+u _nlsJ      rr* = > 
i,j,kui,j,k ~ **i,j,kui,j 

(12) 
which is second order accurate in time 
and can be shown [11] to have good 
diffusion and dispersion errors 
characteristics and less computational 
cost per time step than other schemes 
with a lesser number of stages. 

2.4 Residual Averaging 
This explicit time-integration scheme 
has a time step limit that is controlled 
by the size of the smallest cell. 

AL CFL i, j, k (13) 

*-i.j,k + vi,j,k+°i,j. i,k 

Even though the CFL number of the 5- 
stage Runge-Kutta scheme is of the order 

of 4, the resulting At's are usually too 
small for practical applications. This 
restriction can be relaxed by using a 
technique of residual averaging [13] 
which gives an implicit character to the 
time-integration scheme. Before each 
time-step the residuals Rijjik=Qiij(k-Diijik 
are replaced by modified residuals R*i,j,k 
which are calculated by means of an ADI 
method: 

(l-ei,j.*8|) d-ei,i,^) (l-elijik6l)R^k=Rljk 

(14) 
where 6j2, ö,2 and 6f

2 are the second 
difference operators in the £, 7,, and f 
directions and elijik is the smoothing 
parameter [14] 

c-ij,k  = max { 1 [ ( 
At 

4   A £L 
■1] , 0 

(15) 
with At denoting the desired time step. 

Within a linear analysis, the former 
technique assures unconditional 
stability for any size of the time step. 
However, as the resulting effective 
Courant number becomes large the 
contribution of the dissipation terms to 
the Fourier symbol goes to zero, and 
consequently, the high frequencies 
introduced by the non-linearities are 
undamped [15]. Thus the practical limit 
for the time step is determined 
principally by the high frequency 
damping characteristics of the 
integration scheme used. As the 
properties of the 5-stage Runge-Kutta 
time-integration method are very good 
from this point of view, CFL values as 
high as 240 have been successfully used, 
which significantly decrease the 
calculation time needed for a typical 
case. 

2.5 Freestream Capturing 
For the scheme to satisfy the freestream 
capturing condition [16] it must be 

nifU^U+ßgAt^^r'^ (g-i).o(g-D (16) 

which is the discrete form (consistent 
with the numerical scheme here employed) 
of the Geometric Conservation Law as 
formulated by Thomas and Lombard [17]. 
It states that the cell volumes must be 
advanced in time in the same way as the 
fluid variables (even if they could be 
calculated analytically at each time 
step) to prevent grid-motion-induced 
errors in the numerical solution. 

2.6 Boundary Conditions 
The following Boundary conditions are 
imposed: 

a) Kinematic boundary condition on the 
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wing surface. The pressure on the 
surface is extrapolated from the 
internal points. 

b) Symmetry condition at the k=l plane. 

c) Far field boundary condition in terms 
of Rieman Invariants for a one 
dimensional flow normal to the outer 
computational boundary. 

3. RESULTS 
In the following, results for the LANN 
wing are presented. This is a high 
aspect ratio (AR=7.92) transport type 
wing with a 25° quarter-chord sweep 
angle, a taper ratio of 0.4, and a 
variable 12% supercritical airfoil 
section twisted from about 2.6° at the 
root to about -2.0° at the tip. The 
geometry used for the computational 
model is that of [18]. The results 
presented here correspond to the design 
cruise condition: M„=0.82, a0=0.6°. The 
wing performs harmonical pitching 
oscillations about an axis at 62% root 
chord with an amplitude of 0^=0.25° and 
a reduced frequency k=0.104. 

The calculation proceeds as follows: 
first an initial steady solution is 
obtained and quality controlled; then 
the time-accurate calculation is started 
and is time-marched until the initial 
transitories are damped out and an 
harmonic solution is obtained (typically 
three cycles of oscillation are needed); 
finally the results of the last cycle 
are Fourier analyzed to extract the mean 
value and harmonics of the different 
aerodynamic coefficients. 

Because of the large memory and CPU time 
requirements of this type of methods, 
very few studies are available in the 
literature that assess the relative 
influence on the unsteady results of the 
different parameters that control the 
calculation. To take advantage of the 
benefits of parallelization to perform 
this task was one of the main objectives 
of the present work. 

3.1 Artificial Viscosity 
Calculations have been done for a 
8 0x16x3 0 grid with different amounts of 
artificial viscosity, which has been 
varied by means of the two coefficients 
k(2) and k(4) in (8) and (9) . Results in 
terms of mean part and real and 
imaginary parts of the first harmonic of 
the pressure distributions around wing 
sections at 17.5% and 82.5% semi-span 
are presented in Figures 2 to 5. 
Logically the main effect is on the 
shock resolution which in turn 
influences the magnitude and positions 
of the corresponding peaks in the first 
harmonic component. 

3.2 Grid Density 
Two different grids, namely 80x16x30 and 
160x32x30, have been considered. The 
spanwise grid distribution and outer 
boundary location was kept the same for 
both cases, with 2 0 grid planes on the 
wing and 10 grid planes between the wing 
tip and the side boundary of the 
computational domain which is located at 
two semi-spans from the plane of 
symmetry. The outer boundary around the 
root section is at 9 chords. Results are 
shown in Figures 6 and 7, where the 
first harmonic of the pressure 
distributions around wing sections at 
17.5% and 82.5% semi-span is presented. 
It can be seen that the influence is 
large as a consequence of the better 
shock resolution of the finer grid. On 
the other hand, as was to be expected, 
the discrepancies are much smaller when 
integrated along the chord to obtain 
sectional forces and moments, as can be 
seen in Figure 8 for the lift 
coefficient. 

3.3 Time Step Size 
Figures 9 and 10 respectively show the 
real and imaginary parts of the first 
harmonic of the pressure distribution 
around the wing section at 92.5% semi- 
span calculated with the 80x16x30 grid 
using dimensionless time-step sizes At* 
ranging from 0.002 to 0.01 (which 
correspond to CFLs from 30 to 150). This 
section at the wing tip has been 
selected because at its trailing edge 
the smallest cells are to be found, for 
which the stability limit should first 
be reached in accordance with (13). This 
is indeed the case as can be clearly 
seen in the zoomed region. Outside of 
this area the results are time-step 
independent. Fortunately this 
instability is very well behaved, 
growing only at a very slow rate at the 
same time that it spreads inboard and 
towards the trailing edge, so that 
meaningful engineering calculations 
could be performed at larger At* without 
a significant loss of accuracy. 

3.4 Deforming vs. Rigid Moving Grids 
In the present method the instantaneous 
grid is computed by deformation of an 
initial steady mesh in such a way that 
the grid points near the wing surface 
are forced to closely follow the wing 
(which motion is known as a function of 
time) whereas the displacements of grid 
points far from the wing surface 
gradually decrease and vanish at the 
outer boundary. 

Dynamic grid deformation such as this is 
computationally expensive as it involves 
re-calculation of grid position, 
kinematics and metrics at each time 
step. For those cases in which the wing 
has no elastic deformations it is also 
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possible to perform the calculation on 
a grid that moves with the wing as a 
rigid body. This option, although 
theoretically less accurate than the 
former, is obviously computationally 
less expensive. To evaluate its 
influence on the results, calculations 
have been performed both with the usual 
deforming grid and with a rigid one. It 
has been found that differences are 
negligible. No figure is given because 
the differences are within the 
resolution of the graph. 

3.5 Freestream Capturing 
Calculations have been performed both 
imposing and not imposing the freestream 
capturing condition (16). In the latter 
case the cell volumes at each time step 
have been calculated analytically. Again 
the differences in the results are 
totally negligible. 

4.  PARALLEL IMPLEMENTATION IN NWT 
The above presented scheme was 
originally developed in a Cray-YMP 
computer and has been implemented in the 
NWT (Numerical Wind Tunnel) machine of 
the National Aerospace Laboratory [19] . 
This is a distributed memory parallel 
machine with 140 vector processing 
elements (PE) and two Control Processors 
connected by a cross-bar network. 

Each PE is itself a vector supercomputer 
similar to Fujitsu VP400 with a peak 
performance of 1.7 GFlops and includes: 
256 Mbytes of main memory, a vector 
unit, a scalar unit and a data mover 
which communicates with other PE's. The 
resulting total performance of NWT is 
236 GFlops and 35 GBytes. 

The code has been parallelized using 
Fujitsu NWT FORTRAN which is a FORTRAN 
77 extension to perform efficiently on 
distributed memory type parallel 
computers. The extension is realized by 
compiler directives. Basic execution 
method is the spread/barrier method. 

The present scheme has always two 
directions in which the computation can 
be performed simultaneously. Accordingly 
we can use one direction for 
vectorization and the other for 
parallelization. For the 0-H grid used 
here the most natural way of 
parallelizing, i.e. assigning different 
vertical grid planes to different 
processing elements has been used. We 
thus divide every array evenly along the 
k-index and assign each part to 
different PEs. The vectorization is made 
in i-direction which usually has the 
largest  number of cells. 

With this partition, i-derivatives and 
j-derivatives can be computed in each PE 
without   any   communication.    The 

computation of k-derivatives in PEk 
requires data stored in PEk+1 and PEk_! 
which, in principle, would imply the 
need to communicate with the neighbor 
PEs, thus increasing the overhead. This 
is avoided using overlapped partitioned 
arrays. Array partitions are defined in 
such a way that adjacent partitioned 
ranges automatically overlap and have 
some common indices (with a depth 
depending on the stencil) so that copies 
of selected data at the interfaces 
between two PEs are stored at both local 
memories. In this way k-derivatives can 
also be computed in each PE without 'any 
communication. At the end of each 
calculation cycle, data in the overlap 
range of the partitioned arrays is 
harmonized by copying its value from the 
parent PE. 

The above explained procedure can be 
maintained throughout the code except at 
the residual averaging subroutine, where 
the alternating directions method (ADI) 
employed prevents its use as it requires 
a sequential calculation. The inversions 
in the i- and j-directions can be done 
in each PE independently so that the k- 
parallelization can be maintained, with 
the vectorization in j-direction for the 
i-inversion and in i-direction for the 
j-inversion. As for the k-inversion, the 
process must be sequential in the k- 
direction so that we transfer the 
affected data from a k-partition to a j- 
partition. Then we can compute the k- 
inversion on each PE with vectorization 
in i-direction. At the end of the 
calculation the data is transferred back 
to a k-partition. Figure 11 depicts the 
calculation flow. 

In Figure 12 the speed-up factor (ratio 
of CPU time in 1 PE to CPU time in n 
PEs) vs. number of PEs used is presented 
for calculations performed for the LANN 
wing with the 160x32x3 0 grid. The 
results strongly depend on whether the 
residual averaging technique is used or 
not, because of the need to transfer 
data between partitions. Its relative 
importance in relation to the normal 
data transfer workload decreases as the 
number of PEs used increases and both 
curves tend to reach a common limit. It 
must be born in mind that the 160x32x30 
grid only fills about 20% of the main 
memory of a single PE (less than 1% when 
32 are used), so that the granularity of 
the problem is extremely low. The 
parallel efficiency is expected to 
dramatically increase for larger grids, 
as has been the case with other codes 
[20] . 

An indication of the CPU times required 
to march in time the solution for one 
period of oscillation (using a At* of 
0.01 for the coarse grid and 0.004 for 
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the fine one which respectively 
correspond to CFLs of 150 and 240) is 
given in Table 1. 

5.  CONCLUDING REMARKS 
A time-accurate Euler code to calculate 
unsteady transonic flow about 
oscillating wings has been prepared and 
implemented in the NWT parallel 
supercomputer. The achieved performance 
has shown the feasibility of using this 
type of computationally expensive 
methods in an engineering environment. 
The influence of different parameters on 
unsteady computations has been studied. 
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Table 1. Computational Performance 
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NWT 
1 PE 

NWT 
32 PE 

CRAY-YMP (M92) 
1 PE 

80x16x30 15' 2.5' 59' 

160x32x30 187' 31' - 

Fig. 1. LANN Wing. 80x16x30 Grid. 

Fig. 2: Mean Part. 17.5% semispan Fig. 3: Mean Part. 82.5% semispan 
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Fig. 8: Lift Coefficient. Ist Harmonie. 

Fig. 9: Real Part. First Harmonie. 92.5% 
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Parallel Implicit Upwind Methods for the 
Aerodynamics of Aerospace Vehicles 

K.J. Badcock1 and  B.E. Richards 2 

Abstract. Research at the University of Glasgow, based 
around implicit methods for solving the Euler and Reynolds' 
Averaged Navier-Stokes equations and to be reported in this 
paper, has targeted advanced CFD methods for tackling the 
complex flow fields of interest to aerospace vehicle design- 
ers. The requirements for this application are for efficient, high 
resolution schemes which can be ported to various MPP sys- 
tems and implemented with robustness to give fast rum round 
times at competitive cost. It is recognised that the most de- 
manding topics concern unsteady viscous flows and thus time 
accuracy and efficiency is pursued as a high priority. This pa- 
per then reviews the work, ongoing and planned, by the team 
at Glasgow in code developments embracing future comput- 
ing environments and including some results not previously 
published. The example test cases used in the performance 
and sensitivity studies include the transonic flow results on 
the RAE 2822 aerofoil and ONERA M6 wing selected by 
AGARD. The computing environments to which the codes 
port include workstations, either used singly or clustered to 
provide a parallel computing domain, and also integrated dis- 
tributed memory Supercomputers such as CRAY T3D and 
Intel Hypercube systems. The paper outlines these technolo- 
gies also. 

1    Introduction 

Aerodynamics has been established as a foundation technol- 
ogy for the design of aerospace vehicles. Good application 
of aerodynamics will lead to substantial economic benefits 
for future aircraft designs. Particularly important target areas 
include drag reduction to improve direct operating costs and 
better prediction of steady and unsteady loads on aircraft to 
overcome structural conservatism at the time of freezing the 
design. For the majority of aircraft, this requires the partic- 
ular capability of predicting the phenomena of shock waves 
and flow separation. This can be achieved through a bet- 
ter understanding of the fluid mechanics of flow interactions 
using either experimental techniques or computational meth- 
ods. Wind tunnel testing at simulated conditions, particularly 

1 Lecturer, Department of Aerospace Engineering, University of Glas- 
gow, Glasgow, G12 8QQ, UK 

2 Professor, Department of Aerospace Engineering, University of 
Glasgow, Glasgow, G12 8QQ, UK 

for flutter, for example, is becoming increasingly expensive. 
On the other hand, with the rapid developments in computer 
hardware and computational techniques, the topic of compu- 
tational fluid dynamics is reaching maturity as a viable way 
of providing design solutions. 

A reasonable simulation of the fluid dynamics of high 
Reynolds' number can be obtained by solving the Reynolds' 
averaged Navier-Stokes (RANS) equations. Increasing com- 
puter power now makes the solution of these equations feasi- 
ble. The level of turbulence model used needs to be a compro- 
mise between a simple eddy viscosity model such as Baldwin 
Lomax and a more complex second moment closure model. 
In this work the former is used, but the codes are starting to 
use the more general k-o; two equation model. 

To satisfy the general requirements for a code suited for 
aircraft design, it should be accurate, efficient and robust and 
usable on future computer architectures. The general approach 
chosen by the University of Glasgow CFD Team in this work 
is to use high order upwind differencing to provide accu- 
racy and robustness and to mostly use implicit methods to 
provide efficiency [5] [9]. Unstructured grids are also being 
considered by the Team as a way forward for dealing with 
geometric complexity but there are developmental difficulties 
in tackling viscous flows near boundaries and calls for high 
memory. Geometric complexity using structured meshes can 
be accommodated using multi-block grids which lend them- 
selves to distributed memory computing architectures using 
a multi-domain approach. The combination of an implicit ap- 
proach on a structured grid for wall turbulent flows provides 
an efficient code, particularly for unsteady flows. 

There exists a considerable variety of computer architec- 
tures from which to choose. The general consensus, however, 
is that competitively priced distributed memory massively par- 
allel processors (MPPs) will provide the Teraflops facility (or 
greater) that will berequired to tackle CFD solutions using the 
RANS model for flows over complete aircraft configurations. 
A number of vendors promise production of such Teraflops 
facilities in the near future, although the cost is likely to be 
beyond the means of all but the largest organisations. Also 
there needs to be a further investment in adapting the majority 
of existing codes to use it. There is a trend to provide a similar 
architecture at a much lower cost using workstation clusters. 

Paper presented at the AGARD FDP Symposium on "Progress and Challenges in CFD Methods and Algorithms" 
held in Seville, Spain, from 2-5 October 1995, and published in CP-578. 
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On the sort of broad-bandwidth networks that are planned 
for the future in Corporate networks, the type of powerful 
high memory workstations that are being used for detailed 
CAD/CAM design work in the engineering industry in the 
daytime are amenable to be turned loose at off peak times to 
provide a powerful high-memory system. 

Creating the parallel computing environment for the Glas- 
gow CFD Team has proven to be an interesting case history 
that it is appropriate to relate as a contribution towards the 
theme of this conference. Before 1990, computer systems 
within the Universities in the UK had undergone a major up- 
grade each seven years, funded by the University Funding 
Council, and this generally enabled the acquisition of a useful 
multi-user mainframe. Numerically intensive computer users 
then had access to off peak cycles through batch facilities. 
Before 1994 at Glasgow, for example, the sizeable University 
central Computing Service operated a CMS environment on 
an IBM 3090150E vector facility for scientific work, with the 
help of a technological agreement with the vendor, as well as 
VME and VMS environments on sizeable ICL and DEC facil- 
ities, respectively. From another initiative the University also 
acquired a 32 transputer distributed memory Meiko Comput- 
ing Surface, along with a systems manager, on which some 
early experience on parallel computing was developed by the 
CFD Team members to complement time awarded by peer re- 
viewed on National Facilities such as CRAY-XMP and YMP 
vector multi-processors . The Team's work could be classed 
at this stage in the category of high performance computing 
(HPC). 

In 1994, the Funding Council support changed to a sys- 
tem of IT support on an annual basis, at the same time the 
University adopted an IT strategy to distributed the monies 
involved thinly to all Departments whilst providing a core 
support for: the overall Campus Network including a FDDI 
backbone (later an ATM backbone); and a UNIX cluster for 
core computing (with a cost imposed on groups who used 
cycles above a threshold which was set at a low level). The 
implication of this University strategy was the need for HPC 
users to prise a proportion of their Department's allocation of 
funds and add it to other initiatives to secure the computing 
environment that they needed. Also at about the same time 
at National level, resources targeted for research (managed 
by EPSRC) were used to purchase a CRAY T3D with 320 
DEC-Alpha nodes and following bids this was placed at the 
Edinburgh Parallel Computing Centre at Edinburgh Univer- 
sity. This facility was designated for the exclusive use of a 
limited number of University Consortia to tackle Grand Chal- 
lenge problems only. 

With this background, the team then fronted two main ini- 
tiatives to achieve an acceptable computing resource for its 
ambitions to develop state-of-the-art code that might beuseful 
for aircraft designers. The first was to develop a University 
Consortium (finally, this included the Universities of Bristol, 
Glasgow, Oxford and Swansea and UMIST) that proposed 
a topic on Physically and Geometrically Complex Aerody- 
namic Flows for Aircraft Flight to use the Cray T3D facility. 

The title was changed to the shortened form Computation of 
Complex Aerodynamic Flows or CCAF Project after the pro- 
posal was accepted [2]. The other initiative was to develop a 
Consortium of Departments within the University to bid for 
resources under the New Technologies Initiative (NTT) for 
the development of a High Performance Parallel Computing 
facility from Spare Capacity on a Network of Workstations? 
NTI was developed by the Joint Information Systems Com- 
mittee from funds that the Committee had secured themselves 
from the Higher Education Funding Councils to promote pilot 
studies towards developing state-of-the-art computing capa- 
bilities across the Universities. When the funds were awarded 
the University project was designated the HNW Project. These 
projects (both now have a year's maturity) give access to a 
world class resource to the CFD Team. These projects will 
now be described separately. 

One target area of application for the CCAF project is to- 
wards the study of aeroelasticity at the edges of the flight 
envelope, an area in which the non-linearity of the problem 
poses considerable uncertainties and is likely to reveal inter- 
esting new mechanics. The challenge is to be in a position to 
complement experimental and analytical studies of these com- 
plex physical phenomena using facilities as powerful as the 
EPCC Cray T3D. Electrodynamics radiation is also included 
in the programme becauseof the commonality in grids and so- 
lution techniques and the opportunity to widen the application 
base of the project. The resource awarded is modest (around 
64,000 processorhours per year), but with development being 
done on local computing environments with production tests 
done on the National facility, the resource is useful. 

Two main computational approaches are being pursued in 
CCAF: structured grid work is at a more mature stage, par- 
allelisation of multi-block codes and dealing with boundary 
layers is straight forward but dealing with geometric com- 
plexity is problematic; unstructured grid work copes well 
with geometric complexity but partitioning causes problems. 
The project includes comparisons between codes developed 
in order to determine the best future strategy. In the area of 
aeroelasticity, there is a dearth of experimental data of the 
quality and appropriateness for CFD validation. Nevertheless 
the Consortium has identified a suitable unsteady test case 
involving the AGARD LANN swept wing to provide an ap- 
propriately challenging common test case. The Glasgow Team 
is involved particularly with the development of a multi-block 
structured grid flow code meshed with a structural code made 
available from industry and uses on average 1,600 processor 
hours of T3D resource per month on this. Some preliminary 
results are reported below. 

At the other end of the cost scale, the HNW cluster project 
was awarded 8 man years of effort by JISC over a period of 3 
years. The six collaborating Departments in the University of 
Glasgow provided funds to purchase equipment and software 
for a pilot facility, which could also be used as a demonstrator 
for a dedicated cluster as well as a base for testing different 

' see http://www.aero.gla.ac.uk/Research/HNW for full details 
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cluster technologies. Following a stringent selection process 
and based on the company's strong interest in the cluster 
technology, six Silicon Graphics' Indys with MIPS R4400 
processors and 64 MB memory and 17 inch monitors were 
selected and purchased. These were assembled together in 
one laboratory and connected using grade 5 UTP cabling to a 
lObaseTEthernet switch, which is the standard presently used 
by the University, and this itself was connected to the network. 
Using PVM 3.3 message passing, excellent performance was 
achieved using the Team's CFD codes, with little latency [6]. 
A planned upgrade to ATM switching on the UTP cabling is 
planned in the near future to improve communication speed as 
well as a multi-cluster activity with an adjoining University 
linked to the local ATM based Metropolitan Area Network 
(MAN) called ClydeNet. 

From other research projects, ten more Indys have recently 
been added to the Departmental lObaseT network. The com- 
bined resource is available generally as a computing domain 
to users given an account. Apart from PVM being installed 
on the cluster as the message passing software for the parallel 
implementations, alternatives for users include MPI (CHIMP 
and LAM versions) as well as Oxford Parallel BSP. Clusters 
in other Departments in the University are beginning to be set 
up in a similar way. 

Because of the heterogeneous nature of the user base of 
the cluster, a resource management system was required to 
optimise use of these cluster resources. The public domain 
software NQS, CONDOR and DQS and demonstration ver- 
sions of the supported software CODINE™ and LSF™ were 
obtained and assessed. LSF™, written by Platform Comput- 
ing Inc. of Toronto, had the best ingredients for the University 
based project, particularly a multi-cluster capability, and has 
been selected by a number of Industries, particularly some 
Aerospace Industries as a means of managing the cluster re- 
source. A University agreement, which included technolog- 
ical exchanges towards the future development of LSF™, 
made available a multi-platform site license to explore its use 
in a University environment and particularly this presently 
unique facility of managing multi-clusters. The experience to 
date in its implementation is that improved load balancing, 
and hence a considerably better use of cycles is made by now 
submitting jobs to the domain, rather than to a specific work- 
station. The software identifies the best resource for a job and 
carries it out transparently to the user. If a user wishes to re- 
claim use of a machine for interactive work, the part of the 
job being done on that machine is automatically checkpointed 
and migrated to another machine with spare capacity. PVM is 
embedded in the software so that it provides an ideal system 
for queuing and implementing parallel programmes at low 
cost. LSF™ provides excellent user interfaces, which help 
system managers of clusters to improve their service to users. 

With continued development of the cluster technology, 
there is evidence that this type of affordable computing could 
be a norm in design offices within the Aerospace Industry. 
With this background on the technology used at Glasgow, Sec- 
tions 2 and 3 of the paper, outline the discretisation method- 

ologies for the two and three dimensional codes and provides 
some new examples and Section 4 discusses the parallel cod- 
ing methodology used. 

2   Two-Dimensional Method 
The two dimensional thin-layer Reynolds' Averaged Navier- 
Stokes equations in generalised curvilinear co-ordinates (£,»7) 
with 77 normal to the surface can be denoted in non-dimensional 
conservative form by 

9w      df     dg _ ds 
dt      <9£      dr\   drj (1) 

where w denotes the vector of conserved variables, f the 
convective streamwise flux, g the convective normal flux and 
s the normal viscous flux. 

One implicit step, updating the primitive variables V, can 
be written as 

(|£+A^"+A^V=-Af(R» + R;)    (2) 
"dV dV dV 

where R^ and R,, are terms arising from the spatial discreti- 
sation in the £ and rj directions respectively and 

3f 
Rf 

3(g ~ s) Rr;. 

SJ>=T      — 7?" 

In the present work the spatial terms are discretised using 
Osher's flux approximation with MUSCL interpolation and 
the Von Albada limiter for the convective terms and central 
differencing for the viscous fluxes. The Baldwin-Lomax tur- 
bulence model is employed to provide a turbulent contribution 
to the viscosity but this is not linearised in time in the present 
work, i.e. turbulence contributions only appear on the right- 
hand-side of equation (2). This has been found not to degrade 
the stability properties of the methods examined in this paper. 

The alternating direction implicit version of equation (2) is 

where 
Reip= — A£(R^ + R^). 

The ADI factorisation which appears on the left hand side 
of equation (3) has been widely used to approximate a solution 
to the system (2) because the banded structure of each of the 
factors makes it relatively easy to solve. However, the solu- 
tion of the ADI system is not an exact solution of equation (2) 
and in practice the factorisation error (the error introduced by 
solving equation (3) rather than equation (2)) leads to a prac- 
tical limit on the time step and introduces another source of 
error into the calculation. This motivates the use of a precon- 
ditioned conjugate gradient solution of the unfactored system. 
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Conjugate gradient methods find an approximation to the 
solution of a linear system by minimising a suitable resid- 
ual error function in a finite dimensional space of potential 
solution vectors. Several algorithms are available including 
BiCG, CGSTAB, CGS and GMRES. These methods were 
tested in [3] and it was concluded that the choice of method 
is not as crucial as the preconditioning. However, the CGS 
method was found to be the quickest of the three methods that 
do not require re-orthogonalisation and is used here. CGS has 
the additional advantage that the transpose of the matrix on 
the left-hand side of equation (2), is not required, reducing 
implementation difficulties. The CGS algorithm was derived 
in [10] and is restated in [12]. 

Denoting the linear system to be solved at each time step 
by 

4x=b (4) 

we seek an approximation to A ' « 
system 

c-^x=c-'b 

C i which yields a 

(5) 

more amenable to conjugate gradient methods. The ADImethod 
provides a fast way of calculating an approximate solution to 
equation (4) or, restating this, of forming the matrix vector 
product 

C_1b=x. (6) 

Hence, if we use the inverse of the ADI factorisation as the 
preconditioner then multiplying a vector by the preconditioner 
can be achieved simply by solving a linear system with the 
right-hand side given by the multiplicand and the left hand side 
matrix given the approximate factorisation. The factors in C 
are put in triangular form once at each time step with the row 
operations being stored for use at each multiplication by the 
preconditioner. This roughly doublesthestoragerequirements 
of the method. 

To illustrate the performance of this method we present re- 
sults for flow over an RAE2822 aerofoil at a free stream Mach 
number of 0.73, an angle of attack of 2.73° and a Reynolds 
number of 6.5 x 106. The comparison of convergence rates 
for the present method (called AF-CGS), straight ADI and an 
explicit local time-stepping method was made in [5] and an 
improvement in time to convergence of 25 per-cent was noted 
for the present method when compared with ADI. When the 
free stream flow is used as starting conditions, the CFL num- 
ber which yields fastest convergence for the AF-CGS method 
is 35 but CFL numbers of up to 50 can be used. The largest 
CFL number which yields a solution for ADI is 18 andhence, 
removing the factorisation error allows the use of larger time 
steps. A further reduction in the time to convergence by a 
factor of five has been achieved by mesh sequencing. Three 
levels of mesh sequencing were used to provide a good start- 
ing solution on the finest mesh (257x65). Using this approach 
the optimal CFL number was increased to 100 and the overall 
time to converge to within 0.25 per cent of the fully converged 
lift value was reduced by a factor of 5. The time to conver- 
gence as a function of CFL number is plotted in figure 1 and 
shows a clear minimum. This is because there is a balance 

between increasing the CFL number to minimise the number 
of implicit steps and reducing the CFL number to minimise 
the number of CGS steps at each implicit step. The compar- 
ison of the pressure distribution with experiment for various 
levels of convergence is shown in figure 2 and shows good 
agreement with experiment. 
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Figure 1.    Time to converge to within 0.25 % of drag as function of 
CFL number on finest grid 
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figure 2.   pressure distribution at various levels of convergence at 
a CFL number of 100 on the 257x57grid 

A similar approach has been used for unsteady flows over 
pitching and plunging aerofoils and aerofoils with moving 
flaps [4]. Themain conclusion from this work was that AFCGS 
does not allow the choice of time step from purely accuracy 
considerations because of the need to limit the time step to 
ensure the reasonable performance of the linear solver. How- 
ever, AF-CGS does allow for larger time steps and a reduced 
computational cost when compared with ADI. For one partic- 
ular case the stability restriction on the size of the time step 
is a global CFL number of 1000. The average CFL number 
during one cycle for the unfactored method is around 2000 
for the unfactored method translating into a saving in CPU 
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time of around twenty-five per-cent. 

3   Three-dimensional Extensions 
The extension of the method to three-dimensions is compli- 
catedby two considerations. First, computer storage becomes 
a limiting factor due to the need to store large Jacobian ma- 
trices. Secondly, the ADJ. factorisation in three-dimensions is 
significantly worse than in two-dimensions, making its use 
as a preconditioner less favourable. This fact however means 
that there are increased gains to be made in three dimensions 
by the use of an alternative to ADI 

One step of the method considered can be written as 

,dw       dRx       dRy dw~l dw       dRz 

where 
RexP= - At(Rx + Ry + Rz). 

This two factor step can be loosely described as unfactored 
in each spanwise slice and approximately factored in the 
spanwise direction. A stability analysis [7] has shown that 
the method has similar stability properties to the two fac- 
tor ADI method in two-dimensions, representing a significant 
improvement on the behaviour of the three factor method in 
three-dimensions. The linear system resulting from the first 
factor in equation 7 has a more complicated structure than the 
block pentadiagonal systems which are encountered for each 
factor in the three factor method. However, this sytem can be 
solved using a direct generalisation of the method described 
for two dimensions above i.e. we solve the system 

C-1Ax=C~lb 

by the CGS method where 

KdP dP dV 

,dw dRx^dw~l,dw 
dP dP'dP 

dRv (^+AÖ) "dP dV 
and 

b= - At(Kx + Ry + Rz), 

(8) 

(9) 

(10) 

(11) 

followed by the solution of a block pentadiagonal system for 
the updates 

The two factor method has substantially reduced memory 
requirements compared with the fully unfactored method. For 
the third order spatial discretisation there are 13 non-zero 5 
by 5 blocks for the rows in the unfactored matrix associated 
with any one grid cell. This means that the number of floating 
point numbers which must be stored for the coefficient matrix 
for a mesh with Af cells is 325A/\ Since Af can be of the or- 
der of one million for flows around basic wings, this implies 
that even if we can solve the linear system efficiently, stor- 
age requirements will be a limiting factor. For the two factor 

method only the matrix for one spanwise slice or one line in 
the spanwise direction need be stored at any one time. This 
has the effect of reducing the matrix storage requirements at 
any one time in the calculation to max(225Afsuce,125Afijne) 
where Kfsuce is the number of grid points in a spanwise slice 
and Afune is the number of grid points in the spanwise di- 
rection. Since A//,„eA/'J/;ce=A/" it can be seen that the storage 
requirements have been reduced substantially (by around two 
orders of magnitude for the test case examined in this paper). 

As a test case we shall consider flow over the ONERA M6 
wing in transonic conditions. The experimential data for this 
wing is available in [13] with several previous computational 
results including those in [11]. The flow problem we consider 
here has a free stream Mach number of 0.84, an incidence 
of 6.06 and a Reynold's number of 11 million. For this case 
250 explicit steps were required before FUN was used with a 
CFL number of 10. The residual is reduced about 4 orders of 
magnitude from its initial value. This was also observed for 
flows over aerofoils in [8] and was due to small oscillations 
in the pressure at the far field. 

The comparison of the computed pressure distribution with 
the experimential results of [13] at six spanwise slices are 
shown in figure 3. Good agreement is obtain for the flow ex- 
cept for the position of the shock and the very last station at 
99% span. This has also been observed in [11] for this test 
case. Shock induced separation occurs after the strong shock 
near the tip and the Balwin Lomax model is known to be inad- 
equate for this phenomenon. In [11] the Johnson-Kingmodel 
was also implemented which significantly improved the re- 
sults. Figure 3 shows that mesh refinement in the stream wise 
direction has very little effect on the solution apart from sharp- 
ing the strong shock near the tip. However refinement in the 
spanwise direction not only improves the resolution of the tip 
oftheC-H grid and hence the pressure distribution before the 
shock close to the tip; but also the strength of the first shock 
in the mid span region. This can be more clearly seen from 
the upper wing surface pressure contours shown in figure 4. 

4   Parallel Implementation 

A detailed description of the parallel implementation of the 2 
and 3-D methods can be found in [6]. In the present section 
we summarise the main features and give sample results. 

The major obstacle to an efficient parallel implementation 
of the AF-CGS method is the inherently sequential nature 
of the ADI procedure. This was overcome in [1] by using a 
transposition of the data to allow complete ADI sweeps to pro- 
ceed independently on each processor. We use this approach 
here although extra communication is required for the present 
method because of the matrix-vector products required in the 
CGS algorithm. 

The computational space is mapped onto the nodes by 
grouping complete mesh lines in both the £ and the rj direc- 
tions onto a single node. Care has to be taken to make sure 
that £ lines on either side of the wake cut are mapped to the 
same processor. The computation then falls into three phases. 
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First, the matrix is generated and the factors are put in up- 
per triangular form. The next phase is the multiplication of a 
vector by the matrix and finally we have multiplication of a 
vector by the preconditioner which reduces to back substi- 
tution on the triangular factors of the ADI factorisation. For 
each phase data is held on a node for complete lines in one 
direction in the mesh and the entire computation relating to 
that direction is completed. The data is then communicated 
so that information for complete lines in the other direction is 
held on a single node and the computation for that direction 
proceeds. 

The parallel code was also implemented on a cluster of 
Silicon Graphics Indy workstations at the University of Glas- 
gow. The message passing was accomplished by using PVM 
version 3.3. The comparison of algorithm speeds (time in 
/^sec/grid point/time step) on the SGI cluster is shown in table 
1. The results where obtained on a coarse mesh with only 
2400 points and hence the loss in efficiency is quite small 
when this is considered. 

Machine algorithm speed efficiency 

SGI cluster 1 nodes 958 1.00 

SGI cluster 6 nodes 230 0.69 

SGI cluster 8 nodes 194 0.62 

cessor without further communication. Once the updates are 
available a second transposition is used to restore storage by 
spanwise slices for the next time step. 

The method has been implemented in parallel on a range 
of machines. The algorithm speeds for the Cray T3D and the 
SGI cluster are given in table 2 for grids with 140000 grid 
points for the T3D and roughly half this number on the SGI 
cluster. The parallel efficiencies will increase when the grid is 
refined, however a high parallel efficiency has been obtained 
on 128 nodes, even for this relatively small problem. Excellent 
efficiency is obtained on the SGI cluster. 

No. of nodes Explicit timesteps Implicit timesteps 
speed efficiency speed efficiency 

T3D1 417 1.00 1510 1.00 

T3D16 29.6 0.88 107 0.88 

T3D32 15.6 0.84 55.0 0.86 

13D64 8.25 0.79 28.9 0.82 

T3D128 4.63 0.70 15.7 0.75 

SGI1 2372 1.00 

SGI 6 416 0.95 

Table 2.   Algorithm speeds in /zsec/gpAs and parallel efficiency for 
the Cray T3D and SGI cluster 

Table 1.   algorithm speeds in ßseclgrid point/time step on the SGI 
cluster. 

The three-dimensional algorithm has two distinct phases. 
First, there is the generation and solution of the large lin- 
ear system arising from each spanwise slice of the mesh. 
Secondly, there is the solution of the banded linear systems 
arising from the second factor in the spanwise direction. 

The first phase is split between processors in two ways. 
First, the spanwise sections are split into groups. Each group 
is then assigned to a set of processors with each spanwise 
slice in the group being treated in a similar way to the two 
dimensional algorithm described above by those processors. 
The communication between the different groups of proces- 
sors, each treating a different set of spanwise slices, is simply 
that which would be required by an explicit method so that 
the contributions to the residual (or the right-hand-side of the 
linear system) from the spanwise fluxes at the interfaces be- 
tween the spanwise groupings can be evaluated. Since there 
is significantly less communication involved at this stage than 
is required to solve a spanwise slice in parallel, it is clear that 
the most efficient partition of the problem will arise when as 
large a number of spanwise groups as possible is used. For a 
fixed number of total processors this will reduce the number 
of processors which operate on a spanwise section. 

The second phase of the calculation involves assigning 
complete spanwise lines in the mesh to single processors. 
Again, a transposition of the data is used so that the calcu- 
lation involving a single line can proceed on a single pro- 

5   Conclusions 
The programmes that are providing a world class comput- 
ing environment for the development of CFD codes at the 
University of Glasgow were described. A high quality access 
to the 320 processor EPCC Cray T3D was obtained through 
forming the CCAF consortium on the problem targeted in this 
report. At the other end of the cost scale, the development and 
description of a parallel environment based on the spare ca- 
pacity on workstations mounted on a quality network under 
the HNW project was described. It was predicted that this lat- 
ter type of computing environment would be a standard within 
the design offices of Aerospace Companies in the future. 

An implicit method for simulating three-dimensional com- 
pressible and viscous flow developed to run on a distributed 
memory parallel environment is outlined. The AF-CGS method 
is based on a two-dimensional approach which consists of an 
iterative solution of the linear system by the conjugate gradient 
squared algorithm with preconditioning by the alternating di- 
rection implicit factorisation. The FUN (factored-unfactored) 
method tackles three dimensional flows and builds on the 
two dimensional method by factoring the linear system into 
a factor arising from spanwise slices in the mesh and a block 
penta-diagonal factor arising from strips in the spanwise di- 
rection. The more complicated factors arising from the span- 
wise slices are solved by the two dimensional method. This 
approach yields a method which has similar properties to the 
2-d ADI method, a situation which is substantially better than 
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a three dimensional version of ADI. A study concerning the 
optimisation of the AFCGS code using RAE 2822 Case 9 was 
carried out. Three levels of mesh sequencing were used to 
obtain a starting solution on a fine mesh of 257 x 65. Then 
the optimal CFL number used was increased to 100, and the 
overall time to converge to within 0.25 per cent of the fully 
converged lift value was reduced by a factor of 5. When ap- 
plied to unsteady flows AFCGS was shown to allow for larger 
time steps and a reduced computational cost when compered 
to ADI. 

The FUN code was tested through the prediction of the 
flows over the ONERA M6 Wing using the Cray T3D. Even 
for the relatively course grid tested parallel efficiencies of 75 
percent were achieved using 128 nodes. Improved efficiencies 
will be achievable using finer grids. The comparisons with the 
experiment using a Baldwin-Lomax turbulence model were 
found to be satisfactory, but improvements are expected when 
the k-w turbulence model is implemented. 

Future work includes the development of multi-block ap- 
proach and the testing of the unsteady 3-d code and its cou- 
pling with a structural code to tackle aeroelasticity cases. 
Work is underway on multiblock extensions of the methodol- 
ogy presented. 

ACKNOWLEDGEMENTS 

[5]   KJ.Badcock and B.E.Richards, 'Implicit time stepping meth- 
ods for the Navier-Stokes equations', in 12th AIAA CFD con- 
ference, San Diego. AIAA, (1995). 

[6]   KJ.Badcock and B.E.Richards, 'Implicit time stepping meth- 
ods for the Navier-Stokes equations', to appear in AIAA Jour- 
nal, (1995). 

[7]   KJ.Badcock, I.C.Glover, and B.E.Richards, 'Convergence ac- 
celeration for viscous aerofoil flows using an unfactored 
method', in Second European conference on CFD, pp. 333- 
341. ECCOMAS, (1994). 

[8]   KJ.Badcock, I.C.Glover, and B.E.Richards, 'A precondition» 
for steady two-dimensional turbulent flow simulation', submit- 
ted for publication, May 1994, (1994). 

[9]   L.Dubuc KJ.Badcock, X.Xu and B.E.Richards, 'Precondition- 
ers for high speed flows in aerospace engineering',    to appear 
in Numerical Methods for Fluid Dynamics V. Institute for Com- 
putational Fluid Dynamics, Oxford, (1995). 

[ 10] P.Sonneveld, 'CGS: A fast Lanczos-type solver for nonsymmet- 
ric linear systems', SIAM Journal Statistics and Computing, 10, 
36-52,(1989). 

[11] R. Radespiel, CRossow, and R.C. Swanson, 'Efficient cell- 
vertex multigrid scheme for the three-dimensional Navier- 
Stokes equations',AIAA Journal, 28,1464-1472, (1990). 

[12] M. Vitaletti, 'Solver for unfactored schemes', AIAA Journal, 
29,1003-1005,(1991). 

[13] V.Schmitt and ECharpin, 'Pressure distributions on the 
ONERA-M6-Wing at transonic Mach numbers', Technical Re- 
port AR-138, AGARD, (1979). 

This work has been carried out with the support of the Ministry 
of Defence, the Engineering and Physical Sciences Research 
Council, British Aerospace and the Joint Information Sys- 
tems Committee of the Joint Higher Education Funding Coun- 
cils under the following grants: EPSRC/MOD GR/H47371, 
DRA/MOD/BAeFRNlC/407, EPSRC GR/K42264, NTI/65. 
The authors would like to thank Mark Woodgate for obtaining 
the three dimensional results shown in this paper and to Dr Ian 
Glover for his contribution to the early part of the work. The 
work on the cluster has been carried out by Bill McMillan, 
Dr Xiaokun Zhou and Angus McCuish. The mesh generation 
subroutines were supplied by Dr. A. L. Gaitonde of Bristol 
University. 

REFERENCES 

[1] T. Chyczewski, F. Marconi, R. Pelz, and E. Churchitser, 'Solu- 
tion of the Euler and Navier-Stokes equations on a parallel pro- 
cessorusing a transposed/Thomas ADIalgorithm', in 11th AIAA 
Computational Fluid Dynamics Conference. AIAA, (1993). 

[2] B.E.Richards et al, 'Computation of complex aerodynamic 
flows - CCAF project', Technical report, Technical Annex to 
Proposal to EPSRC (unpublished). 

[3] KJ.Badcock, 'Newton's method for laminar aerofoil flows', 
Aerospace Engineering Report 30, Glasgow University, Glas- 
gow, UK, (1993). 

[4] KJ.Badcock and A.L.Gaitonde, 'An unfactored method with 
moving meshes for solution of the Navier-Stokes equations for 
flows about aerofoils', submitted for publication, August, 1994, 
(1994). 



39-8 

lb 

^ , 4 

♦ 
♦    \ 

* 

{   

0 0 2                0.4                0.6                0.8                  1 
x/c 

C/2c=0.44 

♦*^\ 

♦\1 

X*"*^" 

f 

0 0 2 0.4 0.6 0 8 
x/c 

</2c=0.65 

J _. _ il-l I— 

* w... * 

0 0 2 0.4 0 6 0 8 
x/c 

C/2c=0.80 

S        -<--- --*«-■ -*-«•  

0 0 2 0 4 0 6 0.8 
X/C 

C/2c=0.90 

0 0 3 0.4 0.6 0 8 
x/c 

C/2c=0.95 

0 0 2 0 4 0.6 0.8 1 
x/c 

C/2c=0.99 

Figure 3.    Comparisonof computed pressure distribution with experiment for ONERA Mowing :- Solid line 129 x 33 x 33, Dashed line 
129 x 33 x 97, Dotted line 257 x 33 x 33 



39-9 

129 x 33 x 33 grid. 

129 x 33 x 97 grid. 

figure 4.   Surface pressures for 6.06 degree ONERA M6 wing. 
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PROGRESS AND CHALLENGES IN CFD METHODS AND ALGORITHMS 
GENERAL DISCUSSION 

J.W. Slooff. NLR. Netherlands 
After Dr. Kroll has given his opening remarks we will open up to the 
floor and try to get a, hopefully, lively discussion on various 
issues and aspects that we may wish to address.  But first, Dr. 
Kroll, please give us your on-the-spot evaluation. 

N. Kroll, DLR. Germany 
Thank you for the invitation.  I appreciate that I can act as the 
evaluator for the CFD Symposium.  Before I go into details, I would 
like to mention that this evaluation reflects my personal thoughts 
and is based mainly on the oral presentations.   Only a few papers 
reached me before the Conference, so I did not get the time to go 
into the details of the papers.  Therefore, in the written version 
some of my statements may be revised, but I think the essential 
messages will not change. 

The background of this Symposium is the fact that CFD, as we all 
know, is widely accepted as a key tool for aerodynamic design. 
However, on the other hand, we also know that CFD still has 
deficiencies in accuracy, complexity, robustness, and efficiency. 
Due to this, in industry CFD is not yet being exploited as 
effectively as one would expect.  Therefore, this Symposium has been 
set up with the aim to present and discuss those topics which are 
considered as likely to constitute pacing items and new challenges in 
CFD.  The work presented here will be evaluated against the ambitious 
theme of the Conference.  From my point of view and from what I saw 
in the invited papers, for the aeronautical industry CFD is expected 
to deliver:  1. detailed viscous flow analysis for complex geometries 
at high Reynolds numbers, 2. accurate prediction of aerodynnamic 
data, 3. fast turnaround calculations at acceptable costs, 4. 
aerodynamic design and optimization of aircraft components or 
complete aircraft and 5. interdisciplinary analysis.  There may be 
many other key problems, but in my opinion, these are among the most 
important ones in order to raise the confidence level of CFD in the 
aeronautical industry. 

With respect to the scope of the Conference, I expected contributions 
to the following topics: improvement of basic algorithms including 
space discretization, time integration and fast iterative methods; 
advanced techniques to treat complex configurations including 
blockstructured methods, unstructured and hybrid grids as well as 
Cartesian and Chimera techniques; adaptive methods; parallel 
computing; effective algorithms for more complex applications such as 
turbulent flows, chemically reacting flows and unsteady flows; design 
and optimization methods; effective methods for miltidiscipline 
physics. 

Three invited and 34 technical papers were presented.  First I would 
like to make some general remarks on the technical quality of the 
papers.  Many of the papers were of high quality because they 
represented the current status of the CFD community and they 
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identified or presented new important directions of algorithmic 
development in CFD.  But in my opinion, also many papers of lower 
quality were delivered which either were not within the scope of this 
Symposium or did not represent the current status and progress of 
CFD.  Moreover, some of them reinvented well-established knowledge in 
CFD.  The Symposium covered eight major topics as shown in this vu- 
graph. 

Although many papers addressed several subjects, I categorized them 
according to their central focus.  The result of this classification 
is somewhat different from the session grouping which was set up by 
the Program Committee.  There were 10 or 11 papers on advanced 
discretization schemes, only three papers on fast implicit iterative 
solvers and a bunch of papers on parallelization.  Several papers 
were given on unstructured meshes, overlapping grids and hybrid 
grids.  This morning we heard papers on adaptive grids and two papers 
concerning specific algorithmic aspects on chemically reacting flows. 
We had some papers on DNS/LES and on unsteady flows.  In the 
following, I would like to go through each subject and to make some 
comments on what was presented and whether the major challenges were 
addressed by the papers. 

First let me say a few words about the invited papers.  The first 
paper was presented by Anthony Jameson.  He gave an excellent 
overview about the present status, challenges and future development 
of CFD.  He identified some important challenges, in particular the 
3-D viscous flow simulation for high Reynolds numbers.  He mentioned 
that about 8 to 10 million points are needed in order to accurately 
resolve turbulent flows and to predict the drag coefficient within 
one count.  His presentation on the unified theory for 1-D shock 
capturing methods was very interesting.  He showed that unifying 
different schemes may help in designing new improved methods such as 
his newly developed CUSP or HCUSP scheme.  Jameson also addressed the 
important topic of aerodynamic design and optimization. 

The second invited paper was delivered by Paul Rubbert.  He talked 
about CFD research in the changing U.S. aeronautical industry.  I 
think it was a very interesting paper because he identified the 
challenges which are beyond the technical ones.  He made an analysis 
of the process by which CFD capabilities are created.  He mentioned 
that research can be improved by introducing new principles like 
customer focus and customer satisfaction.  From the technical 
reviewer's point of view, some comments and statements of the 
aeronautical industry on the status of CFD and future requirements 
would have been desirable. 

The third paper was presented by Doyle Knight.  He gave a nice 
overview on parallel computing.  Since he explained the terminology 
used in parallel computing, he formed the basis for the audience to 
follow the technical papers on parallelization.  He discussed 
important issues, and he gave several examples of experience with 
parallel computing in the aerospace industry. 

From my point of view, the Program Committee did a good job 
concerning the selection of the keynote papers.  In my opinion, 
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however, an invited paper on status and progress on grid generation 
for complex configurations was missing.  Although grid generation was 
not a subject of this Symposium, I think that such a paper would have 
been very helpful for the assessment of structured and unstructured 
methods.  The issues of turnaround time and accuracy of a numerical 
method very often depend on the capability of the available grid 
generation procedure. 

Now let me come to the specific subjects.  Several papers on parallel 
computing were presented.  It is obvious that routine use of CFD and 
future large applications in aeronautics require parallel computing. 
The papers addressed several important issues such as parallelization 
strategies, portability, performance and load balancing.  Some papers 
were devoted to the adjustment of algorithms designed for sequential 
computer to parallel architectures.  The issue of scalability was 
only barely addressed although it is one of the key features for 
efficiently exploiting parallel computing.  Only a few 3-D 
applications on parallel computers have been presented.  The 
efficient use of parallel architectures for 3-D complex industrial 
configurations seems to be still a major challenge.  The reason for 
this may be the problem of load balancing.  In the case of 
unstructured meshes, much work has been done with respect to domain 
partioning and some public domain software is already available. 
However, for structured meshes the load balanced partioning is much 
more complicated mainly due to the geometrical restrictions. 
Furthermore, I believe that the adjustment of sequential algorithms 
to parallel computers is not sufficient.  New parallel algorithms 
have to be developed.  As an example, it is well known that the 
multigrid method is not fully scalable, and therefore may not exploit 
the full performance of massively parallel computers.  In conclusion, 
challenges for parallel computing for the near future are scalable 
implementations of 3-D applications, load balancing for structured 
mesh calculations and development of new parallel algorithms.  Future 
work should address these issues. 

Now let me discuss the topic of advanced space discretization. 
Various promising schemes have been presented showing some 
improvements over conventional methods.  For example, papers were 
devoted to quadratic reconstruction with flux-limiters, improved 
flux-splitting schemes, multidimensional upwinding and kinetic flux- 
splitting.  My criticism here is that in some of these papers, the 
assessment of the new algorithms were restricted to only one or two 
aspects of spatial discretization.  Designing new discretization 
schemes, several different aspects have to be addressed, including 
high resolution of viscous shear layers, sharp shock resolution, 
conservation, robustness at shocks and in expansion regions, overall 
efficiency and compactness of the stencil.  In my opinion, a detailed 
comparison of available schemes covering all these issues is needed 
in order to assess potentials and limitations of advanced algorithms. 
I also would like to mention that very often a detailed accuracy 
assessment of new or modified methods is not carried out.  An 
assessment study should include investigations with respect to grid 
refinement and other important numerical sensitivities.  Well- 
established test cases for the Euler and Navier-Stokes equations 
should be calculated to raise the confidence level of the new 
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techniques.  Of course, the advanced methods have to be applied to 
those problems for which the standard schemes show substantial 
deficiencies.  Multidimensional upwinding, from my point of view, 
made large progress in the last few years, but I still think that 
these schemes - and also kinetic algorithms - are not yet at the 
stage to be used in a 3-D production code.  The major challenge for 
advanced discretization schemes is the accurate calculation of 3-D 
viscous flows.  Beside high resolution schemes, improved turbulence 
models are required.  Turbulence modelling, however, was not a topic 
of this Symposium. 

Let me come to the third subject on fast implicit and iterative 
methods.  Here good papers on Newton-Krylov subspace methods were 
presented.  For standard cases, like 2-D inviscid flows or viscous 
flows with moderate Reynolds numbers, the more sophisticated methods 
such as multigrid, Newton-Krylov subspace methods and advanced 
implicit schemes perform almost equally well.  From the literature, 
it is obvious that multigrid is mostly used with structured meshes, 
whereas for unstructured grids, very often Newton's method with 
Krylov subspace iteration is applied.  For 3-D flows around complex 
configurations the situation is not clear.  We do know that for 
generic configurations and moderate Reynolds numbers multigrid is 
quite efficient.  There is not much known about the Newton-Krylov 
methods.  Open questions are the subspace dimension, the memory 
requirements and the computational costs.  Much more effort is 
required to explore the capabilities and limitations of these 
methods.  In my view, the real challenge concerning the development 
of efficient time integration algorithms was not addressed here.  It 
is the simulation of realistic Reynolds number flows in 2-D and 3-D. 
Due to efficiency reasons, for these flows high aspect ratio cells 
are required.  Due to the lack of efficient smoothers, the 
convergence behavior of the multigrid method gets worse.  In the case 
of Krylov subspace methods, a suitable preconditioner has to be 
designed.  Future work should be devoted to the development of 
efficient time integration algorithms for stiff discrete equations 
due to high aspect ratio cells. 

There was a nice paper on time-preconditioning, which I think is a 
very interesting approach to achieve Mach number independent 
convergence.  A key concern is the development of a unified flow 
solver covering incompressible flows up to hypersonic flows.  I do 
not think that the technique is already mature, however, 
preconditioning is a good candidate to reach that goal. 

Another subject dealt with unstructured and hybrid methods.  The 
paper from Rockwell stated that unstructured grids are well suited 
for inviscid flows including flows around complex 3-D configurations. 
On the other hand, experience shows that for accurate viscous 
calculation, some kind of regular cells are required in the boundary 
layer.  So the approach of hybrid grids may be a good choice because 
it combines all the advantages of structured and unstructured meshes 
and offers the possibility for an automatic simulation of 3-D complex 
configurations.  The work presented here on hybrid meshes is in an 
early stage and substantial effort is required to establish a 
valuable tool for complex viscous applications.  For the simulation 
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of configurations with moving bodies, the overlapping grid technique 
seems to be very interesting.  The meshless technique approach is an 
interesting idea, but it shows many deficiencies.  For example, 
conservation is not guaranteed and the control of accuracy is quite 
difficult.  Much work is required to get some confidence in this 
approach.  For all discretization strategies, considerable effort is 
still required to significantly reduce the turnaround time for 
viscous simulations for complex 3-D configurations.  Some promising 
results have been presented here. 

The next subject covers the activities on adaptive methods.  It is 
well known that adaption is an important issue for cost-effective 
calculations.  Various strategies have been presented including mesh 
movement and mesh refinement for both structured and unstructured 
grids.  In my opinion, there are several open questions, some of them 
were addressed at the Conference.  A key issue is the selection of 
suitable criteria for grid adaption.  As proposed by several papers, 
finite element error indicators seem to be the right choice.  They 
ensure that the solution will not be sensitive to the adaption 
pattern.  However, so far in most applications local flow gradients 
are used as sensors.  In these cases, the estimation of the overall 
accuracy is quite difficult and a grid independent solution may not 
be obtained.  With respect to parallel computing, the problem of 
dynamical load balancing occurs, especially in the case of structured 
meshes.  The challenge of adaptive methods is the application to 3-D 
viscous flow fields.  As mentioned here by several authors, 
considerable work is required to extend error based indicators to 
viscous flows. 

Concerning unsteady flows, several papers presented time accurate 
calculations for incompressible and compressible flows.  Some 
attempts were made to cut the cost of time accurate calculations. 
However, it is obvious that new innovative concepts have to be 
developed in order to efficiently simulate 3-D viscous unsteady 
flows. 

A few papers addressed LES and DNS.  At the moment both simulation 
techniques focus on fundmental research of flow physics, especially 
turbulence.  Specific requirements on LES and DNS solvers were 
discussed including high resolution in time and space, adaptive grids 
and parallel computing.  Based on these sophisticated methods, one 
paper held out a prospect of large eddy simulation of a clean wing at 
moderate Reynolds number in the near future.  In my opinion, 
significant research work on both algorithms and subgrid model is 
required to enable this simulation.  Some of the papers dealing with 
this subject did not meet the scope of this Symposium. 

The topic of chemically reacting flows was covered only by two 
papers.  Both presented modifications and improvements of numerical 
methods to meet the requirements of hypersonic reacting flows, 
namely, sharp capturing of strong shocks, high resolution of viscous 
regions, robustness in regions of flow expansion and efficient 
solution of stiff equations.  Promising results for 2-D and 3-D flows 
were presented. 
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This concludes my technical comments on the various subjects.  Now I 
would like to give a few concluding remarks. Measured against the 
theme of the Symposium, in my opinion, many papers of high quality 
but also many papers of lower quality were given.  Concerning the 
technical standard, there was quite some difference between this 
Symposium and other conferences such as the AIAA conferences in the 
U.S. or the ECOMASS in Europe.  In order to improve the quality of 
the papers, one should ask for extended abstracts.  CFD has so many 
aspects and facets that it is very difficult to assess the quality of 
a paper with only a few pages of abstract.  Furthermore, one should 
define some criteria or certain procedures which have to be met by 
the abstracts.  This could include the calculation of specific test 
cases, 

Nevertheless, I would like to say that all in all the Symposium was 
interesting.  We saw some recent developments and achievements in CFD 
which I have mentioned before.  Several problems were identified, 
being pacing items for algorithmic improvements and new developments. 
However, from my personal point of view, the Symposium did not 
reflect the actual status of the CFD community compared to other CFD 
conferences.  Many leading experts were not present.  Especially, 
there was only a small contribution by the U.S.  Many aspects and 
recent developments were not addressed in this Conference. 
Furthermore, in some areas, I think CFD is much more developed than 
it was presented here.  I would like to say a few words concerning 
the challenges I have mentioned previously.  Many of the key issues 
important for industry were not covered here.  No paper tackled the 
problem of high Reynolds number flows.  There were not many papers on 
accurate drag calculation for viscous turbulent flows.  Concerning 
the problem of short turnaround time for complex configurations, some 
advanced approaches including unstructured and hybrid methods were 
presented.  However, no paper addressed 3-D viscous calculations 
around more complex geometries.  There was only one paper - Jameson s 
invited lecture - dealing with design optimization.  No paper 
addressed interdisciplinary methods, an issue which is definietly a 
future challenge in CFD. 

Finally, I would like to remark that, in my opinion, the scope of the 
Symposium was too encompassing.  It is almost impossible to cover all 
important new directions in CFD within an AGARD conference of three 
and one-half days.  It would have been better to restrict the 
Symposium to some specific subjects, say adaptive methods.  In that 
case a comprehensive overview and review of this particular subject 
would have been possible.  New directions and developments and their 
critical assessment could have been addressed in more detail. 

J.W. Slooff. NLRf Netherlands . 
Thank you very much Dr. Kroll for what I think was a very appropriate 
and to-the-point evaluation with a good balance of critique and 
praise.  One small remark from my side, I think that there is an 
internal conflict between two of your statements in the sense that on 
the one hand you think not enough subjects of CFD were covered and on 
the other hand, you said the scope was too wide for only three and 
one half days. 
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N. Kroll, DLR, Germany 
Measured against the scope and aim of this Symposium, not all 
important issues and subjects were covered. 

J.W. Slooff, NLR, Netherlands 
We are now at the Open Discussion part of the final session.  The 
last thing I would like to do is to put the discussion into some sort 
of a straight jacket, but on the other hand, it occurred to me that 
if we go about this in a completely unstructured way, the discussion 
might quite easily become pointless.  What I suggest is that we 
proceed in the following way.  First of all, I would like to spend 5 
or 10 minutes to give direct comments on some of the statements made 
by the Technical Evaluator.  Some of you may have the urge to do so. 
After that, I suggest that we try to look at things from some 
distance in order to get a better perspective of what we are doing 
and what we are doing it for.  In doing so, I think, we should add a 
background as a sort of framework against which we can project our 
comments, remarks and suggestions.  On this background we should keep 
questions in mind like: what are industry's requirements? what do we 
have to offer as the CFD research community, what kind of new 
developments?, which of these developments have the best prospects 
for better meeting industry's requirements. 

Before we start the actual discussion, I have to point out a few 
administrative things.  This Round Table Discussion is being recorded 
and a transcript of the tape will be made.  That does not mean that 
you should confine yourself.  You don't have to be afraid of saying 
things that you will be confronted with afterwards.  You will be sent 
a copy of the transcript of the tape and you will have the 
opportunity to edit your comments and remarks.  In order to be able 
to do so, it is necessary that you clearly state your name and 
affiliation so that we know who spoke and who to send the transcript 
to.  I will come back later on some of the basic questions and 
provide a little bit more framework for our discussion.  But first, 
who would like to give some direct comments on some of the remarks 
that the Technical Evaluator gave us just a few minutes ago?  I 
imagine the Program Committee Chairman might have to say something. 

J.A. Essers, University of Liege, Belgium 
First of all I think that Dr. Kroll did a very good job, and perhaps 
you will be surprised to note that I agree with almost everything he 
said.  But anyway, I have a technical remark to make on one point. 
This point is concerning the fact that it is better to use a 
structured grids on viscous flows, and perhaps an unstructured grid 
is good for inviscid flows.  I disagree with that.  Many people 
believe that with unstructured grids, you cannot compute accurately a 
boundary layer or other shear layers.  That is wrong.  We made some 
calculations with quadrilateral and triangular grids that were 
extremely irregular and got very good accuracy, with for example, 
parabolic re-construction techniques.  My feeling is that many people 
use discretizations which are not accurate enough for the viscous 
terms when the grid is distorted, but if you use schemes which are 
weakly sensitive to mesh distortions, it can work fine.  Anyway, I 
must confess that you usually need more points in a boundary layer if 
you use unstructured grids then if you use a structured grid, so it 
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is anyway worthwhile to use the hybrid grids for that reason.  Now I 
would like to make another comment concerning Dr. Kroll's remarks.  I 
said that I essentially agree with what he said, but he should be 
aware of the fact that the Program Committee of an AGARD meeting has 
constraints that organizers of large conferences don't have.  For 
example, we are almost not allowed to have parallel sessions.  And 
parallel sessions would have been necessary.  I propossed parallel 
sessions, but I had immediately 10 opponents in the group, so it was 
impossible to make'it.  That is namely, because we need a Technical 
Evaluator who cannot attend all sessions at the same time of course. 
Something else, also, is that we have some, let us say, political 
constraints, in the sense that it is important to AGARD that all NATO 
countries can participate in such conferences, to present the status 
of the research in their country, and that is a constraint other 
conferences don't have. 

B. Masure. STREHNA. France 
The Technical Evaluator said that many papers did not address tne 
problem of the accuracy assessment.  I ask the Technical Evaluator to 
say to us what is exactly an accuracy assessment for a code. 

N. Krollf DLR, Germany . . 
For structured meshes, one should make sure that by refining the grid 
the results will become independent from the grid.  Furthermore, the 
order of accuracy claimed by theory can be checked by grid refinement 
studies.  In case of unstructured meshes the accuracy assessment may 
be more difficult, but I think we can borrow some techniques from 
finite element theory. 

P.W. Sacher, DASA. Germany 
Six years ago we had a big Symposium on the subject of Code 
Validation, CFD Validation.  This was a subject that I missed here, 
specifically in your remarks, in your evaluation.  Does it mean that 
code validation is no longer an issue for CFD? 

J.W. Slooff, NLRr Netherlands 
I am pretty sure that Dr. Kroll is going to say that it is still an 
issue, but that it was, on purpose, outside of the scope of this 
Conference.  Are there any further direct comments on the Technical 
Evaluator's remarks? 

F. Mokhtarian. Canadairf Canada 
I just wanted to say that I agree with most of the comments of tne 
Technical Evaluator regarding the quality of the Conference and the 
papers.  However, the comment I would like to make is that I thought 
his comparison of the Conference with some of the other conferences 
was perhaps a bit unfair.  This isn't the first time I have attended 
an AGARD Conference.  I have been to many other conferences in Canada 
and the U.S. and you always get a variety of papers, you can't always 
be very critical.  It is very difficult to tell the quality of some 
of the papers ahead of time.  There were some papers I thought 
perhaps were not exactly up to par, but there were lots and lots of 
papers that were very high quality and I was glad I was able to 
attend.  The only comment I wanted to make is that I think he was a 
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bit harsh comparing this Conference with some of the other 
Conferences. 

N. Kroll, DLR. Germany 
Essentially, I think you are right, but you have to read again the 
title of the Conference.  The Conference has the title, "Progress and 
Challenges of CFD Methods".  This is an ambitious title.  You have to 
make sure that most of the papers of the Conference will meet the 
high demands of the Symposium. 

J. van Ingen, Delft University. Netherlands 
In regard to the remark by Prof. Essers about the boundary conditions 
on an AGARD meeting I think we as a Panel have to think about what 
especially is the place of AGARD in all of these CFD conferences.  I 
think CFD conferences organized by AGARD should have some specific 
ideas in it to bring together the users and developers and maybe we 
should leave the more fundamental subjects to a special conference on 
that.  The present criticism may be due to the boundary conditions we 
have to put on AGARD conferences. 

J.A. Essers. University of Liege, Belgium 
Just to see if we agree, let me just make a few comments and ask a 
question to Dr. Kroll.  I think that, as you said, there were very 
good papers in this Conference, there were some that were not as 
good, of course.  Unfortunately, very few papers here had a 
sufficient vision of the future.  But that remark is also valid for 
many conferences.  Nevertheless, I agree that the title of the 
conference was perhaps too ambitious, but we couldn't know that 
before receiving the submitted abstracts.  I also would have liked to 
hear more people saying why they use this technique instead of 
another; why it is more appropriate because in the future they want 
to tackle that problem and that problem.  For example, I would have 
liked somebody making an Euler calculation, explain that he uses that 
scheme instead of another one because he thinks that that scheme will 
be better for future viscous flow calculations.  Nobody discussed 
such issues.  Is it perhaps what you want to say Dr. Kroll? 

N. Kroll, DLRr Germany 
This is exactly what I wanted to say.  I tried to define challenges 
on the different subjects which should be addressed by the CFD 
community. 

A.G. Panaras, HAF Academy, Greece 
I think that it should be more appropriate to state that progress has 
been reported on some new ideas and not to make the distinction 
between good and not good papers.  Many authors have made substantial 
efforts in preparing their work and certainly there is always 
something new that comes in a conference like this. 

J.W. Slooff, NLR. Netherlands 
Now with your permission I would like to switch to the second part of 
this discussion.  I would like to get you thinking, if not talking, 
about three key questions that we have to deal with and that we have 
to get answers for.  To trigger the discussion a bit further and to 
perhaps provoke you a little bit into making comments, let me try to 
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list what I think are industry's three most important requirements. 
One is to increase the confidence level of the codes, which means, 
from my point of view, that for every application you would like to 
know what the accuracy is.  I don't think there are many codes that, 
together with the CP distributions and what have you, provide an 
estimate of the accuracy.  I think that is something that we should 
strive for.  Robustness, that is clear, is another aspect.  Reduction 
of the problem turnaround time has also been mentioned by Dr. Kroll, 
of course.  Here grid generation is the bottleneck, in particular for 
the structured grid approach.  That leads us to efficiency.  We may 
loosely define efficiency as accuracy divided by cost, and cost is 
more or less proportional to time.  We can distinguish between 
manpower time needed, particularly for preprocessing, that is_ 
geometry handling and grid generation and the pure computer time. 

I don't think the post processing part of it is a big deal here.  If 
we look at that formula and address the different parts in it, we 
know that accuracy is in the first place a function of the physical 
model, including the turbulence model (that was on purpose not 
addressed here at this Conference).  The other important parameters 
are the number of grid points, the distribution of the grid points, 
the "order" of the method plus the artificial dissipation models and 
whatever flux upwinding or multidimensional upwinding scheme is used. 
On the cost-side we have prepocessing as I already mentioned, plus 
the CPU time.  For the latter, the number of grid points is again a 
parameter, plus the "numerical" scheme, the solution argorithm, and 
of course, the hardware.  The latter is, however, beyond the scope of 
this Conference. 

What I would like to do is to discuss the current main developments 
in CFD against the background of industry requirements, the 
efficiency requirement in particular.  If, as a baseline, we take the 
currently well-established multi-block structured type of codes with 
conventional types of schemes, let us say the Jameson Flo-57, -67 
level of technology, we can try to estimate where we can improve, 
relative to that baseline situation.  For the unstructured grid 
approach we may, for the same number of grid cells, have perhaps 
somewhat less accuracy than for a structured grid solution.  I am not 
completely sure about that, and you may wish to comment.  However, 
there is certainly a lot of gain in the grid generation part.  If we 
look at adaptive grids, it is clear that unstructured as well as 
structured adaptive grids have a potential for increasing the 
accuracy for a given number of grids cells.  However, grid adaptivity 
also has the prospect of reducing the preprocessing and the grid 
generation calendar time.  This because with adaptation the first 
grid you start with doesn't have to be as good as is the case when 
you do not have an adaptive grid approach.  The CPU aspect for given 
accuracy is also clear.  I think the biggest advantages for adaptive 
grids are in the unstructured case.  I think there we have a bigger 
potential for gain in accuracy for a given number of grid cells or 
reduction of the number of grid cells for given accuracy than in the 
case of structured grids.  Higher order schemes, multi-dimensional 
upwinding and similar refinements, are, of course, good for accuracy. 
I am not quite sure what it means for grid generation.  I have the 
feeling that some of these more subtle schemes may require better 
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meshes than more conventional schemes.  They also may require some 
more computer time, at least for the same number of grid points. 
However, because the number of grid points required for a certain 
accuracy level may be less, we may still gain something.  I don't 
know what the balance is.  You may wish to comment on that. 

One further remark, on adaptive grids.  We might wonder what is more 
efficient - to implement a highly sophisticated higher order scheme 
with the best thinkable multi-dimensional upwinding with only one 
grid point in the shock wave, or to have an adaptive grid scheme 
with, for example, two or three grid points in the shock.  I am not 
sure which of the two is more efficient.  I will stop here.  This is 
just a little bit of provocation in order to get you out of your 
seats, so to speak.  Who would like to shoot at this or anything 
else? 

P.E. Rubbertf Boeing Commercial Airplane Group. U.S. 
It is important to speak to how good do you have to be, what is the 
target.  Not just faster, but how fast, etc.  One of the things I 
seem to detect at this Conference is that many of the speakers had in 
their mind a different definition of the decimal point than I do.  I 
heard talk about working hard on grid generation to reduce the time 
from three weeks to maybe one week or maybe one day.  My experience 
in using CFD in an airplane design environment is that when you are 
talking about designing a wing, it wasn't too many years ago that 
that involved a sequence of about 75 full blown CFD runs, part 
analysis, part inverse design, etc.  One day turnaround was 
unacceptable.  We do not want to take 75 days to design wings.  The 
decimal point belongs in terms of hours, not days.  In our old design 
environment, our target was to get three turnarounds in an 8 hour day 
in the design environment.  The challenge is now to reduce cycle time 
even more.  So I think it is worth saying that some of the targets 
that I hear people setting for themselves will produce a capability 
which is not really acceptable and useable in a real airplane company 
environment. 

J.W. Slooff. NLR, Netherlands 
Thank you for that comment, and it reminded me that I forgot to 
mention one aspect in relation to high order schemes and accuracy. 
We are not looking for infinite improvements in accuracy.  What we 
need is, for a given accuracy that we want to obtain, but not 
necessarily want to exceed, the highest efficiency, the shortest 
preprocessing turnaround time and the lowest CPU cost.  Higher order 
methods usually have their greatest benefit if you require very high 
accuracy.  If you have lower accuracy requirements they may not be so 
well suited for the purpose.  In industry, you probably will agree 
with me, different levels of accuracy are needed in different phases 
of the design process.  Industry is not always looking for the 
highest accuracy.  That is something we also have to bear in mind in 
considering higher order methods. 

P. Rubbert, Boeing Commercial Airplane Group. U.S. 
The subject of accuracy - another thing I did not hear at the 
Conference was any discussion of CFD with respect to the environment 
in which we use it.  I think it is very important that we learn how 
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to think about what we want from CFD in the presence of wind tunnel 
analysis and the other tools that we have for doing airplane design. 
For example, the question of accuracy.  I heard many times people 
setting goals like we would like CFD to be able to calculate drag at 
this level of accuracy, and so forth, but the way we really do it in 
industry is that we don't depend on any one tool to give us the total 
answer.  The total answer is arrived at by utilizing all of the 
information at your disposal; the information that CFD provides, the 
information that wind tunnels provide, your previous experience, etc. 
Integrate that all together into a judgement as to what something 
like the drag would be.  Again, when we talk about accuracy of CFD, 
if it is going to take us 6 months to build a wind tunnel model and 
test it, that means one thing in terms of the amount of accuracy you 
need out of CFD.  But I heard some discussion this week about 
stereolithography methods, and things like that that could lead you 
in the direction of what one might call overnight model 
manufacturing.  If that happens in the wind tunnel,  that has a major 
influence on the type of accuracy levels you would need out of CFD. 
If you could rapidly get a number out of the wind tunnel, maybe you 
don't need to focus so hard on CFD accuracy.  I guess my point is we 
have to stop looking at CFD by itself.  We have to learn to look at 
it with respect to the total environment. 

D. Knight. Rutgers University. U.S. 
I would like also to focus on this question of accuracy.  As I have 
often understood it, it seems to be more of a question of accuracy as 
a function of resource rather than resource as a function of 
accuracy.  Typically, for example, if you want to compute the total 
pressure recovery in an inlet in an industrial environment, the 
question is how long it will take to get within a certain accuracy. 
That may be 1% for the total pressure recovery, if it is a design, it 
may in fact be even smaller or perhaps larger. I think we yet, in the 
CFD community, don't focus enough on the question: given a level of 
accuracy of a particular type, like total pressure recovery, what is 
the resource required to get that.  If you are in industry and you 
have a week to do a computation, can you actually predict the total 
pressure within 1%, or should you not try at all.  Maybe that will 
take 2 weeks and that is the information that you need to know.  This 
also raises the question of optimal design: the optimal design of 
your algorithm in terms of reconstruction of high order methods, and 
also the optimal design of your grid structure within that_algorithm. 
That, of course, brings to the fore the question of an estimate for 
the accuracy of your scheme.  That is an issue that was mentioned in 
a number of papers including the earlier one this morning by 
Friedrichs.  In the CFD community we still do not yet have a good 
measure of accuracy, and how to predict that from our solution. 

S.V. Ramakrishnan. Rockwell Science Center, U.S. 
I have one comment on hybrid grids.  From our experience in 
generating such grids, I can say that most of the difficulty lies in 
the region near the body surface for complex configurations.  If you 
can develop a structured grid near the body, you might as well 
develop such a grid everywhere, because it doesn't take too much work 
to develop the grid away from the body surface.  Therefore, if we 



GD-13 

cannot solve the viscous problem with unstructured grid, we may as 
well not use it all.  There is no point in using hybrid grids. 

P.G.C. Herring, British Aerospace Ltdf U.K. 
A comment first on adaptive grids, I am not sure if the size of the 
pluses and minuses is an indication of the potential benefit, but 
some of the work that we have been doing is beginning to indicate 
that in some of cases it is maybe not worth using adaptive grids. 
The time it takes you to develop the procedure and run the codes is 
often longer than it would take just running 2 or 3 cases of an 
ordinary grid.  The other thing that surprises me is your last line 
on parallel algorithms which indicates that, for CFD fluid problems, 
there is not much benefit to be gained by going to parallelization. 
You have a small positive in the last column.  As I say, if the size 
of the plus is an indication of the benefit, it appears we are not 
yet ready for parallelization with CFD. 

J.W. Slooff. NLR, Netherlands 
I hasten to say that I have not been very consistent with the sizing 
of the pluses.  But I do think personally that a good grid adaptivity 
scheme is one of the most important things that we have to go after. 

J.A. Essers, University of Liege, Belgium 
I have two very specific questions.  The first one is about 
chemically reacting flows.  It is a question for Dr. Radespiel or Dr. 
Marmignon.  Perhaps someone can answer it.  Well, in the abstracts we 
received no proposals on the following subject.  In the past, we 
expected that there would be some developments on techniques using 
different grids for different equations, for example, relatively 
coarse grids for the flow equations and the finer grids for the 
chemical reaction equations.  I heard nothing on that issue in this 
Symposium.  Is that idea still around or is it forgotten now? 

The second question is concerning the DNS method.  In the past, I 
expected that DNS would provide some kind of numerical wind tunnel or 
experiment to construct better turbulence models, classical 
turbulence modelling, or for example, for LES.  Nobody addressesd 
that subject.  My question is, at this time, are there some people 
who use DNS to try to construct better models for turbulence or not? 
Usually, when I attend a talk on DNS I hear nothing about that. 

C. Marmignon. ONERA. France 
I would like you to be more specific with the question if possible. 

J.A. Essers. University of Liege. Belgium 
In the past some people suggested, I namely think of Marsha Burger of 
the Courant Institute, but I am not sure, that some people in the 
U.S. were working in the field mentioned in my first question, i.e., 
the use of different grids when you have chemical reactions.  Some of 
them have very short relaxation times, leading to very sharp 
gradients in a shock wave for example, so it could be worthwhile to 
discretize the kinetic equation corresponding to that reaction with a 
very fine grid and perhaps to use a coarser grid for another chemical 
reaction and still a coarser grid for the flow equations.  So you 
could imagine to have a series of grids, three grids, for example. 
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Of course, the points of the coarse grid would also be points of the 
finest grid, like in multigrid techniques I would say, and for some 
equations you would only discretize them on the coarse grids and 
interpolate the results for the fine grids in order to save time.  Is 
there some research going on in that field? Maybe it is not 
interesting, I don't know. 

C. Marmignon, ONERA, France 
We have not looked at this point. 

J.W. Slooff. NLR. Netherlands 
On the last question, that is the DNS, LES question, I think I saw 
three hands up there. 

B. Geurts, University of Twente, Netherlands 
The question you raised is, as exclusively mentioned, not within the 
scope of this Symposium.  If you are interested in it, I would like 
to refer you to some of the work at Twente where we try to use DNS as 
a data base for developing subgrid models for LES which is an 
intermediate step for possible extension to Reynolds averaged 
turbulence modelling improvement.  We are not unique in the world, 
there are several groups that have similar approaches in which they 
start from DNS. 

P. Comtef LEGI. Institut de Mecanique de Grenoble, France 
I think all the LES community has tested models in comparison with 
DNS, however DNS are currently restricted to fairly low Reynolds 
number flows.  If we want to use LES for higher Reynolds numbers, 
maybe those comparisons wouldn't be that relevant. 

N. Krollr DLRf Germany 
I just want to make a short comment on chemically reacting flows.  In 
my opinion the most severe problem is the stiffness of the discrete 
system.  I think you cannot overcome this problem by using different 
mesh types.  You have to develop efficient algorithms to overcome 
that stiffness problem. 

J. Jimenez. Escuela Superior de Inaenieros Aeronauticos. Spain 
The question of the relationship between DNS and modellingis 
something that has been considered for several years.  It is a 
question of what to expect.  You cannot expect DNS to give you a 
model.  That has to be done by modellers.  What DNS gives you is 
"ground truth'.  It gives you what the real flow is doing, and it 
gives you constraints on which models work and which ones do not. 
This has been practiced extensively now, at the CTR in Stanford, at 
Twente, as reported in this meeting, and at many other places.  There 
are cases in which DNS is almost the only data available, as in the 
case of stress balances in separated flows, which are difficult to 
measure and difficult to model, but which have been computed with 
DNS.  You can use those data to check whether a particular model 
works or not and, if it does not, it is up to the modeller to come up 
with a better one.  That last step was, of course, outside the scope 
of the present meeting.  DNS can do this, and it can give you some 
ideas of how to improve your model, but it cannot produce a model by 
itself.  It is as difficult to get good models out of DNS as it has 
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been to get them from experimental data.  There is nothing magic 
about DNS.  It is just a better experiment. 

J.A. Essers, University of Liege. Belgium 
I don't know, but I suppose it is easier to get a lot of data from a 
calculation like DNS than from experiments.  I don't know a lot in 
that field, but I would see DNS as a kind of experimental facility 
that can provide you with a lot of information if you need it. 

J. van Ingen. Delft University, Netherlands 
I think we should not forget that there has been a time, I refer to 
the Stanford trials in '68 and '80, when the idea was that we just 
had to wait for the ultimate turbulence model and all our problems 
would have been solved.  Then, I think around the '80's, people 
started to realize that there is not a single turbulence model.  You 
will have models for different kinds of flows.  So if you say DNS is 
providing a different approach to experiments, yes, but you will need 
experiments, hence also these numerical experiments, in these 
different kinds of flow.  Having a problem with calculating high 
Reynolds numbers will remain as long as you cannot do DNS for these 
high Reynolds numbers. 

J.W. Slooff. NLR. Netherlands 
I thank you all for your contribution to this discussion, and in 
particular Dr. Kroll for giving us the starting point for the Round 
Table Discussion.  I think Prof. Essers would now like to formally 
close this Conference. 

J.A. Essers. University of Liege. Belgium 
I will make it very short.  First of all, I would like to say that in 
my opinion, the Conference was satisfactory from several viewpoints. 
First of all in terms of attendance, if the attendance is a measure 
of the usefulness to the NATO people.  I just would like to let you 
know that we had 124 attendees, including observers, Panel Members 
and authors.  For those of you who are interested in this, I just 
show you a distribution of attendance per country so it could be 
perhaps useful to some of you.  That is just for statistics, let us 
say.  Now concerning the technical content, let me just say that I 
agreed with many of the things Dr. Kroll said.  Anyway, I think that 
during this week we could at least answer some questions.  For 
example, we know which was perhaps not obvious for all of us, that 
there is still a lot of exciting future for CFD.  That is great 
because otherwise many of us would become unemployed in the near 
future.  I feel also that we are all convinced that there is no way 
that CFD could replace wind tunnels in the future.  They have to work 
together and they are very complementary to each other.  Their 
complementary role should still be reassessed and used more 
intensively in the future.  Then I have some conclusions concerning 
some work that could be done in the future.  For example, I believe 
that that issue on grids will be very important and I think that 
there is no way to say that structured grids or unstructured grids 
will be better.  They have to be used together.  For example, I would 
like to remind you of that idea of hybrid grids and overlapping 
grids, and all these things.  I have already been interested in the 
fact that you can have good error detectors and good error 
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estimators.  It would be nice if we could generalize them to the 
transient error and to evaluate the error due to the time 
discretization.  That would help a lot in unsteady flow calculations. 
I also appreciated the talks on DNS.  For example, it was very clear 
that DNS could only be used in some small parts of the configuration, 
for example, and then the issue would be to develop multi-block 
techniques using DNS in some blocks, and some other models in other 
blocks. The communication between blocks obviously still has to be 
defined.  This is an important issue for the future.  Finally, I 
believe that to accelerate the calculations, which I believe is 
something very important, we should both use more efficient numerical 
techniques like implicit techniques and so on.  Also, to have 
efficient computers.  I liked a lot the talks on parallel computing, 
namely the talk by Prof. Knight.  I must confess that many of us who 
don't use parallel computing are a little bit scared of using it. 
But I think we should do it anyway, or we will be out of business.  I 
would however feel concerned by the portability issue.  If you say it 
could become very portable, it would be nice to use it. 

To close this meeting, I would like to thank all of the people who 
contributed to the success of this Conference.  I will not thank each 
of them separately because this will be done by Christian Du^arric in 
a few minutes.  I just would like to say that I am grateful to the 
authors who prepared good papers; in particular, I feel very 
satisfied by the fact that we received a copy of all of the papers 
now, which is not so usual in AGARD Conferences, so you can go back 
home with copies of all the papers.  That is good in itself.  I would 
also like to thank the Programme Committee members, the session 
chairmen and the technical ealuator, Dr. Kroll, who did a great job, 
in my opinion and also the Spanish organizers.  They had planned 
everything including very good weather and they had a great party on 
Monday.  There were very nice facilities.  I would like to thank you 
for your attendance to this Symposium.  I hope that you will go back 
home and remember this Conference as useful for your work.  I hope 
that it will be very rewarding for your career, and wish you a good 
trip back home. 

C. Duiarric, Chairman Fluid Dynamics Panel 
Thank you Prof. Essers.  Ladies and Gentlemen.  We have now come to 
the end of our Symposium.  I think that we have identified together 
promising research orientations.  The scientific material will permit 
each of us to formulate recommendations for our respective 
organizations on the aspects of the use of numerical methods for 
aerodynamics which particularly merits our efforts for its 
development.  The Fluid Dynamics Panel will use the results of_this 
Conference as one of the elements for its contribution to Working 
Group Aerospace 2020.  This Working Group will present to the highest 
authorities of NATO the recommendations concerning the technological 
efforts required to provide to the Alliance by 2020, radically 
improved military capacity in spite of the tight expected budgetary 
pressures. 

A symposium regrouping all the panels of AGARD is planned in Paris in 
the Spring of 1997 to present the conclusions of this Working Group. 
This meeting will have in attendance military authorities, industry 
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representatives and researchers.  This will be for us an occasion to 
deliver our message, and I hope that many of you will participate. 

This Symposium which has just finished, has been very well followed 
as Prof. Essers has mentioned.  Inspite of some of the points made by 
Dr. Kroll, it was very fruitful.  The Program Committee deserves our 
congratulations.  We thank Prof. Essers, the Chairman of the Program 
Committee.  We also thank the members of the Committee, Prof. 
Deconinck, Prof. Kind, Prof. Bonnet, M. Jacquotte, M. Lacau, Dr. 
Korner, Prof. Panaras, M. Borsi, Prof. Slooff, Dr. Ytrehus, Prof. 
Falcao, Dr. Corral, Prof. Jimenez, Prof. Kaynak, Dr. Poll, Prof. 
Cantwell and Dr. Lekoudis.  We warmly thank all the authors and all 
of you who have helped us to have a lively discussion.  We also thank 
the Technical Evaluator, Dr. Kroll, who has presented his point of 
view regarding our work.  These comments will be attached to the 
publication of the Round Table Discussion.  A remarkable job of 
organization was done to permit us to have our Symposium.  I would 
like to thank on behalf of the Fluid Dynamics Panel, the Spanish 
authorities, in particular the National Delegates, for the invitation 
to hold this meeting in Seville.  I remind you that the Minister of 
Defense for Spain and INTA have contributed to making our stay so 
agreeable by financing the organization of our Conference.  We are 
very grateful.  We thank in particular, Lt. General Mira Perez for 
the wonderful evening we had last Monday. 

We especially thank our Local Coordinator, Prof. Javier Jimenez as 
well as Miss C. Gonzalez Hernandez, Spanish National Coordinator. 

This Conference would not have been possible without the complicated 
logistics whose operation relies largely on good will.  So we thank 
the interpreters who have succeeded in translating in spite of the 
very technical character of our remarks, considering especially the 
level of difficulty of doing so with certain speakers, perhaps myself 
included. 

We thank the technicians for keeping the equipment functioning, the 
hostesses, as well as the people who welcomed us and helped in the 
smooth running of the Conference. 

Lastly, we thank the Secretary of our Panel, Anne-Marie Rivault, who 
has just received the AGARD Personnel Medal for her devotion to the 
FDP and who participates for the last time in a Symposium before 
taking her well-deserved retirement. 

We also thank the Panel's Executive, Mr. Jack Molloy for his very 
effective support in the preparation of this Conference. 
Now I would like to present you with our program for 1996.  We will 
have in the Spring a Symposium on the Characterization and 
Modifilation of Wakes from Lifting Vehicles.  This will take place in 
Trondheim in Norway from the 20 to the 23th of May, 1996.  In the 
Fall, if everything goes well, we will organize for the first time in 
the history of AGARD, a Symposium in Moscow.  It demonstrates the 
recent opening up toward the countries of the old Soviet bloc.  It 
will cover the Aerodynamics of Wind Tunnel Circuits and Their 
Components. The Russians have a great deal of experience in this 
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field and have promised to share this expertise.  We begin a new 
level of cooperation which will be technically extremely fruitful for 
us.  We will also have in 1996, two special courses at VKI, one on 
Advances in Cryogenic Wind Tunnel Technology, and the other on 
Aerothermodynamics and Propulsion Integration for Hypersonic 
Vehicles.  You are all invited to participate in our future progams, 
and I hope to have the pleasure to meet you.  Thank you for your 
attention. 
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