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1. Introduction 

Nitrate esters, such as nitrocellulose (1) and nitroglycerin (2), are one of the major classes 

of energetic compounds, along with nitramines, nitroaromatics, nitroheterocycles, etc. [1,2]. 

Nitrocellulose and nitroglycerin, for example, are frequently components of explosive and 

propellant formulations. Accordingly, any effort to quantitatively analyze and model the 

combustion behavior of such formulations requires a knowledge of nitrate ester decomposition 

processes and the associated energetics. As an initial step toward acquiring such data, we have 

carried out a computational study of several decomposition routes for the simplest nitrate ester, 

methyl nitrate (3). 
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2. Method 

We have used two density functional procedures, as incorporated in the program Gaussian 

94 [3]: (a) The exchange and correlation functionals were the Becke-3 (B3) and the Lee, Yang and 

Parr (LYP), respectively [4,5], and the basis set was the 6-31+G(d). (b) The LYP functional was 

replaced by the Perdew-Wang (PW91) [6], and the 6-31G(d,p) basis set was used. 

3. Results 
We have investigated three possible decomposition pathways, shown as eqs. (1), (2) and 

(3): 



H,C-ON09   ► H,C-0   +   NO, (1A) >2 ^   "3 

(IB) 

H3C-ONO2   >"  H3C   +   N03 (2) 

H3C-ON02  ► TS2  >- H2C=0 +  HONO (3) 

In eqs. (IB) and (3), TS1 and TS2 are transition states. 

The optimized geometries of the reactants, products and transition states in eqs. (1) - (3) are 

given in Table 1. The two sets of calculated structures are overall in very good agreement with 

each other and with the available experimental data. In Table 2 are the total and zero-point 

energies. We found that the reaction in eq. (3) requires an initial rotation around the C-0 bond, as 

shown in eq. (4): 
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The geometries and energies of both the ground state 3A and its conformer 3B are given in Tables 

1 and 2. 

In Figure 1 are presented the relative energies at 0 K, including zero-point contributions, of 

the various stages in the processes shown in eqs. (1), (2) and (3). The corresponding enthalpies at 

298 K are given in parentheses [7]. In Table 3 are compared the calculated and experimental 

enthalpies for the two dissociation processes, eqs. (1A) and (2), and the overall AH for the 

reactions in eqs. (1) and (3). 

4. Discussion 
The data in Table 3 present an interesting contrast. The overall AH for the reactions going 

through transition states, eqs. (1) and (3), is given reasonably accurately by the B3/LYP 

procedure, better than by the B3/PW91; however the reverse is true for the dissociation processes, 

eqs. (1A) and (2), for which the B3/LYP values are too low by about 7 kcal/mole. It has already 

been noted in the past that the B3/LYP combination tends to underestimate the energy requirements 



for the detachment of nitro groups [8,9]. This problem is not overcome by using a larger basis set, 

as can be seen in Mebel et al [8] and as we now confirmed by repeating the B3/LYP calculations 

for eqs. (1 A) and (2) at the 6-311+G(d,p) and 6-311+G(2df,p) levels with no significant 

improvement. However we have shown earlier [9], for the specific cases of H3C-NO2 and 

H2N-NO2, that better results can be obtained with the B3/PW91 combination, and our present 

experience reinforces that conclusion, for splitting off ONO2 as well as NO2. 

Figure 1 shows that the two computational methods are in good agreement concerning the 

activation barriers to forming transition states TS1 and TS2. The reliability of B3/LYP activation 

energies, in particular, has been investigated extensively [10-16]; while an occasional problem is 

encountered [11], in general the results are quite satisfactory. 

With regard to the three methyl nitrate decomposition routes that have been investigated, we 

conclude therefore that the energy requirement for the first step in eq. (1) is comparable to that for 

eq. (3). Accordingly both of these processes can be expected to occur, although the second step in 

eq. (1), leading to TS1, has an additional significant energy barrier. It should be noted that eq. (3) 

is the only one of the three pathways that involves a net release of energy. 

5. Conclusions 

We find two likely initial decomposition paths for methyl nitrate to be (a) loss of NO2, 

followed by eventual rearrangement to H2C-OH, and (b) formation of H2C=0 and HONO. The 

initial energy requirement for each process is about 40 kcal/mole, and the second is exothermic, 

with AH (298 K, experimental) = -16 kcal/mole of H3C-ONO2. From the standpoint of 

computational methodology, both the B3/LYP and the B3/PW91 density functional procedures 

were overall effective; however it was again observed that the B3/LYP tends to underestimate 

dissociation energies involving the loss of NO2 (and ONO2 as well). 
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Table 1. Optimized geometries.3'*» 

System Distances, A Angles, deg. 

°b H         r C-Oa 1.442, 1.431 (1.437) C-Oa-N:  113.8, 113.2 (112.72) 

H^   ^'N^ N-Oa 1.414, 1.404 (1.402) Oa-N-Ob:  117.5,117.3 (118.10) 
n^C-Oa       Oc N-Ob 1.217, 1.210 (1.205) Oa-N-Oc: 112.9, 112.8 
H N-Oc 1.208, 1.202 (1.208) Ob-N-Oc:  129.6, 129.9 (129.52) 

3A 

Ob H          r C-Oa 1.444, 1.433 C-Oa-N:  116.3, 115.8 
H^c-oa' 

voc 
N-Oa 1.421, 1.410 Oa-N-Ob:  118.6, 118.7 
N-Ob- 1.215, 1.209 Oa-N-Oc: 112.0, 111.8 

H/ N-Oc 1.207, 1.201 Ob-N-Oc:  129.4, 129.5 

3B 

H3C-O C-O: 1.371, 1.363 

H2C-0 C-O: 1.209, 1.205 (1.208) H-C-O:  121.9, 122.4 
H-C-H:   116.3, 115.3 (116.5) 

H 
C-O: 
O-H: 

1.371, 1.365 
0.969, 0.963 

C-O-H:  110.1, 108.8 

H 

H3C C-H: 1.084 (1.079) H-C-H:  120, 120 (120) 

HOaNOb Oa-H 0.977, 0.970 (0.958) H-Oa-N:  103.0, 102.5 (102.1) 
N-Oa 1.426, 1.411 (1.432) Oa-N-Ob:  110.9, 110.7 (110.7) 
N-Ob 1.177, 1.177 (1.170) 

NO3 N-O: 1.24, 1.23 O-N-O: 120,120 

N02 N-O: 1.202, 1.198 (1.200) O-N-O:  134.0, 134.1 (133.8) 

H 
C-O 1.389, 1.383 C-O-H:   59.2, 57.9 

.c—0 

H 

C-H: 1.290, 1.260 C-H-O:   67.7, 68.4 
O-H: 1.201, 1.198 

TS1 

H—OK 
/        \b C-Oa :  1.288, 1.285 C-Oa-N: 99.5, 100.0 

C      ,N-Oc N-Oa :  2.054, 1.997 Oa-N-Ob: 101.8, 102.5 
N-Ob 1.252, 1.249 N-Ob-H: 96.4,96.2 

TS2 
N-Oc :  1.197, 1.191 C-H-Ob: 145.6, 145.S 1 u^ C-H: 1.324, 1.334 H-C-Oa:  96.6, 95.8 
Ob-H :   1.317, 1.275 

aFor each distance or angle, the first entry is the B3/LYP result, the second is the B3/PW91. 
bExperimental data are in parentheses. They are taken from M. D. Harmony, V. W. Laurie, R. L. 
Kuczkowski, R. H. Schwendeman, D. A. Ramsay, F. J. Lovas, W. J. Lafferty and A. G. Maki, 
J. Phys. Chem. Ref. Data 8, 619 (1979). 



Table 2. Calculated total and zero-point energies. 

Molecule 

H 

4 

H 
C-O' 

O 
I 

'O 

3A 

Total energy, hartrees 

B3/LYP B3/PW91 

Zero-point energy, kcal/mole 

B3/LYP B3/PW91 

-320.20538       -320.07402 34.2 34.5 

0 

H^C—O        0 
-320.20248 -320.07132 33.9 34.2 

3B 

H3C-0 -115.05934 -115.00952 23.0 23.0 

H2C-0 -114.50884 -114.45657 16.8 16.8 

H2C-OH -115.06294 -115.01734 23.4 23.6 

H3C -39.84264 -39.82752 18.8 18.7 

HONO -205.70966 -205.62186 12.6 13.0 

NO3 -280.23253 -280.11270 6.7 6.9 

N02 -205.08389 -204.99491 5.5 5.7 

H 
>   \ 

.c—0 

H 

-114.99963 -114.95524 20.2 20.4 

TS1 

H—O 
/       \ 

C       xN-0 
HH'   °' 

-320.13261 -320.00049 29.4 29.8 

TS2 



Table 3. Comparison of calculated and experimental AH values, at 298 K, for reactions shown in 
 eqs. (1A), (1), (2) and (3).  

Reaction 
AH, 298 K (kcaymole of H3C-ON02) 

B3/LYP      B3/PW91        Experimental3 

1A:     H3C-ON02 H3C-0   +   N02 33.9 38.4        36.5,b 41,c 40.7d 

1:       H3C—ON02 H2C-OH  +  N02 32.2 34.3        30.3d 

2:       H,C-ONOo H3C   +   N03 
74.3 76.4        80.9,b 80.7d 

3:       H3C— ON02 HoC=0 +  HONO ■12.3 -6.8       -15.7,b -16c 

aObtained from experimental heats of formation. 
bj. J. P. Stewart, J. Comp. Chem. JO, 221 (1989). 
CS. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. 
Phys. Chem. Ref. Data 17, suppl. 1 (1988). 
dD. F. McMillen and D. M. Golden, Ann. Rev. Phys. Chem. 33, 493 (1982). 
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Figure 1.   Relative energies at 0 K and relative enthalpies at 298 K (in parentheses) of the various 
stages in the decomposition processes shown in eqs. (1), (2) and (3). The entries at the 
left are B3/LYP results; those at the right are B3/PW91. All data are in kcal/mole of 
H3C-ON02. 
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