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I. Introduction 

Polygraph examinations are the most widely used method to distinguish between truth and 

deception. In a Polygraph examination a person is connected to a special instrument 

called a Polygraph which records several physiological signals such as blood pressure, 

Galvanic Skin Response, and respiration. The subject is asked a set of questions by an 

examiner. By looking at these signals the examiner is able to determine the reactions of 

the subject to the questions and decide whether the person was truthful or deceptive in 

answering each question. The problem with human classification of Polygraph tests is that 

the outcome depends on the examiner's experience and personal opinion. Automatic 

scoring of Polygraph tests has been a subject of extensive research. Several methods for 

Polygraph classification have been studied which are mostly based on statistical 

classification techniques. 

In this study two main goals were presented. The first goal was finding appropriate 

features which have physiological basis. The second purpose was trying a new 

classification method based on fuzzy set theory. The advantage of using fuzzy logic is that 

the it does not simply assigns each input to one of the classes, but it gives the possibility of 

belonging of an input to each class. 

Digitized Polygraph data used in this project were collected from various police stations. 

The data files were organized according to the test format used and were decoded to 

ASCII format so they can be read by Matlab. Preprocessing and feature extraction 

routines were implemented in the Matlab language. Three sets of files were chosen, each 

one of them contained 50 deceptive and 50 non-deceptive files. These files are listed in 

Table 10 in Appendix A. A set of features were selected based on physiological reactions, 

and the feature vectors for every file in each set were found.   Different classification 

methods were studied and a Fuzzy K-nearest neighbor classifier was selected. 

Significance of each feature was examined according to the clustering and correct 

classification obtained by using that individual feature. Thirty features were selected as 

the final set of features and a subset of combinations of 2 to 4 of these features were 

examined to study the effects of combining the features on classification results. The 
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combination that produced the best classification for all three sets on the average was 
selected and the effects of changing the classifier parameters on classification was studied. 
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II. Polygraphs* 

A polygraph examination is the most popular method used to determine if an individual is 

being truthful or deceptive. During an examination, a subject is asked a series of questions 

and the physiological responses to the questions are recorded using a polygraph. The 

three physical responses currently obtained from a polygraph examinations are blood 

pressure, respiration, and skin conductivity. Polygraph charts are usually analyzed by a 

human interpreter for evidence of truth or deception; however, computer algorithms are 

now being used to verify results [1][2]. 

11.1. History 

The first attempt to use a scientific instrument in an effort to detect deception occurred 

around 1895 [3].   That was the year that Caesar Lombroso published the results of his 

experiments in which a hydrosphygmograph was used to measure the blood pressure-pulse 

changes of criminals in order to determine whether or not they were deceptive. Although 

the hydrosphygmograph was originally intended to be used for medical purposes, 

Lombroso found that it worked well for lie detection. Lombroso may have been the first 

to use a peak of tension test format. This was done by showing a suspect a series of 

photographs of children, one being the victim of sexual assault.   If the suspect did not 

react more to the victims picture than the pictures of the other children, Lombroso 

concluded that the suspect did not know what the victim looked like and therefore was not 

the alleged perpetrator. 

In 1914 Vittorio Benussi published his research on predicting deception by measuring 

recorded respiration tracings [4]. He found that if the length of inspiration were divide by 

the length of expiration, the ratio would be larger after lying than before lying and also 

before telling the truth than after telling the truth. In 1921 John A. Larson constructed an 

instrument capable of simultaneously recording blood pressure pulse and respiration 

during an examination [3][4]. Larson reported accurate results which prompted Leonarde 

Keeler to construct a better version of this instrument in 1926 [3][4]. 

* This section is exerpted from [17] 
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The use of galvanic skin response in lie detection began during the turn of the century. It's 

usefulness, however, did not become evident until the 1930's during which time several 
articles written by Father Walter G. Summers of Fordham University in New York [4]. 
In these articles he reports over 90 criminal cases in which examination using the galvanic 

skin response had all been successful and confirmed by confession or supplementary 
evidence  The usefulness of the galvanic skin response prompted Keeler to add an 

galvanometer to his polygraph. At the time of Keelers death in 1949, the Keeler 
Polygraph recorded blood pressure-pulse, respiration, and galvanic skin response [3]. 

II.2 Modern Test Formats 

The effectiveness of a polygraph examination is often the result of the test format that is 
used   A polygraph test format consists of an ordered combination of relevant questions 

about an issue, control questions that provide a physical response for comparison, and 
irrelevant questions that also provide a response or the lack of a response for comparison 
[1][4]   Three general types of test formats are in use today. These are Control Question 
Tests Relevant-Irrelevant Tests, and Concealed Knowledge Tests. Each of the general 
test formats may have a number of more specific variations. Each test consists of two to 
five charts containing a prescribed series of questions. The test format that is used in an 

examination is determined by the test objective [3][4]. 

The concealed knowledge test, also called peak of tension test, is used when facts about a 
crime are known only by the investigators and not by the public. In this case, a subject 
would not know the facts unless he or she was guilty of the crime. For example, if a gun 
was used in a crime and the public did not know the caliber, an examiner could ask a 
suspect if it was a 22 caliber, a 38 caliber, or a 9 mm. If the gun used was a 9 mm and 
the suspect was deceptive, a polygraph chart would probably indicate evidence of 

deception. 

A control question test is often used in criminal investigations. In this type of test a series 
of relevant, irrelevant, and control questions are asked. A relevant question is one which 
is specific to the crime being investigated. For example, - Did you steal the money?".   A 
control question is designed to make the subject feel uncomfortable. It is not specific to 
the crime being investigated however it may be related in an indirect way. A control 

3-5 



question that could follow the relevant question stated above is "Have you ever taken 
anything that did not belong to you?". The control questions are compared to the relevant 
questions and if the responses to the relevant questions are greater, the subject is usually 
classified as deceptive.   Irrelevant questions are used as buffers. Examples of irrelevant 

questions are "Are the lights in this room on?" or "Is today Monday?". 

Relevant-Irrelevant tests are usually used to test people trying to obtain security clearance 

or get a job  In this test, relevant questions are compared to irrelevant questions. Very 
few control questions are asked. The purpose of control questions in this test is to make 

sure that the subject is capable of reacting at all. 

II.3 Present Day Equipment 

The most popular polygraph machines today are the Reid Polygraph developed in 1945 
and the Axciton Systems computerized polygraph developed in 1989 [1][11]. The Reid 
polygraph scrolls a piece of paper under pens that record the biological signals. The 
Axciton polygraph digitizes physiological signals and uses a computer to process them. 
The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer 
based system for ranking the subject responses but allows printouts of the charts to be 
scored by hand the traditional way. Both machines record the same biological signals 
using standard methods. Blood pressure is measured by placing a standard blood pressure 
cuff on the arm over the brachial artery. Respiration is monitored by placing rubber tubes 

around the abdominal area and the chest of the subject. This results in two signals, an 
upper and lower respiratory signal. Skin conductivity is measured by placing electrodes 

on two fingers of the same hand. 
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III. Feature Extraction and Classification 

III.l Introduction 

The problem of Classification of Polygraph data like other pattern recognition problems 
can be considered of consisting of several main stages. Figure [1] shows these stages and 
the relationship between them. At the beginning data is preprocessed so that noise and 
redundancies are removed from data and feature extraction can be done more accurately. 

The next stage is feature extraction. In this step data is read and appropriate features are 

extracted from it. This is a very important step in all pattern recognition problems, 
because the purpose of pattern recognition is finding similarities in data that belong to the 
same class, and features are elements that represent these similarities. Therefore, a good 
set of features can lead to good classification whereas a satisfactory result cannot be 
achieved with an inappropriate set of features. Having a set of features, the next step is to 
use a method to classify data using these features. These steps as applied to Polygraph 
classification are described in more details in the following sections. 

POLYGRAPH CLASSIFICATION 

Data 
files Preprocessing 

Verified 
Classification 
Results 
from Police 

-3 Feature 
Extraction 

Classification Classification 
Results 

Comparison  £ 

vi/ 

Performance 
Measurement 

Figure 1 
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III.2. Preprocessing 

Polygraph data consists of signals from four different channels: galvanic skin response 
(GSR), blood pressure, higher respiration, and lower respiration. First blood pressure 
signal was decomposed into a high frequency component showing heart pulse, and a low 
frequency component showing blood volume. Derivative of the blood volume channel 
was taken and used as another channel. These six derived signals were detrended and 

filtered. For more details on preprocessing refer to [17]. 
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III.3. Feature Extraction 

In this step appropriate features are selected and extracted. Feature extraction is itself 
divided into several steps. Figure [2] shows different stages involved in feature extraction. 

By feature gathering we mean selecting features that might have useful information in 
them. Feature Combination is a special step in polygraph classification. In this step 
features derived for different questions in a test are combined to build a single feature, 
feature selection is a step in which a small number of features is selected from the main 

feature set to be used in final classifier section. 

! 

Preprocessed 
Data 

\ Feature 
Gathering 

\ Feature 
Combination —5 Feature 

Selection 
—} Feature 

Set -1 ) 

I 'EAT! [JRE EXTRACT ION 

Figure 2 
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III.3.1. Feature Gathering 

Features that possibly convey some information in them were selected and extracted in this 
stage. Literature about Polygraph were studied and several Polygraph examiners were 
interviewed to find out what had been done about this problem and what characteristics in 
a signal are used as indicators of truth or deception. In general features are divided into 
three main groups, time domain features, frequency domain features and correlation 
features. Time domain features are mostly standard characteristics like mean, standard 

deviation, median and so on. Some more specific time domain features were also added, 

such as the ratio between inhalation and exhalation. Auto Regressive parameters were 
also extracted and tried as features. To extract each feature for each question a time 
frame was considered that started with a specific delay after each question was asked and 
lasted for a specific amount of time. Different time frames were used for different 
channels because each channel represents a different physiological parameter. Frequency 
domain features include fundamental frequency, magnitude of power spectral density at 

fundamental frequency, coherency at fundamental frequency and so on. Figure 3 shows 

the feature gathering and the decisions that involved in this step. 

Input 
Files -=S What 

Files? -=> Preprocessing What 
Features? 

FEATURE GATHERING 

Frequency 
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Methods 
To Extract 
Features 

Feature 
Set 

I 
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Figure. 3 
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For every question in a test 93 features were selected and extracted . Also 6 Integrated 
Spectral Density features were used which directly compare each relevant question to the 

nearest control question. The total number of features derived for each test was : 

93x10+6x5 = 960 

This was repeated for all the tests in feature sets 1, 2 and 3. The results of each set were 

saved in a 960x100 matrix called the M matrix. 

For a detailed description of time domain features and frequency domain features refer 

respectively to [17] and [16]. 

III.3.2. Feature Combination 

As mentioned earlier each feature is extracted for all questions in a test, that is for 
relevant, irrelevant, and control questions. In a polygraph test responses to relevant 
questions are compared to responses to irrelevant and control questions. But in any test 
there are several questions of each type and many methods can be used to combine them. 
Figure [4] shows different methods to combine the features. It was decided not to use 
irrelevant questions in this study, because in a Controlled Question Polygraph Test 
comparison between the responses to relevant and control questions is the most important 
factor. For most of the features seven methods were tried to combine features of different 

questions in a test. For the last six features three ways to combine them were tried. These 
methods were finding the average, maximum and minimum of relevant-control pairs. The 
first 93 features combined in seven ways and six integrated spectral density features were 
combined in three ways so the total number of features at this stage was equal to: 

(93x7; + f6x3J = 669 
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FEATURE COMBINATION 
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m.3.3 Feature Selection 

Feature selection was done in two independent steps, reduction and combination. Figure 

[5] shows the relationship of these two steps. These two steps are explained m the 

following two sections. 
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m.3.3.1 Feature Selection (Reduction) 

The next step in our Feature Extraction was to reduce the number of features to a number 

so that a practical algorithm can be used to select the feature set from them. It was 

decided to bring down the number of features from 669 to 30 at this step. Two different 

methods were chosen to test the features one at time to find the best 30. The first method 

was using the KNN classifier to classify the data files using one feature at a time. It was 

decided to use a Fuzzy version of K-nearest neighbor algorithm. The value 5 was selected 

for the K because it seemed that it gave better results than the other values for 1 feature 

classification. Also a threshold of 0.5 was used to defuzzify the output of the classifier. 

Refer to the section on classification for the reason of choosing this classifier. The second 

method was using the scatter criterion is given below. 

J = (m1-m2)
2 (1) 

sl+s] 

mi = mean of class i, St = standard deviation of class i 

This criterion measures the distance between the means of the two classes, normalized 

over the sum of the variances. Therefore the more compactly the samples in each class re 

separated, the higher will be the value of J. 

The two methods were run on three sets of data. At this point a method was needed to 

choose the features. Different methods are possible for this step. The method that was 

followed is shown in figure [6] and explained below. 

At first the results of KNN and scatter criterions were averaged for 3 sets of data so that 

features that work well for all data sets would be selected. As mentioned in an earlier 

section for Basic features 1 to 93, 7 features and for the features 94 to 99, 3 features were 

derived. Because these features are derived from one basic feature and are strongly 

correlated, it was decided to choose only one from them. So the best feature from these 

sets of 3 or 7 was selected, and the results were sorted. 
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Two sets of 30 features were found using the above mentioned criterions. The next step 
was choosing 30 features from these 60. This was done by examining the tables and 
selecting the features that showed a good performance in both cases or had a special 

physical meaning. 

This set of features is the final set used for examining and selection. Table 1 in Appendix 
A shows these features with their corresponding meaning, channel used to derive the 

feature, and the method to combine the features for different questions. 
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Figure. 6 Feature Selection (Reduction) 
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m.3.3.2 Feature Selection (Combination) 

The number of features was reduced to 30 in the Feature Reduction step. This number 
should be further reduced because there is 100 samples in each data file, and using 30 
features in a classifier might give very good results for that particular data set, but it won't 
be able to generalize. At this step measuring the performance of individual features is not 
a very logical method. Because for example features 'A' and "B1 might be good features 
individually, but combining them might not necessarily give better results. Whereas 
feature |C that might not be a very good feature by itself might improve the classification 

if combined with feature 'A. 

Therefore the combinations of the features should be examined. Many methods are 
suggested to solve this problem. The most basic way is exhaustive search. That is trying 

all the combinations for these features. It is obvious that this is not practical when the 
number of features is not very small. For example choosing 10 or less features from a set 

of 30 and trying all the different combinations needs 

™=lr, 1(20-i)! 

computations. 

The method that was chosen was to start with all the combinations of two, find the best N 
ones among them, and use only these combinations to combine features in sets of 3. Then 

again find the best combinations of 3 and use them in combinations of 4 features. 

This procedure is continued until satisfactory results are gained or features are not 
improved by increasing the number of features. Figure [7] shows the algorithm for this 

step. 
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Figure 7. Feature Selection (Combination) 
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All pairwise combinations of the features were tried to see the classification results. The 
classifier used was Fuzzy K-nearest neighbor with a threshold of 0.5, and K=5. This was 
done for three sets of features. The results were sorted and 30 best combinations for each 
set were found. Also the results of classification for each combination for the 3 sets was 
averaged and the 30 combinations that gave best results on the average were found. 

These combinations are shown in Table 2 in Appendix A. 

It was decided to select 20 sets of pairwise combinations to use in combinations of 3. 

Results for sets 1-3 and Average were studied and combinations that showed a good 
result in one of the sets or had a good average were selected. Table 3 in Appendix A 

shows these combinations. 

The same steps were repeated to study the combinations of 3 and 4 features. The results 
are shown in Tables 4 and 6 in Appendix A. Because of time limitations it was decided 

not to go further from combinations of 4 features. 
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m.3.4 Discussion about the results: 

The classification results improved consistently by increasing the number of features from 

one to four. The features that showed the best result for the three sets were features {5, 

9, 21, 23}with 81 percent correct classification. These features represent Maximum Of 

GSR, Difference between Maximum and Minimum of High Cardio, Maximum of Lower 

Respiratory, and the Difference between Maximum and Minimum of Upper Respiratory. 

These features show approximately the same classification results for all three sets which 

is 81 percent. 

Other combinations of features also gave comparable results. For example (5,21, 23, 29} 

and {5, 11, 21, 23}, and (5, 10, 21, 23}. Note the repetition of {5, 21, 23}. Refer to the 

table 1 in Appendix A for a meaningful listing of the features. It is very notable that 

feature sets that show the best classification results has features that come from different 

channels. It can be concluded that signals from different physiological channels convey 

independent information, so that using features extracted from them improves the 

classification. 

Another point to notice is that data set three shows better classification results than the 

two other sets, 87 percent versus 81 percent for the sets one and two. The feature set that 

gives the best result for data set three is {9, 14, 19, 24}. This feature set gives 87.4 

percent correct classification for data set three. The feature set {5, 9, 21, 23} that gives 

the best classification on the average, has approximately the same results for all three sets, 

81 percent. The polygraph tests that were used in this project came from several sources 

and were done by different examiners that used slightly different methods. Fifty 

consecutive tests were used to build each data set. So it is possible that some 

characteristic exists in the deceptive files of data set three that results in better 

classification. This is a matter of future investigation. 
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III.4. Classification 

The classifier is the final stage in a pattern recognition system. The inputs to the classifier 

are usually a set of feature vectors. The classifier ordinarily assigns each input to one of 

the classes. There are many methods to design a classifier. The classifier could be 

designed after studying the distribution of samples of each class, or a learning 

classification algorithm can be implemented. We were not sure about the shape of 

clustering and the distribution of samples for deceptive and non deceptive classes, and it 

was possible that samples for one class cluster around more than one point in space. It 

was decided to use the K-nearest neighbor classifier* in this project because it does not 

explicitly use the distribution of the samples. 

One of the characteristics of the conventional classification methods is that they assign 

each input to one of the possible classes (crisp Classification) or find probability 

distributions of belongingnesses of the inputs to the classes. While the way that humans 

think and classify objects is fundamentally different. Each object can be considered to 

belong to more than one class at the same time, and there are degrees of belongingness for 

each class. This is the basic idea that is followed in Fuzzy Logic. It was decided to follow 

a Fuzzy Logic based classifier in this project, because the output will be the possibility of 

deception and a person will not be considered completely deceptive or non deceptive. 

Conventional K-nearest neighbor algorithm and a Fuzzy version of it are described in the 

following two sections. 

* We are indebted to Professor R. Duda for suggesting KNN classifier. 
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m.4.1. K-Nearest Neighbor Algorithm 

K-Nearest neighbor algorithm is a supervised classification method. There is no need for 

the training or adjusting the classifier. A set of labeled input samples is given to the 
classifier. When a new sample is given to the system, it finds its K nearest neighboring 

samples, and assigns this sample to the class that the majority of the neighbors belong to. 
K could be any positive integer. When K is set to 1, the algorithm is called the nearest 
neighbor algorithm. In this case each new sample is assigned to the class of its nearest 
neighbor. If K is greater than 1, it is possible that there is no majority class. To remove 
this tie, the sum of the distances of the new sample to its neighbors in each class is 
computed and the sample is assigned to the class that has the minimum distance. The 
main advantage of using this method is that the samples of each class are not needed to 
cluster in a pre specified shape. For example for a two class classification, the K-nearest 
neighbor classifier can still give very good results if the samples of each class are clustered 
in two distinct points in the space. The algorithm for the K nearest neighbor is shown in 
figure 8. It is supposed that C is the number of classes, K is the number of neighbors in 
KNN, x,. x,. is the \th labeled sample and y is the input to be classified. 
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Figure 8. K Nearest Neighbor Algorithm 
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III.4.2. Fuzzy K Nearest Neighbor Algorithm 

The fuzzy K nearest neighbor algorithm uses the same idea of conventional K nearest 
neighbor algorithm, that is finding the K samples that are closest to sample to be classified. 
But there is a conceptual difference in classification. When fuzzy classification is used, the 

input is not assigned to a single class. Instead, the degree of belongingness of the input to 
each class is determined by the classifier. By using this method more information is 
obtained about the input. For example if the result of classification determines 
membership of an input to class A is 0.9 and to class B is 0.1, it means the input belongs 
to class A with a very good possibility. But if the membership to class A is 0.55 and to 
class B is 0.45, it means that we cannot be very sure about the classification of the input. 
If the crisp classifier is used, in both cases the input will be assigned to class A and no 

further information is obtained. 

Refer to [14, 15] for more detailed discussions about fuzzy K nearest neighbor algorithms. 
The flowchart for a fuzzy K nearest neighbor classifier is drawn in figure 9. 

The first step in the fuzzy K nearest neighbor algorithm is the same as first step in crisp 

classifier. In both cases K nearest neighbors of the input are found. While in crisp 
classifier the majority class of the neighbors is assigned to the input, in Fuzzy classifier 
membership of the input to each class should be found. In order to do so the membership 
vector of each sample is combined to obtain the membership vector of the input. If the 

samples are crisply classified, membership vectors should be assigned to them. One 
method to do so is to assign the membership of 1 to the class that it belongs to, and 
membership of 0 to other classes. Other methods assign different memberships to the 
samples according to its distance from the mean of the class, or the distances from the 

nearby samples of its own class and the other classes. 

When the membership vectors of the labeled samples are specified, they are combined to 
find the membership vector of the unknown class. This procedure should be done in a 
way that samples that are closer to the input have more effect on the resultant membership 

function. The following formula uses the inverse distance to weigh the membership 
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functions, x is the input to be classified,x} is the j/A nearest neighbor and uv is the 

membership of the ]th nearest neighbor of the input in class i. D(x,y) is a distance measure 

between the vectors x and y which could be the Euclidean distance. 

^(l/Dfx.x^) 
«, (x) = ^ — 

j^a/Dfx.xj)^) 

m is a parameter that changes the weighing effect of the distance. When m »1, all the 
samples will have the same weight. When m approaches 1, the nearest samples have much 

more effect on the membership value of the input. 
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III.4.3. Methods and Discussion: 

As mentioned in an earlier section the classifier was needed to compare the effectiveness 

of single features and to choose the combinations of the features that gave the best 

classification results. Therefore, the classifier was selected and used before the final 

feature set was determined. The classifier might change the results of the classification 

and finding the best classifier is not a trivial task. For example using the value of 10 for K 

may change the set of 30 best features that was found by using K = 5. 

It is not practical to try all different cases for different classifiers and different parameters 

of classifiers, so it was decided to use a classifier with fixed parameters up to the point 

that final set of features were selected. The classifier as mentioned earlier was a Fuzzy K- 

nearest neighbor with the following parameters: 

K = 5, 

m = 2, 

Defuzzification threshold = 0.5; 

It should be noted that in order to save computation time throughout this project, each set 

of files was randomly broken into a training and a testing set. Each file in the testing set 

was classified using the labeled files in training set. Each experiment was repeated 20 

times, and the results were averaged. The number of files that were used for training and 

testing were accordingly 75 and 25. In the last stage of experiments after the final feature 

set had been fixed, instead of randomly selecting testing and training files, one file was 

kept for testing each time and the experiment was repeated 100 times changing the test 

file. 

After the final feature set was selected (Refer to the section on Feature Extraction), 

different values for K were tried on fuzzy and crisp classifier to compare the two 

classifiers and find the best parameters. In addition to percentage of correct classification 

a measure of performance was also used which is explained below. 

The measure that is used to compare the performance of fuzzy classifier is the root mean 

square of the distances between the output of the classifier and the correct class. The 

correct ouput of the classifer should be 0 for non-deceptive cases and 1 for the deceptive 
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ones. For example if for a deceptive sample the classifier output is 0.8, 0.2 is the distance 

between the output and the correct class. The same measure is used for the crisp 
classifier. In the case of the crisp classifier the distance is always 0 for correct 

classification and 1 for incorrect classification. 

For the fuzzy classifier the threshold used for defuzzification was also changed to find the 
optimum value. Tables 7 and 8 in Appendix A show the results. The best classification on 

the average over three sets is obtained using the fuzzy classifier with K = 6, and threshold 
= 0.6 . Using this values correct classification of 81.6 percent was achieved. The best 

result using the crisp classifier was 80.6 percent which was obtained using K=6. The 
performance measures for the fuzzy and crisp classifiers were accordingly 0.3915 and 

0.4377 which shows fuzzy classifier has a better performance in this respect. 

One final experiment that was done is explained below. In a Polygraph examination a set 
of questions is repeated one to five times and the decision is made by considering the 
responses to all these charts. In this project each chart was classified separately. As the 
final experiment responses to all the charts in a Polygraph examination were combined and 

classified as deceptive or non-deceptive. The way they were combined was finding the 
majority class and assigning the case to that class. In the case that equal number of files 
classified as deceptive and non-deceptive, the membership function of the files was 
averaged and the case was classified according to this value. The classification results for 

all the files in sets 1 to 3 are shown in Table 9 in Appendix A. The number of cases in 
each set was 35. The number of misclassified cases in sets 1 to 3 are 5, 7, and 3, which 

correspond to correct classifications of 85.7, 80.0, and 91.4 percent. 
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IV. Conclusion and future work 

The set of four features that showed best classification results in this project were 
Maximum of GSR, Upper Respiration and Lower respiration signals, and the difference 

between the Maximum and Minimum of High Cardio signal. These are all very simple 
time domain features. The best classification was obtained using the fuzzy classifier with 
K = 6, and threshold = 0.6 . Using this values correct classification of 81.6 percent was 
achieved. By combining all the files in a Polygraph examination 85.7 percent correct 

classification was achieved on the average. 

There are several suggestions for the future work. First is to repeat this work with larger 

sets of data files and observe the generalizability of the feature sets obtained in this 
research. A possible way to improve the results is to change time frames used to extract 
each feature for every question. In this way the optimum time for obtaining a response 
could be found. Another suggestion is to try different methods for fuzzification and 
defuzzification of feature vectors to optimize the fuzzy classifier. 
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No. feature Description Channel Method 

1 lOmean mean GSR 1 

2 >10curve curve length GSR 2 

3 lOmed dif median of the derivative GSR 1 

4 lOmax min minimum subtracted from the maximum GSR 2 

5 lOmax maximum of the signal GSR 1 

6 lOmdif mean of derivative GSR 3 

7 20curve curve length High Cardio 1 

8 20ampcard amplitude of the peaks High Cardio 1 

9 20max min minimum subtracted from the maximum High Cardio 4 

10 20max maximum of the signal High Cardio 4 

11 20min minimum of the signal High Cardio 1 

12 30med dif median of the derivative Low Cardio 3 

13 30max maximum of the signal Low Cardio 1 

14 40mean mean Derivative of Low Cardio 1 

15 40max maximum of the signal Derivative of Low Cardio 1 

16 50curve curve length Lower Respiratory 6 

17 50ampr amplitude of the peaks Lower Respiratory 2 

18 50peaknumr number of the peaks Lower Respiratory 5 

19 50ie inhalation divided bv exhalation Lower Respiratory 5 

20 50max min minimum subtracted from the maximum Lower Respiratory 2 

21 50max maximum of the signal Lower Respiratory 6 

22 60max min minimum subtracted from the maximum Upper Respiratory 2 

23 60max maximum Upper Respiratory 3 

24 lOstd standard deviation GSR 2 

25 20std standard deviation High Cardio 1 

26 50std standard deviation Upper Respiratory 6 

27 20armodl auto regressive parameter High Cardio 7 

28 26psdcohl max cross spectral density High Cardio, Lower Respiratory 1 

29 lOisdl frequency of maximum integrated spectral 
difference of control-relevant pair 

GSR 1* 

30 20isdl                1 area under integrated spectral difference High Cardio 3* 

Methods: l=Difference of Averages, 2=Normalized Average, 3=Max-Max, 4=Min-Min, 
5=Max-Min, 6=Min-Max, 7=Max/Min, l*=Average of relevant-control pairs, 3*=Max of relevant- 
control pair. 

Table 1. Selected Features 
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Percentage of correct classification for 30 best combinations in set 1 

Percent correct Feature 1 Feature 2 

74.2000 8.0000 18.0000 

74.0000 10.0000 21.0000 

73.0000 5.0000 7.0000 

72.0000 24.0000 26.0000 

71.8000 23.0000 24.0000 

71.6000 4.0000 26.0000 

70.4000 25.0000 26.0000 

70.4000 18.0000 25.0000 

70.2000 24.0000 27.0000 

70.2000 9.0000 21.0000 

70.0000 5.0000 27.0000 

69.6000 11.0000 21.0000 

69.6000 9.0000 24.0000 

69.4000 11.0000 27.0000 

69.4000 5.0000 26.0000 

69.2000 8.0000 19.0000 

69.2000 5.0000 18.0000 

69.0000 25.0000 27.0000 

69.0000 9.0000 18.0000 

69.0000 5.0000 23.0000 

68.8000 24.0000 30.0000 

68.8000 18.0000 20.0000 

68.8000 17.0000 20.0000 

68.8000 4.0000 15.0000 

68.6000 22.0000 24.0000 
68.4000 6.0000 24.0000 
68.4000 1.0000 27.0000 
68.2000 15.0000 24.0000 

68.2000 9.0000 26.0000 

68.2000 5.0000    19.0000 

Table [2.1] Results of pairwise combinations of features 
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Percentage of correct classification for 30 best combinations in set 2 

Percent correct Feature 1 Feature 2 

74.4000 5.0000 23.0000 

74.4000 4.0000 27.0000 

74.2000 4.0000 15.0000 

74.0000 20.0000 24.0000 

73.6000 16.0000 24.0000 

73.2000 3.0000 27.0000 

72.8000 27.0000 30.0000 

72.6000 4.0000 30.0000 

72.6000 4.0000 7.0000 

72.4000 5.0000 25.0000 

72.2000 24.0000 30.0000 

72.2000 8.0000 27.0000 

72.2000 4.0000 17.0000 

72.2000 4.0000 16.0000 

72.0000 24.0000 27.0000 

72.0000 24.0000 25.0000 

72.0000 4.0000 20.0000 

71.8000 7.0000 23.0000 

71.8000 4.0000 10.0000 

71.2000 25.0000 27.0000 

70.8000 24.0000 26.0000 

70.8000 8.0000 22.0000 

70.6000 7.0000 27.0000 

70.6000 6.0000 27.0000 

70.4000 14.0000 21.0000 

70.4000 14.0000 20.0000 

70.4000 4.0000 8.0000 

70.2000 4.0000 24.0000 

70.0000 22.0000 27.0000 1 
1 70.0000 17.0000 | 24.0000 1 

Table [2.2] Results of pairwise combinations of features 
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Percentage of correct classification for 30 best combinations in set 3 

Percent correct Feature 1 Feature 2 

81.0000 1.0000 10.0000 

80.6000 9.0000 24.0000 

80.4000 10.0000 24.0000 

80.4000 4.0000 25.0000 

80.2000 4.0000 9.0000 

79.8000 5.0000 11.0000 

79.2000 17.0000 24.0000 

79.2000 1.0000 21.0000 

79.2000 1.0000 8.0000 

79.0000 1.0000 24.0000 

79.0000 1.0000 11.0000 

78.8000 4.0000 11.0000 

78.6000 4.0000 17.0000 

78.2000 24.0000 25.0000 

78.2000 1.0000 14.0000 

78.0000 1.0000 23.0000 

78.0000 1.0000 20.0000 

77.8000 23.0000 24.0000 

77.8000 1.0000 5.0000 

77.6000 19.0000 24.0000 

77.4000 11.0000 24.0000 

77.4000 5.0000 18.0000 

77.2000 4.0000 19.0000 

77.0000 4.0000 18.0000 

76.8000 4.0000 15.0000 

76.6000 5.0000 13.0000 

76.6000 4.0000 24.0000 

76.2000 4.0000 5.0000 

76.2000 1.0000      I 26.0000  | 

Table [2.3] Results of pairwise combinations of features 

3-A-6 



Percentage of correct classification for 30 best combinations in average 

Percent correct Feature 1 Feature 2 

73.2667 4.0000 15.0000 

72.8000 24.0000 26.0000 

72.6667 4.0000 17.0000 

72.6000 5.0000 23.0000 

72.2667 23.0000 24.0000 

72.0667 24.0000 30.0000 

71.9333 20.0000 24.0000 

71.8667 24.0000 27.0000 

71.4667 24.0000 25.0000 

71.4000 4.0000 26.0000 

71.0667 4.0000 10.0000 

70.9333 1.0000 8.0000 

70.9333 4.0000 23.0000 

70.6000 5.0000 11.0000 

70.6000 4.0000 24.0000 

70.5333 9.0000 24.0000 

70.4667 6.0000 24.0000 

70.4667 4.0000 25.0000 

70.4667 4.0000 19.0000 

70.4000 4.0000 30.0000 

70.3333 1.0000 23.0000 

70.0667 17.0000 24.0000 

70.0667 1.0000 24.0000 

70.0000 16.0000 24.0000 

69.9333 4.0000 9.0000 

69.8667 4.0000 20.0000 

69.8667 5.0000 7.0000 

69.8667 4.0000 7.0000 

69.8000 15.0000 24.0000 

69.8000 1.0000 21.0000 

Table [2.4] Results of pairwise combinations of features 
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4 15 
24 26 
4 17 
5 3 
23 24 
24 30 
20 24 
24 27 
24 25 
4 26 
1 10 
9 24 
10 24 
5 11 
17 24 
4 27 
16 24 
8 18 
10 21 
5 7 

Table [3]. 20 combinations of 2 features selected to combine in sets of 3 
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Percentage of correct classification for 30 best combinations in set 1 

Percent correct Feature 1 Feature 2 Feature 3 

79.4000 10.0000 21.0000 26.0000 

77.6000 5.0000 7.0000 23.0000 

77.6000 5.0000 23.0000 11.0000 

77.4000 5.0000 23.0000 21.0000 

76.4000 16.0000 24.0000 18.0000 

76.4000 5.0000 23.0000 19.0000 

75.8000 23.0000 24.0000 19.0000 

75.8000 23.0000 24.0000 15.0000 

75.8000 5.0000 23.0000 7.0000 

75.6000 5.0000 7.0000 22.0000 

75.6000 5.0000 7.0000 21.0000 

75.6000 5.0000 7.0000 16.0000 

75.4000 5.0000 7.0000 14.0000 

75.4000 5.0000 11.0000 10.0000 

75.2000 10.0000 21.0000 19.0000 

75.2000 8.0000 18.0000 6.0000 

75.2000 5.0000 23.0000 2.0000 

75.0000 10.0000 21.0000 16.0000 

75.0000 10.0000 21.0000 8.0000 

75.0000 5.0000 11.0000 18.0000 

75.0000 4.0000 26.0000 14.0000 

75.0000 5.0000 23.0000 29.0000 

75.0000 5.0000 23.0000 25.0000 

74.8000 10.0000 21.0000 9.0000 

74.6000 10.0000 21.0000 12.0000 

74.6000 5.0000 11.0000 23.0000 

74.6000 10.0000 24.0000 9.0000 

74.6000 5.0000 23.0000 10.0000 

74.6000 5.0000 23.0000 9.0000 

74.4000 5.0000 7.0000 19.0000 

Table [4.1] Results of combinations of 3 features 
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Percentage of correct classification for 30 best combinations in set 2 

Percent correct Feature 1 Feature 2 Feature 3 

79.8000 20.0000 24.0000 12.0000 

78.6000 24.0000 30.0000 19.0000 

78.6000 4.0000 15.0000 28.0000 

78.0000 24.0000 27.0000 19.0000 

77.8000 4.0000 17.0000    19.0000 

77.6000 8.0000 18.0000 4.0000 

77.4000 4.0000 27.0000 19.0000 

77.4000 5.0000 23.0000 21.0000 

77.2000 5.0000 23.0000 29.0000 

77.2000 4.0000 15.0000 27.0000 

77.0000 4.0000 27.0000 18.0000 

77.0000 4.0000 15.0000 21.0000 

76.6000 5.0000 7.0000 23.0000 

76.6000 20.0000 24.0000 3.0000 

76.4000 16.0000 24.0000 30.0000 

76.4000 4.0000 27.0000 25.0000 

76.4000 24.0000 27.0000 10.0000 

76.4000 23.0000 24.0000 30.0000 

76.2000 5.0000 23.0000 3.0000 

76.2000 4.0000 17.0000 2.0000 

76.2000 4.0000 15.0000 26.0000 

75.8000 5.0000 7.0000 15.0000 

75.8000 24.0000 30.0000 4.0000 

75.8000 5.0000 23.0000 28.0000 

75.6000 4.0000 27.0000 15.0000 

75.6000 24.0000 27.0000 26.0000 

75.6000 24.0000 27.0000 1.0000 

75.6000 20.0000 24.0000 25.0000 

75.6000 24.0000 30.0000 16.0000 

75.4000 4.0000 15.0000 8.0000 

Table [4.2] Results of combinations of 3 features 
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Percentage of correct classification for 30 best combinations in set 3 

Percent correct Feature 1 Feature 2 Feature 3 

85.2000 9.0000 24.0000 19.0000 

85.0000 9.0000 24.0000 22.0000 

84.2000 16.0000 24.0000 19.0000 

84.0000 17.0000 24.0000 9.0000 

84.0000 4.0000 26.0000 17.0000 . 

83.6000 4.0000 26.0000 11.0000 

83.6000 4.0000 17.0000 9.0000 

83.6000 24.0000 26.0000 17.0000 

83.6000 4.0000 15.0000 9.0000 

83.4000 5.0000 11.0000 24.0000 

83.4000 9.0000 24.0000 21.0000 

83.4000 9.0000 24.0000 17.0000 

83.4000 9.0000 24.0000 14.0000 

83.4000 4.0000 26.0000 9.0000 

83.2000 16.0000 24.0000 1.0000 

83.2000 4.0000 17.0000 26.0000 

83.2000 24.0000 26.0000 9.0000 

83.0000 9.0000 24.0000 12.0000 

83.0000 9.0000 24.0000 6.0000 

83.0000 4.0000 17.0000 11.0000 

82.8000 9.0000 24.0000 18.0000 

82.8000 23.0000 24.0000 1.0000 

82.8000 4.0000 17.0000 24.0000 

82.8000 4.0000 17.0000 8.0000 

82.6000 17.0000 24.0000 19.0000 

82.4000 17.0000 24.0000 8.0000 

82.4000 9.0000 24.0000 2.0000 

82.4000 5.0000 23.0000 29.0000 

82.2000 5.0000 23.0000 10.0000 

82.0000 9.0000 24.0000 26.0000 . 

Table [4.3] Results of combinations of 3 features 
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Percentage of correct classification for 30 best combinations on average 

Percent correct Feature 1 Feature 2 Feature 3 

78.2000 5.0000 23.0000 29.0000 

77.6000 5.0000 7.0000 23.0000 

77.3333 5.0000 23.0000 21.0000 

76.6000 5.0000 23.0000 10.0000 

76.0000 23.0000 24.0000 15.0000 

75.8667 5.0000 7.0000 21.0000 

75.8667 5.0000 23.0000 7.0000 

75.6667 5.0000 23.0000 11.0000 

75.6000 8.0000 18.0000 4.0000 

75.5333 4.0000 17.0000 19.0000 

75.5333 5.0000 11.0000 17.0000 

75.5333 24.0000 26.0000 14.0000 

75.4667 5.0000 23.0000 28.0000 

75.4667 4.0000 15.0000 26.0000 

75.3333 17.0000 24.0000 19.0000 

75.3333 5.0000 23.0000 25.0000 

75.2000 5.0000 7.0000 17.0000 

75.2000 4.0000 15.0000 23.0000 

75.0000 5.0000 23.0000 17.0000 

74.9333 5.0000 23.0000 3.0000 

74.8667 4.0000 26.0000 15.0000 

74.8000 23.0000 24.0000 19.0000 

74.8000 5.0000 23.0000 14.0000 

74.8000 5.0000 23.0000 1.0000 

74.8000 24.0000 26.0000 25.0000 

74.7333 24.0000 30.0000 19.0000 

74.7333 5.0000 23.0000 19.0000 

74.7333 5.0000 23.0000 9.0000 

74.6667 5.0000 7.0000 22.0000 

1 74.6667 4.0000 26.0000 19.0000 

Table [4.4] Results of combinations of 3 features 
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4 17 26 
5 23 29 
9 19 24 
4 5 9 
5 10 23 
5 21 23 
4 8 18 
19 24 30 
5 7 23 
19 23 24 
9 14 24 
4 15 28 
5 11 17 
4 19 17 
5 23 24 
5 7 21 
5 11 23 
14 24 26 
10 21 26 
4 11 26 

Table [5]. 20 combinations of 3 features selected to combine in sets of 4 
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Percentage of correct classification for 30 best combinations in set 1 

Percent correct Feature 1 Feature 2 Feature 3 Feature 4 

81.0000 5.0000 21.0000 23.0000 9.0000 

80.6000 5.0000 7.0000 23.0000 6.0000 

80.2000 5.0000 21.0000 23.0000 11.0000 

79.6000 5.0000 21.0000 23.0000 10.0000 

79.4000 5.0000 7.0000 23.0000 12.0000 

79.4000 5.0000 10.0000 23.0000 21.0000 

79.0000 5.0000 7.0000 23.0000 28.0000 

79.0000 5.0000 7.0000 23.0000 19.0000 

79.0000 5.0000 21.0000 23.0000 26.0000 

78.8000 5.0000 11.0000 23.0000 7.0000 

78.6000 5.0000 21.0000 23.0000 12.0000 

78.4000 5.0000 21.0000 23.0000 15.0000 

78.4000 5.0000 10.0000 23.0000 8.0000 

78.0000 5.0000 11.0000 23.0000 21.0000 

78.0000 5.0000 7.0000 23.0000 20.0000 

78.0000 5.0000 7.0000 23.0000 14.0000 

77.8000 5.0000 7.0000 23.0000 2.0000 

77.8000 5.0000 21.0000 23.0000 28.0000 

77.8000 5.0000 21.0000 23.0000 6.0000 

77.8000 5.0000 21.0000 23.0000 3.0000 

77.8000 5.0000 23.0000 29.0000 26.0000 

77.8000 5.0000 23.0000 29.0000 22.0000 

77.6000 10.0000 21.0000 26.0000 2.0000 

77.6000 5.0000 7.0000 23.0000 22.0000 

77.6000 5.0000 10.0000 23.0000 19.0000 

77.6000 5.0000 23.0000 29.0000 19.0000 

77.6000 5.0000 23.0000 29.0000 1.0000 

77.4000 10.0000 21.0000 26.0000 9.0000 

77.4000 5.0000 11.0000 23.0000 10.0000 

77.4000 5.0000 11.0000 23.0000 8.0000 

Table [6.1] Results of combinations of 4 features 
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Percentage of correct classification for 30 best combinations in set 2 

Percent correct Feature 1 Feature 2 Feature 3 Feature 4 

81.0000 5.0000 23.0000 29.0000 14.0000 

79.8000 5.0000 10.0000 23.0000 21.0000 

79.6000 5.0000 21.0000 23.0000 11.0000 

79.4000 14.0000 24.0000 26.0000 19.0000 

79.4000 5.0000 21.0000 23.0000 9.0000 

79.2000 5.0000 21.0000 23.0000 13.0000 

79.0000 5.0000 11.0000 23.0000 3.0000 

79.0000 5.0000 23.0000 29.0000 21.0000 

78.8000 5.0000 23.0000 29.0000 6.0000 

78.6000 4.0000 19.0000 17.0000 25.0000 

78.6000 5.0000 21.0000 23.0000 10.0000 

78.4000 4.0000 19.0000 17.0000 6.0000 

78.4000 5.0000 23.0000 29.0000 19.0000 

78.2000 5.0000 11.0000 23.0000 25.0000 

78.2000 5.0000 11.0000 23.0000 6.0000 

78.2000 4.0000 15.0000 28.0000 27.0000 

78.2000 5.0000 7.0000 23.0000 11.0000 

78.2000 19.0000 24.0000 30.0000 11.0000 

78.0000 5.0000 21.0000 23.0000 27.0000 

77.8000 19.0000 24.0000 30.0000 23.0000 

77.8000 19.0000 24.0000 30.0000 16.0000 

77.8000 5.0000 10.0000 23.0000 11.0000 

77.6000 4.0000 19.0000 17.0000 3.0000 

77.6000 5.0000 7.0000 23.0000 28.0000 

77.4000 14.0000 24.0000 26.0000 20.0000 

77.4000 5.0000 21.0000 23.0000 30.0000 

77.2000 5.0000 11.0000 23.0000 8.0000 

77.2000 4.0000 19.0000 17.0000 11.0000 

77.2000 5.0000 7.0000 23.0000 26.0000 

77.2000 5.0000 21.0000 23.0000    | 12.0000 

Table [6.2] Results of combinations of 4 features 
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Percentage of correct classification for 30 best combinations in set 3 

Percent correct 
87.4000 
87.2000 
87.0000 
86.8000 
86.6000 
86.6000 
86.4000 
86.4000 
86.2000 
86.2000 
86.2000 
86.2000 
86.0000 
86.0000 
85.8000 
85.8000 
85.6000 
85.6000 
85.6000 
85.6000 
85.6000 
85.4000 
85.4000 
85.2000 
85.2000 
85.0000 
85.0000 
85.0000 
84.8000 
84.8000 

Feature 1 
9.0000 
9.0000 
9.0000 
9.0000 
5.0000 
9.0000 
9.0000 
4.0000 
4.0000 
4.0000 
9.0000 
9.0000 
9.0000 
9.0000 
9.0000 
4.0000 
5.0000 
5.0000 
9.0000 
9.0000 
9.0000 
9.0000 
5.0000 
4.0000 
9.0000 
5.0000 
9.0000 
4.0000 
4.0000 
5.0000 

14.0000 
19.0000 
19.0000 
21.0000 
19.0000 
19.0000 
17.0000 
11.0000 
8.0000 
19.0000 
19.0000 
19.0000 
19.0000 
19.0000 
17.0000 
7.0000 
7.0000 
19.0000 
19.0000 
19.0000 
14.0000 
21.0000 
19.0000 
19.0000 
11.0000 
19.0000 
17.0000 
11.0000 
21.0000 

Feature 2     I Feature 3       I Feature 4 
19.0000 24.0000 

24.0000 
24.0000 
24.0000 
23.0000 
24.0000 
24.0000 
26.0000 
26.0000 
18.0000 
24.0000 
24.0000 
24.0000 
24.0000 
24.0000 
26.0000 
21.0000 
21.0000 
24.0000 
24.0000 
24.0000 
24.0000 
23.0000 
17.0000 
24.0000 
17.0000 
24.0000 
26.0000 
26.0000 
23.0000 

14.0000 
19.0000 
11.0000 
18.0000 
29.0000 

21.0000 
18.0000 
24.0000 
9.0000 
22.0000 
6.0000 
12.0000 
10.0000 
26.0000 
9.0000 
16.0000 
8.0000 
8.0000 
5.0000 
1.0000 
4.0000 
1.0000 
10.0000 
4.0000 
4.0000 
2.0000 
8.0000 
9.0000 
22.0000 

16.0000 

Table [6.3] Results of combinations of 4 features 
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Percentage of correct classification for 30 best combinations on average 

Percent correct Feature 1 Feature 2 Feature 3 Feature 4 

81.0667 5.0000 21.0000 23.0000 9.0000 

79.9333 5.0000 23.0000 29.0000 21.0000 

79.8667 5.0000 21.0000 23.0000 11.0000 

79.6000 5.0000 10.0000 23.0000 21.0000 

79.2667 5.0000 23.0000 29.0000 19.0000 

79.1333 5.0000 21.0000 23.0000 10.0000 

79.0667 5.0000 23.0000 29.0000 14.0000 

79.0000 14.0000 24.0000 26.0000 19.0000 

78.9333 5.0000 7.0000 23.0000 12.0000 

78.8667 5.0000 21.0000 23.0000 22.0000 

78.8667 5.0000 7.0000 23.0000 28.0000 

78.7333 5.0000 7.0000 23.0000 6.0000 

78.6667 5.0000 21.0000 23.0000 7.0000 

78.5333 5.0000 21.0000 23.0000 1.0000 

78.4667 5.0000 23.0000 29.0000 1.0000 

78.4000 5.0000 7.0000 21.0000 8.0000 

78.4000 5.0000 7.0000 23.0000 26.0000 

78.2667 5.0000 7.0000 23.0000 11.0000 

78.2000 5.0000 7.0000 23.0000 22.0000 

78.2000 5.0000 23.0000 29.0000 28.0000 

78.1333 5.0000 11.0000 23.0000 10.0000 

78.1333 5.0000 10.0000 23.0000 25.0000 

78.0667 5.0000 7.0000 23.0000 16.0000 

78.0000 5.0000 7.0000 23.0000 20.0000 

77.8667 5.0000 10.0000 23.0000 29.0000 

Table [6.4] Results of combinations of 4 features 
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k Correct 
classification 

Performance 
Index 

1 73 0.5196 

2 74 0.5099 

3 77 0.4796 

4 77 0.4796 

5 82 0.42 

6 81 0.4359 

7 76 0.4899 

8 80 0.4472 

9 79 0.4583 

10 79 0.4583 

Table[7.1] Classification results with changing K for the crisp classifier for set 1 

k Correct 
classification 

Performance 
Index 

1 74 0.5099 

2 74 0.5099 
3 77 0.4796 
4 77 0.4796 
5 74 0.5099 
6 76 0.4899 
7 76 0.4899 
8 75 0.5000 
9 78 0.4690 
10 78 0.4690 

Table[7.2] Classification results with changing K for the crisp classifier for set 2 
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k Correct 
classification 

Performance Index 

1 79 0.4583 
2 79 0.4583 
3 81 0.4359 
4 84 0.4000 
5 83 0.4123 
6 85 0.3873 
7 81 0.4359 
8 81 0.4359 
9 82 0.4243 
10 82 0.4243 

Table[7.3] Classification results with changing K for the crisp classifier for set 3 

k Correct 
classification 

Performance 
Index 

1 75.3333 0.4959 
2 75.6667 0.4927 
3 78.3333 0.4650 
4 79.3333 0.4531 
5 79.6667 0.4474 
6 80.6667 0.4377 
7 77.6667 0.4719 
8 78.6667 0.4610 
9 79.6667 0.4505 
10 79.6667 0.4505 

Table[7.4] Average classification results with changing K for the crisp classifier 
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percent classification performanc 
e index 

k\ Threshold 0.3 0.4 0.5 0.6 0.7 0.8 
1 73 73 73 73 73 73 0.5196 

2 77 75 73 74 72 73 0.4267 
3 75 74 77 75 73 69 0.4261 

4 75 74 76 77 76 69 0.4157 

5 74 74 81 79 76 73 0.4061 

6 69 74 78 79 76 74 0.3993 
7 70 74 77 81 77 72 0.3980 
8 70 75 79 79 79 72 0.3977 

9 69 72 78 80 79 71 0.3971 
10 68 73 78       79 79 70 0.3978 

Table[8.1] Classification results for the fuzzy classifier for set 1 

percent classification performance 
index 

k \ Threshold 0.3 0.4 0.5 0.6 0.7 0.8 
1 74 74 74 74 74 74 0.5099 
2 72 75 74 77 78 77 0.4328 

3 73 75 79 79 77 73 0.4316 
4 73 75 79 76 76 72 0.4262 
5 71 76 76 78 77 74 0.4176 
6 72 73 76 79 75 72 0.4164 
7 71 73 79 79 77 70 0.4092 
8 69 74 78 80 77 70 0.4099 
9 73 75 80 79 77 70 0.4059 
10 72 73 81 79 76 72 0.4004 

Table[8.2] Classification results for the fuzzy classifier for set 2 
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percent classification performance 
index 

k \ Threshold 0.3 0.4 0.5 0.6 0.7 0.8 
1 79 79 79 79 79 79 0.4583 
2 73 76 79 84 84 84 0.3991 
3 72 75 81 85 85 82 0.3862 
4 75 78 84 86 86 83 0.3704 
5 74 80 83 86 86 84 0.3635 
6 75 82 85 87 85 83 0.3588 
7 74 80 82 84 84 82 0.3605 
8 73 78 83 84 84 81 0.3638 
9 73 79 83 84 85 81 0.3625 
10 73 80 83 84 85 82 0.3615 

Table[8.3] Classification results for the fuzzy classifier for set 3 

percent classification performanc 
e index 

k \ Threshold 0.3 0.4 0.5 0.6 0.7 0.8 
1 75.33 75.33 75.33 75.33 75.33 75.33 0.4959 
2 74 75.33 75.33 78.33 78 78 0.4195 
3 73.33 74.67 79 79.67 78.33 74.67 0.4146 
4 74.33 75.67 79.67 79.67 79.33 74.67 0.4041 
5 73 76.67 80 81 79.67 77 0.3957 
6 72 76.33 79.67 81.67 78.67 76.33 0.3915 
7 71.67 75.67 79.33 81.33 79.33 74.67 0.3892 
8 70.67 75.67 80 81 80 74.33 0.3905 
9 71.67 75.33 80.33 81 80.33 74 0.3885 
10 71 75.33 80.67 80.67 80 74.67 0.3866 

Table[8.3] Average classification results with for the fuzzy classifier 
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File Membership Defuzzified Result 
1.0000 0.2736 0 
2.0000 0.3339 0 
3.0000 0.5397 0 0 

4.0000 0.5450 0 
5.0000 0.7423 1.0000 
6.0000 0.1732 0 0 

7.0000 0.8901 1.0000 
8.0000 1.0000 1.0000 1      Misclassified 

9.0000 0.5376 0 
10.0000 0.1742 0 
11.0000 0.4366 0 0 

12.0000 0.3458 0 
13.0000 0.5145 0 
14.0000 0.5178 0 0 

15.0000 0.1016 0 
16.0000 0 0 
17.0000 0 0 0 

18.0000 0.1334 0 0 

19.0000 0 0 
20.0000 0 0 
21.0000 0.2923 0 0 

22.0000 0 0 
23.0000 0 0 
24.0000 0.1607 0 0 

25.0000 0 0 
26.0000 0.4421 0 
27.0000 1.0000 1.0000 0 

28.0000 0.3307 0 
29.0000 0.0583 0 
30.0000 0.4965 0 0 

31.0000 0.3505 0 
32.0000 0.1181 0 
33.0000 0.2101 0 0 

Table [9.1] Classification of the files of set 1 
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File          Membership    Defuzzified Result 
34.0000          0.5970                      0 
35.0000                      0                      0 
36.0000          0.1193                      0 0 

37.0000          0.3174                      0 
38.0000          0.8117          1.0000 

39.0000          0.0997                      0 0 

40.0000          0.1889                      0 
41.0000          0.4215                      0 
42.0000          0.1635                      0 0 

43.0000          0.6474          1.0000 
44.0000                      0                      0 
45.0000          0.5495                      0 0 

46.0000          0.1115                      0 0 

47.0000                      0                      0 
48.0000          0.3986                      0 
49.0000                      0                      0 
50.0000                      0                      0 0 

51.0000          0.6709          1.0000 
52.0000          1.0000          1.0000 
53.0000          0.5297                      0 1 

54.0000          0.7245          1.0000 
55.0000          0.9200          1.0000 
56.0000          1.0000          1.0000 1 

57.0000           0.9105          1.0000 
58.0000          0.9398          1.0000 
59.0000          0.5657                      0 1 

60.0000          0.8968          1.0000 
61.0000          1.0000          1.0000 
62.0000          0.2793                      0 
63.0000          0.1088                      0 0      Misclassified 

64.0000          0.6245          1.0000 
65.0000          0.8643          1.0000 
66.0000          0.5054                      0 1 

Table [9.1] Continued 
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File          Membership    Defuzzified Result 
67.0000          0.8498          1.0000 
68.0000          0.6969          1.0000 
69.0000          0.8397          1.0000 l 

70.0000          0.2901                      0 
71.0000          0.8291          1.0000 
72.0000          0.3982                      0 0      Misclassified 

73.0000          1.0000          1.0000 
74.0000          0.2463                      0 
75.0000          0.8043          1.0000 1 

76.0000          0.6676          1.0000 
77.0000          1.0000          1.0000 
78.0000          1.0000          1.0000 1 

79.0000          1.0000          1.0000 
80.0000          0.7538          1.0000 
81.0000          1.0000          1.0000 1 

82.0000          1.0000          1.0000 
83.0000          0.8378          1.0000 
84.0000          1.0000          1.0000 1 

85.0000          0.8926          1.0000 
86.0000          0.5448                      0 
87.0000          0.5751                      0 0      Misclassified 

88.0000          0.8273          1.0000 
89.0000          0.2945                      0 
90.0000          0.9110          1.0000 1 

91.0000          1.0000          1.0000 
92.0000          1.0000          1.0000 
93.0000                      0                      0 1 

94.0000          0.2887                      0 
95.0000          0.2079                      0 
96.0000          0.5793                      0 0       Misclassified 

97.0000          1.0000          1.0000 
98.0000          0.7971          1.0000 
99.0000          0.8708          1.0000 1 

100.0000          1.0000          1.0000 1 

Table [9.1] Continued 
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File Membership Defuzzified Result 
1.0000 0.2579 0 
2.0000 0.1307 0 
3.0000 0 0 0 

4.0000 0.2652 0 
5.0000 0.4345 0 
6.0000 0.1175 0 0 

7.0000 1.0000 1.0000 
8.0000 0.7086 1.0000 1         Misclassified 

9.0000 0.2856 0 
10.0000 0.2745 0 
11.0000 0.3056 0 0 

12.0000 0.2720 0 
13.0000 0.5019 0 
14.0000 0.8871 1.0000 0 

15.0000 0.0912 0 
16.0000 0 0 
17.0000 0 0 0 

18.0000 0.8334 1.0000 1      Misclassified 
19.0000 0 0 
20.0000 0 0 
21.0000 0.5483 0 0 

22.0000 0 0 
23.0000 0 0 
24.0000 0.1535 0 0 

25.0000 0.4955 0 
26.0000 0.1013 0 
27.0000 1.0000 1.0000 0 

28.0000 0.3788 0 
29.0000 0.1638 0 
30.0000 0.0905 0 0 

31.0000 0 0 
32.0000 0.1431 0 
33.0000 0.0937 0 0 

Table [9.2] Classification of the files of set 2 
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File Membership     Defuzzified 
34.0000 
35.0000 
36.0000 

37.0000 
38.0000 
39.0000 

40.0000 
41.0000 
42.0000 

43.0000 
44.0000 
45.0000 

46.0000 

47.0000 
48.0000 
49.0000 
50.0000 

51.0000 
52.0000 

53.0000 
54.0000 
55.0000 

56.0000 
57.0000 
58.0000 

59.0000 
60.0000 
61.0000 

0.1281 

0.3690 
0.5734 
0.1569 

0.3659 
0.4124 
0.1704 

0.4251 
0.0664 
0.5356 

0.5084 

62.0000 
63.0000 
64.0000 

65.0000 
66.0000 
67.0000 

0.1735 
0.7512 
0.5115 
0.0976 

0.6361 
0.8482 

0.3471 
0.8822 
1.0000 

1.0000 
1.0000 
0.8730 

0.0389 
0.3643 

1.0000 
0.8174 
0.8875 

0.7995 
0.5919 
0.7533 

1.0000 

1.0000 
1.0000 

1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
0 

1.0000 

Result 

Misclassified 

Table [9.2] Continued 
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File       Membership Defuzzified Result 
68.0000 0.7337 1.0000 
69.0000 0.8524 1.0000 
70.0000 0.8602 1.0000 1 

71.0000 0.2217 0 
72.0000 1.0000 1.0000 
73.0000 0.1268 0 0        Misclassified 

74.0000 0.8860 1.0000 
75.0000 0.2121 0 
76.0000 0.1684 0 
77.0000 0.6903 1.0000 0        Misclassified 

78.0000 0.7680 1.0000 
79.0000 0.8735 1.0000 
80.0000 0.8013 1.0000 1 

81.0000 0.1748 0 
82.0000 0.5428 0 
83.0000 0.8496 1.0000 0        Misclassified 

84.0000 0.3444 0 
85.0000 0.8298 1.0000 
86.0000 0.8590 1.0000 1 

87.0000 0.6879 1.0000 
88.0000 0.9082 1.0000 
89.0000 0.6653 1.0000 1 

90.0000 0.1636 0 
91.0000 0.8754 1.0000 
92.0000 0.8594 1.0000 1 

93.0000 0.5185 0 
94.0000 0.4932 0 
95.0000 0.7802 1.0000 0        Misclassified 

96.0000 0.8684 1.0000 
97.0000 0.8788 1.0000 
98.0000 1.0000 1.0000 1 

99.0000 1.0000 1.0000 
100.0000 0.8669 1.0000 1 

Table [9.2] Continued 
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File        Membership Defuzzified Result 
1.0000          0.3986 0 
2.0000          0.2845 0 
3.0000          0.2562 0 0 

4.0000          0.2786 0 
5.0000          0.3226 0 
6.0000                       0 0 0 

7.0000          1.0000 1.0000 
8.0000          0.5055 0 
9.0000          0.1434 0 0 

10.0000                       0 0 
11.0000                       0 0 0 

12.0000          0.0691 0 
13.0000          0.4744 0 
14.0000          0.4708 0 0 

15.0000                       0 0 
16.0000                       0 0 
17.0000                       0 0 0 

18.0000          0.4623 0 0 

19.0000                       0 0 
20.0000                       0 0 
21.0000          0.2096 0 0 

22.0000                       0 0 
23.0000                       0 0 
24.0000          0.0516 0 0 

25.0000          0.2885 0 
26.0000          0.0981 0 
27.0000          0.9336 1.0000 0 

28.0000          0.2254 0 
29.0000          0.1465 0 
30.0000          0.0680 0 0 

31.0000                       0 0 
32.0000                       0 0 
33.0000          0.0939 0 0 

Table [9.3] Classification of the files of set 3 
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File         Membership Defuzzifled Result 
34.0000          0.3917 0 
35.0000                      0 0 
36.0000                      0 0 0 

37.0000          0.1689 0 
38.0000          0.5220 0 
39.0000                      0 0 0 

40.0000          0.0969 0 
41.0000                      0 0 
42.0000                      0 0 0 

43.0000          0.4810 0 
44.0000          0.3154 0 
45.0000          0.4552 0 0 

46.0000          0.3285 0 0 

47.0000          0.3690 0 
48.0000          0.5593 0 
49.0000          0.3522 0 
50.0000          0.2325 0 0 

51.0000          1.0000 1.0000 
52.0000          0.9052 1.0000 
53.0000          0.8115 1.0000 1 

54.0000          0.8397 1.0000 
55.0000          0.8754 1.0000 
56.0000          0.0930 0 1 

57.0000          0.8330 1.0000 
58.0000          1.0000 1.0000 1 

59.0000          1.0000 1.0000 
60.0000          1.0000 1.0000 
61.0000          1.0000 1.0000 1 

62.0000          1.0000 1.0000 
63.0000          0.6496 1.0000 
64.0000          0.5075 0 1 

65.0000          0.0823 0 
66.0000          0.7810 1.0000 
67.0000          0.2356 0 0       Misclassified 

Table [9.3] Continued 

3-A-29 



File Membership    Defuzzified 
68.0000 
69.0000 
70.0000 

71.0000 
72.0000 
73.0000 

74.0000 
75.0000 
76.0000 

77.0000 
78.0000 
79.0000 

80.0000 
81.0000 
82.0000 

83.0000 
84.0000 
85.0000 

86.0000 
87.0000 
88.0000 

89.0000 
90.0000 
91.0000 

92.0000 
93.0000 
94.0000 

95.0000 
96.0000 
97.0000 

98.0000 
99.0000 
100.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

0.6068 
0.9054 
0.4134 

1.0000 
0 

0.2914 

1.0000 
1.0000 
0.8786 

0.9018 
1.0000 
1.0000 

1.0000 
0.9135 
0.8292 

0.7423 

1.0000 

1.0000 

1.0000 
1.0000 

0.0902 

0.2564 

1.0000 
1.0000 

0 
0.4387 

1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 

1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 

Result 

Misclassified 

Misclassified 

Table [9.3] Continued 
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Non deceptive 

QQ8R9OIO.011 
QQ8R9OIO.021 
QQ8R9OIO.031 
QQ95LU1T.011 
QQ95LU1T.021 
QQ95LU1T.031 
QQAURNUS.021 
QQAURNUS.031 
QQAV53P6.011 
QQAV53P6.021 
QQAV53P6.031 
QQBQ4SHI.011 
QQBQ4SHI.021 
QQBQ4SHI.031 
QQBSS7WT.011 
QQBSS7WT.021 
QQBSS7WT.031 
QQ7OXM60.021 
QQ7RH0RO.011 
QQ7RH0RO.021 
QQ7RH0RO.031 
QQ7R51P9.011 
QQ7R51P9.021 
QQ7R51P9.031 
QQ9TDSP3.011 
QQ9TDSP3.021 
QQ9TDSP3.031 
QQA8OWOI.011 
QQA8OWOI.021 
QQA8OWOI.031 
QQBT22O6.011 
QQBT22O6.021 
QQBT22O6.031 
QQBO9O_9.011 
QQBO9O_9.021 
QQBO9O_9.031 
QQBC7PP6.011 
QQBC7PP6.021 
QQBC7PP6.031 
QQCHCK_O.011 
QQCHCK_O.021 
QQCHCK_O.031 
QQCDTKP0.011 
QQCDTKPO.031 
QQCDTKP0.041 
QQCM5Y56.011 
QQCQQT8Y.011 
QQCQQT8Y.021 
QQCQQT8Y.031 
QQCQQT8Y.041 

Deceptive 1 

QQ4Q1O83.011 
QQ4Q1O83.021 
QQ4Q1O83.031 
QQ4Q3MDC.011 
QQ4Q3MDC.021 
QQ4Q3MDC.031 
QQ51DE36.011 
QQ51DE36.021 
QQ51DE36.041 
QQ6RQGH6.011 
QQ6RQGH6.021 
QQ6RQGH6.031 
QQ6RQGH6.041 
QQ6T711O.011 
QQ6T7110.021 
QQ6T7110.031 
QQ6Z59IG.011 
QQ6Z59IG.021 
QQ6Z59IG.031 
QQ7PP9B9.011 
QQ7PP9B9.021 
QQ7PP9B9.031 
QQ7PDU1X.011 
QQ7PDU1X.021 
QQ7PDU1X.031 
QQ7_PIPF.011 
QQ7_PIPF.021 
QQ7_PIPF.031 
QQ7_JT70.011 
QQ7_JT70.021 
QQ7_JT70.031 
QQ738DYX.011 
QQ738DYX.021 
QQ738DYX.031 
QQ75ULP9.011 
QQ75ULP9.021 
QQ75ULP9.031 
QQ79_EYF.011 
QQ79_EYF.021 
QQ79_EYF.031 
QQ7BGDML.011 
QQ7BGDML.021 
QQ7BGDML.031 
QQ7ETC8I.011 
QQ7ETC8I.021 
QQ7ETC8I.031 
QQ7JAQCS.011 
QQ7JAQCS.021 
QQ7JAQCS.031 
QQ7LX5Q0.011 

Deceptive 2 

QQ7LX5Q0.021 
QQ7LX5Q0.031 
QQ7MN2Y0.011 
QQ7MN2Y0.021 
QQ7MN2Y0.031 
QQ7TC5UF.011 
QQ7TC5UF.021 
QQ7TC5UF.031 
QQ7TQVER011 
QQ7TQVER021 
QQ7TQVER031 
QQ7TVADC.011 
QQ7TVADC.021 
QQ7TVADC.031 
QQ7U2T4R011 
QQ7U2T4R021 
QQ7U2T4R031 
QQ7YP7QU.011 
QQ7YP7QU.021 
QQ7YP7QU.031 
QQ7YZOJ3.011 
QQ7YZOJ3.021 
QQ7YZOJ3.031 
QQ8_0DPT.011 
QQ8_0DPT.021 
QQ8_0DPT.031 
QQ8_0DPT.041 
QQ8_2UQ9.011 
QQ8_2UQ9.021 
QQ8_2UQ9.031 
QQ800IG6.011 
QQ800IG6.021 
QQ800IG6.031 
QQ82OIU9.011 
QQ82ORJ9.021 
QQ82OIU9.031 
QQ82SUTX.011 
QQ82SUTX.021 
QQ82SUTX031 
QQ860ZNU.011 
QQ860ZNU.021 
QQ860ZNU.031 
QQ89U_ZR011 
QQ89U_ZR021 
QQ89U_ZR.031 
QQ8ATU26.011 
QQ8ATU26.021 
QQ8ATU26.031 
QQ8FGMVI.011 
QQ8FGMVI.021 

Deceptive 3 

QQ8RAJ0C.011 
QQ8RAJ0C.021 
QQ8RAJ0C.031 
QQ9EUKVT.011 
QQ9EUKVT.021 
QQ9EUKVT.031 
QQ9IOOXO.021 
QQ9IOOXO.041 
QQ9SOW8L.011 
QQ9SOW8L.021 
QQ9SOW8L.031 
QQ9SQIK9.011 
QQ9SQIK9.021 
QQ9SQIK9.031 
QQ9W0B9F.011 
QQ9W0B9F.031 
QQ9W0B9F.O41 
QQ9U4FMU.011 
QQ9U4FMU.021 
QQ9U4FMU.031 
QQ9Y_SVF.011 
QQ9Y_SVF.021 
QQ9Y_SVF.031 
QQ9YH3QF.011 
QQ9YH3QF.021 
QQ9YH3QF.031 
QQA2TT4C.011 
QQA2TT4C.021 
QQA2TT4C.031 
QQA3HIRX.011 
QQA3HIRX.021 
QQA3HIRX.031 
QQA32UTF.011 
QQA32UTF.021 
QQA32UTF.031 
QQA6U_IF.011 
QQA6U_IF.031 
QQA6U_IF.041 
QQAM4E3L.011 
QQAM4E3L.021 
QQAM4E3L.031 
QQARF2_X.011 
QQARF2_X.021 
QQARF2_X031 
QQAWA38X.011 
QQAWA38X021 
QQAWA3 8X031 
QQAYXZGU.011 
QQ AYXZGU.021 
QQAYXZGU.031 

Table [10] NSA Polygraph files used in sets 1-3. 

Note: Each set consists of non-deceptive files and one of the deceptive sets 
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Appendix B: 

Program Listings 
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Classify Program 

% This is a Matlab program 
% This script parses a matrix of polygraph 
% vectors into training and testing vectors. 
% It then calls the classifier, trains, tests 
% and gives results. 

c = 2; % number of classes 
percent_train=75; % percentage of inputs used for training 

features=[ 1 ] % features to use 
classification^; % use fuzzy classifier 
kk=5; % K in K nearest neighbor 
change= 1; % Randomize training and testing inputs 
repeat=20; % Number of repeatitions 
ut= 5; % Upper threshhold for 3 class fuzzy classifier 
lt= 5;' % Lower threshhold for 3 class fuzzy classifier 

load set31; % file containing feature matrix 
% and vector that indicates whether 

% column is truthful or deceptive 
%classvect; % vector of classes eg. 1 = deceptive 

% 0 = truthful vector 
featurematrix = featmat; % matrix of features 
dimension = size(featurematrix); 
columns = dimension(2); % the total number of columns in the feature matrix 
numberjrain = round(percent_train*columns);        % number of vectors 

% used for training 

ur=.5; %upper threshold 
continue=l; % to repeat the program 
while (continue=l) 

apercent_classified=[]; 
acorrect=[]; 
acc=[]; 
ffresult=[]; 
ccresult=[]; 
ttestclass=[]; 

% clear average results 

men=0; 
while(men ~7) 

men=menu(,Select:',,Features','Type',,K',,Random'... 
,'Repeat7%traimng7Start7DefuzzyExit'); 

if (men==l) 
'enter a vector of the features you want tested (eg. [12 4]) 
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features = input(''); % features being tested 
end 

if (men=2) 
classificaüon=menu('Type:7FuzzyVCrisp'); 

end 

if (men==3) 
kk = input('enter the "KH in K nearest neighbor  ') 
end 

if (men==4) 
change=menu('Selection','Random','Constant'); 

end 

if (men==5) 
repeat=input('Enter number of repeatitions') 

end 

if (men==6) 
percent_train=input('Enter percentage of the files used for training, 1 for all-1') 

end 
if (men=8) 

ch=menu('Defuzzification,
> '3class', 'Upper thresh'/Lower thresh'); 

ifch=l, classification=3, end 
ifch==2 

ut=input('enter the upper threshhold'); % lower limit for class 1 
end 
ifch==3 

lt=input('enter the lower threshhold'); %upper limit for class 0 
end 

end 
if (men==9) break,end 

end 
if men=9 break,end 
numbertrain = round(percent_train*columns); 
acorrect=[]; % vector for the average of correct classification 
acc=[]; % vector for the average of performance index 

if percentjrain = 1        % To repeat nonrandom testing for all the files. 
repeat =columns; 

end 

for trial=l: repeat 

featurematrix = featmat(features,:);   % creates a feature matrix of the 
% the features being tested 

if ( (change=l) & (percent_train~=l)) 
[trainvect, testvect] = randvect(numberJrain,columns); 

end; 
if percentjrain == 1 

testvect = trial; 
if (trial =1) 

trainvect=2:columns; 
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end 
if (trial = columns) 

trainvect=l :columns-l; 
end 
if (trial ~=1 & trial ~=columns) 

trainvect= [l:trial-l, trial+lxolumns]; 
end 

end 
testvect 
trainvect 
u = featurematrix(:,testvect); % testing matrix 

testclass = classvect(l,testvect);        % class of each column in testing matrix 

p = featurematrix(:,trainvect); % training matrix 

t = classvect( 1 ,trainvecf); % class of each column in training matrix 

if classification =1 % Fuzzy classifier 

% m = input('enter the degree of fuzziness "M" (l<=M<=infinfity)') 
m = 2; 
save fdatafil c kk m p t u 

% ifknn %This line invokes the classifier program in a dos window 
dos('del foutfile.mat|') %to make sure that the program actulally works 
dos('fknn|') 
'Now loading the result of the fuzzy classifier' 
load foutfile 

kk, features 
fresult 
testclass 

if(percent_train==l) 
ffresult=[ffresult fresult] 
ttestclass=[ttestclass testclass]; 

end 

cr =fresult(2,:) > ut % denazification of the result 
correct = 100*(l-mean(abs(testclass-cr)))  % percentage correct classified 
cc = [1-testclass; testclass]; % adding a row of complements to c 
cc=fresult-cc; 
'Performance Index- 
cc = sqrt(mean(mean(cc .A 2))) 

end 

if classification = 2 % crisp classifier 

save cdatafil c kk p t u 
% !cknn %This line invokes the classifier program in a dos window 

dos('del foutfile. matf) %to make sure that the program actulally works 
dos('cknn|') 
'Loading the Crisp output file' 
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load coutfile 

kk, features 
cresult 
testclass 

if(percent_train= 1) 
ccresult=[ccresult cresult] 
ttestclass=[ttestclass testclass]; 

end 

correct = 100*(l-mean(abs(testclass-cresult)))  % percentage correct classified 
cc = sqrt(mean(abs(testclass-cresult))) % performance index 

end 
if classification = 3 % Fuzzy classifier but defuzzification into 3 classes 

% m = input('enter the degree of fuzziness "M" (K=M<=infinfity)') 
m = 2; 
save fdatafil c kk m p t u 

% ifknn %This line invokes the classifier program in a dos window 
dos('del foutfile.matf) %to make sure that the program actulally works 
dos('fknnD 
'Now loading the result of the fuzzy classifier' 
load foutfile 

kk, features 
fresult 
testclass 

if(percent_train=l) 
ffresult=[ffresult fresult] 
ttestclass=[ttestclass testclass]; 

end 
classl=fmd(fresult(2,:) >ut); 
class0=find(fresult(2,:) <lt); 
class3=find(fresult(2,:) >lt & fresult(2,:) <ut); 
percent_classified=100*((length(classO)+length(classl))Aength(testclass)) 
fr=[fresult(:,classl) fresult(:,classO)] % the section that is classified into one of the two 

classes 
cr=fr(2,:)>ut 
tr=[testclass(classl) testclass(classO)] % the section that is classified into one of the two 

classes 
correct = 100*(l-mean(abs(tr-cr)))  % percentage correct classified 
cc = [ 1-tr; tr]; % adding a row of complements to cc 
cc=fr-cc; 
'Performance Index- 
cc = sqrt(mean(mean(cc .A 2))) 

end 

apercent_classified = [apercent_classified percentclassified] 
acorrect=[acorrect correct] 
acc=[acc cc] 
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end % for trial 

if classification =3 % 3 class fuzzy 
apercent_classified=mean(apercent_classified) 

end 
acorrect, mean(acorrect) 
ace, mean(acc) 

continue=3; 
while (continue = 3 | continue==4) 
continue=menu('Repeat?,

( 'Yes', 'no','Plot', 'threshold'); 
if(continue=3) 

dim=menu('Dimension', 'Two', Three')+1; 
if(dim=2) 

pp=p(:,fmd(t)); 
plot(pp(l,:))pp(2,:),'r+,); 

title('A clustering of two class data'); 
hold on 
pp=p(:,find(t=0)); 
plot(pp(l,:), pp(2,:), 'gx'); 

pp=u(:, find(testclass)); 
plot(pp(l,:), pp(2,:), 'r+'); 
pp=u(:,find(testclass==0)); 
plot(pp(l,:), pp(2,:), 'gx'); 

hold off 
end       %if(dim=2) 

if(dim==3) 

pp=p(:,fmd(t)); 
plot3(pp(l,:),pp(2,:), pp(3,:), 'r+'); 
title('A clustering of two class data'); 
hold on 
pp=p(:,find(t==0)); 
plot3(pp(l,:), pp(2,:), pp(3,:), 'rx'); 

pp=u(:, find(testclass)); 
plot3(pp(l,:), pp(2,:), pp(3,:), 'g+'); 
pp=u(:,find(testclass=0)); 
plot3(pp(l,:), pp(2,:), pp(3,:), *gx'); 

hold off 
end       %if(dim=3) 

end    %if(continue=3) 

if (continue==4) 

ch=menu('Defuzzification', '3class', 'Upper thresh','Lower thresh'); 
ifch==l, classification=3, end 
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ifch=2 
ut=input('enter the upper threshhold'); % lower limit for class 1 

end 
ifch=3 

lt=input('enter the lower threshhold'); %upper limit for class 0 
end 

if classification= 1 
cr =ffresult(2,:) > ut % defuzzification of the result 
correct = 100*(l-mean(abs(ttestclass-cr)))  % percentage correct classified 
cc = [1-ttestclass; ttestclass]; % adding a row of complements to c 
cc=ffresult-cc; 
'Performance Index=' 
cc = sqrt(mean(mean(cc .A 2))) 

end 

if classification=2 
correct = 100*(l-mean(abs(ttestclass-ccresult)))  % percentage correct classified 
cc = sqrt(mean(abs(ttestclass-ccresult))) % performance index 

end 

if classification=3 
classl=find(ffresult(2,:) >ut); 
class0=find(ffresult(2,:) <lt); 
class3=find(ffresult(2,:) >lt & ffresult(2,:) <ut); 
fr=[ffresult(:,classl) ffresult(:,classO)] % the section that is classified into one of 

the two classes 
cr=fr(2,:)>ut 
tr=[ttestclass(classl) ttestclass(classO)]        % the section that is classified into one of 

the two classes 
percent_classified=100*((length(class0)+length(classl))/length(ttestclass)) 
correct = 100*(l-mean(abs(tr-cr)))  % percentage correct classified 
cc = [1-tr; tr]; % adding a row of complements to cc 
cc=fr-cc; 
'Performance Index- 
cc = sqrt(mean(mean(cc .A 2))) 

end 
end 

end        % while continue = 3 | 4 

end % while continue 
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This program implements a K-nearest neighbor classifier, 
created by: Shahab Layeghi 

created: 8/4/93 
last modified: 9/17/93 

*/ 
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/* The main program opens a matlab data file, reads the training matrix, 
classifies each entry in the testing matrix, and writes the result in an 
output file. The file that this program gets the information from should be 
called "cdatafil.mat". As the name implies it is in matlab file format. 
The data in this file should have the following order: 

1. A single variable 'C which is the number of classes. 
2. A single variable 'K' which is the parameter 'K' in K-NN Algorithm. 
3. A trainig matrix 'P' which contains a set of feature vectors. Each vector 
is in a column of the matrix. 
4. A classes vector T which contains the classes of the training set 
5. An input matrix 'U' which contains a set of unclassified feature vectors. 

The main program uses the CrispKNN routine to classify each one of the input 
vectors and saves the results (the classes that these inputs belong to) in a 
file called coutfile.mat. This file is in Matlab format. This file contains 
a vector of the classes called: 

'cresult' 

This program can be called from dos, or within Matlab by using dos escpae 
character'!'. An example Matlab script file that shows how this program can 
be used is included in the file "cknntestm". 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
#include <conio.h> 

#define INPUTFILE "cdatafil.mat" 
#define OUTPUTFILE "coutfile.mat" 

// Function Prototypes  

int CrispKNN(double "Input, double * Samples, double *Lables); 
double FindDistance(double *vecl, double *vec2); 
double Maxd(double *vec, int *index, int Length); 
int FindMax(int *vector, int *count, int Length, int Max); 
int loadmat(FILE * fp,int *type, char *pname, int *mrows, int *ncols, 

int *imagf, double **preal, double **pimag); 
void savemat(FDLE *fp, int type, char *pname, int mrows, int ncols, 

int imagf, double *preal, double *pimag); 

// Global variables, these variables will be set by reading matlab file 

int classes; /* the number of classes */ 
int features; /* Number of features in a class */ 
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int KK; /* K in K-nearest neighbors */ 
int SampleSize; /* Number of Labled Samples */ 
int TestSize; 

//.  

here. 

/* */ 

void main() 

{ 

double *Lables; 
double *KP; 
double *input; 
int i j; 
FILE *fp; 
char name[20]; 
int type, imagf; 
double *Samples, *isamples;    // isamples is for imaginary part of the matrix that is not used in 

double *Testdata; 
double *result; 
fp=fopen(INPUTFILE,,*rb"); 

if(!fp) { 
printf("cannot open the file"); 
exit(-l); 

} 
// read classes from the file 
loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples); 
if(i!=l||j!=l){ 

printf("error: You should include classes at the beginning of the fileW); 
exit(-l); 

} 
classes=*KP; 

//read KK from the file 
loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples); 
if(i!=l||j!=l){ 

printf("error: You should include K at the beginning of the file\n"); 
exit(-l); 

} 
KK=*KP; 

// read the matrix from the datafile. 
loadmat(fp, &type, name, &features, &SampleSize, &imagf, &Samples, &isamples); 

// reading lables from data file 
loadmat(fp, &type, name, &i, &j, &imagf, &Lables, &isamples); 
if(i!=l||j!=SampleSize){ 

printf("error: Number of labels is different from the number of samples\n"); 
exit(-l); 

} 
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// read data to be classified from the file 
loadmat(fp, &type, name, &i, &TestSize, &imagf, &Testdata, &isamples); 
if(i != features) { 

printf("error: Training and testing matrices should have the same size"); 
exit(-l); 

} 

// Allocate space for result vector 

result = (double *) malloc(TestSize*sizeof(double)); 
if(! result) { 

printf("Error: cannot allocate memory for the result vector"); 
exit(-l); 

} 

for(i=0; KTestSize; i++) { // for each input 
input=Testdata+i*features; 
result[i]=CrispKNN(input, Samples, Lables); 

// printf("class: %lf\n", result[i]); 

} 
fclose(fp); 

// printf("\n End of classification, Now writing the result in the file"); 

fp=fopen(OUTPUTFILE, "wb"); 
if(!fp) { 

printf("Error: Cannot write the file"); 
getch(); 

} 
savemat(fp, 0, "cresult", 1, TestSize, 0, result, result); 
fclose(fp); 

/* */ 
int CrispKNN(double *Input, double *Samples, double *Lables) 

{ 
int i j ; 
int nj, k, nk; 
double *distance; 
int *index; 
double x,y; 

distance = (double *) malloc(KK*sizeof(double)); 
if(!distance) { 

printf("Error: Not enough memory for distance vector"); 
exit(-l); 

} 

index = (int *) malloc(KK*sizeof(int)); 
if(!index) { 

printf("Error: Not enough memory for index vector"); 
exit(-l); 

> 
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for(i=0; i<KK; i++) { // This loop initializes K nearest neighbors to the first K Samples 
index[i]=Lables[i]+l; 
distance[i]=FindDistance(Input,&Samples[i*features]); 

} 
for(i=KK; i<SampleSize; i++) {    // This is the loop that finds the K nearest Neighbors 

x=Maxd(distance, &j, KK); 
y=FindDistance(Input,&Samples[i*features]); 
if(y < x) { // This sample is closest to the input than the farthest K Neighbors 

distance[j]=y; 
index[j]=Lables[i]+l; 

} 
} 
j=FindMax(index, &nj, KK, classes);  // Finds the class of maximum occurance 

/* In this section it is checked to see if there is a tie. That is if 
there are two or more classes with the same number of occureances. If 
there is a tie for two classes, the class with the minimum sum of 
distances is selected. No action is taken for a tie of more than two 
classes. */ 

for (i=0; i<KK; i++) 
if(index[i]=j) index[i]=0; 

k=FindMax(index, &nk, KK, classes); 
if(nk=nj) { //If there is a tie. 

x=0; 
for(i=0; i<KK; i++) { 

if(index[i]=0) 
x+=distance[i]; 

} 
y=0; 
for(i=0; i<KK; i++) { 

if(index[i]==k) 
y+=distance[i]; 

} 
if(y<x) //If sum of the distances to class j is 

less than that of class k 
j=k; 

} 

free(distance); 
free(index); 
return j-1; 

-*/ 
/* This function returns the Euclidian distance between two vectors */ 

double FindDistance(double *vecl, double *vec2) 

{ 

int k; 
double distance; 
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distance = 0; 
for(k=0; k<features; k++) { 

distance +=(vecl [k]-vec2[k])*(vecl [k]-vec2[k]); 
// distance += pow(vecl[k]-vec2[k], 2); 

} 
return distance; 

} 

-*/ 
/* This function finds the biggest element of an array. It returns that 
value and also returns the index to that element in index. 
*/ 

double Maxd(double *vec, int *index, int Length) 
{ 

int i j=0; 

j=0; 
for(i=l; KLength; i++) 

if(vec[i]>vec[j])j=i; 
*index=j; 
return(vec[j]); 

/* */ 
/* This function finds a number that is most often repeated in an array of 
integer values, and returns that number. Length of array shoud be less than 
100. It is supposed that number is an integer greater than zero, 
vector is a pointer to the array, count is the number of times that the 
number is repeated. Length is the length of the vector. 
*/ 

int FindMax(int *vector, int *count, int Length, int Max) 
{ 

inti,j, m; 
int t[101]; 

if(Max>100) Max=100; 
for(i=0; i<Max+l; i++) 

t[i]=0; 
for(i=0; i<Length; i++) 

t[vector[i]]++; 
m=t[l]; 
j=i; 
for(i=l; i<Max+l; i++) { 

if(t[i]>m) { 
m=t[i]; 

} 
} 
*count=m; 
return (j); } 
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This program implements a fuzzy version of K-nearest neighbor classifier, 

created by: Shahab Layeghi 

created: 9/1/93 
last modified: 9/3/93 

/* The main program opens a matlab data file, reads the training matrix, 
classifies each entry in the testing matrix, and writes the result in an 
output file. The file that this program gets the information from should be 
called "fdatafile.mat". As the name implies it is in matlab file format. 
The data in this file should have the following order: 

1. A single variable 'C which is the number of classes. 
2. A single variable 'K' which is the parameter 'K' in K-NN Algorithm. 
3. A single variable 'M' which is the coefficient in fuzzy algorithm. 
4. A trainig matrix 'P' which contains a set of feature vectors. Each vector 
is in a column of the matrix. 
5. A class membership matrix T which contains the membership values of the 
training set vectors to the classes. 
6. An input matrix *U' which contains a set of unclassified feature vectors. 

The main program uses the FuzzyKNN routine to classify each one of the input 
vectors and saves the results (the classes that these inputs belong to) in a 
file called "foutfile.mat". This file is in Matlab format. This file contains 
a single variable called fresult. It is a vector of the classes. 

This program can be called from dos, or within Matlab by using dos escpae 
character'!'. An example Matlab script file that shows how this program can 
be used is included in the file "fknntest.m". 

*/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
#include <conio.h> 

#define INPUTFILE "fdatafil.mat" 
#define OUTPUTFILE "foutfile.mat" 

// Function Prototypes  

void FuzzyKNN(double *Input, double *Samples, double *Lables, double «Result); 
double FindDistance(double *vecl, double *vec2); 
double Maxd(double *vec, int *index, int Length); 
int FindMax(int *vector, int *count, int Length, int Max); 
int loadmat(FILE * fp.int *type, char *pname, int *mrows, int *ncols, 

int *imagf, double **preal, double **pimag); 
void savemat(FILE *fp, int type, char *pname, int mrows, int ncols, 
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// read M from the file 
loadmat(fp, &type, name, &i, &j, &imagf, &KP, Äisamples); 

printfC'error: You should include M as the thrid parameter^"); 
exit(-l); 

} 
M=*KP; 

//read the matrix from the datafile. 
loadmat(fp, &type, name, features, &SampleSize; &imagf, &Samples, &isamples); 

// reading lables from data file 
loadmat(fp, &type, name, &i, &j, &imagf, &Lables, &isamples); 
if(i!=l|lj!=SampleSize){ 

printfC'error: Number of labels is different from the number of samplesui ), 

exit(-l); 
} 

//read data to be classified from the file 
loadmat(fp, &type, name, &i, &TestSize, &imagf, &Testdata, &isamples); 
if(i != features) { .   „ 

printfC'error: Training and testing matrices should have the same size ); 
exit(-l); 

} 

// Allocate space for result vector 

result = (double *) malloc(TestSize*Classes*sizeof(double)); 

if(!result) { ,*„•«% 
printfC'Error: cannot allocate memory for the result Matrix ); 
exit(-l); 

} 

for(j=0; j<TestSize; j++) { // for each input 
input=Testdata+j*features; 
FuzzyKNN(input, Samples, Lables, iresult); 

// printf("\n Memberships:"); 
for(i=0; KClasses; i++) { 

result[j*Classes+i]=iresult[i]; 
printf("%lf",iresult[i]); 

} 
} 
fclose(fp); 

// printf("\n End of classification, Now writing the result in the file ); 

fp=fopen(OUTPUTFlLE, "wb"); 
if(!fb) { 

printfC'Error: Cannot write the file"); 
getch(); 

savemat(fp, 0, "fresult", Classes, TestSize, 0, result, result); 
fclose(fp); 
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/* */ 
/* This is a fuzzy K Nearest neighbor classifier routine. Input is the 
vector to be classified, Samples is the matrix of classified samples, 
Lables is the vector of the classes that these samples belong to. 
Result is the vector of membership values of Input to each class. 
*/ 
void FuzzyKNN(double *Input, double *Samples, double *Lables, double *Result) 
{ 

int i j,n; 
int nj, k, nk; 
double ""distance; 
int "Index; 
double x,y; 
double *membership; // pointer to membership matrix 
double nsum, dsum, temp; 

/* This section builds a fuzzy membership matrix from the lables. 
Membership of each sample to the class that it belongs to is assigned 
to 1, and the membership of it to other classes is assigned to 0 */ 

membership = (double *) malloc(SampleSize*Classes*sizeof(double)); 
if(!membership) { 

printf("Error: Not enough memory for membership matrix"); 
exit(-l); 

} 
for(i=0; i<SampleSize*Classes; i++) 

*(membership+i)=0; // Initializing matrix to zero 
for(j=0; j<SampleSize; j++) { 

i=*(Lables+j); 
*(membership+i*SampleSize+j)=l; 

} 

distance = (double *) malloc(KK*sizeof(double));   // allocate space for the vector 
if(!distance) { 

printf("Error: Not enough memory for distance vector"); 
exit(-l); 

} 

index = (int *) malloc(KK*sizeof(int)); 
if(!index) { 

printf("Error: Not enough memory for index vector"); 
exit(-l); 

} 

for(i=0; i<KK; i++) { // This loop initializes K nearest neighbors to the first K Samples 
index[i]=i; 
distance[i]=FindDistance(Input, &Samples[i*features]); 

} 
for(i=KK; KSampleSize; i++) {    // This is the loop that finds the K nearest Neighbors 

x=Maxd(distance, &j, KK); 
y=FindDistance(Input,&Sarnples[i*features]); 
if(y < x) { // This sample is closest to the input than the farthest K Neighbors 
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zero 

distance[j]=y; 
index[j]=i; 

} 
} 
for(j=0; j<Classes; j++) { 

nsum=dsum=0; 
for(n=0; n<KK; n++) { 

i=index[n]; 
temp=FindDistance(Input, &Samples[i*features]); 
if(temp<le-10) { //If distance is 

Result[j]=membership|j*SampleSize+i]; 
break; 

} 
if(M = 2) 

temp=l/temp; 
else if(M != 1) 

temp=pow(l/temp, 1/(M-1)); 
else 

temp=0; 
nsum += membership[j*SampleSize+i]*temp; 
dsum += temp; 

} 
if(dsum !=0) 

Result(j]=nsum / dsum; 
} 
free(membership); 
free(distance); 
free(index); 

/*-- -*/ 
/* This function returns the Euclidian distance between two vectors */ 

double FindDistance(double *vecl, double *vec2) 
{ 

intk; 
double distance; 

distance = 0; 
for(k=0; k<features; k++) { 

distance += (vecl[k]-vec2[k])*(vecl[k]-vec2[k]); 
// distance += pow(vecl[k]-vec2[k], 2); 

} 
return distance; 

I* */ 
/* This function finds the biggest element of an array. It returns that 
value and also returns the index to that element in index. 
*/ 
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double Maxd(double *vec, int *index, int Length) 

{ 
int i j=0; 

j=0; 
for(i=l; KLength; i++) 

if(vec[i]>vecü])j=i; 
*index=j; 
return(vec[j]); 

} 

,* */ 
/* This function finds a number that is most often repeated in an array of 
integer values, and returns that number. Length of array shoud be less than 
100. It is supposed that number is an integer greater than zero, 
vector is a pointer to the array, count is the number of times that the 
number is repeated. Length is the length of the vector. 
*/ 

int FindMax(int *vector, int *count, int Length, int Max) 

{ 

inti,j, m; 
intt[101]; 

if(Max>100) Max=100; 
for(i=0; i<Max+l; i++) 

t[i]=0; 
for(i=0; i<Length; i++) 

t[vector[i]]++; 
m=t[l]; 

for(i=l; i<Max+l; i++) { 
if(t[i]>m) { 

m=t[i]; 

} 
} 
*count=m; 
return (j); 
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§2. INTRODUCTION 

2.1. POLYGRAPH1 

2.1.1. Preview: 

Polygraph examinations are the most widely used method to distinguish between truth and 
deception. In a Polygraph examination a person is connected to a special instrument called 
a Polygraph which records several physiological signals such as blood pressure, Galvanic 

Skin Response, and respiration. The subject is asked a set of questions by an examiner. By 
looking at these signals the examiner is able to determine the reactions of the subject to 
the questions and decide whether the person was truthful or deceptive in answering each 

question. 

The problem with human classification of Polygraph tests is that the outcome depends on 
the examiner's experience and personal opinion. Automatic scoring of Polygraph tests has 
been a subject of extensive research. Several methods for Polygraph classification have 
been studied which are mostly based on statistical classification techniques. 

Digitized Polygraph data used in this project were collected from various police stations. 
The data files were organized according to the test format used and were decoded to 
ASCII format so they can be read by Matlab. Preprocessing and feature extraction 
routines were implemented in the Matlab language in privious works [Layeghi 1993,1] 
[Dastmalchil993][Jacobsl993]. Three sets of files were chosen, each one of them 

contained 50 deceptive and 50 non-deceptive files. 
These files are listed in the appendix, Fig.42. 

2.1.2. History: 

The first attempt to use a scientific instrument in an effort to detect deception occurred 
around 1895 [Reidl966]. That was the year that Caesar Lombroso published the results of 
his experiments in which a hydrosphygmograph was used to measure the blood pressure- 
pulse changes of criminals in order to determine whether or not they were deceptive. 

Although the hydrosphygmograph was originally intended to be used for medical 

Portions of this section were extracted from [Layeghi 1993,1] using particularly [Cappsl992] [01senl983] 
[Reidl966]. 
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purposes, Lombroso found that it worked well for lie detection. Lombroso may have been 
the first to use a peak of tension test format. This was done by showing a suspect a series 
of photographs of children, one being the victim of sexual assault. If the suspect did not 

react more to the victims picture than the pictures of the other children, Lombroso 
concluded that the suspect did not know what the victim looked like and therefore was not 

the alleged perpetrator. 

In 1914 Vittorio Benussi published his research on predicting deception by measuring 
recorded respiration tracings [Cappsl992]. He found that if the length of inspiration were 
divide by the length of expiration, the ratio would be larger after lying than before lying 
and also before telling the truth than after telling the truth. In 1921 John A. Larson 

constructed an instrument capable of simultaneously recording blood pressure pulse and 
respiration during an examination [Reidl966] [Cappsl992]. Larson reported accurate 
results which prompted Leonarde Keeler to construct a better version of this instrument in 

1926 [Reidl966] [Cappsl992]. 

The use of galvanic skin response in lie detection began during the turn of the century. It's 
usefulness, however, did not become evident until the 1930's during which time several 
articles written by Father Walter G. Summers of Fordham University in New York 
[Cappsl992]. In these articles he reports over 90 criminal cases in which examination 
using the galvanic skin response had all been successful and confirmed by confession or 

supplementary evidence. 

The usefulness of the galvanic skin response prompted Keeler to add an galvanometer to 
his polygraph. At the time of Keelers death in 1949, the Keeler Polygraph recorded blood 
pressure-pulse, respiration, and galvanic skin response [Reidl966]. 

2.1.3. Modern Test Formats: 

The effectiveness of a polygraph examination is often the result of the test format that is 
used. A polygraph test format consists of an ordered combination of relevant questions 
about an issue, control questions that provide a physical response for comparison, and 
irrelevant questions that also provide a response or the lack of a response for comparison 

[01senl983][Cappsl992]. 

4-7 



Three general types of test formats are in use today. These are Control Question Tests, 

Relevant-Irrelevant Tests, and Concealed Knowledge Tests. Each of the general test 
formats may have a number of more specific variations. Each examination consists of two 
to five sessions containing a prescribed series of questions. The test format that is used in 
an examination is determined by the test objective [Reidl966] [Cappsl992]. 

1. The Concealed Knowledge Test, also called peak of tension test, is used when facts 
about a crime are known only by the investigators and not by the public. In this case, a 
subject would not know the facts unless he or she was guilty of the crime. For example, if 
a gun was used in a crime and the public did not know the caliber, an examiner could ask a 
suspect, if it was a 22 caliber, a 38 caliber, or a 9 mm. If the gun used was a 9 mm and the 
suspect was deceptive, a polygraph chart would probably indicate evidence of deception. 

2. A Control Question Test2 is often used in criminal investigations. In this type of test a 

series of relevant, irrelevant, and control questions are asked: 

• A relevant question is one which is specific to the crime being investigated. 

For example, "Did you steal the money?". 

• A control question is designed to make the subject feel uncomfortable. It 
is not specific to the crime being investigated however it may be related in 
an indirect way. A control question that could follow the relevant question 
stated above is "Have you ever taken anything that did not belong to you?". 
The control questions are compared to the relevant questions and if the 
responses to the relevant questions are greater, the subject is usually classified 

as deceptive. 

• Irrelevant questions are used as buffers. Examples of irrelevant questions are 

"Are the lights in this room on?" or "Is today Monday?". 

3. Relevant-Irrelevant Tests are usually used to test people trying to obtain security 
clearance or get a job. In this test, relevant questions are compared to irrelevant questions. 
Very few control questions are asked. The purpose of control questions in this test is to 

make sure that the subject is capable of reacting at all. 

2 It was decided to use this method in our project (as it was also in previous works). 
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2.1.4. Present Day Equipment 

The most popular polygraph machines today are the Reid Polygraph developed in 1945 
and the Axciton Systems computerized polygraph developed in 1989 [Olsen 1983]. The 
Reid polygraph scrolls a piece of paper under pens that record the biological signals. The 

Axciton polygraph digitizes physiological signals and uses a computer to process them. 
The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer 
based system for ranking the subject responses but allows printouts of the charts to be 

scored by hand the traditional way. 

Both machines record the same biological signals using standard methods. Blood pressure 
is measured by placing a standard blood pressure cuff on the arm over the brachial artery. 
Respiration is monitored by placing rubber tubes around the abdominal area and the chest 
of the subject. This results in two signals, a lower and upper respiratory signal. Skin 

conductivity is measured by placing electrodes on two fingers of the same hand. 

The focus of this thesis is to investigate two different fuzzy pattern recognition algorithms 

using the aforementioned signals. 
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2.2. PATTERN RECOGNITION UTILIZING FUZZY TOOLS 

2.2.1. Why the "FUZZY" approach? 

While observing the history of science, we notice that one of its major goals has always 
been what we call today "pattern recognition". Having this in mind, man created models, 
functional relationships and mathematical tools to come closer to a perfect and precise 
model for almost every area of the nature and our being. In fact, "precision" became more 

and more important, to the extent that an imprecise model was a bad model by default. 

1965 Lotfi A. Zadeh introduced in his innovative paper [Zadehl965] an "imprecise" 

structure for mathematical observation; Hence, the fuzzy set was born. A companion to 
the classical one with often more useful and suitable representation of our environment. 

"The fuzzy set was conceived as a result of an attempt to come to grips with the problem 
of pattern recognition in the context of imprecisely defined categories. In such cases, the 
belonging of an object to a class is a matter of degree, as is the question of whether or not 
a group of objects form a cluster"; These were the introductory words from LA. Zadeh in 
[Bezdekl981]. They summarize the fundament of any fuzzy clustering or classifying 
algorithm concerning any search of data structure or pattern recognition. This concept is 

exactly what this project is all about. 

An example: 
Imagine, you have two groups of objects "chairs" and "desks" in different varieties. In a 
simple version of a typical pattern recognition problem, you have the task to cluster or 
classify the given objects into these two groups. In reality, we will also have other objects 
like a big box or a bed within the pool of the objects, but only the two aforementioned 
clusters by definition. Now, a conventional crisp clustering method would put these 
critical objects in either one of these two clusters. Thus, the big box or the bed may be 

labeled as if they would be chairs. 
A fuzzy clustering method would label the objects with soft membership values. In this 

case, a big box (that can be used as a chair or a desk) might be labeled with 0.6 degree 
chair and 0.4 desk. Information like this serves a useful purpose - "fuzzy memberships in 
several classes are a signal to take a second look" [Bezdekl993] [Bezdekl992]: 
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Hard memberships of data cannot support this. Thus, the fuzzy model provides a richer 

and more flexible solution structure, one that models the real objects with a finer degree of 

detail than the harshness of the crisp models. Notice also that hard membership values 

build a subset of the fuzzy membership3 set. 

There are different types of fuzzy algorithms to find the appropriate membership values 

within the data. In this project, we used the follwoing two approaches: 

1. Clustering algorithms: 
Given any finite data, the problem of clustering is to find similarities between the objects 

of the data and to assign labels that matching objects would belong to the same subgroups. 

The algorithm starts its search without any initial interpretative information about the data 

elements. It only seeks for objective numerical similarities between the elements. Because 

the initial objects are unlabeled, this method is often called "unsupervised learning". The 

word learning* implies that the clustering algorithm will ultimately find the correct labels 

at the end of the process. This is what we hope to obtain, but we do not know it a priori. 

Notice that because of the unsupervised nature of this algorithm, we may find "correct" 

clusters which represent some similarities, but not the ones we were looking for. In the 

aforementioned example with chairs and desks, the algorithm may provide two clusters of 

"wood-made" and "metal-made" objects (which are also correct), but not "chairs" and 

"desks" as we had hoped for. 

In this case, the performance of a clustering model is influenced by the choice of the 

parameters5, features, geometrical properties and our eventual interpretation of the labels. 

2. Classifying algorithms: 
In contrast to a clustering system which labels a given data, a classifier is capable - once it 

is defined (and trained) - of labelling every appropriate data. In addition, a classifying 

system is ususally initialized by labeled objects. In these cases, we call this method 

"supervised learning". 

3Notice that membership values are not probabilities; they are similarities of object vectors to a class 
structure. They represent the degree of belonging of an object to a group of objects. 
4The word learning does not imply any training. In fact, a clustering system - as is its nature - is almost 
the opposite of any system which learns by training. 
5See chapter 2.2.3.2. for the meanings of the parameters and chapter 3.1.3.3. for the strategies we used. 
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Notice that we can also use a clustering algorithm as a modified classifying algorithm: 

After having set the optimal combination of parameters and features, we can use the 

clustering system to classify any new data by: 

• adding the new element to a given and already correct clustered data, and letting 

the system relabel6 the data. Thus, our new object ends up to be in one of the 

clusters representing its identity, 

• saving all the parameters, cluster centers and the data elements and calculate 

appropriately the membership value of the new object, which will eventually 

represent its identity. 

6Running a new clustering process with one more element will probably change the structure of the 
original clusters, because the cluster centers and the membership values of each element depend on all of 
the members. In spite of this fact, we will be able to classify a normal (= not an outlier) object by having 
a large number of already clustered objects in a stable condition. 
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2.2.2. Why fuzzv-c-means (FCM)? 

One of the most significant characteristic of/i/rzy-c-means algotithm is its "fuzziness"7, as 

the name assumes. Unlike crisp clustering methods, FCM gives us "membership functions" 

c [0, 1] which determine the grade of belongingness of the elements to a cluster. As 

mentioned before, this information is totally lost by conventional clustering techniques. 

The advantage of FCM is the fact that the results we may get from a crisp clustering 

method are automatically within those from FCM. 

We chose FCM as an alternative and a comparison to the fuzzy K-Nearest-Neighbor 

algorithm (KNN) investigated previously [Layeghil993,l][Dastmalchil993][Jacobsl993], 

specially because FCM is an unsupervised clustering method which works only by using 

"mathematical" tools such as spatial distances or similarities, without any training or 

additional interpretative information. 
By this method, good8 features will then hopefully provide an optimal mathematical 

grouping that presents in some sense an accurate portrayal of natural structures in the 

physical process from where the polygraph data are drived. 

Whv we chose FCM algorithm: 

Because it 

does not need previous training, 

does not make any assumption about 
the distribution of samples, 

is unsupervised, objective and self organized, 

can be used as an alternative and a comparison 
to fuzzy KNN investigated previously.  

Fig.l: FCM characteristics 

7See chapter 2.1.1. for characteristics of a fuzzy approach. 
8"Good" features are in our study those which can cluster the data in deceptive and truthful groups. 
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2.2.3. Fuzzv-c-means algorithm and its interpretation 

2.2.3.1. FCM code - An iterative procedure: 

The fuzzy-c-means algorithm9 is basically an iterative procedure to minimize an objective 
function Jm representing a spatial fuzzy distance between data points xk and cluster 

centers v,.. In this project, I chose the most widely used Euclidean distance, i.e. the sum of 

the squared errors performance index; 

n     c 

k=l i=l 
Xk-Vi 

2 
A 

• X = {xl,x2,...,x„ } c <K5 is a finite data set in the pattern space SR*. 

• c is a fixed and known number of clusters (here: c=2). 
• U = [uik] e <RCM is a fuzzy c-partition of X, % is referred to as the grade of membership 

of xk to the cluster i. uik satisfy the following constraints; 

uik e[0,l];l</<c,l<A:<77 
c 

rt 

0< V«/jt <«;1</<C 
*=i 

V = ( Vj ,v2,...,vc ) e9?" ; each v, e?l5 represents a prototype of class i. 

m is the weighting exponent and represents the level of fuzziness; 1 < m < oo. 

9[Ruspinil969] was the first one who suggested the structure of fuzzy-c-partition spaces. The fuzzy-c- 
means algorithm (originally ISODATA) was initially developed by Punnl974] and generalized by 
[Bezdekl973]. 
Dunn extended and developed the classical "within-groups sum of the squared errors" (WGSS) function to 
a fuzzy clustering criterion and developed the fuzzy-c-means clustering algorithm to minimize the 
objective function through an iterative method. Bezdek further extended the fuzzy objective function 
proposed by Dunn to a more genral form of fuzzy clustering criterion by introducing the weighting 
exponent m, 1 <, m < oo. It turns out that Dunn's function is a special case ( m=2 ) of an infinite family of 
objective functions. 
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Ilx* ~ v» 11^4 1S an irmeT product induced norm on SR*. 

By differentiation Jm(U,v) with respect to uik where v, is fixed and to v, where U is 

fixed, we obtain 

and 

i>,*r** 
v. =-^- » n 

£(«*)" 
Jt=l 

These two equations cannot be solved analytically, but approximate solutions can be 

obtained by an iterative procedure. The FCM uses iterative optimization of an objective 

function based on a weighted similarity measure between data points and cluster centers. 

Step 1. Input the number of clusters, c, the weighting exponent, m, and the error 

tolerance, 8. 
Step 2. Input the data X = { xl,x2,...,xn }. 
Step 3. Initialize the membership values U = [uik ]. 

Step 4. Calculate the new cluster centers FW by the 3rd equation. 

Step 5. Update the U^ by the 2nd equation. 

Step 6. Return to Step 3, if U(/+l)-U(,) > £; otherwise output U... 

X 

u 
V 

[ sxn ]       n: # of data elements - polygraph test sessions. 

[ cxn ]        s: # of features - dimension of the samples in each cluster. 

[ sxc ]        c: # of clusters 

Fig.2: The iterative FCM10 procedure 

10See Fig.3 , the flow chart of the FCM code implemented in this project. 
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Initialization 
£> <U 

Adjustment 

No 

I 
V((L, 

"T~ 
IT (L) 

J(U,V) 

Adjustment 

No 

Fig.3: Flow chart of the FCM code implemented in this project 

2.2.3.2. What the influential parameters practically mean or represent, 

and how to interpret the clustering algorithm itself: 

The weighting exponent m represents the "fuzziness" level. It controls the extent of 
membership sharing among the fuzzy clusters. Recall the example of the two clusters, 
"desks" and "chairs" in chapter3.1; In a hard c-means clustering environment (m-> 1) each 
object can either belong to "chairs" or "desks", i.e. its membership value is either one or 
zero for each cluster. Now, the higher m is, the fuzzier the results will be. Thus, a desk - 

. which can also be used as a chair- may get a membership value higher than zero for 
belongingness to the chairs cluster. In this sense, m controls the membership values as 

following 

lim U:u =—. 
m-»oo 

Hk 

4-16 



The control parameter epsilon represents the interrupt criterion. It influences the number 
of iterations and therefore the accuracy of the algorithm which is the search for c minima. 
By making epsilon smaller we get more accurate clustering results, but also more 

computing time, which is not important in this specific case. 

The algorithm primarily gives us after each iteration new cluster centers vt and new 
membership values Uik. It then calculates the spatial distances between each data element 

and the found cluster centers then checks the interrupt criterion. If these distances are 
small enough, the algorithm will eventually give us the best membership values and the 
appropriate cluster centers. At this point, the search for an internal structure within the 
polygraph data -the original intention of every clustering process- will be finished. 

FCM algorithm belongs to the so-called partitional clustering algorithms which generate a 

fuzzy c-patition matrix in a feature space. In this project I set the number of clusters c, as a 
known parameter, equal to two. It can otherwise be a part of the clustering optimization 
itself. This decision was made after running some initial tests with c = 3 as well, which 

represents "deceptive", "truthful" and "ambiguous" clusters. 

unlabeled 
data 

=> 

=> 

initialized 
data 

+, +* + 
t*+ * +*+ 
* + * +   . 

clustered 
data 

=> 

after the first 
iteration 

* 

:* *% ** + 

■± 

*: non-deceptive elements 
+: deceptive elements 

Fig.4: Fuzzy C-means algorithm applied on polygraph data 
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2.2.4. Why LMS fuzzy adaptive filter? 

Filters are information processors. In practice, information11 usually exists in two different 

modes: 

• Numerical data associated with the problem, 

• linguistic descriptions of human experts 

(often in the form of fuzzy IF-THEN rules) 

Conventional filters can only process numerical data, whereas expert systems can only 

make use of linguistic information, i.e. a successful pattern recognition system in 

conventional form can only be guaranteed where either linguistic rules or numerical data 

do not play a critical role. Recall the fact that even in those cases we decide for a 

numerical method, we use linguistic information, consciously or unconsciously, in the 

choice among different filters, the evaluation of filter performance, the choice of the filter 

orders, the interpretation of filtering results, and so on. 

The LMS12 fuzzy adaptive filter is a new kind of nonlinear adaptive filter which makes use 

of both linguistic and numerical information concerning the physical characteristics of the 

polygraph data in their natural form. This filter is constructed from a set of changeable 

fuzzy IF-THEN rules, i.e. we have the choice of setting the rules according to our 

experiences and incorporating them directly into the filter, or initializing the rules 

arbitrarily; similar to the polynomial, neural nets, or radial basis function adaptive filters. 

2.2.5. LMS fuzzy adaptive filter and its interpretation: 

2.2.5.1. Filter code - An adaptive procedure 

As stated before, this filter is constructed from a set of changeable fuzzy IF-THEN rules 

by matching input-output pairs through an adaptation procedure. The adaptive algorithm 

updates the parameters of the membership functions which characterize the fuzzy concepts 

in the IF-THEN rules by minimizing a criterion function. 
Consider a real-valued vector sequence [x(k)] and a real valued scalar [d(k)]. The adaptive 

filter fk: U -> R is to determine, such that L = E[(d(k) -fk (x(k)))2 ] is minimized. 

11 About the pattern of the subject to be studied. 
12LMS = Least Mean squares 
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With k = 1,2,3,... and x(*) e^[Cr,C;]x[C^C2
+]x-»x[C;,Cn

+]cJRn.   U and R are 

the input and output spaces of the filter, respectively. 

The following steps describe the LMS fuzzy adaptive filter13 used in this project: 

Step 1: M fuzzy sets F' are to be defined in each interval [C;,C+] of U with the 

following Gaussian membership functions 

/^(*,) = exp 
■\2 

V   «/   J 

where / = 1,2,...,M, / = 1,2,...,«, xt e[Q,C,+], and x'( and a\ are free parameters which 

will be updated in the LMS adaptation procedure of Step 4. 

Step 2: A set of M fuzzy IF-THEN rules is to be constructed in the following form: 

R': TFx, isF/ and ... xn isF'n, THEN tf is G', 

RM: Wxx isFX
M and ... xn isFn

M, THENrfis GM. 

where x = (x.,...,x )eU, d eR, F/'s are defined in Step 1, and G''s are fuzzy sets 

defined in R. The (parameters of) membership functions HF! and pG, in these rules will 

change during the LMS adaptation procedure of step 4. Therefore, the rules constructed 

in this step are initial rules of the fuzzy adaptive filter. 

Step 3: The filter fk: U-+R is constructed based on the M rules of the Step 2 as 

follows: 

i rn« 
where u ,'s are the Gaussian membership functions of Step 1, and 6' GR is any point at 

Ft 

which n , achieves its maximum value. 

13This algorithm is suggested in [Wangl993] and [Wangl994]. 
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Because we chose the membership functions to be Gaussian functions which are nonzero 
for any xt e[C~,C*], the denominator of the last equation is nonzero for any xeU. 

Therefore, the filter fk is well defined, and because the 0' as well as x\ and <r/ are free 

parameters, this filter is nonlinear in the parameters. 

Step 4: The following LMS algorithm [Widrowl985] is used to update the filter 
parameters 6', x\ and a,'. With the initial 0'(o), x/(0) and aj(0) values determined in 

Step 2, the adaptive procedure is as following: 

x'i(k) = xi(k-l)+a[d(k)-fk]    ^_i}     a{k-l)   ^l(k_x)) 2 

2 

^M^^-O^W-Al^iM^y 
M     .   . 
Ze'a'ik-l) 

where a'(^-l) = nexp[-^(Y'(<:).^(^  1})2], b(k-\) = Za'(k-l), fk =M——-— 

and a is a small positive step-size. These equations are obtained by taking the gradient of 
L ignoring the expectation £(see chapter 2.2.5.1). 

2.2.5.2. Influential parameters - meanings & interpretations: 

The LMS algorithm is a gradient algorithm, i.e. a good choice of initial parameters 0', x\ 
and a/ is very important to its convergence concerning accuracy and time. Since the error 

measure of this "back-propagation" algorithm is an extremely complicated function of all 
the parameters 0l, x\ and <r/, it can have numerous local minima. Depending on the 

initial parameter estimates, this algorithm always leads to the nearest minimum, i.e. it can 

become stuck in a local minimum of the error measure. 

Recall that this filter is constructed based on linguistic rules from our previous experiences 

and some arbitrary rules. Both sets of rules are updated during the LMS adaptation 
procedure of Step 4 by changing the parameters in the direction of minimizing L. 
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In other words, the adaptation procedure can be directed to the local minimum we want 
(i.e. accuracy factor) and can converge quickly (i.e. time factor). 

if these rules provide good instructions for how the filter should perform, that is, good 
description of the input-output pairs [x(k);d(k)]. 

The updating parameters 0'[Mxl], x/[MxN] anda/[MxN] represent output means, input 

means and the input width of the Gaussian distributed data, respectively. The scalar output 
d is basically the label14 of the test data[lxN] in numerical form, and a\ describes how far 

the data from the output mean can be and still be assigned to it in an appropriate fuzzy 
form. M represents the number of the rules and N the number of the features, i.e. the 
dimension of the data. The parameter a is the "learning factor" or the step-size of training. 

It represents how fast and how smooth the training process proceeds. 

polygraph 

data 

linguistic rules 

N/ 

LMS adaptive filter {defuzzifieh 
labels 

> 

conventional 
initialization 

Fig.5: The LMS/wzy adaptive filter used in this project 

14"deceptive" or "non-decptive". 
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§3. APPROACH 
3.1. Part I - FCM 

3.1.2. Initial stage (conditions and methods): 

A primary component of every pattern recognition problem is feature extraction. And this 
is actually one of the most important and influential tasks for any successful approach. 
In previous researches [Layeghi 1993,1] [Jacobsl993] [Dastmalchil993], students have 
already investigated a set of 669 features for each polygraph test session. They used these 
features to train, optimize and eventually classify the data by a fuzzy K-Nearest Neighbor 

algorithm (KNN). 
In this project, I have used these same features in their original form. I have also selected 
their best features and feature combinations for initial tests of my algorithm and for 
comparison between fuzzy-CM, fuzzy LMS adaptive filter and the fuzzy KNN approach. 
At this point, the question of consistency and transferability of the features - independent 
of the algorithm - became more significant. It turned out to be one part of this research15. 

ft 669 

session #1 

ft 669/ 

session #100 

Fig.6: An example for a set of polygraph data as a matrix 
and its features used in this study 

As mentioned earlier, each feature (total number=960) is extracted for all polygraph test 

questions, that is for relevant, irrelevant and control questions. It was, however, decided 

15See also chapter 4.1.2.3. 
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not to use irrelevant questions in this study, because in a Controlled Question Polygraph 
Test comparison between the responses to relevant and control questions is the actual and 

most important factor. 

/Feature\ 

\ 

IFeatureX 

Subtract the averages 

A 
Use control 

and relevant 
teperately 

V 
} 

> 
f                \ 

Different 
methods of 

combining the 
features 

\ Subtract the 
normalized averages 

Compare 
control & relevant 

y 
? 

 > 

1   Set I    I 2 

\(960)J 
 7 

\ (66^) J 
—\ Subtract maximum 

from maximum 

\ 

■> 

Use control, 
relevant and 

irrelevant 
'• 

^ Divide the averages / ? 

Fig.7: The original feature combinations 

The Total number of the features for every test session at this stage is 669. Each set 
contains the same non-deceptive files but different deceptive ones. For more specific 
details about how the feature extraction was processed, and about combination methods 
which narrowed the total number from 960 to 669, see the references mentioned above. 

3.1.3. Clustering stage 

3.1.3.1. One-dimensional search and selection of the "best" single features: 

After implementation and initial tests of the FCM-code, I began with the one-dimensional 
clustering (using one feature for all sessions). I used three sets (polydat_l, polydat_2, 
polydat_3) of such structured data as shown in Fig.42 containing 100 data elements, i.e. 
50 truthful and 50 deceptive files. With these data, we ran 669 one-dimensional clustering 

searches containing 100 different one-dimensional data points at each time. As a result, we 

attained 669 times 2 clusters for each polydatj. 
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After running these tests and evaluating them, I decided to select four sets of "best" one- 
dimensional features out of each polydat_i in preparation for the multi-dimensional 

clustering search. This decision was necessary to narrow the number of features, since it is 

impractical to find the best combination (concerning the quantity and the quality)16 out of 

this immense number of features by an exhaustive way of searching. 

For example, chosing only 4 or less feature-tuples from a set of 669 by trying all the 
possible different combinations needs the following number of computations: 

669 669!     ^1ftiQ 
i )   i"1i!(669-i)! 

101 

The other challenge while finding good feature combinations is the problem of single 

features which yield poor results by one-dimensional clustering, but when used in 

combination with other features yield very good17 results. 

To narrow the amount of possible features, I decided to select the following four sets of 

single features with different performances. 

percentage of right detections in 
deceptive files non-deceptive files 

group 1 
group 2 
group 3 
group 4a 
group 4b 

> 60% & 
> 80% & 
> 50% & 
> 98% & 

no constraints & 

> 60% 
> 50% 
t 80% 

no constraints 

> 98% 

Fig.8: Selected features by using one-dimensional FCM 

The threshold of 60% was chosen, because any other value below or above that limit 
would again give us either too many or not enough features. Furthermore, any other value 

16That means: How many features and which ones should be taken in a combination. 
17"Good" or "poor" in sense of the definition in chapter 1.1.2. 
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closer to the limit 50% for both deceptive and non-deceptive files would be only a random 

clustering process. Yet, this decision was not enough. We would have lost some good 
features which provide correct detections - better than 80% - for at least one of the files. 
The fourth group was chosen to enable us to consider some extreme cases. 

As an additional set of one-dimensional features, I chose those with good results in multi- 

dimensional tests18 for one of the polydatj's, and used them also for the other two 
polydatj's, even though they didn't belong to one of the four feature sets mentioned 
above. This set was important to fulfill the constraint of consistency and transferability for 

any chosen polygraph data19. 

18See chapter 3.1.3.2. 
19See the comparison in chapter 4.1.2.3. 
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ft_# 

1.0000 
2.0000 
3.0000 
4.0000 
5.0000 
6.0000 
7.0000 
8.0000 
9.0000 
10.0000 
11.0000 
12.0000 
13.0000 
14.0000 
15.0000 
16.0000 
17.0000 
18.0000 
19.0000 
20.0000 
21.0000 
22.0000 
23.0000 
24.0000 
25.0000 
26.0000 
27.0000 
28.0000 
29.0000 
30.0000 

447.0000 
448.0000 
449.0000 
450.0000 
451.0000 
452.0000 
453.0000 

662.0000 
663.0000 
664.0000 
665.0000 
666.0000 
667.0000 
668.0000 
669.0000 

w-dcp 
# 

12.0000 
37.0000 
16.0000 
12.0000 
15.0000 
38.0000 
48.0000 
22.0000 
22.0000 
22.0000 

0 
20.0000 
46.0000 
22.0000 
12.0000 
37.0000 
16.0000 
12.0000 
15.0000 
38.0000 
48.0000 
12.0000 
10.0000 
21.0000 
18.0000 
24.0000 
12.0000 
46.0000 
18.0000 
12.0000 

17.0000 
7.0000 
16.0000 
12.0000 
13.0000 
5.0000 
18.0000 

dcp-ok 
% 

76.0000 
26.0000 
68.0000 
76.0000 
70.0000 
24.0000 
4.0000 
56.0000 
56.0000 
56.0000 
100.000 
60.0000 
8.0000 
56.0000 
76.0000 
26.0000 
68.0000 
76.0000 
70.0000 
24.0000 
4.0000 
76.0000 
80.0000 
58.0000 
64.0000 
52.0000 
76.0000 
8.0000 
64.0000 
76.0000 

66.0000 
86.0000 
68.0000 
76.0000 
74.0000 
90.0000 
64.0000 

w-non 
# 

9.0000 
44.0000 
10.0000 
18.0000 
16.0000 
27.0000 

0 
9.0000 
8.0000 
11.0000 
33.0000 
15.0000 
26.0000 
11.0000 
9.0000 

44.0000 
10.0000 
17.0000 
16.0000 
27.0000 

0 
14.0000 
45.0000 
15.0000 
24.0000 
19.0000 
23.0000 
2.0000 
9.0000 
10.0000 

36.0000 
40.0000 
11.0000 
9.0000 
18.0000 
20.0000 
18.0000 

non-ok    iter # E=669 

27.0000 
16.0000 
21.0000 
31.0000 
34.0000 
25.0000 
15.0000 
15.0000 

46.0000 
68.0000 
58.0000 
38.0000 
32.0000 
50.0000 
70.0000 
70.0000 

34.0000 
30.0000 
37.0000 
23.0000 
17.0000 
28.0000 
37.0000 
39.0000 

82.0000 
12.0000 
80.0000 
64.0000 
68.0000 
46.0000 
100.000 
82.0000 
84.0000 
78.0000 
34.0000 
70.0000 
48.0000 
78.0000 
82.0000 
12.0000 
80.0000 
66.0000 
68.0000 
46.0000 
100.000 
72.0000 
10.0000 
70.0000 
52.0000 
62.0000 
54.0000 
96.0000 
82.0000 
80.0000 

28.0000 
20.0000 
78.0000 
82.0000 
64.0000 
60.0000 
64.0000 

32.0000 
40.0000 
26.0000 
54.0000 
66.0000 
44.0000 
26.0000 
22.0000 

13.0000 
15.0000 
14.0000 
15.0000 
16.0000 
15.0000 
40.0000 
8.0000 

13.0000 
38.0000 
26.0000 
6.0000 

10.0000 
16.0000 
27.0000 
17.0000 
25.0000 
37.0000 
40.0000 
34.0000 
31.0000 
25.0000 
20.0000 
23.0000 
29.0000 
18.0000 
22.0000 
35.0000 
28.0000 
14.0000 

17.0000 
25.0000 
15.0000 
15.0000 
20.0000 
13.0000 
12.0000 

9.0000 
9.0000 

17.0000 
14.0000 
45.0000 
20.0000 
12.0000 
11.0000 

Feature number: ft_# 
# of wrong results in decept. data: w-dcp 
% right detection in decept. data: dcp-ok 
# of wrong results in truthful data: w-non 
% right detection in truthful data: non-ok 

Iterations # for each feature: iter # 

Fig.9: An example for one-dimensional clustering 
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ft # w-dcp 
# 

12.0000 
16.0000 
12.0000 
15.0000 
20.0000 
12.0000 
16.0000 
12.0000 
15.0000 
12.0000 
18.0000 
12.0000 
14.0000 
18.0000 
15.0000 
8.0000 
12.0000 
14.0000 
16.0000 
17.0000 
15.0000 
13.0000 
20.0000 
16.0000 
17.0000 
17.0000 
16.0000 
16.0000 
13.0000 
17.0000 
13.0000 
17.0000 
15.0000 
15.0000 
18.0000 
16.0000 

1.0000 
3.0000 
4.0000 
5.0000 
12.0000 
15.0000 
17.0000 
18.0000 
19.0000 
22.0000 
29.0000 
30.0000 
31.0000 
33.0000 
36.0000 
37.0000 
38.0000 
39.0000 
40.0000 
50.0000 
52.0000 
68.0000 
70.0000 
82.0000 
141.0000 
155.0000 
176.0000 
177.0000 
197.0000 
200.0000 
211.0000 
214.0000 
216.0000 
235.0000 
395.0000 
449.0000 
450.0000 12.0000 
451.0000 13.0000 
452.0000 5.0000 
453.0000 18.0000 
458.0000 16.0000 
459.0000 20.0000 
460.0000 14.0000 
462.0000 14.0000 
600.0000 18.0000 

dcp-ok 
% 

76.0000 
68.0000 
76.0000 
70.0000 
60.0000 
76.0000 
68.0000 
76.0000 
70.0000 
76.0000 
64.0000 
76.0000 
72.0000 
64.0000 
70.0000 
84.0000 
76.0000 
72.0000 
68.0000 
66.0000 
70.0000 
74.0000 
60.0000 
68.0000 
66.0000 
66.0000 
68.0000 
68.0000 
74.0000 
66.0000 
74.0000 
66.0000 
70.0000 
70.0000 
64.0000 
68.0000 
76.0000 
74.0000 
90.0000 
64.0000 
68.0000 
60.0000 
72.0000 
72.0000 
64.0000 

w-non 
# 

9.0000 
10.0000 
18.0000 
16.0000 
15.0000 
9.0000 
10.0000 
17.0000 
16.0000 
14.0000 
9.0000 
10.0000 
16.0000 
16.0000 
8.0000 
13.0000 
14.0000 
13.0000 
15.0000 
17.0000 
20.0000 
18.0000 
20.0000 
20.0000 
17.0000 
17.0000 
18.0000 
16.0000 
17.0000 
13.0000 
16.0000 
12.0000 
14.0000 
19.0000 
17.0000 
11.0000 
9.0000 
18.0000 
20.0000 
18.0000 
14.0000 
10.0000 
18.0000 
17.0000 
20.0000 

non-ok 
% 

82.0000 
80.0000 
64.0000 
68.0000 
70.0000 
82.0000 
80.0000 
66.0000 
68.0000 
72.0000 
82.0000 
80.0000 
68.0000 
68.0000 
84.0000 
74.0000 
72.0000 
74.0000 
70.0000 
66.0000 
60.0000 
64.0000 
60.0000 
60.0000 
66.0000 
66.0000 
64.0000 
68.0000 
66.0000 
74.0000 
68.0000 
76.0000 
72.0000 
62.0000 
66.0000 
78.0000 
82.0000 
64.0000 
60.0000 
64.0000 
72.0000 
80.0000 
64.0000 
66.0000 
60.0000 

iter_# 

13.0000 
14.0000 
15.0000 
16.0000 
6.0000 

27.0000 
25.0000 
37.0000 
40.0000 
25.0000 
28.0000 
14.0000 
21.0000 
14.0000 
14.0000 
15.0000 
18.0000 
17.0000 
13.0000 
18.0000 
23.0000 
17.0000 
23.0000 
12.0000 
15.0000 
25.0000 
13.0000 
13.0000 
15.0000 
12.0000 
42.0000 
27.0000 
32.0000 
14.0000 
10.0000 
15.0000 
15.0000 
20.0000 
13.0000 
12.0000 
8.0000 
10.0000 
9.0000 
7.0000 

37.0000 

r=45 

Feature number: ft_# 
# of wrong results in decept. data: w-dcp 
% right detection in decept. data: dcp-ok 
# of wrong results in truthful data: w-non 
% right detection in truthful data: non-ok 

Iterations # for each feature: iter # 

Fig.10: An exmple for the first group of selected features 
( representing group #1 at page ) 
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3.1.3.2. Multi-dimensional search for the best feature combination: 

3.1.3.2.1.Overview: 

Having obtained these four sets of features, a multi-dimensional searching process through 

all of them was initiated to find the best feature combinations (concerning the quantity and 

the quality20). 
Even though the number of the features21 has already been narrowed, it is still impractical 

to do an exhaustive search, since the total number of the features contained in these four 

sets is about 100 for each polydatj. In other words, the following number of 

computations is still needed for calculation of all 4 or less possible feature-tuples: 

4 flOO^     4       100! 

i = l 
- Y —_—«4.0-106 

^ i )  i^iKioo-i)! 

At this stage, I decided to investigate 3 different search methods to bypass the exhaustive 

way. They are 

1. random search without duplication of any feature within a tuple, 

2. pseudo-exhaustive search with the option of duplication and finally 

3. genetic search with "uncontrollable" possibility of duplications. 

In previous research projects [Layeghi 1993,1] [Dastmalchil993] [Jacobsl993], it was 

decided to narrow the feature numbers from 669 to 30 "best" ones and then an exhaustive 

search was run for up to four- or five-tuple combinations. In other words, their strategy 

was completely different than the aforementioned three strategies. 

As mentioned before a "poor" or an average single feature by one-dimensional clustering 

might give us in combination with other features very good or even better results by a 

multi-dimensional clustering than any of them individually. 

This fact was totally neglected by the feature selection methods used in the previous 

researches22 [Laueghil993,l] [Dastmalchil993]. 

20That means: How many features and which ones should be taken in a combination. 
21See chapter 3.1.3.1. 
22See chapter 4.3. comparison for more details about differences between this and previous works. 
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Applying these three new strategies, I was able to consider more possible features for a 

multi-dimensional clustering than in previous works, without using the impractical 

exhaustive method. 

polygraph data 

ft 669 

session #1 session #100 

best feature combination )    <: 

one-dimensional 
FCM-clustering 

feature selection 

t 
\/\/\/   '"   \/ 

feature combination 

random search 
T 

pseudo-exhaustive search 

genetic search 

multidimensional 
FCM 

Fig.ll: General search to find the best feature combination 

3.1.3.2.2. Random search method: 

Applying this method, an average of 14 to 20 different features out of the aforementioned 

four sets were taken, and then the FCM algorithm including the evaluation program for 

randomly chosen 4-tuples were run. After about 1000 combinations were constructed, I 

then picked out the best features and their combinations, and replaced the poor ones with 

new features. This same procedure was repeated until good23 combinations were found. 

23"Good" in sense of the definition in chapter 1.1.2. 
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Every time the results were out of balance - i.e. highly better detection either for deceptive 
or non-deceptive files by the cost of the other one - I appropriately took additional 
features from those four sets to eliminate the difference by improving the results of the 

worse file - and as much as possible - by maintaining the results of the better file. 

After running this kind of tests several times, we were able to estimate which features are 

the good ones to combine together. 

3.1.3.2.3. Pseudo-exhaustive search method: 

Having some idea24 which features are good in a combination with others25,1 built every 

possible four- to six-tuples out of those features and evaluated them. This method was 
very important to make sure that we did not lose any good combinations which might 

have been neglected by the random search. 

I called this method "pseudo "-exhaustive, because each time it considers only a small part 
of the available features; but "exhaustive", because it takes all the possible combinations 
within this part. Except for this major difference, all the other steps of this method are 

exactly the same as the random search. 

3.1.3.2.4. Genetic search method: 

This algorithm is basically a compromise between the pseudo-exhaustive and the random 
search method, plus a weighting system which supports those features with good results. 

Initial populations of 200 to 300 chromosomes26 are randomly created. Each chromosome 
is a combination of N features, where N stays constant for each population during the 
outgrowth. Each single feature is selected from a gene pool for the particular population 
that the individual belongs to. Each gene pool consists of twenty to forty features that we 

have chosen27. 
24By using the results of the random search method and also the 5th group mentioned at page 3.1.3.1. 
"Remember the fact that some "poor" single features might give us in combination with others very 

good results 
26Individuals or feature-tuples. 
27Directed by our experience from using the random and the pseudo-exhaustive methods. 
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In this project three processes operate on the evolution28 of each population: 

• reproduction 

• crossover 

• mutation. 

These three processes determine how each new generation will be created based on the 

old one. Before genetic reproduction, the fuzzy-c-means algorithm evaluates the 

percentage of correct deceptive and non-deceptive detections for each chromosome. The 

average of them is the fitness value ofthat chromosome. During the genetic reproduction, 

the chromosomes of the new generation are copied from the chromosomes of the old 

generation in a probabilistic sense. The probability that a particular chromosome will be 

copied is the ratio ofthat chromosome's fitness value against the total fitness values of the 

entire population of the old generation. 

After selection, genetic crossover randomly chooses pairs of chromosomes as parents, 

splices them, and recombines them - by randomly mixing some of the parents genes - into 

pairs of offsprings. Finally, genetic mutation randomly substitutes a new gene within a 

randomly chosen chromosome. The extent to which crossover and mutation occur can be 

verified by appropriate initialization. 
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Number of feature tuples: 300 

Number of features in each tuple: 4 

Fig.12: An example for the genetic outgrowth with 
4 genes (=features) in each chromosome (individual) 

28See chapter 4.1.2.2 for particular results of this method. 
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3.1.3.3. General process - Optimization by changing parameters: 

Simultaneously to the search for the best features and their combinations, we were 

optimizing the system by changing and adjusting the parameters. Recall, the whole idea of 

this pattern recognition was to cluster the unlabeled data into two clusters which represent 

the deceptive and the truthful group29. 

Knowing the information of which files were deceptive or truthful30, we were able to 

change the parameters in the way that the output could continuously come closer to the 

real cluster structure. This process is depicted in the following figure. The "fuzzy c-means 

algorithm" block not only represents the pure FCM algorithm shown in Fig.3, but also the 

general search for good features shown in Fig. 11 which ran simultaneously with the 

optimization process. 

polygraph test 
data /non-deceptive cluster 

V 
defuzzification 

hard / 
deceptive cluster 

fuzzy c-means 
algorithm 

Uik 

/ \ defuzzification 
soft parameters 

;uik 

C non-deceptive cluster 
J   deceptive cluster evaluation / ^ 
1   membership values 

Fig. 13: Optimization of the clustering environment 
- General process - 

As an example, I will briefly discuss how the parameter m was chosen and eventually 

modified: The weighting exponent m plays a significant role in this system. Since the 

control parameter m itself does not belong to the optimizing values within the iterative 

process of FCM algorithm, one must choose m before implementing the algorithm, and 

29See chapter 3.1.2. 
30We know this information beforehand for sure, because the subjects have confessed their case or the 
actual offender was found. 
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optimize it manually. There are several research papers written as an attempt to find the 

optimal m for different clustering problems. 

The effect of m was discussed in [Bezdekl981]. Although Bezdek proposed heuristic 

guidelines for m, no theoretical basis for an optimal choice for m has been reported. The 
only known paper in this matter [Choel992] proposed a method for determining m based 

on the concept of fuzzy decision theory initiated by [Zadehl970]. 

But since the definition of "good" clusters in [Choel992] did not exactly match to our 
clustering environment, I chose the "trail and error" strategy to find the optimal m by 
systematically increasing it. Fortunately, there is a logical limit31 for this increasing process 

in our case, even though m can mathematically be any value from [ 2, oo ). 
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-           ^          ++                                           +                         + 

0.1 _ •    4- •                                                   • 
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D '      20 "          '    40                  60                  80                  1 00 

Polygraph sessions 

"." represents the mmebership values for m=2 
"+ " represents the membership values for m=5 

t^.' Fig. 14: An example for the influence of 'm 

31See chapter 2.2.3.2. for the meaning of m. 
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For more details on this matter see the chapter 4.1.1. In Fig. 14, you see an example for 
how the weighting exponent m influences the membership values for one of the features 

from polydat_3 in one-dimensional mode. 

3.1.3.4. Evaluation strategy: 

Due to the small number of non-deceptive cases available, each session for a subject was 
used as a separate and individual case. But in average, each group of three sessions belong 
to one person concerning the same crime, meaning the results of these sessions are not 
independent of each other. Using this additional information, the clustering system can 
come closer to the actual structure of the data, i.e. we can get a better performance. 

polygraph examination for a deceptive subject r 
-. session #2 session #3 ^ 
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R 

© 

© 
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V / N /                                                                   N / 

non-deceptive                            deceptive                                  deceptive 

NU 

[cj : Control question                                                        deceptive 

[R| : Relevant question 

Fig.15: An example for the final evaluation using the 
dependency of the sessions 
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After clustering and evaluating32 each session separately, some cases with different 

responses to the algorithm were found, although they belonged to one person. In 

circumstances like this, we combined the individual results within each group in a way that 

the majority response was assigned to the whole group (see Fig. 15). 

In those cases that each polygraph examination contains 2 or 4 test sessions where there is 

no majority response to build, I decided to take only those membership values further to 

the threshold 0.5. For example, by the feature combination [30, 30, 39, 235, 363, 450] 

used to cluster polydat_l, we obtained for one of the examination with four sessions the 

following membership values: 0.4164, 0.5519, 0.5377, 0.4780. After defuzzification we 

got 0, 1, 1, 0 where no majority class can be build. However, the second and the third 

membership values are closer to the threshold than the other two ones. With the 

aforementioned strategy, this examination is labeled with 0. 

Recall that each polygraph examination has a set of control and relevant questions which 

is repeated an average of three times. The only difference between each session is the 

order in which the questions are asked. 

32The general evaluation process is contracted as following: 
After each clustering procedure (one- or multi-dimensional) a two-row vector of membership values is 
given which represent the two deceptive and non-deceptive clusters. The evaluation process takes the 
membership values of one these clusters and counts the values below and above the threshold 0.5. Thus, as 
a result we get the absolute number of wrong and right detections. 
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3.2. Part II - LMS fuzzv adaptive filter 

3.2.1. Feature selection bv visual inspection: 

One advantage of a fuzzy logic system is its use of common sense human reasoning as 
inference rules. The fuzzy LMS algorithm we used extends this advantage by further 
optimizing such inference rules to "fit" a given set of data. To fully utilize the advantages 
of this fuzzy LMS algorithm, we had to face two issues: coming up with the proper 
intuitive rules for initialization and a set of data that reflects real-world examples for 

training. 

As mentioned before, for practical reasons, the polygraph recognizer can use only a subset 
of the given 669 features, and we would have to choose the effective ones. Furthermore, 

the fuzzy logic system needed reasoning rules, operating on those features we selected, to 
analyze the data. We believed that we could visually inspect graphical plots of the feature 
data to learn about the feature information. Since fuzzy logic corresponds closely with 
human reasoning, we would then, based on the knowledge obtained from our visual 
inspection, select features that help differentiate deceptive and non-deceptive subjects and 

codify the patterns we would find into reasoning rules. 

For the visual inspection, a scatter plot was made of the data in polydat_3 of each single 

feature. We looked at each plot individually. In any given plot, if the deceptive and non- 
deceptive subjects showed distinctive clusters, then the feature was considered good. If 
the elements of these two classes seemed to be randomly located, then the feature was 
considered bad. After viewing all 669 plots, we subjectively determined the following 
features33 to be very good: 9,11, 29, 164, 399,449,450, 451, 452, and 454; with 451 and 

452 to be the best. 

Initially the fuzzy adaptive filter was to be designed based on two features, with more 
features to be added in the future as the project progresses. We limited the feature couple 
to be composed of good features from the above list. Visual inspection was made of the 
scatter plots of the data in polydat_3 of various such feature combinations to determine 
the effective ones. While selecting feature couples, we again searched for combinations 
that show distinctive clusters for deceptive and non-deceptive subjects. The features 

33See Fig.41 for the meaning of these numbers. 
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within a combination should also be uncorrelated with each other. A plot of the feature 

449 and 450 combination shows that they are a bad couple because they seem to be 

linearly correlated34, as the data points fall closely along a straight line. 
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8       1 

|       0.5 
■£ 
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<F 
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-1.5  ^ 
-1.5 TJi" -TT5- 

feature # 449 

—re 

; non-deceptive files 
'o': deceptive files 

polydat_3 

Fig.16: Scatter plots of two linearly correlated features 

Visual inspection of feature couples consumed much more time than visual inspection of 

individual features, as the clusters took on more complicated shapes. Furthermore, in the 

fuzzy LMS algorithm each inference rule exerts influence centered in an elliptical contour 

where the major and minor axes are parallel with the axes of the feature plot. Clusters with 

a complicated shape must be built from those elliptical regions (see next figure). Therefore 

we had the additional task of finding clusters in the feature plots that could be easily 

approximated with few ellipses, to reduce system complexity. 

Due to the lack of time, we did not examine the plots of all forty-five possible 

combinations of the ten very good features listed above. We only examined a random few. 

Based on the ones we did examine, we settled on the combination of features 451 and 452 

because: 

34Correlation between two features means that information in one is similar to the information in the 
other one, and using them together only introduces redundancy and hardly improves the system. 
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they were the best - visually recognizable - features individually, 

they seemed uncorrelated with each other and 
we roughly found four elliptical clusters from the plot. 
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-0.5 
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feature #451 
T5 i 

'+': non-deceptive flies 
'o': deceptive files 

Polydat-3 

Fig. 17: The four elliptical clusters used for setting the linguistic rules 
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3.2.2. Setting linguistic rules: 

We initialized the fuzzy system such that it would exploit the knowledge we had just 

obtained about the clusters for features 451 and 452. There were two inputs, one for each 

feature, and four rules, one for each cluster. We had to represent those visual clusters we 
found with inference rules. The linguistic rules are shown in the following figure. 

1. IF fl is about -1 (+0.5) and f2 is about -0.5 (±0.8), 
THEN decision is non-deceptive => output is +1. 

2. IF fl is about 0 (±0.5) and £2 is about -0.25 (±0.25), 
THEN decision is non-deceptive => output is +1. 

3. IF fl is about 0 (±0.1) and f2 is about 0 (±0.2), 
THEN decision is deceptive => output is -1. 

4. IF fl is about 1 (±0.6) and f2 is about 0.3 (±0.5), 
THEN decision is deceptive => output is -1. 

fl: measurement of feature # 451 
f2: measurement of feature # 452 

Fig.18: Initial linguistic rules for the fuzzy adaptive filter 
based on the clusters in Fig. 17 

The linguistic rules above were then translated to fuzzy membership functions as outlined 
in [Wangl994]. The xi's were the centers of the clusters; the sigmas were the widths of the 
clusters (±xxx in the above rules); and the thetas were either +1 or -1 for non-deception 

and deception, respectively. 

The output of the fuzzy reasoning based on the above four rules would not be exactly +1 
or -1. It would be within the range limited35 by +1 and -1. For our project, we decided 
that a positive output denotes non-deception and a negative output denotes deception. In 

other words, the decision threshold was at zero. 

35After training the output may go beyond that range. 
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For future investigations one may experiment with a different threshold36. 

The choice of plus and minus one for non-deception and deception is based on the 
following argument: The learning technique uses the squared error, which is the square of 
the difference between the desired output and actual output. In computing that squared 
error, if the difference between the desired output and actual output is greater than one, 

then the squaring operation expands the error value and therefore gives more significance 

to such mistakes. On the other hand, if the difference is less than one, than the squaring 
operation compresses the error value and therefore gives it less significance. 

Given zero as the threshold between deception and non-deception and assuming the actual 
output would never go beyond plus two or minus two, then the choice of plus and minus 
one as desired outputs would mean that the error calculation gives more significance to 
misclassifications and less to correct classifications; Here classification refers to the crisp, 

defuzzified classification, not the degree of belonging. 

For example, the desired output for non-deceptive subjects is plus one. If the actual output 
is between zero and two, then the crisp classification is non-deception, which is correct. 
The numerical difference between the actual output and the desired output is less than one 
in this case, and the squaring operation would lessen the significance ofthat error. On the 
other hand, if the actual output is less than zero, then the crisp classification would be 
deception, which is wrong. In that case, the numerical difference between the desired 

output and the actual output is greater than one and more significance would be given to 
such mistakes. Similar argument can be apply for the choice of minus one as the desired 

output for deceptive subjects. 

3.2.3. Training, testing and evaluation strategy: 

The fuzzy LMS algorithm can be optimized to a specific set of data. To exploit that aspect 

of the algorithm, we also selected a set of data to train the system. Following a procedure 
similar to one used in an earlier project with KNN classifying algorithm [Layeghil993], 
we had 35 deceptive subjects and 35 non-deceptive subjects - from each polydat_i - for 

360ne may also view the output as a fuzzy value and map it to a confidence value in addition to just a 
deception/non-deception decision. That would differentiate a sure judgment from an unsure one and may 
be more helpful in practice. 
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training. However, with a set of only 100 subjects within each polydatj, that left a rather 
small amount for testing (i.e. 15 deceptive and 15 non-deceptive subjects). Therefore we 
also tested the algorithm with 10 deceptive subjects and 10 non-deceptive subjects for 
training and the rest (40 deceptive subjects and 40 non-deceptive subjects) for testing. 
That might be a bit extreme in the other direction, but we could interpolate the results and 

also see the sensitivity of the algorithm to the amount of training data. 

We tested both cases for all three polydat_i's, giving a total of six tests. Each test was 

repeated twenty times. The training data were randomly chosen each time, and the rest of 
the available data in each set were used for testing. We recorded for each test the average 
of those twenty trials. This repeated testing was done to ensure that the results were not 

dependent on a particular choice of training data. 
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3.2.4. What to do with the memorizing problem? 

Most learning algorithms suffer the dilemma of overlearning, or memorizing. Usually the 

problem occurs when the learning algorithm tries too hard at optimizing itself to a set of 
training data, sometimes to the point of memorizing them, such that it does not generalize 
to understand new data. Overlearning is exacerbated when the training data set is not 

completely representative of the testing set. 

In a pattern recognition problem, while the recognition rate for the training data may 
increase steadily until it reaches a certain plateau, the recognition rate for testing data may 
only increase for a while, after which it may decrease until it hits a plane. We observed 

such phenomenon in our system: 

0.85 

S 
c        0.8 
o 

0.75 

0.65 

0.6 

training data 

f 
f 

testing data 

~10 15 20 25 30 35 40 
epochs 

The training data consist of twenty non-deceptive subjects and twenty deceptive subjects from polydatj. 
 The testing data consist of all one hundred subjects from pofydat_l. 

Fig.19: An example for memorizing as the system "learns" 

The point where the recognition rate starts to decrease marks the beginning of 
overlearning. In practical applications, most adaptive learning algorithms are trained only 
to the point before overlearning occurs, when the performance on the testing data reaches 

its peak. 
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In our testing we had taken that approach and, for each trial, the percentage of correct 

recognition was taken as the maximum attained for the testing data within forty epochs37. 

We disregarded the recognition rate for the training data because for many systems, 

including our own, a proper set-up could easily attain a recognition rate of 100%. That is, 

the recognition rate of the training data bears little importance in practical applications. 

37An epoch is defined as one complete cycle through all the training data. 
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§4. RESULTS AND CONCLUSIONS 

4.1. Fuzzv-c-means 

4.1.1. Searching for the best level of fuzziness (parameter 'm'): 

One of the major steps during the one-dimensional clustering was the searching process 

for the best value of m38. For this process, it was necessary to run the FCM algorithm for 
different /w's and for different data by increasing m systematically. This was done for all 

669 features and for each polydatj, by every new m. 

Recall that it was decided to consider four groups of features to limit the feature pool for 
multi-dimensional clustering. Even though the general development - while changing m - 

was similar for each polydatj, the individual reaction of these 4 groups within each 
polydatj was a little different. For the final decision, we considered all these variances, 
correct detection rates and also the distributions of the membership values for each m. 

In the following, I will mention some of the remarkable observations we have made during 
this process (see also the following tables and figures representing the results of 

polydat_3): 

As expected, the membership values Uik did approach the 0.5-level39 by increasing m, i.e. 

the results became fuzzier. Thus, we had to limit the increasing process to avoid the 
uncertainty of the results caused by too much "fuzziness" (which means that every person 
belongs to both clusters with almost the same possibility). However, we could observe a 
very interesting phenomenon. Even though the membership values came closer to 0.5, and 
the distances for different persons to this level were around 10~x (with x> 3), they were 

still visually recognizable as deceptive and truthful clusters. 

See the following two figures and also the Fig. 14 for examples. Notice that the first 50 

sessions represent the non-deceptive persons and the other 50 the deceptive ones. 

38See also chapter 3.1.3.3. for the discussion about finding the best m. 
39See chapter 2.2.3.2. for more details. 
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Fig.20: Influence of increasing 'm' for polydat-3 session #1 
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Fig.21: The zoomed-in view of the above figure for m=10 

4-45 



In the following two tables, the influence of changing m (for polydat_3/group #1, as an 
example) is depicted. As mentioned earlier this group represents those features which give 
us better than 60% right detection for both deceptive and non-deceptive files by one- 

dimensional clustering. 

As you see in these examples, while increasing the parameter m, new "good" features 
appear. Some old ones provide even better detection rates and some get worse or even 
disappear. This progress is not unlimited. As you see, the development from 'm=4' to 'm=5' 
is smoother than between 'm=2* and 'm=4' regardless of 'm=3' step. By continuing this 

process above 'm=5', the tendency becomes rather negative. 

Those features marked with (*) represent a better detection rate than 75% at least in one 
of the two clusters. Notice that these features also change during the increasing process of 

m. By continuing this process above 'm=5', also this tendency becomes rather negative. 

After considering the other groups40 and their development for each polydat_i, 'm=5' 
appeared to be the best compromise. Notice that there is also an outstanding result for 
feature number 452 by 'm=5' (see Fig.23). That was the only individual feature ever by an 
one-dimensional clustering process with a correct detection rate of 90% for non-deceptive 

files. 

Another interesting aspect is that independent of m, the conglomeration areas where 
"good" features appear are always the same: For example the half of the "good" features 
are among the first hundred, but between 200 and 300, there is only one. 

In the next tables we will use the following abbreviations: 

ft #: Feature number. 
w_dcp: Wrong detection within the deceptive cluster in percent. 
w_non: Wrong detection within the non-deceptive cluster in percent. 
*: Features with a better detection rate than 75% at least in one of the two 

clusters. 

•m=...' MINUS 'm=...': Represents the difference in detection rates by using different m's. 

40See Fig.8. 
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poIydat_3 

group #1 & m=4 

ft #  w_dcp w_non 

1.0000 
3.0000 
4.0000 
5.0000 
12.0000 
15.0000 
17.0000 
18.0000 
19.0000 
22.0000 
29.0000 
30.0000 
31.0000 
33.0000 
36.0000 
37.0000 
38.0000 
39.0000 
40.0000 
50.0000 
52.0000 
68.0000 
70.0000 
82.0000 
141.0000 
155.0000 
176.0000 
177.0000 
197.0000 
200.0000 
202.0000 
211.0000 
214.0000 
216.0000 
235.0000 
395.0000 
449.0000 
450.0000 
451.0000 
453.0000 
458.0000 
459.0000 
460.0000 
462.0000 
600.0000 

24.0000 
32.0000 
22.0000 
30.0000 
40.0000 
24.0000 
32.0000 
22.0000 
30.0000 
24.0000 
36.0000 
24.0000 
28.0000 
36.0000 
30.0000 
16.0000 
24.0000 
28.0000 
32.0000 
34.0000 
30.0000 
24.0000 
40.0000 
32.0000 
34.0000 
34.0000 
32.0000 
32.0000 
26.0000 
34.0000 
30.0000 
26.0000 
32.0000 
30.0000 
30.0000 
38.0000 
32.0000 
24.0000 
24.0000 
36.0000 
32.0000 
40.0000 
26.0000 
28.0000 
36.0000 

18.0000 
20.0000 
36.0000 
32.0000 
30.0000 
18.0000 
20.0000 
36.0000 
32.0000 
28.0000 
18.0000 
20.0000 
32.0000 
32.0000 
16.0000 
26.0000 
28.0000 
26.0000 
30.0000 
34.0000 
40.0000 
36.0000 
40.0000 
40.0000 
34.0000 
34.0000 
36.0000 
32.0000 
32.0000 
26.0000 
28.0000 
32.0000 
26.0000 
28.0000 
38.0000 
32.0000 
20.0000 
18.0000 
38.0000 
36.0000 
26.0000 
18.0000 
38.0000 
34.0000 
40.0000 

* 

* 
* 
* 

* 
* 
* 

* 
* 
* 

'm=2' MINUS '01=4' 

% % 

0       -2.0000 
2.0000        0 
 new feature  
2.0000        0 
 new feature  

0      -2.0000 
2.0000        0 

-new feature  

0       6.0000 
0       2.0000 
 new feature  

0        0 
6.0000     -2.0000 
 new feature  

-new feature- 
0 
0 

0 
0 

for the abbreviations see page 461 

Fig.22: Comparison between the results for 'nrf' and 'm=4' 
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polydat_3 
group #1 & m=5 

ft #     w_dcp    w_non 

'm=4' MINOS 'm=5' 

% 

1.0000 24.0000 18.0000   * 0 0 
3.0000 32.0000 20.0000   * 0 0 
4.0000 24.0000 36.0000   * -2.0000 0 
5.0000 30.0000 32.0000 0 0 
12.0000 40.0000 30.0000 0 0 
15.0000 24.0000 18.0000   * 0 0 
17.0000 32.0000 20.0000   * 0 0 
18.0000 24.0000 34.0000   * -2.0000 2.0000 

19.0000 30.0000 32.0000 0 0 
22.0000 24.0000 28.0000   * 0 0 
29.0000 36.0000 18.0000   * 0 0 
30.0000 24.0000 20.0000   * 0 0 
31.0000 28.0000 32.0000 0 0 
33.0000 36.0000 32.0000 0 0 
36.0000 30.0000 16.0000   * 0 0 
37.0000 16.0000 26.0000   * 0 0 
38.0000 24.0000 28.0000   * 0 0 
39.0000 28.0000 26.0000 0 0 
40.0000 32.0000 30.0000 0 0 
50.0000 34.0000 34.0000 0 0 
52.0000 30.0000 40.0000 0 0 
68.0000 26.0000 36.0000 -2.0000 0 
70.0000 40.0000 40.0000 0 0 
82.0000 32.0000 40.0000 0 0 
141.0000 34.0000 34.0000 0 0 
155.0000 34.0000 34.0000 0 0 
176.0000 32.0000 36.0000 0 0 
177.0000 32.0000 32.0000 0 0 
197.0000 26.0000 34.0000 0 -2.0000 
200.0000 34.0000 26.0000 0 0 
211.0000 26.0000 32.0000 0 0 
214.0000 34.0000 24.0000   * -2.0000 2.0000 

216.0000 30.0000 28.0000 0 0 
235.0000 30.0000 38.0000 0 0 
395.0000 36.0000 34.0000 2.0000 -2.0000 

449.0000 32.0000 22.0000   * 0 -2.0000 
450.0000 24.0000 18.0000   * 0 0 
451.0000 26.0000 36.0000 -2.0000 2.0000 

452.0000 10.0000 40.0000   *  new feature  
453.0000 36.0000 36.0000 0 0 
458.0000 32.0000 28.0000 0 -2.0000 

459.0000 40.0000 20.0000   * 0 -2.0000 

460.0000 28.0000 36.0000 -2.0000 2.0000 

462.0000 28.0000 34.0000 0 0 
600.0000 36.0000 40.0000 0 0 

-feature # 202 is missing- 

for the abbreviations see page 461 

Fig.23: Comparison between the results for 'm=4' and 'm=5' 
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4.1.2. Searching for the best feature combination: 

4.1.2.1. Results of the conventional methods and general observations: 

As mentioned in chapter 3.1.3.2.1, we decided for three different strategies to find out the 
best feature combination that can represent the two sought clusters within the polygraph 

data. 

After a short while of a "trial-and-error" testing with the multi-dimensional clustering 
algorithm and achieving some experience about how well which features are in a 
combination with others, I decided to start a systematic searching process beginning with 

four-tuple combinations. In the followings, I will mention some of the general 

observations41 we made; 

• not always all of the good one-dimensional features were represented 

within the best feature combinations, 

• good one-dimensional features with the same detection rate did not 
provide the same results within coequal combinations, 

• some poor or average individual features turned out to be the best 

features in a combination with others, 

• by repeating some features in a combination, we obtained a few new 

good combinations, 

• good feature combinations always gave us better results than any of the 

features individually and 

• the quality of the feature tuple does not depend on the order of the 

features within the tuple. 

In the following tables, you see an example for using the random search method for 
polydat_3 ('m=2' and 'm=5') for four-tuple combinations. 

41See also chapter 4.3. 
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feature number « {1,4,3,9,22,29,30,36,37,39,450,457,458,460] 
condition: if( ((nn>=80) & (ww>=80))   |   ((nn>=86) \ (ww>=86)) ) 

table 1 

feature positions        rieht detection feature positions        right detection 
non-ok   dcp-ok non-ok   dcp-ok 

5     17     4             86         78 6     4     8     5             86          68 

17     3     6            88         72 2    4    10   6            86         68 
4    8    5    2            86         76 8    4     15            86         70 
5    6    8    4            86         68 10    8    2    1             86         72 
8     3     4     5             86         72 7     9     3     1             82          80 
6     8    13    5             86         68 8     1     6   14             86          70 
4     16     3             88         70 5     4     2     8             86          76 

2    3     6     1            86         74 17     8     6             86          70 
18     5     3             86         72 1     4     8   10             86          72 
6    12    13   8             86         68 2    12     8    1             86          76 
8     14     6             86         70 12     4     8             86          76 
8     7     6     1             86         70 8     12     4             86          76 
18     5     6             86         70 7     3     4     2             86          78 
6     3     7     1             88         72 4     16     8             86          70 
2     6    10    1             86         68 3     6     14             88          70 
6    10     2    7             86         68 8     1     5   10             86          72 
13     6     5             88         70 18     2     4             86          76 
6     7     3     1             88         72 8     4    13    1             86          70 
2     6     4     1             86         72 1    10    2     6             86          68 
7     5     14             86         78 16     3     5             88          70 
5     8     14             86         70 15     8     3             86          72 
8     5    13    3             86         72 3     8     2     6             86          72 
3     8     6   14             88         70 1     6     3   14             88          70 
3     7     4     2             86         78 5     18     2             86          76 
8     7     16             86         70 1     4    6   10             86          68 
3     16     5             88         70 2     5     4     8             86          76 

5     4     8     2             86         76 2     6    10    1             86          68 

... 

feature number = {1,4,3,8,9,18,22,29,30,36,37,39,81,457} 
condition: if( ( (nn>=80) & (ww>=80))    |    ((nn>=86) & (ww>=78)) ) 

table 2 

feature positions        right detection feature positions        rieht detection 
non-ok   dcp-ok non-ok   dcp-ok 

2     3     9    14            86         78 7     1    13    9             86          78 
3     5     2     9             86         78 9     3    13    2             86          78 
9     3     2     4             86         78 19     5     4             86          78 
9     14     5             86         78 7     3     2     9             86          78 
1     4    13    9             86         78 7     9    4     1             86          78 
9     4     3     2             86         78 4     2     3     9             86          78 
7     14     9             86         78 17     9     4             86          78 
5     7     9     1             86         78 9     1    13    5             86          78 
2     9     3     7             86         78 

Fig. 24.1: Feature combinations by 'random search' - polydat_3, 'm=2' 
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feature number = {1,4,3,7,8,9,22,30,36,37,81,308,457,459} 
condition: if( ((nn>=80) & (ww>=80))    |    ((nn>=86) & (ww>=78)) ) 

feature positions right detection 
non-ok dcp-ok 

8     7 6 1 86 78 
7     8 1 5 86 78 
3     2 8 6 86 78 
3     8 5 2 86 78 
1     3 10 8 82 80 
3     8 2 6 86 78 
3     2 13 8 86 78 
2     8 5 3 86 78 
1     6 5 8 86 78 
5     8 3 2 86 78 
1     8 13 5 86 78 
6     1 8 7 86 78 
2     5 8 3 86 78 
5     2 3 8 86 78 
3     8 6 2 86 78 
3     7 2 8 86 78 
2     8 5 3 86 78 
7     6 1 8 86 78 
3     5 2 8 86 78 
8     5 6 1 86 78 
7     2 3 8 86 78 
8     5 6 1 86 78 
7     8 2 3 86 78 
7     8 6 1 86 78 
8     1 7 6 86 78 
1     8 5 6 86 78 
1     7 6 8 86 78 
5     8 1 6 86 78 
6     1 5 8 86 78 
7     8 5 1 86 78 
8     7 2 3 86 78 
8     2 3 7 86 78 
6     5 1 8 86 78 
1     8 7 6 86 78 
6     7 8 1 86 78 
1     6 13 8 86 78 
6     8 13 1 86 78 
8     7 1 6 86 78 
5     1 7 8 86 78 
2     6 8 3 86 78 
3     2 8 7 86 78 
1     6 8 5 86 78 
2     5 8 3 86 78 
8     1 5 7 86 78 
2     5 3 8 86 78 

tat )le3 
feature positions rieht detection 

non-ok dcp-ok 

1     8 10 3 82 80 
1    7 8 14 86 78 
6    7 1 8 86 78 
10   8 1 3 82 80 
5    3 2 8 86 78 
7     1 6 8 86 78 
6     2 8 3 86 78 
7     6 8 1 86 78 
8     5 3 2 86 78 
1     8 6 14 86 78 
3     5 8 2 86 78 
7     3 8 2 86 78 
8     5 2 3 86 78 
8     6 7 1 86 78 
8     1 5 7 86 78 
1     6 13 8 86 78 
7    3 8 2 86 78 
6     8 1 5 86 78 
5     1 8 7 86 78 
1     7 13 8 86 78 
1     8 5 6 86 78 
8     3 2 7 86 78 
6     2 8 3 86 78 
8     2 3 5 86 78 
6     8 2 3 86 78 
8     3 6 2 86 78 
2     8 3 5 86 78 
2     6 3 8 86 78 
5     8 1 7 86 78 
8     5 13 1 86 78 
1     3 8 10 82 80 
7     3 2 8 86 78 
3     2 5 8 86 78 
3    10 1 8 82 80 
8     3 1 10 82 80 
8     1 5 6 86 78 
3     2 13 8 86 78 
1     7 8 6 86 78 
3     2 5 8 86 78 
2     3 8 6 86 78 
5     8 13 1 86 78 
8     3 13 2 86 78 
8     3 5 2 86 78 
8     2 3 5 86 78 
6     8 2 3 86 78 

Fig. 24.1: Continued 

4-51 



feature number = {1,4,3,8,9,21» 22,30,35,36,81,198.457,459} 
condition: if( ((nn>=80)&(ww>=80))    \    ((nn>=86) & (ww>=78)) ) 

table 3 
feature nositions rieht detection 

non-ok dcp-ok 

1    8 5 4 86 78 
7     1 8 14 86 78 
7     1 8 5 86 78 
4    2 8 3 86 78 
3    2 8 5 86 78 
8     1 4 7 86 78 
3     4 2 8 86 78 
8     2 3 7 86 78 
5     8 13 1 86 78 
1     4 13 8 86 78 

feature number = {1,4,3,8,9,22,30,35,51, 111, 210,455,457,459} 
condition: if( ((nn>=80)&(ww>=80))   \    ((nn>=86) & (ww>=79)) ) 

table 4 
feature positions rieht detection 

non-ok   dcp-ok 

7    5    10    6 
6 4    7    10 
7 4    10     5 

80         80 
80         80 
80         80 

Fig. 24.1: Continued 

feature number = {1,3,4,8,9,22,30,37,81, 111, 452,450,459,460} 
condition: if( ((nn>=80) & (ww>=80)) \ ((nn>=86) & (ww>=79) ) ) 

feature positions right detection 
non-ok dcp-ok 

1    12    5 9 86 80 
5    10    2 8 80 80 
6    12    1 9 86 80 
1     9     7 5 86 80 

10    9     6 7 84 82 
7    10    9 6 84 82 
2     1     5 8 80 80 
10 8 
7 4 
1 8 
1 7 
8 3 
5 8 
8 2 
5 12 

7 
9 
2 
5 

6 
1 
4 
9 

1    10 
1     2 

10 
3 

80 
86 
80 
86 
80 
80 
80 
82 

82 
80 
80 
80 
80 
80 
80 
80 

table 1 
feature positions right detection 

non-ok   dcp-ok 

5 
5 
6 
6 
9 
9 
12 

8 
8 
1 

10 
1 
1 
5 
3    10    8 

1 
2 
2 
2 
7 
8 
9 

2 
1 
8 
8 
14 
2 
8 
1 

80 
80 
80 
80 
86 
80 
80 
80 

80 
80 
80 
80 
80 
80 
80 
80 

8    12 1     3 80 80 
1     4 8     2 80 80 
1    12 13   9 86 80 

10    8 2     9 80 80 
7    9 6     1 86 80 

9     5 7    10 84 82 
2     1 4     8 80 80 

^«' Fig. 24.11: Feature combinations by 'random search' - polydat_3, 'm=5 
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feature number = {1,4,8,9,22,30,32,37,67,81,452,450,459,457} 
condition: if( ((nn>=81) & (ww>=81)) | ((nn>=86) & (ww>=79)) ) 

table 2 
feature positions rieht detection 

non-ok dcp-ok 

1    6 4 10 86 80 
6    4 1 10 86 80 
1    12 3 10 86 80 
1    12 13 14 86 80 
3    6 1 10 86 80 
6    10 5 1 86 80 
4    6 10 1 86 80 
10    3 1 6 86 80 
3    12 10 1 86 80 
1    12 10 5 86 80 

10   12    1    14 86 80 

Fig. 24.11: Continued 

After running similar simulations for different m's with randomly chosen features from the 

pool of the aforementioned five42 groups, I started a sequence of pseudo-exhaustive 

searches with those features from which we received good results by random search. 

For this sequence of simulations the parameter m was set equal to 5. We started with 

four-tuple combinations out of a pool of 14 features (4/14). We then gradually increased 

the number of the features - within the tuple and the pool - up to 8/22. To run the 

simulation with this final setting, we needed a computation time of several weeks. 

In the following figures, you see an example for one of the best 4-tuple results we 

obtained for the polydat_3: 

4-tuple combination: 81 & 111 &450&45243. 

dimension: polygraph session. 
correct detection rate: 84% for non-deceptive and 86% for deceptive files. 

dimension: polygraph examination44 - containing 1 to 4 sessions. 
correct detection rate: 89% for non-deceptive and 94% for deceptive files. 

dimension: polygraph examinations with more than two sessions. 
detection rate: 100%. 

42See Fig. 8 for four of them and page 25 for the additional fifth one. 
43For information about the exact meaning of these feature numbers, see Fig.41. 
44See "Evaluation strategy" in chapter 3.1.3.4. 
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Uik    defuzzification per 
session     test 

0.2727 
0.4680 
0.4404 

0 
0 
0 

0.5774 
0.3208 
0.4075 

1.0000 
0 
0 

0.6157 
0.5416 

1.0000 
1.0000 

0.4095 
0.4480 
0.4862 

0 
0 
0 

0.4387 
0.4459 
0.4346 

0.4005 

0 
0 
0 

0.4351 
0.4251 
0.3723 

0 
0 
0 

0.4505 
0.4414 
0.3218 

0 
0 
0 

misclustered 

0.4722        0 
0.4755 0 
0.5046    1.0000 

0.4428 0 
0.4474 0 
0.5997    1.0000 

0.3764 
0.3709 
0.3383 

0 
0 
0 

0.4668 
0.4843 
0.4515 

0 
0 
0 

0.3964 0 
0.5232 1.0000 
0.4085 0 

0.3915 0 
0.4425 0 
0.3860 0 

0.4200 0 
0.4443 0 
0.4315 0 

0.4974 0 
0.3980 0 
0.3964 0 

0.5863    1.0000 

0.3786        0 
0.5783 1.0000 
0.4377        0 
0.3527        0 

misclustered 

non-deceptive files 
polydat_3 

m=5 

Fig.25: Defuzzified results for 
[81-111-450-452] feature combination 
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Uik   defuzzification per 
session     test 

0.6374 1.0000 
0.5389 1.0000 
0.5094    1.0000 

0.5696    1.0000 
0.4185        0 
0.5057    1.0000 

0.5508 
0.5237 

1.0000 
1.0000 

0.5533 1.0000 
0.5878 1.0000 
0.5941    1.0000 

0.4533 0 
0.5383    1.0000 
0.5316    1.0000 

0.5452 1.0000 
0.5266 1.0000 
0.3128        0 

0.5068 1.0000 
0.5735 1.0000 
0.6276    1.0000 

0.5504 1.0000 
0.5706 1.0000 
0.5542    1.0000 

 1 

0.5555 1.0000 
0.5692 1.0000 
0.5650    1.0000 

0.4418        0 
0.6468    1.0000 
0.5009    1.0000 

0.5593 1.0000 
0.5596 1.0000 
0.4109        0 

0.6002 1.0000 
0.5550 1.0000 
0.5148    1.0000 

0.5964 1.0000 
0.6112 1.0000 
0.6224    1.0000 

0.7130 1.0000 
0.5834 1.0000 
0.5844    1.0000 

0.5472 1.0000 
0.5758 1.0000 
0.5924    1.0000 

0.5879 1.0000 
0.6284 1.0000 
0.6078    1.0000 

0.3902 
0.5399 
0.4636 

0 
1.0000 

0 

Fig.25: Continued 

misclustered 
deceptive files 

polydat_3 
m=5 
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4.1.2.2. Results of the genetic method: 

Simultaneously to the aforementioned sequence of searches, I started with a compromise 
between the random and the pseudo-exhaustive search method; i.e. the genetic alternative. 

I decided to use this method in two different ways: 

1. In order to increase the number of potentially good features in the pool, I 

initialized the genetic code with up to 50 features from which (in different 

simulations) 4-, 6-, 8-tuple combinations were made. 

2. In order to accelerate the search, but process the data more exhaustively, 
I decided to use the genetic code only for the best features from random 
and pseudo-exhaustive simulations and narrow the feature pool to these 
30 selected features. In this simulation, 15-tuple combinations were made. 

Recall that having 30 or 50 features in the pool makes a big computation difference. For 
example, choosing exhaustively 8-tuples out of 50 or 30 features makes a difference of 
following number of computations: 

50"\   (10\ 50! 30! , ,., 

K*J K*J 8 !(50-8)!    8!(30-8)! 
«5-108 

In the first part of the genetic search - as expected - we had similar problems as scientists 
have with the theory of evolution as the cause of our being45. The only way we could get 
the following good results was the continuous manipulating of the evolution process - by 
changing parameters (like mutation rate), features (=genes) and feature numbers 
(population size and also number of genes in one chromosome), or by starting again if 
the simulation began with a very low detection rate (=average fitness). In spite of these 
manipulations the first version of the genetic search took a simulation time of over two 
months of continuous computation. Without the constant controlling process over this 
genetic system the evolution (by chance as it is its nature) could have hardly provided any 

appropriate improvement46. As a result we obtained 12 (see Fig.26) 8-tuples combination 

45Further discussion about "evolution vs. creation" would break up the limitations of this project; For 
interested readers I recommend the following references: [Morrisl987] [Johnsonl991]. 
^For example, one of the uncontrolled simulation for polydat_l was stopped after 561 generations 
providing no particular results. 
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with an average of 85% correct detection rate for polydatj similar to the results of the 4- 
tuple combination mentioned in chapter 4.1.2.1. We also obtained 3 outstanding (86% 
correct detection rate) individuals within three different generations (population size of 

200 to 300, total number of generation 1000, polydat_3). 

feature numbers of the best 
8-tuple combinations 

8,30,81,81,111,363,458,482 

9,37,81,111,111,449,458,460 

9,37,111,111,449,457,457,482 

9,37,111,111,358,449,457,458 

9 , 37 , 111, 111, 235 , 449 ,457 ,460 

37 , 79 , 111, 111, 197 , 358 ,449 , 457 

37 , 111, 111, 197 , 449 ,457 ,460 ,460 

37,111,111,111,235,358,457,458 

37 , 111, 111, 235 , 235 , 449 , 453 , 457 

37,111,111,197,358,361,458,460 

37,81,111,235,235,363,450,453 

37 , 81, 111, 235 , 235 , 359 , 450 , 453 

37,79, 111, 111, 197,235, 449 , 457 

37,111,111,235,235,453,457,460 

37 , 111, 111, 197 , 235 ,452 , 457 , 460 

correct detection rate 
ndcp   dcp 

84 86 

84 86 

84 86 

84 86 

84 86 

84 86 

84 86 

84 86 

84 86 

84 86 

86 84 

86 84 

86 86 

86 86 

86 86 

ndcp: non-deceptive files 
dcp: deceptive files 

data: polydat_3 

Fig.26: Results of the first version of the genetic search 

Concerning the defuzzified results, all the combinations with 85% correct detection rate 
show similar structure as depicted in Fig.25. The three best 8-tuple combinations (86% 
correct detection rate) cluster the data exactly in the same groups as shown in the 

following figure. 
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Uik    defuzzification per 
session     test 

0.4143 
0.4780 
0.4583 

0 
0 
0 

0.5269 
0.4035 
0.4035 

1.0000 
0 
0 

0.5601 
0.5412 

1.0000 
1.0000 

0.4391 
0.4465 
0.4833 

0 
0 
0 

0.4401 
0.4392 
0.4481 

0 
0 
0 

0.4114 

0.4405 
0.4212 
0.4664 

0 
0 
0 

0.4523 
0.4488 
0.3645 

0 
0 
0 

1 misclustered 

0.4669 0 
0.4679 0 
0.5058 1.0000 

0.4565        0 
0.4853        0 
0.5849    1.0000 

0 

0.4441        0 
0.4471        0 
0.3506        0 

0 

0.4983 
0.4872 
0.4938 

0 
0 
0 

0.4008 
0.4962 
0.4058 

0 
0 
0 

0.4268 
0.4740 
0.4050 

0 
0 
0 

0.4475 
0.4517 
0.4440 

0 
0 
0 

0.5692 
0.4432 
0.4118 

1.0000 
0 
0 

0.4289 

0.4271 0 
0.5548 1.0000 
0.4696 0 
0.4135 0 

• 0 compare to Fig. 25 

non-deceptive files 
polydat_3 

m=5 

Fig.27: Defuzzified results for 
[37-111-111-197-235-452-457-460] feature combination 
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Uik    defuzzification per 
session     test 

0.5842 1.0000 
0.5511 1.0000 
0.5197    1.0000 

0.5665 1.0000 
0.5483 1.0000 
0.6586    1.0000 

0.5227 
0.5169 

1.0000 
1.0000 

0.5519 1.0000 
0.5727 1.0000 
0.5747    1.0000 

0.5411 1.0000 
0.5224 1.0000 
0.6020    1.0000 

0.4308 
0.4916 
0.4801 

0 
0 
0 

0.5044 1.0000 
0.5686 1.0000 
0.5830    1.0000 

0.5488 1.0000 
0.5460 1.0000 
0.5413    1.0000 

misclustered 

0.5446 1.0000 
0.5495 1.0000 
0.5615 1.0000 

0.5345 1.0000 
0.5666 1.0000 
0.5370 1.0000 

0.5539 1.0000 
0.5565 1.0000 
0.4388   0 

0.5817 1.0000 
0.5042 1.0000 
0.4946   0 

0.5706 1.0000 
0.5990 1.0000 
0.6133 1.0000 

0.6386 1.0000 
0.5674 1.0000 
0.5576 1.0000 

0.5457 1.0000 
0.5646 1.0000 
0.5482 1.0000 

0.5096 1.0000 
0.5954 1.0000 
0.6347 1.0000 

0.4532 0 
0.4323 0 
0.5457 1.0000 

1 compare to Fig. 25 \ 

deceptive files 
polydat_3 

m=5 

Fig.27: Continued 
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The followings are the clustering results of the best 8-tuple combinations for polydat_3: 

dimension: polygraph session47. 
correct detection rate: 86% for both non-deceptive and deceptive files. 

dimension: polygraph examination - containing 1 to 4 sessions. 
mrrect detection rate: 94% for both non-deceptive and deceptive files. 

dimension: polygraph examinations with more than two sessions 

detection rate: 97%. 

In the second part of the genetic search as we fed the evolution process with the best 

features, we obtained after about 3 weeks of continuous simulation the following results: 

twelve 15-tuple combinations: (the features in each tuple are ordered vertically) 

37 11  8  8  37 30 11 30  11  11  11 

111 11  11  37 81 32 30 32 30 30 30 

111 36 37 50  81 32 32 39 32  32  32 

197 36 111  79 81 32 39 81 39  39  39 

358 37 111 111  81 36 81 81 81  79  81 

358 37 197 111 197 37 81 81  81  81  81 

361 67 235 235 235 39 81 111  81  81  81 

361 81 358 235 358 50 111 197 111  81 111 

449 197 359 358 359 67 197 235 197 111 197 

457 235 359 452 450 79 235 235 235 197 235 

458 457 363 453 450 359 235 358 235 235 235 

458 458 363 478 453 449 358 358 358 235 358 

478 482 452 478 458 449 359 450 358 358 359 

478 482 478 478 478 478 450 478 450 359 450 

482 482 482 482 478 478 482 482 482 450 478 

correct detection rates (in %): 
84 84    84    84    84 84 84 84    84    84    84 :non-deceptive files 

 86 86    86    86    86 86 86 86    86    86    86 : deceptive files  

polydatS, m=S 

Fig.28: Results of the second version of the genetic search 

47See "Evaluation strategy" in chapter 3.1.3.4. 
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81.5 

81 

78.5 "5b 10Ö T5Ü 200  250  300  350  400  450 

generation 

polydat_3, m=5. 

15-tuple combinations out of a pool of30 features' 48 

Fig.29: Average fitness of each generation 
provided by the second version of the genetic search 

As you see in this figure, the average fitness (from all the chromosomes within a 

generation) increases over the period of time. It then approaches a local asymptote which 

represents a local error minimum. By increasing the mutation rate after the 150th 

generation, we could avoid being stuck in that local minimum for further development. 

This higher mutation rate helped the evolution process getting a 1% better average fitness 

per generation for the rest of the simulation. 

Our hope for this simulation was to get outstanding chromosomes with a very high fitness 

simultaneously to the increasing process of the average fitness per generation. However, 

the outstanding chromosomes appeared unsystematically in different generations and not 

at the end. In fact, most of them49 belong to the first part of this evolution. 

48See the begining of this chapter for more details. 
49See Fig.28 for the best feature combinations. 
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4.1.2.3. Final results ofFCM-A comparison between all three poly dat_Vs: 

All the aforementioned results belong to the data set polydat_3, and all the three methods, 
(1) previous researches using the fuzzy K-nearest neighbor (KNN) classifier, (2) the LMS 
fuzzy adaptive filter and also (3) the fuzzy-c-means algorithm show that the data structure 

within the polydat_3 is better to cluster or classify than the other two sets. 

As it is the nature of a clustering versus a classifying method, I did not set the highest 
priority on finding the same best features for all three polydat_i's, but for each of them 
individually. After finding those best combinations, I then compared the results and tested 

the consistency of the features (see Fig. 33, 34, 35). 

Using either sessions or examinations50 as the counting dimension the best results for each 

polydat_i individually are shown in the following figures. 

data 
polydat_l 
polydat_2 
polydat_3 

average correct detection rate 
81% 
79% 
86% 

Fig.30: Clustering results using individual features 
(using sessions as the counting dimension) 

data 
polydat_l 
polydat_2 
polydat_3 

average correct detection rate 
91% 
82% 
94% 

Fig.31: Clustering results using individual features 
(using examinations as the counting dimension) 

50See "Evaluation strategy" in chapter 3.1.3.4. 
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data average correct detection rate 

polydat_l 93% 

polydat_2 87% 

polydat_3 97% 

Fig.32: Clustering results using individual features 
(counting only those examinations with more than two sessions) 

In the following figures, a comparison between the three polydatj's were made using the 

best feature combination for one of the polydatj's at a time and testing it for the other 

two ones. As you will see, the best result51 - while taking the same features for each 

polydat_i - is 79.7% for the feature combination52 [9, 30, 81, 197, 478, 111], and in 

average 79.3%. 

feature tuple 

37, 79, 111, 111,197, 235, 449,457 

37, 111, 111, 197, 235, 452, 457, 460 

37, 111, 111, 235, 235, 453, 457,460 

30,81,81,111, 197,458 

9,30,81,111,197,458 

8, 37, 50, 79, 111, 111, 235, 235,... 

358,452,453,478,478,478,482 85% 76% 76% 

polydat_i 

1=3 i=2 i=l 

86% 77% 75% 

86% 77% 75% 

86% 77% 74% 

85% 79% 73% 

85% 79% 73% 

Fig.33: Comparison #1 (dimension: sessions) 

(taking some of the best pofydat_3 feature tuples and testing it for the others) 

For the exact labels of this feature numbers see appendix, Fig.42. 

51 With polygraph sessions as the counting dimension. 
52See Fig.35, "Comparison #3". 
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polydat_i 

feature tuple £1 i=2 i=3 

9, 30, 30, 39, 235, 450 80% 75% 81% 

30, 30, 39, 50, 235, 450 80% 75% 81% 

30,30,39,81,235,450 80% 75% 81% 

30, 30, 39, 197, 235,450 81% 74% 82% 

30, 30, 39, 235, 363,450 81% 75% 81% 

30, 30, 39, 235, 358, 450   ' 80% 76% 81% 

30, 30, 39, 235, 450,458 80% 75% 81% 

30, 30, 39, 235, 482, 450 80% 75% 81% 

30,30,39,235,361,450 80% 75% 81% 

30, 30, 39, 235, 359,450 80% 75% 81% 

30, 30, 39, 235, 450,457 80% 75% 81% 

30, 39, 235, 363,450, 482 80% 72% 83% 

30, 39, 235, 363,450,478 80% 71% 83% 

Fig.34: Comparison #2 (dimension: sessions) 
(taking some of the best polydat_l feature tuples and testing it for the others) 
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feature tuple i=2 

po!ydat_i 
i=l i=3 

9,30,81,197,478,111 79% 75% 85% 

9,30,50,81,197,111 79% 74% 85% 

9,30,81,358,197,111 79% 74% 85% 

9,30,81,359,197,111 79% 74% 85% 

9,30,81,197,457,111 79% 74% 85% 

30,81,105,111,197,358 79% 74% 84% 

30,81,105,111,197,359 79% 74% 84% 

30,81,105,111,197,457 79% 74% 85% 

30,81,105,111,197,459 79% 74% 84% 

30,81,111,197,358,359 79% 74% 85% 

30,81,111,197,358,456 79% 74% 85% 

30,81,111,197,358,457 79% 74% 85% 

30,81,111,197,358,459 79% 74% 85% 

30,81,111,197,359,456 79% 74% 85% 

30,81,111,197,359,457 79% 74% 85% 

30,81,111,197,359,459 79% 74% 85% 

30,81,111,197,456,457 79% 73% 85% 

30,81,111,197,456,459 79% 74% 85% 

30,81,111,197,457,459 79% 74% 85% 

30,105,111,197,359,459 79% 74% 84% 

30,105,111,197,456,459 79% 74% 84% 

30,105, 111,197,457,459 79% 74% 85% 

30,105,111,197,456,457 78% 74% 85% 

30,111,197,358,359,459 78% 74% 85% 

30,111,197,358,456,459 78% 74% 85% 

30,111,197,358,457,459 78% 74% 85% 

30,111,197,456,457,459 78% 74% 85% 

Fig.35: Comparison #3 (dimension: sessions) 
(taking some of the best polydat_2 feature tuples and testing it for the others) 
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4.2. LMS fiiEzy adaptive filter 

The first test we did, was to find the performance of the filter before any training. That is, 
we used the classifier as a conventional fuzzy logic system designed solely based on the 
four linguistic rules mentioned above. The results are listed in the following table: 

polydat_i 

i=l 
i=2 
i=3 

rnrrert detection rate in 
average 

71% 
73% 
79% 

non-deceptive files 

70% 
70% 
70% 

deceptive files 

72% 
76% 
88% 

Fig.36: Results based solely on 4 aforementioned linguistic rules 
without any training 

Note that the percentage of correct recognition for non-deceptive subjects are the same 
for polydatj, polydat_2, and polydatj, because they are all the same data53. Also note 
that the results are best for polydatj, as it was for KNN and FCM. This may be partially 
due to polydatj's good performance in general, independent of the classifying schemes. 
We believe that it may also be a result of us setting up the linguistic rules by having 

observed polydat_3. 

However, the outcomes for polydatj and polydatj are good enough such that one can 

be sure the linguistic rules are sufficiently general even for data that we did not examine. 

As mentioned in chapter 3.2.3, we then tested the fuzzy LMS algorithm trained with 
twenty training data (ten deceptive and ten non-deceptive) and again with seventy training 
data (thirty-five deceptive and thirty-five non-deceptive) for the three sets of data, for a 
total of six tests. Twenty trials were performed for each test, and the system was 
initialized with the linguistic rules before each trial. The training data were randomly 

chosen for each trial, and the rest of the available data in each set were for testing. 

53See polygraph files on chapter 6.2. 
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We computed the percentage of correct recognition of testing data for each trial, 
averaging the performance for deceptive and non-deceptive subjects. The recognition rate 
of those twenty trials are averaged, rounded to two digits, and reported in the following 

table. The sample standard deviations are also shown. 

correct detection rate 

polydat_i version #1 version #2 

i=l 75% (6%) 73% (2%) 

i=2 74% (7%) 73% (3%) 

i=3 78% (6%) 79% (2%) 

version HI: 70 training & 30 testing sessions 
version #2: 20 training & 80 testing sessions 

(standard deviation in parentheses) 

Fig.37: Average percentage of correct detection rate 
for twenty trials of each test 

As may be expected, the recognition rate improves in general when training data is used, 
as compared to the results of the untrained system. Also, the recognition rate is typically 
higher when the system is trained with more data. The difference, however, is not 
dramatic. The use of training data offers small incremental improvements. The one 
exception would be for data set polydat_3. Here more training data seems to lower the 
performance. The effect is probably due to the fact that the initialization of the reasoning 
rules were based on our examination of polydat_3, which covered all 100 data. Yet the 
training algorithm was to learn only a subset ofthat, so it was handicapped compared to 

human reasoning. 

Human reasoning may also be better in this case because the training algorithm only 
attempts to optimize the system in the least mean square sense, slightly different than our 
ultimate goal of maximizing recognition rate. At any rate, when the standard deviation is 

taken into account, the difference in recognition rate becomes insignificant. 

Another noticeable difference between the results using different amounts of training 

samples is the value of the sample standard deviation. A large number of testing data leads 
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to a small standard deviation. Conversely, a small amount of testing data leads to a large 
standard deviation. This confirms what we intuitively know; the average percentage of 
correct recognition is more accurate when a large amount of testing data is available. 

The above observations illustrate a practical issue in using many adaptive and learning 

algorithms, that of partitioning a limited amount of data into training and testing sets. For 
most algorithms, too much data in training and little in testing leaves little assurance about 
the performance of the system. On the other hand, too much data in testing and little in 

training assures mediocre performance from the system. 

More data for both training and testing would help, but many times that may not be 
available. Fuzzy logic systems mitigate this problem by exploiting linguistic information. 
Unlike neural networks and many statistical techniques, which are completely dependent 
on numerical data, this fuzzy LMS algorithm uses numerical data mainly to optimize a 
good fuzzy system. The above results show that, given good initialization of the reasoning 
rules, the system can perform well even with little or no training data. This robustness is 

one of the many advantages of fuzzy logic. 
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4.3. Other observations: 

During this project, aside from the results and conclusions we were looking for, we also 
obtained several side results. In this passage, I will mention some of the interesting 

observations we made. 

1. As mentioned before, the fuzzy-c-means (FCM) algorithm is initialized by random 
chosen membership values which will be modified and optimized during the iterative 
process. Thus, FCM algorithm is almost independent of the initial membership values. 
During our testing process, we noticed that the FCM algorithm is not absolutely 

independent of the initial values. Thus, it is possible that 

• the algorithm may run into different local minima or 
• because of its unsupervised nature, the algorithm may switch the clusters, 
i.e. if- depending on our interpretation - the first cluster represents the non- 

deceptive and the second one the deceptive files, it might be the opposite 

while using other initial random values. 

To avoid any misinterpretations, I decided to create two sets of random membership 
values (for c=2 and c=3) and save them as fixed initialization values for any further 
simulations. In the following figure,'+' represents the non-deceptive, '*' the decptive files; 

8 
g 
a. 

E e> 
E 

1 
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sessions 

Fig.38: Fixed initial random membership values for c=2 
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2. "Outlier effect": 
In the real world of using an automated polygraph system as suggested in this project, we 
have to keep in mind the existence of the outlier effect. This occurs, for instance, when a 
non-deceptive person (= membership value between zero and 0.5) becomes misclustered 
in a deceptive data space with a very high membership value close to one. In other words, 

if a normal non-deceptive person gets labeled as very deceptive, or vice-versa. 

We noticed this phenomenon in both clustering and classifying algorithms54. We also 
noticed that by making the system "fuzzier" - e.g. higher m or/and c for FCM - as 

expected, the outlier effect can be reduced, but not eliminated though. 

3. "Performance limitations": 
There seem to be a limit in recognition rate using the features available by both fuzzy 
algorithms used in this project and also by fuzzy k-nearest neighbor algorithm used in 
previous works [Layeghi 1993,1] [Dastmalchil993] for all the available polydat_i's. There 
may also be psychophysiological limitation on the recognition rate. However, polydat_3 
provided, independent of all the three algorithms, the best results compared to the other 

two polydat_i's. 

54Seealso "Epilogue". 
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4.3. A COMPARISON 

BETWEEN THE THREE FUZZY ALGORTHMS USED IN THIS 
AND THE PREVIOUS PROJECT 

(FUZZY-C-MEANS, LMS FUZZY ADAPTIVE FILTER AND FUZZY K-NEAREST NEIGHBOR) 

The fuzzy LMS system is unique in its application of linguistic knowledge. As mentioned 
earlier, the use of linguistic knowledge ensures the robustness of the fuzzy system. The 
use of linguistic information also ameliorates the problem of not having enough reliable 

numerical data. Unlike classification schemes such as the K-Nearest Neighbor, the fuzzy 

LMS algorithm is not entirely dependent on numerical data. 

When applied to pattern recognition, fuzzy logic systems can be set up to perform like 
KNN systems. In KNN systems, numerical data of known class patterns are set up to 
estimate the probability density distribution of the classes. The probabilities of new data 
points belonging to the different classes are then computed based on such distribution. 
Data points around known class samples are then classified into the same class with a 
higher probability. The fuzzy-KNN algorithm modifies the classical KNN algorithm by 
taking into account the distance between the data point and the known class patterns when 
estimating the probability. Conceptually this is similar to setting up clusters around all 
known class samples and calculating the degree of belonging of new data points in the 
different types of clusters. Other than the exact mathematical equations, that description 
fits a fuzzy adaptive system where each rule corresponds to a known class pattern and the 

size of the clusters is the same for all rules. 

However, fuzzy adaptive systems give up some of the nice theoretical understandings of 
the KNN systems but gain some practical advantages. The number of rules required are 
usually much smaller than the number of known samples. Fuzzy logic can usually exploit 

that to reduce system complexity. 

Furthermore, the system complexity for a fuzzy adaptive system stays the same even as 
new information are available. This is partly a result of the way this algorithm adapt 

continuously; new information are learned as old ones are forgotten. The fuzzy LMS 
learning technique is like backpropagation, a popular neural network training technique. 
However, the fuzzy LMS learning algorithm requires few epochs for training. In all our 
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trials the maximum recognition rates for testing data peaked in less than thirty epochs. 
About 95% of them peaked in less than twenty epochs55. This is a few orders of 
magnitude less than most applications of backpropagation. In many cases the peaks 

occurred before any training; that is, the system uses only linguistic rules. Here the use of 

expert knowledge speeds up the training of the system. 

The fuzzy-c-means algorithm, unlike fuzzy LMS, is an unsupervised clustering algorithm. 

Given a set of data, FCM looks for a (usually) predetermined number of clusters within 
the data points. It does not use any knowledge about the correct, or desired classification 

of any of the elements. The algorithm only minimizes an objective function, which is the 
sum of a function of the data points' membership values and the distances between the 

data points and the clusters' centers. 

FCM operates like a black box; given some data, the algorithm automatically computes 
the results56. This presents the advantage that different sets of data using different features 
can be tested in a routine manner. FCM also presents a way to normalize the different 
dimensions of the data, just like the use of sigma in the fuzzy LMS algorithm. However, 
unlike fuzzy LMS, FCM does not present a method to find the optimal way for such 

normalization. 

The fuzzy LMS algorithm, however, does pose some potential problems of its own. The 
use of expert knowledge, while a benefit in some senses, may not be always 
straightforward. For example, in our project we did not have any specific knowledge 
about the polygraphy itself. Whatever we learned, we learned by looking at numerical 
data. As we tried to find more complicated patterns, patterns involving three, four, or 
more features, the analysis became more difficult. Naturally one wishes to automate this 
process. If we do not rely on some learning procedures, however, rules cannot be 
automatically found for the fuzzy system. Much research also needs to be done to 

understand the fuzzy LMS algorithm's learning dynamics. While the same method, 
gradient descent, is used on both backpropagation and the fuzzy LMS algorithm, the 
general shapes of the error surface between the two are different. In backpropagation, all 
the parameters have the same range and lie in an uniform neural network structure. In the 
fuzzy LMS algorithm, the parameters can have different ranges and lie a fuzzy logic 

"However, we ran every trial to forty epochs to ensure that there is no "false" peak. 
560ur job is basically to adjust the parameters. 
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structure that is not completely uniform. The effects of such differences on the shape of 

the error surface and the learning dynamic are unknown. 

In the following, I will mention again some of the results we obtained by using different 

fuzzy clustering or classifying algorithms. Recall that also the searching strategies to find 

the best features -and feature combinations- were different for each of the aforementioned 

algorithms57. 

polydat_i 

El !z2 i=3 

füzzy-c-means58 91% 82% 94% 

fuzzy-c-means59 93% 87% 97% 

fuzzy K-nearest-neighbor 86% 80% 91% 

LMS fuzzy adaptive filter 81% 83% 83% 

fuzzy-c-means60 81% 79% 86% 

The results are rounded. 

Fig.39: Comparison between different fuzzy algorithms 
used for polygraph classification in this and in the previous research 

The results of our fuzzy LMS system, while impressive for such a simple set-up, are not 

comparable to the results of the same project using other systems. We believe that the 

recognition rate will increase for few percentage points by using the suggestions in chapter 

5.1. 

"See the following chapters 3.1.3.1, 3.1.3.2.1 - 4 for the searching strategies used for the FCM, 
chapter 3.2.1 for the visual inspection used for the LMS system, 
and chapter III.3.3. in [Layeghil993,l] for the methods used for the KNN. 
58FCM using examinations as the counting dimension (see chapter 4.1.2.3. and Fig.31). 
59The same as above but counting those examinations with more than 2 sessions (see Fig.32). 
60Since we took 35 out of 50 available non-deceptive sessions for training the LMS filter, it would be 
meaningless to evaluate this algorithm by examinations as the counting dimension. Yet, m order to make 
it comparable to the other algorithms, the results of the FCM with sessions as the counting dimension are 
also shown. 
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§5. FUTURE STEPS AND SUGGESTIONS 

5.1. The algorithms: 

As mentioned earlier in chapter 2.2.3. about the fuzzy-c-means algorithm, the performance 
of this clustering model is influenced by the choice of various parameters. In this project, I 
tried to find the optimum values of the majority of them. However, there are several other 

points which should be studied more comprehensively: They are 

• the initial cluster centers, 
• the order in which the samples are taken as input, 

• the choice of distance measure, 
• the termination criteria and 
• the geometrical properties of the data. 

Most imprtantly, more information about the geometrical arrangement of the data points 
and the appropriate choice of the norm could help us improve the clustering algorithm. 
There are several suggestions in [Bezdekl981] [Bezdekl992] [IIScorpl993] for a better 
understanding of the algorithm's dynamics and for making systematic decisions concerning 

different types of distance norms and elliptical cluster shapes. 

For future studies, I highly recommend a deeper investigation of our clustering algorithm 

by setting c=3 and trying denazification thresholds other than 0.5. 

In this project, we decided to systematically test the FCM algorithm with different values 
of m to find its optimum. For additional (and more theoretical) investigations, I suggest 
[Choel992] as an introductory step. It may be also helpful to use different values of m for 
different sessions simultaneously, while looking for the most realistic clusters within the 

entire session space. 

An exciting additional investigation would be a new polydat made up of the best clustered 

sessions of our three polydatj's as a reference for any further clustering process. By doing 
this we could give the algorithm a better chance to cluster correctly even the critical 

sessions. 

4-74 



Concerning the LMS adaptive algorithm, one may investigate the effect of changing the 
learning factor; throughout our experiment it remained at 0.005. Upon observing the 

quickness of learning in our testing, we believe the learning factor can be decreased in the 

future. 

We also believe that there should not be just one but at least three different learning 
factors: one for the <fs, one for the 0% and one for the x/s; because these three types of 

parameters lie in a very irregular parameter space, unlike that of backpropagation where 

all parameters lie in a more or less uniform parameter space. 

For illustration, the three types of parameters comapred to one another have very different 
numerical ranges. Conceptually speaking, a parameter with a large range of movement 
should generally have a larger learning factor than one with a smaller range of movement. 
However, the gradient and the general shape of the error surface would also affect the 
value of the learning factors. It is possible that with a constant learning factor, a factor that 
is too large for one type of parameter - one that causes oscillation for that parameter - may 
be too small for another type of parameter and effects little change. That is, some 

parameters become more willing to adapt while others hesitate to change. 

Setting up separate learning factors for the different types of parameters should eliminate 
this problem. However, choosing a learning factor is still a complex trial-and-error task, 
and having more learning factors to deal with requires more sophisticated understanding 
of the learning dynamics we possess. Plots of the mean squared error of two sets of 
randomly chosen training data suggest that there are noticeable points where the rate of 

decrease dramatically changes (see the following figure). 
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Fig.40: The influence of the learning factor 

More rules and features should be added to improve this LMS system. As the complexity 
of the system grows, however, the design will depend more on the learning algorithm than 

on heuristic knowledge. This requires much more understanding of the learning dynamics. 
Preliminary testing with three features and eight rules shows little improvement in 
recognition rate. Obviously many additional studies need to be done in this case. 

As mentioned in chapter "Setting Linguistic Rules", for future investigations one may also 
experiment with different decision thresholds for determining deception and nondeception. 
However, the benefit, if any, of this is not clear. One may also experiment with mapping 
the fuzzy output to a confidence value in addition to just a deception/nondeception 

decision. This may be more helpful in practical situations. One should also test the 
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algorithm with random initializations; that is, without using any expert knowledge. It 
would be interesting to compare the training time, performance, and robustness of that 

system to the present one. 

Fuzzy logic systems promote rapid development of robust, simple, and reliable systems. 
Our project validated that point. Some of the main problems with designing traditional 

fuzzy logic systems, however, are their dependence on heuristic information, their lack of 
design automation and their unproven ability to reach an optimal solution by linguistic 
rules alone. Our use of the LMS learning algorithm attempts to solve such problems. The 
learning algorithm did offer small, incremental improvements, but we believe that the 
learning algorithm has not yet been explored My. A better understanding of the learning 

dynamics would offer more insight into improving the system. 

In future works, one may also consider other strategies which use irrelevant questions, 

(see Fig.7). These questions could be easily exploited for normalizing the data and making 

it independent of individual charateristics of the tested subjects. 

5.2. The polygraph examination: 

As expected61, and eventually proven62, our clustering system can provide an up to 12% 
more correct detection rate by using the dependency between the polygraph sessions. 
Therefore, I recommend recording at least three - ideally five - test sessions with different 

a order of questions per each examinations. Thus, in cases where some sessions within an 
examination are clustered incorrectly, the algorithm can easily ignore the minority and find 

the right cluster according to the correctly clustered majority. 

One may also consider other time frames, and emphasize those features which enabled us 
to cluster the data the best. It may also be helpful to mark the data of female and male 
subjects, or to consider them differently, since the ranges of the biophysical reactions are 

not in the same numerical spaces. 

Ultimately, an automated polygraph system which uses the aforementioned strategies to 
distinguish between truth and deception should have a built-in feature extraction tool 

which can directly feed the needed data to the algorithm. 

61See chapter 3.1.3.4. 
62See chapter 4.1.2.3. 
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Feat- 
ure 

Chan- 
nel 

Extraction Method Combination 
Method 

1 GSR mean avefr) - ave(c) 
2 GSR mean avefr) + ave(c) 
3 GSR mean maxfr)-maxfc) 
4 GSR mean minfr)-rmnfc) 
5 GSR mean maxfr)-minfc) 
« GSR mean minfr)-maxfc) 
7 GSR curve length max(r)/max(c) 
8 GSR curve length avefr) - avefc) 
9 GSR curve length ave(r)+ave(c) 
10 GSR curve length maxfr)-maxfc) 
11 GSR curve length iniiifr)-minfc) 
12 GSR curve length max(r)-min(c) 
13 GSR curve length min(r)-max(c) 
14 GSR area max(r)/max(c) 
15 GSR area avefr) -ave(c) 
16 GSR area avefr) + ave(c) 
17 GSR area maxfr)-max(c) 
18 GSR area minfr) - minfc) 
19 GSR area maxfr) -minfc) 
20 GSR area minfr)-maxfc) 
21 GSR area maxfr)/maxfc) 
22 GSR median of the derivative avefr) - avefc) 
23 GSR median of the derivative avefr)+avefc) 
24 GSR median of the derivative maxfr) - maxfc) 
25 GSR median of the derivative minfr)-minfc) 
26 GSR median of the derivative maxfr) -minfc) 
27 GSR median of the derivative minfr)- maxfc) 
28 GSR median of the derivative maxfr) /maxfc) 
29 GSR min subtracted from the max avefr)-avefc) 
30 GSR min subtracted from the max avefr)+avefc) 
31 GSR min subtracted from the max maxfr)-maxfc) 
32 GSR min subtracted from the max minfr)-minfc) 
33 GSR min subtracted from the max maxfr)-minfc) 
34 GSR min subtracted from the max minfr)-maxfc) 
35 GSR min subtracted from the max maxfr)/maxfc) 
36 GSR maximum of the signal avefr) - avefc) 
37 GSR maximum of the signal avefr) + avefc) 
38 GSR maximum of the signal maxfr) • maxfc) 
39 GSR maximum of the signal minfr)-minfc) 
40 GSR maximum of the signal maxfr) • minfc) 
41 GSR maximum of the signal minfr)-maxfc) 
42 GSR maximum of the signal maxfr) /maxfc) 
43 GSR minimum of the signal avefr) - avefc) 
44 GSR minimum of the signal avefr) + avefc) 
45 GSR minimum of the signal maxfr) - maxfc) 
46 GSR minimum of the signal minfr)-minfc) 
47 GSR minimum of the signal maxfr)-minfc) 
48 GSR minimum of the signal minfr)-maxfc) 
49 GSR minimum of the signal maxfr)/maxfc) 
50 GSR mean of derivative avefr) - avefc) 
51 GSR mean of derivative avefr) + avefc) 
52 GSR mean of derivative maxfr)-maxfc) 
53 GSR mean of derivative minfr) - minfc) 
54 GSR mean of derivative maxfr)-minfc) 
55 GSR mean of derivative minfr) • maxfc) 
56 GSR mean of derivative maxfr)/maxfc) 
57 HFEC mean avefr) - avefc) 
58 HFEC mean avefr) + avefc) 
59 HFEC mean maxfr)-maxfc) 
60 HFEC mean minfr) - minfc) 
61 HFEC mean maxfr) - minfc) 
62 HFEC mean minfr) - maxfc) 
63 HFEC mean maxfr) / maxfc) 
64 HFEC curve length avefr) - avefc) 
65 HFEC curve length avefr) + avefc) 
66 HFEC curve length maxfr) - maxfc) 
67 HFEC curve length minfr) - minfc) 
68 HFEC curve length maxfr) - minfc) 
69 HFEC curve length minfr) - maxfc) 
70 HFEC curve length maxfr) / maxfc) 

71 HFEC area avefr) - avefc) 
72 HFEC area avefr) + avefc) 
73 HFEC area maxfr)-maxfc) 
74 HFEC area minfr)- minfc) 
75 HFEC area maxfr)-minfc) 
76 HFEC area minfr)-maxfc) 
77 HFEC area maxfr)/maxfc) 
78 HFEC amplitude of the peaks avefr) - avefc) 
79 HFEC amplitude of the peaks avefr) + avefc) 
80 HFEC amplitude of the peaks maxfr) - maxfc) 
81 HFEC amplitude of the peaks minfr) - minfc) 
82 HFEC amplitude of the peaks maxfr) - minfc) 
83 HFEC amplitude of the peaks minfr) - maxfc) 
84 HFEC amplitude of the peaks maxfr)/maxfc) 
85 HFEC dampcard avefr)-avefc) 
86 HFEC dampcard avefr) + avefc) 
87 HFEC dampcard maxfr)-maxfc) 
88 HFEC dampcard minfr) - minfc) 
89 HFEC dampcard maxfr)-minfc) 
90 HFEC dampcard minfr)-maxfc) 
91 HFEC dampcard maxfr)/maxfc) 
92 HFEC number of peaks m cardio avefr)-avefc) 
93 HFEC number of peaks in cardio avefr) + avefc) 
94 HFEC number of peaks in cardio maxfr) - maxfc) 
95 HFEC number of peaks in cardio minfr) - minfc) 
96 HFEC number of peaks in cardio maxfr) - minfc) 
97 HFEC number of peaks in cardio minfr) • maxfc) 
98 HFEC number of peaks in cardio maxfr)/maxfc) 
99 HFEC median of the derivative avefr) - avefc) 
100 HFEC median of the derivative avefr) + avefc) 
101 HFEC median of the derivative maxfr)-maxfc) 
102 HFEC median of the derivative minfr)-minfc) 
103 HFEC median of the derivative maxfr) - minfc) 
104 HFEC median of the derivative minfr) - maxfc) 
105 HFEC median of the derivative maxfr)/maxfc) 
106 HFEC min subtracted from the max avefr) - avefc) 
107 HFEC min subtracted from the max avefr) + avefc) 
108 HFEC min subtracted from the max maxfr)-maxfc) 
109 HFEC min subtracted from the max minfr)-minfc) 
110 HFEC min subtracted from the max maxfr) - minfc) 
111 HFEC min subtracted from the max minfr) - maxfc) 
112 HFEC min subtracted from the max maxfr)/maxfc) 
113 HFEC maximum avefr) - avefc) 
114 HFEC maximum avefr) + avefc) 
115 HFEC maximum maxfr)-maxfc) 
116 HFEC maximum minfr) - minfc) 
117 HFEC maximum maxfr)-minfc) 
118 HFEC maximum minfr) - maxfc) 
119 HFEC maximum maxfr) /maxfc) 
120 HFEC minimum avefr) - avefc) 
121 HFEC minimum avefr) + avefc) 
122 HFEC minimum maxfr) - maxfc) 
123 HFEC minimum minfr) - minfc) 
124 HFEC minimum maxfr) - minfc) 
125 HFEC minimum minfr) - maxfc) 
126 HFEC minimum maxfr)/maxfc) 
127 HFEC median of the derivative avefr) - avefc) 
128 HFEC median of the derivative avefr) + avefc) 
129 HFEC median of the derivative maxfr) - maxfc) 
130 HFEC median of the derivative minfr) - minfc) 
131 HFEC median of the derivative maxfr) - minfc) 
132 HFEC median of the derivative minfr) - maxfc) 
133 HFEC median of the derivative maxfr)/maxfc) 
134 HFEC minampc avefr) - avefc) 
135 HFEC minampc avefr) + avefc) 
136 HFEC minampc maxfr) - maxfc) 
137 HFEC minampc minfr) - minfc) 
138 HFEC minampc maxfr) - minfc) 
139 HFEC minampc minfr) - maxfc) 
140 HFEC minampc maxfr) / maxfc) 

Fig.41: List oflabels of all the features used in this project 
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141 LC mean •ve(r)-ave(c) 
142 LC mean •ve(r) + «ve(c) 
143 LC mean max(r)-max(c) 
144 LC mean min(r)-min(c) 
145 LC mean max(r)-min(c) 
146 LC mean min(r)-max(c) 
147 LC mean max(r)/max(c) 
148 LC curve length •ve(r)-ave(c) 
149 LC curve length tve(r) + ave(c) 
150 LC cutve length max(r)-max(c) 
151 LC curve length min(r)-min(c) 
152 LC cuivelength max(r)-min(c) 
153 LC cuive length nuri(r)-max(c) 
154 LC curve length max(r)/max(c) 
155 LC area ive(r)>tve(c) 
156 LC area ave(r) + ave(c) 
157 LC area max(r)-max(c) 
158 LC area min(r)-min(c) 
159 LC area max(r)-mrn(c) 
160 LC area min(r)-max(c) 
161 LC area max(r)/max(c) 
162 LC median of the derivative «ve(r)-ave(c) 
163 LC median of the derivative ave(r) + «ve(c) 
164 LC median of the derivative max(r)-max(c) 
165 LC median of the derivative min(r)-min(c) 
166 LC median of the derivative max(r)-min(c) 
167 LC median of the derivative min(r)-max(c) 
168 LC median of the derivative max(r)/max(c) 
169 LC min subtracted from the max •ve(r) - ave(c) 
170 LC min subtracted from the max ave(r) + ave(c) 
171 LC min subtracted from the max max(r) - max(c) 
172 LC min subtracted from the max min(r) - min(c) 
173 LC min subtracted from the max max(r)-min(c) 
174 LC min subtracted from the max min(r)-max(c) 
175 LC min subtracted from the max max(r)/max(c) 
176 LC maximum ave{r)-ave(c) 
177 LC maximum tve(r) + ave(c) 
178 LC maximum max(r)-max(c) 
179 LC maximum min(r)-min(c) 
180 LC maximum max(r)-min(c) 
181 LC maximum min(r)-max(c) 
182 LC maximum max(r)/max(c) 
183 LC minimum ave(r) - ave(c) 
184 LC minimum ave(r) + ave(c) 
185 LC minimum max(r) • max(c) 
186 LC minimum min(r)-min(c) 
187 LC minimum max(r)-min(c) 
188 LC minimum min(r)-max(c) 
189 LC nuhimum max(r)/max(c) 
190 LC median of the derivative ave(r)-ave(c) 
191 LC median of the derivative ave(r) + ave(c) 
192 LC median of the derivative max(r)-max(c) 
193 LC median of the derivative min(r) • min(c) 
194 LC median of the derivative max(r) - min(c) 
195 LC median of the derivative min(r) - max(c) 
196 LC median of the derivative max(r)/max(c) 
197 DLC mean ave<r) - ave(c) 
198 DLC mean ave(r) + ave(c) 
199 DLC mean max(r)-max(c) 
200 DLC mean min(r)-min(c) 
201 DLC mean max(r) - min(c) 
202 DLC mean min(r)-max(c) 
203 DLC mean max(r)/max(c) 
204 DLC curve length ave(r) - ave(c) 
205 DLC curve length ave(r) + ave(c) 
206 DLC curve length max(r)-max(c) 
207 DLC curve length min(r)-min(c) 
208 DLC curve length max(r) - min(c) 
209 DLC curve length min(r) - max(c) 
210 DLC curve length max(r)/max(c) 

211 DLC area ave(r) - ave(c) 
212 DLC area ave(r) + ave(c) 
213 DLC area max(r) - max(c) 
214 DLC area min(r) • min(c) 
215 DLC area max(r). min(c) 
216 DLC area min(r) - max(c) 
217 DLC area max(r)/max(c) 
218 DLC median of the derivative ave(r) - ave(c) 
219 DLC median of the derivative •ve(r) + ave(c) 
220 DLC median of the derivative max(r)-max(c) 
221 DLC median of the derivative mm(r)-rnrn(c) 
222 DLC median of the derivative max(r) - min(c) 
223 DLC median of the derivative min(r)-max(c) 
224 DLC median of the derivative max(r)/max(c) 
225 DLC min subtracted from the max ave(r) - ave(c) 
226 DLC min subtracted from the max ave(r) + ave(c) 
227 DLC min subtracted from the max max(r) • max(c) 
228 DLC min subtracted from the max min(r)-min(c) 
229 DLC min subtracted from the max max(r)-mrn(c) 
230 DLC min subtracted from the max min(r) - max(c) 
231 DLC min subtracted from the max max(r)/max(c) 
232 DLC maximum ave(r) - ave(c) 
233 DLC maximum ave(r) + ave(c) 
234 DLC maximum max(r) - max(c) 
235 DLC maximum min(r) - min(c) 
236 DLC maximum max(r)-min(c) 
237 DLC maximum min(r) - max(c) 
238 DLC maximum max(r)/max(c) 
239 DLC minimum ave(r) - ave(c) 
240 DLC minimum •ve(r) + ave(c) 
241 DLC minimum max(r)-max(c) 
242 DLC irunimum min(r)-min(c) 
243 DLC minimum maxCr)-min(c) 
244 DLC minimum min(r) - max(c) 
245 DLC minimum max(r)/max(c) 
246 DLC mean of derivative ave(r) - ave(c) 
247 DLC mean of derivative ave(r) + ave(c) 
248 DLC mean of derivative max(r) - max(c) 
249 DLC mean of derivative inin(r)-min(c) 
250 DLC mean of derivative max(r)-mm(c) 
251 DLC mean of derivative min(r)-max(c) 
252 DLC -mean of derivative max(r)/max(c) 
253 LR mean ave(r) - ave(c) 
254 LR mean ave(r) + ave(c) 
255 LR mean max(r)-max(c) 
256 LR mean min(r) - min(c) 
257 LR mean max(r) - min(c) 
258 LR mean min(r) - max(c) 
259 LR mean max(r)/max(c) 
260 LR curve length ave(r) - ave(c) 
261 LR curve length ave(r) + ave(c) 
262 LR curve length max(r) - max(c) 
263 LR curve length min(r) - min(c) 
264 LR curve length maxCr) - min(c) 
265 LR curve length min(r) • max(c) 
266 LR curve length max(r)/max(c) 
267 LR area ave(r) - ave(c) 
268 LR area ave(r) + ave(c) 
269 LR area max(r)-max(c) 
270 LR area minCr) - min(c) 
271 LR area max(r) - min(c) 
272 LR area min(r) - max(c) 
273 LR area max(r) / max(c) 
274 LR amplitude of the peaks ave(r) - ave(c) 
275 LR amplitude of the peaks ave(r) + ave(c) 
276 LR amplitude of the peaks max(r) - max(c) 
277 LR amplitude of the peaks min(r) - min(c) 
278 LR amplitude of the peaks max(r) - min(c) 
279 LR amplitude of the peaks min(r) - max(c) 

1    280          LR amplitude of the peaks max(r)/max(c) 

Fig.41: Continued 
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281 LR number of the peaks avefr) - avefr) 
282 LR number of the peaks avefr) + avefr) 
283 LR number of the peaks maxfr)-maxfr) 
284 LR number of the peaks tninfr)-minfr) 
285 LR number of the peaks max(r)-min(c) 
286 LR number of the peaks minfr)-maxfr) 
287 LR number of the peaks maxfr)/maxfr) 
288 LR inhal divided by exhal avefr) - ave(c) 
289 LR inhal divided by exhal avefr) + avefr) 
290 LR inhal divided by exhal maxfr)-maxfr) 
291 LR inhal divided by exhal minfr)-minfr) 
292 LR inhal divided by exhal maxfr) - minfr) 
293 LR inhal divided by exhal min(r)-max(c) 
294 LR inhal divided by exhal maxfr)/maxfr) 
295 LR dampr ave(r)-«ve(c) 
296 LR dampr avefr) + avefr) 
297 LR dampr maxfr)-maxfr) 
298 LR dampr niinfr)-minfr) 
299 LR dampr maxfr)-minfr) 
300 LR dampr min(r)-max(c) 
301 LR dampr max(r)/max(c) 
302 LR ieie •ve(r)-ave(c) 
303 LR ieie ave(r) + ave(c) 
304 LR ieie max(r) - maxfr) 
305 LR ieie min(r) - min(c) 
306 LR ieie maxfr)-minfr) 
307 LR ieie minfr)-maxfr) 
308 LR ieie max(r)/max(c) 
309 LR median of the derivative ave(r)-ave(c) 
310 LR median of the derivative ave(r)+ave(c) 
311 LR median of the derivative max(r)-max(c) 
312 LR median of the derivative min(r)-min(c) 
313 LR median of the derivative max(r)-min(c) 
314 LR median of the derivative minfr)-maxfr) 
315 LR median of the derivative max(r)/max(c) 
316 LR min subtracted from the max •ve(r) - ave(c) 
317 LR min subtracted from the max ave(r) + »ve(c) 
318 LR min subtracted from the max max(r) -max(c) 
319 LR min subtracted from the max minfr)-minfr) 
320 LR min subtracted from the max max(r) - min(c) 
321 LR min subtracted from the max min(r) - max(c) 
322 LR min subtracted from the max max(r)/max(c) 
323 LR maximum ave(r) - ave(c) 
324 LR maximum ave(r) + ave(c) 
325 LR maximum max(r)-max(c) 
326 LR maximum minfr)-minfr) 
327 LR maximum max(r) -min(c) 
328 LR maximum min(r) • max(c) 
329 LR maximum max(r)/max(c) 
330 LR minimum ave(r)-ave(c) 
331 LR minimum ave(r)+ave(c) 
332 LR minimum maxfr)-maxfr) 
333 LR minimum minOr) - min(c) 
334 LR minimum max(r) - min(c) 
335 LR minimum min(r) - max(c) 
336 LR minimum max(r)/max(c) 
337 LR mean of derivative ave(r) * ave(c) 
338 LR mean of derivative ave(r) + ave(c) 
339 LR mean of derivative max(r)-max(c) 
340 LR mean of derivative min(r) - min(c) 
341 LR mean of derivative max(r) - min(c) 
342 LR mean of derivative minfr) - max(c) 
343 LR mean of derivative max(r) / max(c) 
344 LR minampr ave(r) - ave(c) 
345 LR minampr ave(r) + ave(c) 
346 LR minampr max(r) - max(c) 
347 LR minampr min(r) - min(c) 
348 LR minampr maxfr)-minfr) 
349 LR minampr min(r) - max(c) 
350 LR minampr max(r)/max(c) 

351 UR mean ave<r) - ave(c) 
352 UR mean ave(r) + ave(c) 
353 UR mean max(r) - max(c) 
354 UR mean min(r) - min(c) 
355 UR mean maxfr)-minfr) 
356 UR mean min(r) - max(c) 
357 UR mean max(r)/max(c) 
358 UR curve length avefr) - ave(c) 
359 UR curve length ave(r) + ave(c) 
360 UR curve length maxfr) - max(c) 
361 UR curve length min(r) - min(c) 
362 UR curve length max(r) - min(c) 
363 UR curve length minfr) - max(c) 
364 UR curve length max(r)/max(c) 
365 UR area ave(r) - ave(c) 
366 UR area ave(r) + ave(c) 
367 UR area max(r). max(c) 
368 UR area min(r) - min(c) 
369 UR area max(r)-min(c) 
370 UR area min(r) - max(c) 
371 UR area maxfr)/maxfr) 
372 UR amplitude of the peaks ave(r) - avefr) 
373 UR amplitude of the peaks avefr) + avefr) 
374 UR amplitude of the peaks max(r) - maxfr) 
375 UR amplitude of the peaks min(r) - min(c) 
376 UR amplitude of the peaks max(r) - min(c) 
377 UR amplitude of the peaks min(r)-max(c) 
378 UR amplitude of the peaks max(r)/max(c) 
379 UR dampr ave(r) - ave(c) 
380 UR dampr avefr) + avefr) 
381 UR dampr max(r) • max(c) 
382 UR dampr min(r) - min(c) 
383 UR dampr maxfr)-min(c) 
384 UR dampr minfr)-maxfr) 
385 UR dampr max(r)/max(c) 
386 UR number of the peaks ave(r) - ave(c) 
387 UR number of the peaks ave(r) + ave(c) 
388 UR number of the peaks maxfr) - max(c) 
389 UR number of the peaks min(r)-min(c) 
390 UR number of the peaks max(r)-min(c) 
391 UR number of the peaks min(r) - max(c) 
392 UR number of the peaks maxfr)/maxfr) 
393 UR inhal divided by exhal ave(r) - ave(c) 
394 UR inhal divided by exhal ave(r) + ave(c) 
395 UR inhal divided by exhal max(r) - max(c) 
396 UR inhal divided by exhal min(r) - min(c) 
397 UR inhal divided by exhal maxfr) - min(c) 
398 UR inhal divided by exhal minfr) - maxfr) 
399 UR inhal divided by exhal maxfr)/maxfr) 
400 UR ieie '   avefr) - ave(c) 
401 UR ieie ave(r) + avefr) 
402 UR ieie maxfr) - maxfr) 
403 UR ieie minfr) - minfr) 
404 UR ieie maxfr) - minfr) 
405 UR ieie minfr) - maxfr) 
406 UR ieie maxfr) / maxfr) 
407 UR median of the derivative avefr) - avefr) 
408 UR median of the derivative avefr) + avefr) 
409 UR median of the derivative maxfr) - maxfr) 
410 UR median of the derivative minfr) - minfr) 
411 UR median of the derivative maxfr) • minfr) 
412 UR median of the derivative minfr) - maxfr) 
413 UR median of the derivative maxfr)/maxfr) 
414 UR min subtracted from the max avefr) - avefr) 
415 UR min subtracted from the max avefr) + avefr) 
416 UR min subtracted from the max maxfr) - maxfr) 
417 UR min subtracted from the max minfr) - minfr) 
418 UR min subtracted from the max maxfr) - minfr) 
419 UR min subtracted from the max minfr) - maxfr) 
420 UR min subtracted from the max maxfr) / maxfr) 

Fig.41: Continued 
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421 UR maximum ive(r) - avefc) 
422 UR maximum ive(r)+»ve(c) 
423 UR maximum max(r)-max(c) 
424 UR maximum min(r)-min(c) 
425 UR maximum max(r)-inin(c) 
426 UR maximum mm(r)-max(c) 
427 UR maximum max(r)/max(c) 
428 UR minimum •ve(r)-avefc) 
429 UR minimum »ve(r) + ave(c) 
430 UR minimum max(r)-max(e) 
431 UR minimum min(r)-min(c) 

432 UR minimum max(r)-min(c) 
433 UR minimum min(r)»max(c) 
434 UR minimum max(r)/max(c) 
435 UR mean of derivative ave(r)-ave(c) 
436 UR mean of derivative tve(r) + ave(c) 
437 UR mean of derivative max(r)-max(c) 
43S UR mean of derivative min(r)-min(c) 
439 UR mean of derivative max(r)-min(c) 
440 UR mean of derivative min(r)-max(c) 
441 UR mean of derivative max(r)/max(c) 
442 UR minampr tve(r) - ave(c) 
443 UR minampr •ve(r) + avefc) 
444 UR minampr max(r)-max(c) 
445 UR minampr min(r)-min(c) 
446 UR minampr max(r)-min(c) 
447 UR minampr min(r)-max(c) 
448 UR minampr max(r)/max(c) 
449 GSR standard deviation ave(r)-avefc) 
450 GSR standard deviation ave(r) + ave(c) 
451 GSR standard deviation max(r)-max(c) 
452 GSR standard deviation min(r)-min(c) 
453 GSR standard deviation max(r)-min(c) 
454 GSR standard deviation min(r)-max(c) 
455 GSR standard deviation max(r)/max(c) 
456 HFEC standard deviation •ve(r)-ave(c) 
457 HFEC standard deviation ave(r) + ave(c) 
458 HFEC standard deviation max(r) - max(c) 
459 HFEC standard deviation min(r) - min(c) 
460 HFEC standard deviation max(r)-min(c) 
461 HFEC standard deviation min(r)-max(c) 
462 HFEC standard deviation max(r)/max(c) 
463 LC standard deviation tve(r)-ave(c) 
464 LC standard deviation •ve(r) + ave(c) 
465 LC standard deviation max(r) - max(c) 
466 LC standard deviation min(r) - min(c) 
467 LC standard deviation max(r)-min(c> 
468 LC standard deviation min(r)-max(c) 
469 LC standard deviation max(r)/max(c) 
470 DLC standard deviation ave(r) - ave(c) 
471 DLC standard deviation ave(r) + ave(c) 
472 DLC standard deviation max(r) - max(c) 
473 DLC standard deviation min(r) - min(c) 
474 DLC standard deviation max(r)-min(c) 
475 DLC standard deviation min(r) - max(c) 
476 DLC standard deviation max(r)/max(c) 
477 LR standard deviation ave(r) - avefc) 
478 LR standard deviation ave(r) + ave(c) 
479 LR standard deviation max(r)-max(c) 
480 LR standard deviation min(r) • min(c) 
481 LR standard deviation max(r)-min(c) 
482 LR standard deviation min(r) - max(c) 
483 LR standard deviation max(r)/max(c) 
484 UR standard deviation ave(r)-ave(c) 
485 UR standard deviation ave(r) + ave(c) 
486 UR standard deviation max(r) • max(c) 
487 UR standard deviation min(r) - min(c) 
488 UR standard deviation max(r)-min(c) 
489 UR standard deviation min(r) - max(c) 
490 UR standard deviation maxfr)/maxfc) 

491 HFEC coeff of ARmod ave(r) - avefc) 
492 HFEC coeff of ARmod ■ve(r) + tve(c) 
493 HFEC coeff of ARmod max(r) - max(c) 
494 HFEC coeff of ARmod min(r) - min(c) 
495 HFEC coeff of ARmod max(r) - min(c) 
496 HFEC coeff of ARmod min(r)-max(c) 
497 HFEC coeff of ARmod maxfr)/maxfc) 
498 HFEC coeff of ARmod •ve(r) - ave(c) 
499 HFEC coeff of ARmod ave(r) + tve(c) 
500 HFEC coeff of ARmod max(r) • nuxfc) 

501 HFEC coeff of ARmod min(r) • min(c) 

502 HFEC coeff of ARmod max(r) - min(c) 
503 HFEC coeff of ARmod min(r) - maxfc) 
504 HFEC coeff of ARmod maxfr)/maxfc) 
505 HFEC coeff of ARmod ave(r) - ave(c) 
506 HFEC coeff of ARmod ave(r) + ave(c) 
507 HFEC coeff of ARmod max(r) - max(c) 
508 HFEC coeff of ARmod min(r) - min(c) 
509 HFEC coeff of ARmod max(r) - min(c) 
510 HFEC coeff of ARmod minfr)-maxfc) 

511 HFEC coeff of ARmod max(r) / max(c) 
512 HFEC coeff of ARmod avefr) - ave(c) 
513 HFEC coeff of ARmod ave(r) + ave(c) 
514 HFEC coeff of ARmod max(r) • max(c) 
515 HFEC coeff of ARmod min(r)-min(c) 
516 HFEC coeff of ARmod max(r) - min(c) 
517 HFEC coeff of ARmod min(r) - max(c) 
518 HFEC coeff of ARmod max(r)/max(c) 
519 HFEC coeff of ARmod ave(r) - ave(c) 
520 HFEC coeff of ARmod ave(r) + ave(c) 
521 HFEC coeff of ARmod max(r) - max(c) 
522 HFEC coeff of ARmod min(r) - min(c) 
523 HFEC coeff of ARmod max(r) - minfc) 
524 HFEC coeff of ARmod min(r) - max(c) 
525 HFEC coeff of ARmod max(r)/max(c) 
526 HFEC coeff of ARmod ave(r) - ave(c) 
527 HFEC coeff of ARmod ave(r) + ave(c) 
528 HFEC coeff of ARmod max(r) - max(c) 
529 HFEC coeff of ARmod min(r) - min(c) 
530 HFEC coeff of ARmod max(r)-min(c) 
531 HFEC coeff of ARmod min(r) - max(c) 
532 HFEC coeff of ARmod max(r) / max(c) 
533 HFEC coeff of ARmod ave(r) • ave(c) 
534 HFEC coeff of ARmod ave(r) + ave(c) 
535 HFEC coeff of ARmod max(r) - max(c) 
536 HFEC coeff of ARmod min(r) - min(c) 
537 HFEC coeff of ARmod max(r) - min(c) 
538 HFEC coeff of ARmod min(r) - max(c) 
539 HFEC coeff of ARmod max(r) / maxfc) 
540 HFEC coeff of ARmod ave(r) - ave(c) 
541 HFEC coeff of ARmod ave(r) + ave(c) 
542 HFEC coeff of ARmod max(r) - max(c) 
543 HFEC coeff of ARmod min(r) - minfc) 
544 HFEC coeff of ARmod max(r) - min(c) 
545 HFEC coeff of ARmod min(r) - max(c) 
546 HFEC coeff of ARmod max(r) / max(c) 
547 HFEC coeff of ARmod avefr) - ave(c) 
548 HFEC coeff of ARmod ave(r) + ave(c) 
549 HFEC coeff of ARmod max(r) - max(c) 
550 HFEC coeff of ARmod min(r) - min(c) 
551 HFEC coeff of ARmod maxCr) - min(c) 
552 HFEC coeff of ARmod min(r) - max(c) 
553 HFEC coeff of ARmod max(r) / max(c) 
554 HFEC coeff of ARmod ave(r) - ave(c) 
555 HFEC coeff of ARmod ave(r) + ave(c) 
556 HFEC coeff of ARmod max(r) - max(c) 
557 HFEC coeff of ARmod min(r) - min(c) 
558 HFEC coeff of ARmod max(r) - min(c) 
559 HFEC coeff of ARmod min(r) - max(c) 
560 HFEC coeff of ARmod max(r) / max(c) 
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561 HFEC fund finax cross corr ave(r) • avefc) 
562 HFEC fund fmax cross con- ave(r) + >ve(c) 
563 HFEC fund fmax cross corr max(f)-max(c) 

564 HFEC fund fmax cross corr min(r) - min(c) 
565 HFEC fund fmax cross corr max(r)-min(c) 
567 HFEC fund finax cross corr miner)-maxfc) 

568 LR fund fmax cross corr maxfr)/max(c) 
569 LR fund finax cross corr ave(r) • ave(c) 
570 LR fund fmax cross corr ave(r) + ftve(c) 
571 LR fund finax cross corr max(r)-max(c) 

572 LR fund finax cross corr min(r)-min(c) 

573 LR fund finax cross corr max(r) - min(c) 
574 LR fund finax cross corr min(r)-max(c) 

575 HFUR max cross correlation max(r)/max(c) 

576 HFUR max cross correlation ave(r)-ave(c) 
577 HFUR max cross correlation ave(r) + avefc) 
578 HFUR max cross correlation max(r)-max(c) 

579 HFUR max cross correlation min(r)-min(c) 

580 HFUR max cross correlation max(r) • min(c) 
581 HFUR max cross correlation min(r)-max(c) 

582 HFUR lag max cross correlation max(r)/max(c) 

583 HFUR lag max cross correlation ave(r) • ave(c) 

584 HFUR lag max cross correlation ave(r) + ave(c) 

585 HFUR lag max cross correlation max(r) - max(c) 

586 HFUR lag max cross correlation min(r)-min(c) 
587 HFUR lag max cross correlation max(r) • min(c) 
588 HFUR lag max cross correlation min(r) - max(c) 

589 HFUR min cross correlation ■   max(r)/max(c) 

590 HFUR min cross correlation ave(f) - ave(c) 

591 HFUR min cross correlation ave(r) + ave(c) 

592 HFUR min cross correlation max(r)-max(c) 

593 HFUR min cross correlation min(r) - min(c) 
594 HFUR min cross correlation max(f)-minCc) 

595 HFUR min cross correlation min(r) - max(c) 
596 HFUR lag min cross correlation max(r)/max(c) 
597 HFUR lag min cross correlation »vetr) - ave(c) 

598 HFUR lag min cross correlation ave(r) + ave(c) 

599 HFUR lag min cross correlation max(r) - max(c) 
600 HFUR lag min cross correlation min(r)-min(c) 

601 HFUR lag min cross correlation max(r)-min(c) 

602 HFUR lag min cross correlation min(r)-max(c) 

603 HFEC spec HFEC fund freq max(r)/max(c) 
604 HFEC spec HFEC fund freq »ve(r) - ave(c) 
605 HFEC spec HFEC fund freq ave(r) + ave(c) 
606 HFEC spec HFEC fund freq max(r) - max(c) 
607 HFEC spec HFEC fund freq min(r)-min(c) 

608 HFEC spec HFEC fund freq max(r)-min(c) 
609 HFEC spec HFEC fund freq min(r)-max(c) 

610 HFEC spec HFEC 2nd harmonic max(r)/max(c) 

611 HFEC spec HFEC 2nd harmonic ave(r) - ave(c) 
612 HFEC spec HFEC 2nd harmonic ave(r) + aveic) 
613 HFEC spec HFEC 2nd harmonic max(r) - max(c) 
614 HFEC spec HFEC 2nd harmonic min(r) - min(c) 
615 HFEC spec HFEC 2nd harmonic max(r)-min(c) 
616 HFEC spec HFEC 2nd harmonic min(r) - max(c) 
617 UR spec UR fund frequency max(r)/max(c) 

618 UR spec UR fund frequency ave(r) - ave(c) 
619 UR spec UR fund frequency ave(r) + ave(c) 
620 UR spec UR fund frequency max(r)-max(c) 

621 UR spec UR fund frequency min(r) - min(c) 
622 UR spec UR fund frequency max(r) • min(c) 
623 UR spec UR fund frequency min(r) - max(c) 
624 UR spec UR 2nd harmonic maxfr)/max(c) 
625 UR spec UR 2nd harmonic avefr) - aveCc) 
626 UR spec UR 2nd harmonic avefr) + ave(c) 
627 UR spec UR 2nd harmonic maxfr) - max(c) 
628 UR spec UR 2nd harmonic6 min(r) - min(c) 
629 UR spec UR 2nd harmonic maxfr) - min(c) 
630 UR t       spec UR 2nd harmonic minCr) - max(c)       | 
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631 HFUR max cross spec density maxfr) / max(c) 
632 HFUR max cross spec density ave(r) - ave(c) 
633 HFUR max cross spec density ave(r) + ave(c) 
634 HFUR max cross spec density max(r) - max(c) 
635 HFUR max cross spec density min(r) - min(c) 
636 HFUR max cross spec density max(r) - min(c) 
637 HFUR max cross spec density min(r) - max(c) 
638 HFEC coherency HFEC&URff maxfr) / maxfc) 
639 HFEC coherency HFEC&URff ave(r) - ave(c) 
640 HFEC coherency HFEC&URff ave(r) + ave(c) 
641 HFEC coherency HFEC&URff max(r) - max(c) 
642 HFEC coherency HFEC&URff min(r) - minfc) 
643 HFEC coherency HFEC&URff max(r) - min(c) 
644 HFEC coherency HFEC&URff min(r) - max(c) 
645 HFEC coherency HFEC&URsh max(r) / max(c) 
646 HFEC coherency HFEC&URsh ave(r) - ave(c) 
647 HFEC coherency HFEC&URsh ave(r) + ave(c) 
648 HFEC coherency HFEC&URsh maxfr) - max(c) 
649 HFEC coherency HFEC&URsh minfr) - min(c) 
650 HFEC coherency HFEC&URsh maxfr) - minfc) 
651 HFEC coherency HFEC&URsh minfr) - maxfc) 
652 GSR max min ISD cont&relv meanfr & c) 
653 GSR max min ISD cont&relv maxfr & c) 
654 GSR max min ISD cont&relv minfr & c) 
655 GSR freq max ISD meanfr & c) 
656 GSR freq max ISD maxfr & c) 
657 GSR freq max ISD minfr & c) 
658 GSR area under ISD meanfr & c) 
659 GSR area under ISD maxfr & c) 
660 GSR area under ISD minfr & c) 
661 HFEC max min ISD meanfr & c) 
662 HFEC max min ISD maxfr & c) 
663 HFEC max min ISD minfr & c) 
664 HFEC freq max ISD meanfr & c) 
665 HFEC freq max ISD maxfr & c) 
666 HFEC freq max ISD minfr & c) 
667 HFEC area under ISD meanfr & c) 
668 HFEC area under ISD maxfr & c) 
669 HFEC area under ISD minfr & c) 
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Non-deceptive 
QQ8R9OIO.011 
QQ8R9OIO.021 
QQ8R9OIO.031 
QQ95LU1T.011 
QQ95LU1T.021 
QQ95LU1T.031 
QQAURNUS.021 
QQAURNUS.031 
QQAV53P6.011 
QQAV53P6.021 
QQAV53P6.031 
QQBQ4SHI.011 
QQBQ4SHI.021 
QQBQ4SHI.031 
QQBSS7WT.011 
QQBSS7WT.021 
QQBSS7WT.031 
QQ7OXM60.021 
QQ7RH0RO.011 
QQ7RH0RO.021 
QQ7RH0RO.031 
QQ7R51P9.011 
QQ7R51P9.021 
QQ7R51P9.031 
QQ9TDSP3.011 
QQ9TDSP3.021 
QQ9TDSP3.031 
QQA8OWOI.011 
QQA8OWOI.021 
QQA8OWOI.031 
QQBT22O6.011 
QQBT22O6.021 
QQBT22O6.031 
QQBO9O_9.011 
QQBO9O_9.021 
QQBO9O_9.031 
QQBC7PP6.011 
QQBC7PP6.021 
QQBC7PP6.031 
QQCHCK_O.011 
QQCHCK_O.021 
QQCHCK_O.031 
QQCDTKPO.011 
QQCDTKP0.031 
QQCDTKP0.041 
QQCM5Y56.011 
QQCQQT8Y.011 
QQCQQT8Y.021 
QQCQQT8Y.031 
QQCQQT8Y.041 

Deceptive 1 
QQ4Q1O83.011 
QQ4Q1O83.021 
QQ4Q1O83.031 
QQ4Q3MDC.011 
QQ4Q3MDC.021 
QQ4Q3MDC.031 
QQ51DE36.011 
QQ51DE36.021 
QQ51DE36.041 
QQ6RQGH6.011 
QQ6RQGH6.021 
QQ6RQGH6.031 
QQ6RQGH6.041 
QQ6T711O.011 
QQ6T7110.021 
QQ6T7110.031 
QQ6Z59IG.011 
QQ6Z59IG.021 
QQ6Z59IG.031 
QQ7PP9B9.011 
QQ7PP9B9.021 
QQ7PP9B9.031 
QQ7PDU1X.011 
QQ7PDU1X.021 
QQ7PDU1X.031 
QQ7_PIPF.011 
QQ7_PIPF.021 
QQ7_PIPF.031 
QQ7_JT70.011 
QQ7_JT70.021 
QQ7_JT70.031 
QQ738DYX.011 
QQ738DYX.021 
QQ738DYX.031 
QQ75ULP9.011 
QQ75ULP9.021 
QQ75ULP9.031 
QQ79_EYF.011 
QQ79_EYF.021 
QQ79_EYF.031 
QQ7BGDML.011 
QQ7BGDML.021 
QQ7BGDML.031 
QQ7ETC8I.011 
QQ7ETC8I.021 
QQ7ETC8I.031 
QQ7JAQCS.011 
QQ7JAQCS.021 
QQ7JAQCS.031 
QQ7LX5Q0.011 

Deceptive 2 
QQ7LX5Q0.021 
QQ7LX5Q0.031 
QQ7MN2Y0.011 
QQ7MN2Y0.021 
QQ7MN2Y0.031 
QQ7TC5UF.011 
QQ7TC5UF.021 
QQ7TC5UF.031 
QQ7TQVER011 
QQ7TQYER021 
QQ7TQVER.031 
QQ7TVADC.011 
QQ7TVADC.021 
QQ7TVADC.031 
QQ7U2T4R011 
QQ7U2T4R.021 
QQ7U2T4R031 
QQ7YP7QU.011 
QQ7YP7QU.021 
QQ7YP7QU.031 
QQ7YZOJ3.011 
QQ7YZOJ3.021 
QQ7YZOJ3.031 
QQ8_0DPT.011 
QQ8_0DPT.021 
QQ8_0DPT.031 
QQ8_0DPT.041 
QQ8_2UQ9.011 
QQ8_2UQ9.021 
QQ8_2UQ9.031 
QQ800IG6.011 
QQ800IG6.021 
QQ800IG6.031 
QQ82OIU9.011 
QQ82OIU9.021 
QQ82ORJ9.031 
QQ82SUTX.011 
QQ82SUTX.021 
QQ82SUTX.031 
QQ860ZNU.011 
QQ860ZNU.021 
QQ860ZNU.031 
QQ89U_ZR011 
QQ89U_ZR.021 
QQ89U_ZR031 
QQ8ATU26.011 
QQ8ATU26.021 
QQ8ATU26.031 
QQ8FGMVI.011 
QQ8FGMV1.021 

Deceptive 3 
QQ8RAJ0C.011 
QQ8RAJ0C.021 
QQ8RAJ0C.031 
QQ9EUKVT.011 
QQ9EUKVT.021 
QQ9EUKVT.031 
QQ9IOOXO.021 
QQ9IOOXO.041 
QQ9SOW8L.011 
QQ9SOW8L.021 
QQ9SOW8L.031 
QQ9SQDC9.011 
QQ9SQIK9.021 
QQ9SQDC9.031 
QQ9W0B9F.011 
QQ9W0B9F.031 
QQ9W0B9F.041 
QQ9U4FMU.011 
QQ9U4FMU.021 
QQ9U4FMU.031 
QQ9Y_SVF.011 
QQ9Y_SVF.021 
QQ9Y_SVF.031 
QQ9YH3QF.011 
QQ9YH3QF.021 
QQ9YH3QF.031 
QQA2TT4C.011 
QQA2TT4C.021 
QQA2TT4C.031 
QQA3HIRX.011 
QQA3HIRX.021 
QQA3HIRX.031 
QQA32UTF.011 
QQA32UTF.021 
QQA32UTF.031 
QQA6U_IF.011 
QQA6U_IF.031 
QQA6U_IF.041 
QQAM4E3L.011 
QQAM4E3L.021 
QQAM4E3L.031 
QQARF2_X,011 
QQARF2_X.021 
QQARF2_X.031 
QQAWA38X.011 
QQAWA38X.021 
QQAWA38X.031 
QQAYXZGU.011 
QQAYXZGU.021 
QQAYXZGU.031 

Fig.42: List of polygraph files used in this experiment 
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6.3. USER INTERFACE 

For an automated polygraph system as a real product, the existence of an user-friendly 
interface is unavoidable. MATLAB software environment provide an easy-to-use toolbox 
for creating various kinds of interactive interface classes. The following figure shows an 
interface used in one of my representations. This was made for a technically oriented user 
who is familiar with the algorithm. A simpler black-box version of a polygraph system, 

appropriate to the user's requests, can likewise be programmed. 

Fig.43: An example for a technical user interface 
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6.4. PROGRAM LISTINGS 
(Implementation in MATLAB) 
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V. THIS PROGRAM CALCULATESTHE CLUSTER CENTERS FOR 
•/. A MULTIDIMENSIONAL FCM • C=2, CONST. 

function V - c_center(X, U, m) 

(colE,rowE]-size(X); 
k=l:rowE; 

Sforthe 1th class: 

Vl_numerator-U(l,k)."m • XtJc)1', 
•/, (.«^=>("): because the "numerator sum" is automatically 
% included within the matrix multiplication. 

V(l,:) - Vl_numerator / tum( LKW.Tn); 
% V(l,:) [and Vljiumerator] is a n-dimensional row-vector, 
% n represents the number of the clustering features(n=30). 

%for the 2nd class: 

V2_numerator«U(2,k).''m • X(:W; 
•/• (.*>=>(•): ...see above. 

V(2,:) - V2_numerator / sum( U(2,k)An ); 
% This is a n-dimensional row-vector and the duster-center 
Vt of the 2nd class. 

V=V; % [nxc] matrix 
return; 

V. FUZZY C-MEANS ALGORITHM FOR MULTI-DIMENSIONAL FCM. 

•/.function bestUik - fc_means<m, epsilon,X) 
function [best_Uik, z] - fc_means(m, epsilorOQ 
•/.function bestJJik - fc_means(m, epsilon) 
•/.function [bestJJik, V, X) = fc_means(m, epsilon) 
•/. think about the X 

load init_u; •/• start with the initialization of the memb_fct 
% (Uik => Vi) 

•/• load init_v, •/• or with the duster centers 
V. (Vi => Uik) 

•/.lead seOl; % including the data X respect XI, X2,... 
•/.X=featmat; 
•/.load set3mc;X=Xselect; 

'/.format long; V. avoid errors by visual comparing the numbers 
J_m = 100000000, % to make sure the start is oJc. 
z=0, 
while J_m > epsilon 

V = c_centerCX, U, m); 

U»memb_fct(X,V, m); 

Jtemp = J_m; 
J_m=j_mdim(X,V,U,m); 

if epsilon <= 0.000005 
if (abs(J_m - Jtemp) <- .00000000001), 
%ifJ_m—= Jtemp, % to terminate the loop by reaching 

% the minimum of J_m. 
break, 

end 
else 

end 

if(abs(J_m - Jtemp) <- .0001),%—-oi. 
Wf J_m — Jtemp, % to terminate the loop by reaching 

% the minimum of J_m. 
break, 

end 

V. t - abs<U - temp); % tolerance value for the iteration 

z-z+1; 
ifrem(z,10)—-0 
fprintfCAn'); 

else 
fprintfC. •); 
end 

end 

fprintfOn');rprintfC W); 

best Uüc«U, 
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V.Vnew - V; 

V, recall the extrem values: J_m =7.2308e+003 

return; 

%THIS PROGRAM CALCULATES THE OBJECTIVE FUNCTION 
V, FOR THE MULTIDIMENSIONAL FCM. 

function J_m - j_mdim(X, V, U, m) 

(colE jowE) - äze(X); 
k"= ITOWE; 

Wor the lth class: 
VlasMatrix - V(:,l)'ones<UowE); 

tempi -(X(:,k) - VlisMatrix f *( X(:,k) • VlasMatrix); 

tempi I-( (UO,:)."ra) ■* (diagCtempl)') ); 

J_outl - sum(templ 1); 

*/* to avoid time-crunching for-loops 

% trick matrix-operation is faster.the sought norm is 
S automatically the diagonal of tempi; 

y.for the 2nd class: 
V2asMatrix - V(:,2)'ones(l jowE); 

temp2 - ( XCJÖ - V2asMatrix )' • ( XtJc) - V2asMatrix ); 

temp22=( (U(2,:)."m) ." (diag(temp2)') ); 

I_out2 = sum(temp22); 

J_m = J_outl +J_out2; 
return; 

% to avoid time-crunching for-loops 

% see above 

S THIS PROGRAM CALCULATES THE MEMBERSHIP VALUES FOR 
V. THE MULTIDIMENSIONAL FCM. 

function U = memb_fctCX, V, m) 

[colEjowE] = sizefX); 
k* IJOWE; 

•/•for the I th class: 

VlasMatrix - V(:,l)"ones(l jowE); 
•/• to avoid time-crunching for-loops 

tempi - ( X(:,k) - VlasMatrix )' • ( XCJO - VlasMatrix ); 
% trick: matrix-operation is faster,the sought norm is 
V» automatically the diagonal of tempi; 

Unum(l M) - ( diagtjempl)') .* (-l/(m-l)), 

•/.for the 2nd class: 

V2as Matrix = V(:,2)'ones(l .rowE); 
% to avoid time-crunching for-loops 

temp2 = ( X(:,k) - V2asMatrix )' • (X(: J() - V2asMatrix ); 
% see above 

U_num(2Jc) ■= ( diag(temp2)') ." (-I/(m-l) ); 

U(!,:)-U_num(l,k) J( U_num(l,k)+ U_num(2Jt) >, 
U(2,:) = U_num(2Jc) J ( U_num(l,k) + U_num(2,k) ); 

•/. If there is a third class, ■ U_num(3Jc) ..." 
% must be also considered. 

return; 

% FAST MULTIDIMENSIONAL EVALUATING PROGRAM 
clear best_Uik; 

-without plots 

bestJJik - fc_means(5,0.0000005, Xselect); 

figure(l);clg;hold on; 
ss-l:100; 
plot(ss,best_UiJc(l,:),'+')^lor(ss,best_Uik(2,:VbO; 
%p!ot(ss,best_Ufl<3,:Vb') 
pause; 



wrongjicps = 0; 
wrong_nons ■= 0, 
figure(2);c!g-,hold on; 
for «=1:100 

ifbest_Uik(2,5)>-.5 
plot<s,best Uik(2,s),"b'); 

ifs>50 
wrong__dcps=wrong_dcps+1; 
end 

els« 
plot(s,best Uik(2,s):+'); 

ifs<=50 
wi ong_nons=wrong_nons+1; 
end 

end 
end 

wpercent - wrong_dcps/50* 100; 
■/•fyrintfCwrong_dcps, percenf) 
•/•[wrongjkps, wpercent] 
npercent« wrong_nons/50" 100; 
•/•fprintfl>Tong_nons, npercenf) 
%[wrong_nons, npercent] 

nn=(l 00-npercent); 
ww=(l 00-wpercent); 

fprhrfCW^rprintfCRIGHT DETECTIONS:'); 

^rintf^Ö;'p™tfO"');ft,™'tfCnD-<:lu5, D_dusf); 

[nnww], 

•/. USER INTERFACE 
% Program B1. This program creates the start button. 

6gure(l);clg; 
set&cCcolorMl 0 1]) 

buttonl ■= uicontrolfgcC... 
'styleVpush',... 
■posirion',1195 150 75 75],... 
'stringVSTART,... 
•callbackVto.choic'); 

•/. USER INTERFACE 
•/^Program B2. This program displays choices to run the various programs. 

elf reset 
setCgcf/colorMO 0 1]) 

titleCONE-DIMENSIONAL MULTI-DIMENSIONAL') 

axis off 

frm2 = uicontrol(gcf,... 
'styleVtexf,... 
■position',125 40 155 200]); 

tt2 -= uicontrol(gcf,... 
'stykTtexf,... 
'ttringYFEATURE ELIMINATION,... 
■position',125 215 155 40]); 

fim4 ■= uicontroKgcf,... 
'styieVframe',... 
•positicm',p5 270 155 70]); 

K4 - uicontrol(gcf... 
'stylc'.texf,... 
WringVFUZZY C MEANS WITH EVALUATION,... 
■positiori,[35 288 125 45D; 

button3 - uicontrol(gc f,.,. 
'StyleVpush',... 
■position',]:» 275 125 25],.. 
'string'/INITIAL TEST,... 
'callback'/megajst'); 

frm -uicontroKgcf,... 
'styieVframe',... 
■position',[205 40 95 185]); 

tt = uicontroKgcf,.•• 
'styk'.lexf,... 
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•string'.T-OLYGRAPH DATA1,, 
■position1,^ 165 85 40]); 

buttont3 « uicontroKgcC., 
'styleVpush',, 
■position'.[210 75 80 25),, 
'stringVDATA 3',, 
'callbackVload flx3'); 

buttonl4 - uicontrol(gcC... 
'style'.'push',, 
•position',[210 105 80 25],, 
'stringVDATA 21,,. 
'callbacK/load fbd1); 

buttonl5 - uicontrolCgcC., 
'styleVpush',,. 
•position',[210 135 80 25],.. 
'stringVDATA 1',, 
•callback'.load fbcl1); 

buttonlö - uicontroKgcC-, 
'styleVpush',, 
■position',[210 45 80 25],, 
'stringVCLEAR',... 
'caDback'.'clcaiO; 

burtonl7 - uicontroKgcC, 
'styleVpush',, 
■posMon',[45 200125 25],.. 
'stringVBOTH >60V,, 
'caHback1,1mega_i'); 

buttonl8 - uicontrolCgcC- 
'styleVpush',, 
■posWon',145 150 125 25],, 
,string\'>80% AND >50%',, 
'caHback'.'megaJi'); 

buttonl9 = uicontroKgcC,. 
'styleVpush',,. 
•position',[45 100 125 25],, 
■string7>50,/4 AND >80%',, 
'callback'.'megajii'); 

button20 = uicontroKgcC., 
'styleVpush1,, 
■position',[45 50 125 25],, 
'stringVONE >98%',, 
•callbackVrnegaJv'); 

fhn3 = iricontroKgcC,- 
•styleVframe1,, 
■position',[320 40!65 185]), 

tt3 = ujcontioKgcf;,. 
'style'.texf,, 
'stringVSEARCH FOR BEST COMBINATION',.. 
Vosition',[350150 120 65]); 

button21 ■= uicontrolCgcC., 
'style'.'push',, 
■position',1318 230 192 25],, 
•stringVTEATURE COMBINATION1,, 
'callback'.'init&st')", 

fim5 ■= uicontroKgcC., 
'style'.'frame',, 
•posio'on',[318 260140 85D; 

tt5 - uicontroKgcC,. 
'style'.texf,, 
'stringVFUZZY C MEANS WITHOUT EVALUATION1,. 
•position',[332 275 115 65]); 

button4 - uicontroKgcC-, 
'style'.'push',, 
■position',1325 265 125 25],, 
'string1,'ALGORITHM',, 
'callback1 .'fc^means*); 

button22 - uicontroKgcC., 
'style'.'push',, 
•position',1337 125 100 25],,. 
'stringVGENETIC1,, 
'callback1,1geneac4'); 

button23 - uicontrolCgcC., 
'style'.'push1,, 
■position1,^ 95 100 25],, 
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•st^ing',•RANDOM•,... 
•callbatiVTandom'); 

button24 - uicontrolCgcC... 
'styleVpush',... 
•positiori\[337 65 145 25],... 
'stringVPSEUDO-EXHAUSTIVE',. 
'c&llUckVfeatu^'); 

V. THIS PROGRAM COMPARES RESULTS BY DIFFERENT SET-UPS 
V. OF THE •at. AN EXAMPLE: 

w_comp-2cros( 1,669); 
n_comp=zeTos(l ,669); 

index-fl 3 5 15 17 19 22 29 30 31 33 36 37 38 39 40 50); 
selindex=l:17; 

w_eomp(mdex) - selw_percent(selmdex) - w_percent(mdex); 
n_conip(index) » seln_percent<sdindex) - n_percent<index); 

RindoH70 141 155 177 197 200 202 211 214 216 235 449 450 453 458 462 600]; 
selindex=t8:34; 

w_comp(Rindex) ■= sehv_percent(selmdex) - w_pereent(Rindex); 
n_oomp(Rindsx) = seln_peicent(selmdex) - n_percent(Rindex); 

•/•for 11 newis; 

ncwin<Sces=14 12 18 52 68 82 176 395 451459 460]; 
w_comp(newmdices) -= w_percent(newindices); 
n_comp(newmdic«) ■= n j>ercent(newindices); 

in^l 3 4 5 12 15 17 18 19 22 29 30 31 33 36 37 38 39 40 50 52 68 70 82 141 155... 
176 177 197 200 202 211 214 216 235395 449 450 451 453 458 459 460 462 600]; 

[in^n2w_pefcent^i2n_percent;w,w_corop0n)^_conipön)]' 

V. ANOTHER EXAMPLE: 

w_comp=zeros(l ,669); 
n_comp=zeros( 1,669); 

ind«H' 3 4 5 12 15 17 18 19 22 29 30 31 33 36 37 38 39 40 50 52 68 .. 
70 82141 155 176 177 197 200 211214 216 235 395 449 450 451]; 
seHndex=l:38; 

w_comp(index) = selw_percent(selmdex) - w_peroent(index); 
n_cornp(index) ■= seln_percent(selindex) - n_percent(index); 

Rindcx=[453 458 459 460 462 600]; 
selindex=40:45; 

w_comp(Rindex) » selw_percent(se]mdex) - w_percent(Rindex); 
njxmpfRindex) = sebl_percent(selindex) - nj>ercent(Rindex); 

•/ofor 1 newy; 

newin<kces=[452]; 
w_comp(newindices) = w_percent(newindices); 
n_comp(newindices) -= n_percent(newindices); 

in=(l 3 4 5 12 15 17 18 19 22 29 30 31 33 3« 37 38 39 40 50 52 68 ... 
70 82 141 155 176 177 197 200 211 214 216 235 395 449 450 451 452 .. 
453 458 459 460 462 600]; 

[in;rn2wj>ercenr,rn2nj»cenr;w;w_comp(in) ■>n_comp(in)]' 

% THIS PROGRAM SELECT AND EVALUATE FEATURE GROUPS 
V. ACCORDING TO THE THRESHOLD. 

dimension=669, 

H); 
forg=l:dimension 
%- ATTENTION: Change parameters for m=3... 

iS. (n_percenf(g)<=40) & (w_percent(g)<«40)) 

H+l; 
Eg0)=f, 
m2wrong_dcps([)=wTOng_dcps<g); 
m2w_pcrcent(l>=w_percent(g); 

m2w_ok(l)=100-m2w_percentQ); 
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m2wrong_nons(l)=WTong_nons(g); 
m2n_percent(l)=n_percent(g); 

m2n_ok(I)=100-m2n_percentO); 

m2z(l>-z(g); 

if( (n_percent(g)<«25) | (w_percent(g)<=25)) 
wO)=l.llll; 
else 

w©-0; 
end 

end 

end 
1 

iprintfCm2n 0, m2wrong_dcps, m2w_oV, m2wrong_nons, m2n_ok, m2iterations, bests'); 
h=10; 
fe(h) 
m2wrong_dcps(h) 
m2w_ok(h) 
m2wron&_nons(h) 
m2n_pkfh) 
m2z(h) 

*oor 

•/.THIS PROGRAM REPRESENTS ONE THE RANDOM SEARCH 
V. FOR 4-TUPLE FEATURE COMBINATIONS. 

indi=0; 
for 1-1:10000 

ua « round(10"rand(l,4)); */. 4*ft-&-sizc of no=14 
•/. ifaaa(l)>=7,aaa(l)=aaa(l>5;end; 
% if »aa(2)>=7, aaa(2)=aaa(2>5;end; 
% if aaa(3)>=7, taa(3>=«aa(3)-5,end; 

if aaa(l)=0, aaa(I)=l l.end; 
if aaa(2)=0, aaa(2)=12;end; 
if aaa(3)=0, aaa(3)=13;end; 
if aaa(4)=0, aaa(4)=14;end; 

while ( (aaa(l>=8aa(2)) I (taa(l)=aaa(3)) | (aaaf2>=aaa(3))... 
| (aaa(2)—aaa(4)) | (aaa(l)=«aa(4))... 
| (>aa(3)=aaa(4)) ) 

aaa = round(10*rand(l,4)); 
•/. ifaaa(l)>-7,aaa(l)=aaa(I>-5;end; 
•/. ifaaa(2)>-7,aaa(2>=aaa(2)-5;end; 
V. ifaaa(3)>=7, aaa(3)=aaa(3)-5',end', 

if aaa(l)=0. aaa(l)-ll;end, 
if «aa(2)=0, «aa(2>=12;end; 
if aaa(3)=0, aaa(3)-13;end; 
if aaa(4)=0, aaa(4)=14;end; 

end, 

i, 
indi, 
aaa, 

dear Xsclect; 
Xsdect=Xsel(aaa,:); 

-ATTENTION: LIMITATIONS ■ %if ■• 

V.if(    ((nn>=80) A. (wwx-80))    |    ((nn>-84) | (ww>-84))    ) 
if (((nn>=81)&(ww>=81)) | ((nn>=86)&(ww>=79))) S && 4'ft X3m5m2 
V.if((nn>=70) &. (ww>=80)) S 4'ftxlm5 

mdr=indt+l; 
tl_combmCmdi) - aaa(l); 
»2_combin(indi) = aaa(2); 
a3_coinbin(indi) ■= aaa(3); 
i4_combin(indi) - aaa(4);% 4*ft 
n_combres(indi) = nn; 
w_combres(indi) ~ ww, 
fprintfC>» »»»»»»»» »»»»»»»»^i 
K2e(al_conibin) 
fprintf^»»»»»»»»»»»»»»»»»1); 

end 

j=lündi; 
[il_cofnbin(]') 
t2_combin(j) 
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i3_combin(j) 
a4_combin(j) 
n_combres(j) 
w_combres(j)]' 

% This program exhaustively tests all possible combinations of 
% she eight in x3 from the number of features. It then records the ones 
% that meet the if-then criteria below. 
% clearCinit') for normal initialization. 

k»dx3 

features-[81 111 450 452 197 459 30 ] 
n=length(features) 

forfcltn 
Xselft 1:100)=x3(features(f>, 1:100); 
end 

ifexistCinir>--=l 
% program continuation. No need to initialize other variables. 
il-init(l), 
C=init(2) 
i3=init(3) 
i4=init(4) 
i5=%iit(5) 
i6=init(6) 
i7=init(7) 
i8=init(8); 

else 
% initialize all variables. 
indi=0; 
record=[]; 

ü=2; 
i3=3; 
i4=4; 
i5=5; 
i6=6; 
|7=7; 
i8=8; 

while il<=n-7 
while i2<=n-4> 
while i3<=n-5 
while i4<=n-4 
while i5<=n-3 
while i6<=n-2 
while i7<=n-l 
while i8<=n 

aaa=(ili2i3i4i5i6i7i8] 
indi 

clear Xselect; 
Xselect=Xsel(aaa,:); 

iniuast; 

-ATTENTION: LIMITATIONS - 
ave = (nn+wwy2; 

if ( ((nn>=81)&<ww>=81)) | (ave>=83) ) 
indi=üldi+1; 
record={record ; features(aaa) nn ww]; 
rprintif»»»»»»»»»»»»»»»»»^. 
[features(aaa) nn ww] 

end 

18=48+1; 
end 
i7-i7+l; 
i8=i7+l. 
end 
icHo+l; 
i7-i6+l; 
i8=47+l; 
end 
i5=i5+l; 
i6-i5+l; 
i7=i6+l, 
i8=i7+l; 
end 
i4=i4+l; 
i5=i4+l; 
i6=i5+l; 
i7H6+l; 

% end i8 loop 

% end i7 loop 

% end i6 loop 

% end i5 loop 
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«=47+1; 
end 
i3=i3+l; 
i4=i3+l; 
i5=44+l; 
J6=i5+1; 
i7«=i6+l; 
■»-£7+1; 
end 
i2-42+I; 
ü=ü+l; 
14=43+1; 
i5=i4+l; 
i6=i5+l; 
i7-i6+l; 
i8=i7+l; 
end 
iHl+I; 
ÜH1+1; 
D-Ü+1; 
i4=i3+l; 
i5-i4+l; 
i6=i5+l; 
i7=4e>H; 
18=47+1; 
end 

% end t4 loop 

% end i3 loop 

% end i2 loop 

% end il loop 

record 

% Genetic algorithm in search of the optimal n-tuple 
% from a gene pool of features. 
% This version records the actual feature numbers in the 
% matrix 'record', not the index!! 
% x3. Set m in initfast. 
•/• set init=l for automatic initialization 

comment^xS, m=5,15-tuple.' 
n=15; 
Ioadx3 
clear Xselect; 
fearures=[9 11 30 50 39 81 235 358 359 363 449 197 29 450 453 457 458 478 ... 

Ill 452 482 361 15 36 37 32 8 67 79 460] 

% featur«=t4 5 8 9 12 18 19 22 29 30 33 36 39 40 50 56 62 76 79 81 ... 
•/„ 111 114 163 197 235 358 359 361 363 403 449 450 452 453 456 457 .. 
% 458 477 478 482 534 625 ] 

feature_num=Iength(features) 

for f=l:feature_num 
XselCC 1:100>=x3(features(D,1:100); 
end 
clear x3; 
clear average_fitness; 

ifinit=l 
% initialize population size, crossover rate, mutation rate, etc. 
populati on_size=200; 
mutation_rate=0.001; 
CTOSSO ver_rate=0.7; 
record=zeros(20,n+ 3); 
indi=0; 

end 

% initialize population 
randCuniform'); 
population=fix((feature_num • .0000001) .* rand(population_sizeji)) + 1; 

% start evolution 
for generation= 1:100000 
generation 

% test the population for fitness 
for f = 1 :population_size 
Xselect - XseKpopulation(f,:),:),•/. 
initfast; % test each individual 

fitness(0 - abs((nn+wwy2 - 20), % subtract 20 to exaggerate the 
% difference in fitness ratio 

%if( ((nn>=70)&(ww>=70)) 1 (fitness>=56) | ((nrK=20)&(ww<=20))) 
if (  (fitness(0>=65) | ((niK=20)&<ww<-20)) ) 

indi=indi+l 
recordOndi,:) « [features(population(f,:)) generation im ww];V. 
[features(population(C:)) generation nn ww] 

end 

V» display average fitness in percentage 
tverage_fimess(generation)=mean(fitness) + 20 
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% REPRODUCTION!! 
% reorder the fitness values for easier computation 
fit_measure( I )=fitness( 1); 
for f=2:population_size 
fit_measure(f>=fit_measuie(f-l)+fitness(0; 
end 

for f= I :population__sizc 
% randomly pick one individual to copy into the new population 
V% individuals with higher fitness values are more likely to survive 
temp^t_measure(population_size)." rand; 
indoc-find(abs(fit_measuTe-temp) —= minCabs(fit_measure-temp))); 

if temp <■= fit_nK-asure(index(l)) 
new_population(f,:)=populationCindex(l),:);% 

else 
new_jx>puhtionCCi>T^u^llionCinc*ex(l)+^:);^ 

end 
end 
population=iKw_population; 

•/•CROSSOVER» 

W; 
while f <= population_size 

if rand <= crossover_rate 
mate = f; 
crossover *= 0; 
while (f < populaoon_size) & (crossover=0) 

f=f+I; 
if rand <= crossover_rate 

% actual crossover 
crossover" 1; 
temp=fix((n -1.00001) .• rand) + 2;% 
gene_temp=population(mateJtemp m);% 
popiiktion(mate,temp3i>=population(Ctemp3i);% 
populationCCtemp'J\)=gene_temp; 

end 
end 

end 

end 

% MUTATION!! 
•/• Note: Modified Aug. 19 due to a bug 
num_mutan'on3population_size .* mutauon^rate ." n .• (randn + 1); 
for f= 1 :num_mutation 
rx>pulau^fi^(>^uhn'on_size^.000001).*^ 

•= fix((feature_num - 0.000001) * rand + 1); 
end 

*/• save record in case of crashing 
save crashrec comment record average_fitness 

% go to next generation 
end 

% display record of good individuals in history 
comment 
record 

•/• [sor^recordOrmdUrnY)' record<lindiTn+l^+3)] 

•/. SELECTION AND INITIALIZATION OF THE DATA CENTERS 
•/•FORTHELMS FILTER. 

% "initrain_sess" - Polygraph sessions which are used for 
% INITialization of the "data_oenters" and TRAINing. 

% The "inhtain' sessions are set in a way that the 1st part 
% (before the "border") represents the non-decptive and the 
W 2nd part (after the border) the deceptive sessions. 

clear, 
S"*Tobesetforeachpotydat_i(ftx3, ftx2, ftxl): ••"• **" 

whichfeatirres_3 = [1:30]; 
nondsessions_3 *= [ 11.50]; 

y.[l 6 8 9 12 16 18 21 24 2728 32 35 44 48]; 
dcpsessions_3 - [51:90]; 

%[5I 53 58 59 63 67 72 75 82 85 88 89 93 95 100], 
W* 

whichfeatures_2 * []; 
nondsessions_2 = []; 
dcpsessions_2 = [); 

whichfeatures_l «= []; 
nondsessions_l •= []; 
dcpsessions_l = [); 
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%* ATTENT10N:The DIMENSION of each ■whichfeatures_...' is to be equal! 

•/.  

if ler«m(i»hichfeatures_3) — leiigth(whichfeatures_2) I ... 
lengft(whichfeatures_2) — length(whichfeatures_l). 

fprintfC!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!^; 
SmntrT/Check "whichfeatures"! They «re different bigW); 
IprintfTThe dimensions are as foUowing:\n'); 
IprintffW); 
IpiintfC   Is' 2nd 3rd\rf); 
<Ksp( flength(whichfeatures_l), kngth(whichfeatures_2),... 
leng*(wnichfeatures_3)]) 
tprintf(W); 
ftrinnTYOU DO NOT NEED TO CHANGE THE EMPTY ONESINn'); 
fcrintflTF THAT S THECASE:PRESSANYK£YTO CONTINUED'); 
fijrintfC!!!!!!!!!!!!!!!! ü!!!!!!!!!!!!!!!!!!!!!!!!!!!!!^1); 
pause; 

end; 

bolder »length(riondsessions_3) + kngth(nondsessions_2).. 
+ lengrh(noraisessions_l); 

%%%potydat_3'. 

if nze(nondsessions_3,1) ~= 0, 

load c:\lisers\rarnin\fcm\multidirn\frx3; 

dim = length(whichfeatures_3); 
f=l:dim; 
Ntemp_3(f,:) ■= x3(whichfeatures_3(I), nondsessions_3); 
Dtemp_3(t) - x3(whichfeatures_3(f), dcpsessions_3); 

dearx3; 
end; 

•/.W4porydat_2 

if si2e(nondsessions_2,l) -= 0, 

load c:\useis\ramin\fcm\multidim\flx2; 

dim - length(whichfeatures_2); 
£=l:dim; 
Ntemp_2(f,:) - x2(whichfeatures_2(0, nondsessions_2); 
Dtemp_2(f,:) - x2(whichfeaturcs_2(f), dcpsessions_2); 

dearx2; 
end; 

VMM. polydat_l 

if si2e(nondsessions_ 1,1) ~= 0, 

load c:\users\ramin\fcm\multidim\ftxl; 

dim - length(whichfeatures_l); 
f>=l:dirn; 
NtempJttO - xl(whichfeatures_l(f), nondsessions_l); 
Dtemp_I(f,:) - xl(whichfeatures_l(0, dcpsessions_l), 

dearxl; 
end; 

mrtrain_sess - [Nternp_3'; Ntemp_7; NtempJ';... 
Dtemp_3,

1 Dtemp_2; Dtempl'); 

howmany - size<initrain_sess1l); 

mesh(nTrtrain_sess), 

tt TWO FEATURES AT A TIME-PLOT EXAMPLE: 
V.pk<mitrain_sess( 1:40, lXmitrain_sess(l :40 A'Y) 
%holdon 
%plotOnitrain_sess('( 1:80 ,lXmitrabrsess(41:80,4),'y) 

tt SELECTION AND INITIALIZATION FOR LMS FILTER. 

tt The "initrain" data represents Polygraph sessions which are used for 
tt INTfializarion and TRAINing of the ■datacenters" and input data. 
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% The "initrain" data are set in a way that the 1st part - before the 
•/• "(TC Jborder" - represents the non-decptive and the second part 
V. - after the "(TC Jborder" - the deceptive sessions. 

% The prefix "nond" represents the non_decptive, and "dep" the deceptive 
% elements. 

clear, 

■ TO BE SET FOR EACH polydatj (Rx3, ftx2, ftxl): • 
W 
%* First for the data_centers: 

nondsessions_3 ■= [1:20]; 
•/.[l 6 8 9 12 16 18 21 24 27 28 32 35 44 48); 

dcpsessions_3 = [51:70]; 
V.[51 53 58 59 63 67 72 75 82 85 88 89 93 95 100); 

V." 
nondsessions_2 ■= [); 
dcpsessions_2 * []; 

nondsessions_l = []; 
dcpsessions_l "= []; 

•/•" Now for the input data for which the filter is to be (Trained * 
•/."toCQlassify: 
•/." " 

TC_nondsessions_3 = [1:30]; 
TC_dcpsessions_3-[51:80]; • 

TC_nondsessions_2 - []; 
TC_dcpsessions_2 = []; 

TC_nondsessions_l = []; 
TC__dcpsessions_l ■= []; 

%• 
•/•• And finally for the selected features: 
%" 

whichfeatures_3 = [1:30]; 
whichieatures_2 = []; 
whichfeatures_l = []'. 

•/•• " 
•/•• ATTENTION: The DIMENSION of each ■whichfeatures_...- is to be equal! * 
•/•* (or zero) 
V.  

if length(whichfearures_3) -= length(whichfeaturcs_2) |... 
length(whichfeatures_2) — length(whichfeatures_l), 

fprintfCI!!!!!!!!!!!!!!!!!!!!M!!M!!!!!!!M!!!!M!!!!!\n'); 
rprintfTCheck "whichfeatures"! They are different big!W); 
fprinripTie dimensions are as following:^*); 
fprintiOn'); 
fprintfC   1st  2nd  3rdV); 
disp( [lengthCwhichfeatures_l), length(whichfeatures_2), ... 
length(whichfeatures_3)]) 
fprintfTW)', 
fprintfCYOU DO NOT NEEDTO CHANGE THE EMPTY ONESW); 
fprintfflF THAT'S THE CASE: PRESS ANY KEY TO CONTINUE An1); 
fprintfC!!!!U!!!H!!!!!!!!!!!!!!!!!!!!!!M!n!M!!!!!!\n'); 
pause; 

border - length(nondsessions_3) + length(nondsessions_2) ... 
+ leng1h(nondsessions_l); 

TC_border ■= length(TC_nondsessions_3) + length(rC_nondsessions_2) .. 
+ length<TC_nondsessions_l); 

•/•■/.% polydat_3: 

dim •= kngth(whichfeatures_3); 
if dim —0, 

load c:\users\rarnin\fcm\multidim\ftx3; 
f-l'.dim; 

if length(TC_nondsessiora_3) ~= 0, 
TC_Ntemp_3(f,:) - x3(wriichfeatur«_3(f), TC_nondsessions_3); 
end; 

if length(TC_dcpsessions_3) — 0, 
TC_Dlemp_3(C) - xXwhichfeatures_Xf>. TC_dcpsessions_3); 
end; 
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if length(nondsessions_3) ~= 0, 
Ntcmp_XC') * x3(whichfeatures_3(f), nondsessions_3); 
end; 

if Iength(dcpsessions_3) ~— 0, 
Dtemp_3(f,:) * x3(whichfeatures_3(0. dcpsessions_3); 
end; 

clear x3; 
end; 

%%%po!ydat_2 

dim « kngth(whichfeatures_2); 
ifdim~«0. 

load c:\usei5\ramin\fcm\multidim\ftx2; 
f=l:dim; 

if length(TC_nondsessions_2) —»0, 
TC_Ntemp_2(f,:) - x2(whichfeatures_2(0, TC_nondsessions_2); 
end; 

if length(TC_dcpsessions_2) -» 0, 
TC_Dtemp3(C:) " x2(whichfeatures_2(f), TC_dcpsessions_2); 
end; 

if length(nondsessions_2) ~= 0, 
Ntemp_2(C0 = x2(whichfeatures_2(f), nondsessions_2); 
end; 

if length(dcpsessions_2) ~= 0, 
Dtemp_2(C:) " x2(whichfeatures_2(f), dcpsessions_2); 
end; 

clear x2; 
end; 

'/••/••/• porydat J 

dim *= kngth(whichfeatures_l); 
if dim—=0, 

load c:\xisers\ramin\fcm\multidim\ftxl; 
f=l:dim; 

if length(TC_nondsessions_l) ~= 0, 
TC_Ntemp_l (£:) = x 1 (whichfeatures_l (f), TC_nondsessions_l); 
end; 

if lerigthlTC_dcpsessions_l) —= 0, 
TC_Dtemp_l(CO = xl(whichfcatures_l(O.TC_dci>sessions_l); 
end; 

if kngth(nondsessions_ 1) -** 0, 
Ntemp_l(f,:) = xl(whichfeatures_l(f), nondsessions_l); 
end; 

if length(dcpsessions_l) -<= 0, 
Dtemp_l(f,:) " xl(whichfeatures_l(f), dcpsessions_l); 
end, 

clear xl; 

TC_initrain » tTC_Nlcmp_3'; TC_Ntemp_2'; TC_Ntemp_l';... 
TC_Dtemp_3\ TC_Dtemp_2*; TC_Dtemp_l'J; 

centjnirrain * [Ntemp_3'; Ntemp_2', Ntemp_l';... 
Dtemp_3'; Dtemp_2'; Dtemp_l']; 

% LMS FUZZY ADAPTIVE FILTER. 

function [new__theta, new__data_eenters, new_sigma, output_label] -=... 
»daptzzyOheta, data_centcrs, sigma, input_vect, desire, step) 
% fprintfCsiz^theta)?) ^izeCtheta), 
%fprintrfsi2e(sigma): *) ;size(sigma), 

% Get the dimensions of matrices and verify their consistency. 
flabel_no, ft_noJ = size(data_centers); 
if(TUbel_no, ft_no]-=si2e(sigma)) | Q1, ft_no] ~easize(input_vect)) | 

([Ubd.no, 1 ] ~= size<theta)) 

errorCmatrix dimensions are wrong! *) 
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•/• Evaluate Gaussian membershiprunctions: 

distances - (ones(label_no,I) * input_vect) - datajxnters; 
V.fprintft'si2e(dUtances):')^i2e(distances), 
•/t To creat compatible dimensions: Fill input_vect down into an 
'/. (labelno x ft_no) matrix, so that it is the same input for all 
% (label_no) rules, and then subtract data_centers from it 

a-exp(   -0.5.*»um( ((distances ysigma)."2)'Y   ); 
V» Without "sum": a - Uik i.e. membership values 
V. etc.etc...(conventional way) 
•/.+++ 
Srprint£Csize(a):')^i2e(a), 

% Centroidal defuzzification: 
b - sum(a);V1fprintfCsize(b):')^i2e(b), 
outputjabel« «um(theta .• a) / b; 
•/4+++ 

S Adaption: 

tempi = step .* (desire - outputjabel) .■ a yb; 
newjheta - theta + tempi; 

temp2 - ( (tempi ." (theta - outputjabel) ) " ones(l, ft_no)) .* . 
distances J (sigma .A2); 

newwdata_centers = data_ccnters + temp2; 

new_sigma °= sigma + temp2 .* distances 1 sigma; 
•/•+++ 

•/. LMS nLTER INTIALIZATION (TRAINING AND TESTING) 
•/.FIRST VERSION 

Vo clear everything! 
clear, 

■/.loading...: 
load c:\users\rarrun\fcmNmultiQUTi\ftx3; 

which features -1:100,% to change!!! 

•/• the data from the 'person' who is to be tested: 
person = 2; 
testperson ■= x3(which Jeatures.person)'; 

polvsession(l,:) = xXwluchJearures,l)'',V.nondecp 
%%%[x3(81.1), x3(l 11,1),X3(235,1), x3(450,l), x3(452,l)]; 

porysession(16,:) = x3(whichjearures,100)',%decp 
V.V.%[x3(81,100), xXl 11,100), x3(235,100),x3(450,100),... 
•/.%%x3(452,100)], */• polygraph data for two sessions, 

•/• i.e one truthful & one decpetive 

polysession(2,:) ■= x3(which Jeaturcs,48)';%nondecp 
polysession(3,:) - x3(which Jeatures,5)';V.nondecp 
potysession(4,:) - x3(which Jeatures,8)'-,Snondecp 
polysession(5,:) - x3(which_features,<>)',%nondecp 
porysession(6,:) - x3( which Jeatures, 12)';%nondecp 
porysession(7,:) - x3(whichJeatures, 167,%nondecp 
poh/session(8,:) - x3(whichJcatures,18)';,/inondecp 
porysession(9,:) = xXwhichJeatures^iy-.Hnondecp 
porysession(10,:) - x3(whichJcatures,24)',%nondecp 
polysessionO 1,:) - xXwhichJeatures,27)';%nondecp 
porysession(12,:) - x3(whichJeatures,28)'',y.nondecp 
poh/session(13,:) - x3(whichJeatures32)';%nondecp 
polysession(14,:) - x3(whichJeatures^5)';%nondecp 
pdysession(15,:)»x3(whichJeatures,44)';%nondecp 

polysession(I7,:) - x3(which features^jy/Adecp 
potysession(18,:) ■> x3(whichjeatures,93)';%decp 
porysession(l 9,:) = x3(whichjeahires,89)',%decp 
poh/session(20,:) ■= x3(wriichjearures,88)';%decp 
polysession(21,:) - x3(whichJeatures,85)';%decp 
porysession(22,:) = x3(which J"eatures,82)';%decp 
porysession(23,:) ■= x3(which Jeatures,75)';%decp 
porysession(24,:) - xXwhichJeatures,72)';%decp 
polysession(25,:) - x3(which_features,67)';%decp 
porysession(26,:) - x3(which_features,63y;%decp 
porysession(27,:) - x3(which Jeatures,59)'.%decp 
potysession(28,:) - x3(wiiichjcarures,58)';%decp 
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poh/session(29,:) - xXwhkh_features,53)';%decp 
polysession(30,:) - x3(which_features,51)';V.decp 
[howmany, dim] - size(polysession),•/. "howmany" must be even! 
half-howmany/2; 

clear x3; %save memory & clear 

•/.+++ 

%initialiation & clear 

step-0.005, 
output «zerosO, 2) 

output_mean = [1,2]* 

irtput_mean « possession; 
inptrMridth = 1 * ones<howmany, dim); 

V. Testtng<see 100 for des) 

[dummy, dummy, dummy, output] = ... 
adaptzzy(output_mean, rnput_mean, input_width, testperson,... 
100, step); 

y. Test how good the output is at 
•/• the beginning. 

end, 
output 
pause; 

figure(l);c]g 
plot(output,'.'); 
V.p(o<(output_rnean,'.b'), 
hold on; 
•/4mesh(rnput_width); 

•/• SEE ABOVE - SECOND VERSION. 
•/•User interface to improve! 

% INITIALIZATION: 
% l 11 i i i l i i i i i l i l 

step «0.5; *4 Learning factor 

•/. The prefix TC" represents the input data for which the filter 
•A is to be CDrained to (Qkssify: 

TC_howmany = sizc(TCJnitrain, I), 
{howmany, dim] = size(cent_mitrain); V# representing data_centers 

clear output; 
output »zerosflTCJiowmany, Iß; 

% "+1" represents the nondeceptive and "-1" the deceptive data: 
init_theta_non ■= +1 * ones(border, 1), 
initjhetajicp = -1 • ones((howmany-border), 1); 

output__niean-[init_theta_non;init_theta_dcp]; V. -data_cei 

input__mean = cent_initrain; 
input_width - 100 * ones(howmany, dim); 

% n M i M i ii i t i i i 

% Before any training... 
M Test how good the output is at the beginning: 

fork=l:TC_howmany 

ifk<-TC_border 
des=+l; 
else 
des—I; 
end 

(dummy, dummy, dummy, outputQO] = 
adaptzzy(output_mean, inputjnean,... 
input_width, TC_initrain(k,:),... 
des, step); 

end, 
clear dummy; 
output, 

figure(I);clg 
plot{output,'+'); 
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^plo^outpu^mean/'b'); 
hold on; 
paus«; 
%mesh(input_width); 

% Starting training:  DO A BETTER USERINTERFACE! 
for H 30 
for r 1:5 

for k= 1 :TC_ho wmany 

ifk<-=TC_border 
des-+l; 
else 
des=-l; 
end 

end, 

[output_mean, input_mean, tnput_width, output(k)] ■ 
adaptzzy(output__mean, input_mean, input_width,... 
TC_initram(k,:), des, step); 

end, 
output, 

figureO); 
plotCoutput,'.'); %axisdl 100-0.2 2. ID; 
•/•plot(output_mean,'"b'); 
%mesh(input_width); 
%pause; 

end; 

' SAVING THE FILTER CHARACTERISTICS:' 

fyrintfrM!!!*!!!MU!!!!!!M!!!!n!!!!!!!!!!!!!n!nH!!!!!!!!\n'); 
fprintftlF YOU WANT TO SAVE THE CHARACRERISTICS OF THIS FILTERX); 
fprintfCPLEASE TYPE ANY NUMBEROQ FROM l-99!\n*); 
forintfCTHIS FILTER WILL BE THEN SAVED AS -filtert" !W); 

clear numb; 
numb - input(The filter number(#) is:*); 
% By default: numb=(], i.e. nothing win be saved. 

if numb ~=[], 
numb = int2str(nurnb); 
com ={*save\ 'filter', numb,... 

1 whichfcatures_3',... 
' wruchfeatures_2',... 
* whichfeatures_r, ... 
' output_n>ean',' output_mean', ... 
' input_mean',' input_width']; 

eval(com); 

V# CREATING THE ELLIPTICAL CLUSTERS FOR THE VISUAL 
% INSPECTIONS - AND ALSO FOR STTTNG THE RULES. 

function [x,y^llipse(xcenter)ycenter^cv.'idth1y%-idth) 
angle={0:0.02"pi:2"pi]; 
x=xwidth .* cos(ang!e) + xcenter, 
y=ywidth .* sin(angle) + ycenter, 
plotCx,y,'-*) 

% TEMPORARY LMS SETTING - TEST 

function output_labeWu2ztempCinput_vect) 
theta=(I 1-1 -1]'; 
data_centers=I -1 -0.5 ; 0 -0.25 ; 0 0 ; 1 0.3 ]; 
sigmH 0.5 0.8 ; 0.5 0.25 ; 0.1 0.2 ; 0.6 0.5 j; 

•/• Get the dimensions of matrices and verify their consistency: 
flabel_no, ft_no] - size{data_centers); 
if(Thbd_no,ft_no]-^size{sigma)) | Ql, ft_no]—size(input_vect)) | 

(pabel_no, 1) — size(theta)) 

errorCmatrix dimensions »re wrong! *) 
end; 
V.+-H- 

■/• Evaluate Gaussian membership functions: 

distances « (ones(label_no,l) * input_vect) - data_eenters; 

a«exp<   -0.5 .• sum( ((distances y$igma).A2)' )'   ); 
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% Ccntroidal defuzzification: 
b - sum(a); 
outputjabel« sum(theta .• a) / b; 
outputjabel - outputjabel .A 2; 

return; 

H LMS FILTER TESTING. 
Vt Experimenting with the use of adaptive fuzzy logic 
Y% in polygraph classification. 

inrHnputCDo you want to initialize all parameters? ',V)'» 

ifintt—y 
% Initialize the parameters for fuzzy LMS algorithm. 
% Output of 1 means nondeoeptive 
% Output of-1 means deceptive 
% length(output_mean) « * of rules 
fprintfCmitializingW); 
output_mean=t 1 1 -1 -If; 
% input_mearF{ centers of first rule; centers of second rule; etc.); 
mput_rnean-{, -1 -0.5; 0 -0.1; 0 0; 1 0.3 ]; 
•/. input_width-( widths of first rule ; widths of second rule ; etc. ]; 
input_width-{ 0.5 1.3; 0.5 0.25; 0.10.2; 0.6 0.5 ]; 

featureH451 4521'. %/'Sclect *e fratures 

step=0.005; •/• Select learning rate 

% Select training data 
ndcp_3=l:15; •/• Nondeceptive sessions in x3 for training 
dcp_3-51:65; */• Deceptive sessions in x3 for training 
ndcp 2=1]; 
dcp_H); 
ndcpj=[]; 
dcp i=[]; % Note that nondeceptive data in x!,x2, and x3 

•/. are the same, so ndcp_2 and ndcp 1 are really 
% redundant. 

loadx3; 
load x2; 
loadxl; 
Ntrain==(xl(fearures,ndcpJ) x2(features,ndcp_2) x3(featu^es,ndcp_3)]■■, 
Dtrain=(xl(features,dcp_l) x2(features,dcp_2) x3(features,dcp_3))'; 

•/. Select testing data 
ndcp_3=[], */• Nondeceptive sessions in x3 for testing 
dcp_3=66'.100, 
ndcp_2=t]; 
dcp_H51:100]; 
ndcp_l-16:50; 
dcp_H51:100]; •/• Note that nondeceptive data in xl, x2, and x3 

% are the same, so ndcp _2 and ndcp_! are really 
% redundant. 

Ntest=(xI(features,ndcpJ) x2(features,ndcp_2) x3(features^dcp_3)]'', 
Dtest-xl(features,dcp_l)'; 
Dtest2=x2(features,dcp_2y; 
Dtest3=x3(features,dcp_3)'; 
clear xl; 
clear x2; 
clear x3; 
clear record; 
epoch^O, 
end 

•/. Test fuzzy system before any training 
V. Test training data first 
clear Nomput; 
clear Doutput; 
[Ntr,dummy)=size(Ntrain)',    •/• Ntr - total # of nondeceptive sessions 
(I>r,durnmy]=size(Dtram);    % Dtr - total * of deceptive sessions 
if Ntr — Dtr 

erroiCNumbcr of nondeceptive and deceptive training data mismatch')", 
end 
fori=l:Ntr 

[dununy,dummy,durnmy^output©)-«daprzzy(output_meanjnput_mean,... 
rnpm_width,Ntramö,:),Utep); 

[dmnmy,dununy,dimuny,Doutput(i))«»daptzzy(output_mean^nput_mean,.. 

mput_widü\DträinCi,:),-1 .step); 
end 
% Record results 
re<»rd(epoch+l,l:2HOength(find(Noutput>0)yNtr) (lcngth(find(Doutput<0)ytXr) ]; 
squared_enoKepoch+l,l:2Hmean((1-Nou,PVI,)',2)mean((Dourput+l)A2)], 
tprintfCpercent correct nondeceptive and deceptive detections for training dataW), 
disp(record(epoch+1,1:2)) 

S Now test testing data 
clear Noutput; 
clear Doutput; 
[Nte,dummy}-5ize(Ntest);     V> Nte - total # of nondeceptive sessions 
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fori=l:Nte 
ldummy,dummy,duinmy,Noutput(i)H<laPtzzy(0,11'u,-mMIunPu,-mMn'" 

input_width,Ntestö,:),Utep); 

end 
(Dtt.dumrayHMWKt);     % Dte - total # of deceptive sessions in xl 
fori=l:Dte 

[duniniy,dmtmiy,duiimiy,I>3utput(r)l-»dapözy(output_niefflvmput_mean,.. 

input_width,Dtest(i,:),-Utep); 

end 
squared enort;epoch+U:4Hni«n((l-Noutput).A2) mean((Doutput+l).A2)]; 
iecOTd(e^h+U:4H0aig*(find(Noutput>0)yNte)(length(nnd(DoutpuK0)yDte)); 

(Dte,duminyl=size(Dtest2)-,   % Dte - total U of deceptive sessions in x2 
dear Doutput; 
fori-l:Dte 

[duinniy,dununy,duniniyJ)output(i)Hdaptzzv(ouq)ut_meanjnput_mean,... 

inputjMdth,Dtest2(i,:),-l,step); 

end 
squared_enot(epoch+l,5:6>[mein((l-Noutput).A2)mean((Doutput+l).A2)]; 
record(epcch+l,5:6><0=n^(find(Noutput>0))^te)0aigth(nnd(Doutput<0)yDte)); 

[Dte.dummyl-sE^Dt«13);   V. Dte - total # of deceptive sessions in x3 
clear Doutput; 
fori=l:Dte 

[dunrny,dummy,dummy,Doutput(i))-adaptzzy(output_nieaivnput_mean,... 
input_width,Dtest3(i,0,-l^tep); 

end 
squared error<epoch+i;7'.8Hrnean((l-Noutput).A2) mean((Doutput+l)."2)]; 

iecot(l(e^h+lJ:8H0«ng*(to<^o^ut^))^,e><lcn^(tad^utpu,<0)yDte)'; 

$mntfrinüiung,xl,x2,x3:\!i'); 
disp(record(epoch+1,:)) 

V. Start training and testing 
fprintfCresults after trainingW) 
while epoch< 100000 
epoch=epoch+l 
clear Noutput; 
clear Doutput; 

Vo Training 
fori=l:Ntr 

[output_mearynput_meargnput_width,Noutput(i))-... 
adaptezy(outpuMnean^ut_rneaiUnput_widTh,... 

NtrainCv),l.step); 
[output_meargnput_meanjnput_width,Doutput(i)]=... 

adaptzzv(output_meanjnput_meanjnput_width,... 
Dtrain(i,:),-l.step); 

end 
% end one epoch 

V. Test training data 
fori=l;Ntr 

(dummy,dummy,dumrny.Noutput(i)]=.- 
adaptzzy(output_meanjnput_meaninput_width,... 

Ntrain(v),Utep); 
Idummy.dummy.dummy.DoutputOJh- 

adaptzzyfaurput^mearynpuMnearMnput^width,.-. 
Dtrain(i,:),-Utep); 

end 
•/• Record results of training data at the end of an epoch 
squared.enorCepoch+l.l^MmranCC-NoutpuO.^rneanCCDoiitput+l).^)]; 
record(epoch+l,l:2H0«ngth(findfNoutput>0)yNti) Oength(find(Doutput<0))'Dtr)) 

•/• Now test testing data 
clear Noutput; 
clear Doutput; 
rNte,dummy)-size(Ntest); 
fori=l:Nte 

[durrrniy,dumrny,dun™y,Noutput®H^Ptoy(ou,Pu,-,,>ran^nPu,-mean'- 
mput_width,Ntest(i,:), 1 .step); 

end 
(Dte,dummy]-size(Dtest); 
fbrWiDte 

ldurruny,durarny,<hmimy,DourputC01=adapt2zy(ourPu,_mra,Vnput_rnean,... 

mput_width,Dtest(i,:),-1 .step); 
end 
squared_error(epoch+U:4Hmean((l-Noutput)''2)mean((Doutput+l)"2)]; 

record(epoch+U:4H(l">8th(find(Nou,Pu,><,)>^,':> Ocngth(rJndfDoutput<0)yDte) ]; 
[Dtt,dummyl-siz=(Dtcsa),   % Dte - total * of deceptive sessions in x2 
clear Doutput; 
fori=l:Dte 

[dmnrny4urruTiy,durranyJJoutput(r))==adaptzzy(output_rnearunput_rnean,... 

input_width,Dtest2ö,:),-l .step); 
end 
squarcd_enoKepc<:h+l,5:6H'tiMn<(1-NoutPu,)'A2)n,ean((Pou,Pu,+1'A2)l'' 
nKordXepcct^l^:6H0eng*(find0^output>0)>^le)aength(fmd(Doutput<0)yDte)]; 

[Dte,dummy]=size(DtesÜ);   V. Dte - total # of deceptive sessions in x3 
clear Doutput; 
fori=l'.Dte 

[durrrniy,durnmy4umrny,!>)utputö)H4aP,zzy<0UtPu,-nlcM1^nPut-n>ran'-' 
input_width,Dtesß(i.O.-l .step); 
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end 
squared OTOr(epoch+l,7:8Hm^0-Nou*u0"2)mean((Doutput+l)."2)]; 
record(e^h+lJ:8H0«n8*(fcd0^o"n>"'>0))^te)0cngth(find(DoutpuI<0)yDtc)); 

fprintfT1raining,x 1 ,x2,x3:\rO; 
disp(record(epoch+1,:)) 

end % Go to next epoch 

V» Experimenting with the use of adaptive fuzzy logic 
% in polygraph classification. 

fortriaW:l 
% Initialize the parameters for fuzzy LMS algorithm. 
y. Output of 1 means nondeceptive 
% Output of-1 means deceptive 
% Wngth(output_mean) ■= * of rules 
rprintfl>ütializing\n'); 
outputmearH 11 -1 -If; 
% input_mean-t centers of first rule; centers of second rule; etc. J; 
input_mean=( -1 -0.5; 0 -0.25 ; 0 0; 1 0.3 J; 
V. input width-t widths of first rule ; widths of second rule ; etc. ]; 
inpot_width=[ 0.5 0.8; 0.5 0.25; 0.1 0.2; 0.6 0.5 ]; 

features=[451 452];    v       % Select the features 
step=0.005; % Select learning rate 
trainers=10; % Select * of training samples from each category 

•/• Select training data 
temp_n=randperm(50); 
temp_d=50+randperm(50); 
ndcp_3=[l:5 7:10 12 13 15 16 18:20 22 23 25 26 28 29 31 32 34 35 3738 40 41 43 44 46:49]; 

dcp 3=[51 54 57 60 64 67 70 73 76 79 82 85];% Deceptive sessions in x3 for training 

ndcp HI; 
dcp_H51 53 56 59 62 65 68 71 74 78 81 84]; 

mdcpj-fl; 
dcp_H51 54 57 59 62 65 68 71 74 77 80 83]; 

•/. Note that nondeceptive data in xl, x2, and x3 
y. are the same, so ndcp_2 and ndcp_l are really 
"/• redundant. 

Ioadx3; 
loadx2; 
loadxl; 
NtnmHx 1 (features,ndcp_l) x2(features,ndcp_2) x3Cfeaturesjidcp_3)]'; 
Dtrasn-[xl(fearures,dcp_l) x2(features,dcp_2) x3(features,dcp_3))'; 

% Select testing data 
ndcp_3=[6 11 14 17 2124 27 30 33 36 39 42 45 50), 
dcp_3=(52 53 55 56 58 59 61:63 65 66 68 69 71 72 74 75 77 78 80 81 83 84 86:100); 

ndcp_Hl; 
dcp_H52 54 55 57 58 60 61 63 64 66 67 69 70 72 73 75:77 79 80 82 83 85:100); 

ndcp_l={]; 
dcpj=[52 53 55 56 58 60 61 63 64 66 67 69 70 72 73 75 76 78 79 81 82 84:100], 

•/. Note that nondeceptive data in xl, x2, and x3 
% are the same, so ndcp_2 and ndcp_l are really 
•/o redundant. 

NtesHxl(features^dcp_l) x2(features,ndcp_2) x^features^dcpS)]', 
DtesHxl(features,dcp_l)x2(featu^es,dcp_2)x3(featu^es,dcp_3)],, 

clear xl; 
clear x2; 
clear x3; 
clear record; 
clear temp_n; 
clear temp_d; 
epoch-0; 

% Test fuzzy system before any training 
% Test training data first 
clear Noutput; 
clear Doutput; 
rNMummy)-size(Ntrain);    % Ntr= total * of nondeceptive sessions 
[Cta^rmnmy)=size(Dtrarn),    y. Do - total * of deceptive sessions 
irNtr—Dtr 

errorCNumber of nondeceptive and deceptive training data mismatch'), 

end 
fori-l:Ntr 

[durrmy,dunimy,dununy,Noutput(i))^darJbzy(output_meaninput_mean,... 
input_width,Nrrain(i,:),l,step); 

[durrmiy,durrmiy,durnmy,r>)UtputCOh«<!aPtzzy(ou,Put-meaI>^nPul-mraI1'- 
rr^ut_width,Dtrain(i,:),- I .step); 

end 
*/•% fprintfCResults of training data before trainingVO, 
•/.% Noutput 
%'A Doutput 
V% Record results 
recordXerjMh+I,l:2HOen«th(find(Noutput>0)yNtr) (length(find(Doutput<0)yDtr) ], 
fprinntpercent correct nondeceptive and deceptive detections for training data:W), 
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disp(record(cpoch+1,1:2)) 

% Now test testing data 
clear Noutput; 
clear Doutput; 
f>He,dummy]=size(Ntest);    % Nte - total H of nondeceptive sessions 
forr=l:Nte 

[dunmiy,duiTUTiy,chmuTiy^output(OHo^tz^ 
input_width,Ntest(i,:),l .step); 

end 
(Dte,dummyHizc(Dtest);     % Dte - total H of deceptive sessions 
fori-l:Dte 

[dunuTiy,dummy,a\mwiy,Doutput©]=«daptzzy(^^ 
inputjvidth,Dtest(i,:),-1 .step); 

end 
if (Nte — 0)A(Dte~-=0) 
%% fprintotResults of testing data before trainingW); 
%% Noutput 
%% Doutput 
•/•Record results 
record(epoch+1 ^HOer^CnndXNomputX^yNU:) Oength(find(Doutput<0)yDte) ]; 
rprintfl^percent correct nondeceptive and deceptive detections for testing data:\n'); 
disp(record(epoch+13:4)) 
end 

•/• Start training and testing 
rprintfCrcsuhs after trainingNn') 
while epoch<50 
epoch=epoch+I 
clear Noutput; 
clear Doutput; 

% Training 
fori=l:Ntr 

[output_mearynput_mearwru^_width,Noutput(5)]=... 
adaptzzy(ourput_mearvnput_meanTmput_width,... 
Ntrain(i,:),I,step); 

[output_meari4nput_mean4nput_widu\Doutput(5)}=... 
adaptzzy(ouQ>ut_mean^nput_mean4nput_width,... 
Dtrain(i,:),-l,step); 

end 
% end one epoch 

*/• Test training data 
for i=l:Ntr 

[dim\my,dununy,dummy,Noutput(i)}=-- 
adaptzzy(outputjneanjnputjmean^ru?ut_widuv ■. 
Ntrain(i,:),l,step); 

[dummy ,dummy,durnmy,Doutput(i)}=... 
ao^ptzzy(ou^ut_mearUnput_rnean7input_width,... 

Dtrain(i,0.-l»steP)"> 
end 

%•/• tprintfCresults of training data\n*) 
•/•*/• Noutput 
•/••/• Doutput 
% Record results of training data at the end of an epoch 
record(epoch+1,1:2)=[Gength(find(Noutput>0)yNtr) Oerigth(find(Doutput<0)yDtr) ]; 
rprintfCpercent correct nondeceptive and deceptive detections for training dataAn1) 
disp(recordCepoch+1,1:2)) 

if (Nte — 0)&(Dte — 0) 
•/• Now test testing data 
clear Noutput, 
clear Doutput; 
fori=l:Nte 

[dummy,dummy,durrmiy,Noutput(Ob*d^^ - 
mput_width,NtestCi,:),l^tep); 

end 
fbri=l:Dte 

[cHmmiy.durnrny.durnrny J)outTwt®}^daptzzy(outpm_meari^ut_rnean,... 
input_width,Dtest(i,:),- \ .step); 

end 
%•/• rprintfCresuhs of testing data\n*) 
%% Noutput 
%% Doutput 
record(epoch+U:4H(length(find(Noutput>0)yNte) (lengtn(rmcl(DoutpuKO)yDte) ]; 
fprinuTpercent correct nondeceptive and deceptive detections for testing data:^*) 
dasp(record(epoch+1£:4)) 
end 
end % Go to next epoch 
maxiniurr<triaI)==niax(record(:3)^ecord(:,4)); 
teinHfind\(record(:3>+record(:,4)>=TOaximijm(triaI))' 0 0 0 0 0); 
maximaCtrial, 1:5)=tempO :5); 
maxima(trial, 1:5) 
maximum/2 
end % Go to next trial 
maximum^m aximum/2 
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EPILOGUE - Motivation, challenges and risks 

/ was easily fascinated by the idea of a lie-detector at the very first moment I heard about it. I 
thought, 'we are not supposed to lie anyway and a lie-detector can help us find and prevent a 
major part of the crimes committed in our society. I became even more motivated to do this 
research by an innovative way of pattern recognition, namely the fuzzy approach. 

But very soon, I also began to realize its danger - while juggling with numerical data and being 
far from the reality of testing actual human beings and judging them by an.algorithm. 

An example: Too 'good' detection rates! 
In my project, I obtained in certain cases up to 97% correct detection rate. That is, indeed, an 
impressive number. However, the emphasis lies on "certain cases" - not only in this thesis. 
A non-technically oriented user of such a product is tempted to put too much trust into these 
kinds of high rates. Even if we have a stable lie-detector with 99%(!) correct detection, this still 
means that one out of 100 persons will be judged incorrectly. 

In our daily life, we do not have the natural skill to "see" who is deceptive, but some biological 
and psychological features that enable us to estimate whether and to what degree someone is 
lying. This is exactly what I have exploited in this project. In fact, even the fuzzy approach is 
similar to the human way of categorizing someone's deceptiveness in soft terms like "She lies 
seldom" or "He is often deceptive", instead of hard labeling like "She is truthful" or "He is 
deceptive ". 

After all, I am convinced that no lie-detector - even if it could work easily with different 
polygraph formats, and is perfect in technical terms - can ever be constructed with such a high 
detection rate63 that one coidd judge a person without any witnesses or other additional 
inquiries. We may only use a lie-detector as a helpful "objective" tool, but never as an ultimate 
decision maker. 

My initial goal was to be aware of this responsibilty and not to lose the global perspective while 
dealing with technical details.    I hope I have accomplished this. 

I also hope for an environment where we do not judge people who hurt us, but do forgive them. 
In that case, we ourselves are forgiven too, since all of us deserve to be judged, don't we! 

Ramin Djamschidi 
San Jose, September 1994. 

^3See e.g. chapter 4.3. for "Outlier effect" and "Performance limitations". 
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NON-DECEPTIVE DATA 

KEY 
•standard: CODE.011,012,013,021 022,023,031,032,033 

"Index: error message in MATLAB reads, 

»process 
"Index exceeds matrix dimensions. 

»Error in=>c:\users\ulka\non\extractf.m 
on line 48—> start - begin© + 30 ."tines(first_channd,l); 

»Error in=>c:\users\uDa\nonVprocess.m 
on line 6»«>teature ■» extracrfTz, featurejist);" 

»readi: CODE.Olc, .02c, .03c, .023, .033, .011, .021, .031, .013 
contusing as to how to READ3 these files 

***N/A: discs were unable to be processed 

RAKrtra: CODE.041, .042. .043 processed as M  
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NEWS.XLS 

NON-DECEPTIVE DATA 

ERS SUB# CODE # OF FILES EXTRA FILES ERRORS 
1 2 $$EACOWO standard* none none • 
2 4 $$EAD5LX standard none none 
3 6 $$EANWKF 13 0.005 none 
4 8 $$EAOZD6 standard none none 
5 9 $$EAQWB9 standard none none 
6 11 $$EARKZ6 standard none none 
7 12 $$EARJS0 standard none none 
8 13 $$EA%KR9 standard none index** t3 
9 15 $$EA%H#L standard none none 
10 18 $$EB2IYL standard none none 
11 22 $$EC4QN3 standard none none 
12 26 $$EC7N7X standard none none 
13 33 $$ECLMTU standard none none 
14 34 $$ECMA%C standard none none 
15 35 $$ECM7GX standard none none 
16 36 $$ECMWB3 standard none none 
17 40 $$EC#G20 standard none none 
18 43 $$EC$O0F standard none none 
19 44 $$ED805U standard none none 
20 45 $$ED8LUI standard none none 
21 46 $$ED9439 9 read3A N/A*** 
22 47 $$ED9TCX standard none none 
23 50 $$EDBQR2 standard none none 
24 53 $$EDCZYZ 12 extraAA none 
25 59 $$EDPY4# standard none none 
26 60 $$EDQCY9 standard none none 
27 61 $$EDQ28X standard none none 
28 62 $$EDQOCF standard none index  t1 
29 65 $$EDRKGO standard none none 
30 66 $$EDRMU# standard none none 
31 2 11a $$FZIMEU 13 .005, extra index   t1a 

2 11b $$FZISQ# standard none none 
32 2 12 $$FZIT4L standard none none 
33 2 14 $$FZJ52# standard none index  t1 
34 2 30 $$FZZN1Y 10 0.005 index  t3 
35 2 32 $$FZ#D6J 10 0.005 none 
36 2 33 $$FZ#0HX 13 .005, extra div by zero t3 
37 2 35 $$FZ$3A& standard none none 
38 2 36 $$F#8CY9 11 .005..STR none 
39 2 38 $$F#9FJL 10 0.005 index   t2, t3 
40 2 41 $$F#B6SC standard none none 
41 2 42 $$F#B6C# standard none none 
42 2 45 $$F#NMDX standard none index   t1 
43 2 47 $$F#NHQT standard none none 
44 2 48 $$F#&7GC standard none index   t3 
45 2 51 $$F#QJTF standard none none 
46 2 52 $$F#S0KR standard none none 
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NEWS.XLS 

ERS SUB# CODE # OF FILES EXTRA FILES ERRORS 
47 2 53 $$F#RRD5 standard none none 
48 2 54 $$F#RYFR 12 extra index  t3 
49 2 55 $$F#SALQ 10 0.005 index  t3 
50 2 56 $$F$C#2# standard none none 
51 3 2 $$F$D%YR standard none none 
52 3 12 $$F$I41X 11 .005..STR none 
53 3 25a $$F$IUY0 10 0.005 none 

3 25b $$F$UI3X 11 .005, .STR none 
54 3 31 $$F$WNSF standard none none 
55 3 43 $$F%51&G 10 .STR index  t1 
56 3 46 $$F%5$UF standard none none 
57 3 49 $$F%7K#0 standard none none 
58 3 59 $$F%JAK6 standard none none 
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DECEPTIVE DATA 

KEY 
•standard: CODE.011,012,013,021 022,023,031,032,033 

"Index: error message in MATLAB reads, 

»process 
"Index exceeds matrix dimensions. 

»Error in—oc:\users\ulka\nonVextract£m 
on line 48—> start - beginö) + 30 .*ftnes(first_channel,l); 

»Error in—>c:\users\ulka\non\process jn 
on line 6—>feature - extractffc feature JsO;" 

©format files were unable to be read. Error message in DOS reads: 
>format not linked 
abnormal program termination 

A*extra: CODE.041, .042, .043 processed as t4 

AreadJ: CODE.Olc, .02c, .03c, .04c 
confusing as to how to READ3 these files 
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DECEPTIVE DATA 

ERS SUB# CODE # OF FILES EXTRA FILES ERRORS 

1 1a      i S$G3#SGD standard* none index**  t3a 

1b      J &$EACLB6 standard none none 

1c      5 &$G3$6HN standard none none 

2 S       ! S$EAN#XO standard none none 

3 7 S$EAOQXV standard none none 

4 10 S$EAQ%%U standard none none 

5 14 $$EB0289 standard none none 

6 16 $$EA%%MX standard none none 

7 19 $$EB2WE$ standard none index t3 

8 23 $$EC4%GO 11 .005, .STR format® 

9 24 $$EC77GI standard none none 

10 25 $$EC760R standard none none 

11 27 $$ECIX9# standard none none 

12 28 $$ECIVB0 standard none none 

13 29 $$ECJHKO standard none none 

14 30 $$ECJVSI standard none index t1,t2 

15 31 $$ECJ#Z$ standard none index  t3 

16 32 $$ECLODC standard none none 

17 37 $$ECXAPG standard none none 

18 38 $$ECYCG0 standard none none 

19 41 $$EC#$FA standard none index  t3 

20 42 $$EC$ANC standard none none 

21 48 $$ED9$N# standard none none 

22 51 $$EDB$S3 standard none none 

23 52 $$EDCSRC standard none none 

24 54 $$EDDBUX standard none none 

25 55 $$EDCBSU standard none none 

26 56 $$EDDHTI standard none none 

27 58 $$EDP26U 12 extraAA index  t1 

28 63 $$EDQYMF standard none none 

29 64 $$EDR3XI standard none none 

30 67 $$EDS3ZL standard none none 

31 2 1 $$FZ3Z5S standard none none 

32 2 2 $$FZ3XG6 standard none none 

33 2 5 $$FZ52G6 standard none none 

34 2 6 $$FZ6&46 standard none none 

35 2 8 $$FZ7B#C standard none none 

36 2 9 $$FZ7GP# standard none none 

37 2 10 $$FZIMEU 17 extra, .005, read3 *       index  t1 

38 2 13 $$FZJ358 10 0.005 none 

39 2 17 $$FZL9ZR 10 0.005 index  t2 

40 2 18 $$FZLBY& standard none none 

41 2 21 $$FZMQ#C 10 0.005 none 

42 2 22 $$FZMW$H 10 0.005 index   t2 

43 2 25 $$FZWQQC standard none index   t1 

44 2 26 $$FZW5T# standard none none 
Y—— 
>45 2 27 SSFZYCM& 13 extra, .005 index   t3 
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ERS SUB# CODE # OF FILES EXTRA FILES ERRORS 

4ß 2 31 $$FZZR&C 12 extra index  t2 

57- 2 44 $$F#NC4B Standard none none 

4ß 2 46 $$F#NGH3 10 0.005 none 

{49 2 49 $$F#&KWF 10 0.005 none 

•to 2 50 $$F#PUDW Standard none none 

51 3 14 $$F$IK&0 Standard none none 

52 3 16 $$F$RJK6 standard none none 

53 3 36 $$F%3C19 Standard none none 

54 3 40 $$F%4&C9 11 .005, .STR none 

55 3 41 $$F%4V0U standard none none 

56 3 54 $$F%I45# 11 .005, .STR index  t1 

57 3 62 $$F%L350 standard none none 

58 3 66       $$F%LXJ& standard none none         | 
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