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Director's Foreword 

Computer analysis of polygraph charts is one of the key means of improving the accuracy 
of the polygraph technique.  It eliminates variability inherent in human scoring and greatly 
increases the reliability of the analyses.  Computers can analyze factors that are impossible for 
even the most capable of human examiners to see no matter how thoroughly he or she 
inspects the polygraph charts.   Computers can analyze complex waveforms far faster, in much 
greater detail, and far more consistently than can humans. 

However, it is no easy task to determine the best way to analyze the test data.  Many 
statistical approaches have been used, with varying success.  The first major approach used 
discriminant analysis to differentiate between innocent and guilty subjects.   Other avenues 
being explored include decision trees, logistic regression, and artificial neural networks.  All 
avenues must be explored to find the methods that produce the greatest degree of accuracy. 

The approach taken in this study is fuzzy logic using the Fuzzy K-Nearest Neighbor 
algorithm.  Fuzzy logic eschews probability theory, used by most earlier methods, in favor of 
looking at the degree of membership: whereas, probabilities convey information about relative 
frequencies (91 out of 100 people with this score are truthful).  Fuzzy logic looks at how 
similar the data are to imprecisely defined properties (this polygraph chart is 91 percent 
similar to charts from truthful people). 

This report consists of four graduate theses by students at San Jose State University 
working on this program under the guidance of Dr. Benjamin Knapp of the Electrical 
Engineering Department.   They found that fuzzy set classification can evaluate polygraph 
charts with relatively high accuracy.   Care must be taken in generalizing from this result, due 
to the relatively small number of cases used. 

MtftG~ 
Michael H. Capps 
Director 

This research was funded through the Department of Defense Polygraph Institute (DoDPI) project DoDPI93-P- 
0014, under contract number N00014-93-I-0570. The views expressed in this report are those of the authors and do 
not reflect the official policy or position of the Department of Defense or the U.S. Government. 
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Abstract 

Knapp, B. R, Agarwal, U., Djamschidi, R., Layeghi, S., Dastamalchi, M., & Jacobs, E.  Final 
report on the use of fuzzy set classification for pattern recognition of the polygraph. May 
1996, Report No. DoDPI96-R-0002.  Department of Defense Polygraph Institute, Ft. 
McClellan, AL  36205-5114.-This project was completed to determine if fuzzy set 
classification could be used to accurately evaluate data collected during a psychophysiological 
detection of deception examination.  This methodology provides an alternative to the 
proprietary statistical technique now commonly used.  Data collected using both the Modified 
General Question Technique (MGQT) and the Relevant Only formats were evaluated.   An 
extensive and, arguably, complete set of polygraph data features was identified.  These 
polygraph data features were not individual dependent, examiner dependent, or in any way 
dependent on apriori or posteriori knowledge (statistics) of the data.  A fuzzy K-Nearest 
Neighbor classifier and an adaptive fuzzy Least Mean Squares classifier were developed.  A 
fuzzy C-Means clustering algorithm which enabled visualization of the data features was also 
developed.  The fuzzy algorithms were "forced" to make a choice of truth versus deception; 
they could, however, be used to return a number that would, in near real-time, give the 
examiner an idea of the confidence level of the algorithm.  The data were parsed such that 
25% of the data were tested using an algorithm developed from the remaining 75% of the 
data.  It is shown that only four features are needed to achieve 100% correct classification of 
the Relevant Only data and 97% correct classification of the MGQT data.  It is suggested that 
any future research, development, or testing of computer classification techniques, including 
statistical and neural techniques, include the results of this work. 

Key-words:   algorithm, polygraph, deception, truth, fuzzy, fuzzy logic, fuzzy set, 
psychophysiological detection of deception, computer 
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1.  Introduction 

This is the final report of a 2-year study on the use of fuzzy pattern recognition of polygraph 
data for the identification of truth versus deception.  The goals of this study as stated in the 
original proposal were to: 

1. develop a data parsing algorithm which will process polygraph data obtained from the 
National Security Agency (NSA) into three domains:  time-domain, frequency domain, and 
correlation domain; 

2. design a fuzzy classifier algorithm to accept the featurized data and modify its membership 
functions based on the error between its classification of the polygraph data and the 
classification in the NSA files; 

3. study the relationship between features (formally called descriptors) and the success of 
feature classification; 

4. study the relationship between the number of membership functions and the success of the 
data classification and; 

5. investigate the feasibility of the classification being performed in a near-real-time scenario. 

The data to be used was Modified General Questions Test (MGQT) polygraph data. 
However, the proposal for the second year of the study introduced the goal of comparing the 
performance of the developed fuzzy classification system with "zone comparison" polygraph 
data.  Ultimately this was changed to be the simulated "Relevant Only" data obtained from the 
Department of Defense Polygraph Institute (DoDPI). 

This report, including the information described in Sections 1 through 5, shows that all 
objectives of the original proposal were met.  A fuzzy parser and classifier system were 
developed that could run in near real-time, achieve performance as good or better than the 
presently available automatic polygraph systems, and identify new features that previously 
were not used in polygraph classification.  Results of 97% correct for the MGQT and 100% 
correct for the "relevant only" data were achieved.  It is shown in this report that while 
certain features yield good identification across all subjects, a clustering algorithm, fuzzy 
C-Means, developed in the second phase of this work identified many sets of features that 
probably should be tried to achieve optimal performance. 

2. Phase I:   1993-1994 

This first phase of this project developed a complete automatic data parsing system and fuzzy 
pattern recognition system based on the fuzzy K-Nearest Neighbor (KNN) algorithm.   These 
two elements are summarized below. 



2.1  Development of Data Parsing Algorithm 

The initial goal of this phase was to be able to read the MGQT data files received from the 
NSA and separate this data into appropriate features for classification.  After consulting with 
the University of Washington, we were able to develop our own data reading program. 

After consultation with experienced polygraph examiners and a detailed review of the 
polygraph literature, the data reading program was then modified to parse the data into a 
matrix of features.  The feature set included, as outlined in the project proposal, time domain, 
frequency domain, and correlation domain data.   Some examples of the feature set are: 

Time Domain Features 

- Mean, curvelength, area, and standard deviation for all 
polygraph channels 

- Average of the amplitudes of the peaks in the cardio and 
respiratory channels 

- Derivative of the amplitudes of the peaks of cardio and 
respiratory channels 

- Number of peaks in the cardio and respiratory channels 

- Inhalation amplitude/exhalation amplitude of respiratory 
channels 

Frequency Domain Features 

- Fundamental frequency of cardio and respiratory signals 

- Coherency and cross power spectral density between cardio and 
respiratory channels 

- Power spectral density of cardio and respiratory channels 

- Integrated power spectral density for cardio channel 

Correlation Domain Features 

- Autoregressive parameters (10) for cardio signal 

- Cross-correlation between cardio and respiratory channels 



In order to classify subjects using the difference between control and relevant responses, and 
to minimize the size of the feature vector, the features were combined according to the 
following method:  for each feature i (except for the three features corresponding to the cross 
power spectral density and integrated spectral difference) from each subject j. compute: 

1. The average control responses AvgContjj 

2. The average relevant responses AvgRel^ 

3. The maximum and minimum control responses MaxContjj MinContjj 

4. The maximum and minimum relevant response MaxRel;j MinReljj 

The feature vector components for feature i are then given by the following: 

Feature Combination Methods 

1. AvgReljj - AvgContjj 

2. Avg Relg - AvgContjj 
Avg Rely + AvgConty 

3. MaxReljj - MaxContjj 

4. MinReljj - MinCon^ 

5. MaxReljj - MinContjj 

6. MinReljj - MaxContjj 

7. MaxReljj 
MaxContjj 

For the three features mentioned previously that cannot be combined as above, each subject j. 
should be computed as: 

1. The average of relevant-control responses Avg(RelCont)jj 

2. The maximum of relevant-control responses Max(RelCont)jj 

3. The minimum of relevant-control responses Min(RelCont)jj 

For a complete description of this method, see Volume I, Section 2, Feature Analysis of the 
Polygraph by M. Dastmalchi. 



Ultimately 669 features were automatically extracted from the data.  The complete list of all 
669 features used in this project are shown in Figure 41 of Volume II, Section 4, Use of 
Fuzzy Set Classification for Pattern Recognition of the Polygraph.  The use of this automatic 
data parsing algorithm is described in more detailed below in 4.1, Automatic Data Analysis 
Method. 

2.2 Design of Fuzzy Classifier Algorithm 

Fuzzy classifier design first focused on the development of a fuzzy set based KNN algorithm. 
(This work is described in detail in Volume II, Section 3, Pattern Recognition of the 
Polygraph Using Fuzzy Set Theory, and in Pattern Recognition of the Polygraph Using Fuzzy 
Classification,  Proceedings of the 1994 IEEE International Conference on Fuzzy systems. Vol 
III, pages 1825-1829.)  This algorithm is a supervised learning algorithm which means that 
training data is presented to the algorithm and then the algorithm is "frozen" and test data is 
presented.  Training on this and all other algorithms in both phases of the study was always 
performed on 3/4 of the data with testing performed on the remaining 1/4 of the data.  The 
algorithm learned using a set of MGQT data which was divided equally between truthful and 
deceptive.   Since there were 150 deceptive files and only 50 truthful files, the deceptive files 
were divided into three sets of 50 files each.  The relevant only data consisted of 60 
non-deceptive and 60 deceptive subjects.  A data matrix was created as follows: 

xlO=[subj#ltestl; subj#ltest2; subj#ltest3; subj#2testl; subj#2test2; subj#2test3,...]; 

where subj#ltestl consists of the results for the first time subject #1 was asked the entire set 
of questions, subj#ltest2 consists of the results for the second time subject #1 was asked the 
entire set of questions, etc.  This matrix was especially designed to ensure that subject files 
used for training the algorithm would not coincide with subject files used for testing the 
algorithm.   Thus, the first 3/4 of subjects in the matrix, xlO, were used for training, while the 
remaining 1/4 of subjects were used for testing. 

To achieve an accuracy score, the questions were scored individually and then combined at 
the end of a majority basis. The results of this work are summarized collectively below in 
4.2, Classification Accuracy. 

3.  Phase II:   1994-1995 

The second phase of this project dealt with creating an unsupervised clustering algorithm 
which could identify important features more rapidly, creating another supervised learning 
algorithm to determine if the fuzzy KNN algorithm was optimal (fuzzy Least Mean Squares; 
LMS), creating a genetic search algorithm to try to aid in the search for optimal features, and 
expanding the algorithm testing to look at simulated "Relevant Only" data from DoDPI in 
addition to the MGQT data.   These elements are summarized in the two sections below. 



3.1   Comparison of the Fuzzy C-Means, Fuzzy LMS, and Fuzzy KNN Algorithm 

An unsupervised clustering algorithm was created to visualize which features allow for larger 
separation in the truthful and deceptive data clusters.  In addition, a supervised learning 
algorithm, fuzzy LMS, was created to compare with fuzzy C-Means and fuzzy KNN.   (This 
work is described in much more detail in, and partially excerpted from, Volume II, Section 4, 
Use of Fuzzy Set Classification for Pattern Recognition of the Polygraph, and in Classification 
of Deception Using Fuzzy Pattern Recognition, Psychophysiology, Volume 31, Supp. 1, 
August 1994). 

The fuzzy LMS system is unique in its application of linguistic knowledge.   The use of 
linguistic knowledge ensures the robustness of the fuzzy system.  The use of linguistic 
information also ameliorates the problem of not having enough reliable numerical data. 
Unlike classification schemes such as the KNN, the fuzzy LMS algorithm is not entirely 
dependent on numerical data. 

When applied to pattern recognition, fuzzy logic systems can be set up to perform like KNN 
systems.  In KNN systems, numerical data of known class patterns are set up to estimate the 
probability density distribution of the classes.  The probabilities of new data points belonging 
to the different classes are then computed based on such distribution. Data points around 
known class samples are then classified into the same class with a higher probability.  The 
fuzzy KNN algorithm modifies the classical KNN algorithm by taking into account the 
distance between the data point and the known class patterns when estimating the probability. 
Conceptually this is similar to setting up clusters around all known class samples and 
calculating the degree of belonging of new data points in the different types of clusters. 
Other than the exact mathematical equations, that description fits a fuzzy adaptive system 
where each rule corresponds to a known class pattern and the size of the clusters is the same 
for all rules. 

However, fuzzy adaptive system give up some of the nice theoretical understandings of the 
KNN systems but gain some practical advantages.  The number of rules required are usually 
much smaller than the number of known samples.  Fuzzy logic can usually exploit that to 
reduce system complexity. 

Furthermore, the system complexity for a fuzzy adaptive system stays the same even as new 
information is available.  This is partly a result of the way this algorithm adapts continuously; 
new information is learned as old information is forgotten.   The fuzzy LMS learning 
technique is like backpropagation, a popular neural network training technique.  However, the 
fuzzy LMS learning algorithm requires few epochs, or iterations, for training.   In all our trials 
the maximum recognition rates for testing data peaked in less than thirty epochs.   About 95% 
of them peaked in less than twenty epochs.   This is a few orders of magnitude less than most 
applications of backpropagation.  In many cases the peaks occurred before any training; that 
is, the system uses only linguistic rules.   Here the use of expert knowledge speeds up the 
training of the system. 



The fuzzy C-Means algorithm, unlike fuzzy LMS, is an unsupervised clustering algorithm. 
Given a set of data, fuzzy C-Means looks for a (usually) predetermined number of clusters 
within the data points.  It does not use any knowledge about the correct, or desired 
classification of any of the elements.  The algorithm only minimizes an objective function, 
which is the sum of a function of the data points membership values and the distances 
between the data points and the clusters' centers. 

Fuzzy C-Means operates like a black box, given some data, the algorithm automatically 
computes the results.    (Our job is basically to adjust the parameters.) This presents the 
advantage that different sets of data using different features can be tested in a routine manner. 
Fuzzy C-Means also presents a way to normalize the different dimensions of the data, just like 
the use of sigma in the fuzzy LMS algorithm.  However, unlike fuzzy LMS, Fuzzy C-Means 
does not present a method to find the optimal way for such normalization. 

The fuzzy LMS algorithm, however, does pose some potential problems of its own.   The use 
of expert knowledge, while a benefit in some senses, may not always be straightforward.  For 
example, in our project we did not have any specific knowledge about polygraphy itself. 
Whatever we learned, we learned by looking at numerical data.  As we tried to find more 
complicated patterns, patterns involving three, four, or more features, the analysis became 
more difficult.  Naturally, one wishes to automate this process.  If we do not reply on some 
learning procedures, however, rules cannot be automatically found for the fuzzy system. 
Much research also needs to be done to understand the fuzzy LMS algorithm's learning 
dynamics.  While the same method, gradient descent, is used on both backpropagation and the 
fuzzy LMS algorithm, the general shapes of the error surface between the two are different. 
In backpropagation, all parameters have the same range and lie in an uniform neural network 
structure.   In the fuzzy LMS algorithm, the parameters can have different ranges and lie in a 
fuzzy logic structure which is not completely uniform.  The effects of such differences on the 
shape of the error surface and the learning dynamic are unknown. 

A summary of the data comparing these methods is presented in section 4.2 below.   All 
MGQT data was processed as summarized in section 2.2 above. 

3.2  Fuzzy C-Means Algorithm on "Relevant Only" Data 

The data parsing algorithm was extensively modified to process the "relevant only" data.  This 
data was composed of 166 truthful and 166 deceptive tests with no irrelevant questions asked. 
Thus the seven feature combination methods described in above, in 2.1, Development of Data 
Parsing Algorithm, could not be used.  Instead, the following four combinations were used: 

1. Avg(Feature) 

2. Max(Feature)-Min(Feature) 



3. Max(Feature)/Min(Feature) 

4. Std(Feature) 

Also, these files were in an entirely different data format which need to be interpreted for data 
parsing.   (See Volume II, Section 5, Errors in the Relevant Only Data for a summary of 
incorrect data formats from the "Relevant Only" data.) 

4.   Summary of Results 

The results for the entire project are summarized below.  First, the complete automatic data 
analysis package is summarized including data parsing and classification.   Second, a 
comparison of accuracies amongst the different methods for both MGQT and "relevant only" 
polygraph data is presented. 

4.1   Automatic Data Analysis Method 

Below is a description of the automatic data parsing and classification technique developed in 
this project. Refer to: Volume I, Section 1, Time Domain Features for the Fuzzy Set 
Classification of Polygraph; Volume I, Section 2, Feature Analysis of the Polygraph: Volume 
II, Section 3, Pattern Recognition of the Polygraph Using Fuzzy Set Theory: and, Volume II, 
Section 4, Use of Fuzzy Set Classification for Pattern Recognition of the Polygraph for more 
complete descriptions. 

4.1.1  Parsing the Data 

4.1.1.1   Reading the Data 

It should be noted that the data reading methods are only important for "off-line" processing 
and would not be used for near real-time applications. 

The data was collected in three phases labeled by the DoD as ERS- 1, ERS-2 and ERS-3. 
Each polygraph test may consist of one to five charts with each chart consisting of three files. 
Each chart is a series of questions, usually ten questions.   The files are given in DOS file 
format and must be read and decoded before they can seen. 

The following files comprise a chart: 

$$EACOWO.011 

$$EACOWO.021 

$$EACOWO.031 



Each of these three files has a specific significance.  The .XX3 files are test files which 
contain the questions which the subjects were asked. The .XXI and .XX2 files are encoded in 
a specific format created by Axciton polygraph testing devices.  These files can be decoded 
by a program entitled read3.  Read3 can be invoked in DOS as in the following example: 

read3 $$EACOWO.011 outputl 

read3 $$EACOWO.021 output2 

read3 $$EACOWO.031 output 3 

The read3 command decodes the data in files *.011, *.021 and *.031 and writes them in 
ASCII files entitle outputl, output2 and output3, respectively.   Output2 and output3 contain 
the actual signals from four polygraph channels with a timing signal which shows the times 
when the questions were asked.  The output files were labeled such that minimal confusion 
was allowed.  For example, the output file for non-deceptive subject 45, text file .XX3 
compiled during phase ERS-1 reads: 

nd45t3.exl 

4.1.1.2 Feature Extraction 

After the polygraph files are decoded and written into output files, they can be processed in 
MATLAB.  MATLAB is a commercially available mathematical analysis program which runs 
on a PC, Macintosh, and most UNIX platforms. The feature extraction process consists of a 
MATLAB program which extracts features for all files and saves them in a matrix consisting 
of subjects and features.  The main feature extraction program is a MATLAB routine called 
Do.M.   This program extracts the pre-selected 52 features, from each subject, contained in the 
variable feature_list.  Feature_list is a MATLAB matrix which includes the names of the 
feature extraction routines.  In each row of the feature_list matrix, a feature extraction routine 
is named along with the channel number(s) this routine will be applied to.   The mean, 
standard deviation, maximum subtracted from the minimum and the maximum divided by the 
minimum is taken from the extracted features.   These four results are put into a matrix which 
is then put into a larger matrix called xlO.mat, consisting of all non-deceptive and deceptive 
subjects and all 52 features from the feature list. 

4.1.2  Classifying the Data 

After the data is parsed in DOS and MATLAB, the classifying process takes place entirely in 
MATLAB. 



4.1.2.1   K-Nearest Neighbor Algorithm 

The main program which runs the KNN algorithm is called fknn which is written in the C 
programming language.  The file interacts with MATLAB by reading and writing files in 
MATLAB format, that is .mat files.  This algorithm is implemented by the program fknn 
which opens a MATLAB data file, reads the training matrix, classifies each entry in the 
testing matrix and writes the result in an output file.  The file from which this program 
receives information from is "fdatafile.mat" which is in MATLAB file format. 

Because the KNN algorithm has been automated, it can be run in only a few simple steps. 
For a complete description of this process see Volume II, Section 3, Pattern Recognition of 
the Polygraph Using Fuzzy Set Theory.  Before running the algorithm a few variable must be 
determined.  For example, for the  "relevant only" data: 

1. A single variable "C," the number of classes was set equal to two; one for deceptive and 
one for non-deceptive. 

2. A single variable "K," determines how many different points surrounding a chosen point 
will be compared to it and classified. The parameter "K" in the KNN algorithm was varied 
from one to ten throughout the simulations. 

3. A single variable "M," the coefficient in the fuzzy algorithm was set equal to two. 

4. A training matrix "P," contains a set of feature vectors.  Each vector is a column of the 
matrix.   There were fifty deceptive and fifty non-deceptive tests used for training.  The 
combination of features to be tested is also entered in this matrix. 

5. A class membership matrix "T," contains the membership values of the training set vectors 
to the classes. This matrix was set that a one was displayed for a non-deceptive detection and 
a zero for a deceptive detection. 

6. An input matrix "U," which contains a set of unclassified feature vectors contained the rest 
of the tests not used for training.   These remaining tests make up the testing matrix.   The 
same combination of features entered in "P" are to be entered in the "U" matrix. 

7. Threshold, which is varied from 0.2 to 0.8 throughout the simulations. 

Once the matrix XlO.mat is loaded in MATLAB, the KNN algorithm can be invoked by 
simply trying "KNN."  The user will then be asked to enter a numerical value for the K 
parameter in the KNN algorithm.  Parameters chosen between one and ten have been found to 
produce the best results.   Once the "K" parameter has been entered, the number of correct 
deceptive and non-deceptive identifications can be obtained by entering the following: 



sum(fresult(l, 1:116)>0.5) non-deceptive 

sum(fresult(l,l 17:232)<0.5) deceptive 

The correct detection for non-deceptive data is shown by a one, so the threshold is greater 
than 0.5.   The percent correct for the deceptive data can be obtained by dividing the number 
of correct deceptive classifications by 166.   This same process works for the non-deceptive 
data.  Finally, the total correct detection percent is obtained by taking the average of the two 
percentages. 

4.1.2.2  Fuzzy C-Means 

The fuzzy C-Means algorithm for MGQT data has been made user friendly through automated 
push buttons written in MATLAB (see Figure 1).  These buttons allow the user to execute the 
feature extraction and classification process without an understanding of the complexity of 
each program used in the algorithm.  With minor modifications, the push buttons can be used 
for the "relevant only" data as well. 

Figure 1:   User Interface for Fuzzy C-Means Clustering Algorithm 
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Before running the algorithm a few variables must be determined.  For example, for the 
"relevant only" data: 

1. The "temp" matrix in the fc_means program was set equal to the dimensions (1,332). 

2. The threshold was varied from 0.2 to 0.8 for each different simulation that was run. 

3. Combination of features to be tested can be changed as described below. 

The following execution process is necessary only if the push button automation is not used. 
After the matrix XlO.mat is loaded, the user must type the following to run the algorithm: 

[Uik,z] = fc_means(5,0.000005,xl0([8 23 24],:)) 

The z parameter is the number of iterations made by the algorithm to obtain the results and 
Uik is the membership values.  To calculate the correct detection of non-deceptive and 
deceptive subjects, the user must type the following: 

sum(Uik(l, 1:166)<0.5) non-deceptive 

sum(Uik(l, 117:332)>0.5) deceptive 

where 0.5 is the selected threshold for this particular simulation.  The percent correct for each 
class can be determined by dividing the number correct by the total number.  The total 
percent correct is then obtained by averaging the two percentages. 

4.1.2.3  Least Mean Squares Algorithm 

The LMS fuzzy adaptive filter is a nonlinear adaptive filter which makes use of both 
linguistic and numerical information concerning the physical characteristics of the polygraph 
data in their natural form.   This filter is constructed from a set of changeable fuzzy IF-THEN 
rules.  We have the choice of setting the rules according to our experiences and incorporating 
them directly into the filter, or initializing the rules arbitrarily.  Before running the algorithm 
a few variables must be determined.  For example, for the "relevant only" data: 

1. The number of training subjects was set equal to 100. 

2. The "running time," how often the algorithm goes through the data, was set to 70. 

3. Different combinations of the features were changed manually for each different 
simulation. 
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After the matrix XlO.mat is loaded the user must simply type: 

lmstest 

The total percent correct of deceptive and non-deceptive data is automatically displayed under 
the variable "maximum." 

4.2  Classification Accuracy 

4.2.1  MGQT 

Table 1 shows a comparison of the best results for each of the classification algorithms found 
in this study.   (See Volume II, Section 4, Use of Fuzzy Set Classification for Pattern 
Recognition of the Polygraph for a more complete description of how this comparison was 
performed.)  It should be noted that the optimum features found for the fuzzy C-Means and 
the fuzzy KNN algorithms were different.  This is important because it means that if both 
algorithms were run on a given subject, their results could be independent and corroboratory. 
The fuzzy LMS algorithm was simply run using the optimal four features found for the fuzzy 
C-Means algorithm.  The method number refers to the seven feature-combination methods 
described in section 2.1 above.  The three data sets refer to the fact that the 150 deceptive 
files were separated into three files of 50 and compared to the 50 non- deceptive files. 
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Table 1. 
Classification Technique Accuracies (% correct^ using  GOT 
Data" 

Data Set 

Featured Used Method15 1        2         3 

Fuzzy C-Means 
Ampl of Peaks (High Freq Cardio)      4 93       87      97 
Max-Min (High Freq Cardio) 7 
Std (GSR) 2 
Std (GSR) 4 

Fuzzy KNN 
Max (GSR) 1 86      80      91 
Max (Lower Resp) 6 
Max (Upper Resp) 3 
Max-Min (High Freq Cardio) 4 

Fuzzy LMS 
Ampl of Peaks (High Freq Cardio)      4 81       83       83 
Max-Min (High Freq Cardio) 7 
Std (GSR) 2 
Std (GSR) 4 

These results are based on comparisons of 15 truthful and 15 deceptive files 
for each data set as described above in 4.2.1, MGQT. b The method refers to the 
feature combination methods described above in 2.1, Development of data parsing 
algorithm. 

4.2.2   "Relevant Only" 

For the "relevant only" data the fuzzy C-Means algorithm was used since it achieved the best 
performance for the MGQT data.   Table 2 shows the summary of results for different 
combinations of the four optimal features described in Table 1 above.   The different columns 
represent the different fuzzy thresholds (see Volume II, Section 4, Use of fuzzy set 
classification for pattern recognition of the polygraph for details). Note that for one of the 
combination of three features a score of 100% correct for both deceptive and non-deceptive 
was achieved. 
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Table 2. 
Classification Accuracies (rounded % correct) of "Relevant Only" 
Data using Fuzzy C-Means Algorithm and Different Feature 
Combinations3 

Fuzzy Threshold Truth/ 
Deception Boundary Valued 

Features               Methodb Status0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

1 
Std(GSR) 2 N 100 96 78 49 11 1 3 
Std(GSR) 4 D 0 3 28 58 93 99 96 
Ampl of Peaks6 

2 
Std(GSR) 

4 

2 N 48 45 36 30 29 24 34 
Std(GSR) 4 D 24 30 32 36 45 48 54 
Max-Mine 

3 
Std(GSR) 

7 

2 N 48 0 5 33 77 99 100 
Ampl of Peaks6 4 D 24 1 5 32 71 99 100 
Max-Min6 

4 
Std(GSR) 

7 

4 N 48 45 34 3 22 23 4 
Ampl of Peaks6 4 D 24 30 6 65 54 5 66 
Max-Min6 

5 
Std(GSR) 

7 

2 N 100 99 95 67 23 1 54 
Std(GSR) 4 D 0 0 5 33 71 99 33 
Ampl of Peaks6 4 
Max-Min6 7 

a These values are based on comparisons of 15 non-deceptive and 15 deceptive files 
b The method refers to the feature combination methods described above in 2.1, 
Development of data parsing algorithm.  c Status indicates that subjects were 
deceptive (D) or non-deceptive (N).     Each column represents a different fuzzy 
threshold value for the truth/deception boundary ( see Volume I , Section 4, Use 
of fuzzy set classification for pattern recognition of the polygraph for details). 

High frequency cardio. 
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5. Conclusions 

This project achieved all goals set in the phase 1 and 2 proposals: 

1. A data parsing algorithm was developed which will process polygraph data obtained from 
the NSA into three domains:  time- domain, frequency domain, and correlation domain; 

Summary:  Over 90 features were extracted from the polygraph data.  For the MGQT data, 
seven methods of combination were used; thus achieving over 650 features.   Some of these 
features were chosen from careful interviewing of several polygraph examiners.  Other 
features were chosen from heuristic examination of the data.   Still others were chosen simply 
to represent all aspects of the waveforms.  None of these features were chosen based on the 
statistics of the input signal.  It was hypothesized and subsequently shown that "guessing" 
about the statistics of the signals was not necessary for accurate classification of truth versus 
deception. 

The results of goal #1 are important to the future of polygraph examination for two primary 
reasons.  First, an extensive and arguably complete set of features of the polygraph data was 
identified.   Second, the features of the polygraph are not individual dependent, examiner 
dependent, or in any way dependent on apriori or posteriori knowledge (statistics) of the data. 

2. two fuzzy classifier algorithms were designed to accept the featurized data and modify the 
algorithm's membership functions based on the error between the algorithm's classification of 
the polygraph data and the classification in the NSA files; 

Summary:  A fuzzy KNN classifier and an adaptive fuzzy (fuzzy LMS) classifier were 
developed.  While it was hypothesized that the fuzzy classification of the polygraph would 
achieve results comparable to statistical techniques, this was not known before the project 
began.  It can now be said that these fuzzy algorithms can achieve comparable, if not superior 
results, to statistical techniques. 

The results of goal #2 are important to polygraph examination for two primary reasons.  First, 
an alternative method to the proprietary statistical technique now commonly used will give 
examiners a corroborating data analysis algorithm that can be modified as needed.   Second, 
the fuzzy algorithms were "forced" to make a choice of truth versus deception.  They could, 
however, be used to return a number that would, in near real-time, give the examiner an idea 
of the confidence level of the algorithm.  This would enable the examiner to target further 
questioning to the areas where the algorithm is yielding ambiguous results. 

3. a clustering algorithm was developed to examine the relationship between the features 
chosen and the success of the classification; 

Summary:  A fuzzy C-Means algorithm was developed which enabled visualization of the 

15 



features of the polygraph data.  Using this algorithm, several features were found to be 
superior to all others.  (These features were superior for the data we tested.  We would need 
to analyze many more polygraph charts before this result could become definitive.) 

The results of goal #3 are important for two primary reasons.  First, an algorithm was 
developed to allow researchers to investigate features and determine which one (or 
combination of up to four) classify the data the best.   Second, several features were found to 
be superior to all others.  These features are: 

• the amplitude of the peaks and the dynamic range of the cardiograph signal, 

• the standard deviation and the maximum value of the galvanic skin response, and, 

• the maximum value of the lower and upper respiratory signal. 

4. relationships were found between the number of membership functions and the success of 
the data classification up to four simultaneous features; 

Summary:   It was not clear before the project began how many features or membership 
functions would be needed to correctly classify the polygraph data.  It was shown that only 
four features were needed to achieve 100% correct classification of simulated relevant only 
data and 97% correct classification of actual MGQT data. 

The results of goal #4 are extremely significant.  An algorithm that needs very few features to 
achieve such high classification can be made to execute in a near real-time environment. 
These features can also be tested easily by other classification systems. 

5. the feasibility of the classification being performed in a near-real-time scenario was 
shown. 

Summary:   As mentioned previously, a fuzzy algorithm executing in near real-time classified 
the polygraph data at accuracy levels as high or higher than have ever been achieved before. 
These results were achieved by analyzing polygraph subject files that were previously 
"unseen" by the algorithm.   They were also achieved without allowing for any "don't know" 
results. 

The positive results of goal #5 and all the goals mentioned previously means that there exists 
a new technique for automated classification of polygraph data.  Any further research, 
development, or testing of computer classification techniques, including statistical and neural 
techniques, must include the results of this work.  If not, an important, highly accurate, and 
possibly superior classification method will have been ignored. 
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1.1 History 

The first attempt to use a scientific instrument in an effort to detect deception 
occurred around 1895 [3].   That was the year that Cesar Lombroso published the results 
of his experiments in which a hydrosphygmograph was used to measure the blood 
pressure-pulse changes of criminals in order to determine whether or not they were 
deceptive. Although the hydrosphygmograph was originally intended to be used for 
medical purposes, Lombroso found that it worked well for lie detection. Lombroso may 
have been the first to use a peak of tension test format. This was done by showing a 
suspect a series of photographs of children, one being the victim of sexual assault.   If the 
suspect did not react more to the victims picture than the pictures of the other children, 
Lombroso concluded that the suspect did not know what the victim looked like and 
therefore was not the alleged perpetrator. 

In 1914 Vittorio Benussi published his research on predicting deception by 
measuring recorded respiration tracings [4]. He found that if the length of inspiration 
were divide by the length of expiration, the ratio would be larger after lying than before 
lying and also before telling the truth than after telling the truth. In 1921 John A. Larson 
constructed an instrument capable of simultaneously recording blood pressure pulse and 
respiration during an examination [3][4]. Larson reported accurate results which 
prompted Leonarde Keeler to construct a better version of this instrument in 1926 [3][4]. 

The use of galvanic skin response in lie detection began during the turn of the 
century. It's usefulness, however, did not become evident until the 1930's during which 
time several articles written by Father Walter G. Summers of Fordham University in New 
York [4].   In these articles he reports over 90 criminal cases in which examination using 
the galvanic skin response had all been successful and confirmed by confession or 
supplementary evidence. The usefulness of the galvanic skin response prompted Keeler 
to add an galvanometer to his polygraph. At the time of Keelers death in 1949, the Keeler 
Polygraph recorded blood pressure-pulse, respiration, and galvanic skin response [3]. 

1.2 Modern Test Formats 

The effectiveness of a polygraph examination is often the result of the test format 
that is used. A polygraph test format consists of an ordered combination of relevant 
questions about an issue, control questions that provide a physical response for 
comparison, and irrelevant questions that also provide a response or the lack of a response 
for comparison [1][4]. Three general types of test formats are in use today. These are 
Control Question Tests, Relevant-Irrelevant Tests, and Concealed Knowledge Tests. 
Each of the general test formats may have a number of more specific variations. Each test 
consists of two to five charts containing a prescribed series of questions. The test format 
that is used in an examination is determined by the test objective [3] [4]. 

The concealed knowledge test, also called peak of tension test, is used when facts 
about a crime are known only by the investigators and not by the public. In this case, a 
subject would not know the facts unless he or she was guilty of the crime. For example, 
if a gun was used in a crime and the public did not know the caliber, an examiner could 
ask a suspect if it was a 22 caliber, a 38 caliber, or a 9mm. If the gun used was a 9mm 
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and the suspect was deceptive, a polygraph chart would probably indicate evidence of 
deception. 

A control question test is often used in criminal investigations. In this type of test 
a series of relevant, irrelevant, and control questions are asked. A relevant question is one 
which is specific to the crime being investigated. For example," Did you molest the 
child?".   A control question is designed to make the subject feel uncomfortable. It is not 
specific to the crime being investigated however it may be related in an indirect way. A 
control question that could follow the relevant question stated above is "Have you ever 
forced yourself on another person sexually ?". The control questions are compared to the 
relevant questions and if the responses to the relevant questions are greater, the subject is 
usually classified as deceptive.   Irrelevant questions are used as buffers. Examples of 
irrelevant questions are "Are the lights in this room on?" or "Is today Monday?". 

Relevant-Irrelevant tests are usually used to test people trying to obtain security 
clearance or get a job. In this test, relevant questions are compared to irrelevant 
questions. Very few control questions are asked. The purpose of control questions in this 
test is to make sure that the subject is capable of reacting at all. 

1.3 Present Day Equipment 

The most popular polygraph machines today are the Reid Polygraph developed in 
1945 and the Axciton Systems computerized polygraph developed in 1989 [1][11]. The 
Reid polygraph scrolls a piece of paper under pens that record the biological signals. The 
Axciton polygraph digitizes physiological signals and uses a computer to process them. 
The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer 
based system for ranking the subject responses but allows printouts of the charts to be 
scored by hand the traditional way. The Axciton and Reid polygraphs are shown in 
figures 1 and 2 respectively. 

Both machines record the same biological signals using standard methods. Blood 
pressure is measured by placing a standard blood pressure cuff on the arm over the 
brachial artery. Respiration is monitored by placing rubber tubes around the abdominal 
area and the chest of the subject. This results in two signals, an upper and lower 
respiratory signal. Skin conductivity is measured by placing electrodes on two fingers of 
the same hand. 
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Figure 1   Axciton Polygraph [1] 

Figure 2   Reid Polygraph [3] 
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2.1 Fuzzy Set Theory 

In 1965 fuzzy sets were introduced by Lofti Zadeh [5] [6]. They provided a new 
way to represent vagueness and made description of many situations much easier. For 
example, it is not practical to say that all temperatures below 72 degrees Farenheit are 
cold and all temperatures above are hot. Instead, temperatures between 50 and 72 would 
by described as cool, temperatures between 30 and 50 would be considered cold, and 
anything below 30 would be very cold.  One way to describe this situation is through the 
use of fuzzy set theory. In fuzzy set theory an element is not defined as belonging or not 
belonging to a given set. Instead, it has a degree of membership in a set which is 
characterized by a compatibility function uA [6] [7]. The compatibility function, also 
called a membership function, states the degree of membership in a set "A" and has a 
range [0,1]. An illustration of how this applies to the temperature example above is 
illustrated in figure 1 and described below. 

.5 uhot(T) 

30 72 100 

Figure 3 Compatibility functions ucoId(T) and uhot(T) vs. temperature. 

Here, ucold(T) and u^fT) are the degrees of membership in each set and T is the 
temperature in Farenheit. Figure 1 shows that the temperatures around 72 degrees have 
membership in ucold(T) and u^fT). These memberships have values around .5 which 
represents cool or warm. As the cooler temperatures decrease, u^fT) increases thus 
representing a colder situation. Once the temperatures become less than 30 degrees, 
uco\d(T) obtains a membership value of 1 which indicates very cold temperatures. 

Fuzzy set theory is often thought of as another form of probability theory. In 
actuality, the two are very different [8].  In Bayesian probability theory, elements either 
belong or do not belong to a given set, and a probability density function determines the 
likelihood. For example, a light may be either on or off and the probability of either event 
occurring will depend on some statistical parameters (Is the room occupied? Is it dark 
out? etc.). The following is an example of the difference between fuzzy logic and 
Bayesian probability theory [6]. 
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Example 1 

Let L = set of all liquids, and let fuzzy subset 1 = {all (potable) liquids}. 
Suppose you had been in the desert for a week without drink and you came upon two 
bottles marked "C" and "A" as in figure 4a. 

^ 

mL{C) * 0.91 Pr (4 c L) • 0.91 

Figure 4a Liquids before observation 

Confronted with this pair of bottles, and given that you must drink from the one 
that you choose, which would you choose to drink from? Most readers, when presented 
with this experiment, immediately see that while MC" could contain, say, swamp water, it 
would not (discounting the possibility of a Machiavellian fuzzy modeler) contain liquids 
such as hydrochloric acid. That is, membership of 0.91 means that the contents of "CM are 
fairly similar to perfectly potable liquids (e.g., pure water). On the other hand, the 
probability that" A" is potable = 0.91 means that over a long run of experiments, the 
contents of A are expected to be potable in about 91% of the trials; in the other 9% the 
contents will be deadly - about 1 chance in 10. Thus, most subjects will opt for a chance 
to drink swamp water. 

There is another facet to this example, and it concerns the idea of observationion. 
Continuing then, suppose that we examine the contents of "C" and "A" and discover them 
to be as shown in figure 4b. Note that, after observation, the membership value for "C" is 
unchanged while the probability value for A drops from 0.91 to 0.0. 
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mAC) * 0.91 Pr(>U£)«0 

Figure 4b Liquids after observation 

This example shows that these two models possess philosophically different kinds 
of information: fuzzy memberships, which represent similarities of objects to imprecisely 
defined properties; and probabilities, which convey information about relative frequencies. 
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3.1 MGQT 

The test format used in this project was the MGQT test format. It is a type of 
control question test in which relevant, irrelevant, and control questions are asked in the 
order given in table 1 [9][12].  Before each test, the questions that will be asked are 
discussed with the subject. The series of questions is asked three times in the order 
specified in table 1. This produces three test charts. The examiner waits about 20 
seconds between each question. 

Not all of the Axciton charts used in this study follow the format of table 1 exactly. 
Many examiners rearranged the order in which the questions were asked. All polygraph 
charts used, however, were variations of this test. For example, one examiner used a test 
format in which questions 3 and 4 were switched. Many of the examiners changed the 
order in which the questions were asked in the second and third charts. 

Ouestion TvDe of Ouestion 
1 irrelevant 
2 irrelevant 
3 relevant 
4 irrelevant 
5 relevant 
6 control 
7 irrelevant 
8 relevant 
9 relevant 
10 control 

Table 1 MGQT question format 

4.1 File Formats 

Axciton files, digitized polygraph data from the axciton polygraph, were obtained 
from the National Security Agency (NSA) in standard MSDOS format. The sampling 
frequency of the data was 30Hz. Each test consisted of nine files. The labling of the files 
is shown in table 2 and the purpose of each file is explained below. 

Chart 1 
$$xxxxxx.011 
$$xxxxxx.012 
$$xxxxxx.013 

Chart 2 
$$xxxxxx.021 
$$xxxxxx.022 
$$xxxxxx.023 

Chart 3 
$$xxxxxx.031 
$$xxxxxx.032 
$$xxxxxx.033 

Table 2 File format 
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As stated in the section above, each examination is composed of three charts. The 
chart number is specified by the second number after the period. The third number after 
the period represents the type of file. 

$$xxxxxx.Oxl is the event marker file which contains the length of the chart and 
the event markers. The start and end of an examiners question is marked with a 0 and 1, 
respectively. The beginning of the subjects response is indicated with a 2 and the rest of 
the file is marked with 9's. File $$xxxxxx.0x2 is the file containing the biological signals. 
These signals correspond to the marker file. File $$xxxxxx.0x3 contains the questions and 
labels them relevant, irrelevant, or control. 

An ASCII file of five columns is created by using $$xxxxxx.Oxl and $$xxxxxx.0x2 
and a program provided by the NSA. An example of this file along with a description of 
the function of each file is shown in table 3 [12]. 

Event Marker FileChart Data FileQuestion TextFile 

$$xxxxxx.Oxl $$xxxxxx.0x2 $$xxxxxx.0x3 

Axciton Contains the length of 
File the chart, the number 

of channels, and the 
position of the event 
marker. 

Contains the digitized 
series values formatted 
according to flags in the 
Event Marker File. 

Contains the script of 
ofquestionsora 
shorthand script of 
questions. 

Processing 
Notes 

Becomes the 5th 
column of ASCII file. 
0=start of a question 
l=end of a question 
2=start of response 
9=No Event Marker 

Becomes lst-4th columns Files used to 
of ASCII file. 
Column 1-GSR 
Column 2-Cardio 
Column 3-Upper Resp 
Column 4-Lower Resp 

determine deviations 
from standard test 
format. 

ASCII File Format (with column labels) 

DOS 
File 

File Row  GSR  Cardio    UR LR EvMark 
1 1983     1931          1482 1083       9 
2 1983     1922          1483 1084      9 
3 1983     1913          1483 1084      9 
4 1983     1906         1483 1085      9 

Table 3 File description and example 
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5.1 Preprocessing 

MATLAB was used to display the signals and implement all of the filters and 
feature extraction algorithms. First, the four biological signals were processed into six 
channels. Hamming windowed FIR filters were used to create these channels and 
eliminate noise. A low frequency cardiovascular channel was produced by lowpass 
filtering the cardiovascular signal at .5 Hz using a 134 tap lowpass filter. Then, a high 
frequency cardiovascular channel was produced by highpass filtering the cardiovascular 
signal at .5 Hz using a 134 tap highpass filter. The derivative of the low frequency 
channel was then used to create a third channel. To eliminate noise, the upper and lower 
respiratory signals were lowpass filtered at 1.2 Hz using a 160 tap filter. Noise was 
eliminated from the galvanic skin response by using a 100 tap lowpass filter with a cutoff 
frequency of .5 Hz.   Any DC trends that existed within a chart were eliminated using the 
detrend function in MATLAB. This function finds the best straight line fit to the data and 
then subtracts the line from the data. Each signal was normalized by dividing by its 
standard deviation. The raw data and results of this processing are shown in figures 5-14. 

Fragments of each signal were accessed before features were extracted. These 
fragments were successfully used by Brian M. Duston of the Naval Control and Ocean 
Surveillance Center in his study and are given in table 4 [9]. The start and end points 
given in table 4 refer to the time elapsed after the question was asked by the examiner. 

Channel Start End 
GSR 
Upper respiratory 
Lower respiratory 
Low frequency cardiovascular 
High frequency cardiovascular 
Derivative of low frequency cardiovascular 

2 sec. 14 sec 
2 sec. 18 sec 
2 sec. 18 sec 

2 sec. 18 sec 

3 sec. 9 sec. 
0 sec. 8 sec. 

Table 4 Time fragments used in feature extraction 
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Figure 5  Cardiovascular 
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Figure 6   Preprocessed Low Frequency Cardiovascular 

500 

0 100 200 300 400 500 
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Figure 8   Preprocessed High Frequency Cardiovascular 
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Figure 13   GSR 
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5.2 Time Domain Feature Extraction 

Many of the time domain features were chosen by talking to examiners and finding 
out what was important to them in an examination [10][11]. One feature examiners use to 
determine deception involves the height of the peaks in the respiratory signal. If the peaks 
become smaller or staircase during a relevant question there is a good chance that the 
subject is being deceptive. From looking at different polygraph charts it could be seen that 
individual reactions may vary slightly with time. For this reason, many features were 
extracted from the respiratory channels in order to determine if the deceptive 
characteristics described above may be present. One feature extracted from the 
respiratory signal was the average height of the peaks. Because the time fragments from 
which the features are extracted remain constant, this feature may not give good results 
for subjects reacting early or late. For this reason, the minimum peak height was also used 
as a feature. 

To try and capture the effect of staircasing, the average of the derivative of the 
amplitudes of the peaks was used as feature. To compensate for early and late reactions, 
the maximum of the derivative of the amplitudes of the peaks was also used as a feature. 

Another respiratory feature used in this project was the curve length. This feature 
was successfully used and researched by Howard Timm in the early 1980's[10][13]. 
Interest in curve length lead to curiosity about the area under the respiratory curve. For 
this reason it was also extracted to see if it could be used as a feature. Because people 
tend to breath quicker when they are stressed or nervous, the number of peaks produced 
during a given period of time was used as a feature. 

Because it was one of the first features used to successfully determine deception, 
Benussi's I/E ratio was tested [3] [4]. Benussi's method requires that the I/E ratio of the 
subject is calculated before and after the examiner asks a question. The value of the I/E 
ratio calulated after the question is asked is then divided by the value of the I/E ratio 
before the question is asked. According to Benussi's findings, if the ratio is greater than 
one, the subject is deceptive. In an attempt to reduce the number of computations 
required for Benussi's method, a modification of Benussi's feature was tested. In the 
modification of Benussi's test, the ratio was taken only after the question was asked and 
was not compared to the subjects I/E ratio before the question was asked. 

The examiners we spoke to would usually try to find evidence of deception in 
respiratory signals first. If a subject did not show a strong respiratory response however, 
the examiner would analyze the subjects cardiovascular response. Because a subjects 
heart rate will often increase when deceptive, the number of peaks in the high frequency 
cardiovascular signal was used as a feature. From looking at many charts, it became 
evident that some of the processing used in extracting features from the respiratory 
channels would also be useful in determining deception from the high frequency 
cardiovascular channel. For this reason, the average of the peak height, minimum of the 
peak height and curve length were extracted from the high frequency cardiovascular 
channel in order to determine if they would be useful features. 

Many of the standard statistcal features used in other computerized polygraph 
algorithms were also examined [9]. These features included the mean, the standard 
deviation, the maximum amplitude, and the minimum amplitude of the signal. Variations 
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of these such as the minimum subtracted from the maximum were also examined. 
Although the original use of the curve length and area was to determine deception from 
the respiratory channel, it was extracted from the GSR and cardiovascular channels as 
well   It was not possible from looking at the signals to determine if the curve length had 
changed, but almost any change in a signal would affect this feature. A list of the features 
extracted from each channel are given in table 5. The programs used to extract these 
features were written in MATLAB and are included in the appendix of this report. 

High frequency cardiovascular 
1) mean of signal 
2) standard deviation of signal 
3) minimum value of signal 
4) maximum value of signal 
5) curve length of signal 
6) area under signal 
7) average amplitude of peaks 
8) minimum amplitude of peaks 
9) derivative of the amplitudes of 

the peaks in the signal 
10) number of peaks in the signal 
11) minimum subtracted from maximum 

Low frequency cardiovascular 
1) mean of signal 
2) standard deviation of signal 
3) minimum value of signal 
4) maximum value of signal 
5) curve length of signal 
6) area under signal 
7) minimum subtracted from 

maximum 

Upper and lower respiratory 
1) mean of signal 
2) standard deviation of signal 
3) minimum value of signal 
4) maximum value of signal 
5) curve length of signal 
6) area under signal 
7) average amplitude of peaks 
8) minimum amplitude of peaks 

GSR 
1) mean of signal 
2) standard deviation of signal 
3) minimum value of signal 
4) maximum value of signal 
5) curve length of signal 
6) area under signal 
7) minimum subtracted from 

maximum 

Derivative of low frequency 
1) mean of signal 
2) standard deviation ofsignal 
3) minimum value ofsignal 
4) maximum alue ofsignal 
5) curve length ofsignal 
6) area under signal 
7) minimum subtracted from 

maximum 

9) derivative of the amplitudes of 
the peaks in the signal 

10) number of peaks in the signal 
11) inhalation/exhilation ratio 
12) ratio of inhalation ratios before 

and after a question is asked 
13) minimum subtracted from 

maximum 

Table 5 List of time domain features 
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5.3 Feature Extraction Methods 

To extract the following features which are listed in table 5, (respiratory 7, 8,9,10 
,11 and high frequeny cardiovascular 7, 8, 9), it was necessary to locate the peaks of the 
respiratory and the high frequency cardiovascular signals. This was not a trivial task 
because these signals contained low amplitude high frequency noise which was difficult to 
eliminate without distorting the data (see figures 8,10, and 12). In order to find the useful 
peaks, two programs were written. The program that found the peaks of the respiratory 
signal was titled peaklr and the program that found the peaks in the cardiovascular signal 
titled peakcard. Both programs can be found in the appendix. The way that these 
programs find peaks is as follows: The second derivative was taken and points that had 
values equal to zero were labeled as peaks. The amplitudes of the signal at points near 
these peaks were evaluated and the maximum of these values were labeled as peaks. 

In order to eliminate the effects of the low amplitude high frequency noise, it was 
necessary to check the amplitude of data points that were near each point that had been 
labeled as a peak. The number of the data points from the peaks that were determined by 
the second derivative was chosen by examining many respiratory and cardiovascular 
signals and determining the average width of the peaks in these signals. It was found that 
twenty points on each side of the each peak found by the second derivative was a 
satisfactory range for the respiratory signals. Similarly eight points on each side of the 
initial peak gave would satisfy this criterion for the cardiovascular signal.   All of the 
routines used to perform these operations are in appendix B (see peak.m, peakcard.m, and 
peaklr.m). 

In order to determine the I/E ratio, it was necessary to find the valleys of the 
respiratory signals as well as the peaks. The method used to find the valleys was the same 
as that used to find the peaks (see appendix B valley.m and valleylr.m). The I/E ratio was 
found by the following method. First the time that a valley occurred was subtracted from 
the time that a peak occurred. Then the time that the peak occurred was subtracted from 
the time that the next valley occurred. The first value was then divided by the second 
value (see appendix B ie.m and ieie.m). 

6.1 Conclusion 

A vector of features was created by the program featurev.m which first executed 
all of the preprocessing routines. The program then extracted features for all of the 
questions using the times specified in table 4. This program extracted features from all 
polygraph files in a directory and produced a set of vectors. These vectors were then used 
for training and testing of a fuzzy K nearest neighbor classifier. For details on the 
methods used for training and testing as well as the frequency and correlation domain 
features used in the study refer to Dastmalchi [14]. For details on the K nearest neighbor 
algorithm refer to Layeghi [15]. 
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DERCD.M 

function y = dercd(var) 

% This extracts the derivative of a lowpass 
% filtered version of the cardio signal. 
% 
% To use this command the user must enter the file name 
% 
% eg.  dercd(variable name) 

q = detlc(var);  % detrends the lower frequencies 
% of the cardio signal 

e = diff(q);    % differentiates the lower 
% frequencies of the cardio signal 

x = e/std(e); 

y = [x',x(length(x))•]•; 
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DETGSR.M 

function y = detgsr(var) 

% This function detrends the gsr 
% 
% To use this command the user must enter the file name 
% 
% eg.  detgsr(file name) 

dtrnd = detrend(var(:,1)); 

window = 100; 

% elliminates dc trends in signal 
% eg. a line added to the signal 

dtrnd = [dtrnd1, zeros(window/2 - 1,1)']*; 
% adds zeros to end of signal so that no 
% information is lost during filter delay 

b = firl(window,.03); 
x = filter(b,1,dtrnd); 
g = x/std(x); 
1 = length(q); 

y = q(window/2:1); % compensate for time delay 
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DETHIC.M 

function y = dethic(var) 

% This function detrendeds the high frequencies 
% of the cardio signal. 
% 
% To use this command the user must enter the file name 
% 
% eg.   dethic(file name) 

dtrnd = detrend(var(:,2)); % elliminates dc trends in signal 
% eg. a line added to the signal 

window = 134; 

dtrnd = [dtrnd1, zeros(window/2 - 1,1)']'; 
% adds zeros to end of signal so that no 
% information is lost during filter delay 

b = firl(window,.035,'high'); 
% filter to elliminate low frequencies 

x = filter(b,1,dtrnd); 
q = x/std(x); 

1 = length(q); 

y = q(window/2:1); % compensate for time delay 
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DETLC.M 

function y = detlc(var) 

% This function extracts and detrends the low 
% frequencies of the cardio signal 
% 
% To use this command the user must enter the file name 
% 
% eg.   detlc(file name) 

dtrnd = detrend(var(:,2));  % elliminates dc trends in signal 
% eg. a line added to the signal 

window = 134; 

dtrnd = [dtrnd1, zeros(window/2 - 1,1)']'; 
% adds zeros to end of signal so that no 
% information is lost during filter delay 

b = firl(window,.035);   % filter to elliminate high frequencies 
x = filter(b,l,dtrnd); 
q = x/std(x); 

1 = length(q); 

y = q(window/2:l);       % compensate for time delay 
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DETLR.M 

function y = detlr(var) 

% This function extracts and detrends the lower respiratory signal 
% 
% To use this command the user must enter the file name 
% 
% eg.  detltr(file name) 

dtrnd = detrend(var(:,4)); % elliminates dc trends in signal 
% eg. a line added to the signal 

window = 240; 

dtrnd = [dtrnd1, zeros(window/2 - 1,1)']'; 
% adds zeros to end of signal so that no 
% information is lost during filter delay 

b = firl(window,.083);    % filter to elliminate noise 
x = filter(b,l,dtrnd); 
q = x/std(x); 

1 = length(q); 

y = q(window/2:1);        % compensate for time delay 
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DETUR.M 

function y = detur(var) 

% This function detrends the upper respiratory signal 
% 
% To use this command the user must enter the file 
% 
% eg.   detur(file name) 

dtrnd = detrend(var(:,3));  % elliminates dc trends in signal 
% eg. a line added to the signal 

window = 240; 

dtrnd = [dtrnd1, zeros(window/2 - 1,1)']•;      m 
% adds zeros to end of signal so that no 
% information is lost during filter delay 

b = firl(window,.08); 
x = filter(b,l,dtrnd); 
g = x/std(x); 

1 = length(g); 

y = g(window/2:1); 

% filter to elliminate noise 

% compensate for time delay 
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Appendix B 

Feature Extraction Programs 
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function [x,y,z] = featurev(file_name,relevant,irrelevant,control>features) 

% This function produces a feature vector for a given file 
% Relevent, irrelevent, and control are vectors which contain 
% the questions these features are extracted from. 
% 
% eg. featurev(t79,[3 5],[1 4], [6 10],feature_list) 

% The above example gives the features for 
% the file t79 of the 3rd and 5th question which are relevent in this 
% MGQT format, the 1st and 4th question which are irrelevent 
% and the 6th and 10th questions which are control 

% feature_list=[,10mean(frag )'; 
% '20curve(frag)'; 
% '30area(frag)']; 

feature list = features 

% The channels are ordered as follows: 
% 1:GSR, 2:HiCardio, 3:LowCardio, 4:DerLowCardio, 5:LowResp, 6:UpResp 

% This is a matrix of the time delay after asking a question to start of extracting 
% the feature, and finish extracting the feature for each channel. 

Times=[2, 14; 
3, 9; 
2, 18; 
0, 8; 
2, 18; 
2, 18]; 

% These are preprocessing functions 
Preprocess =[ •detgsr'; 

•dethic'; 
'detlc •; 
•dercd'; 
•deür'; 
•detur']; 

data=zeros(6,length(file_name(:,5))); 
% Standardize and detrend the channels and derive new channels 

fori=l:6, 
data(i,:)=eval([Preprocess(i,:),'(file_name)1)'; 

end 
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marker = file_name(:,5);    % 0 begin test and end test 
% 0 examiner begins asking question 
% 1 examiner finishes asking question 
% 2 subject begins response to question 
% 9 does not mark an event 

begin = find(marker = 0);     % finds indecies where marker = 0 (question begins) 
begin=begin(2:length(begin));       % elliminates the marker at the beginning of the test 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This for loop creates feature vectors for each relevant quesion 
% 
% eg x = [mean(gsr),std(gsr),area(gsr),mean(lr),std(lr),area(lr),etc  
% curve length.amplitude of peaks,* of peaks] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/o%%%% 

feature_count=l; 

for i = 1 :length(relevant), 
question=relevant(i); 

for j=1 :length(feature_list(:, 1)) 
channel_number=eval(feature_list(j,l)); 
second_channel=eval(feature_list(j,2)); 
st=begin(question)+30*Times(channel_number,l); 
fn=begin(question)+30*Times(channeI_number,2); 

st2=begin(question)-30*Times(channel_number,2); 
fn2=begin(question)-30*Times(channel_number,l); 

fr=feature_list(j,3:length(feature_list(l,:))); 
frag=data(channel_number,st:fn); 
frag2 = data(channel_number,st2:fn2); 
if second_channel ~= 0 

st3=begin(queslion)+30*Times(second_channel,l); 
fh3=begin(question)+30*Times(second_channel,2); 

frag3 = data(second_channel,st3:fii3); 
end 
tempy=eval(fr); 

for m = 1 :length(tempy) 
x(feature_count) = tempy(m); 

feature_count=feature_count+l; 
end 

end 
end 
%.  
% Irrelevant questions 

feature_count=l; 

for i = l:length(irrelevant), 
question=irrelevant(i); 

for j=l :length(feature_list(:, 1)) 
channel_number=eval(feature_list(j, 1)); 
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second_channel=eval(feature_list(j,2)); 
st=begin(quesüon)+30*Times(channel_number,l); 
fh=begin(question)+30*Times(channel_number,2); 

st2=begin(question)-30*Times(channel_number,2); 
fii2=begin(question)-30*Times(channel_number,l); 

fr=feature_list(j,3:length(feature_list(l,:))); 
frag=data(channel_number,st:fii); 
frag2 = data(channel_number,st2:fii2); 
if second_channel ~= 0 

st3=begin(question)+30*Times(second_channeI, 1); 
fh3=begin(question)+30*Times(second_channel,2); 

frag3 = data(second_channel,st3:fn3); 
end 
tempy=eval(fr); 

for m = l:length(tempy) 
y(feature_count) = tempy(m); 

feature_count=feature_count+1; 
end 

end 
end 

%- 
% Control questions 

feature_count=l; 

for i = l:length(control), 
question=control(i); 

for j=1 :length(feature_list(:, 1)) 
channel_number=eval(feature_list(j, 1)); 
second_channel=eval(feature_list(j,2)); 
st=begin(question)+30*Times(channel_number,l); 
fn=begin(question)+30*Times(channel_number,2); 

st2=begin(question)-30*Times(channel_number,2); 
fn2=begin(question)-30*Times(channel_number, 1); 

fr=feature_list(j,3 :length(feature_list( 1,:))); 
frag=data(channel_number,st:fn); 
frag2 = data(channel_number,st2:fn2); 
if second_channel ~= 0 

st3=begin(question)+30*Times(second_channel,l); 
fn3=begin(question)+30*Times(second_channel,2); 

frag3 = data(second_channel,st3:fn3); 
end 
tempj^evalCfr); 

for m = l:length(tempy) 
z(feature_count) = tempy(m); 

feature_count=feature_count+1; 
end 

end 
end 
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AMPCARD.M 

function y = ampcard(var) 

% This function finds the average of the amplitudes 
% of the peaks in the high 
% cardio signal over a specified period of time. 
% 
% To use this command the user must enter the 
% file name and the start and finish points 
% of the signal to be displayed 
% 
% eg.   ampcard(variable name) 

p = peakcard(var);     % the indecies of the peaks 

for n = 1:length(p) 

q(n) = var(p(n));   % amplitude of the peaks 

end 

y = sum(q)/length(q); 
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AMPR.M 

function y = ampr(var) 

% This function finds the average of the 
% amplitudes of the peaks in the lower 
% respiratory signal over a specified period of time. 
% 
% To use this command the user must 
% enter the variable name 
% 
% eg.  ampr(variable name) 

p = peaklr(var);      % the indecies of the peaks 

for n = 1:length(p) 

q(n) = var(p(n));  % amplitude of the peaks 

end 

y = sum(q)/length(q); 
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CURVE.M 

function y = curve(var) 

% This function finds the length of the variable 
% 
% To use this command the user must enter the 
% variable name and the start and finish points 
% of the signal to be displayed 
% 
% eg.   curve(variable name) 

x = sqrt(diff(var)."2 + 1) ; 
y = sum(x); 
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IE.M 

function y = ie(var) 

% This function takes the i/e ratio of the respiratory signals. 
% 
% To use this command the user must enter the variable name 
% 
% eg.  ie(variable name) 

p = peaklr(var); 

plength = length(p); 

v -  valleylr(var); 

% finds the indices of 
% the peaks in a signal and puts them 
% in a vector a 

% finds the indices of the 
% valleys in a signal and puts them 
% in a vector b 

vlength = length(v); 

if vlength < 2 | plength < 2 % check that enough peaks 
% and valleys exist for 
% the calculation to be done 

message = * Warning !!!! 

end 

if p(l) > v(l) 

for n = 1:vlength - 1 

q = p(n) - v(n) ; 

z = v(n + 1) - p(n) ; 

e(n) = q ./ z; 
end 

end 

if p(l) < v(l) 

for n = 1:vlength - 1 

q = p(n + 1) - v(n); 

Not enough data' 

% calculates a vector of 
% e/i ratios for the given 
% time period 

% calculates a vector of 
% e/i ratios for the peaks 
% and valleys in the 
% given time period 

z = v(n + 1) - p(n + 1) ; 
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IE.M 

e(n)   = q  ./  z; 
end 

end 

y = mean(e); 
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IEIE.M 

function y = ieie(varl,var2) 

% This function takes the i/e ratio of the respiratory signals 
% before and after a question is asked.  It then divides the two 
% values. 
% 
% To use this command the user must enter the variable name 
% 
% eg.   ieie(variable namel, variable name2) 

a = ie(varl); 

b = ie(var2); 

y = a/b; 
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PEAK.M 

function y = peak(var) 

% This function finds the peaks in a signal and returns the index 
% It also creates a plot of the variable with the peaks marked 
% 
% To use this command the user must enter the variable name 
% of the signal to be displayed 
% 
% eg.   peak(variable name) 

q = diff(var); % differentiates the variable 

z = q>0; % z = 1 if q is greater than 0 

f = diff(z); % 2nd derivative of the variable 

a = f<0; 

y = find(a);      % finds the indices where the 2nd derivative 
% is -1 which indicates peak 

1-B-ll 



PEAKCARD.M 

function y = peakcard(var) 

% This function finds the peaks in 
% the cardio signal and returns a vector of 
% indexes where they occur. 
% 
% To use this command the user must enter the variable name 
% 
% eg.  peakcard(variable name) 

ty = peak(var); 

if ty(l) < 8 
ty = ty(2:length(ty)); 

end 

if ty(length(ty)) > length(var) - 8 
ty = ty(1:length(ty)-1); 

end 

for n = 1:length(ty); 
% finds the maximum peak over a 10 point s 

pan 

temp = var(ty(n)-8 : ty(n)+8); 

z(n) = ty(n) - 9 + find(temp == max(temp)); 
% finds the time that the peak 
% occurs in the original signal 

end 

for n = 1:length(z)-l % elliminates duplicate indicies 

if z(n) == z(n+l) 

z(n) = 0; 

end 

end 

ind = find(z); % finds indecies of elements 
% that are not equal to zero 

for n = 1:length(ind)      % elliminates 0 elements 

z (n) = z (ind(n)) ; 

end 
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PEAKCARD.M 

y = z(1:length(ind)); 

% pmark = zeros(1,length(var)); % a vector of l's where peaks occu 
r 

% O's everywhere else 
% pmark(y) = ones(1,length(y)); 

% plot(var,'r') 

% title('lr marked with peaks1) 

% hold on 

% plot(5*praark,'g') 

% hold off 
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PEAKLR.M 

function y = peaklr(var) 

% This function finds the peaks 
% in the lr signal and returns a vector 
% of indecies where they occur. 
% . . . 
% To use this command the user must enter the variable name 
% 
% eg.  peaklr(variable name) 

[b,a] = butter(4,.034); 
filtout = filtfilt(b,a,var); 

% elliminate noise 

ty = peak (filtout) ;  % finds the time that the 
% peaks of filtered lr signal occur 

if ty(l) < 20 
ty = ty(2:length(ty)); 

end 

if ty(length(ty)) > length(var) - 20 
ty = ty(l:length(ty)-l); 

end 

for n = 1:length(ty) 

temp = var(ty(n)-20:ty(n)+20) ; 
z(u)   = ty(n) - 21 + find(temp == max(temp)); 

% finds the time that the peak occurs in 
% the original signal 

end 

for n = 1:length(z)-l 

if z(n) == z(n+l) 

z(n) = 0; 

end 

end 

ind = find(z); 

% elliminates duplicate indicies 

% finds indecies of elements 
% that are not equal to zero 

for n = 1:length(ind)  % elliminates 0 elements 

z(n) = z(ind(n)); 

end 
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PEAKLR.M 

y =  z(l:length(ind)); 
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PEAKNUMC.M 

function y = peaknumc(var) 

% This function finds the number of 
% peaks in the high cardio signal 
% 
% To use this command the user 
% must enter the variable name 
% 
%  eg.       peaknumc(variable name) 

p = peakcard(var); %  the  indecies  of the peaks 

y =  length(p); 
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PEAKNUMR.M 

function y = peaknumr(var) 

% This function finds the number 
% of peaks in the respiratory signal 
% 
% To use this command the user 
% must enter the variable name 
% 
% eg.   peaknumr(variable name) 

p = peaklr(var);       % the indecies of the peaks 

y = length(p); 
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TSTFEAT.M 

feature list=[ 'lOmean(frag) 
'lOcurve(frag) 
'lOarea(frag) 
120mean(frag) 
'2 0curve(frag) 
•20area(frag) 
12 Oampcard(frag) 
12 Opeaknumc(frag) 
'3 0mean(frag) 
13 0curve(frag) 
•3 0area(frag) 
'4 0mean(frag) 
*40curve(frag) 
•40area(frag) 
*50inean(frag) 
150curve(frag) 
150area(frag) 
150ampr(frag) 
150peaknumr(frag) 
150ie(frag) 
150ieie(frag, frag2) 
'60mean(frag) 
160curve(frag) 
160area(frag) 
160ampr(frag) 
*60peaknumr(frag) 
160ie(frag) 
160ieie(frag, frag2) ]; 

[x y z] = featurev(t79,[1 2],[3 4],[6 10],feature_list) 
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VALCARD.M 

function y = valcard(var,start,finish) 

% This function finds the valleys in 
% the lr signal and returns a vector of indexes where 
% they occur 
% 
% To use this command the user must enter the 
%  file name and the start and finish points 
% of the signal to be displayed 
% 
% eg.   valcard(file name, start, finish) 

k = hicardio(var,start,finish); 

[b,a] = butter(4,.034);       % elliminate high frequencies 
filtout = k; % filtfilt(b,a,k); 

ty = valley(filtout,start,finish) % finds the time that the 
% peaks of filtered lr signal oc 

cur 

1 = length(ty); 

for n = 1:1 

temp = k(max(l,ty(n)-10+start) : min(ty(n)+10+start,length(k) 

)); 

if ty(n)<10 
dd=length(temp)/2+1; 

else 
dd=ll; 

end 

y(n) = ty(n) - dd + find(temp == min(temp)); 
% finds the time that the peak occurs in 
% the original signal 

end 

vmark = zeros (1, finish - start); % a vector of 1' s where peaks occ 
ur 

% 0's everywhere else 
vmark(y) = ones(1,length(y)); 

subplot(211),plot(k(start:finish),'r') 
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VALCARD.M 

title('lr marked with peaks') 

hold on 

plot(-5*vmark,'g') 

hold off 

subplot(212),plot(filtout(start:finish),'r') 

title('filtered lr marked with peaks') 

hold on 

plot(vmark,'g') 

hold off 

% subplot(223),plot(k(start:finish),'r') 

% hold on 

% plot(5*a(l:finish - start - 3),'g') 

% hold off 

% subplot(224),plot(x) 

% subplot(111) 
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VALLEY.M 

function y = valley(var) 

% This function finds the 
% valleys in a signal and returns the index 

% To use this command the user 
% must enter the variable name 
% 
% eg.   valley(variable name) 

g = diff(var);      % differentiates the variable 

z=g>0;     % z = 1 if q is greater than 0 

f = diff(z);   % 2nd derivative of variable 

a = f > 0;     % finds valleys 

y = find(a);   % finds the indices where the 2nd derivative 
% is +1 which indicates valleys 
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VALLEYLR.M 

function y = valleylr(var) 

% This function finds the valleys in 
% the lr signal and returns a vector of 
% indecies where they occur 
% 
% To use this command the user must enter the variable name 
% 
% eg.   valleylr(variable name) 

[b,a] = butter(4,.034);      % elliminate high frequencies 
filtout = filtfilt(b,a,var); 

ty = valley(filtout);   % finds the time that the 
% peaks of filtered lr signal occur 

for n = 1:length(ty) 

temp = var(max(l,ty(n)-20) : min(ty(n)+20,length(var))) ; 

if ty(n)<20 
dd=length(temp)/2+1; 

else 
dd=21; 

end 

z(n) = ty(n) - dd + find(temp == min(temp)); 
% finds the time that the peak occurs in 
% the original signal 

end 

for n = l:length(z)-l   % elliminates duplicate indicies 

if z(n) == z(n+l) 

z(n) = 0; 

end 

end 

ind = find(z); % finds indecies of elements 
% that are not equal to zero 

for n = 1:length(ind)    % elliminates 0 elements 

z(n) = z(ind(n)); 

end 
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y =  z(1:length(ind)); 
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0 Introduction 

The polygraph examination is one of the most popular methods to measure deception. 
Polygraph tests are used in criminal investigations to determine if a suspect is being 
deceptive when answering the questions concerning a crime. During a polygraph test, the 
subject is asked a series of control, relevant and irrelevant questions that provide 
physiological responses for comparison with question that are relevant to the investigation. 
The three physiological responses that are currently measured are electrocardiogram, 
galvanic skin response and respiration. The controversy surrounding the use of polygraph 
tests centers on the subjective judgment of polygraph examiners in classifying the subject as 
deceptive or non-deceptive. The object of this project is to develop an automatic scoring 
system to overcome this perception. The computer algorithm will be able to use more 
sophisticated techniques than human examiners, should be more accurate and will ensure 
consistency from case to case. 

In order to implement the automatic scoring system, two main algorithms were developed. 
These were: the feature extraction algorithm, which process the polygraph data in three 
time, correlation and frequency domains, and the fuzzy classifier algorithm, which accepts 
the features and determines the possibility of deception. Because of the nature of the input, 
fuzzy logic was chosen to implement the system which gives the possibility of belonging of 
an input to each class. Initially, a set of features based on physiological reactions were 
selected. Then, the fuzzy K-nearest neighbor classifier was used to classify the features. 
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1 Polygraph 

1.1 Polygraph Examination 

The primary use of the polygraph test is during the investigation stage of the criminal justice 
process. In addition to the significance role in criminal justice, they are also used for 
national security, intelligence and counterintelligence activities [1]. The three physiological 
responses currently obtained from a polygraph examination are electrocardiogram, 
respiration and galvanic skin response. Electrocardiogram is measured by placing a standard 
cuff on the arm over the brachial artery. Respiration is monitored by placing rubber tubes 
around the abdominal area of the subject. Skin conductivity is measured by electrodes 
placed on two fingers of the same hand of the subject [1]. 

The effectiveness of a polygraph examination is often the result of the test format that is 
used. A polygraph test format is an ordered combination of relevant question about an 
issue, control questions that provide physiological responses for comparison and irrelevant 
questions that act as a buffer [1]. An example or a relevant question is," did you embezzle 
any of the missing $12000?" The corresponding control question would be about stealing; 
an example is, "did you ever steal money or property from an employer?" The example of 
an irrelevant question is," is your name John?" Irrelevant questions are answered truthfully 
and are not stressful. The rational for scoring these tests is that a deceptive subject will be 
more threatened by the relevant question than by the control question while a non deceptive 
subject will be more threatened by the control questions than the relevant question. 

Polygraph charts are usually analyzed by a human interpreter for evidence of truth or 
deception. A control question polygraph chart usually consists of 3 sets of control relevant 
question pairs separated by neutral questions. The examiner scores the charts by comparing 
each relevant question. For each of three physiological responses, he will give a numerical 
score ranging from -3 tO +3, depending on the magnitude of the difference. He then adds up 
scores for all control relevant pairs. If the score is below threshold value, he scores the 
chart as deceptive or non deceptive. 

Sometimes the examiner can not make a clear decision and must score the chart as 
inconclusive. The examiner's decision will be based on his or her experience and training. 
For example, a change in the polygraph tracing considered by one examiner as a 
physiological changes, may be considered by another as an artifact of the recording system. 
In an effort to eliminate the inconsistencies involved in interpreting polygraph data, 
computer algorithm are being developed. 
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1.2 History1 

The first attempt to use a scientific instrument in an effort to detect deception occurred 
around 1895 [2].   That was the year that Cesar Lombroso published the results of his 
experiments in which a hydrosphygmograph was used to measure the blood pressure-pulse 
changes of criminals in order to determine whether or not they were deceptive. Although 
the hydrosphygmograph was originally intended to be used for medical purposes, 
Lombroso found that it worked well for lie detection. Lombroso may have been the first 
to use a peak of tension test format. This was done by showing a suspect a series of 
photographs of children, one being the victim of sexual assault.   If the suspect did not 
react more to the victims picture than the pictures of the other children, Lombroso 
concluded that the suspect did not know what the victim looked like and therefore was not 
the alleged perpetrator. 

In 1914 Vittorio Benussi published his research on predicting deception by measuring 
recorded respiration tracings [3]. He found that if the length of inspiration were divide by 
the length of expiration, the ratio would be larger after lying than before lying and also 
before telling the truth than after telling the truth. In 1921 John A. Larson constructed an 
instrument capable of simultaneously recording blood pressure pulse and respiration 
during an examination [2][3]. Larson reported accurate results which prompted Leonarde 
Keeler to construct a better version of this instrument in 1926 [2] [3]. 

The use of galvanic skin response in lie detection began during the turn of the century. It's 
usefulness, however, did not become evident until the 1930's during which time several 
articles written by Father Walter G. Summers of Fordham University in New York [3]. 
In these articles he reports over 90 criminal cases in which examination using the galvanic 
skin response had all been successful and confirmed by confession or supplementary 
evidence. The usefulness of the galvanic skin response prompted Keeler to add an 
galvanometer to his polygraph. At the time of Keelers death in 1949, the Keeler 
Polygraph recorded blood pressure-pulse, respiration, and galvanic skin response [3]. 

1.3 Modern Test Formats1 

The effectiveness of a polygraph examination is often the result of the test format that is 
used. A polygraph test format consists of an ordered combination of relevant questions 
about an issue, control questions that provide a physical response for comparison, and 
irrelevant questions that also provide a response or the lack of a response for comparison 
[1][3]. Three general types of test formats are in use today. These are Control Question 
Tests, Relevant-Irrelevant Tests, and Concealed Knowledge Tests. Each of the general 
test formats may have a number of more specific variations. Each test consists of two to 

^hese sections were exerpted from Jacobs [10]. 
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five charts containing a prescribed series of questions. The test format that is used in an 
examination is determined by the test objective [2][3]. 

The concealed knowledge test, also called peak of tension test, is used when facts about a 
crime are known only by the investigators and not by the public. In this case, a subject 
would not know the facts unless he or she was guilty of the crime. For example, if a gun 
was used in a crime and the public did not know the caliber, an examiner could ask a 
suspect if it was a 22 caliber, a 38 caliber, or a 9 mm. If the gun used was a 9 mm and the 
suspect was deceptive, a polygraph chart would probably indicate evidence of deception. 

A control question test is often used in criminal investigations. Relevant-Irrelevant tests 
are usually used to test people trying to obtain security clearance or get a job. In this test, 
relevant questions are compared to irrelevant questions. Very few control questions are 
asked. The purpose of control questions in this test is to make sure that the subject is 
capable of reacting at all. 

1.4 Present Day Equipment2 

The most popular polygraph machines today are the Reid Polygraph developed in 1945 
and the Axciton Systems computerized polygraph developed in 1989 [1][4]. The Reid 
polygraph scrolls a piece of paper under pens that record the biological signals. The 
Axciton polygraph digitizes physiological signals and uses a computer to process them. 
The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer 
based system for ranking the subject responses but allows printouts of the charts to be 
scored by hand the traditional way. 

Both machines record the same biological signals using standard methods. Blood pressure 
is measured by placing a standard blood pressure cuff on the arm over the brachial artery. 
Respiration is monitored by placing rubber tubes around the abdominal area and the chest 
of the subject. This results in two signals, an upper and lower respiratory signal. Skin 
conductivity is measured by placing electrodes on two fingers of the same hand. 

2This section was exerpted from Jacobs [10]. 
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2 Classifier Algorithm 

2.1 K-Nearest Neighbor Algorithm3 

K-nearest neighbor algorithm is a supervised classification method. There is no need for 
the training or adjusting the classifier. A set of labeled input samples is given to the 
classifier. When a new sample is given to the system, it finds its K nearest neighboring 
samples, and assigns this sample to the class that the majority of the neighbors belong to. 
K could be any positive integer. When K is set to 1, the algorithm is called the nearest 
neighbor algorithm. In this case each new sample is assigned to the class of its nearest 
neighbor. If K is greater than 1, it is possible that there is no majority class. To remove 
this tie, the sum of the distances of the new sample to its neighbors in each class is 
computed and the sample is assigned to the class that has the minimum distance. The 
main advantage of using this method is that the samples of each class are not needed to 
cluster in a pre specified shape. For example, for a two class classification, the K-nearest 
neighbor classifier can still give very good results if the samples of each class are clustered 
in two distinct points in the space. The algorithm for the K nearest neighbor is shown in 
flow chart 1. It is supposed that C is the number of classes, K is the number of neighbors 
in KNN, JC. x, is the \th labeled sample and y is the input to be classified. 

3This section was exerpted from Layeghi [11]. 
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Flow chart 1. Fuzzy K Nearest Neighbor Algorithm 
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The fuzzy K nearest neighbor algorithm uses the same idea of conventional K nearest 
neighbor algorithm, that is finding the K samples that are closest to sample to be classified. 
But there is a conceptual difference in classification. When fuzzy classification is used, the 
input is not assigned to a single class. Instead, the degree of belongings of the input to 
each class is determined by the classifier. By using this method more information is 
obtained about the input. For example if the result of classification determines 
membership of an input to class A is 0.9 and to class B is 0.1, it means the input belongs 
to class A with a very good possibility. But if the membership to class A is 0.55 and to 
class B is 0.45, it means that we cannot be very sure about the classification of the input. 
If the crisp classifier is used, in both cases the input will be assigned to class A and no 
further information is obtained. 

Refer to [5] [6] for more detailed discussions about fuzzy K nearest neighbor algorithms. 
The flowchart for a fuzzy K nearest neighbor classifier is drawn in flow chart 2. 

The first step in the fuzzy K nearest neighbor algorithm is the same as first step in crisp 
classifier. In both cases K..nearest neighbors of the input are found. While in crisp 
classifier the majority class of the neighbors is assigned to the input, in Fuzzy classifier 
membership of the input to each class should be found. In order to do so the membership 
vector of each sample is combined to obtain the membership vector of the input. If the 
samples are crisply classified, membership vectors should be assigned to them. One 
method to do so is to assign the membership of 1 to the class that it belongs to, and 
membership of 0 to other classes. Other methods assign different memberships to the 
samples according to its distance from the mean of the class, or the distances from the 
nearby samples of its own class and the other classes. 

When the membership vectors of the labeled samples are specified, they are combined to 
find the membership vector of the unknown class. This procedure should be done in a 
way that samples that are closer to the input have more effect on the resultant membership 
function. The following formula uses the inverse distance to weigh the membership 
functions, x is the input to be classified,*, is the)th nearest neighbor and ».. is the 
membership of the j/A nearest neighbor of the input in class i. D(x,y) is a distance measure 
between the vectors x and y which could be the Euclidean distance. 

iXfi/ZYx,*^; 
U
<W = —K T— 

^(l/Dfx.x^) 
.7=1 

m is a parameter that changes the weighing effect of the distance. When m » 1, all the 
samples will have the same weight. When m approaches 1, nearest samples have much 
more effect on the membership value of the input. ' 
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3 Frequency and correlation Domain Features 

3.1 Preview 

The purpose of this chapter is to show how the frequency and correlation domain 
representations of polygraph signals can be used effectively in polygraph analysis. The first 
step in analysis of a time series is to plot the data and to obtain simple descriptive 
measures of the main properties of the series. For some series, in addition to features such 
as trend, seasonal effect and cyclic changes, more sophisticated features such as mean, 
variance, auto correlation and frequency content will be required to provide an adequate 
analysis. 

Most physical processes, including polygraph signals, involve a random element in their 
structures. Currently, human examiners score polygraph tests by analyzing obvious 
features in the time domain. It is presumed that processing polygraph signals in frequency 
and correlation domain will provide features which are discriminator between deceptive 
and non-deceptive subjects. Before finding the frequency domain features the trend in the 
electrocardiogram channel was eliminated. In order to do so, a high frequency 
electrocardiogram channel, called heart pulse, is produced by highpass filtering it. 

The goal of this chapter is to explain the techniques used to extract appropriate features in 
frequency and correlation domains. The methods for estimating features of the polygraph 
signals such as fundamental frequency, spectral density and cross correlation between the 
channels will be discussed. 

3.2 Fundamental Frequency 

One feature which is considered important in the frequency domain is the fundamental 
frequency of the signal. The purpose of finding the fundamental frequency is to classify 
the way the frequency changes in a specific time segment. The assumption in polygraph 
signals is that the frequency of the signal changes after a relevant or a control question is 
asked. Different methods have been proposed to find the fundamental frequency of a 
signal. One of these methods is using the auto correlation function. 

The auto correlation representation of a signal is a convenient way of displaying certain 
properties of the signal. For example, the auto correlation function of a periodic signal is 
also periodic with the same period. For periodic signals with period P, the auto 
correlation function attains a maximum at samples 0,+P ,±2P , .... Regardless of the time 
origin of the signal, the period can be estimated by finding the location of the first 
maximum in the auto correlation function [7]. 
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This property makes the auto correlation function an attractive basis for estimating 
periodicity in most signals including the electrocardiogram and respiration signals of the 
polygraph records.   Therefore, a short segment of the signals (electrocardiogram and 
respiratory) after each question is selected and pre-processed. The auto correlation is then 
calculated for the windowed segments of the heart pulse and respiratory signals using 
MATLAB. Figure 1 shows the examples of auto correlation functions computed for heart 
pulse with N = 150 and upper respiratory with N = 400 sampled at 30 Hz. N is the 
number of samples. 

It is noticeable that the auto correlation functions of the above signals are a mixture of 
damped exponential and sinusoids. For the heart pulse, peaks occur approximately at 
multiples of 20 samples indicating a period of 20/30=0.67 seconds or a fundamental 
frequency of approximately 1.5 Hz. For the upper respiratory, peaks occur approximately 
at multiples of 133 samples indicating a period of 133/30 = 4.4 seconds or a fundamental 
frequency of approximately 0.23 Hz. 
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Figure 1. Plots of auto correlation function for (a) heart pulse and (b) upper respiratory 
where k is the number of samples. 
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For some subjects, the period of the electrocardiogram or upper respiratory signal changes 
across the N sample interval. Also, the shape of the signal varies somewhat from period 
to period. Because of the finite length of segments involved in the computation of auto- 
correlation, there is less and less data involved in the computation as the lag increases. 
This leads to the reduction in amplitude of the correlation peaks as lag increases. 

An important issue is how N should be chosen to give a good indication of periodicity. 
Because we are interested in observing changes in signal after the question is asked, N 
should be small. On the other hand, it should be noted that to get any indication of 
periodicity in the auto correlation function, the window must have the duration of at least 
two periods of the waveform. In order to choose the best N, the fundamental frequency 
for different time frames without overlap were calculated and the results were examined. 
The fundamental frequencies of heart pulse for the four second frame are shown in Table 1 
and 2 in Appendix A. No single value of N is entirely satisfactory because the frequency 
changes from individual to individual. However, a suitable practical choice for N was 
chosen on the order of 180 and 480 for heart pulse and upper respiratory respectively. 

3.3 Modeling 

Detailed information about a time series can be obtained from creating a model. In this 
section a model will be found for the heart pulse signal. Finding a suitable model for a 
given time series depends on the properties of the series and the number of observations 
available. In signal modeling the output signal is known and the model development is 
based upon the fact that signal points are correlated. Estimated auto correlation function 
(ACF) of the time series is helpful in identifying which type of ARMA model is 
appropriate and gives the best representation of the signal. 

The ACF of a MA process cuts off at lag q whereas the ACF of an AR process is a 
mixture of damped exponential and sinusoids and dies out slowly. For example, if rl is 
significantly different from zero but the subsequent values of n are all close to zero then 
an MA(1) model is indicated since its theoretical ACF is of this form. Alternatively, if 
r\,ri,n ,.. appear to be decreasing exponentially, then an AR(1) model may be 
appropriate. 

It is usually difficult to find the order of an AR process from the sample ACF alone. A 
model with too low an order will not represent the properties of the signal.   Also a model 
with too high an order will represent any measurement noise or inaccuracies. Therefore, 
neither a high order nor a low order model will be a reliable representation of the signal. 
As a result, method that will determine the model order should be used. One approach is 
to fit AR processes of progressively higher order, to calculate the squared error for each 
value of model order (M), and to plot this against model order. It may then be possible to 
see the value of M where the curve flattens out and the addition of extra parameters gives 
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little improvement in fit. Another approach based upon the principals of prediction is that 
to increase the model order until the residual process becomes a white noise. 

Other criteria have been developed that are based upon concepts in mathematical statistics 
[9]. The first one is the final prediction error (FPE), 

FPE = P^±^±1 (3.3a) 
N-M-l 

Where P, N and M are error, number of samples and model order respectively. 

The fractional portion of FPE increases with M and accounts for the inaccuracies in 
estimating the parameters. The other criterion is called Akaike's information criterion 
(AIC). It is: 

AIC=Annp2 + 2P (3.3b) 

The first criterion tends to have a minimum at values of M that are less than the model 
order and the second one tends to overestimate model order. 

The above criteria were calculated for electrocardiogram signal and the results were 
plotted in Figure 2. As shown in Figure 2(a), the error decreases but there is no definitive 
slope change. The largest decrease occurs from order 1 to 2 and the error does not seem 
to decrease significantly with orders greater than 11. For FPE (Figure 2(b)) and AIC 
(Figure 2(c)) plots, the error does not decrease much with orders greater than 11. Thus, 
the order can be approximately 10. The Levinson-Durbin algorithm was used to calculate 
the AR parameters with order 10 for heart pulse. These parameters were used as features. 
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Figure 2. The different criteria for heart pulse versus model order (M): (a) error; (b) 
FPE; (c)AIC. 

3.4 Cross-covariance and cross-correlation functions 

In general, it may be necessary to study the interactions between two processes with 
possibly different scales of measurement or different variances. In polygraph where time 
series data are generated from more than one channel at a time, features like cross- 
correlation which contain information about relationships between the channels are 
extracted. The cross covariance(Gy) and cross correlation function (/v) are defined as 
following: 

N-\ 

v N 

ny = Cxy/J[Cxx(0)Cyy(0)] 

where    nix = 2_,      tny = 2_,- 

[* = 0,l,....(tf-l)l   (3.4a) 

(3.4b) 

(3.4c) 

Cxx(0) and Cyy(0) are the variances of observations on X and Y respectively. 
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This estimate is asymptotically unbiased. However, the variance of the estimate depends 
on the auto correlation functions of the two components. Therefore, for moderately large 
values of N it is possible for two series, which are actually uncorrelated, to give rise to 
large cross-correlation coefficients which are actually spurious. Thus, both series should 
first be filtered to convert them to white noise before computing the cross-correlation 
function [8]. 

In order to determine the relationship between the upper respiratory and heart rate, the 
cross correlation between them was calculated. Figure 3 shows the cross correlation 
between heart pulse and upper respiratory for a control and a relevant question for two 
different deceptive and non deceptive cases. 
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Figure 3. Cross correlation between upper respiratory and heart pulse before 
modeling, (a) and (b) 90 seconds after relevant question 5. (b) and 
(c) 90 seconds after control question 6. 
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3.5 Whitening filter 

For a given process {x(n)}, the innovation process {v(n)} is defined as a white noise 
process such that {v(n)} can be determined from the signal (x(n)} by the whitening filter. 
The innovations representation of a random process is a powerful analytic tool. The 
innovation process makes the interpretation of the original process simpler than the 
original signal. Yet both processes contain the same statistical information. In other 
words, there is no loss of information as a result of the transformation. 

As stated in section 3.4, it is possible for two series, which are actually uncorrelated, to 
give rise to large cross-correlation coefficients which are actually spurious. Thus, the 
series should first be filtered to convert them to white noise before computing the cross- 
correlation function. The AR parameters were used to design the whitening filter. Then, 
the heart pulse signal was filtered to convert it to white noise. 

When the time series is white noise and purely random, the neighboring points of the ACF 
are uncorrelated. In order to compare the whitening filter output and the theoretical white 
noise, both the output of the whitening filter and its auto correlation for electrocardiogram 
were plotted in Figure 4. It is seen that the auto correlation shows high correlation for lag 
zero (k=175) and small correlation for other lags as it expected. 

1.5 

0.5 

\\\     "ü     f M tfU m k   I  1  M fl 

hi. *L 
50 100 

(a) 
150 200 

20 

.1 15 .»—• 
J2 
a> 

g 10 
o 
o 

250 

^A«AJW/WU^ 
50   100  150  200  250  300  350  400 

(b) 

Figure 4. Plots of (a) white noise (output of the whitening filter); (b) auto correlation 
of the white noise. 
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The heart pulse and its innovation process (pre whitening filter output) contain the same 
information. The results of cross-correlation between upper respiratory and heart rate 
signals after pre whitening are shown in figure 5. It can be seen that the cross-correlation 
after modeling is similar to the cross correlation before modeling (Figure 2) with less 
spurious peaks. The maximum and minimum value of cross correlation and their lags 
were considered as potential features in correlation domain. As presented in figure 5 (b), 
heart pulse and upper respiratory channels are positively correlated after the 30 to 90 lags 
(1-3 seconds) and are negatively correlated after 130 lags (4.3 seconds). 
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Figure 5. Cross correlation between heart pulse and upper respiratory after modeling for 
(a) and (b) 90 seconds after relevant question 5. (b) and (c) 90 seconds 
after control question 6. 
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3.6 Spectral Analysis 

In this section the frequency properties of the polygraph signals such as power spectrum 
and cross spectral density are analyzed. The cross-correlation and cross spectral density 
are the tools for examining the relationships between two signals in the time and frequency 
domains respectively. The power spectrum shows how the variance of the signal is 
distributed with frequency. The total area underneath the spectrum curve is equal to the 
variance of the signal. A peak in the spectrum indicates an important contribution to the 
variance at different frequencies. 

The estimated spectrum for different channels were plotted on linear scale in Figure 6 and 
on logarithmic scale in Figure 7. For spectrum showing large variations in power, a 
logarithmic scale makes it possible to show more detail over a wide range. However, this 
exaggerates the visual effects of variations where the spectrum is small. It is often easier 
to interpret the spectrum plotted on a linear scale than logarithmic scale. 
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Figure 7. Frequency contents of four polygraph signals on logarithmic scale, (a) GSR 
for 480 samples, (b) heart pulse for 200 samples, (c) and (d) lower and upper 
respiratory for 480 samples. 

Figure 7 shows for GSR the variance is concentrated at low frequencies indicating a trend 
or non-stationary behavior. The spectrum for heart pulse signal shows the presence of 
harmonics with a large peak at fundamental frequency of f = 2 Hz and related peaks at 
2f, 3f, ....These multiples of the fundamental indicate the non sinusoidal character of the 
main cyclical component. 

The correlation between two signals can be described in the frequency domain by their 
cross amplitude, phase spectra or the squared coherency. The coherency measures the 
linear correlation between the two components of the two channels at frequency f. The 
closer the coherency is to one, the more closely related are the two signals at frequency f. 

The MATLAB function spectrum.m finds the cross-spectrum and coherency between 
upper respiratory and electrocardiogram and are shown in Figure 8. Their cross spectrum 
shows a large peak at f = 2 Hz. Maximum cross spectral density and the magnitude of 
cross spectral density and coherency at fundamental frequency and the second harmonic 
were considered as features in frequency domain. 
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Figure 8. Plots of coherency and cross spectral density between heart pulse and 
upper respitor signals. 

3.7 Integrated spectral distance 

This section describes how to obtain a feature in the frequency domain called integrated 
spectral difference. This feature was introduced by Martin and Pounds [12]. Other 
features are calculated separately for each control, relevant and irrelevant questions. The 
integrated spectral distance is calculated in a different way than the other features. This 
feature is calculated by taking the difference between the cumulative values of the power 
spectral density for each relevant and its closest control question. The integrated spectral 
distance measures the distance between a control and a relevant question directly. Figure 
9 shows the cumulative spectral density for a control and a relevant question. The 
maximum, the frequency where this maximum happens and the area underneath were 
considered as features. 
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3.8 Frequency and Correlation Domain Features 

Table 1 summarizes the frequency and correlation features explained in the above sections. 

Feature Channel 
Maximum cross correlation between 2 & 6 
Lag of maximum cross correlation between 2 & 6 
Minimum cross correlation between 2 & 6 
Lag of minimum cross correlation between 2 & 6 
Spectral value at fundamental frequency 2 
Spectral value at fundamental frequency 6 
Spectral value at (fundamental frequency of channel 2) *2 2 
Spectral value at (fundamental frequency of channel 6) *2 6 
Maximum cross spectral density between 2 & 6 
Coherency at fundamental frequency of channel 2 between 2 & 6 
Coherency (at fundamental frequency of channel 2)*2 between 2 & 6 
Fundamental frequency 2 
Fundamental frequency 5 
Maximum or minimum integrated spectral difference 1 
Frequency of the maximum integrated spectral difference 1 
Area underneath integrated spectral difference 1 
maximum or minimum integrated spectral difference 2 
Frequency of the maximum integrated spectral difference 2 
Area underneath integrated spectral difference 2 
Auto regressive parameter 2 

Table 1. Frequency and correlation domain features. 

2-23 



4 Feature extraction 

4.1 Preprocessing 

This chapter explains the steps taken in feature extraction algorithm. In polygraph tests, 
four physiological responses are measured. These responses are: upper respiratory, lower 
respiratory, galvanic skin response (GSR) and electrocardiogram. These four polygraph 
responses are processed into six channels. A low frequency electrocardiogram channel is 
produced by lowpass filtering the electrocardiogram channel. A high frequency 
electrocardiogram channel is produced by highpass filtering it. The high frequency 
electrocardiogram, called heart pulse, the low frequency electrocardiogram, called blood 
volume and derivative of the low frequency electrocardiogram are used instead of one 
electrocardiogram channel. To eliminate the noise and any trend, all the signals are 
filtered and detrended. For more information about the filtering and detrending refer to 
Jacobs [10]. 
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4.2 Feature Selection 

Many of the time domain features were selected based on the examiners' suggestions. 
However, many of the standard statistical features were also considered as potential 
features. For more information about time domain features refer to Jacobs [10]. The 
selected features and the channels which they were extracted from are listed below. 

Features Channel 
1) Mean 1,2 , 3, 4, 5 , 6 
2) Standard deviation 1,2,3,4,5,6 
3) Minimum 1,2 , 3, 4, 5 , 6 
4) Maximum 1,2 , 3, 4, 5 , 6 
5) Curve length 1 ,2 , 3, 4, 5 , 6 
6) Mean of derivative 1,2 , 3, 4, 5 , 6 
7) Median of derivative 1 ,2 , 3, 4, 5 , 6 
8) Average amplitude of peaks 2,5,6 
9) Minimum amplitude of peaks 2,5,6 

10) Derivative of amplitudes of peaks 2,5,6 
11) Number of peaks 2,5,6 
12) Minimum subtracted from maximum 1 ,2 , 3, 4, 5 , 6 
13) Inhalation/exhalation 5,6 
14) ratio of inhalation/exhalation before 5,6 

and after a question is asked 

15) Fundamental frequency 2,5 

16) Maximum cross correlation between 2 and 6 
17) Lag of maximum cross correlation between 2 and 6 
18) Minimum cross correlation between 2 and 6 
19) Lag of minimum cross correlation between 2 and 6 

20) Spectral value at fundamental frequency between 2 and 6 
21) Spectral value at second harmonic between 2 and 6 
22) Maximum cross spectral density between 2 and 6 
23) Coherency at fundamental frequency between 2 and 6 
24) Coherency at second harmonic between 2 and 6 

25) Autoregresive parameters(AR) 2 

26) Maximum or minimum 1,2 
integrated spectral difference (ISD) 

27) Frequency of maximum ISD 1,2 
28) Area under ISD 1,2 
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4.3 Feature Extraction Algorithm 

All features are extracted for 10 relevant, irrelevant and control questions except features 
26, 27 and 28 that are extracted for each relevant and its closest control question. The 
program called fextract.m extracts all the basic features for each question on each chart 
for about 18 non-deceptive and 51 deceptive cases. Due to the small number of non- 
deceptive cases, each chart for a subject was used as a separate case. By doing this 50 
non-deceptive and 150 deceptive files were created. 

The test format used in this project is MGQT format. It is a type of control question test 
in which relevant, irrelevant and control questions are asked in a specific order. Each 
polygraph test is made of three and in very rare cases four charts for each case. The 
order in which the questions are asked is changed in the third and fourth charts and 
sometimes in the second chart. The feature extraction routine needs to have the control, 
relevant and irrelevant questions labeled. Therefore, for each polygraph chart a 
complementary chart called question file was created which contains a matrix called Q. 
The first row of this matrix contains the relevant, the second row the irrelevant and the 
third row the control questions respectively. 

Fragments of each signal are selected before features are extracted. These fragments are 
shown in Table 2. Start and end points given in the table refer to the time elapsed after the 
question is asked. A vector of features for each file is created by the program feature.m 
which is called by fextract.m program. The program first executes all of the processing 
routines and then extracts the features for each question in the file. The features are 
extracted for the appropriate time segment (see Table 2) of six channels for each 
polygraph file. The time segment is created by taking a sample of time series starting 
several seconds after a question is asked and continuing for a number of seconds. 
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Channel description Channel Start End 

Galvanic Skin conductivity(GSR) 1 2 sec. 14 sec. 

High frequency electrocardiogram 2 2 sec. 9 sec. 

Low frequency electrocardiogram (LC) 3 2 sec. 18 sec. 

Derivative of low frequency 
electrocardiogram (DLC) 

4 0 sec. 8 sec. 

Lower Respiratory (LR) 5 2 sec. 18 sec. 

Upper Respiratory (UR) 6 2 sec. 18 sec. 

Table 2. Time fragment used in feature extraction 

The feature extraction algorithm provides a 960 dimensional vector for each file. The 
features were extracted for the 150 deceptive and 50 non deceptive files and saved in a 
960 by 200 matrix called " M". In order to classify subjects using the difference between 
control and relevant responses, and to make the feature vector smaller, the features were 
combined according to the following method: for each feature / except features 26, 27,28 
from each subject y compute: 

1) The average control responses AvCij 
2) The average relevant responses AvRij 
3) The maximum and minimum control responses MaxCij and MinCij 
4) The maximum and minimum relevant responses MaxRij and MinRij 

The feature vector components for feature i are then: 
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l)Fij(l) = AvRij -AvCij 

2)Fim=AvRiJ-AvCiJ 

AvRij + AvCij 

3)F//'(3) = MaxRij - MaxCij 

4)F//(4) = MinRij - MinCij 

5)Fij(5) = MaxRij - MinCij 

6)F//'(6) = MinRij - MaxCij 

MaxRij 
7)Fy(7) = MaxCij 

For features 26, 27, 28 from each subject./ compute: 

1) The average of relevant-control responses Av(RC(ij) 
2) The maximum of relevant-control responses Max(RC(ij) 
3) The minimum of relevant-control responses Min(RC(ij) 

The feature vector components for feature z are then: 

l)FiJ(l) = Av(RC(ij)) 

2)Fv(2) = Max(RC(ij)) 

3)FiJ(3) = Min(RC(ij)) 

The above procedure is executed by program called procesf.m which creates a 669 by 200 
dimensional matrix called "F". In order to run the classifier program, the matrix F was 
divided into three 100 (50 deceptive and 50 non-deceptive) sets of matrices called setl, 
set2 and set3. These sets are made of 50 non-deceptive cases common in all three sets 
and three 50 different deceptive sets, called deceptive 1, deceptive 2 and deceptive 3 
respectively. The list of the files used in the setl, set2 and set3 are shown in Table 3 in 
Appendix A. 
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5 Results 

5.1 Frequency Domain Clustering 

Classifier is the final stage in a pattern recognition system. The classifier assigns each 
input to one of the classes. The classifier could be designed after studying the distribution 
of samples in each class. The KNN classifier was used in this study because of the 
following: 

1) The uncertainty about the shape of deceptive and non deceptive clusters and 
their sample distributions. 

2) The possibility that the samples for one class cluster around more than one point 
in space. 

The frequency domain features did not create a separate distribution of samples for 
deceptive and non deceptive classes. However, the combination of frequency and time 
domain features resulted in more distinct clusters. Figure 10 and 11 show the examples of 
sample distribution (clustering) for non deceptive (x) and deceptive (+) classes. 
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Figure 10. Plot of maximum of GSR versus maximum of Upper Respiratory. 
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A clustering of two class data 
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5.2 Discussion 

The 669 features are more than can be used by any classification techniques. Thus, the 
classification program and the scatter measurement program were run for each feature in 
each set individually. The results of the first experiment were examined and compared to 
determine the features which were the best discriminators between deceptive and non- 
deceptive subjects. After comparing the results, the 30 features with the highest accuracy 
rate and common in all three sets were selected. These best features were listed in 
Table 3. 

The second experiment used the combination of two features out of the best 30 features. 
The results for the best 30 features were examined for each set separately. The set3 
always had a better performance than the other two sets. However, in order to be 
consistent, the best features common in all three sets were selected as the 30 best features. 
More features were added for combination of three and four. The results are shown in 
Table 4 and 5 in Appendix A. 

As it was discussed before, the classifier was used to compare the effectiveness of the 
single features and to choose the combination of the best features. Changing the classifier 
parameters such as K might change the results of the classification. However, it is not 
practical to change all parameters at the same time. Therefore, the classifier was used 
with the fixed parameters of K=5 and m=2. After selecting the final feature set, theses 
parameters were changed to find the best classification. 
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No feature Description Channel Method 
1 lOmean mean GSR 1 

2 lOcurve curve length GSR 2 

3 lOmed dif median of the derivative GSR 1 
4 lOmax min minimum subtracted from the maximum GSR 2 
5 lOmax maximum of the signal GSR 1 

6 lOmdif mean of derivative GSR 3 

7 20curve curve length Heart pulse 1 

8 20ampcard amplitude of the_peaks Heart pulse 1 

9 20max min minimum subtracted from the maximum Heart pulse 4 
10 20max maximum of the signal Heart pulse 4 

11 20min minimum of the signal Heart pulse 1 

12 30med dif median of the derivative Blood pressure 3 

13 30max maximum of the signal Blood pressure 1 

14 40mean mean Derivative of Blood pressure 1 

15 40max maximum of the signal Derivative of Blood pressure 1 
16 50curve curve length Lower Respiratory 6 
17 50ampr amplitude of the peaks Lower Respiratory 2 
18 50peaknumr number of the peaks Lower Respiratory 5 

19 50ie inhalation divided by exhalation Lower Respiratory 5 

20 50max min minimum subtracted from the maximum Lower Respiratory 2 

21 50max maximum of the signal Lower Respiratory 6 
22 60max min minimum subtracted from the maximum Upper Respiratory 2 
23 60max maximum Upper Respiratory 3 
24 lOstd standard deviation GSR 2 
25 20std standard deviation Heart pulse 1 
26 50std standard deviation Upper Respiratory 6 
27 20armodl auto regressive parameter Heart pulse 7 
28 26psdcohl max cross spectral density Heart pulse, Lower 

Respiratory 
1 

29 lOisdl frequency of maximum integrated spectral 
difference of control-relevant pair 

GSR 1* 

1 30 20isdl area under integrated spectral difference Heart pulse 3* 

Methods: l=Difference of Averages, 2=Normalized Average, 3=Max-Max, 4=Min-Min, 

5=Max-Min, 6=Min-Max, 7=Max/Min , l*=Average of relevant-control pairs, 3*=Max of relevant- 

control pair. 

Table 3.30 best selected Features 
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Conclusion 

The classification results improved consistently by increasing the number of features. The 
best features are {5 9 21 23} and (5 21 23 29}with 81 and 80 percent correct 
classification respectively. These features are maximum of GSR(5), difference between 
maximum and minimum of heart pulse(9), maximum of lower respiratory(21), maximum 
of upper respiratory(23) and frequency of maximum integrated spectral difference of 
control-relevant pair for GSR(29). 

The best features are simple and obvious features such as maximum and minimum of the 
polygraph signals. In other words, the features that an examiner can see are the best 
discriminators between deceptive and non deceptive. 

It is important to notice that the best features are the combination of features from all 4 
different GSR, heart pulse, lower and upper respiratory. As expected, each subject shows 
reaction to different channels. Therefore, the combination of all channels is the best 
representative of deception. 

Another point to notice is that the set3 has better classification results than the other two 
sets. For example, the features {9 14 19 24} and {5 21 23 29}show 87.4 and 86.6 
percent correct classification for set3. The data in set3 is made of 50 non deceptive 
common in all three sets and 50 deceptive cases. This set of deceptive cases, called 
deceptive 3, are the Acxiton files listed in Table 3 in Appendix A. It is possible that there 
is some characteristic in these deceptive files that results in better classification. 

As stated before, due to the small number of non-deceptive cases available, each chart for 
a subject was used as a separate case. After classifying the charts, the charts for each case 
were combined in a way that each case was assigned to the class that the majority of the 
charts belong to. Using this method, the classification results improved from 81 percent 
to 85.6 percent for setl and set2 and from 87 percent to 91 percent for set3. The final 
result is included in appendix A. 
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FILE NAME 

QQAV53P6.021 

QQAV53P6.031 

QQBQ4SHI.011 

FUNDAMENTAL FREQUENCY (Hz) 
CHANNEL : Heart pulse, WINDOW: 120 S 

relevant =     1.3636    1.3636    1.3636    1.4286 
control =      1.2500    1.5000 

relevant =     1.5000    1.3636    1.3043    1.3636 
control =      1.4286    1.3636    1.3636    1.4286 

relevant =    2     2     2     2 
control = 2     2 

QQBQ4SHI.021 relevant = 
control = 

1.7647 
1.8750 

1.7647 
1.76 

1.7647 1.8750 

QQBQ4SHI.031 relevant = 
control = 

1.7647 
0.8571 

1.7647 
1.7647 

1.7647 
1.7647 

1.7647 
1.6667 

QQBSS7WT.011 relevant = 
control = 

1.5000 
1.5789 

1.5000 
1.4286 

1.5000 1.3636 

QQBSS7WT.021 relevant = 
control = 

1.5000 
1.5000 

1.4286 
1.4286 

1.4286 1.4286 

QQBSS7WT.031 relevant = 
control = 

1.4286 
1.4286 

1.5000 
1.5000 

1.4286 
1.4286 

1.3636 
1.5000 

Table 1. Fundamental frequency for non-deceptive files for 120 seconds for heart pulse. 
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FILE NAME FUNDAMENTAL FREQUENCY(Hz) 
CHANNEL : CARDIO, WINDOW: 120 S 

QQ9SOW8L.021 relevant =     1.7647    1.6667    1.5789    1.6667 
control  =    1.5789    1.5789 

QQ9SOW8L.031 relevant=      1.5789    1.5789    1.6667    1.6667 
control =      1.8750    1.6667    1.7647    1.5789 

QQ9SQIK9.011 relevant =     1.5789    1.5000    1.5000    1.5789 
control =     1.5789    1.5000 

QQ9SQIK9.021 

QQ9SQIK9.031 

relevant = 
control = 

relevant = 
control = 

QQ9W0B9F.011 relevant = 
control = 

1.5000 
1.4286 

1.4286 
1.5789 

1.5000 1.5000 

QQ9W0B9F.031 relevant= 
control = 

1.4286 
1.5000 

1.5000 
1.4286 

1.4286 1.4286 

QQ9W0B9F.041 relevant = 
control = 

1.4286 
1.4286 

1.3636 
1.3636 

1.4286 1.5000 

QQ9U4FMU.011 relevant = 
control = 

1.5789 
1.6667 

1.6667 
1.5789 

1.6667 1.6667 

Table 2. Fundamental frequency for deceptive files for 120 seconds for heart pulse. 
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Non deceptive 
QQ8R9OIO.011 
QQ8R9OIO.021 
QQ8R9OIO.031 
QQ95LU1T.011 
QQ95LU1T.021 
QQ95LU1T.031 
QQAURNUS.021 
QQAURNUS.031 
QQAV53P6.011 
QQAV53P6.021 
QQAV53P6.031 
QQBQ4SHI.011 
QQBQ4SHI.021 
QQBQ4SHI.031 
QQBSS7WT.011 
QQBSS7WT.021 
QQBSS7WT.031 
QQ7OXM60.021 
QQ7RH0RO.011 
QQ7RH0RO.021 
QQ7RH0RO.031 
QQ7R51P9.011 
QQ7R51P9.021 
QQ7R51P9.031 
QQ9TDSP3.011 
QQ9TDSP3.021 
QQ9TDSP3.031 
QQA8OWOI.011 
QQ A8OWOI.021 
QQA8OWOI.031 
QQBT22O6.011 
QQBT22O6.021 
QQBT22O6.031 
QQBO9O_9.011 
QQBO9O_9.021 
QQBO9O_9.031 
QQBC7PP6.011 
QQBC7PP6.021 
QQBC7PP6.031 
QQCHCK_O.011 
QQCHCK_O.021 
QQCHCK_O.031 
QQCDTKP0.011 
QQCDTKPO.031 
QQCDTKP0.041 
QQCM5Y56.011 
QQCQQT8Y.011 
QQCQQT8Y.021 
QQCQQT8Y.031 
QQCQQT8Y.041 

Deceptive 1 
QQ4Q1O83.011 
QQ4Q1O83.021 
QQ4Q1O83.031 
QQ4Q3MDC.011 
QQ4Q3MDC.021 
QQ4Q3MDC.031 
QQ51DE36.011 
QQ51DE36.021 
QQ51DE36.041 
QQ6RQGH6.011 
QQ6RQGH6.021 
QQ6RQGH6.031 
QQ6RQGH6.041 
QQ6T711O.011 
QQ6T7110.021 
QQ6T7110.031 
QQ6Z59IG.011 
QQ6Z59IG.021 
QQ6Z59IG.031 
QQ7PP9B9.011 
QQ7PP9B9.021 
QQ7PP9B9.031 
QQ7PDU1X.011 
QQ7PDU1X.021 
QQ7PDU1X.031 
QQ7_PIPF.011 
QQ7_PIPF.021 
QQ7_PIPF.031 
QQ7_JT70.011 
QQ7_JT70.021 
QQ7JT70.031 
QQ738DYX.011 
QQ738DYX.021 
QQ738DYX.031 
QQ75ULP9.011 
QQ75ULP9.021 
QQ75ULP9.031 
QQ79_EYF.011 
QQ79_EYF.021 
QQ79_EYF.031 
QQ7BGDML.011 
QQ7BGDML.021 
QQ7BGDML.031 
QQ7ETC8I.011 
QQ7ETC8I.021 
QQ7ETC8I.031 
QQ7JAQCS.011 
QQ7JAQCS.021 
QQ7JAQCS.031 
QQ7LX5QO011 

Deceptive 2 
QQ7LX5Q0.021 
QQ7LX5Q0.031 
QQ7MN2Y0.011 
QQ7MN2Y0.021 
QQ7MN2Y0.031 
QQ7TC5UF.011 
QQ7TC5UF.021 
QQ7TC5UF.031 
QQ7TQVER011 
QQ7TQVER021 
QQ7TQVER031 
QQ7TVADC.011 
QQ7TVADC.021 
QQ7TVADC.031 
QQ7U2T4R.011 
QQ7U2T4R.021 
QQ7U2T4R031 
QQ7YP7QU.011 
QQ7YP7QU.021 
QQ7YP7QU.031 
QQ7YZOJ3.011 
QQ7YZOJ3.021 
QQ7YZOJ3.031 
QQ8_0DPT.011 
QQ8_0DPT.021 
QQ8_0DPT.031 
QQ8_0DPT.041 
QQ8_2UQ9.011 
QQ8_2UQ9.021 
QQ8_2UQ9.031 
QQ800IG6.011 
QQ800IG6.021 
QQ800IG6.031 
QQ82OIU9.011 
QQ82OIU9.021 
QQ82OIU9.031 
QQ82SUTX.011 
QQ82SUTX.021 
QQ82SUTX.031 
QQ860ZNU.011 
QQ860ZNU.021 
QQ860ZNU.031 
QQ89U_ZR011 
QQ89UZR021 
QQ89U_ZR.031 
QQ8ATU26.011 
QQ8ATU26.021 
QQ8ATU26.031 
QQ8FGMVI.011 
QQ8FGMVI.021 

Deceptive 3 
QQ8RAJ0C.011 
QQ8RAJ0C.021 
QQ8RAJ0C.031 
QQ9EUKVT.011 
QQ9EUKVT.021 
QQ9EUKVT.031 
QQ9IOOXO.021 
QQ9IOOXO.041 
QQ9SOW8L.011 
QQ9SOW8L.021 
QQ9SOW8L.031 
QQ9SQIK9.011 
QQ9SQIK9.021 
QQ9SQIK9.031 
QQ9W0B9F.011 
QQ9W0B9F.031 
QQ9W0B9F.041 
QQ9U4FMU.011 
QQ9U4FMU.021 
QQ9U4FMU.031 
QQ9Y_SVF.011 
QQ9Y_SVF.021 
QQ9Y_SVF.031 
QQ9YH3QF.011 
QQ9YH3QF.021 
QQ9YH3QF.031 
QQA2TT4C.011 
QQA2TT4C.021 
QQA2TT4C.031 
QQA3HIRX.011 
QQA3HIRX.021 
QQA3HIRX.031 
QQA32UTF.011 
QQ A32UTF.021 
QQA32UTF.031 
QQA6U_EF.011 
QQA6U_IF.031 
QQA6U_IF.041 
QQAM4E3L.011 
QQAM4E3L.021 
QQAM4E3L.031 
QQARF2_X.011 
QQARF2_X.021 
QQARF2_X031 
QQAWA38X.011 
QQAWA38X.021 
QQAWA38X.031 
QQAYXZGU.011 
QQAYXZGU.021 
QQAYXZGU.031 

Table 3. List of files used in this experiment. 50 non-deceptive cases and 50 deceptive 

cases from setl, set2 and set3 are listed in column 1 through 4 respective 
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Set Features accuracy 

Setl 10  21 
5   11 
5  21 

26 
23 
23 

79.4 
77.6 

77.4 

Set2 12   20 
19  24 
5  21 

24 
30 
23 

79.8 
78.6 

77.4 

Set3 9   19 
5  23 
5  21 

24 
29 
23 

85.2 
82.4 
81.2 

Average 5   23 
5   7 
5   21 

29 
23 
23 

78.2 
77.6 
77.3 

Table 4. The three best features of combination of 3 for each set and their average. 

Set Features accuracy 

Setl 5   9 
5  11 
5  21 

21 
21 
23 

23 
23 
29 

81.0 
80.2 
74.4 

Set2 5  14 
5   9 
5  21 

23 
21 
23 

29 
23 
29 

81.0 
79.4 
79.0 

Set3 9  14 
5  21 
5  21 

19 
23 
23 

24 
29 
9 

87.4 
86.6 
82.5 

Average 5   9 
5  21 
5  21 

21 
23 
23 

23 
29 
11 

81.0 
80.0 
79.8 

Table 5. The three best features of combination 4 for each set and their average. 
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File           Membership     Defuzzified Result 
1.0000          0.2736                      0 
2.0000          0.3339                      0 
3.0000          0.5397                      0 0 

4.0000          0.5450                      0 
5.0000          0.7423          1.0000 
6.0000          0.1732                      0 0 

7.0000          0.8901          1.0000 
8.0000          1.0000          1.0000 1      Misclassified 

9.0000          0.5376                      0 
10.0000          0.1742                      0 
11.0000          0.4366                      0 0 

12.0000          0.3458                      0 
13.0000          0.5145                      0 
14.0000          0.5178                      0 0 

15.0000          0.1016                      0 
16.0000                      0                      0 
17.0000                      0                      0 0 

18.0000          0.1334                      0 0 

19.0000                      0                      0 
20.0000                      0                      0 
21.0000          0.2923                      0 0 

22.0000                      0                      0 
23.0000                      0                      0 
24.0000          0.1607                      0 0 

25.0000                      0                      0 
26.0000          0.4421                      0 
27.0000          1.0000          1.0000 0 

28.0000          0.3307                        0 
29.0000          0.0583                      0 
30.0000          0.4965                      0 0 

31.0000          0.3505                      0 
32.0000          0.1181                      0 
33.0000          0.2101                      0 0 

Table 6. Classification of the files in Setl. 
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File Membership    Defuzzified 
34.0000 0.5970 
35.0000 
36.0000 0.1193 

37.0000 0.3174 
38.0000 0.8117 1.0000 
39.0000 0.0997 

Result 

40.0000 
41.0000 
42.0000 

43.0000 
44.0000 
45.0000 

46.0000 

47.0000 
48.0000 
49.0000 
50.0000 

51.0000 
52.0000 
53.0000 

54.0000 
55.0000 
56.0000 

57.0000 
58.0000 
59.0000 

0.1889 
0.4215 
0.1635 

0.6474 1.0000 

0.5495 

0.1115 

0.3986 

0.6709 1.0000 
1.0000 1.0000 
0.5297 

0.7245 1.0000 
0.9200 1.0000 
1.0000 1.0000 

0.9105 1.0000 
0.9398 1.0000 
0.5657 

60.0000 0.8968 1.0000 
61.0000 1.0000 1.0000 
62.0000 
63.0000 

0.2793 
0.1088 Misclassified 

64.0000 0.6245 1.0000 

65.0000 0.8643 1.0000 
66.0000 0.5054 0 

Table 6. Continued. 
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File           Membership     Defuzzified Result 
67.0000          0.8498          1.0000 
68.0000          0.6969          1.0000 
69.0000          0.8397          1.0000 l 

70.0000          0.2901                      0 
71.0000          0.8291          1.0000 
72.0000          0.3982                      0 0      Misclassified 

73.0000          1.0000          1.0000 
74.0000          0.2463                      0 
75.0000          0.8043           1.0000 1 

76.0000          0.6676          1.0000 
77.0000          1.0000          1.0000 
78.0000          1.0000          1.0000 1 

79.0000          1.0000          1.0000 
80.0000          0.7538          1.0000 
81.0000          1.0000          1.0000 1 

82.0000          1.0000          1.0000 
83.0000          0.8378          1.0000 
84.0000          1.0000          1.0000 1 

85.0000          0.8926          1.0000 
86.0000          0.5448                      0 
87.0000          0.5751                       0 0      Misclassified 

88.0000          0.8273          1.0000 
89.0000          0.2945                      0 
90.0000          0.9110           1.0000 1 

91.0000          1.0000          1.0000 
92.0000          1.0000          1.0000 
93.0000                      0                      0 1 

94.0000          0.2887                      0 
95.0000          0.2079                      0 
96.0000          0.5793                      0 0      Misclassified 

97.0000          1.0000          1.0000 
98.0000          0.7971          1.0000 
99.0000          0.8708          1.0000 1 

100.0000          1.0000          1.0000 1 

Table 6. Continued. 
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File Membership Defuzzifled Result 
1.0000 0.2579 0 

2.0000 0.1307 0 

3.0000 0 0 0 

4.0000 0.2652 0 
5.0000 0.4345 0 
6.0000 0.1175 0 0 

7.0000 1.0000 1.0000 
8.0000 0.7086 1.0000 1        Misclassified 

9.0000 0.2856 0 

10.0000 0.2745 0 

11.0000 0.3056 0 0 

12.0000 0.2720 0 

13.0000 0.5019 0 

14.0000 0.8871 1.0000 0 

15.0000 0.0912 0 

16.0000 0 0 
17.0000 0 0 0 

18.0000 0.8334 1.0000 1      Misclassified 

19.0000 0 0 

20.0000 0 0 
21.0000 0.5483 0 0 

22.0000 0 0 
23.0000 0 0 

24.0000 0.1535 0 0 

25.0000 0.4955 0 
26.0000 0.1013 0 
27.0000 1.0000 1.0000 0 

28.0000 0.3788 0 
29.0000 0.1638 0 
30.0000 0.0905 0 0 

31.0000 0 0 
32.0000 0.1431 0 
33.0000 0.0937 0 0 

Table 7. Classification of the files in set2. 
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File Membership     Defuzzified 
34.0000 
35.0000 
36.0000 

37.0000 
38.0000 
39.0000 

40.0000 
41.0000 
42.0000 

43.0000 
44.0000 
45.0000 

46.0000 

47.0000 
48.0000 
49.0000 
50.0000 

51.0000 
52.0000 

53.0000 
54.0000 
55.0000 

56.0000 
57.0000 
58.0000 

0.1281 

0.3690 
0.5734 
0.1569 

0.3659 
0.4124 
0.1704 

0.4251 
0.0664 
0.5356 

0.5084 

0.1735 
0.7512 
0.5115 
0.0976 

0.6361 
0.8482 

0.3471 
0.8822 
1.0000 

1.0000 
1.0000 
0.8730 

1.0000 

1.0000 
1.0000 

1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

Result 

59.0000 
60.0000 
61.0000 

62.0000 
63.0000 
64.0000 

0.0389 
0.3643 

1.0000 
0.8174 

1.0000 
1.0000 

0.8875 1.0000 

Misclassified 

65.0000 
66.0000 
67.0000 

0.7995 1.0000 
0.5919 
0.7533 1.0000 

Table 7. Continued. 
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File        Membership Defuzzifled Result 
68.0000 0.7337 1.0000 
69.0000 0.8524 1.0000 
70.0000 0.8602 1.0000 1 

71.0000 0.2217 0 

72.0000 1.0000 1.0000 
73.0000 0.1268 0 0        Misclassified 

  
74.0000 0.8860 1.0000 
75.0000 0.2121 0 

76.0000 0.1684 0 

77.0000 0.6903 1.0000 0         Misclassified 

78.0000 0.7680 1.0000 
79.0000 0.8735 1.0000 
80.0000 0.8013 1.0000 1 

81.0000 0.1748 0 

82.0000 0.5428 0 

83.0000 0.8496 1.0000 0         Misclassified 

84.0000 0.3444 0 

85.0000 0.8298 1.0000 
86.0000 0.8590 1.0000 1 

87.0000 0.6879 1.0000 
88.0000 0.9082 1.0000 
89.0000 0.6653 1.0000 1 

90.0000 0.1636 0 

91.0000 0.8754 1.0000 
92.0000 0.8594 1.0000 1 

93.0000 0.5185 0 

94.0000 0.4932 0 

95.0000 0.7802 1.0000 0         Misclassified 

96.0000 0.8684 1.0000 
97.0000 0.8788 1.0000 
98.0000 1.0000 1.0000 1 

99.0000 1.0000 1.0000 
100.0000 0.8669 1.0000 1 

Table 7. Continued. 
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File         Membership Defuzzified Result 
1.0000          0.3986 0 

2.0000          0.2845 0 

3.0000          0.2562 0 0 

4.0000          0.2786 0 

5.0000          0.3226 0 

6.0000                       0 0 0 

7.0000          1.0000 1.0000 
8.0000          0.5055 0 

9.0000          0.1434 0 0 

10.0000                       0 0 

11.0000                       0 0 0 

12.0000          0.0691 0 

13.0000          0.4744 0 

14.0000          0.4708 0 0 

15.0000                       0 0 

16.0000                       0 0 

17.0000                       0 0 0 

18.0000          0.4623 0 0 

19.0000                       0 0 

20.0000                       0 0 

21.0000          0.2096 0 0 

22.0000                       0 0 

23.0000                       0 0 
24.0000           0.0516 0 0 

25.0000          0.2885 0 

26.0000          0.0981 0 

27.0000          0.9336 1.0000 0 

28.0000          0.2254 0 

29.0000          0.1465 0 

30.0000          0.0680 0 0 

31.0000                       0 0 

32.0000                       0 0 

33.0000          0.0939 0 0 

Table 8. Classification of the files in Set3. 
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File Membership     Defuzzified 
34.0000 0.3917 

35.0000 
36.0000 

37.0000 
38.0000 
39.0000 

40.0000 
41.0000 
42.0000 

43.0000 
44.0000 
45.0000 

46.0000 

47.0000 
48.0000 
49.0000 
50.0000 

51.0000 
52.0000 
53.0000 

54.0000 
55.0000 
56.0000 

57.0000 
58.0000 

59.0000 
60.0000 
61.0000 

0.1689 

62.0000 
63.0000 

0.5220 

0.0969 

64.0000 

65.0000 

0.4810 
0.3154 

66.0000 
67.0000 

0.4552 

0.3285 

0.3690 
0.5593 
0.3522 
0.2325 

1.0000 
0.9052 
0.8115 

0.8397 
0.8754 
0.0930 

0.8330 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
0.6496 
0.5075 

0.0823 
0.7810 
0.2356 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 

1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 

1.0000 

Result 

Misclassified 

Table 8. Continued. 
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File Membership    Defuzzified 
68.0000 
69.0000 
70.0000 

71.0000 
72.0000 
73.0000 

74.0000 
75.0000 
76.0000 

77.0000 
78.0000 
79.0000 

80.0000 
81.0000 
82.0000 

83.0000 
84.0000 
85.0000 

86.0000 
87.0000 
88.0000 

89.0000 
90.0000 
91.0000 

92.0000 
93.0000 

1.0000 

94.0000 

95.0000 

1.0000 
1.0000 

96.0000 
97.0000 

1.0000 
1.0000 
1.0000 

1.0000 

98.0000 
99.0000 

1.0000 
1.0000 

100.0000 

1.0000 
1.0000 
1.0000 

0.6068 
0.9054 
0.4134 

1.0000 

0.2914 

1.0000 
1.0000 
0.8786 

0.9018 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
0.9135 
0.8292 

1.0000 
1.0000 

0.7423 

1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 

1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 1.0000 

0.0902 0 

0.2564 

0.4387 

Result 

Misclassified 

Misclassified 

Table 8. Continued. 
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Appendix B 

Programs 

2-B-50 



function v^armodCva^M) 

% This function finds the autoregressive parameter fo the signal 
% and then prewhitens the signal using the prewhiten filter. 
% Recursive Levinston and durbin algorithm is used to find the AR parameters 

% To use the function the user should enter the signal and the AR model order 
% eg armod(variable, model order) 

Fs=30; %sampling frequency 

r=xcorr(var,'biased'); %rx(0) is at index K 
K=length(var); 
rx=r(K:K+M+l); %rx(0),rx(l),..rx(M) 

% Estimate the reflection coefficients 

a(l,l)=l; 
P=rx(l); 

for k=0:M-l 
accum=0; 
for m=0:k 

accum=accum+a(k+l,m+l)*rx(k-m+2); 
end 
gamma(k+2)=-accum/P; 
P=P*(l-abs(gamma(k+2))A2); 
a(k+2,l)=l; 
a(k+2,k+2)=gamma(k+2); 
for m=l:k 

a(k+2,m+1 )=a(k+1 ,m+1 )+gamma(k+2) *a(k+1 ,k-m+2); 
end 

end 
parameter=a(M+l,:); 

bb=[l]; 
aa=a(M+l,:); 

v=filter(aa,bb,var); 
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function freq=fundfreq(frag) 

% This function called fundfreq (stands for fundamental frequency) 
% finds the fundamental frequency of the desired signal. 
% for the K interval of a question using autocorrelation function. 
% For a periodic signal with the period p, the autocorrelation function 
% attains a maximum at 0,p,2p,.. 
% regardless of the time origin of the signal, the period can be estimated 
% by finding the location the first maximum in the autocorrelation function. 

%For using this function the user should enter the file segment fundfreq(frag). 

Fs = 30; 
K=length(frag); 

y = xcorr(frag); 

q = diff(abs(y(K:2*K-l))); 

z = q>0; 

f=diff(z); 

peak = find(f<0); 

%Sampling frequency 

% finds the autocorralation function 

% differentiates the variable 

% z = 1 if q is greater than 0 

%finds the indices where the 2nd derivative 
%is -1 or +1 which indicates peaks and valleys 

%finds the peak indices 

m =K+peak; 
[ij]=max(abs(y(m))); 

lofreq =find(f>=0); 
if length(lofreq)=length(f) 

freq=0; 
else 

freq = Fs/peak(j); 
end 

%finds the maximum peak value and its index 
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function y=croscor(varl,var2) 

% This function finds the cross correlation between two variables 
% The first variable is prewhitened first by calling 
% armod (stands for AR modeling) program. 
% The function returns maximum and minimum of the croscorrelation 
% and the lag that these maximum and minimum happen. 
%To use this command the user must enter the two 
%variable names to be correlated. 
% 
% eg.   croscor(variablel,variable2) 

K=min(length(var 1), length(var2)); 

M=10; % Model order 
vl=armod(var 1 ,M); 

yd= xcorr(vl (20:K),var2(20:K),'biased'); 

[maximum lagmax]=max(real(yd)); 

[minimum lagmin]=min(real(yd)); 

y=[maximum lagmax minimum lagmin]; 
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function feature=feature(file_name,relevant,irrelevant,control,features,ofFset,CR_feature) 

% This function produces a feature vector for a given file 
% Relevent, irrelevent, and control are vectors which contain 
% the questions these features are extracted from. 
% 
% eg. featurev(t79,[3 5],[1 4], [6 10],feature_list) 

% The above example gives the features for 
% the file t79 of the 3rd and 5th question which are relevent in this 
% MGQT format, the 1st and 4th question which are irrelevent 
% and the 6th and 10th questions which are control 

% feature_list=['10mean(frag)'; 
% '20curve(frag)'; 
% •      '30area(frag)']; 

feature list = features; 

% The channels are ordered as follows: 
% 1:GSR, 2:HiCardio, 3:LowCardio, 4:DerLowCardio, 5:LowResp, 6:UpResp 

% This is a matrix of the time delay after asking a question to start of extracting 
% the feature, and finish extracting the feature for each channel. 

Times=[ 
2,14; 
3,9; 
3,18; 
1,8; 
2,18; 
2, 18]; 

% These are preprocessing functions. 
Preprocess=[   'detgsr'; 

'dethic'; 
'detlc'; 
'dercd'; 
'detlr'; 
'detur']; 
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data=zeros(6, length(file_name(:, 5))); 
% Standardize and detrend the channels and derive new channels 

fori=l:6, 
data(i, :)=eval([Preprocess(i, :),'(file_name)'])'; 

end 

marker = file_name(:,5);    % 0 begin test and end test 
% 0 examiner begins asking question 
% 1 examiner finishes asking question 
% 2 subject begins response to question 
% 9 does not mark an event 

begin = find(marker = 0);     % finds indecies where marker = 0 (question begins) 
begin=begin(2:length(begin)); % elliminates the marker at the beginning of the test 

%%%%%%%%%%%%%%%%%%%%%%%%%%0/o0/o0/o%%0/o0/o%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%0/o%%%%%%%%%%%%%%0/o0/o%%%% 

% i i i i i i i i [ i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i I i I i iiIiIi + iiiiii+++++ 
[iii + iii[ i i i i i 

% This for loop creates feature vectors for each relevant quesion 
% 
% eg x = [mean(gsr),std(gsr),area(gsr),mean(lr),std(lr),area(lr),etc  
% curve length,amplitude of peaks,# of peaks] 
%+iiiii i i i i i i i i i i i i i i i i i iiiiiiliiiiiiiiiiiiit i i iiiiiI i i i iiiiii + 
++iiii i i i i i i i i i i i i 

feature_count=l; 

for i = 1 :max(find(relevant~=0)), 
question=relevant(i); 

for j=l :length(feature_list(:, 1)) 
channel_number=eval(feature_list(j,l)); 
second_channel=eval(feature_list(j, 2)); 
st=begin(question)+30*Times(channel_number, 1); 
fn=begin(question)+30*Times(channel_number,2); 
st2=begin(question)-3 0 * Times(channel_number, 2); 
fh2=begin(question)-30*Times(channel_number, 1); 
fr=feature_list(j,3 :length(feature_list( 1,:))); 
frag=data(channel_number, st: fn); 
frag2 = data(channel_number,st2:fn2); 
if second channel ~= 0 
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st3=begin(question)+30*Times(second_channel,l); 
fh3=begin(question)+30*Times(second_channel,2); 
frag3 = data(second_channel,st3:fh3); 

end 
tempy=eval(fr); 
for m = l:length(tempy) 

x(feature_count) = tempy(m); 
feature_count=feature_count+1; 

end 
end 

end 
%- 
0 % Irrelevant questions 

feature_count=l; 

for i = 1 :(max(find(irrelevant~=0))-offset) 
question=irrelevant(i); 
for j=1: length(feature_list(:, 1)) 

channel_number=eval(feature_list(j, 1)); 
second_channel=eval(feature_list(j,2)); 
st=begin(question)+30*Times(channel_number,l); 
fh=begin(question)+30*Times(channel_number,2); 
st2=begin(question)-3 0 * Times(channel_number, 2); 
fn2=begin(question)-30*Times(channel_number,l); 
fr=feature_list(j,3 :length(feature_list( 1,:))); 
frag=data(channel_numb er, st: fn); 
frag2 = data(channel_number,st2:fn2); 
if second_channel ~= 0 

st3=begin(question)+30*Times(second_channel,l); 
fh3=begin(question)+30*Times(second_channel,2); 
frag3 = data(second_channel,st3:fn3); 

end 
tempy=eval(fr); 
for m = 1 :length(tempy) 

y(feature_count) = tempy(m); 
feature_count=feature_count+1; 

end 
end 

end 
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% .  

% Control questions 

feature_count= 1; 

for i = 1 :max(find(control~=0)), 
question=control(i); 

for j=1: length(feature_list(:, 1)) 
channel_number=eval(feature_list(j, 1)); 
second_channel=eval(feature_list(j,2)); 
st=begin(question)+3 0 * Times(channel_number, 1); 
fn=begin(question)+3 0 * Times(channel_number, 2); 
st2=begin(question)-30*Times(channel_number,2); 
fn2=begin(question)-30*Times(channel_number,l); 
fr=feature_list(j,3 :length(feature_list( 1,:))); 
frag=data(channel_number,st:fh); 
frag2 = data(channel_number,st2:fh2); 
if second_channel ~= 0 

st3=begin(question)+30*Times(second_channel,l); 
fh3 =begin(question)+3 0 * Times(second_channel, 2); 
frag3 = data(second_channel,st3:fh3); 

end 
tempy^eva^fr); 
for m = 1 :length(tempy) 

z(feature_count) = tempy(m); 
feature_count=feature_count+1; 

end 
end 

end 

% control & relevant 

feature_count=l; 

for i = 1 :max(find(relevant~=0)), 
for k=l:max(find(control~=0)), 

q(k)=abs(relevant(i)-control(k)); 
end 

[a b]=min(q); 
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question 1 =relevant(i); 
question2=control(b); 

for j=l :length(CR_feature(:, 1)) 
channel_number=eval(CR_feature(j, 1)); 
st=begin(question 1 )+3 0 * Times(channel_number, 1); 
fh=begin(question 1 )+3 0 *Times(channeI_number,2); 
st2=begin(question2)+3 0 * Times(channel_number, 1); 
fh2=begin(question2)+3 0 * Times(channel_number, 2); 
fr=CR_feature(j,3 :length(CR_feature( 1,:))); 
frag 1 =data(channel_number,st:fh); 
frag2=data(channel_number, st2: fh2); 
tempy=eval(fr); 
for m = 1 :length(tempy) 

w(feature_count) = tempy(m); 
feature_count=feature_count+1; 

end 
end 

end 

feature=[x,y,z,w]'; 
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function   isd_dif=isd(fragl,frag2) 

% This is a integrated spectral difference(isd) function that finds the cumulativespectral 
% density of a control-relevant pair, then calculates the difference between the 
% isd of control and the relevant for a part of a question. 
% This function returns the max or min and the frequency (points) 
% where this max or min happens and the area underneath this difference. 

% To use this command the user must enter the two variable names. 
% The first variable is a control question fragment and the second is 
% a relevant question fragment. 
% eg.   isd 1 (variablel,variable2) 

Fs = 30; 
K=min(length(frag 1 ),length(frag2)); 

nnp=l; 
np = 2Annp; 
L = K/np; 
L=2A(nextpow2(L)); 

M= spectrum (fragl,L); 
N= spectrum (frag2,L); 

%spectral density of the first (control) question 
%spectral density of the second(relevant) question 

pqc = cumsum(M(:,l)); 
pqr = cumsum(N(:,l)); 

%Cumulative sum of the integrated spectral density 
%Cumulative sum of the integrated spectral density 

clear M 
clear N 
he = pqc/pqc(L/2); 
hr = pqr/pqr(L/2); 

CR_dif= hr' - he'; 
if(abs(max(CR_dif))>abs(min(CR_dif))) 

[CR_dif, mpoint]=max(CR_dif); 
else 

[CR_dif ,mpoint]=min(CR_dif); 
end 

isd_dif=[ CR_dif mpoint trapz(hr'-hc')]; 
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feature_list=[ '10mean(frag) 
'10curve(frag) 
'10area(frag) 
•10med_dif(fiag,8) 
' 10max_min(frag) 
*10max(frag) 
'lOmin(frag) 
*10mdif(frag) 
'20mean(frag) 
'20curve(frag) 
*20area(frag) 
'20ampcard(firag) 
'20dampcard(frag) 
'20peaknumc(frag) 
•20med_dif(frag,5) 
'20max_min(frag) 
'20max(frag) 
'30min(frag) 
'20min(frag) 
•20mdif(frag) 
'20minampc(frag) 
'30mean(frag) 
'30curve(frag) 
'30area(frag) 
•30med_dif(frag,5) 
'30max_min(frag) 
•30max(frag) 
'30mdif(frag) 
'40mean(frag) 
'40min(frag) 
'40mdif(frag) 
'40curve(frag) 
*40area(frag) 
•40med_dif(frag,5) 
'40max_min(frag) 
'40max(frag) 
'50mean(frag) 
'50curve(frag) 
*50area(frag) 
'50ampr(frag) 
*50peaknumr(frag) 
'50ie(frag) 
'50dampr(frag) 
'50ieie(frag, frag2) 
'50med_dif(frag,8) 
'50max_min(fTag) 
'50max(frag) 
'50min(frag) 
'50mdif(frag) 
'50minampr(frag) 
*60mean(frag) 
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'60curve(frag) 
'60area(frag) 
'60ampr(frag) 
'60dampr(frag) 
'60peaknumr(frag) 
*60ie(frag) 
'60ieie(frag, frag2) 
'60med_dif(frag,8) 
'60max_min(frag) 
'60max(frag) 
'60min(firag) 
'60mdif(frag) 
'60minampr(frag) 
'lOstd(frag) 
•20std(frag) 
'30std(frag) 
'40std(frag) 
'50std(frag) 
'60std(frag) 
•20armodl(frag) 
■20corl(ftag) 
*50corl(frag) 
'26croscor(frag,frag3) 
'26psdcoh 1 (frag,frag3) 

CR_feature=[ 
•10isdl(fragl,frag2) 
•20isdl(fragl,frag2) ']; 

lf=length(feature_list(:, 1)); 
cd \mgqt\gl 
filesl 
for d= 1:3 

ifd=2 
cd \mgqt\g2 
files2 

elseifd=3 
cd \mgqt\non_dec 
filesn 

end 

fork=l:length(flist(:,l)) 
file_name=[flist(k,:)]; 
flength=length(file_name); 
question=['ZZ',num2str(file_name(3 :flength-1 )),'4']; 

% creates the name of the file that holds the questions(zz*.014) 
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% load the data & the file with the 
% question number 
%eleminates the extention(.013) 
% in order to use the data. 

%The length of relevant questions 
%The length of control questions 
%The length of irrelevant questions 
% finds the number of questions over 10 

eval(['load', file_name]); 
eval(['load', question]); 
file_name=file_name(l :flength-4); 
question=question(l:flength-4); 
Q=eval(question); 
l_rel=max(find(Q(2, :)~=0)); 
l_con=max(find(Q(4,:)~=0)); 
l_irr=max(find(Q(3,:)~=0)); 
qover =l_con+l_rel+l_irr-10; 
offset=qover*(qover>0); 
CRlength=l_rel*6; 
size_M=( 10+(qover<0)*qover)*(lf+l 8)+CRlength; %total size of features 

initial=zeros(10*(18+lf)+30,l); %Initializing M with a 10*lf zeros 
M(:,k)=initial; 
M(l:size_M,k)=feature(eval(file_name),[Q(2,:)],[Q(3,:)],[Q(4,:)],feature_list,orFset,C 
Rfeature); 

eval(['clear ',upper(file_name)]) 
eval(['clear ',upper(question)]) 

end 

save new_feat M If flist 
clear M 

end 
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clear 
featlength=23; 
load newfeat 
fork=l:length(flist(:,l)) 

file_name=[flist(k,:)]; 
flength=length(file_name); 
question=['ZZ',num2str(file_name(3 :flength-1 )),'4']; 
eval(['load ',question]); 
Q=eval(question(l :flength-4)); 
l_rel=max(find(Q(2, :)~=0)); 
l_con=max(find(Q(4, :)~=0)); 
l_irr=max(find(Q(3,:)~=0)); 

% load the file with the question numbers. 
% in order to use the data. 
%The length of relevant questions 
%The length of control questions 
%The length of irrelevant questions 

% Averaging relevant questions 
forj=l:lf-5+featlength 

m=G-l)*7; 
clear r 
for i=l :l_rel 

r(i)=M((i-l)*(lf-5+featlength)+j,k);     %finds the feature values 
end %for all the relevant questions. 

feat_vec(m+1 ,k)=mean(r); 
feat_vec(m+2,k)=mean(r); 
feat_vec(m+3 ,k)=max(r); 
feat_vec(m+4,k)=min(r); 
feat_vec(m+5,k)=max(r); 
feat_vec(m+6,k)=min(r); 
feat_vec(m+7,k)=max(r); 

end 
qover =l_con+l_rel+l_irr-10; 
offset=qover*(qover>0); 
l=(l_irr-ofFset+l_rel)*(lf-5+featlength); 
cr_l=l+l_con*(lf-5+featlength); 

%■ 

% Averaging control questions 

%returns mean value for relevant 

%The number of questions over 10 

%The position of the 
%first control question 

forj=l:lf-5+featlength 
clear c 
m=(j-l)*7; 
for i=l:l_con 

c(i)=M((i-l)*(lf-5+featlength)+j+l,k); %finds the feature values for 
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end %all the control questions. 

%feature values for control questions 

f(m+l,k)=feat_vec(m+l,k)-mean(c); 
if (feat_vec(m+2,k)+mean(c)=0) 

f(m+2,k)=100; 
else 

f(m+2,k)=2*(feat_vec(m+2,k)- 
mean(c))/(feat_vec(m+2,k)+mean(c)); %for every feature, 

end 
f(m+3, k)=feat_vec(m+3 ,k)-max(c); 
f(m+4,k)=feat_vec(m+4,k)-min(c); 
f(m+5,k)=feat_vec(m+5,k)-min(c); 
f(m+6,k)=feat_vec(m+6,k)-max(c); 

ifmax(c)=0 
f(m+7,k)=100; 

else 
f(m+7,k)=feat_vec(m+7,k)/max(c); 

end 
end 

%  
% feature values for control_relevant 

for j=1:6 
m=ö-l)*3; 
clear cr 
for i=l:l_rel 

cr(i)=M((i-l)*6+j+cr_l,k); 
end 

f(m+1 +(lf-5+featlength)*7,k)=mean(cr); 
f(m+2+(lf-5+featlength)*7,k)=max(cr); 
f(m+3+(lf-5+featlength)*7,k)=min(cr); 

end 

decep( 1 ,k)=Q( 1:1); % finds if file is deceptive or not 
% creates 1 if deceptive and 0 if not. 

eval(['clear ',upper(question(l :flength-4))]); 
end 

save fn_dec f decep 
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