
if
V V

WBBBJr

Final Report on the Use of Fuzzy Set
Classification for Pattern Recognition

of the Polygraph, Volume II of II

BiwabittJca öaiosated

R. Benjamin Knapp, Ph.D., Ulka Agarwal, M.S.,
Ramin Djamschidi, M.S., Shahab Layeghi, M.S.,
Mitra Dastamalchi, M.S., and Eric Jacobs, M.S.

December 1995

Department of Defense Polygraph Institute
Fort McClellan, Alabama 36205-5114

Telephone: 205-848-3803
FAX: 205-848-5332

19960711 147 1BTXC ^0ii- i.W- <i iW'1: :JJJ

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1995

3. REPORT TYPE AND DATES COVERED
Final Report Jan 93 - Dec 95

4. TITLE AND SUBTITLE

Final Report on the Use of Fuzzy Set Classification for
Pattern Recognition of the Polygraph, Volume II of II

6. AUTHOR(S)

R. Benjamin Knapp, Ulka Agarwal, Ramin Djamschidi,
Shahab Layeghi, Mitra Dastamalchi, Eric Jacobs

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Electrical Engineering
San Jose State University
P. O. Box 720130
San Jose, California 95172-0130

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of Defense
Polygraph Institute
Building 3If5
Fort McClellan, AL 36205-5114

5. FUNDING NUMBERS

DODPI93-P-0014

8. PERFORMING ORGANIZATION
REPORT NUMBER

DODPI96-R-0002

N00014-93-I-0570

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

DoDPI93-P-0014

DODPI96-R-0002

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Public release, distribution unlimited.

12b. DISTRIBUTION CODE

13.ABSTRACT (Maximum 200 wordsl ^ , . , . . . ,- , . , . £. -iji, j This project was completed to determine if fuzzy set classification could be used
to accurately evaluate data collected during a psychophysiological detection of
deception examination. This methodology provides an alternative to the
proprietary statistical technique now commonly used. Data collected using both
the Modified General Question Technique (MGQT) and the Relevant Only formats were
evaluated. An extensive and, arguably, complete set of polygraph data features
was identified. These polygraph data features were not individual dependent,
examiner dependent, or in any way dependent on apriori or posteriori knowledge
(statistics) of the data. A fuzzy K-Nearest Neighbor classifier and an adaptive
fuzzy Least Mean Squares classifier were developed. A fuzzy C-Means clustering
algorithm which enabled visualization of the data features was also developed.
the fuzzy algorithms were "forced" to make a choice of truth versus deception;
they could, however, be used to return a number that would, in near real-time,
give the examiner an idea of the confidence level of the algorithm. the data
were parsed such that 25% of the data were tested using an algorithm developed
from the remaining 75% of the data. It is shown that only four features are
needed to achieve 100% correct classification of the Relevant Only data and 97%
correct classification of the MGQT data. It is suggested that any future
research development, or testing or computer classification techniques, including
statistical and neural techniques, include the results of this work.

14. SUBJECT TERMS

algorithm, polygraph, deception, truth, fuzzy, fuzzy logic,
fuzzy set, psychophysiological detection of deception, computer

15. NUMBER OF PAGES

210
16. PRICE CODE

17. SECURITY CLASSIFICATION

UnOTMfied
18. SECURITY CLASSIFICATION

UncIä'^Med
19. SECURITY CLASSIFICATION

O&rffi'sWfied
20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C
G
PE

Contract
Grant
Program
Element

PR
TA
WU

Project
Task
Work Unit
Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

DOE - See authorities.
NASA- See Handbook NHB 2200.2.
NTIS - Leave blank.

Block 12b Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technica
Reports.

NASA- Leave blank.
NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

* U.S.GPO: 1991-0-305-776 Standard Form 298 Back (Rev. 2-89)

Report No. DoDPI96-R-0002

Final Report on the Use of Fuzzy Set
Classification for Pattern Recognition

of the Polygraph, Volume II of II

R. Benjamin Knapp, Ph.D., Ulka Agarwal, M.S.,
Ramin Djamschidi, M.S., Shahab Layeghi, M.S.,
Mitra Dastamalchi, M.S., and Eric Jacobs, M.S.

December 1995

Department of Defense Polygraph Institute
Fort McClellan, Alabama 36205

Table of Contents

Volume I

Title Page i
Director's Foreword ii
Abstract iii
List of Tables viii
List of Figures ix
Introduction 1
Phase 1: 1993-1994 . 1

Development of Data Parsing Algorithm 2
Time Domain Features 2
Frequency Domain Feature 2
Correlation Domain Feature 2

Design of Fuzzy Classifier Algorithm 4
Phase II: 1994-1995 4

Comparison of the Fuzzy C-means, Fuzzy LMS, and Fuzzy K-NN Algorithm 5
Fuzzy C-means Algorithm on "Relevant Only" Data 7

Summary of Results 7
Automatic Data Analysis Method 7

Parsing the Data 7
Classifying the Data 8

Classification Accuracy 12
Conclusions 15

Section 1: Time Domain Features for the Fuzzy Set Classification of Polygraph

Title Page . 1-i
Table of Contents 1 -ii
List of Tables 1 -iii
List of Figures 1-iv
History 1-2
Modern Test Formats 1-2
Present Day Equipment 1-3
Fuzzy Set Theory 1-5
MGQT 1-8
File Formats 1-8
Preprocessing 1-10
Time Domain Feature Extraction 1-15
Feature Extraction Methods 1-17
Conclusion 1-17
References 1-18
Appendix A: Preprocessing Programs 1-A-l
Appendix B: Feature Extraction Programs 1-B-l

n

Section 2: Feature Analysis of the Polygraph

Title Page 2-i
List of Charts 2-iii
List of Figures 2-iv
List of Tables 2-v
Acknowledgment 2-2
Introduction 2-3
Polygraph 2-4

Polygraph Examination 2-4
History 2-5
Modern Test Format 2-5
Present Day Equipment 2-6

Classifier Algorithm 2-7
K-Nearest Neighbor Algorithm 2-7

Frequency and Correlation Domain Features 2-11
Preview 2-11
Fundamental Frequency 2-11
Modeling 2-13
Cross-Covariance and Cross-Correlation Functions 2-15
Whitening Filter 2-17
Spectral Analysis 2-19
Integrated Spectral Distance 2-21
Frequency and Correlation Domain Features 2-23

Feature Extraction 2-24
Preprocessing 2-24
Feature Selection 2-25
Feature Extraction Algorithm 2-26

Results 2-29
Frequency Domain Features Clustering 2-29
Discussion 2-31

Conclusion 2-33
References 2-34
Appendices 2-35
Appendix A: Tables 2-A-36
Appendix B: Programs 2-B-50

in

Volume II

Section 3: Pattern Recognition of the Polygraph Using Fuzzy Set Theory

Title Page 3-i
Acknowledgment 3-ii
List of Figures 3-v
Introduction 3-2
Polygraphs 3-4
Feature Extraction and Classification 3-7
Conclusion and Future Work 3-28
References 3-29
Appendix A: Tables 3-A-l
Appendix B: Program Listings 3-B-33

Section 4: Use of Fuzzy Set Classification for Pattern Recognition of the Polygraph

Title Page 4-i
Acknowledgment 4-ii
Table of Contents 4-1
List of Figures 4-3
Introduction 4-6

Polygraph 4-6
Preview 4-6
History 4-6
Modern test formats 4-7
Present day equipment 4-9

Pattern Recognition Utilizing Fuzzy Tools 4-10
Why the "fuzzy" approach? 4-10
Why fuzzy-c-means (FCM)? 4-13

Fuzzy-c-means algorithm and its interpretation 4-14
Why LMS Fuzzy Adaptive Filter 4-18
LML Fuzzy Adaptive and its Interpretation 4-18

Approach 4-22
Part I--FCM 4-22

Initial Stage (conditions and methods) 4-22
Clustering stage 4-23

Part II--LMS fuzzy adaptive filter 4-36
Feature selection by visual inspection 4-36
Setting linguistic rules 4-39
Training, testing and evaluation strategy 4-40
What to do with the memorizing problem? 4-42

IV

Results and Conclusions 4-44
Fuzzy-C-Means 4-44

Searching for the best level of fuzziness 4-44
Searching for the best feature combination 4-49

LMS Fuzzy Adaptive Filter 4-66
Other Observations 4-69
A Comparison 4-71

Future Steps and Suggestions 4-74
The algorithms 4-74
The polygraph examination 4-77

Appendix 6.1 Table of the feature names 4-78
Appendix 6.2 Table of the polygraph files 4-84
Appendix 6.3 User interface 4-85
Appendix 6.4 Program listing—implementation in MATLAB 4-86
Epilogue 4-106
References 4-107

Section 5. Errors in the "Relevant Only" Data 5-1

Report No. DoDPI96-R-0002

Pattern Recognition of the Polygraph
Using Fuzzy Set Theory

Shahab Layeghi
San Jose State University

Department of Electrical Engineering
San Jose, Ca 95106

December 1993

Department of Defense Polygraph Institute
Fort McClellan, AL 36205

Acknowledgments

I would like to express my gratitude to my advisor Dr. Ben Knapp
for introducing us to this project and his precious guidance. This
project was a team project which was completed by the efforts of
all team members. I would like to thank my colleagues Mitra
Dastmalchi and Eric Jacobs, especially Mitra whose invaluable help
and support made it possible for me to complete this project. I
would also like to thank undergraduate assistants Michelle Badal
and Ulka Agarwal for their assistance in preparing this report.

3-ii

Table of Contents

Title Page 3_i
Acknowledgment 3_ü
List of Figures 3_iv

I. Introduction 3_2
II. Polygraphs 3.4

ILL History 3.4
11.2. Modern Test Formats 3.5
11.3. Present Day Equipment 3-6

III. Feature Extraction and Classification 3-7
ULI. Introduction 3-7
111.2. Preprocessing 3-8
111.3. Feature Extraction 3-9

111.3.1. Feature Gathering 3-10
111.3.2. Feature Combination 3-11
111.3.3. Feature Selection 3-12
111.3.4. Discussion about the results 3-19

111.4. Classification 3-20
111.4.1. K-nearest neighbor algorithm 3-21
111.4.2. Fuzzy K-nearest neighbor algorithm 3-22
111.4.3. Mehtods and Discussion 3-26

IV. Conclusion and Future Work 3-28
References 3-29
Appendix A: Tables 3-A-l
Appendix B: Program Listings 3-B-33

3-iii

}

List of Figures

1. Polygraph Classification 3-7

2. Feature Extraction 3-9

3. Feature Gathering 3-10

4. Feature Combination 3-12

5. Feature Selection 3-12

6. Feature Selection (Reduction) 3-15

7. Feature Selection (Combination) 3-17

8. K-Nearest Neighbor Algorithm 3-22

9. Fuzzy K-Nearest Neighbor Algorithm 3-25

3-iv

I. Introduction

Polygraph examinations are the most widely used method to distinguish between truth and

deception. In a Polygraph examination a person is connected to a special instrument

called a Polygraph which records several physiological signals such as blood pressure,

Galvanic Skin Response, and respiration. The subject is asked a set of questions by an

examiner. By looking at these signals the examiner is able to determine the reactions of

the subject to the questions and decide whether the person was truthful or deceptive in

answering each question. The problem with human classification of Polygraph tests is that

the outcome depends on the examiner's experience and personal opinion. Automatic

scoring of Polygraph tests has been a subject of extensive research. Several methods for

Polygraph classification have been studied which are mostly based on statistical

classification techniques.

In this study two main goals were presented. The first goal was finding appropriate

features which have physiological basis. The second purpose was trying a new

classification method based on fuzzy set theory. The advantage of using fuzzy logic is that

the it does not simply assigns each input to one of the classes, but it gives the possibility of

belonging of an input to each class.

Digitized Polygraph data used in this project were collected from various police stations.

The data files were organized according to the test format used and were decoded to

ASCII format so they can be read by Matlab. Preprocessing and feature extraction

routines were implemented in the Matlab language. Three sets of files were chosen, each

one of them contained 50 deceptive and 50 non-deceptive files. These files are listed in

Table 10 in Appendix A. A set of features were selected based on physiological reactions,

and the feature vectors for every file in each set were found. Different classification

methods were studied and a Fuzzy K-nearest neighbor classifier was selected.

Significance of each feature was examined according to the clustering and correct

classification obtained by using that individual feature. Thirty features were selected as

the final set of features and a subset of combinations of 2 to 4 of these features were

examined to study the effects of combining the features on classification results. The

3-2

combination that produced the best classification for all three sets on the average was
selected and the effects of changing the classifier parameters on classification was studied.

3-3

II. Polygraphs*

A polygraph examination is the most popular method used to determine if an individual is

being truthful or deceptive. During an examination, a subject is asked a series of questions

and the physiological responses to the questions are recorded using a polygraph. The

three physical responses currently obtained from a polygraph examinations are blood

pressure, respiration, and skin conductivity. Polygraph charts are usually analyzed by a

human interpreter for evidence of truth or deception; however, computer algorithms are

now being used to verify results [1][2].

11.1. History

The first attempt to use a scientific instrument in an effort to detect deception occurred

around 1895 [3]. That was the year that Caesar Lombroso published the results of his

experiments in which a hydrosphygmograph was used to measure the blood pressure-pulse

changes of criminals in order to determine whether or not they were deceptive. Although

the hydrosphygmograph was originally intended to be used for medical purposes,

Lombroso found that it worked well for lie detection. Lombroso may have been the first

to use a peak of tension test format. This was done by showing a suspect a series of

photographs of children, one being the victim of sexual assault. If the suspect did not

react more to the victims picture than the pictures of the other children, Lombroso

concluded that the suspect did not know what the victim looked like and therefore was not

the alleged perpetrator.

In 1914 Vittorio Benussi published his research on predicting deception by measuring

recorded respiration tracings [4]. He found that if the length of inspiration were divide by

the length of expiration, the ratio would be larger after lying than before lying and also

before telling the truth than after telling the truth. In 1921 John A. Larson constructed an

instrument capable of simultaneously recording blood pressure pulse and respiration

during an examination [3][4]. Larson reported accurate results which prompted Leonarde

Keeler to construct a better version of this instrument in 1926 [3][4].

* This section is exerpted from [17]

3-4

The use of galvanic skin response in lie detection began during the turn of the century. It's

usefulness, however, did not become evident until the 1930's during which time several
articles written by Father Walter G. Summers of Fordham University in New York [4].
In these articles he reports over 90 criminal cases in which examination using the galvanic

skin response had all been successful and confirmed by confession or supplementary
evidence The usefulness of the galvanic skin response prompted Keeler to add an

galvanometer to his polygraph. At the time of Keelers death in 1949, the Keeler
Polygraph recorded blood pressure-pulse, respiration, and galvanic skin response [3].

II.2 Modern Test Formats

The effectiveness of a polygraph examination is often the result of the test format that is
used A polygraph test format consists of an ordered combination of relevant questions

about an issue, control questions that provide a physical response for comparison, and
irrelevant questions that also provide a response or the lack of a response for comparison
[1][4] Three general types of test formats are in use today. These are Control Question
Tests Relevant-Irrelevant Tests, and Concealed Knowledge Tests. Each of the general
test formats may have a number of more specific variations. Each test consists of two to
five charts containing a prescribed series of questions. The test format that is used in an

examination is determined by the test objective [3][4].

The concealed knowledge test, also called peak of tension test, is used when facts about a
crime are known only by the investigators and not by the public. In this case, a subject
would not know the facts unless he or she was guilty of the crime. For example, if a gun
was used in a crime and the public did not know the caliber, an examiner could ask a
suspect if it was a 22 caliber, a 38 caliber, or a 9 mm. If the gun used was a 9 mm and
the suspect was deceptive, a polygraph chart would probably indicate evidence of

deception.

A control question test is often used in criminal investigations. In this type of test a series
of relevant, irrelevant, and control questions are asked. A relevant question is one which
is specific to the crime being investigated. For example, - Did you steal the money?". A
control question is designed to make the subject feel uncomfortable. It is not specific to
the crime being investigated however it may be related in an indirect way. A control

3-5

question that could follow the relevant question stated above is "Have you ever taken
anything that did not belong to you?". The control questions are compared to the relevant
questions and if the responses to the relevant questions are greater, the subject is usually
classified as deceptive. Irrelevant questions are used as buffers. Examples of irrelevant

questions are "Are the lights in this room on?" or "Is today Monday?".

Relevant-Irrelevant tests are usually used to test people trying to obtain security clearance

or get a job In this test, relevant questions are compared to irrelevant questions. Very
few control questions are asked. The purpose of control questions in this test is to make

sure that the subject is capable of reacting at all.

II.3 Present Day Equipment

The most popular polygraph machines today are the Reid Polygraph developed in 1945
and the Axciton Systems computerized polygraph developed in 1989 [1][11]. The Reid
polygraph scrolls a piece of paper under pens that record the biological signals. The
Axciton polygraph digitizes physiological signals and uses a computer to process them.
The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer
based system for ranking the subject responses but allows printouts of the charts to be
scored by hand the traditional way. Both machines record the same biological signals
using standard methods. Blood pressure is measured by placing a standard blood pressure
cuff on the arm over the brachial artery. Respiration is monitored by placing rubber tubes

around the abdominal area and the chest of the subject. This results in two signals, an
upper and lower respiratory signal. Skin conductivity is measured by placing electrodes

on two fingers of the same hand.

3-6

III. Feature Extraction and Classification

III.l Introduction

The problem of Classification of Polygraph data like other pattern recognition problems
can be considered of consisting of several main stages. Figure [1] shows these stages and
the relationship between them. At the beginning data is preprocessed so that noise and
redundancies are removed from data and feature extraction can be done more accurately.

The next stage is feature extraction. In this step data is read and appropriate features are

extracted from it. This is a very important step in all pattern recognition problems,
because the purpose of pattern recognition is finding similarities in data that belong to the
same class, and features are elements that represent these similarities. Therefore, a good
set of features can lead to good classification whereas a satisfactory result cannot be
achieved with an inappropriate set of features. Having a set of features, the next step is to
use a method to classify data using these features. These steps as applied to Polygraph
classification are described in more details in the following sections.

POLYGRAPH CLASSIFICATION

Data
files Preprocessing

Verified
Classification
Results
from Police

-3 Feature
Extraction

Classification Classification
Results

Comparison £

vi/

Performance
Measurement

Figure 1

3-7

III.2. Preprocessing

Polygraph data consists of signals from four different channels: galvanic skin response
(GSR), blood pressure, higher respiration, and lower respiration. First blood pressure
signal was decomposed into a high frequency component showing heart pulse, and a low
frequency component showing blood volume. Derivative of the blood volume channel
was taken and used as another channel. These six derived signals were detrended and

filtered. For more details on preprocessing refer to [17].

3-8

III.3. Feature Extraction

In this step appropriate features are selected and extracted. Feature extraction is itself
divided into several steps. Figure [2] shows different stages involved in feature extraction.

By feature gathering we mean selecting features that might have useful information in
them. Feature Combination is a special step in polygraph classification. In this step
features derived for different questions in a test are combined to build a single feature,
feature selection is a step in which a small number of features is selected from the main

feature set to be used in final classifier section.

!

Preprocessed
Data

\ Feature
Gathering

\ Feature
Combination —5 Feature

Selection
—} Feature

Set -1)

I 'EAT! [JRE EXTRACT ION

Figure 2

3-9

III.3.1. Feature Gathering

Features that possibly convey some information in them were selected and extracted in this
stage. Literature about Polygraph were studied and several Polygraph examiners were
interviewed to find out what had been done about this problem and what characteristics in
a signal are used as indicators of truth or deception. In general features are divided into
three main groups, time domain features, frequency domain features and correlation
features. Time domain features are mostly standard characteristics like mean, standard

deviation, median and so on. Some more specific time domain features were also added,

such as the ratio between inhalation and exhalation. Auto Regressive parameters were
also extracted and tried as features. To extract each feature for each question a time
frame was considered that started with a specific delay after each question was asked and
lasted for a specific amount of time. Different time frames were used for different
channels because each channel represents a different physiological parameter. Frequency
domain features include fundamental frequency, magnitude of power spectral density at

fundamental frequency, coherency at fundamental frequency and so on. Figure 3 shows

the feature gathering and the decisions that involved in this step.

Input
Files -=S What

Files? -=> Preprocessing What
Features?

FEATURE GATHERING

Frequency
Domain

Methods
To Extract
Features

Feature
Set

I
(M matrix)

Figure. 3

3-10

For every question in a test 93 features were selected and extracted . Also 6 Integrated
Spectral Density features were used which directly compare each relevant question to the

nearest control question. The total number of features derived for each test was :

93x10+6x5 = 960

This was repeated for all the tests in feature sets 1, 2 and 3. The results of each set were

saved in a 960x100 matrix called the M matrix.

For a detailed description of time domain features and frequency domain features refer

respectively to [17] and [16].

III.3.2. Feature Combination

As mentioned earlier each feature is extracted for all questions in a test, that is for
relevant, irrelevant, and control questions. In a polygraph test responses to relevant
questions are compared to responses to irrelevant and control questions. But in any test
there are several questions of each type and many methods can be used to combine them.
Figure [4] shows different methods to combine the features. It was decided not to use
irrelevant questions in this study, because in a Controlled Question Polygraph Test
comparison between the responses to relevant and control questions is the most important
factor. For most of the features seven methods were tried to combine features of different

questions in a test. For the last six features three ways to combine them were tried. These
methods were finding the average, maximum and minimum of relevant-control pairs. The
first 93 features combined in seven ways and six integrated spectral density features were
combined in three ways so the total number of features at this stage was equal to:

(93x7; + f6x3J = 669

3-11

FEATURE COMBINATION

Subtract the
averages Use control

\ and relevant
seperately

\ ?

Subtract the

\

How to combine
features of

Compare

different
questions? — relevant

/

Use control,
\ relevant

and irrelevant

•
•

Divide the averages

Figure 4

m.3.3 Feature Selection

Feature selection was done in two independent steps, reduction and combination. Figure

[5] shows the relationship of these two steps. These two steps are explained m the

following two sections.

Feature
Set II

(669 Features)

FEATURE SELECTION

Reduction
Feature
Set III
(30 Features)

Combination Final
Features

Figure. 5

3-12

m.3.3.1 Feature Selection (Reduction)

The next step in our Feature Extraction was to reduce the number of features to a number

so that a practical algorithm can be used to select the feature set from them. It was

decided to bring down the number of features from 669 to 30 at this step. Two different

methods were chosen to test the features one at time to find the best 30. The first method

was using the KNN classifier to classify the data files using one feature at a time. It was

decided to use a Fuzzy version of K-nearest neighbor algorithm. The value 5 was selected

for the K because it seemed that it gave better results than the other values for 1 feature

classification. Also a threshold of 0.5 was used to defuzzify the output of the classifier.

Refer to the section on classification for the reason of choosing this classifier. The second

method was using the scatter criterion is given below.

J = (m1-m2)
2 (1)

sl+s]

mi = mean of class i, St = standard deviation of class i

This criterion measures the distance between the means of the two classes, normalized

over the sum of the variances. Therefore the more compactly the samples in each class re

separated, the higher will be the value of J.

The two methods were run on three sets of data. At this point a method was needed to

choose the features. Different methods are possible for this step. The method that was

followed is shown in figure [6] and explained below.

At first the results of KNN and scatter criterions were averaged for 3 sets of data so that

features that work well for all data sets would be selected. As mentioned in an earlier

section for Basic features 1 to 93, 7 features and for the features 94 to 99, 3 features were

derived. Because these features are derived from one basic feature and are strongly

correlated, it was decided to choose only one from them. So the best feature from these

sets of 3 or 7 was selected, and the results were sorted.

3-13

Two sets of 30 features were found using the above mentioned criterions. The next step
was choosing 30 features from these 60. This was done by examining the tables and
selecting the features that showed a good performance in both cases or had a special

physical meaning.

This set of features is the final set used for examining and selection. Table 1 in Appendix
A shows these features with their corresponding meaning, channel used to derive the

feature, and the method to combine the features for different questions.

3-14

Find the performace
of every feature
for each set
(UseKNN)

^_

Take the average

over the sets

SkL

Find the best features

in each row

\s_

Find the best 30
features

ste. ^

Find the performace
of every feature
for each set
(Use scatter)

-^iS

Take the average

over the sets

\s_

Find the best features

in each row

Find the best 30
features

Choose 30 features

\/_

Figure. 6 Feature Selection (Reduction)

3-15

m.3.3.2 Feature Selection (Combination)

The number of features was reduced to 30 in the Feature Reduction step. This number
should be further reduced because there is 100 samples in each data file, and using 30
features in a classifier might give very good results for that particular data set, but it won't
be able to generalize. At this step measuring the performance of individual features is not
a very logical method. Because for example features 'A' and "B1 might be good features
individually, but combining them might not necessarily give better results. Whereas
feature |C that might not be a very good feature by itself might improve the classification

if combined with feature 'A.

Therefore the combinations of the features should be examined. Many methods are
suggested to solve this problem. The most basic way is exhaustive search. That is trying

all the combinations for these features. It is obvious that this is not practical when the
number of features is not very small. For example choosing 10 or less features from a set

of 30 and trying all the different combinations needs

™=lr, 1(20-i)!

computations.

The method that was chosen was to start with all the combinations of two, find the best N
ones among them, and use only these combinations to combine features in sets of 3. Then

again find the best combinations of 3 and use them in combinations of 4 features.

This procedure is continued until satisfactory results are gained or features are not
improved by increasing the number of features. Figure [7] shows the algorithm for this

step.

3- 16

(^ Start J)

Find the performace
of combinations of
2 features for each
set

Jite-

Select the best

N2 combinations

Find the performace
of combinations of
3 features for each
set

M/
Select the best
N3 combinations

Yes

Find the performace
of combinations of
4 features for each
set

No

Figure 7. Feature Selection (Combination)

3-17

All pairwise combinations of the features were tried to see the classification results. The
classifier used was Fuzzy K-nearest neighbor with a threshold of 0.5, and K=5. This was
done for three sets of features. The results were sorted and 30 best combinations for each
set were found. Also the results of classification for each combination for the 3 sets was
averaged and the 30 combinations that gave best results on the average were found.

These combinations are shown in Table 2 in Appendix A.

It was decided to select 20 sets of pairwise combinations to use in combinations of 3.

Results for sets 1-3 and Average were studied and combinations that showed a good
result in one of the sets or had a good average were selected. Table 3 in Appendix A

shows these combinations.

The same steps were repeated to study the combinations of 3 and 4 features. The results
are shown in Tables 4 and 6 in Appendix A. Because of time limitations it was decided

not to go further from combinations of 4 features.

3-18

m.3.4 Discussion about the results:

The classification results improved consistently by increasing the number of features from

one to four. The features that showed the best result for the three sets were features {5,

9, 21, 23}with 81 percent correct classification. These features represent Maximum Of

GSR, Difference between Maximum and Minimum of High Cardio, Maximum of Lower

Respiratory, and the Difference between Maximum and Minimum of Upper Respiratory.

These features show approximately the same classification results for all three sets which

is 81 percent.

Other combinations of features also gave comparable results. For example (5,21, 23, 29}

and {5, 11, 21, 23}, and (5, 10, 21, 23}. Note the repetition of {5, 21, 23}. Refer to the

table 1 in Appendix A for a meaningful listing of the features. It is very notable that

feature sets that show the best classification results has features that come from different

channels. It can be concluded that signals from different physiological channels convey

independent information, so that using features extracted from them improves the

classification.

Another point to notice is that data set three shows better classification results than the

two other sets, 87 percent versus 81 percent for the sets one and two. The feature set that

gives the best result for data set three is {9, 14, 19, 24}. This feature set gives 87.4

percent correct classification for data set three. The feature set {5, 9, 21, 23} that gives

the best classification on the average, has approximately the same results for all three sets,

81 percent. The polygraph tests that were used in this project came from several sources

and were done by different examiners that used slightly different methods. Fifty

consecutive tests were used to build each data set. So it is possible that some

characteristic exists in the deceptive files of data set three that results in better

classification. This is a matter of future investigation.

3-19

III.4. Classification

The classifier is the final stage in a pattern recognition system. The inputs to the classifier

are usually a set of feature vectors. The classifier ordinarily assigns each input to one of

the classes. There are many methods to design a classifier. The classifier could be

designed after studying the distribution of samples of each class, or a learning

classification algorithm can be implemented. We were not sure about the shape of

clustering and the distribution of samples for deceptive and non deceptive classes, and it

was possible that samples for one class cluster around more than one point in space. It

was decided to use the K-nearest neighbor classifier* in this project because it does not

explicitly use the distribution of the samples.

One of the characteristics of the conventional classification methods is that they assign

each input to one of the possible classes (crisp Classification) or find probability

distributions of belongingnesses of the inputs to the classes. While the way that humans

think and classify objects is fundamentally different. Each object can be considered to

belong to more than one class at the same time, and there are degrees of belongingness for

each class. This is the basic idea that is followed in Fuzzy Logic. It was decided to follow

a Fuzzy Logic based classifier in this project, because the output will be the possibility of

deception and a person will not be considered completely deceptive or non deceptive.

Conventional K-nearest neighbor algorithm and a Fuzzy version of it are described in the

following two sections.

* We are indebted to Professor R. Duda for suggesting KNN classifier.

3-20

m.4.1. K-Nearest Neighbor Algorithm

K-Nearest neighbor algorithm is a supervised classification method. There is no need for

the training or adjusting the classifier. A set of labeled input samples is given to the
classifier. When a new sample is given to the system, it finds its K nearest neighboring

samples, and assigns this sample to the class that the majority of the neighbors belong to.
K could be any positive integer. When K is set to 1, the algorithm is called the nearest
neighbor algorithm. In this case each new sample is assigned to the class of its nearest
neighbor. If K is greater than 1, it is possible that there is no majority class. To remove
this tie, the sum of the distances of the new sample to its neighbors in each class is
computed and the sample is assigned to the class that has the minimum distance. The
main advantage of using this method is that the samples of each class are not needed to
cluster in a pre specified shape. For example for a two class classification, the K-nearest
neighbor classifier can still give very good results if the samples of each class are clustered
in two distinct points in the space. The algorithm for the K nearest neighbor is shown in
figure 8. It is supposed that C is the number of classes, K is the number of neighbors in
KNN, x,. x,. is the \th labeled sample and y is the input to be classified.

3-21

Start

Set fust K samples
as K nearest neighbors

Find the distance of
next sample to the
input

Yes

Switch it with
the furthest
sample

No

Yes

No

il£_

Assign input to
the majority class

Find sum of the distances of
Neighbors for each class

Yes

M/
Find the majority class

M<L.

Assign input to the class
of minimum distance

Figure 8. K Nearest Neighbor Algorithm

3-22

III.4.2. Fuzzy K Nearest Neighbor Algorithm

The fuzzy K nearest neighbor algorithm uses the same idea of conventional K nearest
neighbor algorithm, that is finding the K samples that are closest to sample to be classified.
But there is a conceptual difference in classification. When fuzzy classification is used, the

input is not assigned to a single class. Instead, the degree of belongingness of the input to
each class is determined by the classifier. By using this method more information is
obtained about the input. For example if the result of classification determines
membership of an input to class A is 0.9 and to class B is 0.1, it means the input belongs
to class A with a very good possibility. But if the membership to class A is 0.55 and to
class B is 0.45, it means that we cannot be very sure about the classification of the input.
If the crisp classifier is used, in both cases the input will be assigned to class A and no

further information is obtained.

Refer to [14, 15] for more detailed discussions about fuzzy K nearest neighbor algorithms.
The flowchart for a fuzzy K nearest neighbor classifier is drawn in figure 9.

The first step in the fuzzy K nearest neighbor algorithm is the same as first step in crisp

classifier. In both cases K nearest neighbors of the input are found. While in crisp
classifier the majority class of the neighbors is assigned to the input, in Fuzzy classifier
membership of the input to each class should be found. In order to do so the membership
vector of each sample is combined to obtain the membership vector of the input. If the

samples are crisply classified, membership vectors should be assigned to them. One
method to do so is to assign the membership of 1 to the class that it belongs to, and
membership of 0 to other classes. Other methods assign different memberships to the
samples according to its distance from the mean of the class, or the distances from the

nearby samples of its own class and the other classes.

When the membership vectors of the labeled samples are specified, they are combined to
find the membership vector of the unknown class. This procedure should be done in a
way that samples that are closer to the input have more effect on the resultant membership

function. The following formula uses the inverse distance to weigh the membership

3-23

functions, x is the input to be classified,x} is the j/A nearest neighbor and uv is the

membership of the]th nearest neighbor of the input in class i. D(x,y) is a distance measure

between the vectors x and y which could be the Euclidean distance.

^(l/Dfx.x^)
«, (x) = ^ —

j^a/Dfx.xj)^)

m is a parameter that changes the weighing effect of the distance. When m »1, all the
samples will have the same weight. When m approaches 1, the nearest samples have much

more effect on the membership value of the input.

3-24

Yes

zte-
Switch it with
the furthest
sample

 iL£

Set first K samples
as K nearest neighbors

Find the distance of
next sample to the
input

No

Mi-

Find membership of the
input to each class using
the following formula.

Jdu9(l/D(x,xJ)^)
u,(x) = _ j=l

Figure 9. Fuzzy K-Nearest Neighbor

Algorithm

3-25

III.4.3. Methods and Discussion:

As mentioned in an earlier section the classifier was needed to compare the effectiveness

of single features and to choose the combinations of the features that gave the best

classification results. Therefore, the classifier was selected and used before the final

feature set was determined. The classifier might change the results of the classification

and finding the best classifier is not a trivial task. For example using the value of 10 for K

may change the set of 30 best features that was found by using K = 5.

It is not practical to try all different cases for different classifiers and different parameters

of classifiers, so it was decided to use a classifier with fixed parameters up to the point

that final set of features were selected. The classifier as mentioned earlier was a Fuzzy K-

nearest neighbor with the following parameters:

K = 5,

m = 2,

Defuzzification threshold = 0.5;

It should be noted that in order to save computation time throughout this project, each set

of files was randomly broken into a training and a testing set. Each file in the testing set

was classified using the labeled files in training set. Each experiment was repeated 20

times, and the results were averaged. The number of files that were used for training and

testing were accordingly 75 and 25. In the last stage of experiments after the final feature

set had been fixed, instead of randomly selecting testing and training files, one file was

kept for testing each time and the experiment was repeated 100 times changing the test

file.

After the final feature set was selected (Refer to the section on Feature Extraction),

different values for K were tried on fuzzy and crisp classifier to compare the two

classifiers and find the best parameters. In addition to percentage of correct classification

a measure of performance was also used which is explained below.

The measure that is used to compare the performance of fuzzy classifier is the root mean

square of the distances between the output of the classifier and the correct class. The

correct ouput of the classifer should be 0 for non-deceptive cases and 1 for the deceptive

3-26

ones. For example if for a deceptive sample the classifier output is 0.8, 0.2 is the distance

between the output and the correct class. The same measure is used for the crisp
classifier. In the case of the crisp classifier the distance is always 0 for correct

classification and 1 for incorrect classification.

For the fuzzy classifier the threshold used for defuzzification was also changed to find the
optimum value. Tables 7 and 8 in Appendix A show the results. The best classification on

the average over three sets is obtained using the fuzzy classifier with K = 6, and threshold
= 0.6 . Using this values correct classification of 81.6 percent was achieved. The best

result using the crisp classifier was 80.6 percent which was obtained using K=6. The
performance measures for the fuzzy and crisp classifiers were accordingly 0.3915 and

0.4377 which shows fuzzy classifier has a better performance in this respect.

One final experiment that was done is explained below. In a Polygraph examination a set
of questions is repeated one to five times and the decision is made by considering the
responses to all these charts. In this project each chart was classified separately. As the
final experiment responses to all the charts in a Polygraph examination were combined and

classified as deceptive or non-deceptive. The way they were combined was finding the
majority class and assigning the case to that class. In the case that equal number of files
classified as deceptive and non-deceptive, the membership function of the files was
averaged and the case was classified according to this value. The classification results for

all the files in sets 1 to 3 are shown in Table 9 in Appendix A. The number of cases in
each set was 35. The number of misclassified cases in sets 1 to 3 are 5, 7, and 3, which

correspond to correct classifications of 85.7, 80.0, and 91.4 percent.

3-27

IV. Conclusion and future work

The set of four features that showed best classification results in this project were
Maximum of GSR, Upper Respiration and Lower respiration signals, and the difference

between the Maximum and Minimum of High Cardio signal. These are all very simple
time domain features. The best classification was obtained using the fuzzy classifier with
K = 6, and threshold = 0.6 . Using this values correct classification of 81.6 percent was
achieved. By combining all the files in a Polygraph examination 85.7 percent correct

classification was achieved on the average.

There are several suggestions for the future work. First is to repeat this work with larger

sets of data files and observe the generalizability of the feature sets obtained in this
research. A possible way to improve the results is to change time frames used to extract
each feature for every question. In this way the optimum time for obtaining a response
could be found. Another suggestion is to try different methods for fuzzification and
defuzzification of feature vectors to optimize the fuzzy classifier.

3-28

REFERENCES

[1] Dale E. Olsen, et. al., "Recent developments in polygraph testing: A research
review and evaluation - A technical memorandum," Washington DC: US
Government Printing Office 1983.

[2] John C. Kircher and David C. Raskin, "Human versus computerized evaluations
of polygraph data in a laboratory setting," Journal of Applied Psycology,
Vol.73, 1988 No 2, pp. 291-308

[3] John E. Reid and Fred E. Inbau, Truth and Deception: The Polygraph (Lie
Detector ^ Technique, The Williams & Wilkins Company, Baltimore, Md., 1966

[4] Michael H. Capps and Norman Ansley, "Numerical Scoring of Polygraph Charts:
What Examiners Really Do", Polygraph, 1992, 21, 264-320

[5] L. A Zadeh, "Fuzzy sets", Information and Control, vol. 8, pp. 338-332, 1965

[6] James C. Bezdek and Sankar K. Pal, FUTTV Models for Pattern Recognition
Methods that Search for Structures in Data. JEEE Press, Piscataway, NJ. 1992

[7] L A. Zadeh, "Calculus of fuzzy restrictions," in: L. A. Zadeh, K. S. Fu, K.
Tanaka and M. Shimura, eds., Fuzzy Sets and Their Applications to Cognitive and
Decision Processes, Academic Press, New York, 1975, pp. 1-39

[8] Bart Kosko, Neural Networks and Fuzzv Systems, New Jersey : Prentice-Hall,
Inc., 1992.

[9] Brian M. Duston," Statistical Techniques for Classifying Polygraph Data ",
Draft, November 24, 1992

[10] Howard W. Timm, " Analyzing Deception From Respiration Patterns ", Journal
of Police Science and Administration, 1982, 1, 47 - 51.

[11] Personal communication with Richard Petty (polygraph examiner), June 1993

[12] Personal communication with Christopher B. Pounds (University of Washington),
May 1993

[13] Personal communication with Howard Timm, May 1993

3-29

[14] J.M. Keller, MR. Gray and J.A. Givens, "A Fuzzy K Nearest Neighbor
Algorithm", IEEE Trans, on Syst. Man. Cybernetics, vol SMC-15, no. 4

[15] J.C. Bezdek and Siew K. Chuah, "Generalized K-Nearest Neighbor Rules, Fuzzy

Sets and Systems vol. 18 (1986)

[16] Mitra Dastmalchi, "Feature Analysis of the Polygraph", Master's Project, San Jose

State University, December 1993

[17] Eric Jacobs, "Time Domain Feature Extraction of the Polygraph", Master's

Project, San Jose State University, December 1993

3-30

Appendices

3-A-l

Appendix A:

Tables

3-A-2

No. feature Description Channel Method

1 lOmean mean GSR 1

2 >10curve curve length GSR 2

3 lOmed dif median of the derivative GSR 1

4 lOmax min minimum subtracted from the maximum GSR 2

5 lOmax maximum of the signal GSR 1

6 lOmdif mean of derivative GSR 3

7 20curve curve length High Cardio 1

8 20ampcard amplitude of the peaks High Cardio 1

9 20max min minimum subtracted from the maximum High Cardio 4

10 20max maximum of the signal High Cardio 4

11 20min minimum of the signal High Cardio 1

12 30med dif median of the derivative Low Cardio 3

13 30max maximum of the signal Low Cardio 1

14 40mean mean Derivative of Low Cardio 1

15 40max maximum of the signal Derivative of Low Cardio 1

16 50curve curve length Lower Respiratory 6

17 50ampr amplitude of the peaks Lower Respiratory 2

18 50peaknumr number of the peaks Lower Respiratory 5

19 50ie inhalation divided bv exhalation Lower Respiratory 5

20 50max min minimum subtracted from the maximum Lower Respiratory 2

21 50max maximum of the signal Lower Respiratory 6

22 60max min minimum subtracted from the maximum Upper Respiratory 2

23 60max maximum Upper Respiratory 3

24 lOstd standard deviation GSR 2

25 20std standard deviation High Cardio 1

26 50std standard deviation Upper Respiratory 6

27 20armodl auto regressive parameter High Cardio 7

28 26psdcohl max cross spectral density High Cardio, Lower Respiratory 1

29 lOisdl frequency of maximum integrated spectral
difference of control-relevant pair

GSR 1*

30 20isdl 1 area under integrated spectral difference High Cardio 3*

Methods: l=Difference of Averages, 2=Normalized Average, 3=Max-Max, 4=Min-Min,
5=Max-Min, 6=Min-Max, 7=Max/Min, l*=Average of relevant-control pairs, 3*=Max of relevant-
control pair.

Table 1. Selected Features

3-A-3

Percentage of correct classification for 30 best combinations in set 1

Percent correct Feature 1 Feature 2

74.2000 8.0000 18.0000

74.0000 10.0000 21.0000

73.0000 5.0000 7.0000

72.0000 24.0000 26.0000

71.8000 23.0000 24.0000

71.6000 4.0000 26.0000

70.4000 25.0000 26.0000

70.4000 18.0000 25.0000

70.2000 24.0000 27.0000

70.2000 9.0000 21.0000

70.0000 5.0000 27.0000

69.6000 11.0000 21.0000

69.6000 9.0000 24.0000

69.4000 11.0000 27.0000

69.4000 5.0000 26.0000

69.2000 8.0000 19.0000

69.2000 5.0000 18.0000

69.0000 25.0000 27.0000

69.0000 9.0000 18.0000

69.0000 5.0000 23.0000

68.8000 24.0000 30.0000

68.8000 18.0000 20.0000

68.8000 17.0000 20.0000

68.8000 4.0000 15.0000

68.6000 22.0000 24.0000
68.4000 6.0000 24.0000
68.4000 1.0000 27.0000
68.2000 15.0000 24.0000

68.2000 9.0000 26.0000

68.2000 5.0000 19.0000

Table [2.1] Results of pairwise combinations of features

3-A-4

Percentage of correct classification for 30 best combinations in set 2

Percent correct Feature 1 Feature 2

74.4000 5.0000 23.0000

74.4000 4.0000 27.0000

74.2000 4.0000 15.0000

74.0000 20.0000 24.0000

73.6000 16.0000 24.0000

73.2000 3.0000 27.0000

72.8000 27.0000 30.0000

72.6000 4.0000 30.0000

72.6000 4.0000 7.0000

72.4000 5.0000 25.0000

72.2000 24.0000 30.0000

72.2000 8.0000 27.0000

72.2000 4.0000 17.0000

72.2000 4.0000 16.0000

72.0000 24.0000 27.0000

72.0000 24.0000 25.0000

72.0000 4.0000 20.0000

71.8000 7.0000 23.0000

71.8000 4.0000 10.0000

71.2000 25.0000 27.0000

70.8000 24.0000 26.0000

70.8000 8.0000 22.0000

70.6000 7.0000 27.0000

70.6000 6.0000 27.0000

70.4000 14.0000 21.0000

70.4000 14.0000 20.0000

70.4000 4.0000 8.0000

70.2000 4.0000 24.0000

70.0000 22.0000 27.0000 1
1 70.0000 17.0000 | 24.0000 1

Table [2.2] Results of pairwise combinations of features

3-A-5

Percentage of correct classification for 30 best combinations in set 3

Percent correct Feature 1 Feature 2

81.0000 1.0000 10.0000

80.6000 9.0000 24.0000

80.4000 10.0000 24.0000

80.4000 4.0000 25.0000

80.2000 4.0000 9.0000

79.8000 5.0000 11.0000

79.2000 17.0000 24.0000

79.2000 1.0000 21.0000

79.2000 1.0000 8.0000

79.0000 1.0000 24.0000

79.0000 1.0000 11.0000

78.8000 4.0000 11.0000

78.6000 4.0000 17.0000

78.2000 24.0000 25.0000

78.2000 1.0000 14.0000

78.0000 1.0000 23.0000

78.0000 1.0000 20.0000

77.8000 23.0000 24.0000

77.8000 1.0000 5.0000

77.6000 19.0000 24.0000

77.4000 11.0000 24.0000

77.4000 5.0000 18.0000

77.2000 4.0000 19.0000

77.0000 4.0000 18.0000

76.8000 4.0000 15.0000

76.6000 5.0000 13.0000

76.6000 4.0000 24.0000

76.2000 4.0000 5.0000

76.2000 1.0000 I 26.0000 |

Table [2.3] Results of pairwise combinations of features

3-A-6

Percentage of correct classification for 30 best combinations in average

Percent correct Feature 1 Feature 2

73.2667 4.0000 15.0000

72.8000 24.0000 26.0000

72.6667 4.0000 17.0000

72.6000 5.0000 23.0000

72.2667 23.0000 24.0000

72.0667 24.0000 30.0000

71.9333 20.0000 24.0000

71.8667 24.0000 27.0000

71.4667 24.0000 25.0000

71.4000 4.0000 26.0000

71.0667 4.0000 10.0000

70.9333 1.0000 8.0000

70.9333 4.0000 23.0000

70.6000 5.0000 11.0000

70.6000 4.0000 24.0000

70.5333 9.0000 24.0000

70.4667 6.0000 24.0000

70.4667 4.0000 25.0000

70.4667 4.0000 19.0000

70.4000 4.0000 30.0000

70.3333 1.0000 23.0000

70.0667 17.0000 24.0000

70.0667 1.0000 24.0000

70.0000 16.0000 24.0000

69.9333 4.0000 9.0000

69.8667 4.0000 20.0000

69.8667 5.0000 7.0000

69.8667 4.0000 7.0000

69.8000 15.0000 24.0000

69.8000 1.0000 21.0000

Table [2.4] Results of pairwise combinations of features

3-A-7

4 15
24 26
4 17
5 3
23 24
24 30
20 24
24 27
24 25
4 26
1 10
9 24
10 24
5 11
17 24
4 27
16 24
8 18
10 21
5 7

Table [3]. 20 combinations of 2 features selected to combine in sets of 3

3-A-8

Percentage of correct classification for 30 best combinations in set 1

Percent correct Feature 1 Feature 2 Feature 3

79.4000 10.0000 21.0000 26.0000

77.6000 5.0000 7.0000 23.0000

77.6000 5.0000 23.0000 11.0000

77.4000 5.0000 23.0000 21.0000

76.4000 16.0000 24.0000 18.0000

76.4000 5.0000 23.0000 19.0000

75.8000 23.0000 24.0000 19.0000

75.8000 23.0000 24.0000 15.0000

75.8000 5.0000 23.0000 7.0000

75.6000 5.0000 7.0000 22.0000

75.6000 5.0000 7.0000 21.0000

75.6000 5.0000 7.0000 16.0000

75.4000 5.0000 7.0000 14.0000

75.4000 5.0000 11.0000 10.0000

75.2000 10.0000 21.0000 19.0000

75.2000 8.0000 18.0000 6.0000

75.2000 5.0000 23.0000 2.0000

75.0000 10.0000 21.0000 16.0000

75.0000 10.0000 21.0000 8.0000

75.0000 5.0000 11.0000 18.0000

75.0000 4.0000 26.0000 14.0000

75.0000 5.0000 23.0000 29.0000

75.0000 5.0000 23.0000 25.0000

74.8000 10.0000 21.0000 9.0000

74.6000 10.0000 21.0000 12.0000

74.6000 5.0000 11.0000 23.0000

74.6000 10.0000 24.0000 9.0000

74.6000 5.0000 23.0000 10.0000

74.6000 5.0000 23.0000 9.0000

74.4000 5.0000 7.0000 19.0000

Table [4.1] Results of combinations of 3 features

3-A-9

Percentage of correct classification for 30 best combinations in set 2

Percent correct Feature 1 Feature 2 Feature 3

79.8000 20.0000 24.0000 12.0000

78.6000 24.0000 30.0000 19.0000

78.6000 4.0000 15.0000 28.0000

78.0000 24.0000 27.0000 19.0000

77.8000 4.0000 17.0000 19.0000

77.6000 8.0000 18.0000 4.0000

77.4000 4.0000 27.0000 19.0000

77.4000 5.0000 23.0000 21.0000

77.2000 5.0000 23.0000 29.0000

77.2000 4.0000 15.0000 27.0000

77.0000 4.0000 27.0000 18.0000

77.0000 4.0000 15.0000 21.0000

76.6000 5.0000 7.0000 23.0000

76.6000 20.0000 24.0000 3.0000

76.4000 16.0000 24.0000 30.0000

76.4000 4.0000 27.0000 25.0000

76.4000 24.0000 27.0000 10.0000

76.4000 23.0000 24.0000 30.0000

76.2000 5.0000 23.0000 3.0000

76.2000 4.0000 17.0000 2.0000

76.2000 4.0000 15.0000 26.0000

75.8000 5.0000 7.0000 15.0000

75.8000 24.0000 30.0000 4.0000

75.8000 5.0000 23.0000 28.0000

75.6000 4.0000 27.0000 15.0000

75.6000 24.0000 27.0000 26.0000

75.6000 24.0000 27.0000 1.0000

75.6000 20.0000 24.0000 25.0000

75.6000 24.0000 30.0000 16.0000

75.4000 4.0000 15.0000 8.0000

Table [4.2] Results of combinations of 3 features

3-A-10

Percentage of correct classification for 30 best combinations in set 3

Percent correct Feature 1 Feature 2 Feature 3

85.2000 9.0000 24.0000 19.0000

85.0000 9.0000 24.0000 22.0000

84.2000 16.0000 24.0000 19.0000

84.0000 17.0000 24.0000 9.0000

84.0000 4.0000 26.0000 17.0000 .

83.6000 4.0000 26.0000 11.0000

83.6000 4.0000 17.0000 9.0000

83.6000 24.0000 26.0000 17.0000

83.6000 4.0000 15.0000 9.0000

83.4000 5.0000 11.0000 24.0000

83.4000 9.0000 24.0000 21.0000

83.4000 9.0000 24.0000 17.0000

83.4000 9.0000 24.0000 14.0000

83.4000 4.0000 26.0000 9.0000

83.2000 16.0000 24.0000 1.0000

83.2000 4.0000 17.0000 26.0000

83.2000 24.0000 26.0000 9.0000

83.0000 9.0000 24.0000 12.0000

83.0000 9.0000 24.0000 6.0000

83.0000 4.0000 17.0000 11.0000

82.8000 9.0000 24.0000 18.0000

82.8000 23.0000 24.0000 1.0000

82.8000 4.0000 17.0000 24.0000

82.8000 4.0000 17.0000 8.0000

82.6000 17.0000 24.0000 19.0000

82.4000 17.0000 24.0000 8.0000

82.4000 9.0000 24.0000 2.0000

82.4000 5.0000 23.0000 29.0000

82.2000 5.0000 23.0000 10.0000

82.0000 9.0000 24.0000 26.0000 .

Table [4.3] Results of combinations of 3 features

3-A-ll

Percentage of correct classification for 30 best combinations on average

Percent correct Feature 1 Feature 2 Feature 3

78.2000 5.0000 23.0000 29.0000

77.6000 5.0000 7.0000 23.0000

77.3333 5.0000 23.0000 21.0000

76.6000 5.0000 23.0000 10.0000

76.0000 23.0000 24.0000 15.0000

75.8667 5.0000 7.0000 21.0000

75.8667 5.0000 23.0000 7.0000

75.6667 5.0000 23.0000 11.0000

75.6000 8.0000 18.0000 4.0000

75.5333 4.0000 17.0000 19.0000

75.5333 5.0000 11.0000 17.0000

75.5333 24.0000 26.0000 14.0000

75.4667 5.0000 23.0000 28.0000

75.4667 4.0000 15.0000 26.0000

75.3333 17.0000 24.0000 19.0000

75.3333 5.0000 23.0000 25.0000

75.2000 5.0000 7.0000 17.0000

75.2000 4.0000 15.0000 23.0000

75.0000 5.0000 23.0000 17.0000

74.9333 5.0000 23.0000 3.0000

74.8667 4.0000 26.0000 15.0000

74.8000 23.0000 24.0000 19.0000

74.8000 5.0000 23.0000 14.0000

74.8000 5.0000 23.0000 1.0000

74.8000 24.0000 26.0000 25.0000

74.7333 24.0000 30.0000 19.0000

74.7333 5.0000 23.0000 19.0000

74.7333 5.0000 23.0000 9.0000

74.6667 5.0000 7.0000 22.0000

1 74.6667 4.0000 26.0000 19.0000

Table [4.4] Results of combinations of 3 features

3-A-12

4 17 26
5 23 29
9 19 24
4 5 9
5 10 23
5 21 23
4 8 18
19 24 30
5 7 23
19 23 24
9 14 24
4 15 28
5 11 17
4 19 17
5 23 24
5 7 21
5 11 23
14 24 26
10 21 26
4 11 26

Table [5]. 20 combinations of 3 features selected to combine in sets of 4

3-A-13

Percentage of correct classification for 30 best combinations in set 1

Percent correct Feature 1 Feature 2 Feature 3 Feature 4

81.0000 5.0000 21.0000 23.0000 9.0000

80.6000 5.0000 7.0000 23.0000 6.0000

80.2000 5.0000 21.0000 23.0000 11.0000

79.6000 5.0000 21.0000 23.0000 10.0000

79.4000 5.0000 7.0000 23.0000 12.0000

79.4000 5.0000 10.0000 23.0000 21.0000

79.0000 5.0000 7.0000 23.0000 28.0000

79.0000 5.0000 7.0000 23.0000 19.0000

79.0000 5.0000 21.0000 23.0000 26.0000

78.8000 5.0000 11.0000 23.0000 7.0000

78.6000 5.0000 21.0000 23.0000 12.0000

78.4000 5.0000 21.0000 23.0000 15.0000

78.4000 5.0000 10.0000 23.0000 8.0000

78.0000 5.0000 11.0000 23.0000 21.0000

78.0000 5.0000 7.0000 23.0000 20.0000

78.0000 5.0000 7.0000 23.0000 14.0000

77.8000 5.0000 7.0000 23.0000 2.0000

77.8000 5.0000 21.0000 23.0000 28.0000

77.8000 5.0000 21.0000 23.0000 6.0000

77.8000 5.0000 21.0000 23.0000 3.0000

77.8000 5.0000 23.0000 29.0000 26.0000

77.8000 5.0000 23.0000 29.0000 22.0000

77.6000 10.0000 21.0000 26.0000 2.0000

77.6000 5.0000 7.0000 23.0000 22.0000

77.6000 5.0000 10.0000 23.0000 19.0000

77.6000 5.0000 23.0000 29.0000 19.0000

77.6000 5.0000 23.0000 29.0000 1.0000

77.4000 10.0000 21.0000 26.0000 9.0000

77.4000 5.0000 11.0000 23.0000 10.0000

77.4000 5.0000 11.0000 23.0000 8.0000

Table [6.1] Results of combinations of 4 features

3-A-14

Percentage of correct classification for 30 best combinations in set 2

Percent correct Feature 1 Feature 2 Feature 3 Feature 4

81.0000 5.0000 23.0000 29.0000 14.0000

79.8000 5.0000 10.0000 23.0000 21.0000

79.6000 5.0000 21.0000 23.0000 11.0000

79.4000 14.0000 24.0000 26.0000 19.0000

79.4000 5.0000 21.0000 23.0000 9.0000

79.2000 5.0000 21.0000 23.0000 13.0000

79.0000 5.0000 11.0000 23.0000 3.0000

79.0000 5.0000 23.0000 29.0000 21.0000

78.8000 5.0000 23.0000 29.0000 6.0000

78.6000 4.0000 19.0000 17.0000 25.0000

78.6000 5.0000 21.0000 23.0000 10.0000

78.4000 4.0000 19.0000 17.0000 6.0000

78.4000 5.0000 23.0000 29.0000 19.0000

78.2000 5.0000 11.0000 23.0000 25.0000

78.2000 5.0000 11.0000 23.0000 6.0000

78.2000 4.0000 15.0000 28.0000 27.0000

78.2000 5.0000 7.0000 23.0000 11.0000

78.2000 19.0000 24.0000 30.0000 11.0000

78.0000 5.0000 21.0000 23.0000 27.0000

77.8000 19.0000 24.0000 30.0000 23.0000

77.8000 19.0000 24.0000 30.0000 16.0000

77.8000 5.0000 10.0000 23.0000 11.0000

77.6000 4.0000 19.0000 17.0000 3.0000

77.6000 5.0000 7.0000 23.0000 28.0000

77.4000 14.0000 24.0000 26.0000 20.0000

77.4000 5.0000 21.0000 23.0000 30.0000

77.2000 5.0000 11.0000 23.0000 8.0000

77.2000 4.0000 19.0000 17.0000 11.0000

77.2000 5.0000 7.0000 23.0000 26.0000

77.2000 5.0000 21.0000 23.0000 | 12.0000

Table [6.2] Results of combinations of 4 features

3-A-15

Percentage of correct classification for 30 best combinations in set 3

Percent correct
87.4000
87.2000
87.0000
86.8000
86.6000
86.6000
86.4000
86.4000
86.2000
86.2000
86.2000
86.2000
86.0000
86.0000
85.8000
85.8000
85.6000
85.6000
85.6000
85.6000
85.6000
85.4000
85.4000
85.2000
85.2000
85.0000
85.0000
85.0000
84.8000
84.8000

Feature 1
9.0000
9.0000
9.0000
9.0000
5.0000
9.0000
9.0000
4.0000
4.0000
4.0000
9.0000
9.0000
9.0000
9.0000
9.0000
4.0000
5.0000
5.0000
9.0000
9.0000
9.0000
9.0000
5.0000
4.0000
9.0000
5.0000
9.0000
4.0000
4.0000
5.0000

14.0000
19.0000
19.0000
21.0000
19.0000
19.0000
17.0000
11.0000
8.0000
19.0000
19.0000
19.0000
19.0000
19.0000
17.0000
7.0000
7.0000
19.0000
19.0000
19.0000
14.0000
21.0000
19.0000
19.0000
11.0000
19.0000
17.0000
11.0000
21.0000

Feature 2 I Feature 3 I Feature 4
19.0000 24.0000

24.0000
24.0000
24.0000
23.0000
24.0000
24.0000
26.0000
26.0000
18.0000
24.0000
24.0000
24.0000
24.0000
24.0000
26.0000
21.0000
21.0000
24.0000
24.0000
24.0000
24.0000
23.0000
17.0000
24.0000
17.0000
24.0000
26.0000
26.0000
23.0000

14.0000
19.0000
11.0000
18.0000
29.0000

21.0000
18.0000
24.0000
9.0000
22.0000
6.0000
12.0000
10.0000
26.0000
9.0000
16.0000
8.0000
8.0000
5.0000
1.0000
4.0000
1.0000
10.0000
4.0000
4.0000
2.0000
8.0000
9.0000
22.0000

16.0000

Table [6.3] Results of combinations of 4 features

3-A-16

Percentage of correct classification for 30 best combinations on average

Percent correct Feature 1 Feature 2 Feature 3 Feature 4

81.0667 5.0000 21.0000 23.0000 9.0000

79.9333 5.0000 23.0000 29.0000 21.0000

79.8667 5.0000 21.0000 23.0000 11.0000

79.6000 5.0000 10.0000 23.0000 21.0000

79.2667 5.0000 23.0000 29.0000 19.0000

79.1333 5.0000 21.0000 23.0000 10.0000

79.0667 5.0000 23.0000 29.0000 14.0000

79.0000 14.0000 24.0000 26.0000 19.0000

78.9333 5.0000 7.0000 23.0000 12.0000

78.8667 5.0000 21.0000 23.0000 22.0000

78.8667 5.0000 7.0000 23.0000 28.0000

78.7333 5.0000 7.0000 23.0000 6.0000

78.6667 5.0000 21.0000 23.0000 7.0000

78.5333 5.0000 21.0000 23.0000 1.0000

78.4667 5.0000 23.0000 29.0000 1.0000

78.4000 5.0000 7.0000 21.0000 8.0000

78.4000 5.0000 7.0000 23.0000 26.0000

78.2667 5.0000 7.0000 23.0000 11.0000

78.2000 5.0000 7.0000 23.0000 22.0000

78.2000 5.0000 23.0000 29.0000 28.0000

78.1333 5.0000 11.0000 23.0000 10.0000

78.1333 5.0000 10.0000 23.0000 25.0000

78.0667 5.0000 7.0000 23.0000 16.0000

78.0000 5.0000 7.0000 23.0000 20.0000

77.8667 5.0000 10.0000 23.0000 29.0000

Table [6.4] Results of combinations of 4 features

3-A-17

k Correct
classification

Performance
Index

1 73 0.5196

2 74 0.5099

3 77 0.4796

4 77 0.4796

5 82 0.42

6 81 0.4359

7 76 0.4899

8 80 0.4472

9 79 0.4583

10 79 0.4583

Table[7.1] Classification results with changing K for the crisp classifier for set 1

k Correct
classification

Performance
Index

1 74 0.5099

2 74 0.5099
3 77 0.4796
4 77 0.4796
5 74 0.5099
6 76 0.4899
7 76 0.4899
8 75 0.5000
9 78 0.4690
10 78 0.4690

Table[7.2] Classification results with changing K for the crisp classifier for set 2

3-A-18

k Correct
classification

Performance Index

1 79 0.4583
2 79 0.4583
3 81 0.4359
4 84 0.4000
5 83 0.4123
6 85 0.3873
7 81 0.4359
8 81 0.4359
9 82 0.4243
10 82 0.4243

Table[7.3] Classification results with changing K for the crisp classifier for set 3

k Correct
classification

Performance
Index

1 75.3333 0.4959
2 75.6667 0.4927
3 78.3333 0.4650
4 79.3333 0.4531
5 79.6667 0.4474
6 80.6667 0.4377
7 77.6667 0.4719
8 78.6667 0.4610
9 79.6667 0.4505
10 79.6667 0.4505

Table[7.4] Average classification results with changing K for the crisp classifier

3-A- 19

percent classification performanc
e index

k\ Threshold 0.3 0.4 0.5 0.6 0.7 0.8
1 73 73 73 73 73 73 0.5196

2 77 75 73 74 72 73 0.4267
3 75 74 77 75 73 69 0.4261

4 75 74 76 77 76 69 0.4157

5 74 74 81 79 76 73 0.4061

6 69 74 78 79 76 74 0.3993
7 70 74 77 81 77 72 0.3980
8 70 75 79 79 79 72 0.3977

9 69 72 78 80 79 71 0.3971
10 68 73 78 79 79 70 0.3978

Table[8.1] Classification results for the fuzzy classifier for set 1

percent classification performance
index

k \ Threshold 0.3 0.4 0.5 0.6 0.7 0.8
1 74 74 74 74 74 74 0.5099
2 72 75 74 77 78 77 0.4328

3 73 75 79 79 77 73 0.4316
4 73 75 79 76 76 72 0.4262
5 71 76 76 78 77 74 0.4176
6 72 73 76 79 75 72 0.4164
7 71 73 79 79 77 70 0.4092
8 69 74 78 80 77 70 0.4099
9 73 75 80 79 77 70 0.4059
10 72 73 81 79 76 72 0.4004

Table[8.2] Classification results for the fuzzy classifier for set 2

3-A-20

percent classification performance
index

k \ Threshold 0.3 0.4 0.5 0.6 0.7 0.8
1 79 79 79 79 79 79 0.4583
2 73 76 79 84 84 84 0.3991
3 72 75 81 85 85 82 0.3862
4 75 78 84 86 86 83 0.3704
5 74 80 83 86 86 84 0.3635
6 75 82 85 87 85 83 0.3588
7 74 80 82 84 84 82 0.3605
8 73 78 83 84 84 81 0.3638
9 73 79 83 84 85 81 0.3625
10 73 80 83 84 85 82 0.3615

Table[8.3] Classification results for the fuzzy classifier for set 3

percent classification performanc
e index

k \ Threshold 0.3 0.4 0.5 0.6 0.7 0.8
1 75.33 75.33 75.33 75.33 75.33 75.33 0.4959
2 74 75.33 75.33 78.33 78 78 0.4195
3 73.33 74.67 79 79.67 78.33 74.67 0.4146
4 74.33 75.67 79.67 79.67 79.33 74.67 0.4041
5 73 76.67 80 81 79.67 77 0.3957
6 72 76.33 79.67 81.67 78.67 76.33 0.3915
7 71.67 75.67 79.33 81.33 79.33 74.67 0.3892
8 70.67 75.67 80 81 80 74.33 0.3905
9 71.67 75.33 80.33 81 80.33 74 0.3885
10 71 75.33 80.67 80.67 80 74.67 0.3866

Table[8.3] Average classification results with for the fuzzy classifier

3-A-21

File Membership Defuzzified Result
1.0000 0.2736 0
2.0000 0.3339 0
3.0000 0.5397 0 0

4.0000 0.5450 0
5.0000 0.7423 1.0000
6.0000 0.1732 0 0

7.0000 0.8901 1.0000
8.0000 1.0000 1.0000 1 Misclassified

9.0000 0.5376 0
10.0000 0.1742 0
11.0000 0.4366 0 0

12.0000 0.3458 0
13.0000 0.5145 0
14.0000 0.5178 0 0

15.0000 0.1016 0
16.0000 0 0
17.0000 0 0 0

18.0000 0.1334 0 0

19.0000 0 0
20.0000 0 0
21.0000 0.2923 0 0

22.0000 0 0
23.0000 0 0
24.0000 0.1607 0 0

25.0000 0 0
26.0000 0.4421 0
27.0000 1.0000 1.0000 0

28.0000 0.3307 0
29.0000 0.0583 0
30.0000 0.4965 0 0

31.0000 0.3505 0
32.0000 0.1181 0
33.0000 0.2101 0 0

Table [9.1] Classification of the files of set 1

3-A-22

File Membership Defuzzified Result
34.0000 0.5970 0
35.0000 0 0
36.0000 0.1193 0 0

37.0000 0.3174 0
38.0000 0.8117 1.0000

39.0000 0.0997 0 0

40.0000 0.1889 0
41.0000 0.4215 0
42.0000 0.1635 0 0

43.0000 0.6474 1.0000
44.0000 0 0
45.0000 0.5495 0 0

46.0000 0.1115 0 0

47.0000 0 0
48.0000 0.3986 0
49.0000 0 0
50.0000 0 0 0

51.0000 0.6709 1.0000
52.0000 1.0000 1.0000
53.0000 0.5297 0 1

54.0000 0.7245 1.0000
55.0000 0.9200 1.0000
56.0000 1.0000 1.0000 1

57.0000 0.9105 1.0000
58.0000 0.9398 1.0000
59.0000 0.5657 0 1

60.0000 0.8968 1.0000
61.0000 1.0000 1.0000
62.0000 0.2793 0
63.0000 0.1088 0 0 Misclassified

64.0000 0.6245 1.0000
65.0000 0.8643 1.0000
66.0000 0.5054 0 1

Table [9.1] Continued

3-A-23

File Membership Defuzzified Result
67.0000 0.8498 1.0000
68.0000 0.6969 1.0000
69.0000 0.8397 1.0000 l

70.0000 0.2901 0
71.0000 0.8291 1.0000
72.0000 0.3982 0 0 Misclassified

73.0000 1.0000 1.0000
74.0000 0.2463 0
75.0000 0.8043 1.0000 1

76.0000 0.6676 1.0000
77.0000 1.0000 1.0000
78.0000 1.0000 1.0000 1

79.0000 1.0000 1.0000
80.0000 0.7538 1.0000
81.0000 1.0000 1.0000 1

82.0000 1.0000 1.0000
83.0000 0.8378 1.0000
84.0000 1.0000 1.0000 1

85.0000 0.8926 1.0000
86.0000 0.5448 0
87.0000 0.5751 0 0 Misclassified

88.0000 0.8273 1.0000
89.0000 0.2945 0
90.0000 0.9110 1.0000 1

91.0000 1.0000 1.0000
92.0000 1.0000 1.0000
93.0000 0 0 1

94.0000 0.2887 0
95.0000 0.2079 0
96.0000 0.5793 0 0 Misclassified

97.0000 1.0000 1.0000
98.0000 0.7971 1.0000
99.0000 0.8708 1.0000 1

100.0000 1.0000 1.0000 1

Table [9.1] Continued

3-A-24

File Membership Defuzzified Result
1.0000 0.2579 0
2.0000 0.1307 0
3.0000 0 0 0

4.0000 0.2652 0
5.0000 0.4345 0
6.0000 0.1175 0 0

7.0000 1.0000 1.0000
8.0000 0.7086 1.0000 1 Misclassified

9.0000 0.2856 0
10.0000 0.2745 0
11.0000 0.3056 0 0

12.0000 0.2720 0
13.0000 0.5019 0
14.0000 0.8871 1.0000 0

15.0000 0.0912 0
16.0000 0 0
17.0000 0 0 0

18.0000 0.8334 1.0000 1 Misclassified
19.0000 0 0
20.0000 0 0
21.0000 0.5483 0 0

22.0000 0 0
23.0000 0 0
24.0000 0.1535 0 0

25.0000 0.4955 0
26.0000 0.1013 0
27.0000 1.0000 1.0000 0

28.0000 0.3788 0
29.0000 0.1638 0
30.0000 0.0905 0 0

31.0000 0 0
32.0000 0.1431 0
33.0000 0.0937 0 0

Table [9.2] Classification of the files of set 2

3-A-25

File Membership Defuzzified
34.0000
35.0000
36.0000

37.0000
38.0000
39.0000

40.0000
41.0000
42.0000

43.0000
44.0000
45.0000

46.0000

47.0000
48.0000
49.0000
50.0000

51.0000
52.0000

53.0000
54.0000
55.0000

56.0000
57.0000
58.0000

59.0000
60.0000
61.0000

0.1281

0.3690
0.5734
0.1569

0.3659
0.4124
0.1704

0.4251
0.0664
0.5356

0.5084

62.0000
63.0000
64.0000

65.0000
66.0000
67.0000

0.1735
0.7512
0.5115
0.0976

0.6361
0.8482

0.3471
0.8822
1.0000

1.0000
1.0000
0.8730

0.0389
0.3643

1.0000
0.8174
0.8875

0.7995
0.5919
0.7533

1.0000

1.0000
1.0000

1.0000
1.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

1.0000
0

1.0000

Result

Misclassified

Table [9.2] Continued

3-A-26

File Membership Defuzzified Result
68.0000 0.7337 1.0000
69.0000 0.8524 1.0000
70.0000 0.8602 1.0000 1

71.0000 0.2217 0
72.0000 1.0000 1.0000
73.0000 0.1268 0 0 Misclassified

74.0000 0.8860 1.0000
75.0000 0.2121 0
76.0000 0.1684 0
77.0000 0.6903 1.0000 0 Misclassified

78.0000 0.7680 1.0000
79.0000 0.8735 1.0000
80.0000 0.8013 1.0000 1

81.0000 0.1748 0
82.0000 0.5428 0
83.0000 0.8496 1.0000 0 Misclassified

84.0000 0.3444 0
85.0000 0.8298 1.0000
86.0000 0.8590 1.0000 1

87.0000 0.6879 1.0000
88.0000 0.9082 1.0000
89.0000 0.6653 1.0000 1

90.0000 0.1636 0
91.0000 0.8754 1.0000
92.0000 0.8594 1.0000 1

93.0000 0.5185 0
94.0000 0.4932 0
95.0000 0.7802 1.0000 0 Misclassified

96.0000 0.8684 1.0000
97.0000 0.8788 1.0000
98.0000 1.0000 1.0000 1

99.0000 1.0000 1.0000
100.0000 0.8669 1.0000 1

Table [9.2] Continued

3-A-27

File Membership Defuzzified Result
1.0000 0.3986 0
2.0000 0.2845 0
3.0000 0.2562 0 0

4.0000 0.2786 0
5.0000 0.3226 0
6.0000 0 0 0

7.0000 1.0000 1.0000
8.0000 0.5055 0
9.0000 0.1434 0 0

10.0000 0 0
11.0000 0 0 0

12.0000 0.0691 0
13.0000 0.4744 0
14.0000 0.4708 0 0

15.0000 0 0
16.0000 0 0
17.0000 0 0 0

18.0000 0.4623 0 0

19.0000 0 0
20.0000 0 0
21.0000 0.2096 0 0

22.0000 0 0
23.0000 0 0
24.0000 0.0516 0 0

25.0000 0.2885 0
26.0000 0.0981 0
27.0000 0.9336 1.0000 0

28.0000 0.2254 0
29.0000 0.1465 0
30.0000 0.0680 0 0

31.0000 0 0
32.0000 0 0
33.0000 0.0939 0 0

Table [9.3] Classification of the files of set 3

3-A-28

File Membership Defuzzifled Result
34.0000 0.3917 0
35.0000 0 0
36.0000 0 0 0

37.0000 0.1689 0
38.0000 0.5220 0
39.0000 0 0 0

40.0000 0.0969 0
41.0000 0 0
42.0000 0 0 0

43.0000 0.4810 0
44.0000 0.3154 0
45.0000 0.4552 0 0

46.0000 0.3285 0 0

47.0000 0.3690 0
48.0000 0.5593 0
49.0000 0.3522 0
50.0000 0.2325 0 0

51.0000 1.0000 1.0000
52.0000 0.9052 1.0000
53.0000 0.8115 1.0000 1

54.0000 0.8397 1.0000
55.0000 0.8754 1.0000
56.0000 0.0930 0 1

57.0000 0.8330 1.0000
58.0000 1.0000 1.0000 1

59.0000 1.0000 1.0000
60.0000 1.0000 1.0000
61.0000 1.0000 1.0000 1

62.0000 1.0000 1.0000
63.0000 0.6496 1.0000
64.0000 0.5075 0 1

65.0000 0.0823 0
66.0000 0.7810 1.0000
67.0000 0.2356 0 0 Misclassified

Table [9.3] Continued

3-A-29

File Membership Defuzzified
68.0000
69.0000
70.0000

71.0000
72.0000
73.0000

74.0000
75.0000
76.0000

77.0000
78.0000
79.0000

80.0000
81.0000
82.0000

83.0000
84.0000
85.0000

86.0000
87.0000
88.0000

89.0000
90.0000
91.0000

92.0000
93.0000
94.0000

95.0000
96.0000
97.0000

98.0000
99.0000
100.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

0.6068
0.9054
0.4134

1.0000
0

0.2914

1.0000
1.0000
0.8786

0.9018
1.0000
1.0000

1.0000
0.9135
0.8292

0.7423

1.0000

1.0000

1.0000
1.0000

0.0902

0.2564

1.0000
1.0000

0
0.4387

1.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

1.0000
1.0000

1.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

1.0000
1.0000

Result

Misclassified

Misclassified

Table [9.3] Continued
3-A-30

Non deceptive

QQ8R9OIO.011
QQ8R9OIO.021
QQ8R9OIO.031
QQ95LU1T.011
QQ95LU1T.021
QQ95LU1T.031
QQAURNUS.021
QQAURNUS.031
QQAV53P6.011
QQAV53P6.021
QQAV53P6.031
QQBQ4SHI.011
QQBQ4SHI.021
QQBQ4SHI.031
QQBSS7WT.011
QQBSS7WT.021
QQBSS7WT.031
QQ7OXM60.021
QQ7RH0RO.011
QQ7RH0RO.021
QQ7RH0RO.031
QQ7R51P9.011
QQ7R51P9.021
QQ7R51P9.031
QQ9TDSP3.011
QQ9TDSP3.021
QQ9TDSP3.031
QQA8OWOI.011
QQA8OWOI.021
QQA8OWOI.031
QQBT22O6.011
QQBT22O6.021
QQBT22O6.031
QQBO9O_9.011
QQBO9O_9.021
QQBO9O_9.031
QQBC7PP6.011
QQBC7PP6.021
QQBC7PP6.031
QQCHCK_O.011
QQCHCK_O.021
QQCHCK_O.031
QQCDTKP0.011
QQCDTKPO.031
QQCDTKP0.041
QQCM5Y56.011
QQCQQT8Y.011
QQCQQT8Y.021
QQCQQT8Y.031
QQCQQT8Y.041

Deceptive 1

QQ4Q1O83.011
QQ4Q1O83.021
QQ4Q1O83.031
QQ4Q3MDC.011
QQ4Q3MDC.021
QQ4Q3MDC.031
QQ51DE36.011
QQ51DE36.021
QQ51DE36.041
QQ6RQGH6.011
QQ6RQGH6.021
QQ6RQGH6.031
QQ6RQGH6.041
QQ6T711O.011
QQ6T7110.021
QQ6T7110.031
QQ6Z59IG.011
QQ6Z59IG.021
QQ6Z59IG.031
QQ7PP9B9.011
QQ7PP9B9.021
QQ7PP9B9.031
QQ7PDU1X.011
QQ7PDU1X.021
QQ7PDU1X.031
QQ7_PIPF.011
QQ7_PIPF.021
QQ7_PIPF.031
QQ7_JT70.011
QQ7_JT70.021
QQ7_JT70.031
QQ738DYX.011
QQ738DYX.021
QQ738DYX.031
QQ75ULP9.011
QQ75ULP9.021
QQ75ULP9.031
QQ79_EYF.011
QQ79_EYF.021
QQ79_EYF.031
QQ7BGDML.011
QQ7BGDML.021
QQ7BGDML.031
QQ7ETC8I.011
QQ7ETC8I.021
QQ7ETC8I.031
QQ7JAQCS.011
QQ7JAQCS.021
QQ7JAQCS.031
QQ7LX5Q0.011

Deceptive 2

QQ7LX5Q0.021
QQ7LX5Q0.031
QQ7MN2Y0.011
QQ7MN2Y0.021
QQ7MN2Y0.031
QQ7TC5UF.011
QQ7TC5UF.021
QQ7TC5UF.031
QQ7TQVER011
QQ7TQVER021
QQ7TQVER031
QQ7TVADC.011
QQ7TVADC.021
QQ7TVADC.031
QQ7U2T4R011
QQ7U2T4R021
QQ7U2T4R031
QQ7YP7QU.011
QQ7YP7QU.021
QQ7YP7QU.031
QQ7YZOJ3.011
QQ7YZOJ3.021
QQ7YZOJ3.031
QQ8_0DPT.011
QQ8_0DPT.021
QQ8_0DPT.031
QQ8_0DPT.041
QQ8_2UQ9.011
QQ8_2UQ9.021
QQ8_2UQ9.031
QQ800IG6.011
QQ800IG6.021
QQ800IG6.031
QQ82OIU9.011
QQ82ORJ9.021
QQ82OIU9.031
QQ82SUTX.011
QQ82SUTX.021
QQ82SUTX031
QQ860ZNU.011
QQ860ZNU.021
QQ860ZNU.031
QQ89U_ZR011
QQ89U_ZR021
QQ89U_ZR.031
QQ8ATU26.011
QQ8ATU26.021
QQ8ATU26.031
QQ8FGMVI.011
QQ8FGMVI.021

Deceptive 3

QQ8RAJ0C.011
QQ8RAJ0C.021
QQ8RAJ0C.031
QQ9EUKVT.011
QQ9EUKVT.021
QQ9EUKVT.031
QQ9IOOXO.021
QQ9IOOXO.041
QQ9SOW8L.011
QQ9SOW8L.021
QQ9SOW8L.031
QQ9SQIK9.011
QQ9SQIK9.021
QQ9SQIK9.031
QQ9W0B9F.011
QQ9W0B9F.031
QQ9W0B9F.O41
QQ9U4FMU.011
QQ9U4FMU.021
QQ9U4FMU.031
QQ9Y_SVF.011
QQ9Y_SVF.021
QQ9Y_SVF.031
QQ9YH3QF.011
QQ9YH3QF.021
QQ9YH3QF.031
QQA2TT4C.011
QQA2TT4C.021
QQA2TT4C.031
QQA3HIRX.011
QQA3HIRX.021
QQA3HIRX.031
QQA32UTF.011
QQA32UTF.021
QQA32UTF.031
QQA6U_IF.011
QQA6U_IF.031
QQA6U_IF.041
QQAM4E3L.011
QQAM4E3L.021
QQAM4E3L.031
QQARF2_X.011
QQARF2_X.021
QQARF2_X031
QQAWA38X.011
QQAWA38X021
QQAWA3 8X031
QQAYXZGU.011
QQ AYXZGU.021
QQAYXZGU.031

Table [10] NSA Polygraph files used in sets 1-3.

Note: Each set consists of non-deceptive files and one of the deceptive sets

3-A-31

This page left blank.

3-B-32

Appendix B:

Program Listings

3-B-33

Classify Program

% This is a Matlab program
% This script parses a matrix of polygraph
% vectors into training and testing vectors.
% It then calls the classifier, trains, tests
% and gives results.

c = 2; % number of classes
percent_train=75; % percentage of inputs used for training

features=[1] % features to use
classification^; % use fuzzy classifier
kk=5; % K in K nearest neighbor
change= 1; % Randomize training and testing inputs
repeat=20; % Number of repeatitions
ut= 5; % Upper threshhold for 3 class fuzzy classifier
lt= 5;' % Lower threshhold for 3 class fuzzy classifier

load set31; % file containing feature matrix
% and vector that indicates whether

% column is truthful or deceptive
%classvect; % vector of classes eg. 1 = deceptive

% 0 = truthful vector
featurematrix = featmat; % matrix of features
dimension = size(featurematrix);
columns = dimension(2); % the total number of columns in the feature matrix
numberjrain = round(percent_train*columns); % number of vectors

% used for training

ur=.5; %upper threshold
continue=l; % to repeat the program
while (continue=l)

apercent_classified=[];
acorrect=[];
acc=[];
ffresult=[];
ccresult=[];
ttestclass=[];

% clear average results

men=0;
while(men ~7)

men=menu(,Select:',,Features','Type',,K',,Random'...
,'Repeat7%traimng7Start7DefuzzyExit');

if (men==l)
'enter a vector of the features you want tested (eg. [12 4])

3-B-34

features = input(''); % features being tested
end

if (men=2)
classificaüon=menu('Type:7FuzzyVCrisp');

end

if (men==3)
kk = input('enter the "KH in K nearest neighbor ')
end

if (men==4)
change=menu('Selection','Random','Constant');

end

if (men==5)
repeat=input('Enter number of repeatitions')

end

if (men==6)
percent_train=input('Enter percentage of the files used for training, 1 for all-1')

end
if (men=8)

ch=menu('Defuzzification,
> '3class', 'Upper thresh'/Lower thresh');

ifch=l, classification=3, end
ifch==2

ut=input('enter the upper threshhold'); % lower limit for class 1
end
ifch==3

lt=input('enter the lower threshhold'); %upper limit for class 0
end

end
if (men==9) break,end

end
if men=9 break,end
numbertrain = round(percent_train*columns);
acorrect=[]; % vector for the average of correct classification
acc=[]; % vector for the average of performance index

if percentjrain = 1 % To repeat nonrandom testing for all the files.
repeat =columns;

end

for trial=l: repeat

featurematrix = featmat(features,:); % creates a feature matrix of the
% the features being tested

if ((change=l) & (percent_train~=l))
[trainvect, testvect] = randvect(numberJrain,columns);

end;
if percentjrain == 1

testvect = trial;
if (trial =1)

trainvect=2:columns;

3-B-35

end
if (trial = columns)

trainvect=l :columns-l;
end
if (trial ~=1 & trial ~=columns)

trainvect= [l:trial-l, trial+lxolumns];
end

end
testvect
trainvect
u = featurematrix(:,testvect); % testing matrix

testclass = classvect(l,testvect); % class of each column in testing matrix

p = featurematrix(:,trainvect); % training matrix

t = classvect(1 ,trainvecf); % class of each column in training matrix

if classification =1 % Fuzzy classifier

% m = input('enter the degree of fuzziness "M" (l<=M<=infinfity)')
m = 2;
save fdatafil c kk m p t u

% ifknn %This line invokes the classifier program in a dos window
dos('del foutfile.mat|') %to make sure that the program actulally works
dos('fknn|')
'Now loading the result of the fuzzy classifier'
load foutfile

kk, features
fresult
testclass

if(percent_train==l)
ffresult=[ffresult fresult]
ttestclass=[ttestclass testclass];

end

cr =fresult(2,:) > ut % denazification of the result
correct = 100*(l-mean(abs(testclass-cr))) % percentage correct classified
cc = [1-testclass; testclass]; % adding a row of complements to c
cc=fresult-cc;
'Performance Index-
cc = sqrt(mean(mean(cc .A 2)))

end

if classification = 2 % crisp classifier

save cdatafil c kk p t u
% !cknn %This line invokes the classifier program in a dos window

dos('del foutfile. matf) %to make sure that the program actulally works
dos('cknn|')
'Loading the Crisp output file'

3-B-36

load coutfile

kk, features
cresult
testclass

if(percent_train= 1)
ccresult=[ccresult cresult]
ttestclass=[ttestclass testclass];

end

correct = 100*(l-mean(abs(testclass-cresult))) % percentage correct classified
cc = sqrt(mean(abs(testclass-cresult))) % performance index

end
if classification = 3 % Fuzzy classifier but defuzzification into 3 classes

% m = input('enter the degree of fuzziness "M" (K=M<=infinfity)')
m = 2;
save fdatafil c kk m p t u

% ifknn %This line invokes the classifier program in a dos window
dos('del foutfile.matf) %to make sure that the program actulally works
dos('fknnD
'Now loading the result of the fuzzy classifier'
load foutfile

kk, features
fresult
testclass

if(percent_train=l)
ffresult=[ffresult fresult]
ttestclass=[ttestclass testclass];

end
classl=fmd(fresult(2,:) >ut);
class0=find(fresult(2,:) <lt);
class3=find(fresult(2,:) >lt & fresult(2,:) <ut);
percent_classified=100*((length(classO)+length(classl))Aength(testclass))
fr=[fresult(:,classl) fresult(:,classO)] % the section that is classified into one of the two

classes
cr=fr(2,:)>ut
tr=[testclass(classl) testclass(classO)] % the section that is classified into one of the two

classes
correct = 100*(l-mean(abs(tr-cr))) % percentage correct classified
cc = [1-tr; tr]; % adding a row of complements to cc
cc=fr-cc;
'Performance Index-
cc = sqrt(mean(mean(cc .A 2)))

end

apercent_classified = [apercent_classified percentclassified]
acorrect=[acorrect correct]
acc=[acc cc]

3-B-37

end % for trial

if classification =3 % 3 class fuzzy
apercent_classified=mean(apercent_classified)

end
acorrect, mean(acorrect)
ace, mean(acc)

continue=3;
while (continue = 3 | continue==4)
continue=menu('Repeat?,

('Yes', 'no','Plot', 'threshold');
if(continue=3)

dim=menu('Dimension', 'Two', Three')+1;
if(dim=2)

pp=p(:,fmd(t));
plot(pp(l,:))pp(2,:),'r+,);

title('A clustering of two class data');
hold on
pp=p(:,find(t=0));
plot(pp(l,:), pp(2,:), 'gx');

pp=u(:, find(testclass));
plot(pp(l,:), pp(2,:), 'r+');
pp=u(:,find(testclass==0));
plot(pp(l,:), pp(2,:), 'gx');

hold off
end %if(dim=2)

if(dim==3)

pp=p(:,fmd(t));
plot3(pp(l,:),pp(2,:), pp(3,:), 'r+');
title('A clustering of two class data');
hold on
pp=p(:,find(t==0));
plot3(pp(l,:), pp(2,:), pp(3,:), 'rx');

pp=u(:, find(testclass));
plot3(pp(l,:), pp(2,:), pp(3,:), 'g+');
pp=u(:,find(testclass=0));
plot3(pp(l,:), pp(2,:), pp(3,:), *gx');

hold off
end %if(dim=3)

end %if(continue=3)

if (continue==4)

ch=menu('Defuzzification', '3class', 'Upper thresh','Lower thresh');
ifch==l, classification=3, end

3-B-38

ifch=2
ut=input('enter the upper threshhold'); % lower limit for class 1

end
ifch=3

lt=input('enter the lower threshhold'); %upper limit for class 0
end

if classification= 1
cr =ffresult(2,:) > ut % defuzzification of the result
correct = 100*(l-mean(abs(ttestclass-cr))) % percentage correct classified
cc = [1-ttestclass; ttestclass]; % adding a row of complements to c
cc=ffresult-cc;
'Performance Index='
cc = sqrt(mean(mean(cc .A 2)))

end

if classification=2
correct = 100*(l-mean(abs(ttestclass-ccresult))) % percentage correct classified
cc = sqrt(mean(abs(ttestclass-ccresult))) % performance index

end

if classification=3
classl=find(ffresult(2,:) >ut);
class0=find(ffresult(2,:) <lt);
class3=find(ffresult(2,:) >lt & ffresult(2,:) <ut);
fr=[ffresult(:,classl) ffresult(:,classO)] % the section that is classified into one of

the two classes
cr=fr(2,:)>ut
tr=[ttestclass(classl) ttestclass(classO)] % the section that is classified into one of

the two classes
percent_classified=100*((length(class0)+length(classl))/length(ttestclass))
correct = 100*(l-mean(abs(tr-cr))) % percentage correct classified
cc = [1-tr; tr]; % adding a row of complements to cc
cc=fr-cc;
'Performance Index-
cc = sqrt(mean(mean(cc .A 2)))

end
end

end % while continue = 3 | 4

end % while continue

3-B-39

This program implements a K-nearest neighbor classifier,
created by: Shahab Layeghi

created: 8/4/93
last modified: 9/17/93

*/

3-B-40

/* The main program opens a matlab data file, reads the training matrix,
classifies each entry in the testing matrix, and writes the result in an
output file. The file that this program gets the information from should be
called "cdatafil.mat". As the name implies it is in matlab file format.
The data in this file should have the following order:

1. A single variable 'C which is the number of classes.
2. A single variable 'K' which is the parameter 'K' in K-NN Algorithm.
3. A trainig matrix 'P' which contains a set of feature vectors. Each vector
is in a column of the matrix.
4. A classes vector T which contains the classes of the training set
5. An input matrix 'U' which contains a set of unclassified feature vectors.

The main program uses the CrispKNN routine to classify each one of the input
vectors and saves the results (the classes that these inputs belong to) in a
file called coutfile.mat. This file is in Matlab format. This file contains
a vector of the classes called:

'cresult'

This program can be called from dos, or within Matlab by using dos escpae
character'!'. An example Matlab script file that shows how this program can
be used is included in the file "cknntestm".

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <conio.h>

#define INPUTFILE "cdatafil.mat"
#define OUTPUTFILE "coutfile.mat"

// Function Prototypes

int CrispKNN(double "Input, double * Samples, double *Lables);
double FindDistance(double *vecl, double *vec2);
double Maxd(double *vec, int *index, int Length);
int FindMax(int *vector, int *count, int Length, int Max);
int loadmat(FILE * fp,int *type, char *pname, int *mrows, int *ncols,

int *imagf, double **preal, double **pimag);
void savemat(FDLE *fp, int type, char *pname, int mrows, int ncols,

int imagf, double *preal, double *pimag);

// Global variables, these variables will be set by reading matlab file

int classes; /* the number of classes */
int features; /* Number of features in a class */

3-B-41

int KK; /* K in K-nearest neighbors */
int SampleSize; /* Number of Labled Samples */
int TestSize;

//.

here.

/* */

void main()

{

double *Lables;
double *KP;
double *input;
int i j;
FILE *fp;
char name[20];
int type, imagf;
double *Samples, *isamples; // isamples is for imaginary part of the matrix that is not used in

double *Testdata;
double *result;
fp=fopen(INPUTFILE,,*rb");

if(!fp) {
printf("cannot open the file");
exit(-l);

}
// read classes from the file
loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples);
if(i!=l||j!=l){

printf("error: You should include classes at the beginning of the fileW);
exit(-l);

}
classes=*KP;

//read KK from the file
loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples);
if(i!=l||j!=l){

printf("error: You should include K at the beginning of the file\n");
exit(-l);

}
KK=*KP;

// read the matrix from the datafile.
loadmat(fp, &type, name, &features, &SampleSize, &imagf, &Samples, &isamples);

// reading lables from data file
loadmat(fp, &type, name, &i, &j, &imagf, &Lables, &isamples);
if(i!=l||j!=SampleSize){

printf("error: Number of labels is different from the number of samples\n");
exit(-l);

}

3-B-42

// read data to be classified from the file
loadmat(fp, &type, name, &i, &TestSize, &imagf, &Testdata, &isamples);
if(i != features) {

printf("error: Training and testing matrices should have the same size");
exit(-l);

}

// Allocate space for result vector

result = (double *) malloc(TestSize*sizeof(double));
if(! result) {

printf("Error: cannot allocate memory for the result vector");
exit(-l);

}

for(i=0; KTestSize; i++) { // for each input
input=Testdata+i*features;
result[i]=CrispKNN(input, Samples, Lables);

// printf("class: %lf\n", result[i]);

}
fclose(fp);

// printf("\n End of classification, Now writing the result in the file");

fp=fopen(OUTPUTFILE, "wb");
if(!fp) {

printf("Error: Cannot write the file");
getch();

}
savemat(fp, 0, "cresult", 1, TestSize, 0, result, result);
fclose(fp);

/* */
int CrispKNN(double *Input, double *Samples, double *Lables)

{
int i j ;
int nj, k, nk;
double *distance;
int *index;
double x,y;

distance = (double *) malloc(KK*sizeof(double));
if(!distance) {

printf("Error: Not enough memory for distance vector");
exit(-l);

}

index = (int *) malloc(KK*sizeof(int));
if(!index) {

printf("Error: Not enough memory for index vector");
exit(-l);

>

3-B-43

for(i=0; i<KK; i++) { // This loop initializes K nearest neighbors to the first K Samples
index[i]=Lables[i]+l;
distance[i]=FindDistance(Input,&Samples[i*features]);

}
for(i=KK; i<SampleSize; i++) { // This is the loop that finds the K nearest Neighbors

x=Maxd(distance, &j, KK);
y=FindDistance(Input,&Samples[i*features]);
if(y < x) { // This sample is closest to the input than the farthest K Neighbors

distance[j]=y;
index[j]=Lables[i]+l;

}
}
j=FindMax(index, &nj, KK, classes); // Finds the class of maximum occurance

/* In this section it is checked to see if there is a tie. That is if
there are two or more classes with the same number of occureances. If
there is a tie for two classes, the class with the minimum sum of
distances is selected. No action is taken for a tie of more than two
classes. */

for (i=0; i<KK; i++)
if(index[i]=j) index[i]=0;

k=FindMax(index, &nk, KK, classes);
if(nk=nj) { //If there is a tie.

x=0;
for(i=0; i<KK; i++) {

if(index[i]=0)
x+=distance[i];

}
y=0;
for(i=0; i<KK; i++) {

if(index[i]==k)
y+=distance[i];

}
if(y<x) //If sum of the distances to class j is

less than that of class k
j=k;

}

free(distance);
free(index);
return j-1;

-*/
/* This function returns the Euclidian distance between two vectors */

double FindDistance(double *vecl, double *vec2)

{

int k;
double distance;

3-B-44

distance = 0;
for(k=0; k<features; k++) {

distance +=(vecl [k]-vec2[k])*(vecl [k]-vec2[k]);
// distance += pow(vecl[k]-vec2[k], 2);

}
return distance;

}

-*/
/* This function finds the biggest element of an array. It returns that
value and also returns the index to that element in index.
*/

double Maxd(double *vec, int *index, int Length)
{

int i j=0;

j=0;
for(i=l; KLength; i++)

if(vec[i]>vec[j])j=i;
*index=j;
return(vec[j]);

/* */
/* This function finds a number that is most often repeated in an array of
integer values, and returns that number. Length of array shoud be less than
100. It is supposed that number is an integer greater than zero,
vector is a pointer to the array, count is the number of times that the
number is repeated. Length is the length of the vector.
*/

int FindMax(int *vector, int *count, int Length, int Max)
{

inti,j, m;
int t[101];

if(Max>100) Max=100;
for(i=0; i<Max+l; i++)

t[i]=0;
for(i=0; i<Length; i++)

t[vector[i]]++;
m=t[l];
j=i;
for(i=l; i<Max+l; i++) {

if(t[i]>m) {
m=t[i];

}
}
*count=m;
return (j); }

3-B-45

3-B-46

This program implements a fuzzy version of K-nearest neighbor classifier,

created by: Shahab Layeghi

created: 9/1/93
last modified: 9/3/93

/* The main program opens a matlab data file, reads the training matrix,
classifies each entry in the testing matrix, and writes the result in an
output file. The file that this program gets the information from should be
called "fdatafile.mat". As the name implies it is in matlab file format.
The data in this file should have the following order:

1. A single variable 'C which is the number of classes.
2. A single variable 'K' which is the parameter 'K' in K-NN Algorithm.
3. A single variable 'M' which is the coefficient in fuzzy algorithm.
4. A trainig matrix 'P' which contains a set of feature vectors. Each vector
is in a column of the matrix.
5. A class membership matrix T which contains the membership values of the
training set vectors to the classes.
6. An input matrix *U' which contains a set of unclassified feature vectors.

The main program uses the FuzzyKNN routine to classify each one of the input
vectors and saves the results (the classes that these inputs belong to) in a
file called "foutfile.mat". This file is in Matlab format. This file contains
a single variable called fresult. It is a vector of the classes.

This program can be called from dos, or within Matlab by using dos escpae
character'!'. An example Matlab script file that shows how this program can
be used is included in the file "fknntest.m".

*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <conio.h>

#define INPUTFILE "fdatafil.mat"
#define OUTPUTFILE "foutfile.mat"

// Function Prototypes

void FuzzyKNN(double *Input, double *Samples, double *Lables, double «Result);
double FindDistance(double *vecl, double *vec2);
double Maxd(double *vec, int *index, int Length);
int FindMax(int *vector, int *count, int Length, int Max);
int loadmat(FILE * fp.int *type, char *pname, int *mrows, int *ncols,

int *imagf, double **preal, double **pimag);
void savemat(FILE *fp, int type, char *pname, int mrows, int ncols,

3-B-47

// read M from the file
loadmat(fp, &type, name, &i, &j, &imagf, &KP, Äisamples);

printfC'error: You should include M as the thrid parameter^");
exit(-l);

}
M=*KP;

//read the matrix from the datafile.
loadmat(fp, &type, name, features, &SampleSize; &imagf, &Samples, &isamples);

// reading lables from data file
loadmat(fp, &type, name, &i, &j, &imagf, &Lables, &isamples);
if(i!=l|lj!=SampleSize){

printfC'error: Number of labels is different from the number of samplesui),

exit(-l);
}

//read data to be classified from the file
loadmat(fp, &type, name, &i, &TestSize, &imagf, &Testdata, &isamples);
if(i != features) { . „

printfC'error: Training and testing matrices should have the same size);
exit(-l);

}

// Allocate space for result vector

result = (double *) malloc(TestSize*Classes*sizeof(double));

if(!result) { ,*„•«%
printfC'Error: cannot allocate memory for the result Matrix);
exit(-l);

}

for(j=0; j<TestSize; j++) { // for each input
input=Testdata+j*features;
FuzzyKNN(input, Samples, Lables, iresult);

// printf("\n Memberships:");
for(i=0; KClasses; i++) {

result[j*Classes+i]=iresult[i];
printf("%lf",iresult[i]);

}
}
fclose(fp);

// printf("\n End of classification, Now writing the result in the file);

fp=fopen(OUTPUTFlLE, "wb");
if(!fb) {

printfC'Error: Cannot write the file");
getch();

savemat(fp, 0, "fresult", Classes, TestSize, 0, result, result);
fclose(fp);

3-B-48

/* */
/* This is a fuzzy K Nearest neighbor classifier routine. Input is the
vector to be classified, Samples is the matrix of classified samples,
Lables is the vector of the classes that these samples belong to.
Result is the vector of membership values of Input to each class.
*/
void FuzzyKNN(double *Input, double *Samples, double *Lables, double *Result)
{

int i j,n;
int nj, k, nk;
double ""distance;
int "Index;
double x,y;
double *membership; // pointer to membership matrix
double nsum, dsum, temp;

/* This section builds a fuzzy membership matrix from the lables.
Membership of each sample to the class that it belongs to is assigned
to 1, and the membership of it to other classes is assigned to 0 */

membership = (double *) malloc(SampleSize*Classes*sizeof(double));
if(!membership) {

printf("Error: Not enough memory for membership matrix");
exit(-l);

}
for(i=0; i<SampleSize*Classes; i++)

*(membership+i)=0; // Initializing matrix to zero
for(j=0; j<SampleSize; j++) {

i=*(Lables+j);
*(membership+i*SampleSize+j)=l;

}

distance = (double *) malloc(KK*sizeof(double)); // allocate space for the vector
if(!distance) {

printf("Error: Not enough memory for distance vector");
exit(-l);

}

index = (int *) malloc(KK*sizeof(int));
if(!index) {

printf("Error: Not enough memory for index vector");
exit(-l);

}

for(i=0; i<KK; i++) { // This loop initializes K nearest neighbors to the first K Samples
index[i]=i;
distance[i]=FindDistance(Input, &Samples[i*features]);

}
for(i=KK; KSampleSize; i++) { // This is the loop that finds the K nearest Neighbors

x=Maxd(distance, &j, KK);
y=FindDistance(Input,&Sarnples[i*features]);
if(y < x) { // This sample is closest to the input than the farthest K Neighbors

3-B-49

zero

distance[j]=y;
index[j]=i;

}
}
for(j=0; j<Classes; j++) {

nsum=dsum=0;
for(n=0; n<KK; n++) {

i=index[n];
temp=FindDistance(Input, &Samples[i*features]);
if(temp<le-10) { //If distance is

Result[j]=membership|j*SampleSize+i];
break;

}
if(M = 2)

temp=l/temp;
else if(M != 1)

temp=pow(l/temp, 1/(M-1));
else

temp=0;
nsum += membership[j*SampleSize+i]*temp;
dsum += temp;

}
if(dsum !=0)

Result(j]=nsum / dsum;
}
free(membership);
free(distance);
free(index);

/*-- -*/
/* This function returns the Euclidian distance between two vectors */

double FindDistance(double *vecl, double *vec2)
{

intk;
double distance;

distance = 0;
for(k=0; k<features; k++) {

distance += (vecl[k]-vec2[k])*(vecl[k]-vec2[k]);
// distance += pow(vecl[k]-vec2[k], 2);

}
return distance;

I* */
/* This function finds the biggest element of an array. It returns that
value and also returns the index to that element in index.
*/

3-B-50

double Maxd(double *vec, int *index, int Length)

{
int i j=0;

j=0;
for(i=l; KLength; i++)

if(vec[i]>vecü])j=i;
*index=j;
return(vec[j]);

}

,* */
/* This function finds a number that is most often repeated in an array of
integer values, and returns that number. Length of array shoud be less than
100. It is supposed that number is an integer greater than zero,
vector is a pointer to the array, count is the number of times that the
number is repeated. Length is the length of the vector.
*/

int FindMax(int *vector, int *count, int Length, int Max)

{

inti,j, m;
intt[101];

if(Max>100) Max=100;
for(i=0; i<Max+l; i++)

t[i]=0;
for(i=0; i<Length; i++)

t[vector[i]]++;
m=t[l];

for(i=l; i<Max+l; i++) {
if(t[i]>m) {

m=t[i];

}
}
*count=m;
return (j);

3-B-51

Report No. DoDPI96-R-0002

Use of Fuzzy Set Classification for
Pattern Recognition of the Polygraph

Ramin Djamschidi
San Jose State University

Department of Electrical Engineering
San Jose, CA 95106

September 1994

Department of Defense Polygraph Institute
Fort Mcclellan, AL 36205

ACKNOWLEDGMENT

While doing this project, I have been fortunate to receive great assistance, suggestions and support from
numerous students, colleagues and friends. It was a wonderful experience for me to work and live with
each and every one of them. Not to mention, the huge amount of the encouraging e-mails.

I would like to thank Jürgen Niemeyer, Elmar Bongers and Robert Hilbing for their continuos and reliable
help from Germany (you guys took away - more than once - some big burdens from my shoulder). How
much I enjoyed Bob's e-mails. (Thank you for sharing with me your life-changing experiences...). I would
like to thank Tim for helping me set the foundation of where I stand in my life.

I was surrounded by an awesome 'crowd' of people in my lab, beginning with Raghu Kondapalli who was
always there with his practical and honest helps with an additional portion of encouraging humor. In
these very last seconds of typing my report, (you are sitting in front of me and trying to fix a table for me -
it is 3:00a.m!) I realize the privilege of getting you to know. I would also thank Shahab for his initial
advice and for being there for me as a friend and also Mitra for her irreplaceable help for figuring out the
names of the features. How ashamed I was to bother her so often.

I would also like to thank those who "officially" were set apart to help me: As they were Chuck Lam, Ulka
Agarwal and Michelle Badal. How could I have ever accomplished my thesis in this quality without their
assistance? I would specially like to express my thanks to Chuck for his significant role by the LMS part
of my project. (All the approvals I might get for it is completely yours.)

I would like to express my gratitude to my former supervisor Prof. Duda who was always there for a
"genius"-advice. Without his initial invitation for my first project, I could not have come to SJSU. I would
also thank Melinda and Lois in the EE-office for their humorous and reliable helps. I would never forget
the very first days when I came here as a stranger and met them, (How could they remember my name...?)
I would also thank Phelomena - in the nicest building of SJSU where my grant came in - for her endless
time to help me fill all the forms. I do not know exactly how many people were actually involved in the
process of supporting me financially till the actual grant came.

I cannot finish this list without mentioning Dolat and Parviz for their patience and care throughout their
most challenging phase of life. (By the way, how many months did I actually live at your home?)

Last but not least, I would like to express my highest gratitude to my supervisors in Aachen and San Jose
who actually made all these possible for me. I really appreciate Prof. Rau's efforts to lead the necessary
procedures for my project at SJSU. How much encouraging was that for me when he sent the very initial
fax for my thesis at the second day of his vacation. I would also like to thank my direct supervisor Dr.
Thull for his continuos supports and tips. He never forgot to add some sparkling statements to his emails
(and those from Marian!). I hope I filled his expectations.

And finally, Prof. Knapp's wonderful companionship combined with the unlimited freedom of decision he
gave me, is the major reason of this project's success. Not to mention, his efforts to help me to bridge the
financial gap till I received my grant and his humorous comforts when something went wrong. It was an
irreplaceable experience to work with him.

4-ii

Table of Contents

Title Page 4_i
1. Acknowledgment 4-ii
List of Figures 4-3
2. Introduction 4-6

2.1 Polygraph 4-6
2.1.1. Preview 4-6
2.1.1. History 4-6
2.1.3. Modern test formats 4-7
2.1.4. Present day equipment 4-9

2.2 Pattern Recognition Utilizing Fuzzy Tools 4-10
2.2.1. Why the "fuzzy" approach? 4-10
2.2.2. Why fuzzy-c-means (FCM)? 4-13
2.2.3. Fuzzy-c-means algorithm and its interpretation 4-14

2.2.3.1. FCM code—an Iterative procedure 4-14
2.2.3.2. Influential parameter—meanings

and interpretations 4-16
2.2.4. Why LMS fuzzy adaptive filter 4-18
2.2.5. ML fuzzy adaptive and its interpretation 4-18

2.2.5.1. Filter code—an adaptive procedure 4-18
2.2.5.2. Influential parameters—meanings

and interpretations 4-20
3. Approach 4-22

3.1. Part I-FCM 4-22
3.1.2. Initial stage (conditions and methods) 4-22
3.1.3. Clustering stage 4-23

3.1.3.1. One-dimensional search and selection
of the "best" single features 4-23

3.1.3.2. Multi-dimensional search for the
best feature combination 4-28

3.1.3.2.1. Over 4-28
3.1.3.2.2. Random search method 4-29
3.1.3.2.3. Pseudo-exhaustive search

method 4-30
3.1.3.2.4. Genetic search method 4-30

3.1.3.3. General process—optimizations by
changing paramters 4-32

3.1.3.4. Evaluation strategy 4-34
3.2. Part II-LMS Fuzzy Adaptive Filter 4-36

3.2.1. Feature selection by visual inspection 4-36
3.2.2. Setting linguistic rules 4-39
3.2.3. Training, testing and evaluation strategy 4-40
3.2.4. What to do with the memorizing problem? 4-42

4-1

4. Results and Conclusions 4.44
4.1. Fuzzy-C-Means 4.44

4.1.1. Searching for the best level of fuzziness 4.44
4.1.2. Searching for the best feature combination 4.49

4.1.2.1. Results of the convential methods
and general observation 4.49

4.1.2.2. Results of the genetic method 4.56
4.1.2.3. Final results of FCM, a comparison

between all three polydat_i's 4-62
4.2. LMS Fuzzy Adaptive Filter 4.66
4.3. Other Observations 4.59

4.3 A Comparison between the algorithms 4-71
5. Future Steps and Suggestions 4.74

5.1. The Algorithms 4.74
5.2. The Polygraph Examination 4.77

6. Appendix 4.7g
6.1. Table of the feature names 4.7g
6.2. Table of the polygraph files 4_g4
6.3. User interface 4_g5
6.4. Program listing-implementation in MATLAB 4-86

Epilogue 4_106
References 4-107

4-2

List of Figures

1. FCM characteristics 4_13

2. The iterative FCM10 procedure 445

3. Flow chart of the FCM code implemented
in this project4- 4.^5

4. Fuzzy C-means algorithm applied on
polygraph data 4_17

5. The LMS fuzzy adaptive filter used in
this project 4_2i

6. An example for a set of polygraph data as
a matrix and its features used in this study 4-22

7. The original feature combaintion 4-23

8. Selected features by using one-dimensional FCM 4-24

9. An example for one-demensional clustering 4-26

10. An example for the first group of selected
features (Representing group #1 at page.) 4-27

11. General search to find the best feature
combination 4_29

12. An example for the genetic outgrowth with your
genes (= features) in each chromosome (= individual) 4-31

13. Optimization of the clustering environment-general
process 4.32

14. An example for the influence of 'm' 4-33

15. An example for the final evaluation using the
dependency for the sessions 4.34

16. Scatter plots of two linearly correlated
features 4.37

4-3

17. The four elliptical clusters used for setting
the linguistics rules 4-38

18. Initial linguistic rules for the fuzzy adaptive
filter based on the clusters in Fig 17 4-39

19. An example for memorizing as the system "learn" 4-42

20. Influence of increasing 'm' for polydat_3, session #1 4-45

21. The zoomed-in view of the above figure for m = 10 4-45

22. Comparison between the results for 'm = 2' and 'm = 4' 4-47

23. Comparison between the results for 'm = 4' and 'm = 5' 4-48

24. I. Feature combinations by 'random search'-polydat_3,
'm = 2' 4-50

II. Feature combination by 'random search'—polydat_3,
'm=5' 4-52

25. Defuzzified results for [81 -111 -450-452]
combinations 4-54

26. Results of the first version of the genetic search 4-57

27. Defuzzified results for [37-111-111-197-235-452-457-460]
feature combination 4-58

28. Results of the second version of the genetic search 4-60

29. Average fitness of each generation provided by
the second version of the genetic search 4-61

30. Clustering results using individual features
(using sessions as the counting dimension) 4-62

31. Clustering results using individual features
(using examinations as the counting dimension) 4-62

32. Clustering results using individual features
(counting only those examinations with more
than two sessions 4-63

4-4

33. Comparison #1 (dimension: sessions) taking
some of the best polydat_3 feature tuples and
testing it for the other 4-63

34. Comparison #2 (dimension: sessions) taking some
of the best polydat_l feature tuples and testing
it for the other 4-64

35. Comparison #3 (dimension: sessions) taking some
of the best polydat_2 feature tuples and testing
it for the other 4-65

36. Results based solely on four aforementioned
linguistic rules without any training 4-66

37. Average percentage of correct detection rate
for 20 trails of each test 4-67

38. Fixed initial random membership values for c = 2 4-69

39. Comparison between different fuzzy algorithms
used for polygraph classfification in this and
in the previous research 4-73

40. The influence of the learning factor 4-76

41. List of labels of all the features used in this
project 4-78

42. List of polygraph files used in this experiement 4-84

43. An example for a technical user interface 4-85

4-5

§2. INTRODUCTION

2.1. POLYGRAPH1

2.1.1. Preview:

Polygraph examinations are the most widely used method to distinguish between truth and
deception. In a Polygraph examination a person is connected to a special instrument called
a Polygraph which records several physiological signals such as blood pressure, Galvanic

Skin Response, and respiration. The subject is asked a set of questions by an examiner. By
looking at these signals the examiner is able to determine the reactions of the subject to
the questions and decide whether the person was truthful or deceptive in answering each

question.

The problem with human classification of Polygraph tests is that the outcome depends on
the examiner's experience and personal opinion. Automatic scoring of Polygraph tests has
been a subject of extensive research. Several methods for Polygraph classification have
been studied which are mostly based on statistical classification techniques.

Digitized Polygraph data used in this project were collected from various police stations.
The data files were organized according to the test format used and were decoded to
ASCII format so they can be read by Matlab. Preprocessing and feature extraction
routines were implemented in the Matlab language in privious works [Layeghi 1993,1]
[Dastmalchil993][Jacobsl993]. Three sets of files were chosen, each one of them

contained 50 deceptive and 50 non-deceptive files.
These files are listed in the appendix, Fig.42.

2.1.2. History:

The first attempt to use a scientific instrument in an effort to detect deception occurred
around 1895 [Reidl966]. That was the year that Caesar Lombroso published the results of
his experiments in which a hydrosphygmograph was used to measure the blood pressure-
pulse changes of criminals in order to determine whether or not they were deceptive.

Although the hydrosphygmograph was originally intended to be used for medical

Portions of this section were extracted from [Layeghi 1993,1] using particularly [Cappsl992] [01senl983]
[Reidl966].

4-6

purposes, Lombroso found that it worked well for lie detection. Lombroso may have been
the first to use a peak of tension test format. This was done by showing a suspect a series
of photographs of children, one being the victim of sexual assault. If the suspect did not

react more to the victims picture than the pictures of the other children, Lombroso
concluded that the suspect did not know what the victim looked like and therefore was not

the alleged perpetrator.

In 1914 Vittorio Benussi published his research on predicting deception by measuring
recorded respiration tracings [Cappsl992]. He found that if the length of inspiration were
divide by the length of expiration, the ratio would be larger after lying than before lying
and also before telling the truth than after telling the truth. In 1921 John A. Larson

constructed an instrument capable of simultaneously recording blood pressure pulse and
respiration during an examination [Reidl966] [Cappsl992]. Larson reported accurate
results which prompted Leonarde Keeler to construct a better version of this instrument in

1926 [Reidl966] [Cappsl992].

The use of galvanic skin response in lie detection began during the turn of the century. It's
usefulness, however, did not become evident until the 1930's during which time several
articles written by Father Walter G. Summers of Fordham University in New York
[Cappsl992]. In these articles he reports over 90 criminal cases in which examination
using the galvanic skin response had all been successful and confirmed by confession or

supplementary evidence.

The usefulness of the galvanic skin response prompted Keeler to add an galvanometer to
his polygraph. At the time of Keelers death in 1949, the Keeler Polygraph recorded blood
pressure-pulse, respiration, and galvanic skin response [Reidl966].

2.1.3. Modern Test Formats:

The effectiveness of a polygraph examination is often the result of the test format that is
used. A polygraph test format consists of an ordered combination of relevant questions
about an issue, control questions that provide a physical response for comparison, and
irrelevant questions that also provide a response or the lack of a response for comparison

[01senl983][Cappsl992].

4-7

Three general types of test formats are in use today. These are Control Question Tests,

Relevant-Irrelevant Tests, and Concealed Knowledge Tests. Each of the general test
formats may have a number of more specific variations. Each examination consists of two
to five sessions containing a prescribed series of questions. The test format that is used in
an examination is determined by the test objective [Reidl966] [Cappsl992].

1. The Concealed Knowledge Test, also called peak of tension test, is used when facts
about a crime are known only by the investigators and not by the public. In this case, a
subject would not know the facts unless he or she was guilty of the crime. For example, if
a gun was used in a crime and the public did not know the caliber, an examiner could ask a
suspect, if it was a 22 caliber, a 38 caliber, or a 9 mm. If the gun used was a 9 mm and the
suspect was deceptive, a polygraph chart would probably indicate evidence of deception.

2. A Control Question Test2 is often used in criminal investigations. In this type of test a

series of relevant, irrelevant, and control questions are asked:

• A relevant question is one which is specific to the crime being investigated.

For example, "Did you steal the money?".

• A control question is designed to make the subject feel uncomfortable. It
is not specific to the crime being investigated however it may be related in
an indirect way. A control question that could follow the relevant question
stated above is "Have you ever taken anything that did not belong to you?".
The control questions are compared to the relevant questions and if the
responses to the relevant questions are greater, the subject is usually classified

as deceptive.

• Irrelevant questions are used as buffers. Examples of irrelevant questions are

"Are the lights in this room on?" or "Is today Monday?".

3. Relevant-Irrelevant Tests are usually used to test people trying to obtain security
clearance or get a job. In this test, relevant questions are compared to irrelevant questions.
Very few control questions are asked. The purpose of control questions in this test is to

make sure that the subject is capable of reacting at all.

2 It was decided to use this method in our project (as it was also in previous works).

4-8

2.1.4. Present Day Equipment

The most popular polygraph machines today are the Reid Polygraph developed in 1945
and the Axciton Systems computerized polygraph developed in 1989 [Olsen 1983]. The
Reid polygraph scrolls a piece of paper under pens that record the biological signals. The

Axciton polygraph digitizes physiological signals and uses a computer to process them.
The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer
based system for ranking the subject responses but allows printouts of the charts to be

scored by hand the traditional way.

Both machines record the same biological signals using standard methods. Blood pressure
is measured by placing a standard blood pressure cuff on the arm over the brachial artery.
Respiration is monitored by placing rubber tubes around the abdominal area and the chest
of the subject. This results in two signals, a lower and upper respiratory signal. Skin

conductivity is measured by placing electrodes on two fingers of the same hand.

The focus of this thesis is to investigate two different fuzzy pattern recognition algorithms

using the aforementioned signals.

4-9

2.2. PATTERN RECOGNITION UTILIZING FUZZY TOOLS

2.2.1. Why the "FUZZY" approach?

While observing the history of science, we notice that one of its major goals has always
been what we call today "pattern recognition". Having this in mind, man created models,
functional relationships and mathematical tools to come closer to a perfect and precise
model for almost every area of the nature and our being. In fact, "precision" became more

and more important, to the extent that an imprecise model was a bad model by default.

1965 Lotfi A. Zadeh introduced in his innovative paper [Zadehl965] an "imprecise"

structure for mathematical observation; Hence, the fuzzy set was born. A companion to
the classical one with often more useful and suitable representation of our environment.

"The fuzzy set was conceived as a result of an attempt to come to grips with the problem
of pattern recognition in the context of imprecisely defined categories. In such cases, the
belonging of an object to a class is a matter of degree, as is the question of whether or not
a group of objects form a cluster"; These were the introductory words from LA. Zadeh in
[Bezdekl981]. They summarize the fundament of any fuzzy clustering or classifying
algorithm concerning any search of data structure or pattern recognition. This concept is

exactly what this project is all about.

An example:
Imagine, you have two groups of objects "chairs" and "desks" in different varieties. In a
simple version of a typical pattern recognition problem, you have the task to cluster or
classify the given objects into these two groups. In reality, we will also have other objects
like a big box or a bed within the pool of the objects, but only the two aforementioned
clusters by definition. Now, a conventional crisp clustering method would put these
critical objects in either one of these two clusters. Thus, the big box or the bed may be

labeled as if they would be chairs.
A fuzzy clustering method would label the objects with soft membership values. In this

case, a big box (that can be used as a chair or a desk) might be labeled with 0.6 degree
chair and 0.4 desk. Information like this serves a useful purpose - "fuzzy memberships in
several classes are a signal to take a second look" [Bezdekl993] [Bezdekl992]:

4-10

Hard memberships of data cannot support this. Thus, the fuzzy model provides a richer

and more flexible solution structure, one that models the real objects with a finer degree of

detail than the harshness of the crisp models. Notice also that hard membership values

build a subset of the fuzzy membership3 set.

There are different types of fuzzy algorithms to find the appropriate membership values

within the data. In this project, we used the follwoing two approaches:

1. Clustering algorithms:
Given any finite data, the problem of clustering is to find similarities between the objects

of the data and to assign labels that matching objects would belong to the same subgroups.

The algorithm starts its search without any initial interpretative information about the data

elements. It only seeks for objective numerical similarities between the elements. Because

the initial objects are unlabeled, this method is often called "unsupervised learning". The

word learning* implies that the clustering algorithm will ultimately find the correct labels

at the end of the process. This is what we hope to obtain, but we do not know it a priori.

Notice that because of the unsupervised nature of this algorithm, we may find "correct"

clusters which represent some similarities, but not the ones we were looking for. In the

aforementioned example with chairs and desks, the algorithm may provide two clusters of

"wood-made" and "metal-made" objects (which are also correct), but not "chairs" and

"desks" as we had hoped for.

In this case, the performance of a clustering model is influenced by the choice of the

parameters5, features, geometrical properties and our eventual interpretation of the labels.

2. Classifying algorithms:
In contrast to a clustering system which labels a given data, a classifier is capable - once it

is defined (and trained) - of labelling every appropriate data. In addition, a classifying

system is ususally initialized by labeled objects. In these cases, we call this method

"supervised learning".

3Notice that membership values are not probabilities; they are similarities of object vectors to a class
structure. They represent the degree of belonging of an object to a group of objects.
4The word learning does not imply any training. In fact, a clustering system - as is its nature - is almost
the opposite of any system which learns by training.
5See chapter 2.2.3.2. for the meanings of the parameters and chapter 3.1.3.3. for the strategies we used.

4-11

Notice that we can also use a clustering algorithm as a modified classifying algorithm:

After having set the optimal combination of parameters and features, we can use the

clustering system to classify any new data by:

• adding the new element to a given and already correct clustered data, and letting

the system relabel6 the data. Thus, our new object ends up to be in one of the

clusters representing its identity,

• saving all the parameters, cluster centers and the data elements and calculate

appropriately the membership value of the new object, which will eventually

represent its identity.

6Running a new clustering process with one more element will probably change the structure of the
original clusters, because the cluster centers and the membership values of each element depend on all of
the members. In spite of this fact, we will be able to classify a normal (= not an outlier) object by having
a large number of already clustered objects in a stable condition.

4-12

2.2.2. Why fuzzv-c-means (FCM)?

One of the most significant characteristic of/i/rzy-c-means algotithm is its "fuzziness"7, as

the name assumes. Unlike crisp clustering methods, FCM gives us "membership functions"

c [0, 1] which determine the grade of belongingness of the elements to a cluster. As

mentioned before, this information is totally lost by conventional clustering techniques.

The advantage of FCM is the fact that the results we may get from a crisp clustering

method are automatically within those from FCM.

We chose FCM as an alternative and a comparison to the fuzzy K-Nearest-Neighbor

algorithm (KNN) investigated previously [Layeghil993,l][Dastmalchil993][Jacobsl993],

specially because FCM is an unsupervised clustering method which works only by using

"mathematical" tools such as spatial distances or similarities, without any training or

additional interpretative information.
By this method, good8 features will then hopefully provide an optimal mathematical

grouping that presents in some sense an accurate portrayal of natural structures in the

physical process from where the polygraph data are drived.

Whv we chose FCM algorithm:

Because it

does not need previous training,

does not make any assumption about
the distribution of samples,

is unsupervised, objective and self organized,

can be used as an alternative and a comparison
to fuzzy KNN investigated previously.

Fig.l: FCM characteristics

7See chapter 2.1.1. for characteristics of a fuzzy approach.
8"Good" features are in our study those which can cluster the data in deceptive and truthful groups.

4-13

2.2.3. Fuzzv-c-means algorithm and its interpretation

2.2.3.1. FCM code - An iterative procedure:

The fuzzy-c-means algorithm9 is basically an iterative procedure to minimize an objective
function Jm representing a spatial fuzzy distance between data points xk and cluster

centers v,.. In this project, I chose the most widely used Euclidean distance, i.e. the sum of

the squared errors performance index;

n c

k=l i=l
Xk-Vi

2
A

• X = {xl,x2,...,x„ } c <K5 is a finite data set in the pattern space SR*.

• c is a fixed and known number of clusters (here: c=2).
• U = [uik] e <RCM is a fuzzy c-partition of X, % is referred to as the grade of membership

of xk to the cluster i. uik satisfy the following constraints;

uik e[0,l];l</<c,l<A:<77
c

rt

0< V«/jt <«;1</<C
*=i

V = (Vj ,v2,...,vc) e9?" ; each v, e?l5 represents a prototype of class i.

m is the weighting exponent and represents the level of fuzziness; 1 < m < oo.

9[Ruspinil969] was the first one who suggested the structure of fuzzy-c-partition spaces. The fuzzy-c-
means algorithm (originally ISODATA) was initially developed by Punnl974] and generalized by
[Bezdekl973].
Dunn extended and developed the classical "within-groups sum of the squared errors" (WGSS) function to
a fuzzy clustering criterion and developed the fuzzy-c-means clustering algorithm to minimize the
objective function through an iterative method. Bezdek further extended the fuzzy objective function
proposed by Dunn to a more genral form of fuzzy clustering criterion by introducing the weighting
exponent m, 1 <, m < oo. It turns out that Dunn's function is a special case (m=2) of an infinite family of
objective functions.

4-14

Ilx* ~ v» 11^4 1S an irmeT product induced norm on SR*.

By differentiation Jm(U,v) with respect to uik where v, is fixed and to v, where U is

fixed, we obtain

and

i>,*r**
v. =-^- » n

£(«*)"
Jt=l

These two equations cannot be solved analytically, but approximate solutions can be

obtained by an iterative procedure. The FCM uses iterative optimization of an objective

function based on a weighted similarity measure between data points and cluster centers.

Step 1. Input the number of clusters, c, the weighting exponent, m, and the error

tolerance, 8.
Step 2. Input the data X = { xl,x2,...,xn }.
Step 3. Initialize the membership values U = [uik].

Step 4. Calculate the new cluster centers FW by the 3rd equation.

Step 5. Update the U^ by the 2nd equation.

Step 6. Return to Step 3, if U(/+l)-U(,) > £; otherwise output U...

X

u
V

[sxn] n: # of data elements - polygraph test sessions.

[cxn] s: # of features - dimension of the samples in each cluster.

[sxc] c: # of clusters

Fig.2: The iterative FCM10 procedure

10See Fig.3 , the flow chart of the FCM code implemented in this project.

4-15

Initialization
£> <U

Adjustment

No

I
V((L,

"T~
IT (L)

J(U,V)

Adjustment

No

Fig.3: Flow chart of the FCM code implemented in this project

2.2.3.2. What the influential parameters practically mean or represent,

and how to interpret the clustering algorithm itself:

The weighting exponent m represents the "fuzziness" level. It controls the extent of
membership sharing among the fuzzy clusters. Recall the example of the two clusters,
"desks" and "chairs" in chapter3.1; In a hard c-means clustering environment (m-> 1) each
object can either belong to "chairs" or "desks", i.e. its membership value is either one or
zero for each cluster. Now, the higher m is, the fuzzier the results will be. Thus, a desk -

. which can also be used as a chair- may get a membership value higher than zero for
belongingness to the chairs cluster. In this sense, m controls the membership values as

following

lim U:u =—.
m-»oo

Hk

4-16

The control parameter epsilon represents the interrupt criterion. It influences the number
of iterations and therefore the accuracy of the algorithm which is the search for c minima.
By making epsilon smaller we get more accurate clustering results, but also more

computing time, which is not important in this specific case.

The algorithm primarily gives us after each iteration new cluster centers vt and new
membership values Uik. It then calculates the spatial distances between each data element

and the found cluster centers then checks the interrupt criterion. If these distances are
small enough, the algorithm will eventually give us the best membership values and the
appropriate cluster centers. At this point, the search for an internal structure within the
polygraph data -the original intention of every clustering process- will be finished.

FCM algorithm belongs to the so-called partitional clustering algorithms which generate a

fuzzy c-patition matrix in a feature space. In this project I set the number of clusters c, as a
known parameter, equal to two. It can otherwise be a part of the clustering optimization
itself. This decision was made after running some initial tests with c = 3 as well, which

represents "deceptive", "truthful" and "ambiguous" clusters.

unlabeled
data

=>

=>

initialized
data

+, +* +
t*+ * +*+
* + * + .

clustered
data

=>

after the first
iteration

*

:* *% ** +

■±

*: non-deceptive elements
+: deceptive elements

Fig.4: Fuzzy C-means algorithm applied on polygraph data

4-17

2.2.4. Why LMS fuzzy adaptive filter?

Filters are information processors. In practice, information11 usually exists in two different

modes:

• Numerical data associated with the problem,

• linguistic descriptions of human experts

(often in the form of fuzzy IF-THEN rules)

Conventional filters can only process numerical data, whereas expert systems can only

make use of linguistic information, i.e. a successful pattern recognition system in

conventional form can only be guaranteed where either linguistic rules or numerical data

do not play a critical role. Recall the fact that even in those cases we decide for a

numerical method, we use linguistic information, consciously or unconsciously, in the

choice among different filters, the evaluation of filter performance, the choice of the filter

orders, the interpretation of filtering results, and so on.

The LMS12 fuzzy adaptive filter is a new kind of nonlinear adaptive filter which makes use

of both linguistic and numerical information concerning the physical characteristics of the

polygraph data in their natural form. This filter is constructed from a set of changeable

fuzzy IF-THEN rules, i.e. we have the choice of setting the rules according to our

experiences and incorporating them directly into the filter, or initializing the rules

arbitrarily; similar to the polynomial, neural nets, or radial basis function adaptive filters.

2.2.5. LMS fuzzy adaptive filter and its interpretation:

2.2.5.1. Filter code - An adaptive procedure

As stated before, this filter is constructed from a set of changeable fuzzy IF-THEN rules

by matching input-output pairs through an adaptation procedure. The adaptive algorithm

updates the parameters of the membership functions which characterize the fuzzy concepts

in the IF-THEN rules by minimizing a criterion function.
Consider a real-valued vector sequence [x(k)] and a real valued scalar [d(k)]. The adaptive

filter fk: U -> R is to determine, such that L = E[(d(k) -fk (x(k)))2] is minimized.

11 About the pattern of the subject to be studied.
12LMS = Least Mean squares

4-18

With k = 1,2,3,... and x(*) e^[Cr,C;]x[C^C2
+]x-»x[C;,Cn

+]cJRn. U and R are

the input and output spaces of the filter, respectively.

The following steps describe the LMS fuzzy adaptive filter13 used in this project:

Step 1: M fuzzy sets F' are to be defined in each interval [C;,C+] of U with the

following Gaussian membership functions

/^(*,) = exp
■\2

V «/ J

where / = 1,2,...,M, / = 1,2,...,«, xt e[Q,C,+], and x'(and a\ are free parameters which

will be updated in the LMS adaptation procedure of Step 4.

Step 2: A set of M fuzzy IF-THEN rules is to be constructed in the following form:

R': TFx, isF/ and ... xn isF'n, THEN tf is G',

RM: Wxx isFX
M and ... xn isFn

M, THENrfis GM.

where x = (x.,...,x)eU, d eR, F/'s are defined in Step 1, and G''s are fuzzy sets

defined in R. The (parameters of) membership functions HF! and pG, in these rules will

change during the LMS adaptation procedure of step 4. Therefore, the rules constructed

in this step are initial rules of the fuzzy adaptive filter.

Step 3: The filter fk: U-+R is constructed based on the M rules of the Step 2 as

follows:

i rn«
where u ,'s are the Gaussian membership functions of Step 1, and 6' GR is any point at

Ft

which n , achieves its maximum value.

13This algorithm is suggested in [Wangl993] and [Wangl994].

4-19

Because we chose the membership functions to be Gaussian functions which are nonzero
for any xt e[C~,C*], the denominator of the last equation is nonzero for any xeU.

Therefore, the filter fk is well defined, and because the 0' as well as x\ and <r/ are free

parameters, this filter is nonlinear in the parameters.

Step 4: The following LMS algorithm [Widrowl985] is used to update the filter
parameters 6', x\ and a,'. With the initial 0'(o), x/(0) and aj(0) values determined in

Step 2, the adaptive procedure is as following:

x'i(k) = xi(k-l)+a[d(k)-fk] ^_i} a{k-l) ^l(k_x)) 2

2

^M^^-O^W-Al^iM^y
M . .
Ze'a'ik-l)

where a'(^-l) = nexp[-^(Y'(<:).^(^ 1})2], b(k-\) = Za'(k-l), fk =M——-—

and a is a small positive step-size. These equations are obtained by taking the gradient of
L ignoring the expectation £(see chapter 2.2.5.1).

2.2.5.2. Influential parameters - meanings & interpretations:

The LMS algorithm is a gradient algorithm, i.e. a good choice of initial parameters 0', x\
and a/ is very important to its convergence concerning accuracy and time. Since the error

measure of this "back-propagation" algorithm is an extremely complicated function of all
the parameters 0l, x\ and <r/, it can have numerous local minima. Depending on the

initial parameter estimates, this algorithm always leads to the nearest minimum, i.e. it can

become stuck in a local minimum of the error measure.

Recall that this filter is constructed based on linguistic rules from our previous experiences

and some arbitrary rules. Both sets of rules are updated during the LMS adaptation
procedure of Step 4 by changing the parameters in the direction of minimizing L.

4-20

In other words, the adaptation procedure can be directed to the local minimum we want
(i.e. accuracy factor) and can converge quickly (i.e. time factor).

if these rules provide good instructions for how the filter should perform, that is, good
description of the input-output pairs [x(k);d(k)].

The updating parameters 0'[Mxl], x/[MxN] anda/[MxN] represent output means, input

means and the input width of the Gaussian distributed data, respectively. The scalar output
d is basically the label14 of the test data[lxN] in numerical form, and a\ describes how far

the data from the output mean can be and still be assigned to it in an appropriate fuzzy
form. M represents the number of the rules and N the number of the features, i.e. the
dimension of the data. The parameter a is the "learning factor" or the step-size of training.

It represents how fast and how smooth the training process proceeds.

polygraph

data

linguistic rules

N/

LMS adaptive filter {defuzzifieh
labels

>

conventional
initialization

Fig.5: The LMS/wzy adaptive filter used in this project

14"deceptive" or "non-decptive".

4-21

§3. APPROACH
3.1. Part I - FCM

3.1.2. Initial stage (conditions and methods):

A primary component of every pattern recognition problem is feature extraction. And this
is actually one of the most important and influential tasks for any successful approach.
In previous researches [Layeghi 1993,1] [Jacobsl993] [Dastmalchil993], students have
already investigated a set of 669 features for each polygraph test session. They used these
features to train, optimize and eventually classify the data by a fuzzy K-Nearest Neighbor

algorithm (KNN).
In this project, I have used these same features in their original form. I have also selected
their best features and feature combinations for initial tests of my algorithm and for
comparison between fuzzy-CM, fuzzy LMS adaptive filter and the fuzzy KNN approach.
At this point, the question of consistency and transferability of the features - independent
of the algorithm - became more significant. It turned out to be one part of this research15.

ft 669

session #1

ft 669/

session #100

Fig.6: An example for a set of polygraph data as a matrix
and its features used in this study

As mentioned earlier, each feature (total number=960) is extracted for all polygraph test

questions, that is for relevant, irrelevant and control questions. It was, however, decided

15See also chapter 4.1.2.3.

4-22

not to use irrelevant questions in this study, because in a Controlled Question Polygraph
Test comparison between the responses to relevant and control questions is the actual and

most important factor.

/Feature\

\

IFeatureX

Subtract the averages

A
Use control

and relevant
teperately

V
}

>
f \

Different
methods of

combining the
features

\ Subtract the
normalized averages

Compare
control & relevant

y
?

 >

1 Set I I 2

\(960)J
 7

\ (66^) J
—\ Subtract maximum

from maximum

\

■>

Use control,
relevant and

irrelevant
'•

^ Divide the averages / ?

Fig.7: The original feature combinations

The Total number of the features for every test session at this stage is 669. Each set
contains the same non-deceptive files but different deceptive ones. For more specific
details about how the feature extraction was processed, and about combination methods
which narrowed the total number from 960 to 669, see the references mentioned above.

3.1.3. Clustering stage

3.1.3.1. One-dimensional search and selection of the "best" single features:

After implementation and initial tests of the FCM-code, I began with the one-dimensional
clustering (using one feature for all sessions). I used three sets (polydat_l, polydat_2,
polydat_3) of such structured data as shown in Fig.42 containing 100 data elements, i.e.
50 truthful and 50 deceptive files. With these data, we ran 669 one-dimensional clustering

searches containing 100 different one-dimensional data points at each time. As a result, we

attained 669 times 2 clusters for each polydatj.

4-23

After running these tests and evaluating them, I decided to select four sets of "best" one-
dimensional features out of each polydat_i in preparation for the multi-dimensional

clustering search. This decision was necessary to narrow the number of features, since it is

impractical to find the best combination (concerning the quantity and the quality)16 out of

this immense number of features by an exhaustive way of searching.

For example, chosing only 4 or less feature-tuples from a set of 669 by trying all the
possible different combinations needs the following number of computations:

669 669! ^1ftiQ
i) i"1i!(669-i)!

101

The other challenge while finding good feature combinations is the problem of single

features which yield poor results by one-dimensional clustering, but when used in

combination with other features yield very good17 results.

To narrow the amount of possible features, I decided to select the following four sets of

single features with different performances.

percentage of right detections in
deceptive files non-deceptive files

group 1
group 2
group 3
group 4a
group 4b

> 60% &
> 80% &
> 50% &
> 98% &

no constraints &

> 60%
> 50%
t 80%

no constraints

> 98%

Fig.8: Selected features by using one-dimensional FCM

The threshold of 60% was chosen, because any other value below or above that limit
would again give us either too many or not enough features. Furthermore, any other value

16That means: How many features and which ones should be taken in a combination.
17"Good" or "poor" in sense of the definition in chapter 1.1.2.

4-24

closer to the limit 50% for both deceptive and non-deceptive files would be only a random

clustering process. Yet, this decision was not enough. We would have lost some good
features which provide correct detections - better than 80% - for at least one of the files.
The fourth group was chosen to enable us to consider some extreme cases.

As an additional set of one-dimensional features, I chose those with good results in multi-

dimensional tests18 for one of the polydatj's, and used them also for the other two
polydatj's, even though they didn't belong to one of the four feature sets mentioned
above. This set was important to fulfill the constraint of consistency and transferability for

any chosen polygraph data19.

18See chapter 3.1.3.2.
19See the comparison in chapter 4.1.2.3.

4-25

ft_#

1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000
10.0000
11.0000
12.0000
13.0000
14.0000
15.0000
16.0000
17.0000
18.0000
19.0000
20.0000
21.0000
22.0000
23.0000
24.0000
25.0000
26.0000
27.0000
28.0000
29.0000
30.0000

447.0000
448.0000
449.0000
450.0000
451.0000
452.0000
453.0000

662.0000
663.0000
664.0000
665.0000
666.0000
667.0000
668.0000
669.0000

w-dcp

12.0000
37.0000
16.0000
12.0000
15.0000
38.0000
48.0000
22.0000
22.0000
22.0000

0
20.0000
46.0000
22.0000
12.0000
37.0000
16.0000
12.0000
15.0000
38.0000
48.0000
12.0000
10.0000
21.0000
18.0000
24.0000
12.0000
46.0000
18.0000
12.0000

17.0000
7.0000
16.0000
12.0000
13.0000
5.0000
18.0000

dcp-ok
%

76.0000
26.0000
68.0000
76.0000
70.0000
24.0000
4.0000
56.0000
56.0000
56.0000
100.000
60.0000
8.0000
56.0000
76.0000
26.0000
68.0000
76.0000
70.0000
24.0000
4.0000
76.0000
80.0000
58.0000
64.0000
52.0000
76.0000
8.0000
64.0000
76.0000

66.0000
86.0000
68.0000
76.0000
74.0000
90.0000
64.0000

w-non

9.0000
44.0000
10.0000
18.0000
16.0000
27.0000

0
9.0000
8.0000
11.0000
33.0000
15.0000
26.0000
11.0000
9.0000

44.0000
10.0000
17.0000
16.0000
27.0000

0
14.0000
45.0000
15.0000
24.0000
19.0000
23.0000
2.0000
9.0000
10.0000

36.0000
40.0000
11.0000
9.0000
18.0000
20.0000
18.0000

non-ok iter # E=669

27.0000
16.0000
21.0000
31.0000
34.0000
25.0000
15.0000
15.0000

46.0000
68.0000
58.0000
38.0000
32.0000
50.0000
70.0000
70.0000

34.0000
30.0000
37.0000
23.0000
17.0000
28.0000
37.0000
39.0000

82.0000
12.0000
80.0000
64.0000
68.0000
46.0000
100.000
82.0000
84.0000
78.0000
34.0000
70.0000
48.0000
78.0000
82.0000
12.0000
80.0000
66.0000
68.0000
46.0000
100.000
72.0000
10.0000
70.0000
52.0000
62.0000
54.0000
96.0000
82.0000
80.0000

28.0000
20.0000
78.0000
82.0000
64.0000
60.0000
64.0000

32.0000
40.0000
26.0000
54.0000
66.0000
44.0000
26.0000
22.0000

13.0000
15.0000
14.0000
15.0000
16.0000
15.0000
40.0000
8.0000

13.0000
38.0000
26.0000
6.0000

10.0000
16.0000
27.0000
17.0000
25.0000
37.0000
40.0000
34.0000
31.0000
25.0000
20.0000
23.0000
29.0000
18.0000
22.0000
35.0000
28.0000
14.0000

17.0000
25.0000
15.0000
15.0000
20.0000
13.0000
12.0000

9.0000
9.0000

17.0000
14.0000
45.0000
20.0000
12.0000
11.0000

Feature number: ft_#
of wrong results in decept. data: w-dcp
% right detection in decept. data: dcp-ok
of wrong results in truthful data: w-non
% right detection in truthful data: non-ok

Iterations # for each feature: iter #

Fig.9: An example for one-dimensional clustering

4-26

ft # w-dcp

12.0000
16.0000
12.0000
15.0000
20.0000
12.0000
16.0000
12.0000
15.0000
12.0000
18.0000
12.0000
14.0000
18.0000
15.0000
8.0000
12.0000
14.0000
16.0000
17.0000
15.0000
13.0000
20.0000
16.0000
17.0000
17.0000
16.0000
16.0000
13.0000
17.0000
13.0000
17.0000
15.0000
15.0000
18.0000
16.0000

1.0000
3.0000
4.0000
5.0000
12.0000
15.0000
17.0000
18.0000
19.0000
22.0000
29.0000
30.0000
31.0000
33.0000
36.0000
37.0000
38.0000
39.0000
40.0000
50.0000
52.0000
68.0000
70.0000
82.0000
141.0000
155.0000
176.0000
177.0000
197.0000
200.0000
211.0000
214.0000
216.0000
235.0000
395.0000
449.0000
450.0000 12.0000
451.0000 13.0000
452.0000 5.0000
453.0000 18.0000
458.0000 16.0000
459.0000 20.0000
460.0000 14.0000
462.0000 14.0000
600.0000 18.0000

dcp-ok
%

76.0000
68.0000
76.0000
70.0000
60.0000
76.0000
68.0000
76.0000
70.0000
76.0000
64.0000
76.0000
72.0000
64.0000
70.0000
84.0000
76.0000
72.0000
68.0000
66.0000
70.0000
74.0000
60.0000
68.0000
66.0000
66.0000
68.0000
68.0000
74.0000
66.0000
74.0000
66.0000
70.0000
70.0000
64.0000
68.0000
76.0000
74.0000
90.0000
64.0000
68.0000
60.0000
72.0000
72.0000
64.0000

w-non

9.0000
10.0000
18.0000
16.0000
15.0000
9.0000
10.0000
17.0000
16.0000
14.0000
9.0000
10.0000
16.0000
16.0000
8.0000
13.0000
14.0000
13.0000
15.0000
17.0000
20.0000
18.0000
20.0000
20.0000
17.0000
17.0000
18.0000
16.0000
17.0000
13.0000
16.0000
12.0000
14.0000
19.0000
17.0000
11.0000
9.0000
18.0000
20.0000
18.0000
14.0000
10.0000
18.0000
17.0000
20.0000

non-ok
%

82.0000
80.0000
64.0000
68.0000
70.0000
82.0000
80.0000
66.0000
68.0000
72.0000
82.0000
80.0000
68.0000
68.0000
84.0000
74.0000
72.0000
74.0000
70.0000
66.0000
60.0000
64.0000
60.0000
60.0000
66.0000
66.0000
64.0000
68.0000
66.0000
74.0000
68.0000
76.0000
72.0000
62.0000
66.0000
78.0000
82.0000
64.0000
60.0000
64.0000
72.0000
80.0000
64.0000
66.0000
60.0000

iter_#

13.0000
14.0000
15.0000
16.0000
6.0000

27.0000
25.0000
37.0000
40.0000
25.0000
28.0000
14.0000
21.0000
14.0000
14.0000
15.0000
18.0000
17.0000
13.0000
18.0000
23.0000
17.0000
23.0000
12.0000
15.0000
25.0000
13.0000
13.0000
15.0000
12.0000
42.0000
27.0000
32.0000
14.0000
10.0000
15.0000
15.0000
20.0000
13.0000
12.0000
8.0000
10.0000
9.0000
7.0000

37.0000

r=45

Feature number: ft_#
of wrong results in decept. data: w-dcp
% right detection in decept. data: dcp-ok
of wrong results in truthful data: w-non
% right detection in truthful data: non-ok

Iterations # for each feature: iter #

Fig.10: An exmple for the first group of selected features
(representing group #1 at page)

4-27

3.1.3.2. Multi-dimensional search for the best feature combination:

3.1.3.2.1.Overview:

Having obtained these four sets of features, a multi-dimensional searching process through

all of them was initiated to find the best feature combinations (concerning the quantity and

the quality20).
Even though the number of the features21 has already been narrowed, it is still impractical

to do an exhaustive search, since the total number of the features contained in these four

sets is about 100 for each polydatj. In other words, the following number of

computations is still needed for calculation of all 4 or less possible feature-tuples:

4 flOO^ 4 100!

i = l
- Y —_—«4.0-106

^ i) i^iKioo-i)!

At this stage, I decided to investigate 3 different search methods to bypass the exhaustive

way. They are

1. random search without duplication of any feature within a tuple,

2. pseudo-exhaustive search with the option of duplication and finally

3. genetic search with "uncontrollable" possibility of duplications.

In previous research projects [Layeghi 1993,1] [Dastmalchil993] [Jacobsl993], it was

decided to narrow the feature numbers from 669 to 30 "best" ones and then an exhaustive

search was run for up to four- or five-tuple combinations. In other words, their strategy

was completely different than the aforementioned three strategies.

As mentioned before a "poor" or an average single feature by one-dimensional clustering

might give us in combination with other features very good or even better results by a

multi-dimensional clustering than any of them individually.

This fact was totally neglected by the feature selection methods used in the previous

researches22 [Laueghil993,l] [Dastmalchil993].

20That means: How many features and which ones should be taken in a combination.
21See chapter 3.1.3.1.
22See chapter 4.3. comparison for more details about differences between this and previous works.

4-28

Applying these three new strategies, I was able to consider more possible features for a

multi-dimensional clustering than in previous works, without using the impractical

exhaustive method.

polygraph data

ft 669

session #1 session #100

best feature combination) <:

one-dimensional
FCM-clustering

feature selection

t
\/\/\/ '" \/

feature combination

random search
T

pseudo-exhaustive search

genetic search

multidimensional
FCM

Fig.ll: General search to find the best feature combination

3.1.3.2.2. Random search method:

Applying this method, an average of 14 to 20 different features out of the aforementioned

four sets were taken, and then the FCM algorithm including the evaluation program for

randomly chosen 4-tuples were run. After about 1000 combinations were constructed, I

then picked out the best features and their combinations, and replaced the poor ones with

new features. This same procedure was repeated until good23 combinations were found.

23"Good" in sense of the definition in chapter 1.1.2.

4-29

Every time the results were out of balance - i.e. highly better detection either for deceptive
or non-deceptive files by the cost of the other one - I appropriately took additional
features from those four sets to eliminate the difference by improving the results of the

worse file - and as much as possible - by maintaining the results of the better file.

After running this kind of tests several times, we were able to estimate which features are

the good ones to combine together.

3.1.3.2.3. Pseudo-exhaustive search method:

Having some idea24 which features are good in a combination with others25,1 built every

possible four- to six-tuples out of those features and evaluated them. This method was
very important to make sure that we did not lose any good combinations which might

have been neglected by the random search.

I called this method "pseudo "-exhaustive, because each time it considers only a small part
of the available features; but "exhaustive", because it takes all the possible combinations
within this part. Except for this major difference, all the other steps of this method are

exactly the same as the random search.

3.1.3.2.4. Genetic search method:

This algorithm is basically a compromise between the pseudo-exhaustive and the random
search method, plus a weighting system which supports those features with good results.

Initial populations of 200 to 300 chromosomes26 are randomly created. Each chromosome
is a combination of N features, where N stays constant for each population during the
outgrowth. Each single feature is selected from a gene pool for the particular population
that the individual belongs to. Each gene pool consists of twenty to forty features that we

have chosen27.
24By using the results of the random search method and also the 5th group mentioned at page 3.1.3.1.
"Remember the fact that some "poor" single features might give us in combination with others very

good results
26Individuals or feature-tuples.
27Directed by our experience from using the random and the pseudo-exhaustive methods.

4-30

In this project three processes operate on the evolution28 of each population:

• reproduction

• crossover

• mutation.

These three processes determine how each new generation will be created based on the

old one. Before genetic reproduction, the fuzzy-c-means algorithm evaluates the

percentage of correct deceptive and non-deceptive detections for each chromosome. The

average of them is the fitness value ofthat chromosome. During the genetic reproduction,

the chromosomes of the new generation are copied from the chromosomes of the old

generation in a probabilistic sense. The probability that a particular chromosome will be

copied is the ratio ofthat chromosome's fitness value against the total fitness values of the

entire population of the old generation.

After selection, genetic crossover randomly chooses pairs of chromosomes as parents,

splices them, and recombines them - by randomly mixing some of the parents genes - into

pairs of offsprings. Finally, genetic mutation randomly substitutes a new gene within a

randomly chosen chromosome. The extent to which crossover and mutation occur can be

verified by appropriate initialization.

*
* *

* * *

* *
* *_

* * * *

*
* * *_

*

*

*
* * *_

* * * *

*
* * *

* * *
ILI

*
* * *_

* * * *

*
*
* *_

* *
* *

* *
* *_

* * * *

* *
* ■>

* 5
*J b

*
* *

\ * * *
AL /* * * ü\ //iJ liU l*_J

*7A * * * *
j' \ * * * *

* * * *
* * * *
* * * * *J l*VJ l*J l±_

* * *
* f *

*
*
* *_

* * * *

*
* *

* * * *

*
*
*

*
* * *

reproduction crossover mutation

Number of feature tuples: 300

Number of features in each tuple: 4

Fig.12: An example for the genetic outgrowth with
4 genes (=features) in each chromosome (individual)

28See chapter 4.1.2.2 for particular results of this method.

4-31

3.1.3.3. General process - Optimization by changing parameters:

Simultaneously to the search for the best features and their combinations, we were

optimizing the system by changing and adjusting the parameters. Recall, the whole idea of

this pattern recognition was to cluster the unlabeled data into two clusters which represent

the deceptive and the truthful group29.

Knowing the information of which files were deceptive or truthful30, we were able to

change the parameters in the way that the output could continuously come closer to the

real cluster structure. This process is depicted in the following figure. The "fuzzy c-means

algorithm" block not only represents the pure FCM algorithm shown in Fig.3, but also the

general search for good features shown in Fig. 11 which ran simultaneously with the

optimization process.

polygraph test
data /non-deceptive cluster

V
defuzzification

hard /
deceptive cluster

fuzzy c-means
algorithm

Uik

/ \ defuzzification
soft parameters

;uik

C non-deceptive cluster
J deceptive cluster evaluation / ^
1 membership values

Fig. 13: Optimization of the clustering environment
- General process -

As an example, I will briefly discuss how the parameter m was chosen and eventually

modified: The weighting exponent m plays a significant role in this system. Since the

control parameter m itself does not belong to the optimizing values within the iterative

process of FCM algorithm, one must choose m before implementing the algorithm, and

29See chapter 3.1.2.
30We know this information beforehand for sure, because the subjects have confessed their case or the
actual offender was found.

4-32

optimize it manually. There are several research papers written as an attempt to find the

optimal m for different clustering problems.

The effect of m was discussed in [Bezdekl981]. Although Bezdek proposed heuristic

guidelines for m, no theoretical basis for an optimal choice for m has been reported. The
only known paper in this matter [Choel992] proposed a method for determining m based

on the concept of fuzzy decision theory initiated by [Zadehl970].

But since the definition of "good" clusters in [Choel992] did not exactly match to our
clustering environment, I chose the "trail and error" strategy to find the optimal m by
systematically increasing it. Fortunately, there is a logical limit31 for this increasing process

in our case, even though m can mathematically be any value from [2, oo).

1

0.9
4- + •

V) . +
« 0.8 + . • . -
CXI

Ü 0.7
'JO

CO

. 4- + + ++ ++

4- -H- + 4- ++ 4-
o5 0.6 • + -+H- 4- + 4- - n 4- ^ 4-

£ 0.5 "H-+ ^4- ^ 4-

0.4

0.3

0.2

- ^ ++ + +

0.1 _ • 4- • •

0
*

D ' 20 " ' 40 60 80 1 00

Polygraph sessions

"." represents the mmebership values for m=2
"+ " represents the membership values for m=5

t^.' Fig. 14: An example for the influence of 'm

31See chapter 2.2.3.2. for the meaning of m.

4-33

For more details on this matter see the chapter 4.1.1. In Fig. 14, you see an example for
how the weighting exponent m influences the membership values for one of the features

from polydat_3 in one-dimensional mode.

3.1.3.4. Evaluation strategy:

Due to the small number of non-deceptive cases available, each session for a subject was
used as a separate and individual case. But in average, each group of three sessions belong
to one person concerning the same crime, meaning the results of these sessions are not
independent of each other. Using this additional information, the clustering system can
come closer to the actual structure of the data, i.e. we can get a better performance.

polygraph examination for a deceptive subject r
-. session #2 session #3 ^

©
©
R

©

©
©
©
©

©
©
©
©

© © ©

r

FC 'M
~

FC •M
"1

FC :M
-*i

V / N / N /

non-deceptive deceptive deceptive

NU

[cj : Control question deceptive

[R| : Relevant question

Fig.15: An example for the final evaluation using the
dependency of the sessions

4-34

After clustering and evaluating32 each session separately, some cases with different

responses to the algorithm were found, although they belonged to one person. In

circumstances like this, we combined the individual results within each group in a way that

the majority response was assigned to the whole group (see Fig. 15).

In those cases that each polygraph examination contains 2 or 4 test sessions where there is

no majority response to build, I decided to take only those membership values further to

the threshold 0.5. For example, by the feature combination [30, 30, 39, 235, 363, 450]

used to cluster polydat_l, we obtained for one of the examination with four sessions the

following membership values: 0.4164, 0.5519, 0.5377, 0.4780. After defuzzification we

got 0, 1, 1, 0 where no majority class can be build. However, the second and the third

membership values are closer to the threshold than the other two ones. With the

aforementioned strategy, this examination is labeled with 0.

Recall that each polygraph examination has a set of control and relevant questions which

is repeated an average of three times. The only difference between each session is the

order in which the questions are asked.

32The general evaluation process is contracted as following:
After each clustering procedure (one- or multi-dimensional) a two-row vector of membership values is
given which represent the two deceptive and non-deceptive clusters. The evaluation process takes the
membership values of one these clusters and counts the values below and above the threshold 0.5. Thus, as
a result we get the absolute number of wrong and right detections.

4-35

3.2. Part II - LMS fuzzv adaptive filter

3.2.1. Feature selection bv visual inspection:

One advantage of a fuzzy logic system is its use of common sense human reasoning as
inference rules. The fuzzy LMS algorithm we used extends this advantage by further
optimizing such inference rules to "fit" a given set of data. To fully utilize the advantages
of this fuzzy LMS algorithm, we had to face two issues: coming up with the proper
intuitive rules for initialization and a set of data that reflects real-world examples for

training.

As mentioned before, for practical reasons, the polygraph recognizer can use only a subset
of the given 669 features, and we would have to choose the effective ones. Furthermore,

the fuzzy logic system needed reasoning rules, operating on those features we selected, to
analyze the data. We believed that we could visually inspect graphical plots of the feature
data to learn about the feature information. Since fuzzy logic corresponds closely with
human reasoning, we would then, based on the knowledge obtained from our visual
inspection, select features that help differentiate deceptive and non-deceptive subjects and

codify the patterns we would find into reasoning rules.

For the visual inspection, a scatter plot was made of the data in polydat_3 of each single

feature. We looked at each plot individually. In any given plot, if the deceptive and non-
deceptive subjects showed distinctive clusters, then the feature was considered good. If
the elements of these two classes seemed to be randomly located, then the feature was
considered bad. After viewing all 669 plots, we subjectively determined the following
features33 to be very good: 9,11, 29, 164, 399,449,450, 451, 452, and 454; with 451 and

452 to be the best.

Initially the fuzzy adaptive filter was to be designed based on two features, with more
features to be added in the future as the project progresses. We limited the feature couple
to be composed of good features from the above list. Visual inspection was made of the
scatter plots of the data in polydat_3 of various such feature combinations to determine
the effective ones. While selecting feature couples, we again searched for combinations
that show distinctive clusters for deceptive and non-deceptive subjects. The features

33See Fig.41 for the meaning of these numbers.

4-36

within a combination should also be uncorrelated with each other. A plot of the feature

449 and 450 combination shows that they are a bad couple because they seem to be

linearly correlated34, as the data points fall closely along a straight line.

1.5

8 1

| 0.5
■£

-0.5

-1

--*
-^
<F

?**

-1.5 ^
-1.5 TJi" -TT5-

feature # 449

—re

; non-deceptive files
'o': deceptive files

polydat_3

Fig.16: Scatter plots of two linearly correlated features

Visual inspection of feature couples consumed much more time than visual inspection of

individual features, as the clusters took on more complicated shapes. Furthermore, in the

fuzzy LMS algorithm each inference rule exerts influence centered in an elliptical contour

where the major and minor axes are parallel with the axes of the feature plot. Clusters with

a complicated shape must be built from those elliptical regions (see next figure). Therefore

we had the additional task of finding clusters in the feature plots that could be easily

approximated with few ellipses, to reduce system complexity.

Due to the lack of time, we did not examine the plots of all forty-five possible

combinations of the ten very good features listed above. We only examined a random few.

Based on the ones we did examine, we settled on the combination of features 451 and 452

because:

34Correlation between two features means that information in one is similar to the information in the
other one, and using them together only introduces redundancy and hardly improves the system.

4-37

they were the best - visually recognizable - features individually,

they seemed uncorrelated with each other and
we roughly found four elliptical clusters from the plot.

0.5

£
"S

-0.5

-1

-1.5
-2 -1.5 ^ ^5 0 0.5

feature #451
T5 i

'+': non-deceptive flies
'o': deceptive files

Polydat-3

Fig. 17: The four elliptical clusters used for setting the linguistic rules

4-38

3.2.2. Setting linguistic rules:

We initialized the fuzzy system such that it would exploit the knowledge we had just

obtained about the clusters for features 451 and 452. There were two inputs, one for each

feature, and four rules, one for each cluster. We had to represent those visual clusters we
found with inference rules. The linguistic rules are shown in the following figure.

1. IF fl is about -1 (+0.5) and f2 is about -0.5 (±0.8),
THEN decision is non-deceptive => output is +1.

2. IF fl is about 0 (±0.5) and £2 is about -0.25 (±0.25),
THEN decision is non-deceptive => output is +1.

3. IF fl is about 0 (±0.1) and f2 is about 0 (±0.2),
THEN decision is deceptive => output is -1.

4. IF fl is about 1 (±0.6) and f2 is about 0.3 (±0.5),
THEN decision is deceptive => output is -1.

fl: measurement of feature # 451
f2: measurement of feature # 452

Fig.18: Initial linguistic rules for the fuzzy adaptive filter
based on the clusters in Fig. 17

The linguistic rules above were then translated to fuzzy membership functions as outlined
in [Wangl994]. The xi's were the centers of the clusters; the sigmas were the widths of the
clusters (±xxx in the above rules); and the thetas were either +1 or -1 for non-deception

and deception, respectively.

The output of the fuzzy reasoning based on the above four rules would not be exactly +1
or -1. It would be within the range limited35 by +1 and -1. For our project, we decided
that a positive output denotes non-deception and a negative output denotes deception. In

other words, the decision threshold was at zero.

35After training the output may go beyond that range.

4-39

For future investigations one may experiment with a different threshold36.

The choice of plus and minus one for non-deception and deception is based on the
following argument: The learning technique uses the squared error, which is the square of
the difference between the desired output and actual output. In computing that squared
error, if the difference between the desired output and actual output is greater than one,

then the squaring operation expands the error value and therefore gives more significance

to such mistakes. On the other hand, if the difference is less than one, than the squaring
operation compresses the error value and therefore gives it less significance.

Given zero as the threshold between deception and non-deception and assuming the actual
output would never go beyond plus two or minus two, then the choice of plus and minus
one as desired outputs would mean that the error calculation gives more significance to
misclassifications and less to correct classifications; Here classification refers to the crisp,

defuzzified classification, not the degree of belonging.

For example, the desired output for non-deceptive subjects is plus one. If the actual output
is between zero and two, then the crisp classification is non-deception, which is correct.
The numerical difference between the actual output and the desired output is less than one
in this case, and the squaring operation would lessen the significance ofthat error. On the
other hand, if the actual output is less than zero, then the crisp classification would be
deception, which is wrong. In that case, the numerical difference between the desired

output and the actual output is greater than one and more significance would be given to
such mistakes. Similar argument can be apply for the choice of minus one as the desired

output for deceptive subjects.

3.2.3. Training, testing and evaluation strategy:

The fuzzy LMS algorithm can be optimized to a specific set of data. To exploit that aspect

of the algorithm, we also selected a set of data to train the system. Following a procedure
similar to one used in an earlier project with KNN classifying algorithm [Layeghil993],
we had 35 deceptive subjects and 35 non-deceptive subjects - from each polydat_i - for

360ne may also view the output as a fuzzy value and map it to a confidence value in addition to just a
deception/non-deception decision. That would differentiate a sure judgment from an unsure one and may
be more helpful in practice.

4-40

training. However, with a set of only 100 subjects within each polydatj, that left a rather
small amount for testing (i.e. 15 deceptive and 15 non-deceptive subjects). Therefore we
also tested the algorithm with 10 deceptive subjects and 10 non-deceptive subjects for
training and the rest (40 deceptive subjects and 40 non-deceptive subjects) for testing.
That might be a bit extreme in the other direction, but we could interpolate the results and

also see the sensitivity of the algorithm to the amount of training data.

We tested both cases for all three polydat_i's, giving a total of six tests. Each test was

repeated twenty times. The training data were randomly chosen each time, and the rest of
the available data in each set were used for testing. We recorded for each test the average
of those twenty trials. This repeated testing was done to ensure that the results were not

dependent on a particular choice of training data.

4-41

3.2.4. What to do with the memorizing problem?

Most learning algorithms suffer the dilemma of overlearning, or memorizing. Usually the

problem occurs when the learning algorithm tries too hard at optimizing itself to a set of
training data, sometimes to the point of memorizing them, such that it does not generalize
to understand new data. Overlearning is exacerbated when the training data set is not

completely representative of the testing set.

In a pattern recognition problem, while the recognition rate for the training data may
increase steadily until it reaches a certain plateau, the recognition rate for testing data may
only increase for a while, after which it may decrease until it hits a plane. We observed

such phenomenon in our system:

0.85

S
c 0.8
o

0.75

0.65

0.6

training data

f
f

testing data

~10 15 20 25 30 35 40
epochs

The training data consist of twenty non-deceptive subjects and twenty deceptive subjects from polydatj.
 The testing data consist of all one hundred subjects from pofydat_l.

Fig.19: An example for memorizing as the system "learns"

The point where the recognition rate starts to decrease marks the beginning of
overlearning. In practical applications, most adaptive learning algorithms are trained only
to the point before overlearning occurs, when the performance on the testing data reaches

its peak.

4-42

In our testing we had taken that approach and, for each trial, the percentage of correct

recognition was taken as the maximum attained for the testing data within forty epochs37.

We disregarded the recognition rate for the training data because for many systems,

including our own, a proper set-up could easily attain a recognition rate of 100%. That is,

the recognition rate of the training data bears little importance in practical applications.

37An epoch is defined as one complete cycle through all the training data.

4-43

§4. RESULTS AND CONCLUSIONS

4.1. Fuzzv-c-means

4.1.1. Searching for the best level of fuzziness (parameter 'm'):

One of the major steps during the one-dimensional clustering was the searching process

for the best value of m38. For this process, it was necessary to run the FCM algorithm for
different /w's and for different data by increasing m systematically. This was done for all

669 features and for each polydatj, by every new m.

Recall that it was decided to consider four groups of features to limit the feature pool for
multi-dimensional clustering. Even though the general development - while changing m -

was similar for each polydatj, the individual reaction of these 4 groups within each
polydatj was a little different. For the final decision, we considered all these variances,
correct detection rates and also the distributions of the membership values for each m.

In the following, I will mention some of the remarkable observations we have made during
this process (see also the following tables and figures representing the results of

polydat_3):

As expected, the membership values Uik did approach the 0.5-level39 by increasing m, i.e.

the results became fuzzier. Thus, we had to limit the increasing process to avoid the
uncertainty of the results caused by too much "fuzziness" (which means that every person
belongs to both clusters with almost the same possibility). However, we could observe a
very interesting phenomenon. Even though the membership values came closer to 0.5, and
the distances for different persons to this level were around 10~x (with x> 3), they were

still visually recognizable as deceptive and truthful clusters.

See the following two figures and also the Fig. 14 for examples. Notice that the first 50

sessions represent the non-deceptive persons and the other 50 the deceptive ones.

38See also chapter 3.1.3.3. for the discussion about finding the best m.
39See chapter 2.2.3.2. for more details.

4-44

.c
ß
ü
E
0)
E

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

4V -i

„*+-.
«-*

. +

.+

-26- -ür 6b
polygraph sessions

TSÖr T00

"." represents the membership values for m=10
"+" represents the membership values for m=5

Fig.20: Influence of increasing 'm' for polydat-3 session #1

0.58

0.56

"§ 0.54
a.
f 0.52

E
£ 0.5

0.48

0.46

0.44

0.42
"20 "40 60

polygraph sessions

-86- T00

Fig.21: The zoomed-in view of the above figure for m=10

4-45

In the following two tables, the influence of changing m (for polydat_3/group #1, as an
example) is depicted. As mentioned earlier this group represents those features which give
us better than 60% right detection for both deceptive and non-deceptive files by one-

dimensional clustering.

As you see in these examples, while increasing the parameter m, new "good" features
appear. Some old ones provide even better detection rates and some get worse or even
disappear. This progress is not unlimited. As you see, the development from 'm=4' to 'm=5'
is smoother than between 'm=2* and 'm=4' regardless of 'm=3' step. By continuing this

process above 'm=5', the tendency becomes rather negative.

Those features marked with (*) represent a better detection rate than 75% at least in one
of the two clusters. Notice that these features also change during the increasing process of

m. By continuing this process above 'm=5', also this tendency becomes rather negative.

After considering the other groups40 and their development for each polydat_i, 'm=5'
appeared to be the best compromise. Notice that there is also an outstanding result for
feature number 452 by 'm=5' (see Fig.23). That was the only individual feature ever by an
one-dimensional clustering process with a correct detection rate of 90% for non-deceptive

files.

Another interesting aspect is that independent of m, the conglomeration areas where
"good" features appear are always the same: For example the half of the "good" features
are among the first hundred, but between 200 and 300, there is only one.

In the next tables we will use the following abbreviations:

ft #: Feature number.
w_dcp: Wrong detection within the deceptive cluster in percent.
w_non: Wrong detection within the non-deceptive cluster in percent.
*: Features with a better detection rate than 75% at least in one of the two

clusters.

•m=...' MINUS 'm=...': Represents the difference in detection rates by using different m's.

40See Fig.8.

4-46

poIydat_3

group #1 & m=4

ft # w_dcp w_non

1.0000
3.0000
4.0000
5.0000
12.0000
15.0000
17.0000
18.0000
19.0000
22.0000
29.0000
30.0000
31.0000
33.0000
36.0000
37.0000
38.0000
39.0000
40.0000
50.0000
52.0000
68.0000
70.0000
82.0000
141.0000
155.0000
176.0000
177.0000
197.0000
200.0000
202.0000
211.0000
214.0000
216.0000
235.0000
395.0000
449.0000
450.0000
451.0000
453.0000
458.0000
459.0000
460.0000
462.0000
600.0000

24.0000
32.0000
22.0000
30.0000
40.0000
24.0000
32.0000
22.0000
30.0000
24.0000
36.0000
24.0000
28.0000
36.0000
30.0000
16.0000
24.0000
28.0000
32.0000
34.0000
30.0000
24.0000
40.0000
32.0000
34.0000
34.0000
32.0000
32.0000
26.0000
34.0000
30.0000
26.0000
32.0000
30.0000
30.0000
38.0000
32.0000
24.0000
24.0000
36.0000
32.0000
40.0000
26.0000
28.0000
36.0000

18.0000
20.0000
36.0000
32.0000
30.0000
18.0000
20.0000
36.0000
32.0000
28.0000
18.0000
20.0000
32.0000
32.0000
16.0000
26.0000
28.0000
26.0000
30.0000
34.0000
40.0000
36.0000
40.0000
40.0000
34.0000
34.0000
36.0000
32.0000
32.0000
26.0000
28.0000
32.0000
26.0000
28.0000
38.0000
32.0000
20.0000
18.0000
38.0000
36.0000
26.0000
18.0000
38.0000
34.0000
40.0000

*

*
*
*

*
*
*

*
*
*

'm=2' MINUS '01=4'

% %

0 -2.0000
2.0000 0
 new feature
2.0000 0
 new feature

0 -2.0000
2.0000 0

-new feature

0 6.0000
0 2.0000
 new feature

0 0
6.0000 -2.0000
 new feature

-new feature-
0
0

0
0

for the abbreviations see page 461

Fig.22: Comparison between the results for 'nrf' and 'm=4'

4-47

polydat_3
group #1 & m=5

ft # w_dcp w_non

'm=4' MINOS 'm=5'

%

1.0000 24.0000 18.0000 * 0 0
3.0000 32.0000 20.0000 * 0 0
4.0000 24.0000 36.0000 * -2.0000 0
5.0000 30.0000 32.0000 0 0
12.0000 40.0000 30.0000 0 0
15.0000 24.0000 18.0000 * 0 0
17.0000 32.0000 20.0000 * 0 0
18.0000 24.0000 34.0000 * -2.0000 2.0000

19.0000 30.0000 32.0000 0 0
22.0000 24.0000 28.0000 * 0 0
29.0000 36.0000 18.0000 * 0 0
30.0000 24.0000 20.0000 * 0 0
31.0000 28.0000 32.0000 0 0
33.0000 36.0000 32.0000 0 0
36.0000 30.0000 16.0000 * 0 0
37.0000 16.0000 26.0000 * 0 0
38.0000 24.0000 28.0000 * 0 0
39.0000 28.0000 26.0000 0 0
40.0000 32.0000 30.0000 0 0
50.0000 34.0000 34.0000 0 0
52.0000 30.0000 40.0000 0 0
68.0000 26.0000 36.0000 -2.0000 0
70.0000 40.0000 40.0000 0 0
82.0000 32.0000 40.0000 0 0
141.0000 34.0000 34.0000 0 0
155.0000 34.0000 34.0000 0 0
176.0000 32.0000 36.0000 0 0
177.0000 32.0000 32.0000 0 0
197.0000 26.0000 34.0000 0 -2.0000
200.0000 34.0000 26.0000 0 0
211.0000 26.0000 32.0000 0 0
214.0000 34.0000 24.0000 * -2.0000 2.0000

216.0000 30.0000 28.0000 0 0
235.0000 30.0000 38.0000 0 0
395.0000 36.0000 34.0000 2.0000 -2.0000

449.0000 32.0000 22.0000 * 0 -2.0000
450.0000 24.0000 18.0000 * 0 0
451.0000 26.0000 36.0000 -2.0000 2.0000

452.0000 10.0000 40.0000 * new feature
453.0000 36.0000 36.0000 0 0
458.0000 32.0000 28.0000 0 -2.0000

459.0000 40.0000 20.0000 * 0 -2.0000

460.0000 28.0000 36.0000 -2.0000 2.0000

462.0000 28.0000 34.0000 0 0
600.0000 36.0000 40.0000 0 0

-feature # 202 is missing-

for the abbreviations see page 461

Fig.23: Comparison between the results for 'm=4' and 'm=5'

4-48

4.1.2. Searching for the best feature combination:

4.1.2.1. Results of the conventional methods and general observations:

As mentioned in chapter 3.1.3.2.1, we decided for three different strategies to find out the
best feature combination that can represent the two sought clusters within the polygraph

data.

After a short while of a "trial-and-error" testing with the multi-dimensional clustering
algorithm and achieving some experience about how well which features are in a
combination with others, I decided to start a systematic searching process beginning with

four-tuple combinations. In the followings, I will mention some of the general

observations41 we made;

• not always all of the good one-dimensional features were represented

within the best feature combinations,

• good one-dimensional features with the same detection rate did not
provide the same results within coequal combinations,

• some poor or average individual features turned out to be the best

features in a combination with others,

• by repeating some features in a combination, we obtained a few new

good combinations,

• good feature combinations always gave us better results than any of the

features individually and

• the quality of the feature tuple does not depend on the order of the

features within the tuple.

In the following tables, you see an example for using the random search method for
polydat_3 ('m=2' and 'm=5') for four-tuple combinations.

41See also chapter 4.3.

4-49

feature number « {1,4,3,9,22,29,30,36,37,39,450,457,458,460]
condition: if(((nn>=80) & (ww>=80)) | ((nn>=86) \ (ww>=86)))

table 1

feature positions rieht detection feature positions right detection
non-ok dcp-ok non-ok dcp-ok

5 17 4 86 78 6 4 8 5 86 68

17 3 6 88 72 2 4 10 6 86 68
4 8 5 2 86 76 8 4 15 86 70
5 6 8 4 86 68 10 8 2 1 86 72
8 3 4 5 86 72 7 9 3 1 82 80
6 8 13 5 86 68 8 1 6 14 86 70
4 16 3 88 70 5 4 2 8 86 76

2 3 6 1 86 74 17 8 6 86 70
18 5 3 86 72 1 4 8 10 86 72
6 12 13 8 86 68 2 12 8 1 86 76
8 14 6 86 70 12 4 8 86 76
8 7 6 1 86 70 8 12 4 86 76
18 5 6 86 70 7 3 4 2 86 78
6 3 7 1 88 72 4 16 8 86 70
2 6 10 1 86 68 3 6 14 88 70
6 10 2 7 86 68 8 1 5 10 86 72
13 6 5 88 70 18 2 4 86 76
6 7 3 1 88 72 8 4 13 1 86 70
2 6 4 1 86 72 1 10 2 6 86 68
7 5 14 86 78 16 3 5 88 70
5 8 14 86 70 15 8 3 86 72
8 5 13 3 86 72 3 8 2 6 86 72
3 8 6 14 88 70 1 6 3 14 88 70
3 7 4 2 86 78 5 18 2 86 76
8 7 16 86 70 1 4 6 10 86 68
3 16 5 88 70 2 5 4 8 86 76

5 4 8 2 86 76 2 6 10 1 86 68

...

feature number = {1,4,3,8,9,18,22,29,30,36,37,39,81,457}
condition: if(((nn>=80) & (ww>=80)) | ((nn>=86) & (ww>=78)))

table 2

feature positions right detection feature positions rieht detection
non-ok dcp-ok non-ok dcp-ok

2 3 9 14 86 78 7 1 13 9 86 78
3 5 2 9 86 78 9 3 13 2 86 78
9 3 2 4 86 78 19 5 4 86 78
9 14 5 86 78 7 3 2 9 86 78
1 4 13 9 86 78 7 9 4 1 86 78
9 4 3 2 86 78 4 2 3 9 86 78
7 14 9 86 78 17 9 4 86 78
5 7 9 1 86 78 9 1 13 5 86 78
2 9 3 7 86 78

Fig. 24.1: Feature combinations by 'random search' - polydat_3, 'm=2'

4-50

feature number = {1,4,3,7,8,9,22,30,36,37,81,308,457,459}
condition: if(((nn>=80) & (ww>=80)) | ((nn>=86) & (ww>=78)))

feature positions right detection
non-ok dcp-ok

8 7 6 1 86 78
7 8 1 5 86 78
3 2 8 6 86 78
3 8 5 2 86 78
1 3 10 8 82 80
3 8 2 6 86 78
3 2 13 8 86 78
2 8 5 3 86 78
1 6 5 8 86 78
5 8 3 2 86 78
1 8 13 5 86 78
6 1 8 7 86 78
2 5 8 3 86 78
5 2 3 8 86 78
3 8 6 2 86 78
3 7 2 8 86 78
2 8 5 3 86 78
7 6 1 8 86 78
3 5 2 8 86 78
8 5 6 1 86 78
7 2 3 8 86 78
8 5 6 1 86 78
7 8 2 3 86 78
7 8 6 1 86 78
8 1 7 6 86 78
1 8 5 6 86 78
1 7 6 8 86 78
5 8 1 6 86 78
6 1 5 8 86 78
7 8 5 1 86 78
8 7 2 3 86 78
8 2 3 7 86 78
6 5 1 8 86 78
1 8 7 6 86 78
6 7 8 1 86 78
1 6 13 8 86 78
6 8 13 1 86 78
8 7 1 6 86 78
5 1 7 8 86 78
2 6 8 3 86 78
3 2 8 7 86 78
1 6 8 5 86 78
2 5 8 3 86 78
8 1 5 7 86 78
2 5 3 8 86 78

tat)le3
feature positions rieht detection

non-ok dcp-ok

1 8 10 3 82 80
1 7 8 14 86 78
6 7 1 8 86 78
10 8 1 3 82 80
5 3 2 8 86 78
7 1 6 8 86 78
6 2 8 3 86 78
7 6 8 1 86 78
8 5 3 2 86 78
1 8 6 14 86 78
3 5 8 2 86 78
7 3 8 2 86 78
8 5 2 3 86 78
8 6 7 1 86 78
8 1 5 7 86 78
1 6 13 8 86 78
7 3 8 2 86 78
6 8 1 5 86 78
5 1 8 7 86 78
1 7 13 8 86 78
1 8 5 6 86 78
8 3 2 7 86 78
6 2 8 3 86 78
8 2 3 5 86 78
6 8 2 3 86 78
8 3 6 2 86 78
2 8 3 5 86 78
2 6 3 8 86 78
5 8 1 7 86 78
8 5 13 1 86 78
1 3 8 10 82 80
7 3 2 8 86 78
3 2 5 8 86 78
3 10 1 8 82 80
8 3 1 10 82 80
8 1 5 6 86 78
3 2 13 8 86 78
1 7 8 6 86 78
3 2 5 8 86 78
2 3 8 6 86 78
5 8 13 1 86 78
8 3 13 2 86 78
8 3 5 2 86 78
8 2 3 5 86 78
6 8 2 3 86 78

Fig. 24.1: Continued

4-51

feature number = {1,4,3,8,9,21» 22,30,35,36,81,198.457,459}
condition: if(((nn>=80)&(ww>=80)) \ ((nn>=86) & (ww>=78)))

table 3
feature nositions rieht detection

non-ok dcp-ok

1 8 5 4 86 78
7 1 8 14 86 78
7 1 8 5 86 78
4 2 8 3 86 78
3 2 8 5 86 78
8 1 4 7 86 78
3 4 2 8 86 78
8 2 3 7 86 78
5 8 13 1 86 78
1 4 13 8 86 78

feature number = {1,4,3,8,9,22,30,35,51, 111, 210,455,457,459}
condition: if(((nn>=80)&(ww>=80)) \ ((nn>=86) & (ww>=79)))

table 4
feature positions rieht detection

non-ok dcp-ok

7 5 10 6
6 4 7 10
7 4 10 5

80 80
80 80
80 80

Fig. 24.1: Continued

feature number = {1,3,4,8,9,22,30,37,81, 111, 452,450,459,460}
condition: if(((nn>=80) & (ww>=80)) \ ((nn>=86) & (ww>=79)))

feature positions right detection
non-ok dcp-ok

1 12 5 9 86 80
5 10 2 8 80 80
6 12 1 9 86 80
1 9 7 5 86 80

10 9 6 7 84 82
7 10 9 6 84 82
2 1 5 8 80 80
10 8
7 4
1 8
1 7
8 3
5 8
8 2
5 12

7
9
2
5

6
1
4
9

1 10
1 2

10
3

80
86
80
86
80
80
80
82

82
80
80
80
80
80
80
80

table 1
feature positions right detection

non-ok dcp-ok

5
5
6
6
9
9
12

8
8
1

10
1
1
5
3 10 8

1
2
2
2
7
8
9

2
1
8
8
14
2
8
1

80
80
80
80
86
80
80
80

80
80
80
80
80
80
80
80

8 12 1 3 80 80
1 4 8 2 80 80
1 12 13 9 86 80

10 8 2 9 80 80
7 9 6 1 86 80

9 5 7 10 84 82
2 1 4 8 80 80

^«' Fig. 24.11: Feature combinations by 'random search' - polydat_3, 'm=5

4-52

feature number = {1,4,8,9,22,30,32,37,67,81,452,450,459,457}
condition: if(((nn>=81) & (ww>=81)) | ((nn>=86) & (ww>=79)))

table 2
feature positions rieht detection

non-ok dcp-ok

1 6 4 10 86 80
6 4 1 10 86 80
1 12 3 10 86 80
1 12 13 14 86 80
3 6 1 10 86 80
6 10 5 1 86 80
4 6 10 1 86 80
10 3 1 6 86 80
3 12 10 1 86 80
1 12 10 5 86 80

10 12 1 14 86 80

Fig. 24.11: Continued

After running similar simulations for different m's with randomly chosen features from the

pool of the aforementioned five42 groups, I started a sequence of pseudo-exhaustive

searches with those features from which we received good results by random search.

For this sequence of simulations the parameter m was set equal to 5. We started with

four-tuple combinations out of a pool of 14 features (4/14). We then gradually increased

the number of the features - within the tuple and the pool - up to 8/22. To run the

simulation with this final setting, we needed a computation time of several weeks.

In the following figures, you see an example for one of the best 4-tuple results we

obtained for the polydat_3:

4-tuple combination: 81 & 111 &450&45243.

dimension: polygraph session.
correct detection rate: 84% for non-deceptive and 86% for deceptive files.

dimension: polygraph examination44 - containing 1 to 4 sessions.
correct detection rate: 89% for non-deceptive and 94% for deceptive files.

dimension: polygraph examinations with more than two sessions.
detection rate: 100%.

42See Fig. 8 for four of them and page 25 for the additional fifth one.
43For information about the exact meaning of these feature numbers, see Fig.41.
44See "Evaluation strategy" in chapter 3.1.3.4.

4-53

Uik defuzzification per
session test

0.2727
0.4680
0.4404

0
0
0

0.5774
0.3208
0.4075

1.0000
0
0

0.6157
0.5416

1.0000
1.0000

0.4095
0.4480
0.4862

0
0
0

0.4387
0.4459
0.4346

0.4005

0
0
0

0.4351
0.4251
0.3723

0
0
0

0.4505
0.4414
0.3218

0
0
0

misclustered

0.4722 0
0.4755 0
0.5046 1.0000

0.4428 0
0.4474 0
0.5997 1.0000

0.3764
0.3709
0.3383

0
0
0

0.4668
0.4843
0.4515

0
0
0

0.3964 0
0.5232 1.0000
0.4085 0

0.3915 0
0.4425 0
0.3860 0

0.4200 0
0.4443 0
0.4315 0

0.4974 0
0.3980 0
0.3964 0

0.5863 1.0000

0.3786 0
0.5783 1.0000
0.4377 0
0.3527 0

misclustered

non-deceptive files
polydat_3

m=5

Fig.25: Defuzzified results for
[81-111-450-452] feature combination

4-54

Uik defuzzification per
session test

0.6374 1.0000
0.5389 1.0000
0.5094 1.0000

0.5696 1.0000
0.4185 0
0.5057 1.0000

0.5508
0.5237

1.0000
1.0000

0.5533 1.0000
0.5878 1.0000
0.5941 1.0000

0.4533 0
0.5383 1.0000
0.5316 1.0000

0.5452 1.0000
0.5266 1.0000
0.3128 0

0.5068 1.0000
0.5735 1.0000
0.6276 1.0000

0.5504 1.0000
0.5706 1.0000
0.5542 1.0000

 1

0.5555 1.0000
0.5692 1.0000
0.5650 1.0000

0.4418 0
0.6468 1.0000
0.5009 1.0000

0.5593 1.0000
0.5596 1.0000
0.4109 0

0.6002 1.0000
0.5550 1.0000
0.5148 1.0000

0.5964 1.0000
0.6112 1.0000
0.6224 1.0000

0.7130 1.0000
0.5834 1.0000
0.5844 1.0000

0.5472 1.0000
0.5758 1.0000
0.5924 1.0000

0.5879 1.0000
0.6284 1.0000
0.6078 1.0000

0.3902
0.5399
0.4636

0
1.0000

0

Fig.25: Continued

misclustered
deceptive files

polydat_3
m=5

4-55

4.1.2.2. Results of the genetic method:

Simultaneously to the aforementioned sequence of searches, I started with a compromise
between the random and the pseudo-exhaustive search method; i.e. the genetic alternative.

I decided to use this method in two different ways:

1. In order to increase the number of potentially good features in the pool, I

initialized the genetic code with up to 50 features from which (in different

simulations) 4-, 6-, 8-tuple combinations were made.

2. In order to accelerate the search, but process the data more exhaustively,
I decided to use the genetic code only for the best features from random
and pseudo-exhaustive simulations and narrow the feature pool to these
30 selected features. In this simulation, 15-tuple combinations were made.

Recall that having 30 or 50 features in the pool makes a big computation difference. For
example, choosing exhaustively 8-tuples out of 50 or 30 features makes a difference of
following number of computations:

50"\ (10\ 50! 30! , ,.,

K*J K*J 8 !(50-8)! 8!(30-8)!
«5-108

In the first part of the genetic search - as expected - we had similar problems as scientists
have with the theory of evolution as the cause of our being45. The only way we could get
the following good results was the continuous manipulating of the evolution process - by
changing parameters (like mutation rate), features (=genes) and feature numbers
(population size and also number of genes in one chromosome), or by starting again if
the simulation began with a very low detection rate (=average fitness). In spite of these
manipulations the first version of the genetic search took a simulation time of over two
months of continuous computation. Without the constant controlling process over this
genetic system the evolution (by chance as it is its nature) could have hardly provided any

appropriate improvement46. As a result we obtained 12 (see Fig.26) 8-tuples combination

45Further discussion about "evolution vs. creation" would break up the limitations of this project; For
interested readers I recommend the following references: [Morrisl987] [Johnsonl991].
^For example, one of the uncontrolled simulation for polydat_l was stopped after 561 generations
providing no particular results.

4-56

with an average of 85% correct detection rate for polydatj similar to the results of the 4-
tuple combination mentioned in chapter 4.1.2.1. We also obtained 3 outstanding (86%
correct detection rate) individuals within three different generations (population size of

200 to 300, total number of generation 1000, polydat_3).

feature numbers of the best
8-tuple combinations

8,30,81,81,111,363,458,482

9,37,81,111,111,449,458,460

9,37,111,111,449,457,457,482

9,37,111,111,358,449,457,458

9 , 37 , 111, 111, 235 , 449 ,457 ,460

37 , 79 , 111, 111, 197 , 358 ,449 , 457

37 , 111, 111, 197 , 449 ,457 ,460 ,460

37,111,111,111,235,358,457,458

37 , 111, 111, 235 , 235 , 449 , 453 , 457

37,111,111,197,358,361,458,460

37,81,111,235,235,363,450,453

37 , 81, 111, 235 , 235 , 359 , 450 , 453

37,79, 111, 111, 197,235, 449 , 457

37,111,111,235,235,453,457,460

37 , 111, 111, 197 , 235 ,452 , 457 , 460

correct detection rate
ndcp dcp

84 86

84 86

84 86

84 86

84 86

84 86

84 86

84 86

84 86

84 86

86 84

86 84

86 86

86 86

86 86

ndcp: non-deceptive files
dcp: deceptive files

data: polydat_3

Fig.26: Results of the first version of the genetic search

Concerning the defuzzified results, all the combinations with 85% correct detection rate
show similar structure as depicted in Fig.25. The three best 8-tuple combinations (86%
correct detection rate) cluster the data exactly in the same groups as shown in the

following figure.

4-57

Uik defuzzification per
session test

0.4143
0.4780
0.4583

0
0
0

0.5269
0.4035
0.4035

1.0000
0
0

0.5601
0.5412

1.0000
1.0000

0.4391
0.4465
0.4833

0
0
0

0.4401
0.4392
0.4481

0
0
0

0.4114

0.4405
0.4212
0.4664

0
0
0

0.4523
0.4488
0.3645

0
0
0

1 misclustered

0.4669 0
0.4679 0
0.5058 1.0000

0.4565 0
0.4853 0
0.5849 1.0000

0

0.4441 0
0.4471 0
0.3506 0

0

0.4983
0.4872
0.4938

0
0
0

0.4008
0.4962
0.4058

0
0
0

0.4268
0.4740
0.4050

0
0
0

0.4475
0.4517
0.4440

0
0
0

0.5692
0.4432
0.4118

1.0000
0
0

0.4289

0.4271 0
0.5548 1.0000
0.4696 0
0.4135 0

• 0 compare to Fig. 25

non-deceptive files
polydat_3

m=5

Fig.27: Defuzzified results for
[37-111-111-197-235-452-457-460] feature combination

4-58

Uik defuzzification per
session test

0.5842 1.0000
0.5511 1.0000
0.5197 1.0000

0.5665 1.0000
0.5483 1.0000
0.6586 1.0000

0.5227
0.5169

1.0000
1.0000

0.5519 1.0000
0.5727 1.0000
0.5747 1.0000

0.5411 1.0000
0.5224 1.0000
0.6020 1.0000

0.4308
0.4916
0.4801

0
0
0

0.5044 1.0000
0.5686 1.0000
0.5830 1.0000

0.5488 1.0000
0.5460 1.0000
0.5413 1.0000

misclustered

0.5446 1.0000
0.5495 1.0000
0.5615 1.0000

0.5345 1.0000
0.5666 1.0000
0.5370 1.0000

0.5539 1.0000
0.5565 1.0000
0.4388 0

0.5817 1.0000
0.5042 1.0000
0.4946 0

0.5706 1.0000
0.5990 1.0000
0.6133 1.0000

0.6386 1.0000
0.5674 1.0000
0.5576 1.0000

0.5457 1.0000
0.5646 1.0000
0.5482 1.0000

0.5096 1.0000
0.5954 1.0000
0.6347 1.0000

0.4532 0
0.4323 0
0.5457 1.0000

1 compare to Fig. 25 \

deceptive files
polydat_3

m=5

Fig.27: Continued

4-59

The followings are the clustering results of the best 8-tuple combinations for polydat_3:

dimension: polygraph session47.
correct detection rate: 86% for both non-deceptive and deceptive files.

dimension: polygraph examination - containing 1 to 4 sessions.
mrrect detection rate: 94% for both non-deceptive and deceptive files.

dimension: polygraph examinations with more than two sessions

detection rate: 97%.

In the second part of the genetic search as we fed the evolution process with the best

features, we obtained after about 3 weeks of continuous simulation the following results:

twelve 15-tuple combinations: (the features in each tuple are ordered vertically)

37 11 8 8 37 30 11 30 11 11 11

111 11 11 37 81 32 30 32 30 30 30

111 36 37 50 81 32 32 39 32 32 32

197 36 111 79 81 32 39 81 39 39 39

358 37 111 111 81 36 81 81 81 79 81

358 37 197 111 197 37 81 81 81 81 81

361 67 235 235 235 39 81 111 81 81 81

361 81 358 235 358 50 111 197 111 81 111

449 197 359 358 359 67 197 235 197 111 197

457 235 359 452 450 79 235 235 235 197 235

458 457 363 453 450 359 235 358 235 235 235

458 458 363 478 453 449 358 358 358 235 358

478 482 452 478 458 449 359 450 358 358 359

478 482 478 478 478 478 450 478 450 359 450

482 482 482 482 478 478 482 482 482 450 478

correct detection rates (in %):
84 84 84 84 84 84 84 84 84 84 84 :non-deceptive files

 86 86 86 86 86 86 86 86 86 86 86 : deceptive files

polydatS, m=S

Fig.28: Results of the second version of the genetic search

47See "Evaluation strategy" in chapter 3.1.3.4.

4-60

81.5

81

78.5 "5b 10Ö T5Ü 200 250 300 350 400 450

generation

polydat_3, m=5.

15-tuple combinations out of a pool of30 features' 48

Fig.29: Average fitness of each generation
provided by the second version of the genetic search

As you see in this figure, the average fitness (from all the chromosomes within a

generation) increases over the period of time. It then approaches a local asymptote which

represents a local error minimum. By increasing the mutation rate after the 150th

generation, we could avoid being stuck in that local minimum for further development.

This higher mutation rate helped the evolution process getting a 1% better average fitness

per generation for the rest of the simulation.

Our hope for this simulation was to get outstanding chromosomes with a very high fitness

simultaneously to the increasing process of the average fitness per generation. However,

the outstanding chromosomes appeared unsystematically in different generations and not

at the end. In fact, most of them49 belong to the first part of this evolution.

48See the begining of this chapter for more details.
49See Fig.28 for the best feature combinations.

4-61

4.1.2.3. Final results ofFCM-A comparison between all three poly dat_Vs:

All the aforementioned results belong to the data set polydat_3, and all the three methods,
(1) previous researches using the fuzzy K-nearest neighbor (KNN) classifier, (2) the LMS
fuzzy adaptive filter and also (3) the fuzzy-c-means algorithm show that the data structure

within the polydat_3 is better to cluster or classify than the other two sets.

As it is the nature of a clustering versus a classifying method, I did not set the highest
priority on finding the same best features for all three polydat_i's, but for each of them
individually. After finding those best combinations, I then compared the results and tested

the consistency of the features (see Fig. 33, 34, 35).

Using either sessions or examinations50 as the counting dimension the best results for each

polydat_i individually are shown in the following figures.

data
polydat_l
polydat_2
polydat_3

average correct detection rate
81%
79%
86%

Fig.30: Clustering results using individual features
(using sessions as the counting dimension)

data
polydat_l
polydat_2
polydat_3

average correct detection rate
91%
82%
94%

Fig.31: Clustering results using individual features
(using examinations as the counting dimension)

50See "Evaluation strategy" in chapter 3.1.3.4.

4-62

data average correct detection rate

polydat_l 93%

polydat_2 87%

polydat_3 97%

Fig.32: Clustering results using individual features
(counting only those examinations with more than two sessions)

In the following figures, a comparison between the three polydatj's were made using the

best feature combination for one of the polydatj's at a time and testing it for the other

two ones. As you will see, the best result51 - while taking the same features for each

polydat_i - is 79.7% for the feature combination52 [9, 30, 81, 197, 478, 111], and in

average 79.3%.

feature tuple

37, 79, 111, 111,197, 235, 449,457

37, 111, 111, 197, 235, 452, 457, 460

37, 111, 111, 235, 235, 453, 457,460

30,81,81,111, 197,458

9,30,81,111,197,458

8, 37, 50, 79, 111, 111, 235, 235,...

358,452,453,478,478,478,482 85% 76% 76%

polydat_i

1=3 i=2 i=l

86% 77% 75%

86% 77% 75%

86% 77% 74%

85% 79% 73%

85% 79% 73%

Fig.33: Comparison #1 (dimension: sessions)

(taking some of the best pofydat_3 feature tuples and testing it for the others)

For the exact labels of this feature numbers see appendix, Fig.42.

51 With polygraph sessions as the counting dimension.
52See Fig.35, "Comparison #3".

4-63

polydat_i

feature tuple £1 i=2 i=3

9, 30, 30, 39, 235, 450 80% 75% 81%

30, 30, 39, 50, 235, 450 80% 75% 81%

30,30,39,81,235,450 80% 75% 81%

30, 30, 39, 197, 235,450 81% 74% 82%

30, 30, 39, 235, 363,450 81% 75% 81%

30, 30, 39, 235, 358, 450 ' 80% 76% 81%

30, 30, 39, 235, 450,458 80% 75% 81%

30, 30, 39, 235, 482, 450 80% 75% 81%

30,30,39,235,361,450 80% 75% 81%

30, 30, 39, 235, 359,450 80% 75% 81%

30, 30, 39, 235, 450,457 80% 75% 81%

30, 39, 235, 363,450, 482 80% 72% 83%

30, 39, 235, 363,450,478 80% 71% 83%

Fig.34: Comparison #2 (dimension: sessions)
(taking some of the best polydat_l feature tuples and testing it for the others)

4-64

feature tuple i=2

po!ydat_i
i=l i=3

9,30,81,197,478,111 79% 75% 85%

9,30,50,81,197,111 79% 74% 85%

9,30,81,358,197,111 79% 74% 85%

9,30,81,359,197,111 79% 74% 85%

9,30,81,197,457,111 79% 74% 85%

30,81,105,111,197,358 79% 74% 84%

30,81,105,111,197,359 79% 74% 84%

30,81,105,111,197,457 79% 74% 85%

30,81,105,111,197,459 79% 74% 84%

30,81,111,197,358,359 79% 74% 85%

30,81,111,197,358,456 79% 74% 85%

30,81,111,197,358,457 79% 74% 85%

30,81,111,197,358,459 79% 74% 85%

30,81,111,197,359,456 79% 74% 85%

30,81,111,197,359,457 79% 74% 85%

30,81,111,197,359,459 79% 74% 85%

30,81,111,197,456,457 79% 73% 85%

30,81,111,197,456,459 79% 74% 85%

30,81,111,197,457,459 79% 74% 85%

30,105,111,197,359,459 79% 74% 84%

30,105,111,197,456,459 79% 74% 84%

30,105, 111,197,457,459 79% 74% 85%

30,105,111,197,456,457 78% 74% 85%

30,111,197,358,359,459 78% 74% 85%

30,111,197,358,456,459 78% 74% 85%

30,111,197,358,457,459 78% 74% 85%

30,111,197,456,457,459 78% 74% 85%

Fig.35: Comparison #3 (dimension: sessions)
(taking some of the best polydat_2 feature tuples and testing it for the others)

4-65

4.2. LMS fiiEzy adaptive filter

The first test we did, was to find the performance of the filter before any training. That is,
we used the classifier as a conventional fuzzy logic system designed solely based on the
four linguistic rules mentioned above. The results are listed in the following table:

polydat_i

i=l
i=2
i=3

rnrrert detection rate in
average

71%
73%
79%

non-deceptive files

70%
70%
70%

deceptive files

72%
76%
88%

Fig.36: Results based solely on 4 aforementioned linguistic rules
without any training

Note that the percentage of correct recognition for non-deceptive subjects are the same
for polydatj, polydat_2, and polydatj, because they are all the same data53. Also note
that the results are best for polydatj, as it was for KNN and FCM. This may be partially
due to polydatj's good performance in general, independent of the classifying schemes.
We believe that it may also be a result of us setting up the linguistic rules by having

observed polydat_3.

However, the outcomes for polydatj and polydatj are good enough such that one can

be sure the linguistic rules are sufficiently general even for data that we did not examine.

As mentioned in chapter 3.2.3, we then tested the fuzzy LMS algorithm trained with
twenty training data (ten deceptive and ten non-deceptive) and again with seventy training
data (thirty-five deceptive and thirty-five non-deceptive) for the three sets of data, for a
total of six tests. Twenty trials were performed for each test, and the system was
initialized with the linguistic rules before each trial. The training data were randomly

chosen for each trial, and the rest of the available data in each set were for testing.

53See polygraph files on chapter 6.2.

4-66

We computed the percentage of correct recognition of testing data for each trial,
averaging the performance for deceptive and non-deceptive subjects. The recognition rate
of those twenty trials are averaged, rounded to two digits, and reported in the following

table. The sample standard deviations are also shown.

correct detection rate

polydat_i version #1 version #2

i=l 75% (6%) 73% (2%)

i=2 74% (7%) 73% (3%)

i=3 78% (6%) 79% (2%)

version HI: 70 training & 30 testing sessions
version #2: 20 training & 80 testing sessions

(standard deviation in parentheses)

Fig.37: Average percentage of correct detection rate
for twenty trials of each test

As may be expected, the recognition rate improves in general when training data is used,
as compared to the results of the untrained system. Also, the recognition rate is typically
higher when the system is trained with more data. The difference, however, is not
dramatic. The use of training data offers small incremental improvements. The one
exception would be for data set polydat_3. Here more training data seems to lower the
performance. The effect is probably due to the fact that the initialization of the reasoning
rules were based on our examination of polydat_3, which covered all 100 data. Yet the
training algorithm was to learn only a subset ofthat, so it was handicapped compared to

human reasoning.

Human reasoning may also be better in this case because the training algorithm only
attempts to optimize the system in the least mean square sense, slightly different than our
ultimate goal of maximizing recognition rate. At any rate, when the standard deviation is

taken into account, the difference in recognition rate becomes insignificant.

Another noticeable difference between the results using different amounts of training

samples is the value of the sample standard deviation. A large number of testing data leads

4-67

to a small standard deviation. Conversely, a small amount of testing data leads to a large
standard deviation. This confirms what we intuitively know; the average percentage of
correct recognition is more accurate when a large amount of testing data is available.

The above observations illustrate a practical issue in using many adaptive and learning

algorithms, that of partitioning a limited amount of data into training and testing sets. For
most algorithms, too much data in training and little in testing leaves little assurance about
the performance of the system. On the other hand, too much data in testing and little in

training assures mediocre performance from the system.

More data for both training and testing would help, but many times that may not be
available. Fuzzy logic systems mitigate this problem by exploiting linguistic information.
Unlike neural networks and many statistical techniques, which are completely dependent
on numerical data, this fuzzy LMS algorithm uses numerical data mainly to optimize a
good fuzzy system. The above results show that, given good initialization of the reasoning
rules, the system can perform well even with little or no training data. This robustness is

one of the many advantages of fuzzy logic.

4-68

4.3. Other observations:

During this project, aside from the results and conclusions we were looking for, we also
obtained several side results. In this passage, I will mention some of the interesting

observations we made.

1. As mentioned before, the fuzzy-c-means (FCM) algorithm is initialized by random
chosen membership values which will be modified and optimized during the iterative
process. Thus, FCM algorithm is almost independent of the initial membership values.
During our testing process, we noticed that the FCM algorithm is not absolutely

independent of the initial values. Thus, it is possible that

• the algorithm may run into different local minima or
• because of its unsupervised nature, the algorithm may switch the clusters,
i.e. if- depending on our interpretation - the first cluster represents the non-

deceptive and the second one the deceptive files, it might be the opposite

while using other initial random values.

To avoid any misinterpretations, I decided to create two sets of random membership
values (for c=2 and c=3) and save them as fixed initialization values for any further
simulations. In the following figure,'+' represents the non-deceptive, '*' the decptive files;

8
g
a.

E e>
E

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

02

0.1

0

 1—l 1 *t 1 rq- ■ ■+■ -*

.+. + * + ++ »1

" * * X + + ****. * *-^
-+* -+• + . *^ + -

" + + * * + ¥** + * +
_»«*** + + . * + ^ +"

J^KT SK + + -4- -+" =>** -t"

-4- * j. **&* -t-. ■*

«

3 20 ' 40 60 BO ' 1UU

sessions

Fig.38: Fixed initial random membership values for c=2

4-69

2. "Outlier effect":
In the real world of using an automated polygraph system as suggested in this project, we
have to keep in mind the existence of the outlier effect. This occurs, for instance, when a
non-deceptive person (= membership value between zero and 0.5) becomes misclustered
in a deceptive data space with a very high membership value close to one. In other words,

if a normal non-deceptive person gets labeled as very deceptive, or vice-versa.

We noticed this phenomenon in both clustering and classifying algorithms54. We also
noticed that by making the system "fuzzier" - e.g. higher m or/and c for FCM - as

expected, the outlier effect can be reduced, but not eliminated though.

3. "Performance limitations":
There seem to be a limit in recognition rate using the features available by both fuzzy
algorithms used in this project and also by fuzzy k-nearest neighbor algorithm used in
previous works [Layeghi 1993,1] [Dastmalchil993] for all the available polydat_i's. There
may also be psychophysiological limitation on the recognition rate. However, polydat_3
provided, independent of all the three algorithms, the best results compared to the other

two polydat_i's.

54Seealso "Epilogue".

4-70

4.3. A COMPARISON

BETWEEN THE THREE FUZZY ALGORTHMS USED IN THIS
AND THE PREVIOUS PROJECT

(FUZZY-C-MEANS, LMS FUZZY ADAPTIVE FILTER AND FUZZY K-NEAREST NEIGHBOR)

The fuzzy LMS system is unique in its application of linguistic knowledge. As mentioned
earlier, the use of linguistic knowledge ensures the robustness of the fuzzy system. The
use of linguistic information also ameliorates the problem of not having enough reliable

numerical data. Unlike classification schemes such as the K-Nearest Neighbor, the fuzzy

LMS algorithm is not entirely dependent on numerical data.

When applied to pattern recognition, fuzzy logic systems can be set up to perform like
KNN systems. In KNN systems, numerical data of known class patterns are set up to
estimate the probability density distribution of the classes. The probabilities of new data
points belonging to the different classes are then computed based on such distribution.
Data points around known class samples are then classified into the same class with a
higher probability. The fuzzy-KNN algorithm modifies the classical KNN algorithm by
taking into account the distance between the data point and the known class patterns when
estimating the probability. Conceptually this is similar to setting up clusters around all
known class samples and calculating the degree of belonging of new data points in the
different types of clusters. Other than the exact mathematical equations, that description
fits a fuzzy adaptive system where each rule corresponds to a known class pattern and the

size of the clusters is the same for all rules.

However, fuzzy adaptive systems give up some of the nice theoretical understandings of
the KNN systems but gain some practical advantages. The number of rules required are
usually much smaller than the number of known samples. Fuzzy logic can usually exploit

that to reduce system complexity.

Furthermore, the system complexity for a fuzzy adaptive system stays the same even as
new information are available. This is partly a result of the way this algorithm adapt

continuously; new information are learned as old ones are forgotten. The fuzzy LMS
learning technique is like backpropagation, a popular neural network training technique.
However, the fuzzy LMS learning algorithm requires few epochs for training. In all our

4-71

trials the maximum recognition rates for testing data peaked in less than thirty epochs.
About 95% of them peaked in less than twenty epochs55. This is a few orders of
magnitude less than most applications of backpropagation. In many cases the peaks

occurred before any training; that is, the system uses only linguistic rules. Here the use of

expert knowledge speeds up the training of the system.

The fuzzy-c-means algorithm, unlike fuzzy LMS, is an unsupervised clustering algorithm.

Given a set of data, FCM looks for a (usually) predetermined number of clusters within
the data points. It does not use any knowledge about the correct, or desired classification

of any of the elements. The algorithm only minimizes an objective function, which is the
sum of a function of the data points' membership values and the distances between the

data points and the clusters' centers.

FCM operates like a black box; given some data, the algorithm automatically computes
the results56. This presents the advantage that different sets of data using different features
can be tested in a routine manner. FCM also presents a way to normalize the different
dimensions of the data, just like the use of sigma in the fuzzy LMS algorithm. However,
unlike fuzzy LMS, FCM does not present a method to find the optimal way for such

normalization.

The fuzzy LMS algorithm, however, does pose some potential problems of its own. The
use of expert knowledge, while a benefit in some senses, may not be always
straightforward. For example, in our project we did not have any specific knowledge
about the polygraphy itself. Whatever we learned, we learned by looking at numerical
data. As we tried to find more complicated patterns, patterns involving three, four, or
more features, the analysis became more difficult. Naturally one wishes to automate this
process. If we do not rely on some learning procedures, however, rules cannot be
automatically found for the fuzzy system. Much research also needs to be done to

understand the fuzzy LMS algorithm's learning dynamics. While the same method,
gradient descent, is used on both backpropagation and the fuzzy LMS algorithm, the
general shapes of the error surface between the two are different. In backpropagation, all
the parameters have the same range and lie in an uniform neural network structure. In the
fuzzy LMS algorithm, the parameters can have different ranges and lie a fuzzy logic

"However, we ran every trial to forty epochs to ensure that there is no "false" peak.
560ur job is basically to adjust the parameters.

4-72

structure that is not completely uniform. The effects of such differences on the shape of

the error surface and the learning dynamic are unknown.

In the following, I will mention again some of the results we obtained by using different

fuzzy clustering or classifying algorithms. Recall that also the searching strategies to find

the best features -and feature combinations- were different for each of the aforementioned

algorithms57.

polydat_i

El !z2 i=3

füzzy-c-means58 91% 82% 94%

fuzzy-c-means59 93% 87% 97%

fuzzy K-nearest-neighbor 86% 80% 91%

LMS fuzzy adaptive filter 81% 83% 83%

fuzzy-c-means60 81% 79% 86%

The results are rounded.

Fig.39: Comparison between different fuzzy algorithms
used for polygraph classification in this and in the previous research

The results of our fuzzy LMS system, while impressive for such a simple set-up, are not

comparable to the results of the same project using other systems. We believe that the

recognition rate will increase for few percentage points by using the suggestions in chapter

5.1.

"See the following chapters 3.1.3.1, 3.1.3.2.1 - 4 for the searching strategies used for the FCM,
chapter 3.2.1 for the visual inspection used for the LMS system,
and chapter III.3.3. in [Layeghil993,l] for the methods used for the KNN.
58FCM using examinations as the counting dimension (see chapter 4.1.2.3. and Fig.31).
59The same as above but counting those examinations with more than 2 sessions (see Fig.32).
60Since we took 35 out of 50 available non-deceptive sessions for training the LMS filter, it would be
meaningless to evaluate this algorithm by examinations as the counting dimension. Yet, m order to make
it comparable to the other algorithms, the results of the FCM with sessions as the counting dimension are
also shown.

4-73

§5. FUTURE STEPS AND SUGGESTIONS

5.1. The algorithms:

As mentioned earlier in chapter 2.2.3. about the fuzzy-c-means algorithm, the performance
of this clustering model is influenced by the choice of various parameters. In this project, I
tried to find the optimum values of the majority of them. However, there are several other

points which should be studied more comprehensively: They are

• the initial cluster centers,
• the order in which the samples are taken as input,

• the choice of distance measure,
• the termination criteria and
• the geometrical properties of the data.

Most imprtantly, more information about the geometrical arrangement of the data points
and the appropriate choice of the norm could help us improve the clustering algorithm.
There are several suggestions in [Bezdekl981] [Bezdekl992] [IIScorpl993] for a better
understanding of the algorithm's dynamics and for making systematic decisions concerning

different types of distance norms and elliptical cluster shapes.

For future studies, I highly recommend a deeper investigation of our clustering algorithm

by setting c=3 and trying denazification thresholds other than 0.5.

In this project, we decided to systematically test the FCM algorithm with different values
of m to find its optimum. For additional (and more theoretical) investigations, I suggest
[Choel992] as an introductory step. It may be also helpful to use different values of m for
different sessions simultaneously, while looking for the most realistic clusters within the

entire session space.

An exciting additional investigation would be a new polydat made up of the best clustered

sessions of our three polydatj's as a reference for any further clustering process. By doing
this we could give the algorithm a better chance to cluster correctly even the critical

sessions.

4-74

Concerning the LMS adaptive algorithm, one may investigate the effect of changing the
learning factor; throughout our experiment it remained at 0.005. Upon observing the

quickness of learning in our testing, we believe the learning factor can be decreased in the

future.

We also believe that there should not be just one but at least three different learning
factors: one for the <fs, one for the 0% and one for the x/s; because these three types of

parameters lie in a very irregular parameter space, unlike that of backpropagation where

all parameters lie in a more or less uniform parameter space.

For illustration, the three types of parameters comapred to one another have very different
numerical ranges. Conceptually speaking, a parameter with a large range of movement
should generally have a larger learning factor than one with a smaller range of movement.
However, the gradient and the general shape of the error surface would also affect the
value of the learning factors. It is possible that with a constant learning factor, a factor that
is too large for one type of parameter - one that causes oscillation for that parameter - may
be too small for another type of parameter and effects little change. That is, some

parameters become more willing to adapt while others hesitate to change.

Setting up separate learning factors for the different types of parameters should eliminate
this problem. However, choosing a learning factor is still a complex trial-and-error task,
and having more learning factors to deal with requires more sophisticated understanding
of the learning dynamics we possess. Plots of the mean squared error of two sets of
randomly chosen training data suggest that there are noticeable points where the rate of

decrease dramatically changes (see the following figure).

4-75

Fig.40: The influence of the learning factor

More rules and features should be added to improve this LMS system. As the complexity
of the system grows, however, the design will depend more on the learning algorithm than

on heuristic knowledge. This requires much more understanding of the learning dynamics.
Preliminary testing with three features and eight rules shows little improvement in
recognition rate. Obviously many additional studies need to be done in this case.

As mentioned in chapter "Setting Linguistic Rules", for future investigations one may also
experiment with different decision thresholds for determining deception and nondeception.
However, the benefit, if any, of this is not clear. One may also experiment with mapping
the fuzzy output to a confidence value in addition to just a deception/nondeception

decision. This may be more helpful in practical situations. One should also test the

4-76

algorithm with random initializations; that is, without using any expert knowledge. It
would be interesting to compare the training time, performance, and robustness of that

system to the present one.

Fuzzy logic systems promote rapid development of robust, simple, and reliable systems.
Our project validated that point. Some of the main problems with designing traditional

fuzzy logic systems, however, are their dependence on heuristic information, their lack of
design automation and their unproven ability to reach an optimal solution by linguistic
rules alone. Our use of the LMS learning algorithm attempts to solve such problems. The
learning algorithm did offer small, incremental improvements, but we believe that the
learning algorithm has not yet been explored My. A better understanding of the learning

dynamics would offer more insight into improving the system.

In future works, one may also consider other strategies which use irrelevant questions,

(see Fig.7). These questions could be easily exploited for normalizing the data and making

it independent of individual charateristics of the tested subjects.

5.2. The polygraph examination:

As expected61, and eventually proven62, our clustering system can provide an up to 12%
more correct detection rate by using the dependency between the polygraph sessions.
Therefore, I recommend recording at least three - ideally five - test sessions with different

a order of questions per each examinations. Thus, in cases where some sessions within an
examination are clustered incorrectly, the algorithm can easily ignore the minority and find

the right cluster according to the correctly clustered majority.

One may also consider other time frames, and emphasize those features which enabled us
to cluster the data the best. It may also be helpful to mark the data of female and male
subjects, or to consider them differently, since the ranges of the biophysical reactions are

not in the same numerical spaces.

Ultimately, an automated polygraph system which uses the aforementioned strategies to
distinguish between truth and deception should have a built-in feature extraction tool

which can directly feed the needed data to the algorithm.

61See chapter 3.1.3.4.
62See chapter 4.1.2.3.

4-77

Feat-
ure

Chan-
nel

Extraction Method Combination
Method

1 GSR mean avefr) - ave(c)
2 GSR mean avefr) + ave(c)
3 GSR mean maxfr)-maxfc)
4 GSR mean minfr)-rmnfc)
5 GSR mean maxfr)-minfc)
« GSR mean minfr)-maxfc)
7 GSR curve length max(r)/max(c)
8 GSR curve length avefr) - avefc)
9 GSR curve length ave(r)+ave(c)
10 GSR curve length maxfr)-maxfc)
11 GSR curve length iniiifr)-minfc)
12 GSR curve length max(r)-min(c)
13 GSR curve length min(r)-max(c)
14 GSR area max(r)/max(c)
15 GSR area avefr) -ave(c)
16 GSR area avefr) + ave(c)
17 GSR area maxfr)-max(c)
18 GSR area minfr) - minfc)
19 GSR area maxfr) -minfc)
20 GSR area minfr)-maxfc)
21 GSR area maxfr)/maxfc)
22 GSR median of the derivative avefr) - avefc)
23 GSR median of the derivative avefr)+avefc)
24 GSR median of the derivative maxfr) - maxfc)
25 GSR median of the derivative minfr)-minfc)
26 GSR median of the derivative maxfr) -minfc)
27 GSR median of the derivative minfr)- maxfc)
28 GSR median of the derivative maxfr) /maxfc)
29 GSR min subtracted from the max avefr)-avefc)
30 GSR min subtracted from the max avefr)+avefc)
31 GSR min subtracted from the max maxfr)-maxfc)
32 GSR min subtracted from the max minfr)-minfc)
33 GSR min subtracted from the max maxfr)-minfc)
34 GSR min subtracted from the max minfr)-maxfc)
35 GSR min subtracted from the max maxfr)/maxfc)
36 GSR maximum of the signal avefr) - avefc)
37 GSR maximum of the signal avefr) + avefc)
38 GSR maximum of the signal maxfr) • maxfc)
39 GSR maximum of the signal minfr)-minfc)
40 GSR maximum of the signal maxfr) • minfc)
41 GSR maximum of the signal minfr)-maxfc)
42 GSR maximum of the signal maxfr) /maxfc)
43 GSR minimum of the signal avefr) - avefc)
44 GSR minimum of the signal avefr) + avefc)
45 GSR minimum of the signal maxfr) - maxfc)
46 GSR minimum of the signal minfr)-minfc)
47 GSR minimum of the signal maxfr)-minfc)
48 GSR minimum of the signal minfr)-maxfc)
49 GSR minimum of the signal maxfr)/maxfc)
50 GSR mean of derivative avefr) - avefc)
51 GSR mean of derivative avefr) + avefc)
52 GSR mean of derivative maxfr)-maxfc)
53 GSR mean of derivative minfr) - minfc)
54 GSR mean of derivative maxfr)-minfc)
55 GSR mean of derivative minfr) • maxfc)
56 GSR mean of derivative maxfr)/maxfc)
57 HFEC mean avefr) - avefc)
58 HFEC mean avefr) + avefc)
59 HFEC mean maxfr)-maxfc)
60 HFEC mean minfr) - minfc)
61 HFEC mean maxfr) - minfc)
62 HFEC mean minfr) - maxfc)
63 HFEC mean maxfr) / maxfc)
64 HFEC curve length avefr) - avefc)
65 HFEC curve length avefr) + avefc)
66 HFEC curve length maxfr) - maxfc)
67 HFEC curve length minfr) - minfc)
68 HFEC curve length maxfr) - minfc)
69 HFEC curve length minfr) - maxfc)
70 HFEC curve length maxfr) / maxfc)

71 HFEC area avefr) - avefc)
72 HFEC area avefr) + avefc)
73 HFEC area maxfr)-maxfc)
74 HFEC area minfr)- minfc)
75 HFEC area maxfr)-minfc)
76 HFEC area minfr)-maxfc)
77 HFEC area maxfr)/maxfc)
78 HFEC amplitude of the peaks avefr) - avefc)
79 HFEC amplitude of the peaks avefr) + avefc)
80 HFEC amplitude of the peaks maxfr) - maxfc)
81 HFEC amplitude of the peaks minfr) - minfc)
82 HFEC amplitude of the peaks maxfr) - minfc)
83 HFEC amplitude of the peaks minfr) - maxfc)
84 HFEC amplitude of the peaks maxfr)/maxfc)
85 HFEC dampcard avefr)-avefc)
86 HFEC dampcard avefr) + avefc)
87 HFEC dampcard maxfr)-maxfc)
88 HFEC dampcard minfr) - minfc)
89 HFEC dampcard maxfr)-minfc)
90 HFEC dampcard minfr)-maxfc)
91 HFEC dampcard maxfr)/maxfc)
92 HFEC number of peaks m cardio avefr)-avefc)
93 HFEC number of peaks in cardio avefr) + avefc)
94 HFEC number of peaks in cardio maxfr) - maxfc)
95 HFEC number of peaks in cardio minfr) - minfc)
96 HFEC number of peaks in cardio maxfr) - minfc)
97 HFEC number of peaks in cardio minfr) • maxfc)
98 HFEC number of peaks in cardio maxfr)/maxfc)
99 HFEC median of the derivative avefr) - avefc)
100 HFEC median of the derivative avefr) + avefc)
101 HFEC median of the derivative maxfr)-maxfc)
102 HFEC median of the derivative minfr)-minfc)
103 HFEC median of the derivative maxfr) - minfc)
104 HFEC median of the derivative minfr) - maxfc)
105 HFEC median of the derivative maxfr)/maxfc)
106 HFEC min subtracted from the max avefr) - avefc)
107 HFEC min subtracted from the max avefr) + avefc)
108 HFEC min subtracted from the max maxfr)-maxfc)
109 HFEC min subtracted from the max minfr)-minfc)
110 HFEC min subtracted from the max maxfr) - minfc)
111 HFEC min subtracted from the max minfr) - maxfc)
112 HFEC min subtracted from the max maxfr)/maxfc)
113 HFEC maximum avefr) - avefc)
114 HFEC maximum avefr) + avefc)
115 HFEC maximum maxfr)-maxfc)
116 HFEC maximum minfr) - minfc)
117 HFEC maximum maxfr)-minfc)
118 HFEC maximum minfr) - maxfc)
119 HFEC maximum maxfr) /maxfc)
120 HFEC minimum avefr) - avefc)
121 HFEC minimum avefr) + avefc)
122 HFEC minimum maxfr) - maxfc)
123 HFEC minimum minfr) - minfc)
124 HFEC minimum maxfr) - minfc)
125 HFEC minimum minfr) - maxfc)
126 HFEC minimum maxfr)/maxfc)
127 HFEC median of the derivative avefr) - avefc)
128 HFEC median of the derivative avefr) + avefc)
129 HFEC median of the derivative maxfr) - maxfc)
130 HFEC median of the derivative minfr) - minfc)
131 HFEC median of the derivative maxfr) - minfc)
132 HFEC median of the derivative minfr) - maxfc)
133 HFEC median of the derivative maxfr)/maxfc)
134 HFEC minampc avefr) - avefc)
135 HFEC minampc avefr) + avefc)
136 HFEC minampc maxfr) - maxfc)
137 HFEC minampc minfr) - minfc)
138 HFEC minampc maxfr) - minfc)
139 HFEC minampc minfr) - maxfc)
140 HFEC minampc maxfr) / maxfc)

Fig.41: List oflabels of all the features used in this project

4-78

141 LC mean •ve(r)-ave(c)
142 LC mean •ve(r) + «ve(c)
143 LC mean max(r)-max(c)
144 LC mean min(r)-min(c)
145 LC mean max(r)-min(c)
146 LC mean min(r)-max(c)
147 LC mean max(r)/max(c)
148 LC curve length •ve(r)-ave(c)
149 LC curve length tve(r) + ave(c)
150 LC cutve length max(r)-max(c)
151 LC curve length min(r)-min(c)
152 LC cuivelength max(r)-min(c)
153 LC cuive length nuri(r)-max(c)
154 LC curve length max(r)/max(c)
155 LC area ive(r)>tve(c)
156 LC area ave(r) + ave(c)
157 LC area max(r)-max(c)
158 LC area min(r)-min(c)
159 LC area max(r)-mrn(c)
160 LC area min(r)-max(c)
161 LC area max(r)/max(c)
162 LC median of the derivative «ve(r)-ave(c)
163 LC median of the derivative ave(r) + «ve(c)
164 LC median of the derivative max(r)-max(c)
165 LC median of the derivative min(r)-min(c)
166 LC median of the derivative max(r)-min(c)
167 LC median of the derivative min(r)-max(c)
168 LC median of the derivative max(r)/max(c)
169 LC min subtracted from the max •ve(r) - ave(c)
170 LC min subtracted from the max ave(r) + ave(c)
171 LC min subtracted from the max max(r) - max(c)
172 LC min subtracted from the max min(r) - min(c)
173 LC min subtracted from the max max(r)-min(c)
174 LC min subtracted from the max min(r)-max(c)
175 LC min subtracted from the max max(r)/max(c)
176 LC maximum ave{r)-ave(c)
177 LC maximum tve(r) + ave(c)
178 LC maximum max(r)-max(c)
179 LC maximum min(r)-min(c)
180 LC maximum max(r)-min(c)
181 LC maximum min(r)-max(c)
182 LC maximum max(r)/max(c)
183 LC minimum ave(r) - ave(c)
184 LC minimum ave(r) + ave(c)
185 LC minimum max(r) • max(c)
186 LC minimum min(r)-min(c)
187 LC minimum max(r)-min(c)
188 LC minimum min(r)-max(c)
189 LC nuhimum max(r)/max(c)
190 LC median of the derivative ave(r)-ave(c)
191 LC median of the derivative ave(r) + ave(c)
192 LC median of the derivative max(r)-max(c)
193 LC median of the derivative min(r) • min(c)
194 LC median of the derivative max(r) - min(c)
195 LC median of the derivative min(r) - max(c)
196 LC median of the derivative max(r)/max(c)
197 DLC mean ave<r) - ave(c)
198 DLC mean ave(r) + ave(c)
199 DLC mean max(r)-max(c)
200 DLC mean min(r)-min(c)
201 DLC mean max(r) - min(c)
202 DLC mean min(r)-max(c)
203 DLC mean max(r)/max(c)
204 DLC curve length ave(r) - ave(c)
205 DLC curve length ave(r) + ave(c)
206 DLC curve length max(r)-max(c)
207 DLC curve length min(r)-min(c)
208 DLC curve length max(r) - min(c)
209 DLC curve length min(r) - max(c)
210 DLC curve length max(r)/max(c)

211 DLC area ave(r) - ave(c)
212 DLC area ave(r) + ave(c)
213 DLC area max(r) - max(c)
214 DLC area min(r) • min(c)
215 DLC area max(r). min(c)
216 DLC area min(r) - max(c)
217 DLC area max(r)/max(c)
218 DLC median of the derivative ave(r) - ave(c)
219 DLC median of the derivative •ve(r) + ave(c)
220 DLC median of the derivative max(r)-max(c)
221 DLC median of the derivative mm(r)-rnrn(c)
222 DLC median of the derivative max(r) - min(c)
223 DLC median of the derivative min(r)-max(c)
224 DLC median of the derivative max(r)/max(c)
225 DLC min subtracted from the max ave(r) - ave(c)
226 DLC min subtracted from the max ave(r) + ave(c)
227 DLC min subtracted from the max max(r) • max(c)
228 DLC min subtracted from the max min(r)-min(c)
229 DLC min subtracted from the max max(r)-mrn(c)
230 DLC min subtracted from the max min(r) - max(c)
231 DLC min subtracted from the max max(r)/max(c)
232 DLC maximum ave(r) - ave(c)
233 DLC maximum ave(r) + ave(c)
234 DLC maximum max(r) - max(c)
235 DLC maximum min(r) - min(c)
236 DLC maximum max(r)-min(c)
237 DLC maximum min(r) - max(c)
238 DLC maximum max(r)/max(c)
239 DLC minimum ave(r) - ave(c)
240 DLC minimum •ve(r) + ave(c)
241 DLC minimum max(r)-max(c)
242 DLC irunimum min(r)-min(c)
243 DLC minimum maxCr)-min(c)
244 DLC minimum min(r) - max(c)
245 DLC minimum max(r)/max(c)
246 DLC mean of derivative ave(r) - ave(c)
247 DLC mean of derivative ave(r) + ave(c)
248 DLC mean of derivative max(r) - max(c)
249 DLC mean of derivative inin(r)-min(c)
250 DLC mean of derivative max(r)-mm(c)
251 DLC mean of derivative min(r)-max(c)
252 DLC -mean of derivative max(r)/max(c)
253 LR mean ave(r) - ave(c)
254 LR mean ave(r) + ave(c)
255 LR mean max(r)-max(c)
256 LR mean min(r) - min(c)
257 LR mean max(r) - min(c)
258 LR mean min(r) - max(c)
259 LR mean max(r)/max(c)
260 LR curve length ave(r) - ave(c)
261 LR curve length ave(r) + ave(c)
262 LR curve length max(r) - max(c)
263 LR curve length min(r) - min(c)
264 LR curve length maxCr) - min(c)
265 LR curve length min(r) • max(c)
266 LR curve length max(r)/max(c)
267 LR area ave(r) - ave(c)
268 LR area ave(r) + ave(c)
269 LR area max(r)-max(c)
270 LR area minCr) - min(c)
271 LR area max(r) - min(c)
272 LR area min(r) - max(c)
273 LR area max(r) / max(c)
274 LR amplitude of the peaks ave(r) - ave(c)
275 LR amplitude of the peaks ave(r) + ave(c)
276 LR amplitude of the peaks max(r) - max(c)
277 LR amplitude of the peaks min(r) - min(c)
278 LR amplitude of the peaks max(r) - min(c)
279 LR amplitude of the peaks min(r) - max(c)

1 280 LR amplitude of the peaks max(r)/max(c)

Fig.41: Continued

'4-79

281 LR number of the peaks avefr) - avefr)
282 LR number of the peaks avefr) + avefr)
283 LR number of the peaks maxfr)-maxfr)
284 LR number of the peaks tninfr)-minfr)
285 LR number of the peaks max(r)-min(c)
286 LR number of the peaks minfr)-maxfr)
287 LR number of the peaks maxfr)/maxfr)
288 LR inhal divided by exhal avefr) - ave(c)
289 LR inhal divided by exhal avefr) + avefr)
290 LR inhal divided by exhal maxfr)-maxfr)
291 LR inhal divided by exhal minfr)-minfr)
292 LR inhal divided by exhal maxfr) - minfr)
293 LR inhal divided by exhal min(r)-max(c)
294 LR inhal divided by exhal maxfr)/maxfr)
295 LR dampr ave(r)-«ve(c)
296 LR dampr avefr) + avefr)
297 LR dampr maxfr)-maxfr)
298 LR dampr niinfr)-minfr)
299 LR dampr maxfr)-minfr)
300 LR dampr min(r)-max(c)
301 LR dampr max(r)/max(c)
302 LR ieie •ve(r)-ave(c)
303 LR ieie ave(r) + ave(c)
304 LR ieie max(r) - maxfr)
305 LR ieie min(r) - min(c)
306 LR ieie maxfr)-minfr)
307 LR ieie minfr)-maxfr)
308 LR ieie max(r)/max(c)
309 LR median of the derivative ave(r)-ave(c)
310 LR median of the derivative ave(r)+ave(c)
311 LR median of the derivative max(r)-max(c)
312 LR median of the derivative min(r)-min(c)
313 LR median of the derivative max(r)-min(c)
314 LR median of the derivative minfr)-maxfr)
315 LR median of the derivative max(r)/max(c)
316 LR min subtracted from the max •ve(r) - ave(c)
317 LR min subtracted from the max ave(r) + »ve(c)
318 LR min subtracted from the max max(r) -max(c)
319 LR min subtracted from the max minfr)-minfr)
320 LR min subtracted from the max max(r) - min(c)
321 LR min subtracted from the max min(r) - max(c)
322 LR min subtracted from the max max(r)/max(c)
323 LR maximum ave(r) - ave(c)
324 LR maximum ave(r) + ave(c)
325 LR maximum max(r)-max(c)
326 LR maximum minfr)-minfr)
327 LR maximum max(r) -min(c)
328 LR maximum min(r) • max(c)
329 LR maximum max(r)/max(c)
330 LR minimum ave(r)-ave(c)
331 LR minimum ave(r)+ave(c)
332 LR minimum maxfr)-maxfr)
333 LR minimum minOr) - min(c)
334 LR minimum max(r) - min(c)
335 LR minimum min(r) - max(c)
336 LR minimum max(r)/max(c)
337 LR mean of derivative ave(r) * ave(c)
338 LR mean of derivative ave(r) + ave(c)
339 LR mean of derivative max(r)-max(c)
340 LR mean of derivative min(r) - min(c)
341 LR mean of derivative max(r) - min(c)
342 LR mean of derivative minfr) - max(c)
343 LR mean of derivative max(r) / max(c)
344 LR minampr ave(r) - ave(c)
345 LR minampr ave(r) + ave(c)
346 LR minampr max(r) - max(c)
347 LR minampr min(r) - min(c)
348 LR minampr maxfr)-minfr)
349 LR minampr min(r) - max(c)
350 LR minampr max(r)/max(c)

351 UR mean ave<r) - ave(c)
352 UR mean ave(r) + ave(c)
353 UR mean max(r) - max(c)
354 UR mean min(r) - min(c)
355 UR mean maxfr)-minfr)
356 UR mean min(r) - max(c)
357 UR mean max(r)/max(c)
358 UR curve length avefr) - ave(c)
359 UR curve length ave(r) + ave(c)
360 UR curve length maxfr) - max(c)
361 UR curve length min(r) - min(c)
362 UR curve length max(r) - min(c)
363 UR curve length minfr) - max(c)
364 UR curve length max(r)/max(c)
365 UR area ave(r) - ave(c)
366 UR area ave(r) + ave(c)
367 UR area max(r). max(c)
368 UR area min(r) - min(c)
369 UR area max(r)-min(c)
370 UR area min(r) - max(c)
371 UR area maxfr)/maxfr)
372 UR amplitude of the peaks ave(r) - avefr)
373 UR amplitude of the peaks avefr) + avefr)
374 UR amplitude of the peaks max(r) - maxfr)
375 UR amplitude of the peaks min(r) - min(c)
376 UR amplitude of the peaks max(r) - min(c)
377 UR amplitude of the peaks min(r)-max(c)
378 UR amplitude of the peaks max(r)/max(c)
379 UR dampr ave(r) - ave(c)
380 UR dampr avefr) + avefr)
381 UR dampr max(r) • max(c)
382 UR dampr min(r) - min(c)
383 UR dampr maxfr)-min(c)
384 UR dampr minfr)-maxfr)
385 UR dampr max(r)/max(c)
386 UR number of the peaks ave(r) - ave(c)
387 UR number of the peaks ave(r) + ave(c)
388 UR number of the peaks maxfr) - max(c)
389 UR number of the peaks min(r)-min(c)
390 UR number of the peaks max(r)-min(c)
391 UR number of the peaks min(r) - max(c)
392 UR number of the peaks maxfr)/maxfr)
393 UR inhal divided by exhal ave(r) - ave(c)
394 UR inhal divided by exhal ave(r) + ave(c)
395 UR inhal divided by exhal max(r) - max(c)
396 UR inhal divided by exhal min(r) - min(c)
397 UR inhal divided by exhal maxfr) - min(c)
398 UR inhal divided by exhal minfr) - maxfr)
399 UR inhal divided by exhal maxfr)/maxfr)
400 UR ieie ' avefr) - ave(c)
401 UR ieie ave(r) + avefr)
402 UR ieie maxfr) - maxfr)
403 UR ieie minfr) - minfr)
404 UR ieie maxfr) - minfr)
405 UR ieie minfr) - maxfr)
406 UR ieie maxfr) / maxfr)
407 UR median of the derivative avefr) - avefr)
408 UR median of the derivative avefr) + avefr)
409 UR median of the derivative maxfr) - maxfr)
410 UR median of the derivative minfr) - minfr)
411 UR median of the derivative maxfr) • minfr)
412 UR median of the derivative minfr) - maxfr)
413 UR median of the derivative maxfr)/maxfr)
414 UR min subtracted from the max avefr) - avefr)
415 UR min subtracted from the max avefr) + avefr)
416 UR min subtracted from the max maxfr) - maxfr)
417 UR min subtracted from the max minfr) - minfr)
418 UR min subtracted from the max maxfr) - minfr)
419 UR min subtracted from the max minfr) - maxfr)
420 UR min subtracted from the max maxfr) / maxfr)

Fig.41: Continued

4-80

421 UR maximum ive(r) - avefc)
422 UR maximum ive(r)+»ve(c)
423 UR maximum max(r)-max(c)
424 UR maximum min(r)-min(c)
425 UR maximum max(r)-inin(c)
426 UR maximum mm(r)-max(c)
427 UR maximum max(r)/max(c)
428 UR minimum •ve(r)-avefc)
429 UR minimum »ve(r) + ave(c)
430 UR minimum max(r)-max(e)
431 UR minimum min(r)-min(c)

432 UR minimum max(r)-min(c)
433 UR minimum min(r)»max(c)
434 UR minimum max(r)/max(c)
435 UR mean of derivative ave(r)-ave(c)
436 UR mean of derivative tve(r) + ave(c)
437 UR mean of derivative max(r)-max(c)
43S UR mean of derivative min(r)-min(c)
439 UR mean of derivative max(r)-min(c)
440 UR mean of derivative min(r)-max(c)
441 UR mean of derivative max(r)/max(c)
442 UR minampr tve(r) - ave(c)
443 UR minampr •ve(r) + avefc)
444 UR minampr max(r)-max(c)
445 UR minampr min(r)-min(c)
446 UR minampr max(r)-min(c)
447 UR minampr min(r)-max(c)
448 UR minampr max(r)/max(c)
449 GSR standard deviation ave(r)-avefc)
450 GSR standard deviation ave(r) + ave(c)
451 GSR standard deviation max(r)-max(c)
452 GSR standard deviation min(r)-min(c)
453 GSR standard deviation max(r)-min(c)
454 GSR standard deviation min(r)-max(c)
455 GSR standard deviation max(r)/max(c)
456 HFEC standard deviation •ve(r)-ave(c)
457 HFEC standard deviation ave(r) + ave(c)
458 HFEC standard deviation max(r) - max(c)
459 HFEC standard deviation min(r) - min(c)
460 HFEC standard deviation max(r)-min(c)
461 HFEC standard deviation min(r)-max(c)
462 HFEC standard deviation max(r)/max(c)
463 LC standard deviation tve(r)-ave(c)
464 LC standard deviation •ve(r) + ave(c)
465 LC standard deviation max(r) - max(c)
466 LC standard deviation min(r) - min(c)
467 LC standard deviation max(r)-min(c>
468 LC standard deviation min(r)-max(c)
469 LC standard deviation max(r)/max(c)
470 DLC standard deviation ave(r) - ave(c)
471 DLC standard deviation ave(r) + ave(c)
472 DLC standard deviation max(r) - max(c)
473 DLC standard deviation min(r) - min(c)
474 DLC standard deviation max(r)-min(c)
475 DLC standard deviation min(r) - max(c)
476 DLC standard deviation max(r)/max(c)
477 LR standard deviation ave(r) - avefc)
478 LR standard deviation ave(r) + ave(c)
479 LR standard deviation max(r)-max(c)
480 LR standard deviation min(r) • min(c)
481 LR standard deviation max(r)-min(c)
482 LR standard deviation min(r) - max(c)
483 LR standard deviation max(r)/max(c)
484 UR standard deviation ave(r)-ave(c)
485 UR standard deviation ave(r) + ave(c)
486 UR standard deviation max(r) • max(c)
487 UR standard deviation min(r) - min(c)
488 UR standard deviation max(r)-min(c)
489 UR standard deviation min(r) - max(c)
490 UR standard deviation maxfr)/maxfc)

491 HFEC coeff of ARmod ave(r) - avefc)
492 HFEC coeff of ARmod ■ve(r) + tve(c)
493 HFEC coeff of ARmod max(r) - max(c)
494 HFEC coeff of ARmod min(r) - min(c)
495 HFEC coeff of ARmod max(r) - min(c)
496 HFEC coeff of ARmod min(r)-max(c)
497 HFEC coeff of ARmod maxfr)/maxfc)
498 HFEC coeff of ARmod •ve(r) - ave(c)
499 HFEC coeff of ARmod ave(r) + tve(c)
500 HFEC coeff of ARmod max(r) • nuxfc)

501 HFEC coeff of ARmod min(r) • min(c)

502 HFEC coeff of ARmod max(r) - min(c)
503 HFEC coeff of ARmod min(r) - maxfc)
504 HFEC coeff of ARmod maxfr)/maxfc)
505 HFEC coeff of ARmod ave(r) - ave(c)
506 HFEC coeff of ARmod ave(r) + ave(c)
507 HFEC coeff of ARmod max(r) - max(c)
508 HFEC coeff of ARmod min(r) - min(c)
509 HFEC coeff of ARmod max(r) - min(c)
510 HFEC coeff of ARmod minfr)-maxfc)

511 HFEC coeff of ARmod max(r) / max(c)
512 HFEC coeff of ARmod avefr) - ave(c)
513 HFEC coeff of ARmod ave(r) + ave(c)
514 HFEC coeff of ARmod max(r) • max(c)
515 HFEC coeff of ARmod min(r)-min(c)
516 HFEC coeff of ARmod max(r) - min(c)
517 HFEC coeff of ARmod min(r) - max(c)
518 HFEC coeff of ARmod max(r)/max(c)
519 HFEC coeff of ARmod ave(r) - ave(c)
520 HFEC coeff of ARmod ave(r) + ave(c)
521 HFEC coeff of ARmod max(r) - max(c)
522 HFEC coeff of ARmod min(r) - min(c)
523 HFEC coeff of ARmod max(r) - minfc)
524 HFEC coeff of ARmod min(r) - max(c)
525 HFEC coeff of ARmod max(r)/max(c)
526 HFEC coeff of ARmod ave(r) - ave(c)
527 HFEC coeff of ARmod ave(r) + ave(c)
528 HFEC coeff of ARmod max(r) - max(c)
529 HFEC coeff of ARmod min(r) - min(c)
530 HFEC coeff of ARmod max(r)-min(c)
531 HFEC coeff of ARmod min(r) - max(c)
532 HFEC coeff of ARmod max(r) / max(c)
533 HFEC coeff of ARmod ave(r) • ave(c)
534 HFEC coeff of ARmod ave(r) + ave(c)
535 HFEC coeff of ARmod max(r) - max(c)
536 HFEC coeff of ARmod min(r) - min(c)
537 HFEC coeff of ARmod max(r) - min(c)
538 HFEC coeff of ARmod min(r) - max(c)
539 HFEC coeff of ARmod max(r) / maxfc)
540 HFEC coeff of ARmod ave(r) - ave(c)
541 HFEC coeff of ARmod ave(r) + ave(c)
542 HFEC coeff of ARmod max(r) - max(c)
543 HFEC coeff of ARmod min(r) - minfc)
544 HFEC coeff of ARmod max(r) - min(c)
545 HFEC coeff of ARmod min(r) - max(c)
546 HFEC coeff of ARmod max(r) / max(c)
547 HFEC coeff of ARmod avefr) - ave(c)
548 HFEC coeff of ARmod ave(r) + ave(c)
549 HFEC coeff of ARmod max(r) - max(c)
550 HFEC coeff of ARmod min(r) - min(c)
551 HFEC coeff of ARmod maxCr) - min(c)
552 HFEC coeff of ARmod min(r) - max(c)
553 HFEC coeff of ARmod max(r) / max(c)
554 HFEC coeff of ARmod ave(r) - ave(c)
555 HFEC coeff of ARmod ave(r) + ave(c)
556 HFEC coeff of ARmod max(r) - max(c)
557 HFEC coeff of ARmod min(r) - min(c)
558 HFEC coeff of ARmod max(r) - min(c)
559 HFEC coeff of ARmod min(r) - max(c)
560 HFEC coeff of ARmod max(r) / max(c)

Fig.41: Continued

4-81

561 HFEC fund finax cross corr ave(r) • avefc)
562 HFEC fund fmax cross con- ave(r) + >ve(c)
563 HFEC fund fmax cross corr max(f)-max(c)

564 HFEC fund fmax cross corr min(r) - min(c)
565 HFEC fund fmax cross corr max(r)-min(c)
567 HFEC fund finax cross corr miner)-maxfc)

568 LR fund fmax cross corr maxfr)/max(c)
569 LR fund finax cross corr ave(r) • ave(c)
570 LR fund fmax cross corr ave(r) + ftve(c)
571 LR fund finax cross corr max(r)-max(c)

572 LR fund finax cross corr min(r)-min(c)

573 LR fund finax cross corr max(r) - min(c)
574 LR fund finax cross corr min(r)-max(c)

575 HFUR max cross correlation max(r)/max(c)

576 HFUR max cross correlation ave(r)-ave(c)
577 HFUR max cross correlation ave(r) + avefc)
578 HFUR max cross correlation max(r)-max(c)

579 HFUR max cross correlation min(r)-min(c)

580 HFUR max cross correlation max(r) • min(c)
581 HFUR max cross correlation min(r)-max(c)

582 HFUR lag max cross correlation max(r)/max(c)

583 HFUR lag max cross correlation ave(r) • ave(c)

584 HFUR lag max cross correlation ave(r) + ave(c)

585 HFUR lag max cross correlation max(r) - max(c)

586 HFUR lag max cross correlation min(r)-min(c)
587 HFUR lag max cross correlation max(r) • min(c)
588 HFUR lag max cross correlation min(r) - max(c)

589 HFUR min cross correlation ■ max(r)/max(c)

590 HFUR min cross correlation ave(f) - ave(c)

591 HFUR min cross correlation ave(r) + ave(c)

592 HFUR min cross correlation max(r)-max(c)

593 HFUR min cross correlation min(r) - min(c)
594 HFUR min cross correlation max(f)-minCc)

595 HFUR min cross correlation min(r) - max(c)
596 HFUR lag min cross correlation max(r)/max(c)
597 HFUR lag min cross correlation »vetr) - ave(c)

598 HFUR lag min cross correlation ave(r) + ave(c)

599 HFUR lag min cross correlation max(r) - max(c)
600 HFUR lag min cross correlation min(r)-min(c)

601 HFUR lag min cross correlation max(r)-min(c)

602 HFUR lag min cross correlation min(r)-max(c)

603 HFEC spec HFEC fund freq max(r)/max(c)
604 HFEC spec HFEC fund freq »ve(r) - ave(c)
605 HFEC spec HFEC fund freq ave(r) + ave(c)
606 HFEC spec HFEC fund freq max(r) - max(c)
607 HFEC spec HFEC fund freq min(r)-min(c)

608 HFEC spec HFEC fund freq max(r)-min(c)
609 HFEC spec HFEC fund freq min(r)-max(c)

610 HFEC spec HFEC 2nd harmonic max(r)/max(c)

611 HFEC spec HFEC 2nd harmonic ave(r) - ave(c)
612 HFEC spec HFEC 2nd harmonic ave(r) + aveic)
613 HFEC spec HFEC 2nd harmonic max(r) - max(c)
614 HFEC spec HFEC 2nd harmonic min(r) - min(c)
615 HFEC spec HFEC 2nd harmonic max(r)-min(c)
616 HFEC spec HFEC 2nd harmonic min(r) - max(c)
617 UR spec UR fund frequency max(r)/max(c)

618 UR spec UR fund frequency ave(r) - ave(c)
619 UR spec UR fund frequency ave(r) + ave(c)
620 UR spec UR fund frequency max(r)-max(c)

621 UR spec UR fund frequency min(r) - min(c)
622 UR spec UR fund frequency max(r) • min(c)
623 UR spec UR fund frequency min(r) - max(c)
624 UR spec UR 2nd harmonic maxfr)/max(c)
625 UR spec UR 2nd harmonic avefr) - aveCc)
626 UR spec UR 2nd harmonic avefr) + ave(c)
627 UR spec UR 2nd harmonic maxfr) - max(c)
628 UR spec UR 2nd harmonic6 min(r) - min(c)
629 UR spec UR 2nd harmonic maxfr) - min(c)
630 UR t spec UR 2nd harmonic minCr) - max(c) |

4-82

631 HFUR max cross spec density maxfr) / max(c)
632 HFUR max cross spec density ave(r) - ave(c)
633 HFUR max cross spec density ave(r) + ave(c)
634 HFUR max cross spec density max(r) - max(c)
635 HFUR max cross spec density min(r) - min(c)
636 HFUR max cross spec density max(r) - min(c)
637 HFUR max cross spec density min(r) - max(c)
638 HFEC coherency HFEC&URff maxfr) / maxfc)
639 HFEC coherency HFEC&URff ave(r) - ave(c)
640 HFEC coherency HFEC&URff ave(r) + ave(c)
641 HFEC coherency HFEC&URff max(r) - max(c)
642 HFEC coherency HFEC&URff min(r) - minfc)
643 HFEC coherency HFEC&URff max(r) - min(c)
644 HFEC coherency HFEC&URff min(r) - max(c)
645 HFEC coherency HFEC&URsh max(r) / max(c)
646 HFEC coherency HFEC&URsh ave(r) - ave(c)
647 HFEC coherency HFEC&URsh ave(r) + ave(c)
648 HFEC coherency HFEC&URsh maxfr) - max(c)
649 HFEC coherency HFEC&URsh minfr) - min(c)
650 HFEC coherency HFEC&URsh maxfr) - minfc)
651 HFEC coherency HFEC&URsh minfr) - maxfc)
652 GSR max min ISD cont&relv meanfr & c)
653 GSR max min ISD cont&relv maxfr & c)
654 GSR max min ISD cont&relv minfr & c)
655 GSR freq max ISD meanfr & c)
656 GSR freq max ISD maxfr & c)
657 GSR freq max ISD minfr & c)
658 GSR area under ISD meanfr & c)
659 GSR area under ISD maxfr & c)
660 GSR area under ISD minfr & c)
661 HFEC max min ISD meanfr & c)
662 HFEC max min ISD maxfr & c)
663 HFEC max min ISD minfr & c)
664 HFEC freq max ISD meanfr & c)
665 HFEC freq max ISD maxfr & c)
666 HFEC freq max ISD minfr & c)
667 HFEC area under ISD meanfr & c)
668 HFEC area under ISD maxfr & c)
669 HFEC area under ISD minfr & c)

4-83

Non-deceptive
QQ8R9OIO.011
QQ8R9OIO.021
QQ8R9OIO.031
QQ95LU1T.011
QQ95LU1T.021
QQ95LU1T.031
QQAURNUS.021
QQAURNUS.031
QQAV53P6.011
QQAV53P6.021
QQAV53P6.031
QQBQ4SHI.011
QQBQ4SHI.021
QQBQ4SHI.031
QQBSS7WT.011
QQBSS7WT.021
QQBSS7WT.031
QQ7OXM60.021
QQ7RH0RO.011
QQ7RH0RO.021
QQ7RH0RO.031
QQ7R51P9.011
QQ7R51P9.021
QQ7R51P9.031
QQ9TDSP3.011
QQ9TDSP3.021
QQ9TDSP3.031
QQA8OWOI.011
QQA8OWOI.021
QQA8OWOI.031
QQBT22O6.011
QQBT22O6.021
QQBT22O6.031
QQBO9O_9.011
QQBO9O_9.021
QQBO9O_9.031
QQBC7PP6.011
QQBC7PP6.021
QQBC7PP6.031
QQCHCK_O.011
QQCHCK_O.021
QQCHCK_O.031
QQCDTKPO.011
QQCDTKP0.031
QQCDTKP0.041
QQCM5Y56.011
QQCQQT8Y.011
QQCQQT8Y.021
QQCQQT8Y.031
QQCQQT8Y.041

Deceptive 1
QQ4Q1O83.011
QQ4Q1O83.021
QQ4Q1O83.031
QQ4Q3MDC.011
QQ4Q3MDC.021
QQ4Q3MDC.031
QQ51DE36.011
QQ51DE36.021
QQ51DE36.041
QQ6RQGH6.011
QQ6RQGH6.021
QQ6RQGH6.031
QQ6RQGH6.041
QQ6T711O.011
QQ6T7110.021
QQ6T7110.031
QQ6Z59IG.011
QQ6Z59IG.021
QQ6Z59IG.031
QQ7PP9B9.011
QQ7PP9B9.021
QQ7PP9B9.031
QQ7PDU1X.011
QQ7PDU1X.021
QQ7PDU1X.031
QQ7_PIPF.011
QQ7_PIPF.021
QQ7_PIPF.031
QQ7_JT70.011
QQ7_JT70.021
QQ7_JT70.031
QQ738DYX.011
QQ738DYX.021
QQ738DYX.031
QQ75ULP9.011
QQ75ULP9.021
QQ75ULP9.031
QQ79_EYF.011
QQ79_EYF.021
QQ79_EYF.031
QQ7BGDML.011
QQ7BGDML.021
QQ7BGDML.031
QQ7ETC8I.011
QQ7ETC8I.021
QQ7ETC8I.031
QQ7JAQCS.011
QQ7JAQCS.021
QQ7JAQCS.031
QQ7LX5Q0.011

Deceptive 2
QQ7LX5Q0.021
QQ7LX5Q0.031
QQ7MN2Y0.011
QQ7MN2Y0.021
QQ7MN2Y0.031
QQ7TC5UF.011
QQ7TC5UF.021
QQ7TC5UF.031
QQ7TQVER011
QQ7TQYER021
QQ7TQVER.031
QQ7TVADC.011
QQ7TVADC.021
QQ7TVADC.031
QQ7U2T4R011
QQ7U2T4R.021
QQ7U2T4R031
QQ7YP7QU.011
QQ7YP7QU.021
QQ7YP7QU.031
QQ7YZOJ3.011
QQ7YZOJ3.021
QQ7YZOJ3.031
QQ8_0DPT.011
QQ8_0DPT.021
QQ8_0DPT.031
QQ8_0DPT.041
QQ8_2UQ9.011
QQ8_2UQ9.021
QQ8_2UQ9.031
QQ800IG6.011
QQ800IG6.021
QQ800IG6.031
QQ82OIU9.011
QQ82OIU9.021
QQ82ORJ9.031
QQ82SUTX.011
QQ82SUTX.021
QQ82SUTX.031
QQ860ZNU.011
QQ860ZNU.021
QQ860ZNU.031
QQ89U_ZR011
QQ89U_ZR.021
QQ89U_ZR031
QQ8ATU26.011
QQ8ATU26.021
QQ8ATU26.031
QQ8FGMVI.011
QQ8FGMV1.021

Deceptive 3
QQ8RAJ0C.011
QQ8RAJ0C.021
QQ8RAJ0C.031
QQ9EUKVT.011
QQ9EUKVT.021
QQ9EUKVT.031
QQ9IOOXO.021
QQ9IOOXO.041
QQ9SOW8L.011
QQ9SOW8L.021
QQ9SOW8L.031
QQ9SQDC9.011
QQ9SQIK9.021
QQ9SQDC9.031
QQ9W0B9F.011
QQ9W0B9F.031
QQ9W0B9F.041
QQ9U4FMU.011
QQ9U4FMU.021
QQ9U4FMU.031
QQ9Y_SVF.011
QQ9Y_SVF.021
QQ9Y_SVF.031
QQ9YH3QF.011
QQ9YH3QF.021
QQ9YH3QF.031
QQA2TT4C.011
QQA2TT4C.021
QQA2TT4C.031
QQA3HIRX.011
QQA3HIRX.021
QQA3HIRX.031
QQA32UTF.011
QQA32UTF.021
QQA32UTF.031
QQA6U_IF.011
QQA6U_IF.031
QQA6U_IF.041
QQAM4E3L.011
QQAM4E3L.021
QQAM4E3L.031
QQARF2_X,011
QQARF2_X.021
QQARF2_X.031
QQAWA38X.011
QQAWA38X.021
QQAWA38X.031
QQAYXZGU.011
QQAYXZGU.021
QQAYXZGU.031

Fig.42: List of polygraph files used in this experiment

4-84

6.3. USER INTERFACE

For an automated polygraph system as a real product, the existence of an user-friendly
interface is unavoidable. MATLAB software environment provide an easy-to-use toolbox
for creating various kinds of interactive interface classes. The following figure shows an
interface used in one of my representations. This was made for a technically oriented user
who is familiar with the algorithm. A simpler black-box version of a polygraph system,

appropriate to the user's requests, can likewise be programmed.

Fig.43: An example for a technical user interface

4-85

6.4. PROGRAM LISTINGS
(Implementation in MATLAB)

4-86

V. THIS PROGRAM CALCULATESTHE CLUSTER CENTERS FOR
•/. A MULTIDIMENSIONAL FCM • C=2, CONST.

function V - c_center(X, U, m)

(colE,rowE]-size(X);
k=l:rowE;

Sforthe 1th class:

Vl_numerator-U(l,k)."m • XtJc)1',
•/, (.«^=>("): because the "numerator sum" is automatically
% included within the matrix multiplication.

V(l,:) - Vl_numerator / tum(LKW.Tn);
% V(l,:) [and Vljiumerator] is a n-dimensional row-vector,
% n represents the number of the clustering features(n=30).

%for the 2nd class:

V2_numerator«U(2,k).''m • X(:W;
•/• (.*>=>(•): ...see above.

V(2,:) - V2_numerator / sum(U(2,k)An);
% This is a n-dimensional row-vector and the duster-center
Vt of the 2nd class.

V=V; % [nxc] matrix
return;

V. FUZZY C-MEANS ALGORITHM FOR MULTI-DIMENSIONAL FCM.

•/.function bestUik - fc_means<m, epsilon,X)
function [best_Uik, z] - fc_means(m, epsilorOQ
•/.function bestJJik - fc_means(m, epsilon)
•/.function [bestJJik, V, X) = fc_means(m, epsilon)
•/. think about the X

load init_u; •/• start with the initialization of the memb_fct
% (Uik => Vi)

•/• load init_v, •/• or with the duster centers
V. (Vi => Uik)

•/.lead seOl; % including the data X respect XI, X2,...
•/.X=featmat;
•/.load set3mc;X=Xselect;

'/.format long; V. avoid errors by visual comparing the numbers
J_m = 100000000, % to make sure the start is oJc.
z=0,
while J_m > epsilon

V = c_centerCX, U, m);

U»memb_fct(X,V, m);

Jtemp = J_m;
J_m=j_mdim(X,V,U,m);

if epsilon <= 0.000005
if (abs(J_m - Jtemp) <- .00000000001),
%ifJ_m—= Jtemp, % to terminate the loop by reaching

% the minimum of J_m.
break,

end
else

end

if(abs(J_m - Jtemp) <- .0001),%—-oi.
Wf J_m — Jtemp, % to terminate the loop by reaching

% the minimum of J_m.
break,

end

V. t - abs<U - temp); % tolerance value for the iteration

z-z+1;
ifrem(z,10)—-0
fprintfCAn');

else
fprintfC. •);
end

end

fprintfOn');rprintfC W);

best Uüc«U,

4-87

V.Vnew - V;

V, recall the extrem values: J_m =7.2308e+003

return;

%THIS PROGRAM CALCULATES THE OBJECTIVE FUNCTION
V, FOR THE MULTIDIMENSIONAL FCM.

function J_m - j_mdim(X, V, U, m)

(colE jowE) - äze(X);
k"= ITOWE;

Wor the lth class:
VlasMatrix - V(:,l)'ones<UowE);

tempi -(X(:,k) - VlisMatrix f *(X(:,k) • VlasMatrix);

tempi I-((UO,:)."ra) ■* (diagCtempl)'));

J_outl - sum(templ 1);

/ to avoid time-crunching for-loops

% trick matrix-operation is faster.the sought norm is
S automatically the diagonal of tempi;

y.for the 2nd class:
V2asMatrix - V(:,2)'ones(l jowE);

temp2 - (XCJÖ - V2asMatrix)' • (XtJc) - V2asMatrix);

temp22=((U(2,:)."m) ." (diag(temp2)'));

I_out2 = sum(temp22);

J_m = J_outl +J_out2;
return;

% to avoid time-crunching for-loops

% see above

S THIS PROGRAM CALCULATES THE MEMBERSHIP VALUES FOR
V. THE MULTIDIMENSIONAL FCM.

function U = memb_fctCX, V, m)

[colEjowE] = sizefX);
k* IJOWE;

•/•for the I th class:

VlasMatrix - V(:,l)"ones(l jowE);
•/• to avoid time-crunching for-loops

tempi - (X(:,k) - VlasMatrix)' • (XCJO - VlasMatrix);
% trick: matrix-operation is faster,the sought norm is
V» automatically the diagonal of tempi;

Unum(l M) - (diagtjempl)') .* (-l/(m-l)),

•/.for the 2nd class:

V2as Matrix = V(:,2)'ones(l .rowE);
% to avoid time-crunching for-loops

temp2 = (X(:,k) - V2asMatrix)' • (X(: J() - V2asMatrix);
% see above

U_num(2Jc) ■= (diag(temp2)') ." (-I/(m-l));

U(!,:)-U_num(l,k) J(U_num(l,k)+ U_num(2Jt) >,
U(2,:) = U_num(2Jc) J (U_num(l,k) + U_num(2,k));

•/. If there is a third class, ■ U_num(3Jc) ..."
% must be also considered.

return;

% FAST MULTIDIMENSIONAL EVALUATING PROGRAM
clear best_Uik;

-without plots

bestJJik - fc_means(5,0.0000005, Xselect);

figure(l);clg;hold on;
ss-l:100;
plot(ss,best_UiJc(l,:),'+')^lor(ss,best_Uik(2,:VbO;
%p!ot(ss,best_Ufl<3,:Vb')
pause;

wrongjicps = 0;
wrong_nons ■= 0,
figure(2);c!g-,hold on;
for «=1:100

ifbest_Uik(2,5)>-.5
plot<s,best Uik(2,s),"b');

ifs>50
wrong__dcps=wrong_dcps+1;
end

els«
plot(s,best Uik(2,s):+');

ifs<=50
wi ong_nons=wrong_nons+1;
end

end
end

wpercent - wrong_dcps/50* 100;
■/•fyrintfCwrong_dcps, percenf)
•/•[wrongjkps, wpercent]
npercent« wrong_nons/50" 100;
•/•fprintfl>Tong_nons, npercenf)
%[wrong_nons, npercent]

nn=(l 00-npercent);
ww=(l 00-wpercent);

fprhrfCW^rprintfCRIGHT DETECTIONS:');

^rintf^Ö;'p™tfO"');ft,™'tfCnD-<:lu5, D_dusf);

[nnww],

•/. USER INTERFACE
% Program B1. This program creates the start button.

6gure(l);clg;
set&cCcolorMl 0 1])

buttonl ■= uicontrolfgcC...
'styleVpush',...
■posirion',1195 150 75 75],...
'stringVSTART,...
•callbackVto.choic');

•/. USER INTERFACE
•/^Program B2. This program displays choices to run the various programs.

elf reset
setCgcf/colorMO 0 1])

titleCONE-DIMENSIONAL MULTI-DIMENSIONAL')

axis off

frm2 = uicontrol(gcf,...
'styleVtexf,...
■position',125 40 155 200]);

tt2 -= uicontrol(gcf,...
'stykTtexf,...
'ttringYFEATURE ELIMINATION,...
■position',125 215 155 40]);

fim4 ■= uicontroKgcf,...
'styieVframe',...
•positicm',p5 270 155 70]);

K4 - uicontrol(gcf...
'stylc'.texf,...
WringVFUZZY C MEANS WITH EVALUATION,...
■positiori,[35 288 125 45D;

button3 - uicontrol(gc f,.,.
'StyleVpush',...
■position',]:» 275 125 25],..
'string'/INITIAL TEST,...
'callback'/megajst');

frm -uicontroKgcf,...
'styieVframe',...
■position',[205 40 95 185]);

tt = uicontroKgcf,.••
'styk'.lexf,...

4-89

•string'.T-OLYGRAPH DATA1,,
■position1,^ 165 85 40]);

buttont3 « uicontroKgcC.,
'styleVpush',,
■position'.[210 75 80 25),,
'stringVDATA 3',,
'callbackVload flx3');

buttonl4 - uicontrol(gcC...
'style'.'push',,
•position',[210 105 80 25],,
'stringVDATA 21,,.
'callbacK/load fbd1);

buttonl5 - uicontrolCgcC.,
'styleVpush',,.
•position',[210 135 80 25],..
'stringVDATA 1',,
•callback'.load fbcl1);

buttonlö - uicontroKgcC-,
'styleVpush',,
■position',[210 45 80 25],,
'stringVCLEAR',...
'caDback'.'clcaiO;

burtonl7 - uicontroKgcC,
'styleVpush',,
■posMon',[45 200125 25],..
'stringVBOTH >60V,,
'caHback1,1mega_i');

buttonl8 - uicontrolCgcC-
'styleVpush',,
■posWon',145 150 125 25],,
,string\'>80% AND >50%',,
'caHback'.'megaJi');

buttonl9 = uicontroKgcC,.
'styleVpush',,.
•position',[45 100 125 25],,
■string7>50,/4 AND >80%',,
'callback'.'megajii');

button20 = uicontroKgcC.,
'styleVpush1,,
■position',[45 50 125 25],,
'stringVONE >98%',,
•callbackVrnegaJv');

fhn3 = iricontroKgcC,-
•styleVframe1,,
■position',[320 40!65 185]),

tt3 = ujcontioKgcf;,.
'style'.texf,,
'stringVSEARCH FOR BEST COMBINATION',..
Vosition',[350150 120 65]);

button21 ■= uicontrolCgcC.,
'style'.'push',,
■position',1318 230 192 25],,
•stringVTEATURE COMBINATION1,,
'callback'.'init&st')",

fim5 ■= uicontroKgcC.,
'style'.'frame',,
•posio'on',[318 260140 85D;

tt5 - uicontroKgcC,.
'style'.texf,,
'stringVFUZZY C MEANS WITHOUT EVALUATION1,.
•position',[332 275 115 65]);

button4 - uicontroKgcC-,
'style'.'push',,
■position',1325 265 125 25],,
'string1,'ALGORITHM',,
'callback1 .'fc^means*);

button22 - uicontroKgcC.,
'style'.'push',,
•position',1337 125 100 25],,.
'stringVGENETIC1,,
'callback1,1geneac4');

button23 - uicontrolCgcC.,
'style'.'push1,,
■position1,^ 95 100 25],,

4-90

•st^ing',•RANDOM•,...
•callbatiVTandom');

button24 - uicontrolCgcC...
'styleVpush',...
•positiori\[337 65 145 25],...
'stringVPSEUDO-EXHAUSTIVE',.
'c&llUckVfeatu^');

V. THIS PROGRAM COMPARES RESULTS BY DIFFERENT SET-UPS
V. OF THE •at. AN EXAMPLE:

w_comp-2cros(1,669);
n_comp=zeTos(l ,669);

index-fl 3 5 15 17 19 22 29 30 31 33 36 37 38 39 40 50);
selindex=l:17;

w_eomp(mdex) - selw_percent(selmdex) - w_percent(mdex);
n_conip(index) » seln_percent<sdindex) - n_percent<index);

RindoH70 141 155 177 197 200 202 211 214 216 235 449 450 453 458 462 600];
selindex=t8:34;

w_comp(Rindex) ■= sehv_percent(selmdex) - w_pereent(Rindex);
n_oomp(Rindsx) = seln_peicent(selmdex) - n_percent(Rindex);

•/•for 11 newis;

ncwin<Sces=14 12 18 52 68 82 176 395 451459 460];
w_comp(newmdices) -= w_percent(newindices);
n_comp(newmdic«) ■= n j>ercent(newindices);

in^l 3 4 5 12 15 17 18 19 22 29 30 31 33 36 37 38 39 40 50 52 68 70 82 141 155...
176 177 197 200 202 211 214 216 235395 449 450 451 453 458 459 460 462 600];

[in^n2w_pefcent^i2n_percent;w,w_corop0n)^_conipön)]'

V. ANOTHER EXAMPLE:

w_comp=zeros(l ,669);
n_comp=zeros(1,669);

ind«H' 3 4 5 12 15 17 18 19 22 29 30 31 33 36 37 38 39 40 50 52 68 ..
70 82141 155 176 177 197 200 211214 216 235 395 449 450 451];
seHndex=l:38;

w_comp(index) = selw_percent(selmdex) - w_peroent(index);
n_cornp(index) ■= seln_percent(selindex) - n_percent(index);

Rindcx=[453 458 459 460 462 600];
selindex=40:45;

w_comp(Rindex) » selw_percent(se]mdex) - w_percent(Rindex);
njxmpfRindex) = sebl_percent(selindex) - nj>ercent(Rindex);

•/ofor 1 newy;

newin<kces=[452];
w_comp(newindices) = w_percent(newindices);
n_comp(newindices) -= n_percent(newindices);

in=(l 3 4 5 12 15 17 18 19 22 29 30 31 33 3« 37 38 39 40 50 52 68 ...
70 82 141 155 176 177 197 200 211 214 216 235 395 449 450 451 452 ..
453 458 459 460 462 600];

[in;rn2wj>ercenr,rn2nj»cenr;w;w_comp(in) ■>n_comp(in)]'

% THIS PROGRAM SELECT AND EVALUATE FEATURE GROUPS
V. ACCORDING TO THE THRESHOLD.

dimension=669,

H);
forg=l:dimension
%- ATTENTION: Change parameters for m=3...

iS. (n_percenf(g)<=40) & (w_percent(g)<«40))

H+l;
Eg0)=f,
m2wrong_dcps([)=wTOng_dcps<g);
m2w_pcrcent(l>=w_percent(g);

m2w_ok(l)=100-m2w_percentQ);

4-91

m2wrong_nons(l)=WTong_nons(g);
m2n_percent(l)=n_percent(g);

m2n_ok(I)=100-m2n_percentO);

m2z(l>-z(g);

if((n_percent(g)<«25) | (w_percent(g)<=25))
wO)=l.llll;
else

w©-0;
end

end

end
1

iprintfCm2n 0, m2wrong_dcps, m2w_oV, m2wrong_nons, m2n_ok, m2iterations, bests');
h=10;
fe(h)
m2wrong_dcps(h)
m2w_ok(h)
m2wron&_nons(h)
m2n_pkfh)
m2z(h)

*oor

•/.THIS PROGRAM REPRESENTS ONE THE RANDOM SEARCH
V. FOR 4-TUPLE FEATURE COMBINATIONS.

indi=0;
for 1-1:10000

ua « round(10"rand(l,4)); */. 4*ft-&-sizc of no=14
•/. ifaaa(l)>=7,aaa(l)=aaa(l>5;end;
% if »aa(2)>=7, aaa(2)=aaa(2>5;end;
% if aaa(3)>=7, taa(3>=«aa(3)-5,end;

if aaa(l)=0, aaa(I)=l l.end;
if aaa(2)=0, aaa(2)=12;end;
if aaa(3)=0, aaa(3)=13;end;
if aaa(4)=0, aaa(4)=14;end;

while ((aaa(l>=8aa(2)) I (taa(l)=aaa(3)) | (aaaf2>=aaa(3))...
| (aaa(2)—aaa(4)) | (aaa(l)=«aa(4))...
| (>aa(3)=aaa(4)))

aaa = round(10*rand(l,4));
•/. ifaaa(l)>-7,aaa(l)=aaa(I>-5;end;
•/. ifaaa(2)>-7,aaa(2>=aaa(2)-5;end;
V. ifaaa(3)>=7, aaa(3)=aaa(3)-5',end',

if aaa(l)=0. aaa(l)-ll;end,
if «aa(2)=0, «aa(2>=12;end;
if aaa(3)=0, aaa(3)-13;end;
if aaa(4)=0, aaa(4)=14;end;

end,

i,
indi,
aaa,

dear Xsclect;
Xsdect=Xsel(aaa,:);

-ATTENTION: LIMITATIONS ■ %if ■•

V.if(((nn>=80) A. (wwx-80)) | ((nn>-84) | (ww>-84)))
if (((nn>=81)&(ww>=81)) | ((nn>=86)&(ww>=79))) S && 4'ft X3m5m2
V.if((nn>=70) &. (ww>=80)) S 4'ftxlm5

mdr=indt+l;
tl_combmCmdi) - aaa(l);
»2_combin(indi) = aaa(2);
a3_coinbin(indi) ■= aaa(3);
i4_combin(indi) - aaa(4);% 4*ft
n_combres(indi) = nn;
w_combres(indi) ~ ww,
fprintfC>» »»»»»»»» »»»»»»»»^i
K2e(al_conibin)
fprintf^»»»»»»»»»»»»»»»»»1);

end

j=lündi;
[il_cofnbin(]')
t2_combin(j)

4-92

i3_combin(j)
a4_combin(j)
n_combres(j)
w_combres(j)]'

% This program exhaustively tests all possible combinations of
% she eight in x3 from the number of features. It then records the ones
% that meet the if-then criteria below.
% clearCinit') for normal initialization.

k»dx3

features-[81 111 450 452 197 459 30]
n=length(features)

forfcltn
Xselft 1:100)=x3(features(f>, 1:100);
end

ifexistCinir>--=l
% program continuation. No need to initialize other variables.
il-init(l),
C=init(2)
i3=init(3)
i4=init(4)
i5=%iit(5)
i6=init(6)
i7=init(7)
i8=init(8);

else
% initialize all variables.
indi=0;
record=[];

ü=2;
i3=3;
i4=4;
i5=5;
i6=6;
|7=7;
i8=8;

while il<=n-7
while i2<=n-4>
while i3<=n-5
while i4<=n-4
while i5<=n-3
while i6<=n-2
while i7<=n-l
while i8<=n

aaa=(ili2i3i4i5i6i7i8]
indi

clear Xselect;
Xselect=Xsel(aaa,:);

iniuast;

-ATTENTION: LIMITATIONS -
ave = (nn+wwy2;

if (((nn>=81)&<ww>=81)) | (ave>=83))
indi=üldi+1;
record={record ; features(aaa) nn ww];
rprintif»»»»»»»»»»»»»»»»»^.
[features(aaa) nn ww]

end

18=48+1;
end
i7-i7+l;
i8=i7+l.
end
icHo+l;
i7-i6+l;
i8=47+l;
end
i5=i5+l;
i6-i5+l;
i7=i6+l,
i8=i7+l;
end
i4=i4+l;
i5=i4+l;
i6=i5+l;
i7H6+l;

% end i8 loop

% end i7 loop

% end i6 loop

% end i5 loop

4-93

«=47+1;
end
i3=i3+l;
i4=i3+l;
i5=44+l;
J6=i5+1;
i7«=i6+l;
■»-£7+1;
end
i2-42+I;
ü=ü+l;
14=43+1;
i5=i4+l;
i6=i5+l;
i7-i6+l;
i8=i7+l;
end
iHl+I;
ÜH1+1;
D-Ü+1;
i4=i3+l;
i5-i4+l;
i6=i5+l;
i7=4e>H;
18=47+1;
end

% end t4 loop

% end i3 loop

% end i2 loop

% end il loop

record

% Genetic algorithm in search of the optimal n-tuple
% from a gene pool of features.
% This version records the actual feature numbers in the
% matrix 'record', not the index!!
% x3. Set m in initfast.
•/• set init=l for automatic initialization

comment^xS, m=5,15-tuple.'
n=15;
Ioadx3
clear Xselect;
fearures=[9 11 30 50 39 81 235 358 359 363 449 197 29 450 453 457 458 478 ...

Ill 452 482 361 15 36 37 32 8 67 79 460]

% featur«=t4 5 8 9 12 18 19 22 29 30 33 36 39 40 50 56 62 76 79 81 ...
•/„ 111 114 163 197 235 358 359 361 363 403 449 450 452 453 456 457 ..
% 458 477 478 482 534 625]

feature_num=Iength(features)

for f=l:feature_num
XselCC 1:100>=x3(features(D,1:100);
end
clear x3;
clear average_fitness;

ifinit=l
% initialize population size, crossover rate, mutation rate, etc.
populati on_size=200;
mutation_rate=0.001;
CTOSSO ver_rate=0.7;
record=zeros(20,n+ 3);
indi=0;

end

% initialize population
randCuniform');
population=fix((feature_num • .0000001) .* rand(population_sizeji)) + 1;

% start evolution
for generation= 1:100000
generation

% test the population for fitness
for f = 1 :population_size
Xselect - XseKpopulation(f,:),:),•/.
initfast; % test each individual

fitness(0 - abs((nn+wwy2 - 20), % subtract 20 to exaggerate the
% difference in fitness ratio

%if(((nn>=70)&(ww>=70)) 1 (fitness>=56) | ((nrK=20)&(ww<=20)))
if ((fitness(0>=65) | ((niK=20)&<ww<-20)))

indi=indi+l
recordOndi,:) « [features(population(f,:)) generation im ww];V.
[features(population(C:)) generation nn ww]

end

V» display average fitness in percentage
tverage_fimess(generation)=mean(fitness) + 20

4-94

% REPRODUCTION!!
% reorder the fitness values for easier computation
fit_measure(I)=fitness(1);
for f=2:population_size
fit_measure(f>=fit_measuie(f-l)+fitness(0;
end

for f= I :population__sizc
% randomly pick one individual to copy into the new population
V% individuals with higher fitness values are more likely to survive
temp^t_measure(population_size)." rand;
indoc-find(abs(fit_measuTe-temp) —= minCabs(fit_measure-temp)));

if temp <■= fit_nK-asure(index(l))
new_population(f,:)=populationCindex(l),:);%

else
new_jx>puhtionCCi>T^u^llionCinc*ex(l)+^:);^

end
end
population=iKw_population;

•/•CROSSOVER»

W;
while f <= population_size

if rand <= crossover_rate
mate = f;
crossover *= 0;
while (f < populaoon_size) & (crossover=0)

f=f+I;
if rand <= crossover_rate

% actual crossover
crossover" 1;
temp=fix((n -1.00001) .• rand) + 2;%
gene_temp=population(mateJtemp m);%
popiiktion(mate,temp3i>=population(Ctemp3i);%
populationCCtemp'J\)=gene_temp;

end
end

end

end

% MUTATION!!
•/• Note: Modified Aug. 19 due to a bug
num_mutan'on3population_size .* mutauon^rate ." n .• (randn + 1);
for f= 1 :num_mutation
rx>pulau^fi^(>^uhn'on_size^.000001).*^

•= fix((feature_num - 0.000001) * rand + 1);
end

*/• save record in case of crashing
save crashrec comment record average_fitness

% go to next generation
end

% display record of good individuals in history
comment
record

•/• [sor^recordOrmdUrnY)' record<lindiTn+l^+3)]

•/. SELECTION AND INITIALIZATION OF THE DATA CENTERS
•/•FORTHELMS FILTER.

% "initrain_sess" - Polygraph sessions which are used for
% INITialization of the "data_oenters" and TRAINing.

% The "inhtain' sessions are set in a way that the 1st part
% (before the "border") represents the non-decptive and the
W 2nd part (after the border) the deceptive sessions.

clear,
S"*Tobesetforeachpotydat_i(ftx3, ftx2, ftxl): ••"• **"

whichfeatirres_3 = [1:30];
nondsessions_3 *= [11.50];

y.[l 6 8 9 12 16 18 21 24 2728 32 35 44 48];
dcpsessions_3 - [51:90];

%[5I 53 58 59 63 67 72 75 82 85 88 89 93 95 100],
W*

whichfeatures_2 * [];
nondsessions_2 = [];
dcpsessions_2 = [);

whichfeatures_l «= [];
nondsessions_l •= [];
dcpsessions_l = [);

4-95

%* ATTENT10N:The DIMENSION of each ■whichfeatures_...' is to be equal!

•/.

if ler«m(i»hichfeatures_3) — leiigth(whichfeatures_2) I ...
lengft(whichfeatures_2) — length(whichfeatures_l).

fprintfC!!!^;
SmntrT/Check "whichfeatures"! They «re different bigW);
IprintfTThe dimensions are as foUowing:\n');
IprintffW);
IpiintfC Is' 2nd 3rd\rf);
<Ksp(flength(whichfeatures_l), kngth(whichfeatures_2),...
leng*(wnichfeatures_3)])
tprintf(W);
ftrinnTYOU DO NOT NEED TO CHANGE THE EMPTY ONESINn');
fcrintflTF THAT S THECASE:PRESSANYK£YTO CONTINUED');
fijrintfC!!!!!!!!!!!!!!!! ü!!!!!!!!!!!!!!!!!!!!!!!!!!!!!^1);
pause;

end;

bolder »length(riondsessions_3) + kngth(nondsessions_2)..
+ lengrh(noraisessions_l);

%%%potydat_3'.

if nze(nondsessions_3,1) ~= 0,

load c:\lisers\rarnin\fcm\multidirn\frx3;

dim = length(whichfeatures_3);
f=l:dim;
Ntemp_3(f,:) ■= x3(whichfeatures_3(I), nondsessions_3);
Dtemp_3(t) - x3(whichfeatures_3(f), dcpsessions_3);

dearx3;
end;

•/.W4porydat_2

if si2e(nondsessions_2,l) -= 0,

load c:\useis\ramin\fcm\multidim\flx2;

dim - length(whichfeatures_2);
£=l:dim;
Ntemp_2(f,:) - x2(whichfeatures_2(0, nondsessions_2);
Dtemp_2(f,:) - x2(whichfeaturcs_2(f), dcpsessions_2);

dearx2;
end;

VMM. polydat_l

if si2e(nondsessions_ 1,1) ~= 0,

load c:\users\ramin\fcm\multidim\ftxl;

dim - length(whichfeatures_l);
f>=l:dirn;
NtempJttO - xl(whichfeatures_l(f), nondsessions_l);
Dtemp_I(f,:) - xl(whichfeatures_l(0, dcpsessions_l),

dearxl;
end;

mrtrain_sess - [Nternp_3'; Ntemp_7; NtempJ';...
Dtemp_3,

1 Dtemp_2; Dtempl');

howmany - size<initrain_sess1l);

mesh(nTrtrain_sess),

tt TWO FEATURES AT A TIME-PLOT EXAMPLE:
V.pk<mitrain_sess(1:40, lXmitrain_sess(l :40 A'Y)
%holdon
%plotOnitrain_sess('(1:80 ,lXmitrabrsess(41:80,4),'y)

tt SELECTION AND INITIALIZATION FOR LMS FILTER.

tt The "initrain" data represents Polygraph sessions which are used for
tt INTfializarion and TRAINing of the ■datacenters" and input data.

4-96

% The "initrain" data are set in a way that the 1st part - before the
•/• "(TC Jborder" - represents the non-decptive and the second part
V. - after the "(TC Jborder" - the deceptive sessions.

% The prefix "nond" represents the non_decptive, and "dep" the deceptive
% elements.

clear,

■ TO BE SET FOR EACH polydatj (Rx3, ftx2, ftxl): •
W
%* First for the data_centers:

nondsessions_3 ■= [1:20];
•/.[l 6 8 9 12 16 18 21 24 27 28 32 35 44 48);

dcpsessions_3 = [51:70];
V.[51 53 58 59 63 67 72 75 82 85 88 89 93 95 100);

V."
nondsessions_2 ■= [);
dcpsessions_2 * [];

nondsessions_l = [];
dcpsessions_l "= [];

•/•" Now for the input data for which the filter is to be (Trained *
•/."toCQlassify:
•/." "

TC_nondsessions_3 = [1:30];
TC_dcpsessions_3-[51:80]; •

TC_nondsessions_2 - [];
TC_dcpsessions_2 = [];

TC_nondsessions_l = [];
TC__dcpsessions_l ■= [];

%•
•/•• And finally for the selected features:
%"

whichfeatures_3 = [1:30];
whichieatures_2 = [];
whichfeatures_l = []'.

•/•• "
•/•• ATTENTION: The DIMENSION of each ■whichfeatures_...- is to be equal! *
•/•* (or zero)
V.

if length(whichfearures_3) -= length(whichfeaturcs_2) |...
length(whichfeatures_2) — length(whichfeatures_l),

fprintfCI!!!!!!!!!!!!!!!!!!!!M!!M!!!!!!!M!!!!M!!!!!\n');
rprintfTCheck "whichfeatures"! They are different big!W);
fprinripTie dimensions are as following:^*);
fprintiOn');
fprintfC 1st 2nd 3rdV);
disp([lengthCwhichfeatures_l), length(whichfeatures_2), ...
length(whichfeatures_3)])
fprintfTW)',
fprintfCYOU DO NOT NEEDTO CHANGE THE EMPTY ONESW);
fprintfflF THAT'S THE CASE: PRESS ANY KEY TO CONTINUE An1);
fprintfC!!!!U!!!H!!!!!!!!!!!!!!!!!!!!!!M!n!M!!!!!!\n');
pause;

border - length(nondsessions_3) + length(nondsessions_2) ...
+ leng1h(nondsessions_l);

TC_border ■= length(TC_nondsessions_3) + length(rC_nondsessions_2) ..
+ length<TC_nondsessions_l);

•/•■/.% polydat_3:

dim •= kngth(whichfeatures_3);
if dim —0,

load c:\users\rarnin\fcm\multidim\ftx3;
f-l'.dim;

if length(TC_nondsessiora_3) ~= 0,
TC_Ntemp_3(f,:) - x3(wriichfeatur«_3(f), TC_nondsessions_3);
end;

if length(TC_dcpsessions_3) — 0,
TC_Dlemp_3(C) - xXwhichfeatures_Xf>. TC_dcpsessions_3);
end;

4-97

if length(nondsessions_3) ~= 0,
Ntcmp_XC') * x3(whichfeatures_3(f), nondsessions_3);
end;

if Iength(dcpsessions_3) ~— 0,
Dtemp_3(f,:) * x3(whichfeatures_3(0. dcpsessions_3);
end;

clear x3;
end;

%%%po!ydat_2

dim « kngth(whichfeatures_2);
ifdim~«0.

load c:\usei5\ramin\fcm\multidim\ftx2;
f=l:dim;

if length(TC_nondsessions_2) —»0,
TC_Ntemp_2(f,:) - x2(whichfeatures_2(0, TC_nondsessions_2);
end;

if length(TC_dcpsessions_2) -» 0,
TC_Dtemp3(C:) " x2(whichfeatures_2(f), TC_dcpsessions_2);
end;

if length(nondsessions_2) ~= 0,
Ntemp_2(C0 = x2(whichfeatures_2(f), nondsessions_2);
end;

if length(dcpsessions_2) ~= 0,
Dtemp_2(C:) " x2(whichfeatures_2(f), dcpsessions_2);
end;

clear x2;
end;

'/••/••/• porydat J

dim *= kngth(whichfeatures_l);
if dim—=0,

load c:\xisers\ramin\fcm\multidim\ftxl;
f=l:dim;

if length(TC_nondsessions_l) ~= 0,
TC_Ntemp_l (£:) = x 1 (whichfeatures_l (f), TC_nondsessions_l);
end;

if lerigthlTC_dcpsessions_l) —= 0,
TC_Dtemp_l(CO = xl(whichfcatures_l(O.TC_dci>sessions_l);
end;

if kngth(nondsessions_ 1) -** 0,
Ntemp_l(f,:) = xl(whichfeatures_l(f), nondsessions_l);
end;

if length(dcpsessions_l) -<= 0,
Dtemp_l(f,:) " xl(whichfeatures_l(f), dcpsessions_l);
end,

clear xl;

TC_initrain » tTC_Nlcmp_3'; TC_Ntemp_2'; TC_Ntemp_l';...
TC_Dtemp_3\ TC_Dtemp_2*; TC_Dtemp_l'J;

centjnirrain * [Ntemp_3'; Ntemp_2', Ntemp_l';...
Dtemp_3'; Dtemp_2'; Dtemp_l'];

% LMS FUZZY ADAPTIVE FILTER.

function [new__theta, new__data_eenters, new_sigma, output_label] -=...
»daptzzyOheta, data_centcrs, sigma, input_vect, desire, step)
% fprintfCsiz^theta)?) ^izeCtheta),
%fprintrfsi2e(sigma): *) ;size(sigma),

% Get the dimensions of matrices and verify their consistency.
flabel_no, ft_noJ = size(data_centers);
if(TUbel_no, ft_no]-=si2e(sigma)) | Q1, ft_no] ~easize(input_vect)) |

([Ubd.no, 1] ~= size<theta))

errorCmatrix dimensions are wrong! *)

4-98

•/• Evaluate Gaussian membershiprunctions:

distances - (ones(label_no,I) * input_vect) - datajxnters;
V.fprintft'si2e(dUtances):')^i2e(distances),
•/t To creat compatible dimensions: Fill input_vect down into an
'/. (labelno x ft_no) matrix, so that it is the same input for all
% (label_no) rules, and then subtract data_centers from it

a-exp(-0.5.*»um(((distances ysigma)."2)'Y);
V» Without "sum": a - Uik i.e. membership values
V. etc.etc...(conventional way)
•/.+++
Srprint£Csize(a):')^i2e(a),

% Centroidal defuzzification:
b - sum(a);V1fprintfCsize(b):')^i2e(b),
outputjabel« «um(theta .• a) / b;
•/4+++

S Adaption:

tempi = step .* (desire - outputjabel) .■ a yb;
newjheta - theta + tempi;

temp2 - ((tempi ." (theta - outputjabel)) " ones(l, ft_no)) .* .
distances J (sigma .A2);

newwdata_centers = data_ccnters + temp2;

new_sigma °= sigma + temp2 .* distances 1 sigma;
•/•+++

•/. LMS nLTER INTIALIZATION (TRAINING AND TESTING)
•/.FIRST VERSION

Vo clear everything!
clear,

■/.loading...:
load c:\users\rarrun\fcmNmultiQUTi\ftx3;

which features -1:100,% to change!!!

•/• the data from the 'person' who is to be tested:
person = 2;
testperson ■= x3(which Jeatures.person)';

polvsession(l,:) = xXwluchJearures,l)'',V.nondecp
%%%[x3(81.1), x3(l 11,1),X3(235,1), x3(450,l), x3(452,l)];

porysession(16,:) = x3(whichjearures,100)',%decp
V.V.%[x3(81,100), xXl 11,100), x3(235,100),x3(450,100),...
•/.%%x3(452,100)], */• polygraph data for two sessions,

•/• i.e one truthful & one decpetive

polysession(2,:) ■= x3(which Jeaturcs,48)';%nondecp
polysession(3,:) - x3(which Jeatures,5)';V.nondecp
potysession(4,:) - x3(which Jeatures,8)'-,Snondecp
polysession(5,:) - x3(which_features,<>)',%nondecp
porysession(6,:) - x3(which Jeatures, 12)';%nondecp
porysession(7,:) - x3(whichJeatures, 167,%nondecp
poh/session(8,:) - x3(whichJcatures,18)';,/inondecp
porysession(9,:) = xXwhichJeatures^iy-.Hnondecp
porysession(10,:) - x3(whichJcatures,24)',%nondecp
polysessionO 1,:) - xXwhichJeatures,27)';%nondecp
porysession(12,:) - x3(whichJeatures,28)'',y.nondecp
poh/session(13,:) - x3(whichJeatures32)';%nondecp
polysession(14,:) - x3(whichJeatures^5)';%nondecp
pdysession(15,:)»x3(whichJeatures,44)';%nondecp

polysession(I7,:) - x3(which features^jy/Adecp
potysession(18,:) ■> x3(whichjeatures,93)';%decp
porysession(l 9,:) = x3(whichjeahires,89)',%decp
poh/session(20,:) ■= x3(wriichjearures,88)';%decp
polysession(21,:) - x3(whichJeatures,85)';%decp
porysession(22,:) = x3(which J"eatures,82)';%decp
porysession(23,:) ■= x3(which Jeatures,75)';%decp
porysession(24,:) - xXwhichJeatures,72)';%decp
polysession(25,:) - x3(which_features,67)';%decp
porysession(26,:) - x3(which_features,63y;%decp
porysession(27,:) - x3(which Jeatures,59)'.%decp
potysession(28,:) - x3(wiiichjcarures,58)';%decp

4-99

poh/session(29,:) - xXwhkh_features,53)';%decp
polysession(30,:) - x3(which_features,51)';V.decp
[howmany, dim] - size(polysession),•/. "howmany" must be even!
half-howmany/2;

clear x3; %save memory & clear

•/.+++

%initialiation & clear

step-0.005,
output «zerosO, 2)

output_mean = [1,2]*

irtput_mean « possession;
inptrMridth = 1 * ones<howmany, dim);

V. Testtng<see 100 for des)

[dummy, dummy, dummy, output] = ...
adaptzzy(output_mean, rnput_mean, input_width, testperson,...
100, step);

y. Test how good the output is at
•/• the beginning.

end,
output
pause;

figure(l);c]g
plot(output,'.');
V.p(o<(output_rnean,'.b'),
hold on;
•/4mesh(rnput_width);

•/• SEE ABOVE - SECOND VERSION.
•/•User interface to improve!

% INITIALIZATION:
% l 11 i i i l i i i i i l i l

step «0.5; *4 Learning factor

•/. The prefix TC" represents the input data for which the filter
•A is to be CDrained to (Qkssify:

TC_howmany = sizc(TCJnitrain, I),
{howmany, dim] = size(cent_mitrain); V# representing data_centers

clear output;
output »zerosflTCJiowmany, Iß;

% "+1" represents the nondeceptive and "-1" the deceptive data:
init_theta_non ■= +1 * ones(border, 1),
initjhetajicp = -1 • ones((howmany-border), 1);

output__niean-[init_theta_non;init_theta_dcp]; V. -data_cei

input__mean = cent_initrain;
input_width - 100 * ones(howmany, dim);

% n M i M i ii i t i i i

% Before any training...
M Test how good the output is at the beginning:

fork=l:TC_howmany

ifk<-TC_border
des=+l;
else
des—I;
end

(dummy, dummy, dummy, outputQO] =
adaptzzy(output_mean, inputjnean,...
input_width, TC_initrain(k,:),...
des, step);

end,
clear dummy;
output,

figure(I);clg
plot{output,'+');

4-100

^plo^outpu^mean/'b');
hold on;
paus«;
%mesh(input_width);

% Starting training: DO A BETTER USERINTERFACE!
for H 30
for r 1:5

for k= 1 :TC_ho wmany

ifk<-=TC_border
des-+l;
else
des=-l;
end

end,

[output_mean, input_mean, tnput_width, output(k)] ■
adaptzzy(output__mean, input_mean, input_width,...
TC_initram(k,:), des, step);

end,
output,

figureO);
plotCoutput,'.'); %axisdl 100-0.2 2. ID;
•/•plot(output_mean,'"b');
%mesh(input_width);
%pause;

end;

' SAVING THE FILTER CHARACTERISTICS:'

fyrintfrM!!!*!!!MU!!!!!!M!!!!n!!!!!!!!!!!!!n!nH!!!!!!!!\n');
fprintftlF YOU WANT TO SAVE THE CHARACRERISTICS OF THIS FILTERX);
fprintfCPLEASE TYPE ANY NUMBEROQ FROM l-99!\n*);
forintfCTHIS FILTER WILL BE THEN SAVED AS -filtert" !W);

clear numb;
numb - input(The filter number(#) is:*);
% By default: numb=(], i.e. nothing win be saved.

if numb ~=[],
numb = int2str(nurnb);
com ={*save\ 'filter', numb,...

1 whichfcatures_3',...
' wruchfeatures_2',...
* whichfeatures_r, ...
' output_n>ean',' output_mean', ...
' input_mean',' input_width'];

eval(com);

V# CREATING THE ELLIPTICAL CLUSTERS FOR THE VISUAL
% INSPECTIONS - AND ALSO FOR STTTNG THE RULES.

function [x,y^llipse(xcenter)ycenter^cv.'idth1y%-idth)
angle={0:0.02"pi:2"pi];
x=xwidth .* cos(ang!e) + xcenter,
y=ywidth .* sin(angle) + ycenter,
plotCx,y,'-*)

% TEMPORARY LMS SETTING - TEST

function output_labeWu2ztempCinput_vect)
theta=(I 1-1 -1]';
data_centers=I -1 -0.5 ; 0 -0.25 ; 0 0 ; 1 0.3];
sigmH 0.5 0.8 ; 0.5 0.25 ; 0.1 0.2 ; 0.6 0.5 j;

•/• Get the dimensions of matrices and verify their consistency:
flabel_no, ft_no] - size{data_centers);
if(Thbd_no,ft_no]-^size{sigma)) | Ql, ft_no]—size(input_vect)) |

(pabel_no, 1) — size(theta))

errorCmatrix dimensions »re wrong! *)
end;
V.+-H-

■/• Evaluate Gaussian membership functions:

distances « (ones(label_no,l) * input_vect) - data_eenters;

a«exp< -0.5 .• sum(((distances y$igma).A2)')');

4-101

% Ccntroidal defuzzification:
b - sum(a);
outputjabel« sum(theta .• a) / b;
outputjabel - outputjabel .A 2;

return;

H LMS FILTER TESTING.
Vt Experimenting with the use of adaptive fuzzy logic
Y% in polygraph classification.

inrHnputCDo you want to initialize all parameters? ',V)'»

ifintt—y
% Initialize the parameters for fuzzy LMS algorithm.
% Output of 1 means nondeoeptive
% Output of-1 means deceptive
% length(output_mean) « * of rules
fprintfCmitializingW);
output_mean=t 1 1 -1 -If;
% input_mearF{ centers of first rule; centers of second rule; etc.);
mput_rnean-{, -1 -0.5; 0 -0.1; 0 0; 1 0.3];
•/. input_width-(widths of first rule ; widths of second rule ; etc.];
input_width-{ 0.5 1.3; 0.5 0.25; 0.10.2; 0.6 0.5];

featureH451 4521'. %/'Sclect *e fratures

step=0.005; •/• Select learning rate

% Select training data
ndcp_3=l:15; •/• Nondeceptive sessions in x3 for training
dcp_3-51:65; */• Deceptive sessions in x3 for training
ndcp 2=1];
dcp_H);
ndcpj=[];
dcp i=[]; % Note that nondeceptive data in x!,x2, and x3

•/. are the same, so ndcp_2 and ndcp 1 are really
% redundant.

loadx3;
load x2;
loadxl;
Ntrain==(xl(fearures,ndcpJ) x2(features,ndcp_2) x3(featu^es,ndcp_3)]■■,
Dtrain=(xl(features,dcp_l) x2(features,dcp_2) x3(features,dcp_3))';

•/. Select testing data
ndcp_3=[], */• Nondeceptive sessions in x3 for testing
dcp_3=66'.100,
ndcp_2=t];
dcp_H51:100];
ndcp_l-16:50;
dcp_H51:100]; •/• Note that nondeceptive data in xl, x2, and x3

% are the same, so ndcp _2 and ndcp_! are really
% redundant.

Ntest=(xI(features,ndcpJ) x2(features,ndcp_2) x3(features^dcp_3)]'',
Dtest-xl(features,dcp_l)';
Dtest2=x2(features,dcp_2y;
Dtest3=x3(features,dcp_3)';
clear xl;
clear x2;
clear x3;
clear record;
epoch^O,
end

•/. Test fuzzy system before any training
V. Test training data first
clear Nomput;
clear Doutput;
[Ntr,dummy)=size(Ntrain)', •/• Ntr - total # of nondeceptive sessions
(I>r,durnmy]=size(Dtram); % Dtr - total * of deceptive sessions
if Ntr — Dtr

erroiCNumbcr of nondeceptive and deceptive training data mismatch')",
end
fori=l:Ntr

[dununy,dummy,durnmy^output©)-«daprzzy(output_meanjnput_mean,...
rnpm_width,Ntramö,:),Utep);

[dmnmy,dununy,dimuny,Doutput(i))«»daptzzy(output_mean^nput_mean,..

mput_widü\DträinCi,:),-1 .step);
end
% Record results
re<»rd(epoch+l,l:2HOength(find(Noutput>0)yNtr) (lcngth(find(Doutput<0)ytXr)];
squared_enoKepoch+l,l:2Hmean((1-Nou,PVI,)',2)mean((Dourput+l)A2)],
tprintfCpercent correct nondeceptive and deceptive detections for training dataW),
disp(record(epoch+1,1:2))

S Now test testing data
clear Noutput;
clear Doutput;
[Nte,dummy}-5ize(Ntest); V> Nte - total # of nondeceptive sessions

4-102

fori=l:Nte
ldummy,dummy,duinmy,Noutput(i)H<laPtzzy(0,11'u,-mMIunPu,-mMn'"

input_width,Ntestö,:),Utep);

end
(Dtt.dumrayHMWKt); % Dte - total # of deceptive sessions in xl
fori=l:Dte

[duniniy,dmtmiy,duiimiy,I>3utput(r)l-»dapözy(output_niefflvmput_mean,..

input_width,Dtest(i,:),-Utep);

end
squared enort;epoch+U:4Hni«n((l-Noutput).A2) mean((Doutput+l).A2)];
iecOTd(e^h+U:4H0aig*(find(Noutput>0)yNte)(length(nnd(DoutpuK0)yDte));

(Dte,duminyl=size(Dtest2)-, % Dte - total U of deceptive sessions in x2
dear Doutput;
fori-l:Dte

[duinniy,dununy,duniniyJ)output(i)Hdaptzzv(ouq)ut_meanjnput_mean,...

inputjMdth,Dtest2(i,:),-l,step);

end
squared_enot(epoch+l,5:6>[mein((l-Noutput).A2)mean((Doutput+l).A2)];
record(epcch+l,5:6><0=n^(find(Noutput>0))^te)0aigth(nnd(Doutput<0)yDte));

[Dte.dummyl-sE^Dt«13); V. Dte - total # of deceptive sessions in x3
clear Doutput;
fori=l:Dte

[dunrny,dummy,dummy,Doutput(i))-adaptzzy(output_nieaivnput_mean,...
input_width,Dtest3(i,0,-l^tep);

end
squared error<epoch+i;7'.8Hrnean((l-Noutput).A2) mean((Doutput+l)."2)];

iecot(l(e^h+lJ:8H0«ng*(to<^o^ut^))^,e><lcn^(tad^utpu,<0)yDte)';

$mntfrinüiung,xl,x2,x3:\!i');
disp(record(epoch+1,:))

V. Start training and testing
fprintfCresults after trainingW)
while epoch< 100000
epoch=epoch+l
clear Noutput;
clear Doutput;

Vo Training
fori=l:Ntr

[output_mearynput_meargnput_width,Noutput(i))-...
adaptezy(outpuMnean^ut_rneaiUnput_widTh,...

NtrainCv),l.step);
[output_meargnput_meanjnput_width,Doutput(i)]=...

adaptzzv(output_meanjnput_meanjnput_width,...
Dtrain(i,:),-l.step);

end
% end one epoch

V. Test training data
fori=l;Ntr

(dummy,dummy,dumrny.Noutput(i)]=.-
adaptzzy(output_meanjnput_meaninput_width,...

Ntrain(v),Utep);
Idummy.dummy.dummy.DoutputOJh-

adaptzzyfaurput^mearynpuMnearMnput^width,.-.
Dtrain(i,:),-Utep);

end
•/• Record results of training data at the end of an epoch
squared.enorCepoch+l.l^MmranCC-NoutpuO.^rneanCCDoiitput+l).^)];
record(epoch+l,l:2H0«ngth(findfNoutput>0)yNti) Oength(find(Doutput<0))'Dtr))

•/• Now test testing data
clear Noutput;
clear Doutput;
rNte,dummy)-size(Ntest);
fori=l:Nte

[durrrniy,dumrny,dun™y,Noutput®H^Ptoy(ou,Pu,-,,>ran^nPu,-mean'-
mput_width,Ntest(i,:), 1 .step);

end
(Dte,dummy]-size(Dtest);
fbrWiDte

ldurruny,durarny,<hmimy,DourputC01=adapt2zy(ourPu,_mra,Vnput_rnean,...

mput_width,Dtest(i,:),-1 .step);
end
squared_error(epoch+U:4Hmean((l-Noutput)''2)mean((Doutput+l)"2)];

record(epoch+U:4H(l">8th(find(Nou,Pu,><,)>^,':> Ocngth(rJndfDoutput<0)yDte)];
[Dtt,dummyl-siz=(Dtcsa), % Dte - total * of deceptive sessions in x2
clear Doutput;
fori=l:Dte

[dmnrny4urruTiy,durranyJJoutput(r))==adaptzzy(output_rnearunput_rnean,...

input_width,Dtest2ö,:),-l .step);
end
squarcd_enoKepc<:h+l,5:6H'tiMn<(1-NoutPu,)'A2)n,ean((Pou,Pu,+1'A2)l''
nKordXepcct^l^:6H0eng*(find0^output>0)>^le)aength(fmd(Doutput<0)yDte)];

[Dte,dummy]=size(DtesÜ); V. Dte - total # of deceptive sessions in x3
clear Doutput;
fori=l'.Dte

[durrrniy,durnmy4umrny,!>)utputö)H4aP,zzy<0UtPu,-nlcM1^nPut-n>ran'-'
input_width,Dtesß(i.O.-l .step);

4-103

end
squared OTOr(epoch+l,7:8Hm^0-Nou*u0"2)mean((Doutput+l)."2)];
record(e^h+lJ:8H0«n8*(fcd0^o"n>"'>0))^te)0cngth(find(DoutpuI<0)yDtc));

fprintfT1raining,x 1 ,x2,x3:\rO;
disp(record(epoch+1,:))

end % Go to next epoch

V» Experimenting with the use of adaptive fuzzy logic
% in polygraph classification.

fortriaW:l
% Initialize the parameters for fuzzy LMS algorithm.
y. Output of 1 means nondeceptive
% Output of-1 means deceptive
% Wngth(output_mean) ■= * of rules
rprintfl>ütializing\n');
outputmearH 11 -1 -If;
% input_mean-t centers of first rule; centers of second rule; etc. J;
input_mean=(-1 -0.5; 0 -0.25 ; 0 0; 1 0.3 J;
V. input width-t widths of first rule ; widths of second rule ; etc.];
inpot_width=[0.5 0.8; 0.5 0.25; 0.1 0.2; 0.6 0.5];

features=[451 452]; v % Select the features
step=0.005; % Select learning rate
trainers=10; % Select * of training samples from each category

•/• Select training data
temp_n=randperm(50);
temp_d=50+randperm(50);
ndcp_3=[l:5 7:10 12 13 15 16 18:20 22 23 25 26 28 29 31 32 34 35 3738 40 41 43 44 46:49];

dcp 3=[51 54 57 60 64 67 70 73 76 79 82 85];% Deceptive sessions in x3 for training

ndcp HI;
dcp_H51 53 56 59 62 65 68 71 74 78 81 84];

mdcpj-fl;
dcp_H51 54 57 59 62 65 68 71 74 77 80 83];

•/. Note that nondeceptive data in xl, x2, and x3
y. are the same, so ndcp_2 and ndcp_l are really
"/• redundant.

Ioadx3;
loadx2;
loadxl;
NtnmHx 1 (features,ndcp_l) x2(features,ndcp_2) x3Cfeaturesjidcp_3)]';
Dtrasn-[xl(fearures,dcp_l) x2(features,dcp_2) x3(features,dcp_3))';

% Select testing data
ndcp_3=[6 11 14 17 2124 27 30 33 36 39 42 45 50),
dcp_3=(52 53 55 56 58 59 61:63 65 66 68 69 71 72 74 75 77 78 80 81 83 84 86:100);

ndcp_Hl;
dcp_H52 54 55 57 58 60 61 63 64 66 67 69 70 72 73 75:77 79 80 82 83 85:100);

ndcp_l={];
dcpj=[52 53 55 56 58 60 61 63 64 66 67 69 70 72 73 75 76 78 79 81 82 84:100],

•/. Note that nondeceptive data in xl, x2, and x3
% are the same, so ndcp_2 and ndcp_l are really
•/o redundant.

NtesHxl(features^dcp_l) x2(features,ndcp_2) x^features^dcpS)]',
DtesHxl(features,dcp_l)x2(featu^es,dcp_2)x3(featu^es,dcp_3)],,

clear xl;
clear x2;
clear x3;
clear record;
clear temp_n;
clear temp_d;
epoch-0;

% Test fuzzy system before any training
% Test training data first
clear Noutput;
clear Doutput;
rNMummy)-size(Ntrain); % Ntr= total * of nondeceptive sessions
[Cta^rmnmy)=size(Dtrarn), y. Do - total * of deceptive sessions
irNtr—Dtr

errorCNumber of nondeceptive and deceptive training data mismatch'),

end
fori-l:Ntr

[durrmy,dunimy,dununy,Noutput(i))^darJbzy(output_meaninput_mean,...
input_width,Nrrain(i,:),l,step);

[durrmiy,durrmiy,durnmy,r>)UtputCOh«<!aPtzzy(ou,Put-meaI>^nPul-mraI1'-
rr^ut_width,Dtrain(i,:),- I .step);

end
*/•% fprintfCResults of training data before trainingVO,
•/.% Noutput
%'A Doutput
V% Record results
recordXerjMh+I,l:2HOen«th(find(Noutput>0)yNtr) (length(find(Doutput<0)yDtr)],
fprinntpercent correct nondeceptive and deceptive detections for training data:W),

4-104

disp(record(cpoch+1,1:2))

% Now test testing data
clear Noutput;
clear Doutput;
f>He,dummy]=size(Ntest); % Nte - total H of nondeceptive sessions
forr=l:Nte

[dunmiy,duiTUTiy,chmuTiy^output(OHo^tz^
input_width,Ntest(i,:),l .step);

end
(Dte,dummyHizc(Dtest); % Dte - total H of deceptive sessions
fori-l:Dte

[dunuTiy,dummy,a\mwiy,Doutput©]=«daptzzy(^^
inputjvidth,Dtest(i,:),-1 .step);

end
if (Nte — 0)A(Dte~-=0)
%% fprintotResults of testing data before trainingW);
%% Noutput
%% Doutput
•/•Record results
record(epoch+1 ^HOer^CnndXNomputX^yNU:) Oength(find(Doutput<0)yDte)];
rprintfl^percent correct nondeceptive and deceptive detections for testing data:\n');
disp(record(epoch+13:4))
end

•/• Start training and testing
rprintfCrcsuhs after trainingNn')
while epoch<50
epoch=epoch+I
clear Noutput;
clear Doutput;

% Training
fori=l:Ntr

[output_mearynput_mearwru^_width,Noutput(5)]=...
adaptzzy(ourput_mearvnput_meanTmput_width,...
Ntrain(i,:),I,step);

[output_meari4nput_mean4nput_widu\Doutput(5)}=...
adaptzzy(ouQ>ut_mean^nput_mean4nput_width,...
Dtrain(i,:),-l,step);

end
% end one epoch

*/• Test training data
for i=l:Ntr

[dim\my,dununy,dummy,Noutput(i)}=--
adaptzzy(outputjneanjnputjmean^ru?ut_widuv ■.
Ntrain(i,:),l,step);

[dummy ,dummy,durnmy,Doutput(i)}=...
ao^ptzzy(ou^ut_mearUnput_rnean7input_width,...

Dtrain(i,0.-l»steP)">
end

%•/• tprintfCresults of training data\n*)
•/•*/• Noutput
•/••/• Doutput
% Record results of training data at the end of an epoch
record(epoch+1,1:2)=[Gength(find(Noutput>0)yNtr) Oerigth(find(Doutput<0)yDtr)];
rprintfCpercent correct nondeceptive and deceptive detections for training dataAn1)
disp(recordCepoch+1,1:2))

if (Nte — 0)&(Dte — 0)
•/• Now test testing data
clear Noutput,
clear Doutput;
fori=l:Nte

[dummy,dummy,durrmiy,Noutput(Ob*d^^ -
mput_width,NtestCi,:),l^tep);

end
fbri=l:Dte

[cHmmiy.durnrny.durnrny J)outTwt®}^daptzzy(outpm_meari^ut_rnean,...
input_width,Dtest(i,:),- \ .step);

end
%•/• rprintfCresuhs of testing data\n*)
%% Noutput
%% Doutput
record(epoch+U:4H(length(find(Noutput>0)yNte) (lengtn(rmcl(DoutpuKO)yDte)];
fprinuTpercent correct nondeceptive and deceptive detections for testing data:^*)
dasp(record(epoch+1£:4))
end
end % Go to next epoch
maxiniurr<triaI)==niax(record(:3)^ecord(:,4));
teinHfind\(record(:3>+record(:,4)>=TOaximijm(triaI))' 0 0 0 0 0);
maximaCtrial, 1:5)=tempO :5);
maxima(trial, 1:5)
maximum/2
end % Go to next trial
maximum^m aximum/2

4-105

EPILOGUE - Motivation, challenges and risks

/ was easily fascinated by the idea of a lie-detector at the very first moment I heard about it. I
thought, 'we are not supposed to lie anyway and a lie-detector can help us find and prevent a
major part of the crimes committed in our society. I became even more motivated to do this
research by an innovative way of pattern recognition, namely the fuzzy approach.

But very soon, I also began to realize its danger - while juggling with numerical data and being
far from the reality of testing actual human beings and judging them by an.algorithm.

An example: Too 'good' detection rates!
In my project, I obtained in certain cases up to 97% correct detection rate. That is, indeed, an
impressive number. However, the emphasis lies on "certain cases" - not only in this thesis.
A non-technically oriented user of such a product is tempted to put too much trust into these
kinds of high rates. Even if we have a stable lie-detector with 99%(!) correct detection, this still
means that one out of 100 persons will be judged incorrectly.

In our daily life, we do not have the natural skill to "see" who is deceptive, but some biological
and psychological features that enable us to estimate whether and to what degree someone is
lying. This is exactly what I have exploited in this project. In fact, even the fuzzy approach is
similar to the human way of categorizing someone's deceptiveness in soft terms like "She lies
seldom" or "He is often deceptive", instead of hard labeling like "She is truthful" or "He is
deceptive ".

After all, I am convinced that no lie-detector - even if it could work easily with different
polygraph formats, and is perfect in technical terms - can ever be constructed with such a high
detection rate63 that one coidd judge a person without any witnesses or other additional
inquiries. We may only use a lie-detector as a helpful "objective" tool, but never as an ultimate
decision maker.

My initial goal was to be aware of this responsibilty and not to lose the global perspective while
dealing with technical details. I hope I have accomplished this.

I also hope for an environment where we do not judge people who hurt us, but do forgive them.
In that case, we ourselves are forgiven too, since all of us deserve to be judged, don't we!

Ramin Djamschidi
San Jose, September 1994.

^3See e.g. chapter 4.3. for "Outlier effect" and "Performance limitations".

4-106

REFERENCES

[Bezdekl981] Bezdek, James C, Pattern Recognition with Fuzzy Objective Function
Algorithm. Plenum Press, New York and London.

[Bezdekl986] Bezdek, James C. and Siew, K. Chuah, GeneralizedK-Nearest Neighbor
Rules, Fuzzy Sets and Systems vol. 18.

[Bezdekl992] Bezdek, James C. and Pal, Sankar K., Fuzzy Models for Pattern
Recognition, Methods That Search for Structuresin data. IEEE Press, Piscataway, NJ.

[Bezdekl993] Bezdek, James C, A Review of Probabilstic, Fuzzy, and Neural Models for
Pattern Recognition, Journal of Intelligent and Fuzzy Systems, John Wiley & Sons. Inc.

[Dastmalchil993] Dastmalchi, Mitra, Feature Analysis of the Polygraph. Master's Project,
Dept. of Elect. Engr., San Jose State University, California.

[Dudal973] Duda, Richard O. and Hart, Peter E., Pattern Classification and Scene
Analysis, New York, NY, Wiley.

[Dunnl974] Dunn, J. C, A fuzzy relative of the ISODATA process and its use in detecting
compact well separated clusters. J. Cybernetics, vol. 3, no. 3.

[Cappsl992] Capps, Michael H. and Ansley, Norman, Numerical Scoring of Polygraph
Charts: What Examiners Really Do, in: Polygraph, 1992, 21, pp. 264-320.

[Choel992] Choe, Howon and Jordan, Jay B., On the Optimal Choice of Parameters in a
Fuzzy C-means Algorithm. IEEE International Conference on Fuzzy Systems, San Diego,
California.

[Jacobsl993] Jacobs, Ericjime Domain Features for The Fuzzy Set Classification of the
Polygraph Data. Master's project, Dept. of Elect. Engr., San Jose State University,
California.

[Johnsonl991] Johnson, Phillip E., Darwin on Trial. InterVarsity Press, Downers Grove.

[Joul993] Jou, Chi-Cheng, Supervised Learning in Fuzzy Systems: Algorithms and
Computational Capabilities. Second IEEE International Conference on Fuzzy Systems,
San Francisco, California.

[IIScorpl993] Bezdek, James C, Fuzzy Logic Inference Systems. A Five Day Short
Course, Inteligent Inference Systems Corp., San Francisco, California.

4-107

[Kellerl989] Keller, J.M., Gray, M.R. and Givens J.A., A Fuzzy K Nearest Neighbor
Algorithm. IEEE Trans, on Syst. Man. Cybernetics, vol SMC-15, no. 4.

[Layeghil 993,1] Layeghi, Shahab, Pattern Recognition of the Polygraph Using Fuzzy Set
Theory. Master's project, Dept. of Elect. Engr., San Jose State University, California.

[Layeghil993,2] Layeghi, Shahab, A Comparison of Fuzzy Logic Algorithms for Pattern
Recognition. Dept. of Elect. Engr., San Jose State University, California.

[Layeghil 994] Layeghi, Shahab, Polygraph Classification Project: A Brief Guide. Dept.
of Elect. Engr., San Jose State University, California.

[MathWorksl993] The MathWorks, Inc., The student Edition ofMATLAB, Englewood
Cliffs, NJ, Prentice Hall.

[Morrisl987] Morris, Henry M., Scientific Creationism. Master Books, El Cajan,
California.

[01senl983] Dale E., et. al., Recent developments in polygraph testing: A research review
and evaluation - A technical memorandum. Washington DC, US Government Printing
Office.

[Reidl966] Reid, John E. and Inbau, Fred E., Truth and Deception: The Polygraph ("Lie
Detector") TechniqueThe Williams & Wilkins Company, Baltimore, Md.

[Ruspinil969] Ruspini, Enrique H., A new approach to clustering, Information & Control
systems vol. 15No.l.

[Wang 1993] Wang, L. X., Mendel, J.M., Fuzzy Adaptive Filters, with application to
nonlinear channel equalization. IEEE Trans, on Fuzzy Systems, 1, no. 3.

[Wang 1994] Wang, L. X., Adaptive Fuzzy Systems and Control: Design and Stability
Analysis. Englewood Cliffs, NJ, Prentice Hall.

[Widrowl985] Widrow, B. and Stearns, S.D., Adaptive Signal Processing, Englewood
Cliffs, NJ., Prentice Hall.

[Zadehl965] Zadeh, Lotfi A, Fuzzy sets, Information and Control, vol. 8, pp. 338-332.

[Zadehl975] Zadeh, Lotfi A., Calculus of fuzzy restrictions, in: L. A. Zadeh, K. S. Fu,
K. Tanaka and M. Shimura, eds., Fuzzy Sets and Their Applications to Cognitive and
Decision Processes. Academic Press, New York, pp. 1-39.

[Zadehl970] Zadeh, Lotfi A. and Bellman, R.E., Decision-making in a fuzzy environment.
Managment Science, 17(4).

4-108

[Zimmermannl993] Zimmermann, HJ., Prinzipien, Werkzeuge, Potentiale, in: FUZZY
Technologien. VDI-Verlag, Düsseldorf, Germany.

4-109

Report No. DoDPI96-R-0002

Errors in the "Relevant Only" Data

San Jose State University
Department of Electrical Engineering

San Jose, CA 95106

December 19, 1995

Department of Defense Polygraph Institute
Fort McClellan, AL 36205

NON-DECEPTIVE DATA

KEY
•standard: CODE.011,012,013,021 022,023,031,032,033

"Index: error message in MATLAB reads,

»process
"Index exceeds matrix dimensions.

»Error in=>c:\users\ulka\non\extractf.m
on line 48—> start - begin© + 30 ."tines(first_channd,l);

»Error in=>c:\users\uDa\nonVprocess.m
on line 6»«>teature ■» extracrfTz, featurejist);"

»readi: CODE.Olc, .02c, .03c, .023, .033, .011, .021, .031, .013
contusing as to how to READ3 these files

***N/A: discs were unable to be processed

RAKrtra: CODE.041, .042. .043 processed as M

5-1

NEWS.XLS

NON-DECEPTIVE DATA

ERS SUB# CODE # OF FILES EXTRA FILES ERRORS
1 2 $$EACOWO standard* none none •
2 4 $$EAD5LX standard none none
3 6 $$EANWKF 13 0.005 none
4 8 $$EAOZD6 standard none none
5 9 $$EAQWB9 standard none none
6 11 $$EARKZ6 standard none none
7 12 $$EARJS0 standard none none
8 13 $$EA%KR9 standard none index** t3
9 15 $$EA%H#L standard none none
10 18 $$EB2IYL standard none none
11 22 $$EC4QN3 standard none none
12 26 $$EC7N7X standard none none
13 33 $$ECLMTU standard none none
14 34 $$ECMA%C standard none none
15 35 $$ECM7GX standard none none
16 36 $$ECMWB3 standard none none
17 40 $$EC#G20 standard none none
18 43 $$EC$O0F standard none none
19 44 $$ED805U standard none none
20 45 $$ED8LUI standard none none
21 46 $$ED9439 9 read3A N/A***
22 47 $$ED9TCX standard none none
23 50 $$EDBQR2 standard none none
24 53 $$EDCZYZ 12 extraAA none
25 59 $$EDPY4# standard none none
26 60 $$EDQCY9 standard none none
27 61 $$EDQ28X standard none none
28 62 $$EDQOCF standard none index t1
29 65 $$EDRKGO standard none none
30 66 $$EDRMU# standard none none
31 2 11a $$FZIMEU 13 .005, extra index t1a

2 11b $$FZISQ# standard none none
32 2 12 $$FZIT4L standard none none
33 2 14 $$FZJ52# standard none index t1
34 2 30 $$FZZN1Y 10 0.005 index t3
35 2 32 $$FZ#D6J 10 0.005 none
36 2 33 $$FZ#0HX 13 .005, extra div by zero t3
37 2 35 $$FZ$3A& standard none none
38 2 36 $$F#8CY9 11 .005..STR none
39 2 38 $$F#9FJL 10 0.005 index t2, t3
40 2 41 $$F#B6SC standard none none
41 2 42 $$F#B6C# standard none none
42 2 45 $$F#NMDX standard none index t1
43 2 47 $$F#NHQT standard none none
44 2 48 $$F#&7GC standard none index t3
45 2 51 $$F#QJTF standard none none
46 2 52 $$F#S0KR standard none none

5-2

NEWS.XLS

ERS SUB# CODE # OF FILES EXTRA FILES ERRORS
47 2 53 $$F#RRD5 standard none none
48 2 54 $$F#RYFR 12 extra index t3
49 2 55 $$F#SALQ 10 0.005 index t3
50 2 56 $$F$C#2# standard none none
51 3 2 $$F$D%YR standard none none
52 3 12 $$F$I41X 11 .005..STR none
53 3 25a $$F$IUY0 10 0.005 none

3 25b $$F$UI3X 11 .005, .STR none
54 3 31 $$F$WNSF standard none none
55 3 43 $$F%51&G 10 .STR index t1
56 3 46 $$F%5$UF standard none none
57 3 49 $$F%7K#0 standard none none
58 3 59 $$F%JAK6 standard none none

5-3

DECEPTIVE DATA

KEY
•standard: CODE.011,012,013,021 022,023,031,032,033

"Index: error message in MATLAB reads,

»process
"Index exceeds matrix dimensions.

»Error in—oc:\users\ulka\nonVextract£m
on line 48—> start - beginö) + 30 .*ftnes(first_channel,l);

»Error in—>c:\users\ulka\non\process jn
on line 6—>feature - extractffc feature JsO;"

©format files were unable to be read. Error message in DOS reads:
>format not linked
abnormal program termination

A*extra: CODE.041, .042, .043 processed as t4

AreadJ: CODE.Olc, .02c, .03c, .04c
confusing as to how to READ3 these files

5-4

DECEPTIVE DATA

ERS SUB# CODE # OF FILES EXTRA FILES ERRORS

1 1a i S$G3#SGD standard* none index** t3a

1b J &$EACLB6 standard none none

1c 5 &$G3$6HN standard none none

2 S ! S$EAN#XO standard none none

3 7 S$EAOQXV standard none none

4 10 S$EAQ%%U standard none none

5 14 $$EB0289 standard none none

6 16 $$EA%%MX standard none none

7 19 $$EB2WE$ standard none index t3

8 23 $$EC4%GO 11 .005, .STR format®

9 24 $$EC77GI standard none none

10 25 $$EC760R standard none none

11 27 $$ECIX9# standard none none

12 28 $$ECIVB0 standard none none

13 29 $$ECJHKO standard none none

14 30 $$ECJVSI standard none index t1,t2

15 31 $$ECJ#Z$ standard none index t3

16 32 $$ECLODC standard none none

17 37 $$ECXAPG standard none none

18 38 $$ECYCG0 standard none none

19 41 $$EC#$FA standard none index t3

20 42 $$EC$ANC standard none none

21 48 $$ED9$N# standard none none

22 51 $$EDB$S3 standard none none

23 52 $$EDCSRC standard none none

24 54 $$EDDBUX standard none none

25 55 $$EDCBSU standard none none

26 56 $$EDDHTI standard none none

27 58 $$EDP26U 12 extraAA index t1

28 63 $$EDQYMF standard none none

29 64 $$EDR3XI standard none none

30 67 $$EDS3ZL standard none none

31 2 1 $$FZ3Z5S standard none none

32 2 2 $$FZ3XG6 standard none none

33 2 5 $$FZ52G6 standard none none

34 2 6 $$FZ6&46 standard none none

35 2 8 $$FZ7B#C standard none none

36 2 9 $$FZ7GP# standard none none

37 2 10 $$FZIMEU 17 extra, .005, read3 * index t1

38 2 13 $$FZJ358 10 0.005 none

39 2 17 $$FZL9ZR 10 0.005 index t2

40 2 18 $$FZLBY& standard none none

41 2 21 $$FZMQ#C 10 0.005 none

42 2 22 $$FZMW$H 10 0.005 index t2

43 2 25 $$FZWQQC standard none index t1

44 2 26 $$FZW5T# standard none none
Y——
>45 2 27 SSFZYCM& 13 extra, .005 index t3

5-5

ERS SUB# CODE # OF FILES EXTRA FILES ERRORS

4ß 2 31 $$FZZR&C 12 extra index t2

57- 2 44 $$F#NC4B Standard none none

4ß 2 46 $$F#NGH3 10 0.005 none

{49 2 49 $$F#&KWF 10 0.005 none

•to 2 50 $$F#PUDW Standard none none

51 3 14 $$F$IK&0 Standard none none

52 3 16 $$F$RJK6 standard none none

53 3 36 $$F%3C19 Standard none none

54 3 40 $$F%4&C9 11 .005, .STR none

55 3 41 $$F%4V0U standard none none

56 3 54 $$F%I45# 11 .005, .STR index t1

57 3 62 $$F%L350 standard none none

58 3 66 $$F%LXJ& standard none none |

5-6

